1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicsRISCV.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "riscv-lower"
45 
46 STATISTIC(NumTailCalls, "Number of tail calls");
47 
48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
49                                          const RISCVSubtarget &STI)
50     : TargetLowering(TM), Subtarget(STI) {
51 
52   if (Subtarget.isRV32E())
53     report_fatal_error("Codegen not yet implemented for RV32E");
54 
55   RISCVABI::ABI ABI = Subtarget.getTargetABI();
56   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
57 
58   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
59       !Subtarget.hasStdExtF()) {
60     errs() << "Hard-float 'f' ABI can't be used for a target that "
61                 "doesn't support the F instruction set extension (ignoring "
62                           "target-abi)\n";
63     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
64   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
65              !Subtarget.hasStdExtD()) {
66     errs() << "Hard-float 'd' ABI can't be used for a target that "
67               "doesn't support the D instruction set extension (ignoring "
68               "target-abi)\n";
69     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
70   }
71 
72   switch (ABI) {
73   default:
74     report_fatal_error("Don't know how to lower this ABI");
75   case RISCVABI::ABI_ILP32:
76   case RISCVABI::ABI_ILP32F:
77   case RISCVABI::ABI_ILP32D:
78   case RISCVABI::ABI_LP64:
79   case RISCVABI::ABI_LP64F:
80   case RISCVABI::ABI_LP64D:
81     break;
82   }
83 
84   MVT XLenVT = Subtarget.getXLenVT();
85 
86   // Set up the register classes.
87   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
88 
89   if (Subtarget.hasStdExtZfh())
90     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
91   if (Subtarget.hasStdExtF())
92     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
93   if (Subtarget.hasStdExtD())
94     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
95 
96   static const MVT::SimpleValueType BoolVecVTs[] = {
97       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
98       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
99   static const MVT::SimpleValueType IntVecVTs[] = {
100       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
101       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
102       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
103       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
104       MVT::nxv4i64, MVT::nxv8i64};
105   static const MVT::SimpleValueType F16VecVTs[] = {
106       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
107       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
108   static const MVT::SimpleValueType F32VecVTs[] = {
109       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
110   static const MVT::SimpleValueType F64VecVTs[] = {
111       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
112 
113   if (Subtarget.hasVInstructions()) {
114     auto addRegClassForRVV = [this](MVT VT) {
115       // Disable the smallest fractional LMUL types if ELEN is less than
116       // RVVBitsPerBlock.
117       unsigned MinElts = RISCV::RVVBitsPerBlock / Subtarget.getELEN();
118       if (VT.getVectorMinNumElements() < MinElts)
119         return;
120 
121       unsigned Size = VT.getSizeInBits().getKnownMinValue();
122       const TargetRegisterClass *RC;
123       if (Size <= RISCV::RVVBitsPerBlock)
124         RC = &RISCV::VRRegClass;
125       else if (Size == 2 * RISCV::RVVBitsPerBlock)
126         RC = &RISCV::VRM2RegClass;
127       else if (Size == 4 * RISCV::RVVBitsPerBlock)
128         RC = &RISCV::VRM4RegClass;
129       else if (Size == 8 * RISCV::RVVBitsPerBlock)
130         RC = &RISCV::VRM8RegClass;
131       else
132         llvm_unreachable("Unexpected size");
133 
134       addRegisterClass(VT, RC);
135     };
136 
137     for (MVT VT : BoolVecVTs)
138       addRegClassForRVV(VT);
139     for (MVT VT : IntVecVTs) {
140       if (VT.getVectorElementType() == MVT::i64 &&
141           !Subtarget.hasVInstructionsI64())
142         continue;
143       addRegClassForRVV(VT);
144     }
145 
146     if (Subtarget.hasVInstructionsF16())
147       for (MVT VT : F16VecVTs)
148         addRegClassForRVV(VT);
149 
150     if (Subtarget.hasVInstructionsF32())
151       for (MVT VT : F32VecVTs)
152         addRegClassForRVV(VT);
153 
154     if (Subtarget.hasVInstructionsF64())
155       for (MVT VT : F64VecVTs)
156         addRegClassForRVV(VT);
157 
158     if (Subtarget.useRVVForFixedLengthVectors()) {
159       auto addRegClassForFixedVectors = [this](MVT VT) {
160         MVT ContainerVT = getContainerForFixedLengthVector(VT);
161         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
162         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
163         addRegisterClass(VT, TRI.getRegClass(RCID));
164       };
165       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
166         if (useRVVForFixedLengthVectorVT(VT))
167           addRegClassForFixedVectors(VT);
168 
169       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
170         if (useRVVForFixedLengthVectorVT(VT))
171           addRegClassForFixedVectors(VT);
172     }
173   }
174 
175   // Compute derived properties from the register classes.
176   computeRegisterProperties(STI.getRegisterInfo());
177 
178   setStackPointerRegisterToSaveRestore(RISCV::X2);
179 
180   setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, XLenVT,
181                    MVT::i1, Promote);
182 
183   // TODO: add all necessary setOperationAction calls.
184   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
185 
186   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
187   setOperationAction(ISD::BR_CC, XLenVT, Expand);
188   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
189   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
190 
191   setOperationAction({ISD::STACKSAVE, ISD::STACKRESTORE}, MVT::Other, Expand);
192 
193   setOperationAction(ISD::VASTART, MVT::Other, Custom);
194   setOperationAction({ISD::VAARG, ISD::VACOPY, ISD::VAEND}, MVT::Other, Expand);
195 
196   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
197 
198   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
199 
200   if (!Subtarget.hasStdExtZbb())
201     setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::i8, MVT::i16}, Expand);
202 
203   if (Subtarget.is64Bit()) {
204     setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
205 
206     setOperationAction({ISD::ADD, ISD::SUB, ISD::SHL, ISD::SRA, ISD::SRL},
207                        MVT::i32, Custom);
208 
209     setOperationAction({ISD::UADDO, ISD::USUBO, ISD::UADDSAT, ISD::USUBSAT},
210                        MVT::i32, Custom);
211   } else {
212     setLibcallName(
213         {RTLIB::SHL_I128, RTLIB::SRL_I128, RTLIB::SRA_I128, RTLIB::MUL_I128},
214         nullptr);
215     setLibcallName(RTLIB::MULO_I64, nullptr);
216   }
217 
218   if (!Subtarget.hasStdExtM()) {
219     setOperationAction({ISD::MUL, ISD::MULHS, ISD::MULHU, ISD::SDIV, ISD::UDIV,
220                         ISD::SREM, ISD::UREM},
221                        XLenVT, Expand);
222   } else {
223     if (Subtarget.is64Bit()) {
224       setOperationAction(ISD::MUL, {MVT::i32, MVT::i128}, Custom);
225 
226       setOperationAction({ISD::SDIV, ISD::UDIV, ISD::UREM},
227                          {MVT::i8, MVT::i16, MVT::i32}, Custom);
228     } else {
229       setOperationAction(ISD::MUL, MVT::i64, Custom);
230     }
231   }
232 
233   setOperationAction(
234       {ISD::SDIVREM, ISD::UDIVREM, ISD::SMUL_LOHI, ISD::UMUL_LOHI}, XLenVT,
235       Expand);
236 
237   setOperationAction({ISD::SHL_PARTS, ISD::SRL_PARTS, ISD::SRA_PARTS}, XLenVT,
238                      Custom);
239 
240   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
241       Subtarget.hasStdExtZbkb()) {
242     if (Subtarget.is64Bit())
243       setOperationAction({ISD::ROTL, ISD::ROTR}, MVT::i32, Custom);
244   } else {
245     setOperationAction({ISD::ROTL, ISD::ROTR}, XLenVT, Expand);
246   }
247 
248   if (Subtarget.hasStdExtZbp()) {
249     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
250     // more combining.
251     setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, XLenVT, Custom);
252 
253     // BSWAP i8 doesn't exist.
254     setOperationAction(ISD::BITREVERSE, MVT::i8, Custom);
255 
256     setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i16, Custom);
257 
258     if (Subtarget.is64Bit())
259       setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i32, Custom);
260   } else {
261     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
262     // pattern match it directly in isel.
263     setOperationAction(ISD::BSWAP, XLenVT,
264                        (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())
265                            ? Legal
266                            : Expand);
267     // Zbkb can use rev8+brev8 to implement bitreverse.
268     setOperationAction(ISD::BITREVERSE, XLenVT,
269                        Subtarget.hasStdExtZbkb() ? Custom : Expand);
270   }
271 
272   if (Subtarget.hasStdExtZbb()) {
273     setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, XLenVT,
274                        Legal);
275 
276     if (Subtarget.is64Bit())
277       setOperationAction(
278           {ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF},
279           MVT::i32, Custom);
280   } else {
281     setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP}, XLenVT, Expand);
282 
283     if (Subtarget.is64Bit())
284       setOperationAction(ISD::ABS, MVT::i32, Custom);
285   }
286 
287   if (Subtarget.hasStdExtZbt()) {
288     setOperationAction({ISD::FSHL, ISD::FSHR}, XLenVT, Custom);
289     setOperationAction(ISD::SELECT, XLenVT, Legal);
290 
291     if (Subtarget.is64Bit())
292       setOperationAction({ISD::FSHL, ISD::FSHR}, MVT::i32, Custom);
293   } else {
294     setOperationAction(ISD::SELECT, XLenVT, Custom);
295   }
296 
297   static constexpr ISD::NodeType FPLegalNodeTypes[] = {
298       ISD::FMINNUM,        ISD::FMAXNUM,       ISD::LRINT,
299       ISD::LLRINT,         ISD::LROUND,        ISD::LLROUND,
300       ISD::STRICT_LRINT,   ISD::STRICT_LLRINT, ISD::STRICT_LROUND,
301       ISD::STRICT_LLROUND, ISD::STRICT_FMA,    ISD::STRICT_FADD,
302       ISD::STRICT_FSUB,    ISD::STRICT_FMUL,   ISD::STRICT_FDIV,
303       ISD::STRICT_FSQRT,   ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS};
304 
305   static const ISD::CondCode FPCCToExpand[] = {
306       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
307       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
308       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
309 
310   static const ISD::NodeType FPOpToExpand[] = {
311       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
312       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
313 
314   if (Subtarget.hasStdExtZfh())
315     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
316 
317   if (Subtarget.hasStdExtZfh()) {
318     for (auto NT : FPLegalNodeTypes)
319       setOperationAction(NT, MVT::f16, Legal);
320     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
321     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
322     setCondCodeAction(FPCCToExpand, MVT::f16, Expand);
323     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
324     setOperationAction(ISD::SELECT, MVT::f16, Custom);
325     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
326 
327     setOperationAction({ISD::FREM, ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT,
328                         ISD::FRINT, ISD::FROUND, ISD::FROUNDEVEN, ISD::FTRUNC,
329                         ISD::FPOW, ISD::FPOWI, ISD::FCOS, ISD::FSIN,
330                         ISD::FSINCOS, ISD::FEXP, ISD::FEXP2, ISD::FLOG,
331                         ISD::FLOG2, ISD::FLOG10},
332                        MVT::f16, Promote);
333 
334     // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
335     // complete support for all operations in LegalizeDAG.
336 
337     // We need to custom promote this.
338     if (Subtarget.is64Bit())
339       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
340   }
341 
342   if (Subtarget.hasStdExtF()) {
343     for (auto NT : FPLegalNodeTypes)
344       setOperationAction(NT, MVT::f32, Legal);
345     setCondCodeAction(FPCCToExpand, MVT::f32, Expand);
346     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
347     setOperationAction(ISD::SELECT, MVT::f32, Custom);
348     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
349     for (auto Op : FPOpToExpand)
350       setOperationAction(Op, MVT::f32, Expand);
351     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
352     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
353   }
354 
355   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
356     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
357 
358   if (Subtarget.hasStdExtD()) {
359     for (auto NT : FPLegalNodeTypes)
360       setOperationAction(NT, MVT::f64, Legal);
361     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
362     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
363     setCondCodeAction(FPCCToExpand, MVT::f64, Expand);
364     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
365     setOperationAction(ISD::SELECT, MVT::f64, Custom);
366     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
367     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
368     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
369     for (auto Op : FPOpToExpand)
370       setOperationAction(Op, MVT::f64, Expand);
371     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
372     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
373   }
374 
375   if (Subtarget.is64Bit())
376     setOperationAction({ISD::FP_TO_UINT, ISD::FP_TO_SINT,
377                         ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT},
378                        MVT::i32, Custom);
379 
380   if (Subtarget.hasStdExtF()) {
381     setOperationAction({ISD::FP_TO_UINT_SAT, ISD::FP_TO_SINT_SAT}, XLenVT,
382                        Custom);
383 
384     setOperationAction({ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT,
385                         ISD::STRICT_UINT_TO_FP, ISD::STRICT_SINT_TO_FP},
386                        XLenVT, Legal);
387 
388     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
389     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
390   }
391 
392   setOperationAction({ISD::GlobalAddress, ISD::BlockAddress, ISD::ConstantPool,
393                       ISD::JumpTable},
394                      XLenVT, Custom);
395 
396   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
397 
398   if (Subtarget.is64Bit())
399     setOperationAction(ISD::Constant, MVT::i64, Custom);
400 
401   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
402   // Unfortunately this can't be determined just from the ISA naming string.
403   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
404                      Subtarget.is64Bit() ? Legal : Custom);
405 
406   setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Legal);
407   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
408   if (Subtarget.is64Bit())
409     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
410 
411   if (Subtarget.hasStdExtA()) {
412     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
413     setMinCmpXchgSizeInBits(32);
414   } else {
415     setMaxAtomicSizeInBitsSupported(0);
416   }
417 
418   setBooleanContents(ZeroOrOneBooleanContent);
419 
420   if (Subtarget.hasVInstructions()) {
421     setBooleanVectorContents(ZeroOrOneBooleanContent);
422 
423     setOperationAction(ISD::VSCALE, XLenVT, Custom);
424 
425     // RVV intrinsics may have illegal operands.
426     // We also need to custom legalize vmv.x.s.
427     setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN},
428                        {MVT::i8, MVT::i16}, Custom);
429     if (Subtarget.is64Bit())
430       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
431     else
432       setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN},
433                          MVT::i64, Custom);
434 
435     setOperationAction({ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID},
436                        MVT::Other, Custom);
437 
438     static const unsigned IntegerVPOps[] = {
439         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
440         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
441         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
442         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
443         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
444         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
445         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
446         ISD::VP_MERGE,       ISD::VP_SELECT,      ISD::VP_FPTOSI,
447         ISD::VP_FPTOUI,      ISD::VP_SETCC,       ISD::VP_SIGN_EXTEND,
448         ISD::VP_ZERO_EXTEND, ISD::VP_TRUNCATE};
449 
450     static const unsigned FloatingPointVPOps[] = {
451         ISD::VP_FADD,        ISD::VP_FSUB,
452         ISD::VP_FMUL,        ISD::VP_FDIV,
453         ISD::VP_FNEG,        ISD::VP_FMA,
454         ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD,
455         ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX,
456         ISD::VP_MERGE,       ISD::VP_SELECT,
457         ISD::VP_SITOFP,      ISD::VP_UITOFP,
458         ISD::VP_SETCC,       ISD::VP_FP_ROUND,
459         ISD::VP_FP_EXTEND};
460 
461     if (!Subtarget.is64Bit()) {
462       // We must custom-lower certain vXi64 operations on RV32 due to the vector
463       // element type being illegal.
464       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
465                          MVT::i64, Custom);
466 
467       setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND,
468                           ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR,
469                           ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
470                           ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN},
471                          MVT::i64, Custom);
472 
473       setOperationAction({ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND,
474                           ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR,
475                           ISD::VP_REDUCE_SMAX, ISD::VP_REDUCE_SMIN,
476                           ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN},
477                          MVT::i64, Custom);
478     }
479 
480     for (MVT VT : BoolVecVTs) {
481       if (!isTypeLegal(VT))
482         continue;
483 
484       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
485 
486       // Mask VTs are custom-expanded into a series of standard nodes
487       setOperationAction({ISD::TRUNCATE, ISD::CONCAT_VECTORS,
488                           ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
489                          VT, Custom);
490 
491       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
492                          Custom);
493 
494       setOperationAction(ISD::SELECT, VT, Custom);
495       setOperationAction(
496           {ISD::SELECT_CC, ISD::VSELECT, ISD::VP_MERGE, ISD::VP_SELECT}, VT,
497           Expand);
498 
499       setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR}, VT, Custom);
500 
501       setOperationAction(
502           {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
503           Custom);
504 
505       setOperationAction(
506           {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
507           Custom);
508 
509       // RVV has native int->float & float->int conversions where the
510       // element type sizes are within one power-of-two of each other. Any
511       // wider distances between type sizes have to be lowered as sequences
512       // which progressively narrow the gap in stages.
513       setOperationAction(
514           {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
515           VT, Custom);
516 
517       // Expand all extending loads to types larger than this, and truncating
518       // stores from types larger than this.
519       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
520         setTruncStoreAction(OtherVT, VT, Expand);
521         setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT,
522                          VT, Expand);
523       }
524 
525       setOperationAction(
526           {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_TRUNCATE, ISD::VP_SETCC}, VT,
527           Custom);
528       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
529     }
530 
531     for (MVT VT : IntVecVTs) {
532       if (!isTypeLegal(VT))
533         continue;
534 
535       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
536       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
537 
538       // Vectors implement MULHS/MULHU.
539       setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, VT, Expand);
540 
541       // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
542       if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV())
543         setOperationAction({ISD::MULHU, ISD::MULHS}, VT, Expand);
544 
545       setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, VT,
546                          Legal);
547 
548       setOperationAction({ISD::ROTL, ISD::ROTR}, VT, Expand);
549 
550       setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP, ISD::BSWAP}, VT,
551                          Expand);
552 
553       setOperationAction(ISD::BSWAP, VT, Expand);
554 
555       // Custom-lower extensions and truncations from/to mask types.
556       setOperationAction({ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND},
557                          VT, Custom);
558 
559       // RVV has native int->float & float->int conversions where the
560       // element type sizes are within one power-of-two of each other. Any
561       // wider distances between type sizes have to be lowered as sequences
562       // which progressively narrow the gap in stages.
563       setOperationAction(
564           {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
565           VT, Custom);
566 
567       setOperationAction(
568           {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT, Legal);
569 
570       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
571       // nodes which truncate by one power of two at a time.
572       setOperationAction(ISD::TRUNCATE, VT, Custom);
573 
574       // Custom-lower insert/extract operations to simplify patterns.
575       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
576                          Custom);
577 
578       // Custom-lower reduction operations to set up the corresponding custom
579       // nodes' operands.
580       setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND,
581                           ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR,
582                           ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
583                           ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN},
584                          VT, Custom);
585 
586       setOperationAction(IntegerVPOps, VT, Custom);
587 
588       setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
589 
590       setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
591                          VT, Custom);
592 
593       setOperationAction(
594           {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
595           Custom);
596 
597       setOperationAction(
598           {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
599           VT, Custom);
600 
601       setOperationAction(ISD::SELECT, VT, Custom);
602       setOperationAction(ISD::SELECT_CC, VT, Expand);
603 
604       setOperationAction({ISD::STEP_VECTOR, ISD::VECTOR_REVERSE}, VT, Custom);
605 
606       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
607         setTruncStoreAction(VT, OtherVT, Expand);
608         setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT,
609                          VT, Expand);
610       }
611 
612       // Splice
613       setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
614 
615       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
616       // type that can represent the value exactly.
617       if (VT.getVectorElementType() != MVT::i64) {
618         MVT FloatEltVT =
619             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
620         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
621         if (isTypeLegal(FloatVT)) {
622           setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
623                              Custom);
624         }
625       }
626     }
627 
628     // Expand various CCs to best match the RVV ISA, which natively supports UNE
629     // but no other unordered comparisons, and supports all ordered comparisons
630     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
631     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
632     // and we pattern-match those back to the "original", swapping operands once
633     // more. This way we catch both operations and both "vf" and "fv" forms with
634     // fewer patterns.
635     static const ISD::CondCode VFPCCToExpand[] = {
636         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
637         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
638         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
639     };
640 
641     // Sets common operation actions on RVV floating-point vector types.
642     const auto SetCommonVFPActions = [&](MVT VT) {
643       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
644       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
645       // sizes are within one power-of-two of each other. Therefore conversions
646       // between vXf16 and vXf64 must be lowered as sequences which convert via
647       // vXf32.
648       setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
649       // Custom-lower insert/extract operations to simplify patterns.
650       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
651                          Custom);
652       // Expand various condition codes (explained above).
653       setCondCodeAction(VFPCCToExpand, VT, Expand);
654 
655       setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, VT, Legal);
656 
657       setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND},
658                          VT, Custom);
659 
660       setOperationAction({ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD,
661                           ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAX},
662                          VT, Custom);
663 
664       // Expand FP operations that need libcalls.
665       setOperationAction(ISD::FREM, VT, Expand);
666       setOperationAction(ISD::FPOW, VT, Expand);
667       setOperationAction(ISD::FCOS, VT, Expand);
668       setOperationAction(ISD::FSIN, VT, Expand);
669       setOperationAction(ISD::FSINCOS, VT, Expand);
670       setOperationAction(ISD::FEXP, VT, Expand);
671       setOperationAction(ISD::FEXP2, VT, Expand);
672       setOperationAction(ISD::FLOG, VT, Expand);
673       setOperationAction(ISD::FLOG2, VT, Expand);
674       setOperationAction(ISD::FLOG10, VT, Expand);
675       setOperationAction(ISD::FRINT, VT, Expand);
676       setOperationAction(ISD::FNEARBYINT, VT, Expand);
677 
678       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
679       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
680       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
681       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
682 
683       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
684 
685       setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
686 
687       setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
688                          VT, Custom);
689 
690       setOperationAction(
691           {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
692           Custom);
693 
694       setOperationAction(ISD::SELECT, VT, Custom);
695       setOperationAction(ISD::SELECT_CC, VT, Expand);
696 
697       setOperationAction(
698           {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
699           VT, Custom);
700 
701       setOperationAction({ISD::VECTOR_REVERSE, ISD::VECTOR_SPLICE}, VT, Custom);
702 
703       setOperationAction(FloatingPointVPOps, VT, Custom);
704     };
705 
706     // Sets common extload/truncstore actions on RVV floating-point vector
707     // types.
708     const auto SetCommonVFPExtLoadTruncStoreActions =
709         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
710           for (auto SmallVT : SmallerVTs) {
711             setTruncStoreAction(VT, SmallVT, Expand);
712             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
713           }
714         };
715 
716     if (Subtarget.hasVInstructionsF16()) {
717       for (MVT VT : F16VecVTs) {
718         if (!isTypeLegal(VT))
719           continue;
720         SetCommonVFPActions(VT);
721       }
722     }
723 
724     if (Subtarget.hasVInstructionsF32()) {
725       for (MVT VT : F32VecVTs) {
726         if (!isTypeLegal(VT))
727           continue;
728         SetCommonVFPActions(VT);
729         SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
730       }
731     }
732 
733     if (Subtarget.hasVInstructionsF64()) {
734       for (MVT VT : F64VecVTs) {
735         if (!isTypeLegal(VT))
736           continue;
737         SetCommonVFPActions(VT);
738         SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
739         SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
740       }
741     }
742 
743     if (Subtarget.useRVVForFixedLengthVectors()) {
744       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
745         if (!useRVVForFixedLengthVectorVT(VT))
746           continue;
747 
748         // By default everything must be expanded.
749         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
750           setOperationAction(Op, VT, Expand);
751         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
752           setTruncStoreAction(VT, OtherVT, Expand);
753           setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD},
754                            OtherVT, VT, Expand);
755         }
756 
757         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
758         setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT,
759                            Custom);
760 
761         setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS}, VT,
762                            Custom);
763 
764         setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
765                            VT, Custom);
766 
767         setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
768 
769         setOperationAction(ISD::SETCC, VT, Custom);
770 
771         setOperationAction(ISD::SELECT, VT, Custom);
772 
773         setOperationAction(ISD::TRUNCATE, VT, Custom);
774 
775         setOperationAction(ISD::BITCAST, VT, Custom);
776 
777         setOperationAction(
778             {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
779             Custom);
780 
781         setOperationAction(
782             {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
783             Custom);
784 
785         setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT,
786                             ISD::FP_TO_UINT},
787                            VT, Custom);
788 
789         // Operations below are different for between masks and other vectors.
790         if (VT.getVectorElementType() == MVT::i1) {
791           setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, ISD::AND,
792                               ISD::OR, ISD::XOR},
793                              VT, Custom);
794 
795           setOperationAction(
796               {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_SETCC, ISD::VP_TRUNCATE},
797               VT, Custom);
798           continue;
799         }
800 
801         // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to
802         // it before type legalization for i64 vectors on RV32. It will then be
803         // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle.
804         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
805         // improvements first.
806         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
807           setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
808           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
809         }
810 
811         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
812         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
813 
814         setOperationAction(
815             {ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, VT, Custom);
816 
817         setOperationAction(
818             {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
819             Custom);
820 
821         setOperationAction({ISD::ADD, ISD::MUL, ISD::SUB, ISD::AND, ISD::OR,
822                             ISD::XOR, ISD::SDIV, ISD::SREM, ISD::UDIV,
823                             ISD::UREM, ISD::SHL, ISD::SRA, ISD::SRL},
824                            VT, Custom);
825 
826         setOperationAction(
827             {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, ISD::ABS}, VT, Custom);
828 
829         // vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
830         if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV())
831           setOperationAction({ISD::MULHS, ISD::MULHU}, VT, Custom);
832 
833         setOperationAction(
834             {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT,
835             Custom);
836 
837         setOperationAction(ISD::VSELECT, VT, Custom);
838         setOperationAction(ISD::SELECT_CC, VT, Expand);
839 
840         setOperationAction(
841             {ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, VT, Custom);
842 
843         // Custom-lower reduction operations to set up the corresponding custom
844         // nodes' operands.
845         setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_SMAX,
846                             ISD::VECREDUCE_SMIN, ISD::VECREDUCE_UMAX,
847                             ISD::VECREDUCE_UMIN},
848                            VT, Custom);
849 
850         setOperationAction(IntegerVPOps, VT, Custom);
851 
852         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
853         // type that can represent the value exactly.
854         if (VT.getVectorElementType() != MVT::i64) {
855           MVT FloatEltVT =
856               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
857           EVT FloatVT =
858               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
859           if (isTypeLegal(FloatVT))
860             setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
861                                Custom);
862         }
863       }
864 
865       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
866         if (!useRVVForFixedLengthVectorVT(VT))
867           continue;
868 
869         // By default everything must be expanded.
870         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
871           setOperationAction(Op, VT, Expand);
872         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
873           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
874           setTruncStoreAction(VT, OtherVT, Expand);
875         }
876 
877         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
878         setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT,
879                            Custom);
880 
881         setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS,
882                             ISD::VECTOR_SHUFFLE, ISD::INSERT_VECTOR_ELT,
883                             ISD::EXTRACT_VECTOR_ELT},
884                            VT, Custom);
885 
886         setOperationAction({ISD::LOAD, ISD::STORE, ISD::MLOAD, ISD::MSTORE,
887                             ISD::MGATHER, ISD::MSCATTER},
888                            VT, Custom);
889 
890         setOperationAction(
891             {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
892             Custom);
893 
894         setOperationAction({ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV,
895                             ISD::FNEG, ISD::FABS, ISD::FCOPYSIGN, ISD::FSQRT,
896                             ISD::FMA, ISD::FMINNUM, ISD::FMAXNUM},
897                            VT, Custom);
898 
899         setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
900 
901         setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND},
902                            VT, Custom);
903 
904         for (auto CC : VFPCCToExpand)
905           setCondCodeAction(CC, VT, Expand);
906 
907         setOperationAction({ISD::VSELECT, ISD::SELECT}, VT, Custom);
908         setOperationAction(ISD::SELECT_CC, VT, Expand);
909 
910         setOperationAction(ISD::BITCAST, VT, Custom);
911 
912         setOperationAction({ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD,
913                             ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAX},
914                            VT, Custom);
915 
916         setOperationAction(FloatingPointVPOps, VT, Custom);
917       }
918 
919       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
920       setOperationAction(ISD::BITCAST, {MVT::i8, MVT::i16, MVT::i32, MVT::i64},
921                          Custom);
922       if (Subtarget.hasStdExtZfh())
923         setOperationAction(ISD::BITCAST, MVT::f16, Custom);
924       if (Subtarget.hasStdExtF())
925         setOperationAction(ISD::BITCAST, MVT::f32, Custom);
926       if (Subtarget.hasStdExtD())
927         setOperationAction(ISD::BITCAST, MVT::f64, Custom);
928     }
929   }
930 
931   // Function alignments.
932   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
933   setMinFunctionAlignment(FunctionAlignment);
934   setPrefFunctionAlignment(FunctionAlignment);
935 
936   setMinimumJumpTableEntries(5);
937 
938   // Jumps are expensive, compared to logic
939   setJumpIsExpensive();
940 
941   setTargetDAGCombine({ISD::INTRINSIC_WO_CHAIN, ISD::ADD, ISD::SUB, ISD::AND,
942                        ISD::OR, ISD::XOR});
943   if (Subtarget.is64Bit())
944     setTargetDAGCombine(ISD::SRA);
945 
946   if (Subtarget.hasStdExtF())
947     setTargetDAGCombine({ISD::FADD, ISD::FMAXNUM, ISD::FMINNUM});
948 
949   if (Subtarget.hasStdExtZbp())
950     setTargetDAGCombine({ISD::ROTL, ISD::ROTR});
951 
952   if (Subtarget.hasStdExtZbb())
953     setTargetDAGCombine({ISD::UMAX, ISD::UMIN, ISD::SMAX, ISD::SMIN});
954 
955   if (Subtarget.hasStdExtZbkb())
956     setTargetDAGCombine(ISD::BITREVERSE);
957   if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb())
958     setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
959   if (Subtarget.hasStdExtF())
960     setTargetDAGCombine({ISD::ZERO_EXTEND, ISD::FP_TO_SINT, ISD::FP_TO_UINT,
961                          ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT});
962   if (Subtarget.hasVInstructions())
963     setTargetDAGCombine({ISD::FCOPYSIGN, ISD::MGATHER, ISD::MSCATTER,
964                          ISD::VP_GATHER, ISD::VP_SCATTER, ISD::SRA, ISD::SRL,
965                          ISD::SHL, ISD::STORE, ISD::SPLAT_VECTOR});
966   if (Subtarget.useRVVForFixedLengthVectors())
967     setTargetDAGCombine(ISD::BITCAST);
968 
969   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
970   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
971 }
972 
973 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
974                                             LLVMContext &Context,
975                                             EVT VT) const {
976   if (!VT.isVector())
977     return getPointerTy(DL);
978   if (Subtarget.hasVInstructions() &&
979       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
980     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
981   return VT.changeVectorElementTypeToInteger();
982 }
983 
984 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
985   return Subtarget.getXLenVT();
986 }
987 
988 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
989                                              const CallInst &I,
990                                              MachineFunction &MF,
991                                              unsigned Intrinsic) const {
992   auto &DL = I.getModule()->getDataLayout();
993   switch (Intrinsic) {
994   default:
995     return false;
996   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
997   case Intrinsic::riscv_masked_atomicrmw_add_i32:
998   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
999   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
1000   case Intrinsic::riscv_masked_atomicrmw_max_i32:
1001   case Intrinsic::riscv_masked_atomicrmw_min_i32:
1002   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
1003   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
1004   case Intrinsic::riscv_masked_cmpxchg_i32:
1005     Info.opc = ISD::INTRINSIC_W_CHAIN;
1006     Info.memVT = MVT::i32;
1007     Info.ptrVal = I.getArgOperand(0);
1008     Info.offset = 0;
1009     Info.align = Align(4);
1010     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1011                  MachineMemOperand::MOVolatile;
1012     return true;
1013   case Intrinsic::riscv_masked_strided_load:
1014     Info.opc = ISD::INTRINSIC_W_CHAIN;
1015     Info.ptrVal = I.getArgOperand(1);
1016     Info.memVT = getValueType(DL, I.getType()->getScalarType());
1017     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
1018     Info.size = MemoryLocation::UnknownSize;
1019     Info.flags |= MachineMemOperand::MOLoad;
1020     return true;
1021   case Intrinsic::riscv_masked_strided_store:
1022     Info.opc = ISD::INTRINSIC_VOID;
1023     Info.ptrVal = I.getArgOperand(1);
1024     Info.memVT =
1025         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
1026     Info.align = Align(
1027         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
1028         8);
1029     Info.size = MemoryLocation::UnknownSize;
1030     Info.flags |= MachineMemOperand::MOStore;
1031     return true;
1032   case Intrinsic::riscv_seg2_load:
1033   case Intrinsic::riscv_seg3_load:
1034   case Intrinsic::riscv_seg4_load:
1035   case Intrinsic::riscv_seg5_load:
1036   case Intrinsic::riscv_seg6_load:
1037   case Intrinsic::riscv_seg7_load:
1038   case Intrinsic::riscv_seg8_load:
1039     Info.opc = ISD::INTRINSIC_W_CHAIN;
1040     Info.ptrVal = I.getArgOperand(0);
1041     Info.memVT =
1042         getValueType(DL, I.getType()->getStructElementType(0)->getScalarType());
1043     Info.align =
1044         Align(DL.getTypeSizeInBits(
1045                   I.getType()->getStructElementType(0)->getScalarType()) /
1046               8);
1047     Info.size = MemoryLocation::UnknownSize;
1048     Info.flags |= MachineMemOperand::MOLoad;
1049     return true;
1050   }
1051 }
1052 
1053 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1054                                                 const AddrMode &AM, Type *Ty,
1055                                                 unsigned AS,
1056                                                 Instruction *I) const {
1057   // No global is ever allowed as a base.
1058   if (AM.BaseGV)
1059     return false;
1060 
1061   // RVV instructions only support register addressing.
1062   if (Subtarget.hasVInstructions() && isa<VectorType>(Ty))
1063     return AM.HasBaseReg && AM.Scale == 0 && !AM.BaseOffs;
1064 
1065   // Require a 12-bit signed offset.
1066   if (!isInt<12>(AM.BaseOffs))
1067     return false;
1068 
1069   switch (AM.Scale) {
1070   case 0: // "r+i" or just "i", depending on HasBaseReg.
1071     break;
1072   case 1:
1073     if (!AM.HasBaseReg) // allow "r+i".
1074       break;
1075     return false; // disallow "r+r" or "r+r+i".
1076   default:
1077     return false;
1078   }
1079 
1080   return true;
1081 }
1082 
1083 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1084   return isInt<12>(Imm);
1085 }
1086 
1087 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1088   return isInt<12>(Imm);
1089 }
1090 
1091 // On RV32, 64-bit integers are split into their high and low parts and held
1092 // in two different registers, so the trunc is free since the low register can
1093 // just be used.
1094 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1095   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1096     return false;
1097   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1098   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1099   return (SrcBits == 64 && DestBits == 32);
1100 }
1101 
1102 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1103   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1104       !SrcVT.isInteger() || !DstVT.isInteger())
1105     return false;
1106   unsigned SrcBits = SrcVT.getSizeInBits();
1107   unsigned DestBits = DstVT.getSizeInBits();
1108   return (SrcBits == 64 && DestBits == 32);
1109 }
1110 
1111 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1112   // Zexts are free if they can be combined with a load.
1113   // Don't advertise i32->i64 zextload as being free for RV64. It interacts
1114   // poorly with type legalization of compares preferring sext.
1115   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1116     EVT MemVT = LD->getMemoryVT();
1117     if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1118         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1119          LD->getExtensionType() == ISD::ZEXTLOAD))
1120       return true;
1121   }
1122 
1123   return TargetLowering::isZExtFree(Val, VT2);
1124 }
1125 
1126 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1127   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1128 }
1129 
1130 bool RISCVTargetLowering::signExtendConstant(const ConstantInt *CI) const {
1131   return Subtarget.is64Bit() && CI->getType()->isIntegerTy(32);
1132 }
1133 
1134 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1135   return Subtarget.hasStdExtZbb();
1136 }
1137 
1138 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1139   return Subtarget.hasStdExtZbb();
1140 }
1141 
1142 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1143   EVT VT = Y.getValueType();
1144 
1145   // FIXME: Support vectors once we have tests.
1146   if (VT.isVector())
1147     return false;
1148 
1149   return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
1150           Subtarget.hasStdExtZbkb()) &&
1151          !isa<ConstantSDNode>(Y);
1152 }
1153 
1154 bool RISCVTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
1155   // We can use ANDI+SEQZ/SNEZ as a bit test. Y contains the bit position.
1156   auto *C = dyn_cast<ConstantSDNode>(Y);
1157   return C && C->getAPIntValue().ule(10);
1158 }
1159 
1160 bool RISCVTargetLowering::
1161     shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
1162         SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
1163         unsigned OldShiftOpcode, unsigned NewShiftOpcode,
1164         SelectionDAG &DAG) const {
1165   // One interesting pattern that we'd want to form is 'bit extract':
1166   //   ((1 >> Y) & 1) ==/!= 0
1167   // But we also need to be careful not to try to reverse that fold.
1168 
1169   // Is this '((1 >> Y) & 1)'?
1170   if (XC && OldShiftOpcode == ISD::SRL && XC->isOne())
1171     return false; // Keep the 'bit extract' pattern.
1172 
1173   // Will this be '((1 >> Y) & 1)' after the transform?
1174   if (NewShiftOpcode == ISD::SRL && CC->isOne())
1175     return true; // Do form the 'bit extract' pattern.
1176 
1177   // If 'X' is a constant, and we transform, then we will immediately
1178   // try to undo the fold, thus causing endless combine loop.
1179   // So only do the transform if X is not a constant. This matches the default
1180   // implementation of this function.
1181   return !XC;
1182 }
1183 
1184 /// Check if sinking \p I's operands to I's basic block is profitable, because
1185 /// the operands can be folded into a target instruction, e.g.
1186 /// splats of scalars can fold into vector instructions.
1187 bool RISCVTargetLowering::shouldSinkOperands(
1188     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1189   using namespace llvm::PatternMatch;
1190 
1191   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1192     return false;
1193 
1194   auto IsSinker = [&](Instruction *I, int Operand) {
1195     switch (I->getOpcode()) {
1196     case Instruction::Add:
1197     case Instruction::Sub:
1198     case Instruction::Mul:
1199     case Instruction::And:
1200     case Instruction::Or:
1201     case Instruction::Xor:
1202     case Instruction::FAdd:
1203     case Instruction::FSub:
1204     case Instruction::FMul:
1205     case Instruction::FDiv:
1206     case Instruction::ICmp:
1207     case Instruction::FCmp:
1208       return true;
1209     case Instruction::Shl:
1210     case Instruction::LShr:
1211     case Instruction::AShr:
1212     case Instruction::UDiv:
1213     case Instruction::SDiv:
1214     case Instruction::URem:
1215     case Instruction::SRem:
1216       return Operand == 1;
1217     case Instruction::Call:
1218       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1219         switch (II->getIntrinsicID()) {
1220         case Intrinsic::fma:
1221         case Intrinsic::vp_fma:
1222           return Operand == 0 || Operand == 1;
1223         // FIXME: Our patterns can only match vx/vf instructions when the splat
1224         // it on the RHS, because TableGen doesn't recognize our VP operations
1225         // as commutative.
1226         case Intrinsic::vp_add:
1227         case Intrinsic::vp_mul:
1228         case Intrinsic::vp_and:
1229         case Intrinsic::vp_or:
1230         case Intrinsic::vp_xor:
1231         case Intrinsic::vp_fadd:
1232         case Intrinsic::vp_fmul:
1233         case Intrinsic::vp_shl:
1234         case Intrinsic::vp_lshr:
1235         case Intrinsic::vp_ashr:
1236         case Intrinsic::vp_udiv:
1237         case Intrinsic::vp_sdiv:
1238         case Intrinsic::vp_urem:
1239         case Intrinsic::vp_srem:
1240           return Operand == 1;
1241         // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have
1242         // explicit patterns for both LHS and RHS (as 'vr' versions).
1243         case Intrinsic::vp_sub:
1244         case Intrinsic::vp_fsub:
1245         case Intrinsic::vp_fdiv:
1246           return Operand == 0 || Operand == 1;
1247         default:
1248           return false;
1249         }
1250       }
1251       return false;
1252     default:
1253       return false;
1254     }
1255   };
1256 
1257   for (auto OpIdx : enumerate(I->operands())) {
1258     if (!IsSinker(I, OpIdx.index()))
1259       continue;
1260 
1261     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1262     // Make sure we are not already sinking this operand
1263     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1264       continue;
1265 
1266     // We are looking for a splat that can be sunk.
1267     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1268                              m_Undef(), m_ZeroMask())))
1269       continue;
1270 
1271     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1272     // and vector registers
1273     for (Use &U : Op->uses()) {
1274       Instruction *Insn = cast<Instruction>(U.getUser());
1275       if (!IsSinker(Insn, U.getOperandNo()))
1276         return false;
1277     }
1278 
1279     Ops.push_back(&Op->getOperandUse(0));
1280     Ops.push_back(&OpIdx.value());
1281   }
1282   return true;
1283 }
1284 
1285 bool RISCVTargetLowering::isOffsetFoldingLegal(
1286     const GlobalAddressSDNode *GA) const {
1287   // In order to maximise the opportunity for common subexpression elimination,
1288   // keep a separate ADD node for the global address offset instead of folding
1289   // it in the global address node. Later peephole optimisations may choose to
1290   // fold it back in when profitable.
1291   return false;
1292 }
1293 
1294 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1295                                        bool ForCodeSize) const {
1296   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1297   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1298     return false;
1299   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1300     return false;
1301   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1302     return false;
1303   return Imm.isZero();
1304 }
1305 
1306 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1307   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1308          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1309          (VT == MVT::f64 && Subtarget.hasStdExtD());
1310 }
1311 
1312 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1313                                                       CallingConv::ID CC,
1314                                                       EVT VT) const {
1315   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1316   // We might still end up using a GPR but that will be decided based on ABI.
1317   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1318   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1319     return MVT::f32;
1320 
1321   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1322 }
1323 
1324 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1325                                                            CallingConv::ID CC,
1326                                                            EVT VT) const {
1327   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1328   // We might still end up using a GPR but that will be decided based on ABI.
1329   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1330   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1331     return 1;
1332 
1333   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1334 }
1335 
1336 // Changes the condition code and swaps operands if necessary, so the SetCC
1337 // operation matches one of the comparisons supported directly by branches
1338 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1339 // with 1/-1.
1340 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1341                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1342   // Convert X > -1 to X >= 0.
1343   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1344     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1345     CC = ISD::SETGE;
1346     return;
1347   }
1348   // Convert X < 1 to 0 >= X.
1349   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1350     RHS = LHS;
1351     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1352     CC = ISD::SETGE;
1353     return;
1354   }
1355 
1356   switch (CC) {
1357   default:
1358     break;
1359   case ISD::SETGT:
1360   case ISD::SETLE:
1361   case ISD::SETUGT:
1362   case ISD::SETULE:
1363     CC = ISD::getSetCCSwappedOperands(CC);
1364     std::swap(LHS, RHS);
1365     break;
1366   }
1367 }
1368 
1369 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1370   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1371   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1372   if (VT.getVectorElementType() == MVT::i1)
1373     KnownSize *= 8;
1374 
1375   switch (KnownSize) {
1376   default:
1377     llvm_unreachable("Invalid LMUL.");
1378   case 8:
1379     return RISCVII::VLMUL::LMUL_F8;
1380   case 16:
1381     return RISCVII::VLMUL::LMUL_F4;
1382   case 32:
1383     return RISCVII::VLMUL::LMUL_F2;
1384   case 64:
1385     return RISCVII::VLMUL::LMUL_1;
1386   case 128:
1387     return RISCVII::VLMUL::LMUL_2;
1388   case 256:
1389     return RISCVII::VLMUL::LMUL_4;
1390   case 512:
1391     return RISCVII::VLMUL::LMUL_8;
1392   }
1393 }
1394 
1395 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1396   switch (LMul) {
1397   default:
1398     llvm_unreachable("Invalid LMUL.");
1399   case RISCVII::VLMUL::LMUL_F8:
1400   case RISCVII::VLMUL::LMUL_F4:
1401   case RISCVII::VLMUL::LMUL_F2:
1402   case RISCVII::VLMUL::LMUL_1:
1403     return RISCV::VRRegClassID;
1404   case RISCVII::VLMUL::LMUL_2:
1405     return RISCV::VRM2RegClassID;
1406   case RISCVII::VLMUL::LMUL_4:
1407     return RISCV::VRM4RegClassID;
1408   case RISCVII::VLMUL::LMUL_8:
1409     return RISCV::VRM8RegClassID;
1410   }
1411 }
1412 
1413 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1414   RISCVII::VLMUL LMUL = getLMUL(VT);
1415   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1416       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1417       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1418       LMUL == RISCVII::VLMUL::LMUL_1) {
1419     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1420                   "Unexpected subreg numbering");
1421     return RISCV::sub_vrm1_0 + Index;
1422   }
1423   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1424     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1425                   "Unexpected subreg numbering");
1426     return RISCV::sub_vrm2_0 + Index;
1427   }
1428   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1429     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1430                   "Unexpected subreg numbering");
1431     return RISCV::sub_vrm4_0 + Index;
1432   }
1433   llvm_unreachable("Invalid vector type.");
1434 }
1435 
1436 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1437   if (VT.getVectorElementType() == MVT::i1)
1438     return RISCV::VRRegClassID;
1439   return getRegClassIDForLMUL(getLMUL(VT));
1440 }
1441 
1442 // Attempt to decompose a subvector insert/extract between VecVT and
1443 // SubVecVT via subregister indices. Returns the subregister index that
1444 // can perform the subvector insert/extract with the given element index, as
1445 // well as the index corresponding to any leftover subvectors that must be
1446 // further inserted/extracted within the register class for SubVecVT.
1447 std::pair<unsigned, unsigned>
1448 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1449     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1450     const RISCVRegisterInfo *TRI) {
1451   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1452                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1453                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1454                 "Register classes not ordered");
1455   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1456   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1457   // Try to compose a subregister index that takes us from the incoming
1458   // LMUL>1 register class down to the outgoing one. At each step we half
1459   // the LMUL:
1460   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1461   // Note that this is not guaranteed to find a subregister index, such as
1462   // when we are extracting from one VR type to another.
1463   unsigned SubRegIdx = RISCV::NoSubRegister;
1464   for (const unsigned RCID :
1465        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1466     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1467       VecVT = VecVT.getHalfNumVectorElementsVT();
1468       bool IsHi =
1469           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1470       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1471                                             getSubregIndexByMVT(VecVT, IsHi));
1472       if (IsHi)
1473         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1474     }
1475   return {SubRegIdx, InsertExtractIdx};
1476 }
1477 
1478 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1479 // stores for those types.
1480 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1481   return !Subtarget.useRVVForFixedLengthVectors() ||
1482          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1483 }
1484 
1485 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1486   if (ScalarTy->isPointerTy())
1487     return true;
1488 
1489   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1490       ScalarTy->isIntegerTy(32))
1491     return true;
1492 
1493   if (ScalarTy->isIntegerTy(64))
1494     return Subtarget.hasVInstructionsI64();
1495 
1496   if (ScalarTy->isHalfTy())
1497     return Subtarget.hasVInstructionsF16();
1498   if (ScalarTy->isFloatTy())
1499     return Subtarget.hasVInstructionsF32();
1500   if (ScalarTy->isDoubleTy())
1501     return Subtarget.hasVInstructionsF64();
1502 
1503   return false;
1504 }
1505 
1506 static SDValue getVLOperand(SDValue Op) {
1507   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1508           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
1509          "Unexpected opcode");
1510   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
1511   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
1512   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
1513       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
1514   if (!II)
1515     return SDValue();
1516   return Op.getOperand(II->VLOperand + 1 + HasChain);
1517 }
1518 
1519 static bool useRVVForFixedLengthVectorVT(MVT VT,
1520                                          const RISCVSubtarget &Subtarget) {
1521   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1522   if (!Subtarget.useRVVForFixedLengthVectors())
1523     return false;
1524 
1525   // We only support a set of vector types with a consistent maximum fixed size
1526   // across all supported vector element types to avoid legalization issues.
1527   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1528   // fixed-length vector type we support is 1024 bytes.
1529   if (VT.getFixedSizeInBits() > 1024 * 8)
1530     return false;
1531 
1532   unsigned MinVLen = Subtarget.getRealMinVLen();
1533 
1534   MVT EltVT = VT.getVectorElementType();
1535 
1536   // Don't use RVV for vectors we cannot scalarize if required.
1537   switch (EltVT.SimpleTy) {
1538   // i1 is supported but has different rules.
1539   default:
1540     return false;
1541   case MVT::i1:
1542     // Masks can only use a single register.
1543     if (VT.getVectorNumElements() > MinVLen)
1544       return false;
1545     MinVLen /= 8;
1546     break;
1547   case MVT::i8:
1548   case MVT::i16:
1549   case MVT::i32:
1550     break;
1551   case MVT::i64:
1552     if (!Subtarget.hasVInstructionsI64())
1553       return false;
1554     break;
1555   case MVT::f16:
1556     if (!Subtarget.hasVInstructionsF16())
1557       return false;
1558     break;
1559   case MVT::f32:
1560     if (!Subtarget.hasVInstructionsF32())
1561       return false;
1562     break;
1563   case MVT::f64:
1564     if (!Subtarget.hasVInstructionsF64())
1565       return false;
1566     break;
1567   }
1568 
1569   // Reject elements larger than ELEN.
1570   if (EltVT.getSizeInBits() > Subtarget.getELEN())
1571     return false;
1572 
1573   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1574   // Don't use RVV for types that don't fit.
1575   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1576     return false;
1577 
1578   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1579   // the base fixed length RVV support in place.
1580   if (!VT.isPow2VectorType())
1581     return false;
1582 
1583   return true;
1584 }
1585 
1586 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1587   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1588 }
1589 
1590 // Return the largest legal scalable vector type that matches VT's element type.
1591 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1592                                             const RISCVSubtarget &Subtarget) {
1593   // This may be called before legal types are setup.
1594   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1595           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1596          "Expected legal fixed length vector!");
1597 
1598   unsigned MinVLen = Subtarget.getRealMinVLen();
1599   unsigned MaxELen = Subtarget.getELEN();
1600 
1601   MVT EltVT = VT.getVectorElementType();
1602   switch (EltVT.SimpleTy) {
1603   default:
1604     llvm_unreachable("unexpected element type for RVV container");
1605   case MVT::i1:
1606   case MVT::i8:
1607   case MVT::i16:
1608   case MVT::i32:
1609   case MVT::i64:
1610   case MVT::f16:
1611   case MVT::f32:
1612   case MVT::f64: {
1613     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1614     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1615     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1616     unsigned NumElts =
1617         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1618     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1619     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1620     return MVT::getScalableVectorVT(EltVT, NumElts);
1621   }
1622   }
1623 }
1624 
1625 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1626                                             const RISCVSubtarget &Subtarget) {
1627   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1628                                           Subtarget);
1629 }
1630 
1631 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1632   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1633 }
1634 
1635 // Grow V to consume an entire RVV register.
1636 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1637                                        const RISCVSubtarget &Subtarget) {
1638   assert(VT.isScalableVector() &&
1639          "Expected to convert into a scalable vector!");
1640   assert(V.getValueType().isFixedLengthVector() &&
1641          "Expected a fixed length vector operand!");
1642   SDLoc DL(V);
1643   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1644   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1645 }
1646 
1647 // Shrink V so it's just big enough to maintain a VT's worth of data.
1648 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1649                                          const RISCVSubtarget &Subtarget) {
1650   assert(VT.isFixedLengthVector() &&
1651          "Expected to convert into a fixed length vector!");
1652   assert(V.getValueType().isScalableVector() &&
1653          "Expected a scalable vector operand!");
1654   SDLoc DL(V);
1655   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1656   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1657 }
1658 
1659 /// Return the type of the mask type suitable for masking the provided
1660 /// vector type.  This is simply an i1 element type vector of the same
1661 /// (possibly scalable) length.
1662 static MVT getMaskTypeFor(EVT VecVT) {
1663   assert(VecVT.isVector());
1664   ElementCount EC = VecVT.getVectorElementCount();
1665   return MVT::getVectorVT(MVT::i1, EC);
1666 }
1667 
1668 /// Creates an all ones mask suitable for masking a vector of type VecTy with
1669 /// vector length VL.  .
1670 static SDValue getAllOnesMask(MVT VecVT, SDValue VL, SDLoc DL,
1671                               SelectionDAG &DAG) {
1672   MVT MaskVT = getMaskTypeFor(VecVT);
1673   return DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1674 }
1675 
1676 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1677 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1678 // the vector type that it is contained in.
1679 static std::pair<SDValue, SDValue>
1680 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1681                 const RISCVSubtarget &Subtarget) {
1682   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1683   MVT XLenVT = Subtarget.getXLenVT();
1684   SDValue VL = VecVT.isFixedLengthVector()
1685                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1686                    : DAG.getRegister(RISCV::X0, XLenVT);
1687   SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
1688   return {Mask, VL};
1689 }
1690 
1691 // As above but assuming the given type is a scalable vector type.
1692 static std::pair<SDValue, SDValue>
1693 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1694                         const RISCVSubtarget &Subtarget) {
1695   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1696   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1697 }
1698 
1699 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1700 // of either is (currently) supported. This can get us into an infinite loop
1701 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1702 // as a ..., etc.
1703 // Until either (or both) of these can reliably lower any node, reporting that
1704 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1705 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1706 // which is not desirable.
1707 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1708     EVT VT, unsigned DefinedValues) const {
1709   return false;
1710 }
1711 
1712 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
1713                                   const RISCVSubtarget &Subtarget) {
1714   // RISCV FP-to-int conversions saturate to the destination register size, but
1715   // don't produce 0 for nan. We can use a conversion instruction and fix the
1716   // nan case with a compare and a select.
1717   SDValue Src = Op.getOperand(0);
1718 
1719   EVT DstVT = Op.getValueType();
1720   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1721 
1722   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1723   unsigned Opc;
1724   if (SatVT == DstVT)
1725     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
1726   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1727     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
1728   else
1729     return SDValue();
1730   // FIXME: Support other SatVTs by clamping before or after the conversion.
1731 
1732   SDLoc DL(Op);
1733   SDValue FpToInt = DAG.getNode(
1734       Opc, DL, DstVT, Src,
1735       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
1736 
1737   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1738   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1739 }
1740 
1741 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1742 // and back. Taking care to avoid converting values that are nan or already
1743 // correct.
1744 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1745 // have FRM dependencies modeled yet.
1746 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1747   MVT VT = Op.getSimpleValueType();
1748   assert(VT.isVector() && "Unexpected type");
1749 
1750   SDLoc DL(Op);
1751 
1752   // Freeze the source since we are increasing the number of uses.
1753   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1754 
1755   // Truncate to integer and convert back to FP.
1756   MVT IntVT = VT.changeVectorElementTypeToInteger();
1757   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1758   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1759 
1760   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1761 
1762   if (Op.getOpcode() == ISD::FCEIL) {
1763     // If the truncated value is the greater than or equal to the original
1764     // value, we've computed the ceil. Otherwise, we went the wrong way and
1765     // need to increase by 1.
1766     // FIXME: This should use a masked operation. Handle here or in isel?
1767     SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1768                                  DAG.getConstantFP(1.0, DL, VT));
1769     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1770     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1771   } else if (Op.getOpcode() == ISD::FFLOOR) {
1772     // If the truncated value is the less than or equal to the original value,
1773     // we've computed the floor. Otherwise, we went the wrong way and need to
1774     // decrease by 1.
1775     // FIXME: This should use a masked operation. Handle here or in isel?
1776     SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1777                                  DAG.getConstantFP(1.0, DL, VT));
1778     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1779     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1780   }
1781 
1782   // Restore the original sign so that -0.0 is preserved.
1783   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1784 
1785   // Determine the largest integer that can be represented exactly. This and
1786   // values larger than it don't have any fractional bits so don't need to
1787   // be converted.
1788   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1789   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1790   APFloat MaxVal = APFloat(FltSem);
1791   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1792                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1793   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1794 
1795   // If abs(Src) was larger than MaxVal or nan, keep it.
1796   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1797   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1798   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1799 }
1800 
1801 // ISD::FROUND is defined to round to nearest with ties rounding away from 0.
1802 // This mode isn't supported in vector hardware on RISCV. But as long as we
1803 // aren't compiling with trapping math, we can emulate this with
1804 // floor(X + copysign(nextafter(0.5, 0.0), X)).
1805 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM
1806 // dependencies modeled yet.
1807 // FIXME: Use masked operations to avoid final merge.
1808 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) {
1809   MVT VT = Op.getSimpleValueType();
1810   assert(VT.isVector() && "Unexpected type");
1811 
1812   SDLoc DL(Op);
1813 
1814   // Freeze the source since we are increasing the number of uses.
1815   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1816 
1817   // We do the conversion on the absolute value and fix the sign at the end.
1818   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1819 
1820   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1821   bool Ignored;
1822   APFloat Point5Pred = APFloat(0.5f);
1823   Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored);
1824   Point5Pred.next(/*nextDown*/ true);
1825 
1826   // Add the adjustment.
1827   SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs,
1828                                DAG.getConstantFP(Point5Pred, DL, VT));
1829 
1830   // Truncate to integer and convert back to fp.
1831   MVT IntVT = VT.changeVectorElementTypeToInteger();
1832   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust);
1833   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1834 
1835   // Restore the original sign.
1836   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1837 
1838   // Determine the largest integer that can be represented exactly. This and
1839   // values larger than it don't have any fractional bits so don't need to
1840   // be converted.
1841   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1842   APFloat MaxVal = APFloat(FltSem);
1843   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1844                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1845   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1846 
1847   // If abs(Src) was larger than MaxVal or nan, keep it.
1848   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1849   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1850   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1851 }
1852 
1853 struct VIDSequence {
1854   int64_t StepNumerator;
1855   unsigned StepDenominator;
1856   int64_t Addend;
1857 };
1858 
1859 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1860 // to the (non-zero) step S and start value X. This can be then lowered as the
1861 // RVV sequence (VID * S) + X, for example.
1862 // The step S is represented as an integer numerator divided by a positive
1863 // denominator. Note that the implementation currently only identifies
1864 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1865 // cannot detect 2/3, for example.
1866 // Note that this method will also match potentially unappealing index
1867 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1868 // determine whether this is worth generating code for.
1869 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1870   unsigned NumElts = Op.getNumOperands();
1871   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1872   if (!Op.getValueType().isInteger())
1873     return None;
1874 
1875   Optional<unsigned> SeqStepDenom;
1876   Optional<int64_t> SeqStepNum, SeqAddend;
1877   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1878   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1879   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1880     // Assume undef elements match the sequence; we just have to be careful
1881     // when interpolating across them.
1882     if (Op.getOperand(Idx).isUndef())
1883       continue;
1884     // The BUILD_VECTOR must be all constants.
1885     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1886       return None;
1887 
1888     uint64_t Val = Op.getConstantOperandVal(Idx) &
1889                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1890 
1891     if (PrevElt) {
1892       // Calculate the step since the last non-undef element, and ensure
1893       // it's consistent across the entire sequence.
1894       unsigned IdxDiff = Idx - PrevElt->second;
1895       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1896 
1897       // A zero-value value difference means that we're somewhere in the middle
1898       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1899       // step change before evaluating the sequence.
1900       if (ValDiff == 0)
1901         continue;
1902 
1903       int64_t Remainder = ValDiff % IdxDiff;
1904       // Normalize the step if it's greater than 1.
1905       if (Remainder != ValDiff) {
1906         // The difference must cleanly divide the element span.
1907         if (Remainder != 0)
1908           return None;
1909         ValDiff /= IdxDiff;
1910         IdxDiff = 1;
1911       }
1912 
1913       if (!SeqStepNum)
1914         SeqStepNum = ValDiff;
1915       else if (ValDiff != SeqStepNum)
1916         return None;
1917 
1918       if (!SeqStepDenom)
1919         SeqStepDenom = IdxDiff;
1920       else if (IdxDiff != *SeqStepDenom)
1921         return None;
1922     }
1923 
1924     // Record this non-undef element for later.
1925     if (!PrevElt || PrevElt->first != Val)
1926       PrevElt = std::make_pair(Val, Idx);
1927   }
1928 
1929   // We need to have logged a step for this to count as a legal index sequence.
1930   if (!SeqStepNum || !SeqStepDenom)
1931     return None;
1932 
1933   // Loop back through the sequence and validate elements we might have skipped
1934   // while waiting for a valid step. While doing this, log any sequence addend.
1935   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1936     if (Op.getOperand(Idx).isUndef())
1937       continue;
1938     uint64_t Val = Op.getConstantOperandVal(Idx) &
1939                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1940     uint64_t ExpectedVal =
1941         (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1942     int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1943     if (!SeqAddend)
1944       SeqAddend = Addend;
1945     else if (Addend != SeqAddend)
1946       return None;
1947   }
1948 
1949   assert(SeqAddend && "Must have an addend if we have a step");
1950 
1951   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1952 }
1953 
1954 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT
1955 // and lower it as a VRGATHER_VX_VL from the source vector.
1956 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL,
1957                                   SelectionDAG &DAG,
1958                                   const RISCVSubtarget &Subtarget) {
1959   if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1960     return SDValue();
1961   SDValue Vec = SplatVal.getOperand(0);
1962   // Only perform this optimization on vectors of the same size for simplicity.
1963   // Don't perform this optimization for i1 vectors.
1964   // FIXME: Support i1 vectors, maybe by promoting to i8?
1965   if (Vec.getValueType() != VT || VT.getVectorElementType() == MVT::i1)
1966     return SDValue();
1967   SDValue Idx = SplatVal.getOperand(1);
1968   // The index must be a legal type.
1969   if (Idx.getValueType() != Subtarget.getXLenVT())
1970     return SDValue();
1971 
1972   MVT ContainerVT = VT;
1973   if (VT.isFixedLengthVector()) {
1974     ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1975     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
1976   }
1977 
1978   SDValue Mask, VL;
1979   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1980 
1981   SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec,
1982                                Idx, Mask, DAG.getUNDEF(ContainerVT), VL);
1983 
1984   if (!VT.isFixedLengthVector())
1985     return Gather;
1986 
1987   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
1988 }
1989 
1990 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1991                                  const RISCVSubtarget &Subtarget) {
1992   MVT VT = Op.getSimpleValueType();
1993   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1994 
1995   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1996 
1997   SDLoc DL(Op);
1998   SDValue Mask, VL;
1999   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2000 
2001   MVT XLenVT = Subtarget.getXLenVT();
2002   unsigned NumElts = Op.getNumOperands();
2003 
2004   if (VT.getVectorElementType() == MVT::i1) {
2005     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
2006       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
2007       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
2008     }
2009 
2010     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
2011       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
2012       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
2013     }
2014 
2015     // Lower constant mask BUILD_VECTORs via an integer vector type, in
2016     // scalar integer chunks whose bit-width depends on the number of mask
2017     // bits and XLEN.
2018     // First, determine the most appropriate scalar integer type to use. This
2019     // is at most XLenVT, but may be shrunk to a smaller vector element type
2020     // according to the size of the final vector - use i8 chunks rather than
2021     // XLenVT if we're producing a v8i1. This results in more consistent
2022     // codegen across RV32 and RV64.
2023     unsigned NumViaIntegerBits =
2024         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
2025     NumViaIntegerBits = std::min(NumViaIntegerBits, Subtarget.getELEN());
2026     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
2027       // If we have to use more than one INSERT_VECTOR_ELT then this
2028       // optimization is likely to increase code size; avoid peforming it in
2029       // such a case. We can use a load from a constant pool in this case.
2030       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
2031         return SDValue();
2032       // Now we can create our integer vector type. Note that it may be larger
2033       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
2034       MVT IntegerViaVecVT =
2035           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
2036                            divideCeil(NumElts, NumViaIntegerBits));
2037 
2038       uint64_t Bits = 0;
2039       unsigned BitPos = 0, IntegerEltIdx = 0;
2040       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
2041 
2042       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
2043         // Once we accumulate enough bits to fill our scalar type, insert into
2044         // our vector and clear our accumulated data.
2045         if (I != 0 && I % NumViaIntegerBits == 0) {
2046           if (NumViaIntegerBits <= 32)
2047             Bits = SignExtend64<32>(Bits);
2048           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2049           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
2050                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2051           Bits = 0;
2052           BitPos = 0;
2053           IntegerEltIdx++;
2054         }
2055         SDValue V = Op.getOperand(I);
2056         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
2057         Bits |= ((uint64_t)BitValue << BitPos);
2058       }
2059 
2060       // Insert the (remaining) scalar value into position in our integer
2061       // vector type.
2062       if (NumViaIntegerBits <= 32)
2063         Bits = SignExtend64<32>(Bits);
2064       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2065       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
2066                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2067 
2068       if (NumElts < NumViaIntegerBits) {
2069         // If we're producing a smaller vector than our minimum legal integer
2070         // type, bitcast to the equivalent (known-legal) mask type, and extract
2071         // our final mask.
2072         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
2073         Vec = DAG.getBitcast(MVT::v8i1, Vec);
2074         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
2075                           DAG.getConstant(0, DL, XLenVT));
2076       } else {
2077         // Else we must have produced an integer type with the same size as the
2078         // mask type; bitcast for the final result.
2079         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
2080         Vec = DAG.getBitcast(VT, Vec);
2081       }
2082 
2083       return Vec;
2084     }
2085 
2086     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
2087     // vector type, we have a legal equivalently-sized i8 type, so we can use
2088     // that.
2089     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
2090     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
2091 
2092     SDValue WideVec;
2093     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2094       // For a splat, perform a scalar truncate before creating the wider
2095       // vector.
2096       assert(Splat.getValueType() == XLenVT &&
2097              "Unexpected type for i1 splat value");
2098       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
2099                           DAG.getConstant(1, DL, XLenVT));
2100       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
2101     } else {
2102       SmallVector<SDValue, 8> Ops(Op->op_values());
2103       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
2104       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
2105       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
2106     }
2107 
2108     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
2109   }
2110 
2111   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2112     if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget))
2113       return Gather;
2114     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2115                                         : RISCVISD::VMV_V_X_VL;
2116     Splat =
2117         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL);
2118     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2119   }
2120 
2121   // Try and match index sequences, which we can lower to the vid instruction
2122   // with optional modifications. An all-undef vector is matched by
2123   // getSplatValue, above.
2124   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2125     int64_t StepNumerator = SimpleVID->StepNumerator;
2126     unsigned StepDenominator = SimpleVID->StepDenominator;
2127     int64_t Addend = SimpleVID->Addend;
2128 
2129     assert(StepNumerator != 0 && "Invalid step");
2130     bool Negate = false;
2131     int64_t SplatStepVal = StepNumerator;
2132     unsigned StepOpcode = ISD::MUL;
2133     if (StepNumerator != 1) {
2134       if (isPowerOf2_64(std::abs(StepNumerator))) {
2135         Negate = StepNumerator < 0;
2136         StepOpcode = ISD::SHL;
2137         SplatStepVal = Log2_64(std::abs(StepNumerator));
2138       }
2139     }
2140 
2141     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2142     // threshold since it's the immediate value many RVV instructions accept.
2143     // There is no vmul.vi instruction so ensure multiply constant can fit in
2144     // a single addi instruction.
2145     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2146          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2147         isPowerOf2_32(StepDenominator) &&
2148         (SplatStepVal >= 0 || StepDenominator == 1) && isInt<5>(Addend)) {
2149       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2150       // Convert right out of the scalable type so we can use standard ISD
2151       // nodes for the rest of the computation. If we used scalable types with
2152       // these, we'd lose the fixed-length vector info and generate worse
2153       // vsetvli code.
2154       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2155       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2156           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2157         SDValue SplatStep = DAG.getSplatBuildVector(
2158             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2159         VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2160       }
2161       if (StepDenominator != 1) {
2162         SDValue SplatStep = DAG.getSplatBuildVector(
2163             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2164         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2165       }
2166       if (Addend != 0 || Negate) {
2167         SDValue SplatAddend = DAG.getSplatBuildVector(
2168             VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2169         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2170       }
2171       return VID;
2172     }
2173   }
2174 
2175   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2176   // when re-interpreted as a vector with a larger element type. For example,
2177   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2178   // could be instead splat as
2179   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2180   // TODO: This optimization could also work on non-constant splats, but it
2181   // would require bit-manipulation instructions to construct the splat value.
2182   SmallVector<SDValue> Sequence;
2183   unsigned EltBitSize = VT.getScalarSizeInBits();
2184   const auto *BV = cast<BuildVectorSDNode>(Op);
2185   if (VT.isInteger() && EltBitSize < 64 &&
2186       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2187       BV->getRepeatedSequence(Sequence) &&
2188       (Sequence.size() * EltBitSize) <= 64) {
2189     unsigned SeqLen = Sequence.size();
2190     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2191     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2192     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2193             ViaIntVT == MVT::i64) &&
2194            "Unexpected sequence type");
2195 
2196     unsigned EltIdx = 0;
2197     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2198     uint64_t SplatValue = 0;
2199     // Construct the amalgamated value which can be splatted as this larger
2200     // vector type.
2201     for (const auto &SeqV : Sequence) {
2202       if (!SeqV.isUndef())
2203         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2204                        << (EltIdx * EltBitSize));
2205       EltIdx++;
2206     }
2207 
2208     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2209     // achieve better constant materializion.
2210     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2211       SplatValue = SignExtend64<32>(SplatValue);
2212 
2213     // Since we can't introduce illegal i64 types at this stage, we can only
2214     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2215     // way we can use RVV instructions to splat.
2216     assert((ViaIntVT.bitsLE(XLenVT) ||
2217             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2218            "Unexpected bitcast sequence");
2219     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2220       SDValue ViaVL =
2221           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2222       MVT ViaContainerVT =
2223           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2224       SDValue Splat =
2225           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2226                       DAG.getUNDEF(ViaContainerVT),
2227                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2228       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2229       return DAG.getBitcast(VT, Splat);
2230     }
2231   }
2232 
2233   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2234   // which constitute a large proportion of the elements. In such cases we can
2235   // splat a vector with the dominant element and make up the shortfall with
2236   // INSERT_VECTOR_ELTs.
2237   // Note that this includes vectors of 2 elements by association. The
2238   // upper-most element is the "dominant" one, allowing us to use a splat to
2239   // "insert" the upper element, and an insert of the lower element at position
2240   // 0, which improves codegen.
2241   SDValue DominantValue;
2242   unsigned MostCommonCount = 0;
2243   DenseMap<SDValue, unsigned> ValueCounts;
2244   unsigned NumUndefElts =
2245       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2246 
2247   // Track the number of scalar loads we know we'd be inserting, estimated as
2248   // any non-zero floating-point constant. Other kinds of element are either
2249   // already in registers or are materialized on demand. The threshold at which
2250   // a vector load is more desirable than several scalar materializion and
2251   // vector-insertion instructions is not known.
2252   unsigned NumScalarLoads = 0;
2253 
2254   for (SDValue V : Op->op_values()) {
2255     if (V.isUndef())
2256       continue;
2257 
2258     ValueCounts.insert(std::make_pair(V, 0));
2259     unsigned &Count = ValueCounts[V];
2260 
2261     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2262       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2263 
2264     // Is this value dominant? In case of a tie, prefer the highest element as
2265     // it's cheaper to insert near the beginning of a vector than it is at the
2266     // end.
2267     if (++Count >= MostCommonCount) {
2268       DominantValue = V;
2269       MostCommonCount = Count;
2270     }
2271   }
2272 
2273   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2274   unsigned NumDefElts = NumElts - NumUndefElts;
2275   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2276 
2277   // Don't perform this optimization when optimizing for size, since
2278   // materializing elements and inserting them tends to cause code bloat.
2279   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2280       ((MostCommonCount > DominantValueCountThreshold) ||
2281        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2282     // Start by splatting the most common element.
2283     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2284 
2285     DenseSet<SDValue> Processed{DominantValue};
2286     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2287     for (const auto &OpIdx : enumerate(Op->ops())) {
2288       const SDValue &V = OpIdx.value();
2289       if (V.isUndef() || !Processed.insert(V).second)
2290         continue;
2291       if (ValueCounts[V] == 1) {
2292         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2293                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2294       } else {
2295         // Blend in all instances of this value using a VSELECT, using a
2296         // mask where each bit signals whether that element is the one
2297         // we're after.
2298         SmallVector<SDValue> Ops;
2299         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2300           return DAG.getConstant(V == V1, DL, XLenVT);
2301         });
2302         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2303                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2304                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2305       }
2306     }
2307 
2308     return Vec;
2309   }
2310 
2311   return SDValue();
2312 }
2313 
2314 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2315                                    SDValue Lo, SDValue Hi, SDValue VL,
2316                                    SelectionDAG &DAG) {
2317   if (!Passthru)
2318     Passthru = DAG.getUNDEF(VT);
2319   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2320     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2321     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2322     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2323     // node in order to try and match RVV vector/scalar instructions.
2324     if ((LoC >> 31) == HiC)
2325       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
2326 
2327     // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use
2328     // vmv.v.x whose EEW = 32 to lower it.
2329     auto *Const = dyn_cast<ConstantSDNode>(VL);
2330     if (LoC == HiC && Const && Const->isAllOnesValue()) {
2331       MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
2332       // TODO: if vl <= min(VLMAX), we can also do this. But we could not
2333       // access the subtarget here now.
2334       auto InterVec = DAG.getNode(
2335           RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo,
2336                                   DAG.getRegister(RISCV::X0, MVT::i32));
2337       return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
2338     }
2339   }
2340 
2341   // Fall back to a stack store and stride x0 vector load.
2342   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo,
2343                      Hi, VL);
2344 }
2345 
2346 // Called by type legalization to handle splat of i64 on RV32.
2347 // FIXME: We can optimize this when the type has sign or zero bits in one
2348 // of the halves.
2349 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2350                                    SDValue Scalar, SDValue VL,
2351                                    SelectionDAG &DAG) {
2352   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2353   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2354                            DAG.getConstant(0, DL, MVT::i32));
2355   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2356                            DAG.getConstant(1, DL, MVT::i32));
2357   return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG);
2358 }
2359 
2360 // This function lowers a splat of a scalar operand Splat with the vector
2361 // length VL. It ensures the final sequence is type legal, which is useful when
2362 // lowering a splat after type legalization.
2363 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL,
2364                                 MVT VT, SDLoc DL, SelectionDAG &DAG,
2365                                 const RISCVSubtarget &Subtarget) {
2366   bool HasPassthru = Passthru && !Passthru.isUndef();
2367   if (!HasPassthru && !Passthru)
2368     Passthru = DAG.getUNDEF(VT);
2369   if (VT.isFloatingPoint()) {
2370     // If VL is 1, we could use vfmv.s.f.
2371     if (isOneConstant(VL))
2372       return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL);
2373     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL);
2374   }
2375 
2376   MVT XLenVT = Subtarget.getXLenVT();
2377 
2378   // Simplest case is that the operand needs to be promoted to XLenVT.
2379   if (Scalar.getValueType().bitsLE(XLenVT)) {
2380     // If the operand is a constant, sign extend to increase our chances
2381     // of being able to use a .vi instruction. ANY_EXTEND would become a
2382     // a zero extend and the simm5 check in isel would fail.
2383     // FIXME: Should we ignore the upper bits in isel instead?
2384     unsigned ExtOpc =
2385         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2386     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2387     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
2388     // If VL is 1 and the scalar value won't benefit from immediate, we could
2389     // use vmv.s.x.
2390     if (isOneConstant(VL) &&
2391         (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
2392       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL);
2393     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
2394   }
2395 
2396   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2397          "Unexpected scalar for splat lowering!");
2398 
2399   if (isOneConstant(VL) && isNullConstant(Scalar))
2400     return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru,
2401                        DAG.getConstant(0, DL, XLenVT), VL);
2402 
2403   // Otherwise use the more complicated splatting algorithm.
2404   return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG);
2405 }
2406 
2407 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources,
2408                                 const RISCVSubtarget &Subtarget) {
2409   // We need to be able to widen elements to the next larger integer type.
2410   if (VT.getScalarSizeInBits() >= Subtarget.getELEN())
2411     return false;
2412 
2413   int Size = Mask.size();
2414   assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
2415 
2416   int Srcs[] = {-1, -1};
2417   for (int i = 0; i != Size; ++i) {
2418     // Ignore undef elements.
2419     if (Mask[i] < 0)
2420       continue;
2421 
2422     // Is this an even or odd element.
2423     int Pol = i % 2;
2424 
2425     // Ensure we consistently use the same source for this element polarity.
2426     int Src = Mask[i] / Size;
2427     if (Srcs[Pol] < 0)
2428       Srcs[Pol] = Src;
2429     if (Srcs[Pol] != Src)
2430       return false;
2431 
2432     // Make sure the element within the source is appropriate for this element
2433     // in the destination.
2434     int Elt = Mask[i] % Size;
2435     if (Elt != i / 2)
2436       return false;
2437   }
2438 
2439   // We need to find a source for each polarity and they can't be the same.
2440   if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1])
2441     return false;
2442 
2443   // Swap the sources if the second source was in the even polarity.
2444   SwapSources = Srcs[0] > Srcs[1];
2445 
2446   return true;
2447 }
2448 
2449 /// Match shuffles that concatenate two vectors, rotate the concatenation,
2450 /// and then extract the original number of elements from the rotated result.
2451 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The
2452 /// returned rotation amount is for a rotate right, where elements move from
2453 /// higher elements to lower elements. \p LoSrc indicates the first source
2454 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector
2455 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be
2456 /// 0 or 1 if a rotation is found.
2457 ///
2458 /// NOTE: We talk about rotate to the right which matches how bit shift and
2459 /// rotate instructions are described where LSBs are on the right, but LLVM IR
2460 /// and the table below write vectors with the lowest elements on the left.
2461 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) {
2462   int Size = Mask.size();
2463 
2464   // We need to detect various ways of spelling a rotation:
2465   //   [11, 12, 13, 14, 15,  0,  1,  2]
2466   //   [-1, 12, 13, 14, -1, -1,  1, -1]
2467   //   [-1, -1, -1, -1, -1, -1,  1,  2]
2468   //   [ 3,  4,  5,  6,  7,  8,  9, 10]
2469   //   [-1,  4,  5,  6, -1, -1,  9, -1]
2470   //   [-1,  4,  5,  6, -1, -1, -1, -1]
2471   int Rotation = 0;
2472   LoSrc = -1;
2473   HiSrc = -1;
2474   for (int i = 0; i != Size; ++i) {
2475     int M = Mask[i];
2476     if (M < 0)
2477       continue;
2478 
2479     // Determine where a rotate vector would have started.
2480     int StartIdx = i - (M % Size);
2481     // The identity rotation isn't interesting, stop.
2482     if (StartIdx == 0)
2483       return -1;
2484 
2485     // If we found the tail of a vector the rotation must be the missing
2486     // front. If we found the head of a vector, it must be how much of the
2487     // head.
2488     int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
2489 
2490     if (Rotation == 0)
2491       Rotation = CandidateRotation;
2492     else if (Rotation != CandidateRotation)
2493       // The rotations don't match, so we can't match this mask.
2494       return -1;
2495 
2496     // Compute which value this mask is pointing at.
2497     int MaskSrc = M < Size ? 0 : 1;
2498 
2499     // Compute which of the two target values this index should be assigned to.
2500     // This reflects whether the high elements are remaining or the low elemnts
2501     // are remaining.
2502     int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc;
2503 
2504     // Either set up this value if we've not encountered it before, or check
2505     // that it remains consistent.
2506     if (TargetSrc < 0)
2507       TargetSrc = MaskSrc;
2508     else if (TargetSrc != MaskSrc)
2509       // This may be a rotation, but it pulls from the inputs in some
2510       // unsupported interleaving.
2511       return -1;
2512   }
2513 
2514   // Check that we successfully analyzed the mask, and normalize the results.
2515   assert(Rotation != 0 && "Failed to locate a viable rotation!");
2516   assert((LoSrc >= 0 || HiSrc >= 0) &&
2517          "Failed to find a rotated input vector!");
2518 
2519   return Rotation;
2520 }
2521 
2522 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2523                                    const RISCVSubtarget &Subtarget) {
2524   SDValue V1 = Op.getOperand(0);
2525   SDValue V2 = Op.getOperand(1);
2526   SDLoc DL(Op);
2527   MVT XLenVT = Subtarget.getXLenVT();
2528   MVT VT = Op.getSimpleValueType();
2529   unsigned NumElts = VT.getVectorNumElements();
2530   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2531 
2532   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2533 
2534   SDValue TrueMask, VL;
2535   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2536 
2537   if (SVN->isSplat()) {
2538     const int Lane = SVN->getSplatIndex();
2539     if (Lane >= 0) {
2540       MVT SVT = VT.getVectorElementType();
2541 
2542       // Turn splatted vector load into a strided load with an X0 stride.
2543       SDValue V = V1;
2544       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2545       // with undef.
2546       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2547       int Offset = Lane;
2548       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2549         int OpElements =
2550             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2551         V = V.getOperand(Offset / OpElements);
2552         Offset %= OpElements;
2553       }
2554 
2555       // We need to ensure the load isn't atomic or volatile.
2556       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2557         auto *Ld = cast<LoadSDNode>(V);
2558         Offset *= SVT.getStoreSize();
2559         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2560                                                    TypeSize::Fixed(Offset), DL);
2561 
2562         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2563         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2564           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2565           SDValue IntID =
2566               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2567           SDValue Ops[] = {Ld->getChain(),
2568                            IntID,
2569                            DAG.getUNDEF(ContainerVT),
2570                            NewAddr,
2571                            DAG.getRegister(RISCV::X0, XLenVT),
2572                            VL};
2573           SDValue NewLoad = DAG.getMemIntrinsicNode(
2574               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2575               DAG.getMachineFunction().getMachineMemOperand(
2576                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2577           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2578           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2579         }
2580 
2581         // Otherwise use a scalar load and splat. This will give the best
2582         // opportunity to fold a splat into the operation. ISel can turn it into
2583         // the x0 strided load if we aren't able to fold away the select.
2584         if (SVT.isFloatingPoint())
2585           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2586                           Ld->getPointerInfo().getWithOffset(Offset),
2587                           Ld->getOriginalAlign(),
2588                           Ld->getMemOperand()->getFlags());
2589         else
2590           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2591                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2592                              Ld->getOriginalAlign(),
2593                              Ld->getMemOperand()->getFlags());
2594         DAG.makeEquivalentMemoryOrdering(Ld, V);
2595 
2596         unsigned Opc =
2597             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2598         SDValue Splat =
2599             DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL);
2600         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2601       }
2602 
2603       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2604       assert(Lane < (int)NumElts && "Unexpected lane!");
2605       SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT,
2606                                    V1, DAG.getConstant(Lane, DL, XLenVT),
2607                                    TrueMask, DAG.getUNDEF(ContainerVT), VL);
2608       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2609     }
2610   }
2611 
2612   ArrayRef<int> Mask = SVN->getMask();
2613 
2614   // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may
2615   // be undef which can be handled with a single SLIDEDOWN/UP.
2616   int LoSrc, HiSrc;
2617   int Rotation = isElementRotate(LoSrc, HiSrc, Mask);
2618   if (Rotation > 0) {
2619     SDValue LoV, HiV;
2620     if (LoSrc >= 0) {
2621       LoV = LoSrc == 0 ? V1 : V2;
2622       LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget);
2623     }
2624     if (HiSrc >= 0) {
2625       HiV = HiSrc == 0 ? V1 : V2;
2626       HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget);
2627     }
2628 
2629     // We found a rotation. We need to slide HiV down by Rotation. Then we need
2630     // to slide LoV up by (NumElts - Rotation).
2631     unsigned InvRotate = NumElts - Rotation;
2632 
2633     SDValue Res = DAG.getUNDEF(ContainerVT);
2634     if (HiV) {
2635       // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN.
2636       // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it
2637       // causes multiple vsetvlis in some test cases such as lowering
2638       // reduce.mul
2639       SDValue DownVL = VL;
2640       if (LoV)
2641         DownVL = DAG.getConstant(InvRotate, DL, XLenVT);
2642       Res =
2643           DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV,
2644                       DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL);
2645     }
2646     if (LoV)
2647       Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV,
2648                         DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL);
2649 
2650     return convertFromScalableVector(VT, Res, DAG, Subtarget);
2651   }
2652 
2653   // Detect an interleave shuffle and lower to
2654   // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
2655   bool SwapSources;
2656   if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) {
2657     // Swap sources if needed.
2658     if (SwapSources)
2659       std::swap(V1, V2);
2660 
2661     // Extract the lower half of the vectors.
2662     MVT HalfVT = VT.getHalfNumVectorElementsVT();
2663     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
2664                      DAG.getConstant(0, DL, XLenVT));
2665     V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2,
2666                      DAG.getConstant(0, DL, XLenVT));
2667 
2668     // Double the element width and halve the number of elements in an int type.
2669     unsigned EltBits = VT.getScalarSizeInBits();
2670     MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
2671     MVT WideIntVT =
2672         MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2);
2673     // Convert this to a scalable vector. We need to base this on the
2674     // destination size to ensure there's always a type with a smaller LMUL.
2675     MVT WideIntContainerVT =
2676         getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget);
2677 
2678     // Convert sources to scalable vectors with the same element count as the
2679     // larger type.
2680     MVT HalfContainerVT = MVT::getVectorVT(
2681         VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount());
2682     V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget);
2683     V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget);
2684 
2685     // Cast sources to integer.
2686     MVT IntEltVT = MVT::getIntegerVT(EltBits);
2687     MVT IntHalfVT =
2688         MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount());
2689     V1 = DAG.getBitcast(IntHalfVT, V1);
2690     V2 = DAG.getBitcast(IntHalfVT, V2);
2691 
2692     // Freeze V2 since we use it twice and we need to be sure that the add and
2693     // multiply see the same value.
2694     V2 = DAG.getFreeze(V2);
2695 
2696     // Recreate TrueMask using the widened type's element count.
2697     TrueMask = getAllOnesMask(HalfContainerVT, VL, DL, DAG);
2698 
2699     // Widen V1 and V2 with 0s and add one copy of V2 to V1.
2700     SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1,
2701                               V2, TrueMask, VL);
2702     // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer.
2703     SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT,
2704                                      DAG.getUNDEF(IntHalfVT),
2705                                      DAG.getAllOnesConstant(DL, XLenVT));
2706     SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT,
2707                                    V2, Multiplier, TrueMask, VL);
2708     // Add the new copies to our previous addition giving us 2^eltbits copies of
2709     // V2. This is equivalent to shifting V2 left by eltbits. This should
2710     // combine with the vwmulu.vv above to form vwmaccu.vv.
2711     Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul,
2712                       TrueMask, VL);
2713     // Cast back to ContainerVT. We need to re-create a new ContainerVT in case
2714     // WideIntContainerVT is a larger fractional LMUL than implied by the fixed
2715     // vector VT.
2716     ContainerVT =
2717         MVT::getVectorVT(VT.getVectorElementType(),
2718                          WideIntContainerVT.getVectorElementCount() * 2);
2719     Add = DAG.getBitcast(ContainerVT, Add);
2720     return convertFromScalableVector(VT, Add, DAG, Subtarget);
2721   }
2722 
2723   // Detect shuffles which can be re-expressed as vector selects; these are
2724   // shuffles in which each element in the destination is taken from an element
2725   // at the corresponding index in either source vectors.
2726   bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) {
2727     int MaskIndex = MaskIdx.value();
2728     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2729   });
2730 
2731   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2732 
2733   SmallVector<SDValue> MaskVals;
2734   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2735   // merged with a second vrgather.
2736   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2737 
2738   // By default we preserve the original operand order, and use a mask to
2739   // select LHS as true and RHS as false. However, since RVV vector selects may
2740   // feature splats but only on the LHS, we may choose to invert our mask and
2741   // instead select between RHS and LHS.
2742   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2743   bool InvertMask = IsSelect == SwapOps;
2744 
2745   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2746   // half.
2747   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2748 
2749   // Now construct the mask that will be used by the vselect or blended
2750   // vrgather operation. For vrgathers, construct the appropriate indices into
2751   // each vector.
2752   for (int MaskIndex : Mask) {
2753     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2754     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2755     if (!IsSelect) {
2756       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2757       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2758                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2759                                      : DAG.getUNDEF(XLenVT));
2760       GatherIndicesRHS.push_back(
2761           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2762                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2763       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2764         ++LHSIndexCounts[MaskIndex];
2765       if (!IsLHSOrUndefIndex)
2766         ++RHSIndexCounts[MaskIndex - NumElts];
2767     }
2768   }
2769 
2770   if (SwapOps) {
2771     std::swap(V1, V2);
2772     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2773   }
2774 
2775   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2776   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2777   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2778 
2779   if (IsSelect)
2780     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2781 
2782   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2783     // On such a large vector we're unable to use i8 as the index type.
2784     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2785     // may involve vector splitting if we're already at LMUL=8, or our
2786     // user-supplied maximum fixed-length LMUL.
2787     return SDValue();
2788   }
2789 
2790   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2791   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2792   MVT IndexVT = VT.changeTypeToInteger();
2793   // Since we can't introduce illegal index types at this stage, use i16 and
2794   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2795   // than XLenVT.
2796   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2797     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2798     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2799   }
2800 
2801   MVT IndexContainerVT =
2802       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2803 
2804   SDValue Gather;
2805   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2806   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2807   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2808     Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG,
2809                               Subtarget);
2810   } else {
2811     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2812     // If only one index is used, we can use a "splat" vrgather.
2813     // TODO: We can splat the most-common index and fix-up any stragglers, if
2814     // that's beneficial.
2815     if (LHSIndexCounts.size() == 1) {
2816       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2817       Gather = DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2818                            DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask,
2819                            DAG.getUNDEF(ContainerVT), VL);
2820     } else {
2821       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2822       LHSIndices =
2823           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2824 
2825       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2826                            TrueMask, DAG.getUNDEF(ContainerVT), VL);
2827     }
2828   }
2829 
2830   // If a second vector operand is used by this shuffle, blend it in with an
2831   // additional vrgather.
2832   if (!V2.isUndef()) {
2833     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2834 
2835     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2836     SelectMask =
2837         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2838 
2839     // If only one index is used, we can use a "splat" vrgather.
2840     // TODO: We can splat the most-common index and fix-up any stragglers, if
2841     // that's beneficial.
2842     if (RHSIndexCounts.size() == 1) {
2843       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2844       Gather = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2845                            DAG.getConstant(SplatIndex, DL, XLenVT), SelectMask,
2846                            Gather, VL);
2847     } else {
2848       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2849       RHSIndices =
2850           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2851       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices,
2852                            SelectMask, Gather, VL);
2853     }
2854   }
2855 
2856   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2857 }
2858 
2859 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
2860   // Support splats for any type. These should type legalize well.
2861   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
2862     return true;
2863 
2864   // Only support legal VTs for other shuffles for now.
2865   if (!isTypeLegal(VT))
2866     return false;
2867 
2868   MVT SVT = VT.getSimpleVT();
2869 
2870   bool SwapSources;
2871   int LoSrc, HiSrc;
2872   return (isElementRotate(LoSrc, HiSrc, M) > 0) ||
2873          isInterleaveShuffle(M, SVT, SwapSources, Subtarget);
2874 }
2875 
2876 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2877 // the exponent.
2878 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2879   MVT VT = Op.getSimpleValueType();
2880   unsigned EltSize = VT.getScalarSizeInBits();
2881   SDValue Src = Op.getOperand(0);
2882   SDLoc DL(Op);
2883 
2884   // We need a FP type that can represent the value.
2885   // TODO: Use f16 for i8 when possible?
2886   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2887   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2888 
2889   // Legal types should have been checked in the RISCVTargetLowering
2890   // constructor.
2891   // TODO: Splitting may make sense in some cases.
2892   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2893          "Expected legal float type!");
2894 
2895   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2896   // The trailing zero count is equal to log2 of this single bit value.
2897   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2898     SDValue Neg =
2899         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2900     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2901   }
2902 
2903   // We have a legal FP type, convert to it.
2904   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2905   // Bitcast to integer and shift the exponent to the LSB.
2906   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2907   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2908   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2909   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2910                               DAG.getConstant(ShiftAmt, DL, IntVT));
2911   // Truncate back to original type to allow vnsrl.
2912   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2913   // The exponent contains log2 of the value in biased form.
2914   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2915 
2916   // For trailing zeros, we just need to subtract the bias.
2917   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2918     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2919                        DAG.getConstant(ExponentBias, DL, VT));
2920 
2921   // For leading zeros, we need to remove the bias and convert from log2 to
2922   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2923   unsigned Adjust = ExponentBias + (EltSize - 1);
2924   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2925 }
2926 
2927 // While RVV has alignment restrictions, we should always be able to load as a
2928 // legal equivalently-sized byte-typed vector instead. This method is
2929 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2930 // the load is already correctly-aligned, it returns SDValue().
2931 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2932                                                     SelectionDAG &DAG) const {
2933   auto *Load = cast<LoadSDNode>(Op);
2934   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2935 
2936   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2937                                      Load->getMemoryVT(),
2938                                      *Load->getMemOperand()))
2939     return SDValue();
2940 
2941   SDLoc DL(Op);
2942   MVT VT = Op.getSimpleValueType();
2943   unsigned EltSizeBits = VT.getScalarSizeInBits();
2944   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2945          "Unexpected unaligned RVV load type");
2946   MVT NewVT =
2947       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2948   assert(NewVT.isValid() &&
2949          "Expecting equally-sized RVV vector types to be legal");
2950   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2951                           Load->getPointerInfo(), Load->getOriginalAlign(),
2952                           Load->getMemOperand()->getFlags());
2953   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2954 }
2955 
2956 // While RVV has alignment restrictions, we should always be able to store as a
2957 // legal equivalently-sized byte-typed vector instead. This method is
2958 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
2959 // returns SDValue() if the store is already correctly aligned.
2960 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
2961                                                      SelectionDAG &DAG) const {
2962   auto *Store = cast<StoreSDNode>(Op);
2963   assert(Store && Store->getValue().getValueType().isVector() &&
2964          "Expected vector store");
2965 
2966   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2967                                      Store->getMemoryVT(),
2968                                      *Store->getMemOperand()))
2969     return SDValue();
2970 
2971   SDLoc DL(Op);
2972   SDValue StoredVal = Store->getValue();
2973   MVT VT = StoredVal.getSimpleValueType();
2974   unsigned EltSizeBits = VT.getScalarSizeInBits();
2975   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2976          "Unexpected unaligned RVV store type");
2977   MVT NewVT =
2978       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2979   assert(NewVT.isValid() &&
2980          "Expecting equally-sized RVV vector types to be legal");
2981   StoredVal = DAG.getBitcast(NewVT, StoredVal);
2982   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
2983                       Store->getPointerInfo(), Store->getOriginalAlign(),
2984                       Store->getMemOperand()->getFlags());
2985 }
2986 
2987 static SDValue lowerConstant(SDValue Op, SelectionDAG &DAG,
2988                              const RISCVSubtarget &Subtarget) {
2989   assert(Op.getValueType() == MVT::i64 && "Unexpected VT");
2990 
2991   int64_t Imm = cast<ConstantSDNode>(Op)->getSExtValue();
2992 
2993   // All simm32 constants should be handled by isel.
2994   // NOTE: The getMaxBuildIntsCost call below should return a value >= 2 making
2995   // this check redundant, but small immediates are common so this check
2996   // should have better compile time.
2997   if (isInt<32>(Imm))
2998     return Op;
2999 
3000   // We only need to cost the immediate, if constant pool lowering is enabled.
3001   if (!Subtarget.useConstantPoolForLargeInts())
3002     return Op;
3003 
3004   RISCVMatInt::InstSeq Seq =
3005       RISCVMatInt::generateInstSeq(Imm, Subtarget.getFeatureBits());
3006   if (Seq.size() <= Subtarget.getMaxBuildIntsCost())
3007     return Op;
3008 
3009   // Expand to a constant pool using the default expansion code.
3010   return SDValue();
3011 }
3012 
3013 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
3014                                             SelectionDAG &DAG) const {
3015   switch (Op.getOpcode()) {
3016   default:
3017     report_fatal_error("unimplemented operand");
3018   case ISD::GlobalAddress:
3019     return lowerGlobalAddress(Op, DAG);
3020   case ISD::BlockAddress:
3021     return lowerBlockAddress(Op, DAG);
3022   case ISD::ConstantPool:
3023     return lowerConstantPool(Op, DAG);
3024   case ISD::JumpTable:
3025     return lowerJumpTable(Op, DAG);
3026   case ISD::GlobalTLSAddress:
3027     return lowerGlobalTLSAddress(Op, DAG);
3028   case ISD::Constant:
3029     return lowerConstant(Op, DAG, Subtarget);
3030   case ISD::SELECT:
3031     return lowerSELECT(Op, DAG);
3032   case ISD::BRCOND:
3033     return lowerBRCOND(Op, DAG);
3034   case ISD::VASTART:
3035     return lowerVASTART(Op, DAG);
3036   case ISD::FRAMEADDR:
3037     return lowerFRAMEADDR(Op, DAG);
3038   case ISD::RETURNADDR:
3039     return lowerRETURNADDR(Op, DAG);
3040   case ISD::SHL_PARTS:
3041     return lowerShiftLeftParts(Op, DAG);
3042   case ISD::SRA_PARTS:
3043     return lowerShiftRightParts(Op, DAG, true);
3044   case ISD::SRL_PARTS:
3045     return lowerShiftRightParts(Op, DAG, false);
3046   case ISD::BITCAST: {
3047     SDLoc DL(Op);
3048     EVT VT = Op.getValueType();
3049     SDValue Op0 = Op.getOperand(0);
3050     EVT Op0VT = Op0.getValueType();
3051     MVT XLenVT = Subtarget.getXLenVT();
3052     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
3053       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
3054       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
3055       return FPConv;
3056     }
3057     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
3058         Subtarget.hasStdExtF()) {
3059       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
3060       SDValue FPConv =
3061           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
3062       return FPConv;
3063     }
3064 
3065     // Consider other scalar<->scalar casts as legal if the types are legal.
3066     // Otherwise expand them.
3067     if (!VT.isVector() && !Op0VT.isVector()) {
3068       if (isTypeLegal(VT) && isTypeLegal(Op0VT))
3069         return Op;
3070       return SDValue();
3071     }
3072 
3073     assert(!VT.isScalableVector() && !Op0VT.isScalableVector() &&
3074            "Unexpected types");
3075 
3076     if (VT.isFixedLengthVector()) {
3077       // We can handle fixed length vector bitcasts with a simple replacement
3078       // in isel.
3079       if (Op0VT.isFixedLengthVector())
3080         return Op;
3081       // When bitcasting from scalar to fixed-length vector, insert the scalar
3082       // into a one-element vector of the result type, and perform a vector
3083       // bitcast.
3084       if (!Op0VT.isVector()) {
3085         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
3086         if (!isTypeLegal(BVT))
3087           return SDValue();
3088         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
3089                                               DAG.getUNDEF(BVT), Op0,
3090                                               DAG.getConstant(0, DL, XLenVT)));
3091       }
3092       return SDValue();
3093     }
3094     // Custom-legalize bitcasts from fixed-length vector types to scalar types
3095     // thus: bitcast the vector to a one-element vector type whose element type
3096     // is the same as the result type, and extract the first element.
3097     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
3098       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
3099       if (!isTypeLegal(BVT))
3100         return SDValue();
3101       SDValue BVec = DAG.getBitcast(BVT, Op0);
3102       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
3103                          DAG.getConstant(0, DL, XLenVT));
3104     }
3105     return SDValue();
3106   }
3107   case ISD::INTRINSIC_WO_CHAIN:
3108     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3109   case ISD::INTRINSIC_W_CHAIN:
3110     return LowerINTRINSIC_W_CHAIN(Op, DAG);
3111   case ISD::INTRINSIC_VOID:
3112     return LowerINTRINSIC_VOID(Op, DAG);
3113   case ISD::BSWAP:
3114   case ISD::BITREVERSE: {
3115     MVT VT = Op.getSimpleValueType();
3116     SDLoc DL(Op);
3117     if (Subtarget.hasStdExtZbp()) {
3118       // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
3119       // Start with the maximum immediate value which is the bitwidth - 1.
3120       unsigned Imm = VT.getSizeInBits() - 1;
3121       // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
3122       if (Op.getOpcode() == ISD::BSWAP)
3123         Imm &= ~0x7U;
3124       return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
3125                          DAG.getConstant(Imm, DL, VT));
3126     }
3127     assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
3128     assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
3129     // Expand bitreverse to a bswap(rev8) followed by brev8.
3130     SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
3131     // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized
3132     // as brev8 by an isel pattern.
3133     return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap,
3134                        DAG.getConstant(7, DL, VT));
3135   }
3136   case ISD::FSHL:
3137   case ISD::FSHR: {
3138     MVT VT = Op.getSimpleValueType();
3139     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
3140     SDLoc DL(Op);
3141     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
3142     // use log(XLen) bits. Mask the shift amount accordingly to prevent
3143     // accidentally setting the extra bit.
3144     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
3145     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
3146                                 DAG.getConstant(ShAmtWidth, DL, VT));
3147     // fshl and fshr concatenate their operands in the same order. fsr and fsl
3148     // instruction use different orders. fshl will return its first operand for
3149     // shift of zero, fshr will return its second operand. fsl and fsr both
3150     // return rs1 so the ISD nodes need to have different operand orders.
3151     // Shift amount is in rs2.
3152     SDValue Op0 = Op.getOperand(0);
3153     SDValue Op1 = Op.getOperand(1);
3154     unsigned Opc = RISCVISD::FSL;
3155     if (Op.getOpcode() == ISD::FSHR) {
3156       std::swap(Op0, Op1);
3157       Opc = RISCVISD::FSR;
3158     }
3159     return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt);
3160   }
3161   case ISD::TRUNCATE:
3162     // Only custom-lower vector truncates
3163     if (!Op.getSimpleValueType().isVector())
3164       return Op;
3165     return lowerVectorTruncLike(Op, DAG);
3166   case ISD::ANY_EXTEND:
3167   case ISD::ZERO_EXTEND:
3168     if (Op.getOperand(0).getValueType().isVector() &&
3169         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3170       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
3171     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
3172   case ISD::SIGN_EXTEND:
3173     if (Op.getOperand(0).getValueType().isVector() &&
3174         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3175       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
3176     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
3177   case ISD::SPLAT_VECTOR_PARTS:
3178     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
3179   case ISD::INSERT_VECTOR_ELT:
3180     return lowerINSERT_VECTOR_ELT(Op, DAG);
3181   case ISD::EXTRACT_VECTOR_ELT:
3182     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3183   case ISD::VSCALE: {
3184     MVT VT = Op.getSimpleValueType();
3185     SDLoc DL(Op);
3186     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
3187     // We define our scalable vector types for lmul=1 to use a 64 bit known
3188     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
3189     // vscale as VLENB / 8.
3190     static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
3191     if (Subtarget.getRealMinVLen() < RISCV::RVVBitsPerBlock)
3192       report_fatal_error("Support for VLEN==32 is incomplete.");
3193     // We assume VLENB is a multiple of 8. We manually choose the best shift
3194     // here because SimplifyDemandedBits isn't always able to simplify it.
3195     uint64_t Val = Op.getConstantOperandVal(0);
3196     if (isPowerOf2_64(Val)) {
3197       uint64_t Log2 = Log2_64(Val);
3198       if (Log2 < 3)
3199         return DAG.getNode(ISD::SRL, DL, VT, VLENB,
3200                            DAG.getConstant(3 - Log2, DL, VT));
3201       if (Log2 > 3)
3202         return DAG.getNode(ISD::SHL, DL, VT, VLENB,
3203                            DAG.getConstant(Log2 - 3, DL, VT));
3204       return VLENB;
3205     }
3206     // If the multiplier is a multiple of 8, scale it down to avoid needing
3207     // to shift the VLENB value.
3208     if ((Val % 8) == 0)
3209       return DAG.getNode(ISD::MUL, DL, VT, VLENB,
3210                          DAG.getConstant(Val / 8, DL, VT));
3211 
3212     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
3213                                  DAG.getConstant(3, DL, VT));
3214     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
3215   }
3216   case ISD::FPOWI: {
3217     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
3218     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
3219     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
3220         Op.getOperand(1).getValueType() == MVT::i32) {
3221       SDLoc DL(Op);
3222       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
3223       SDValue Powi =
3224           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
3225       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
3226                          DAG.getIntPtrConstant(0, DL));
3227     }
3228     return SDValue();
3229   }
3230   case ISD::FP_EXTEND:
3231   case ISD::FP_ROUND:
3232     if (!Op.getValueType().isVector())
3233       return Op;
3234     return lowerVectorFPExtendOrRoundLike(Op, DAG);
3235   case ISD::FP_TO_SINT:
3236   case ISD::FP_TO_UINT:
3237   case ISD::SINT_TO_FP:
3238   case ISD::UINT_TO_FP: {
3239     // RVV can only do fp<->int conversions to types half/double the size as
3240     // the source. We custom-lower any conversions that do two hops into
3241     // sequences.
3242     MVT VT = Op.getSimpleValueType();
3243     if (!VT.isVector())
3244       return Op;
3245     SDLoc DL(Op);
3246     SDValue Src = Op.getOperand(0);
3247     MVT EltVT = VT.getVectorElementType();
3248     MVT SrcVT = Src.getSimpleValueType();
3249     MVT SrcEltVT = SrcVT.getVectorElementType();
3250     unsigned EltSize = EltVT.getSizeInBits();
3251     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
3252     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
3253            "Unexpected vector element types");
3254 
3255     bool IsInt2FP = SrcEltVT.isInteger();
3256     // Widening conversions
3257     if (EltSize > (2 * SrcEltSize)) {
3258       if (IsInt2FP) {
3259         // Do a regular integer sign/zero extension then convert to float.
3260         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize),
3261                                       VT.getVectorElementCount());
3262         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
3263                                  ? ISD::ZERO_EXTEND
3264                                  : ISD::SIGN_EXTEND;
3265         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
3266         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
3267       }
3268       // FP2Int
3269       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
3270       // Do one doubling fp_extend then complete the operation by converting
3271       // to int.
3272       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3273       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
3274       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
3275     }
3276 
3277     // Narrowing conversions
3278     if (SrcEltSize > (2 * EltSize)) {
3279       if (IsInt2FP) {
3280         // One narrowing int_to_fp, then an fp_round.
3281         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
3282         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3283         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
3284         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
3285       }
3286       // FP2Int
3287       // One narrowing fp_to_int, then truncate the integer. If the float isn't
3288       // representable by the integer, the result is poison.
3289       MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
3290                                     VT.getVectorElementCount());
3291       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
3292       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
3293     }
3294 
3295     // Scalable vectors can exit here. Patterns will handle equally-sized
3296     // conversions halving/doubling ones.
3297     if (!VT.isFixedLengthVector())
3298       return Op;
3299 
3300     // For fixed-length vectors we lower to a custom "VL" node.
3301     unsigned RVVOpc = 0;
3302     switch (Op.getOpcode()) {
3303     default:
3304       llvm_unreachable("Impossible opcode");
3305     case ISD::FP_TO_SINT:
3306       RVVOpc = RISCVISD::FP_TO_SINT_VL;
3307       break;
3308     case ISD::FP_TO_UINT:
3309       RVVOpc = RISCVISD::FP_TO_UINT_VL;
3310       break;
3311     case ISD::SINT_TO_FP:
3312       RVVOpc = RISCVISD::SINT_TO_FP_VL;
3313       break;
3314     case ISD::UINT_TO_FP:
3315       RVVOpc = RISCVISD::UINT_TO_FP_VL;
3316       break;
3317     }
3318 
3319     MVT ContainerVT, SrcContainerVT;
3320     // Derive the reference container type from the larger vector type.
3321     if (SrcEltSize > EltSize) {
3322       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3323       ContainerVT =
3324           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3325     } else {
3326       ContainerVT = getContainerForFixedLengthVector(VT);
3327       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
3328     }
3329 
3330     SDValue Mask, VL;
3331     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3332 
3333     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3334     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3335     return convertFromScalableVector(VT, Src, DAG, Subtarget);
3336   }
3337   case ISD::FP_TO_SINT_SAT:
3338   case ISD::FP_TO_UINT_SAT:
3339     return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
3340   case ISD::FTRUNC:
3341   case ISD::FCEIL:
3342   case ISD::FFLOOR:
3343     return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3344   case ISD::FROUND:
3345     return lowerFROUND(Op, DAG);
3346   case ISD::VECREDUCE_ADD:
3347   case ISD::VECREDUCE_UMAX:
3348   case ISD::VECREDUCE_SMAX:
3349   case ISD::VECREDUCE_UMIN:
3350   case ISD::VECREDUCE_SMIN:
3351     return lowerVECREDUCE(Op, DAG);
3352   case ISD::VECREDUCE_AND:
3353   case ISD::VECREDUCE_OR:
3354   case ISD::VECREDUCE_XOR:
3355     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3356       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3357     return lowerVECREDUCE(Op, DAG);
3358   case ISD::VECREDUCE_FADD:
3359   case ISD::VECREDUCE_SEQ_FADD:
3360   case ISD::VECREDUCE_FMIN:
3361   case ISD::VECREDUCE_FMAX:
3362     return lowerFPVECREDUCE(Op, DAG);
3363   case ISD::VP_REDUCE_ADD:
3364   case ISD::VP_REDUCE_UMAX:
3365   case ISD::VP_REDUCE_SMAX:
3366   case ISD::VP_REDUCE_UMIN:
3367   case ISD::VP_REDUCE_SMIN:
3368   case ISD::VP_REDUCE_FADD:
3369   case ISD::VP_REDUCE_SEQ_FADD:
3370   case ISD::VP_REDUCE_FMIN:
3371   case ISD::VP_REDUCE_FMAX:
3372     return lowerVPREDUCE(Op, DAG);
3373   case ISD::VP_REDUCE_AND:
3374   case ISD::VP_REDUCE_OR:
3375   case ISD::VP_REDUCE_XOR:
3376     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3377       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3378     return lowerVPREDUCE(Op, DAG);
3379   case ISD::INSERT_SUBVECTOR:
3380     return lowerINSERT_SUBVECTOR(Op, DAG);
3381   case ISD::EXTRACT_SUBVECTOR:
3382     return lowerEXTRACT_SUBVECTOR(Op, DAG);
3383   case ISD::STEP_VECTOR:
3384     return lowerSTEP_VECTOR(Op, DAG);
3385   case ISD::VECTOR_REVERSE:
3386     return lowerVECTOR_REVERSE(Op, DAG);
3387   case ISD::VECTOR_SPLICE:
3388     return lowerVECTOR_SPLICE(Op, DAG);
3389   case ISD::BUILD_VECTOR:
3390     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3391   case ISD::SPLAT_VECTOR:
3392     if (Op.getValueType().getVectorElementType() == MVT::i1)
3393       return lowerVectorMaskSplat(Op, DAG);
3394     return SDValue();
3395   case ISD::VECTOR_SHUFFLE:
3396     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3397   case ISD::CONCAT_VECTORS: {
3398     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3399     // better than going through the stack, as the default expansion does.
3400     SDLoc DL(Op);
3401     MVT VT = Op.getSimpleValueType();
3402     unsigned NumOpElts =
3403         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3404     SDValue Vec = DAG.getUNDEF(VT);
3405     for (const auto &OpIdx : enumerate(Op->ops())) {
3406       SDValue SubVec = OpIdx.value();
3407       // Don't insert undef subvectors.
3408       if (SubVec.isUndef())
3409         continue;
3410       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
3411                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3412     }
3413     return Vec;
3414   }
3415   case ISD::LOAD:
3416     if (auto V = expandUnalignedRVVLoad(Op, DAG))
3417       return V;
3418     if (Op.getValueType().isFixedLengthVector())
3419       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3420     return Op;
3421   case ISD::STORE:
3422     if (auto V = expandUnalignedRVVStore(Op, DAG))
3423       return V;
3424     if (Op.getOperand(1).getValueType().isFixedLengthVector())
3425       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3426     return Op;
3427   case ISD::MLOAD:
3428   case ISD::VP_LOAD:
3429     return lowerMaskedLoad(Op, DAG);
3430   case ISD::MSTORE:
3431   case ISD::VP_STORE:
3432     return lowerMaskedStore(Op, DAG);
3433   case ISD::SETCC:
3434     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3435   case ISD::ADD:
3436     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3437   case ISD::SUB:
3438     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3439   case ISD::MUL:
3440     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3441   case ISD::MULHS:
3442     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3443   case ISD::MULHU:
3444     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3445   case ISD::AND:
3446     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3447                                               RISCVISD::AND_VL);
3448   case ISD::OR:
3449     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3450                                               RISCVISD::OR_VL);
3451   case ISD::XOR:
3452     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3453                                               RISCVISD::XOR_VL);
3454   case ISD::SDIV:
3455     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3456   case ISD::SREM:
3457     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3458   case ISD::UDIV:
3459     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3460   case ISD::UREM:
3461     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3462   case ISD::SHL:
3463   case ISD::SRA:
3464   case ISD::SRL:
3465     if (Op.getSimpleValueType().isFixedLengthVector())
3466       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3467     // This can be called for an i32 shift amount that needs to be promoted.
3468     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3469            "Unexpected custom legalisation");
3470     return SDValue();
3471   case ISD::SADDSAT:
3472     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3473   case ISD::UADDSAT:
3474     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3475   case ISD::SSUBSAT:
3476     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3477   case ISD::USUBSAT:
3478     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3479   case ISD::FADD:
3480     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3481   case ISD::FSUB:
3482     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3483   case ISD::FMUL:
3484     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3485   case ISD::FDIV:
3486     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3487   case ISD::FNEG:
3488     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3489   case ISD::FABS:
3490     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3491   case ISD::FSQRT:
3492     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3493   case ISD::FMA:
3494     return lowerToScalableOp(Op, DAG, RISCVISD::VFMADD_VL);
3495   case ISD::SMIN:
3496     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3497   case ISD::SMAX:
3498     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3499   case ISD::UMIN:
3500     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3501   case ISD::UMAX:
3502     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3503   case ISD::FMINNUM:
3504     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3505   case ISD::FMAXNUM:
3506     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3507   case ISD::ABS:
3508     return lowerABS(Op, DAG);
3509   case ISD::CTLZ_ZERO_UNDEF:
3510   case ISD::CTTZ_ZERO_UNDEF:
3511     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3512   case ISD::VSELECT:
3513     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3514   case ISD::FCOPYSIGN:
3515     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3516   case ISD::MGATHER:
3517   case ISD::VP_GATHER:
3518     return lowerMaskedGather(Op, DAG);
3519   case ISD::MSCATTER:
3520   case ISD::VP_SCATTER:
3521     return lowerMaskedScatter(Op, DAG);
3522   case ISD::FLT_ROUNDS_:
3523     return lowerGET_ROUNDING(Op, DAG);
3524   case ISD::SET_ROUNDING:
3525     return lowerSET_ROUNDING(Op, DAG);
3526   case ISD::EH_DWARF_CFA:
3527     return lowerEH_DWARF_CFA(Op, DAG);
3528   case ISD::VP_SELECT:
3529     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3530   case ISD::VP_MERGE:
3531     return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL);
3532   case ISD::VP_ADD:
3533     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3534   case ISD::VP_SUB:
3535     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3536   case ISD::VP_MUL:
3537     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3538   case ISD::VP_SDIV:
3539     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3540   case ISD::VP_UDIV:
3541     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3542   case ISD::VP_SREM:
3543     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3544   case ISD::VP_UREM:
3545     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3546   case ISD::VP_AND:
3547     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3548   case ISD::VP_OR:
3549     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3550   case ISD::VP_XOR:
3551     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3552   case ISD::VP_ASHR:
3553     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3554   case ISD::VP_LSHR:
3555     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3556   case ISD::VP_SHL:
3557     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3558   case ISD::VP_FADD:
3559     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3560   case ISD::VP_FSUB:
3561     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3562   case ISD::VP_FMUL:
3563     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3564   case ISD::VP_FDIV:
3565     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3566   case ISD::VP_FNEG:
3567     return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL);
3568   case ISD::VP_FMA:
3569     return lowerVPOp(Op, DAG, RISCVISD::VFMADD_VL);
3570   case ISD::VP_SIGN_EXTEND:
3571   case ISD::VP_ZERO_EXTEND:
3572     if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
3573       return lowerVPExtMaskOp(Op, DAG);
3574     return lowerVPOp(Op, DAG,
3575                      Op.getOpcode() == ISD::VP_SIGN_EXTEND
3576                          ? RISCVISD::VSEXT_VL
3577                          : RISCVISD::VZEXT_VL);
3578   case ISD::VP_TRUNCATE:
3579     return lowerVectorTruncLike(Op, DAG);
3580   case ISD::VP_FP_EXTEND:
3581   case ISD::VP_FP_ROUND:
3582     return lowerVectorFPExtendOrRoundLike(Op, DAG);
3583   case ISD::VP_FPTOSI:
3584     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_SINT_VL);
3585   case ISD::VP_FPTOUI:
3586     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_UINT_VL);
3587   case ISD::VP_SITOFP:
3588     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::SINT_TO_FP_VL);
3589   case ISD::VP_UITOFP:
3590     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::UINT_TO_FP_VL);
3591   case ISD::VP_SETCC:
3592     if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
3593       return lowerVPSetCCMaskOp(Op, DAG);
3594     return lowerVPOp(Op, DAG, RISCVISD::SETCC_VL);
3595   }
3596 }
3597 
3598 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3599                              SelectionDAG &DAG, unsigned Flags) {
3600   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3601 }
3602 
3603 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3604                              SelectionDAG &DAG, unsigned Flags) {
3605   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3606                                    Flags);
3607 }
3608 
3609 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3610                              SelectionDAG &DAG, unsigned Flags) {
3611   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3612                                    N->getOffset(), Flags);
3613 }
3614 
3615 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3616                              SelectionDAG &DAG, unsigned Flags) {
3617   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3618 }
3619 
3620 template <class NodeTy>
3621 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3622                                      bool IsLocal) const {
3623   SDLoc DL(N);
3624   EVT Ty = getPointerTy(DAG.getDataLayout());
3625 
3626   if (isPositionIndependent()) {
3627     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3628     if (IsLocal)
3629       // Use PC-relative addressing to access the symbol. This generates the
3630       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3631       // %pcrel_lo(auipc)).
3632       return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr);
3633 
3634     // Use PC-relative addressing to access the GOT for this symbol, then load
3635     // the address from the GOT. This generates the pattern (PseudoLA sym),
3636     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3637     MachineFunction &MF = DAG.getMachineFunction();
3638     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3639         MachinePointerInfo::getGOT(MF),
3640         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3641             MachineMemOperand::MOInvariant,
3642         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3643     SDValue Load =
3644         DAG.getMemIntrinsicNode(RISCVISD::LA, DL, DAG.getVTList(Ty, MVT::Other),
3645                                 {DAG.getEntryNode(), Addr}, Ty, MemOp);
3646     return Load;
3647   }
3648 
3649   switch (getTargetMachine().getCodeModel()) {
3650   default:
3651     report_fatal_error("Unsupported code model for lowering");
3652   case CodeModel::Small: {
3653     // Generate a sequence for accessing addresses within the first 2 GiB of
3654     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3655     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3656     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3657     SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi);
3658     return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNHi, AddrLo);
3659   }
3660   case CodeModel::Medium: {
3661     // Generate a sequence for accessing addresses within any 2GiB range within
3662     // the address space. This generates the pattern (PseudoLLA sym), which
3663     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3664     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3665     return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr);
3666   }
3667   }
3668 }
3669 
3670 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3671                                                 SelectionDAG &DAG) const {
3672   SDLoc DL(Op);
3673   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3674   assert(N->getOffset() == 0 && "unexpected offset in global node");
3675 
3676   const GlobalValue *GV = N->getGlobal();
3677   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3678   return getAddr(N, DAG, IsLocal);
3679 }
3680 
3681 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3682                                                SelectionDAG &DAG) const {
3683   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3684 
3685   return getAddr(N, DAG);
3686 }
3687 
3688 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3689                                                SelectionDAG &DAG) const {
3690   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3691 
3692   return getAddr(N, DAG);
3693 }
3694 
3695 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3696                                             SelectionDAG &DAG) const {
3697   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3698 
3699   return getAddr(N, DAG);
3700 }
3701 
3702 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3703                                               SelectionDAG &DAG,
3704                                               bool UseGOT) const {
3705   SDLoc DL(N);
3706   EVT Ty = getPointerTy(DAG.getDataLayout());
3707   const GlobalValue *GV = N->getGlobal();
3708   MVT XLenVT = Subtarget.getXLenVT();
3709 
3710   if (UseGOT) {
3711     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3712     // load the address from the GOT and add the thread pointer. This generates
3713     // the pattern (PseudoLA_TLS_IE sym), which expands to
3714     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3715     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3716     MachineFunction &MF = DAG.getMachineFunction();
3717     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3718         MachinePointerInfo::getGOT(MF),
3719         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3720             MachineMemOperand::MOInvariant,
3721         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3722     SDValue Load = DAG.getMemIntrinsicNode(
3723         RISCVISD::LA_TLS_IE, DL, DAG.getVTList(Ty, MVT::Other),
3724         {DAG.getEntryNode(), Addr}, Ty, MemOp);
3725 
3726     // Add the thread pointer.
3727     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3728     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3729   }
3730 
3731   // Generate a sequence for accessing the address relative to the thread
3732   // pointer, with the appropriate adjustment for the thread pointer offset.
3733   // This generates the pattern
3734   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3735   SDValue AddrHi =
3736       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3737   SDValue AddrAdd =
3738       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3739   SDValue AddrLo =
3740       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3741 
3742   SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi);
3743   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3744   SDValue MNAdd =
3745       DAG.getNode(RISCVISD::ADD_TPREL, DL, Ty, MNHi, TPReg, AddrAdd);
3746   return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNAdd, AddrLo);
3747 }
3748 
3749 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3750                                                SelectionDAG &DAG) const {
3751   SDLoc DL(N);
3752   EVT Ty = getPointerTy(DAG.getDataLayout());
3753   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3754   const GlobalValue *GV = N->getGlobal();
3755 
3756   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3757   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3758   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3759   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3760   SDValue Load = DAG.getNode(RISCVISD::LA_TLS_GD, DL, Ty, Addr);
3761 
3762   // Prepare argument list to generate call.
3763   ArgListTy Args;
3764   ArgListEntry Entry;
3765   Entry.Node = Load;
3766   Entry.Ty = CallTy;
3767   Args.push_back(Entry);
3768 
3769   // Setup call to __tls_get_addr.
3770   TargetLowering::CallLoweringInfo CLI(DAG);
3771   CLI.setDebugLoc(DL)
3772       .setChain(DAG.getEntryNode())
3773       .setLibCallee(CallingConv::C, CallTy,
3774                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3775                     std::move(Args));
3776 
3777   return LowerCallTo(CLI).first;
3778 }
3779 
3780 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3781                                                    SelectionDAG &DAG) const {
3782   SDLoc DL(Op);
3783   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3784   assert(N->getOffset() == 0 && "unexpected offset in global node");
3785 
3786   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3787 
3788   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3789       CallingConv::GHC)
3790     report_fatal_error("In GHC calling convention TLS is not supported");
3791 
3792   SDValue Addr;
3793   switch (Model) {
3794   case TLSModel::LocalExec:
3795     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3796     break;
3797   case TLSModel::InitialExec:
3798     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3799     break;
3800   case TLSModel::LocalDynamic:
3801   case TLSModel::GeneralDynamic:
3802     Addr = getDynamicTLSAddr(N, DAG);
3803     break;
3804   }
3805 
3806   return Addr;
3807 }
3808 
3809 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3810   SDValue CondV = Op.getOperand(0);
3811   SDValue TrueV = Op.getOperand(1);
3812   SDValue FalseV = Op.getOperand(2);
3813   SDLoc DL(Op);
3814   MVT VT = Op.getSimpleValueType();
3815   MVT XLenVT = Subtarget.getXLenVT();
3816 
3817   // Lower vector SELECTs to VSELECTs by splatting the condition.
3818   if (VT.isVector()) {
3819     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3820     SDValue CondSplat = VT.isScalableVector()
3821                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3822                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3823     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3824   }
3825 
3826   // If the result type is XLenVT and CondV is the output of a SETCC node
3827   // which also operated on XLenVT inputs, then merge the SETCC node into the
3828   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3829   // compare+branch instructions. i.e.:
3830   // (select (setcc lhs, rhs, cc), truev, falsev)
3831   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3832   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3833       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3834     SDValue LHS = CondV.getOperand(0);
3835     SDValue RHS = CondV.getOperand(1);
3836     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3837     ISD::CondCode CCVal = CC->get();
3838 
3839     // Special case for a select of 2 constants that have a diffence of 1.
3840     // Normally this is done by DAGCombine, but if the select is introduced by
3841     // type legalization or op legalization, we miss it. Restricting to SETLT
3842     // case for now because that is what signed saturating add/sub need.
3843     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3844     // but we would probably want to swap the true/false values if the condition
3845     // is SETGE/SETLE to avoid an XORI.
3846     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3847         CCVal == ISD::SETLT) {
3848       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3849       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3850       if (TrueVal - 1 == FalseVal)
3851         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3852       if (TrueVal + 1 == FalseVal)
3853         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3854     }
3855 
3856     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3857 
3858     SDValue TargetCC = DAG.getCondCode(CCVal);
3859     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3860     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3861   }
3862 
3863   // Otherwise:
3864   // (select condv, truev, falsev)
3865   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3866   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3867   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3868 
3869   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3870 
3871   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3872 }
3873 
3874 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3875   SDValue CondV = Op.getOperand(1);
3876   SDLoc DL(Op);
3877   MVT XLenVT = Subtarget.getXLenVT();
3878 
3879   if (CondV.getOpcode() == ISD::SETCC &&
3880       CondV.getOperand(0).getValueType() == XLenVT) {
3881     SDValue LHS = CondV.getOperand(0);
3882     SDValue RHS = CondV.getOperand(1);
3883     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3884 
3885     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3886 
3887     SDValue TargetCC = DAG.getCondCode(CCVal);
3888     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3889                        LHS, RHS, TargetCC, Op.getOperand(2));
3890   }
3891 
3892   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3893                      CondV, DAG.getConstant(0, DL, XLenVT),
3894                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
3895 }
3896 
3897 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3898   MachineFunction &MF = DAG.getMachineFunction();
3899   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
3900 
3901   SDLoc DL(Op);
3902   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3903                                  getPointerTy(MF.getDataLayout()));
3904 
3905   // vastart just stores the address of the VarArgsFrameIndex slot into the
3906   // memory location argument.
3907   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3908   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
3909                       MachinePointerInfo(SV));
3910 }
3911 
3912 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
3913                                             SelectionDAG &DAG) const {
3914   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3915   MachineFunction &MF = DAG.getMachineFunction();
3916   MachineFrameInfo &MFI = MF.getFrameInfo();
3917   MFI.setFrameAddressIsTaken(true);
3918   Register FrameReg = RI.getFrameRegister(MF);
3919   int XLenInBytes = Subtarget.getXLen() / 8;
3920 
3921   EVT VT = Op.getValueType();
3922   SDLoc DL(Op);
3923   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
3924   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3925   while (Depth--) {
3926     int Offset = -(XLenInBytes * 2);
3927     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
3928                               DAG.getIntPtrConstant(Offset, DL));
3929     FrameAddr =
3930         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
3931   }
3932   return FrameAddr;
3933 }
3934 
3935 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
3936                                              SelectionDAG &DAG) const {
3937   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3938   MachineFunction &MF = DAG.getMachineFunction();
3939   MachineFrameInfo &MFI = MF.getFrameInfo();
3940   MFI.setReturnAddressIsTaken(true);
3941   MVT XLenVT = Subtarget.getXLenVT();
3942   int XLenInBytes = Subtarget.getXLen() / 8;
3943 
3944   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3945     return SDValue();
3946 
3947   EVT VT = Op.getValueType();
3948   SDLoc DL(Op);
3949   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3950   if (Depth) {
3951     int Off = -XLenInBytes;
3952     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3953     SDValue Offset = DAG.getConstant(Off, DL, VT);
3954     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
3955                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
3956                        MachinePointerInfo());
3957   }
3958 
3959   // Return the value of the return address register, marking it an implicit
3960   // live-in.
3961   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
3962   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
3963 }
3964 
3965 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
3966                                                  SelectionDAG &DAG) const {
3967   SDLoc DL(Op);
3968   SDValue Lo = Op.getOperand(0);
3969   SDValue Hi = Op.getOperand(1);
3970   SDValue Shamt = Op.getOperand(2);
3971   EVT VT = Lo.getValueType();
3972 
3973   // if Shamt-XLEN < 0: // Shamt < XLEN
3974   //   Lo = Lo << Shamt
3975   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt))
3976   // else:
3977   //   Lo = 0
3978   //   Hi = Lo << (Shamt-XLEN)
3979 
3980   SDValue Zero = DAG.getConstant(0, DL, VT);
3981   SDValue One = DAG.getConstant(1, DL, VT);
3982   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3983   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3984   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3985   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
3986 
3987   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
3988   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
3989   SDValue ShiftRightLo =
3990       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
3991   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
3992   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
3993   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
3994 
3995   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3996 
3997   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
3998   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3999 
4000   SDValue Parts[2] = {Lo, Hi};
4001   return DAG.getMergeValues(Parts, DL);
4002 }
4003 
4004 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
4005                                                   bool IsSRA) const {
4006   SDLoc DL(Op);
4007   SDValue Lo = Op.getOperand(0);
4008   SDValue Hi = Op.getOperand(1);
4009   SDValue Shamt = Op.getOperand(2);
4010   EVT VT = Lo.getValueType();
4011 
4012   // SRA expansion:
4013   //   if Shamt-XLEN < 0: // Shamt < XLEN
4014   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4015   //     Hi = Hi >>s Shamt
4016   //   else:
4017   //     Lo = Hi >>s (Shamt-XLEN);
4018   //     Hi = Hi >>s (XLEN-1)
4019   //
4020   // SRL expansion:
4021   //   if Shamt-XLEN < 0: // Shamt < XLEN
4022   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4023   //     Hi = Hi >>u Shamt
4024   //   else:
4025   //     Lo = Hi >>u (Shamt-XLEN);
4026   //     Hi = 0;
4027 
4028   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
4029 
4030   SDValue Zero = DAG.getConstant(0, DL, VT);
4031   SDValue One = DAG.getConstant(1, DL, VT);
4032   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4033   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4034   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4035   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4036 
4037   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
4038   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
4039   SDValue ShiftLeftHi =
4040       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
4041   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
4042   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
4043   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
4044   SDValue HiFalse =
4045       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
4046 
4047   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4048 
4049   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
4050   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4051 
4052   SDValue Parts[2] = {Lo, Hi};
4053   return DAG.getMergeValues(Parts, DL);
4054 }
4055 
4056 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
4057 // legal equivalently-sized i8 type, so we can use that as a go-between.
4058 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
4059                                                   SelectionDAG &DAG) const {
4060   SDLoc DL(Op);
4061   MVT VT = Op.getSimpleValueType();
4062   SDValue SplatVal = Op.getOperand(0);
4063   // All-zeros or all-ones splats are handled specially.
4064   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
4065     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4066     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
4067   }
4068   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
4069     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4070     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
4071   }
4072   MVT XLenVT = Subtarget.getXLenVT();
4073   assert(SplatVal.getValueType() == XLenVT &&
4074          "Unexpected type for i1 splat value");
4075   MVT InterVT = VT.changeVectorElementType(MVT::i8);
4076   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
4077                          DAG.getConstant(1, DL, XLenVT));
4078   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
4079   SDValue Zero = DAG.getConstant(0, DL, InterVT);
4080   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
4081 }
4082 
4083 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
4084 // illegal (currently only vXi64 RV32).
4085 // FIXME: We could also catch non-constant sign-extended i32 values and lower
4086 // them to VMV_V_X_VL.
4087 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
4088                                                      SelectionDAG &DAG) const {
4089   SDLoc DL(Op);
4090   MVT VecVT = Op.getSimpleValueType();
4091   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
4092          "Unexpected SPLAT_VECTOR_PARTS lowering");
4093 
4094   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
4095   SDValue Lo = Op.getOperand(0);
4096   SDValue Hi = Op.getOperand(1);
4097 
4098   if (VecVT.isFixedLengthVector()) {
4099     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4100     SDLoc DL(Op);
4101     SDValue Mask, VL;
4102     std::tie(Mask, VL) =
4103         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4104 
4105     SDValue Res =
4106         splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG);
4107     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
4108   }
4109 
4110   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
4111     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
4112     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
4113     // If Hi constant is all the same sign bit as Lo, lower this as a custom
4114     // node in order to try and match RVV vector/scalar instructions.
4115     if ((LoC >> 31) == HiC)
4116       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4117                          Lo, DAG.getRegister(RISCV::X0, MVT::i32));
4118   }
4119 
4120   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
4121   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
4122       isa<ConstantSDNode>(Hi.getOperand(1)) &&
4123       Hi.getConstantOperandVal(1) == 31)
4124     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo,
4125                        DAG.getRegister(RISCV::X0, MVT::i32));
4126 
4127   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
4128   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT,
4129                      DAG.getUNDEF(VecVT), Lo, Hi,
4130                      DAG.getRegister(RISCV::X0, MVT::i32));
4131 }
4132 
4133 // Custom-lower extensions from mask vectors by using a vselect either with 1
4134 // for zero/any-extension or -1 for sign-extension:
4135 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
4136 // Note that any-extension is lowered identically to zero-extension.
4137 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
4138                                                 int64_t ExtTrueVal) const {
4139   SDLoc DL(Op);
4140   MVT VecVT = Op.getSimpleValueType();
4141   SDValue Src = Op.getOperand(0);
4142   // Only custom-lower extensions from mask types
4143   assert(Src.getValueType().isVector() &&
4144          Src.getValueType().getVectorElementType() == MVT::i1);
4145 
4146   if (VecVT.isScalableVector()) {
4147     SDValue SplatZero = DAG.getConstant(0, DL, VecVT);
4148     SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT);
4149     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
4150   }
4151 
4152   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4153   MVT I1ContainerVT =
4154       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4155 
4156   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
4157 
4158   SDValue Mask, VL;
4159   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4160 
4161   MVT XLenVT = Subtarget.getXLenVT();
4162   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
4163   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
4164 
4165   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4166                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4167   SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4168                              DAG.getUNDEF(ContainerVT), SplatTrueVal, VL);
4169   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
4170                                SplatTrueVal, SplatZero, VL);
4171 
4172   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
4173 }
4174 
4175 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
4176     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
4177   MVT ExtVT = Op.getSimpleValueType();
4178   // Only custom-lower extensions from fixed-length vector types.
4179   if (!ExtVT.isFixedLengthVector())
4180     return Op;
4181   MVT VT = Op.getOperand(0).getSimpleValueType();
4182   // Grab the canonical container type for the extended type. Infer the smaller
4183   // type from that to ensure the same number of vector elements, as we know
4184   // the LMUL will be sufficient to hold the smaller type.
4185   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
4186   // Get the extended container type manually to ensure the same number of
4187   // vector elements between source and dest.
4188   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4189                                      ContainerExtVT.getVectorElementCount());
4190 
4191   SDValue Op1 =
4192       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4193 
4194   SDLoc DL(Op);
4195   SDValue Mask, VL;
4196   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4197 
4198   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
4199 
4200   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
4201 }
4202 
4203 // Custom-lower truncations from vectors to mask vectors by using a mask and a
4204 // setcc operation:
4205 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
4206 SDValue RISCVTargetLowering::lowerVectorMaskTruncLike(SDValue Op,
4207                                                       SelectionDAG &DAG) const {
4208   bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE;
4209   SDLoc DL(Op);
4210   EVT MaskVT = Op.getValueType();
4211   // Only expect to custom-lower truncations to mask types
4212   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
4213          "Unexpected type for vector mask lowering");
4214   SDValue Src = Op.getOperand(0);
4215   MVT VecVT = Src.getSimpleValueType();
4216   SDValue Mask, VL;
4217   if (IsVPTrunc) {
4218     Mask = Op.getOperand(1);
4219     VL = Op.getOperand(2);
4220   }
4221   // If this is a fixed vector, we need to convert it to a scalable vector.
4222   MVT ContainerVT = VecVT;
4223 
4224   if (VecVT.isFixedLengthVector()) {
4225     ContainerVT = getContainerForFixedLengthVector(VecVT);
4226     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4227     if (IsVPTrunc) {
4228       MVT MaskContainerVT =
4229           getContainerForFixedLengthVector(Mask.getSimpleValueType());
4230       Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget);
4231     }
4232   }
4233 
4234   if (!IsVPTrunc) {
4235     std::tie(Mask, VL) =
4236         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4237   }
4238 
4239   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
4240   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
4241 
4242   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4243                          DAG.getUNDEF(ContainerVT), SplatOne, VL);
4244   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4245                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4246 
4247   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
4248   SDValue Trunc =
4249       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
4250   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
4251                       DAG.getCondCode(ISD::SETNE), Mask, VL);
4252   if (MaskVT.isFixedLengthVector())
4253     Trunc = convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
4254   return Trunc;
4255 }
4256 
4257 SDValue RISCVTargetLowering::lowerVectorTruncLike(SDValue Op,
4258                                                   SelectionDAG &DAG) const {
4259   bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE;
4260   SDLoc DL(Op);
4261 
4262   MVT VT = Op.getSimpleValueType();
4263   // Only custom-lower vector truncates
4264   assert(VT.isVector() && "Unexpected type for vector truncate lowering");
4265 
4266   // Truncates to mask types are handled differently
4267   if (VT.getVectorElementType() == MVT::i1)
4268     return lowerVectorMaskTruncLike(Op, DAG);
4269 
4270   // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
4271   // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
4272   // truncate by one power of two at a time.
4273   MVT DstEltVT = VT.getVectorElementType();
4274 
4275   SDValue Src = Op.getOperand(0);
4276   MVT SrcVT = Src.getSimpleValueType();
4277   MVT SrcEltVT = SrcVT.getVectorElementType();
4278 
4279   assert(DstEltVT.bitsLT(SrcEltVT) && isPowerOf2_64(DstEltVT.getSizeInBits()) &&
4280          isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
4281          "Unexpected vector truncate lowering");
4282 
4283   MVT ContainerVT = SrcVT;
4284   SDValue Mask, VL;
4285   if (IsVPTrunc) {
4286     Mask = Op.getOperand(1);
4287     VL = Op.getOperand(2);
4288   }
4289   if (SrcVT.isFixedLengthVector()) {
4290     ContainerVT = getContainerForFixedLengthVector(SrcVT);
4291     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4292     if (IsVPTrunc) {
4293       MVT MaskVT = getMaskTypeFor(ContainerVT);
4294       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4295     }
4296   }
4297 
4298   SDValue Result = Src;
4299   if (!IsVPTrunc) {
4300     std::tie(Mask, VL) =
4301         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
4302   }
4303 
4304   LLVMContext &Context = *DAG.getContext();
4305   const ElementCount Count = ContainerVT.getVectorElementCount();
4306   do {
4307     SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
4308     EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
4309     Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
4310                          Mask, VL);
4311   } while (SrcEltVT != DstEltVT);
4312 
4313   if (SrcVT.isFixedLengthVector())
4314     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4315 
4316   return Result;
4317 }
4318 
4319 SDValue
4320 RISCVTargetLowering::lowerVectorFPExtendOrRoundLike(SDValue Op,
4321                                                     SelectionDAG &DAG) const {
4322   bool IsVP =
4323       Op.getOpcode() == ISD::VP_FP_ROUND || Op.getOpcode() == ISD::VP_FP_EXTEND;
4324   bool IsExtend =
4325       Op.getOpcode() == ISD::VP_FP_EXTEND || Op.getOpcode() == ISD::FP_EXTEND;
4326   // RVV can only do truncate fp to types half the size as the source. We
4327   // custom-lower f64->f16 rounds via RVV's round-to-odd float
4328   // conversion instruction.
4329   SDLoc DL(Op);
4330   MVT VT = Op.getSimpleValueType();
4331 
4332   assert(VT.isVector() && "Unexpected type for vector truncate lowering");
4333 
4334   SDValue Src = Op.getOperand(0);
4335   MVT SrcVT = Src.getSimpleValueType();
4336 
4337   bool IsDirectExtend = IsExtend && (VT.getVectorElementType() != MVT::f64 ||
4338                                      SrcVT.getVectorElementType() != MVT::f16);
4339   bool IsDirectTrunc = !IsExtend && (VT.getVectorElementType() != MVT::f16 ||
4340                                      SrcVT.getVectorElementType() != MVT::f64);
4341 
4342   bool IsDirectConv = IsDirectExtend || IsDirectTrunc;
4343 
4344   // Prepare any fixed-length vector operands.
4345   MVT ContainerVT = VT;
4346   SDValue Mask, VL;
4347   if (IsVP) {
4348     Mask = Op.getOperand(1);
4349     VL = Op.getOperand(2);
4350   }
4351   if (VT.isFixedLengthVector()) {
4352     MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
4353     ContainerVT =
4354         SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
4355     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
4356     if (IsVP) {
4357       MVT MaskVT = getMaskTypeFor(ContainerVT);
4358       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4359     }
4360   }
4361 
4362   if (!IsVP)
4363     std::tie(Mask, VL) =
4364         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
4365 
4366   unsigned ConvOpc = IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::FP_ROUND_VL;
4367 
4368   if (IsDirectConv) {
4369     Src = DAG.getNode(ConvOpc, DL, ContainerVT, Src, Mask, VL);
4370     if (VT.isFixedLengthVector())
4371       Src = convertFromScalableVector(VT, Src, DAG, Subtarget);
4372     return Src;
4373   }
4374 
4375   unsigned InterConvOpc =
4376       IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::VFNCVT_ROD_VL;
4377 
4378   MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
4379   SDValue IntermediateConv =
4380       DAG.getNode(InterConvOpc, DL, InterVT, Src, Mask, VL);
4381   SDValue Result =
4382       DAG.getNode(ConvOpc, DL, ContainerVT, IntermediateConv, Mask, VL);
4383   if (VT.isFixedLengthVector())
4384     return convertFromScalableVector(VT, Result, DAG, Subtarget);
4385   return Result;
4386 }
4387 
4388 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
4389 // first position of a vector, and that vector is slid up to the insert index.
4390 // By limiting the active vector length to index+1 and merging with the
4391 // original vector (with an undisturbed tail policy for elements >= VL), we
4392 // achieve the desired result of leaving all elements untouched except the one
4393 // at VL-1, which is replaced with the desired value.
4394 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4395                                                     SelectionDAG &DAG) const {
4396   SDLoc DL(Op);
4397   MVT VecVT = Op.getSimpleValueType();
4398   SDValue Vec = Op.getOperand(0);
4399   SDValue Val = Op.getOperand(1);
4400   SDValue Idx = Op.getOperand(2);
4401 
4402   if (VecVT.getVectorElementType() == MVT::i1) {
4403     // FIXME: For now we just promote to an i8 vector and insert into that,
4404     // but this is probably not optimal.
4405     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4406     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4407     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
4408     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
4409   }
4410 
4411   MVT ContainerVT = VecVT;
4412   // If the operand is a fixed-length vector, convert to a scalable one.
4413   if (VecVT.isFixedLengthVector()) {
4414     ContainerVT = getContainerForFixedLengthVector(VecVT);
4415     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4416   }
4417 
4418   MVT XLenVT = Subtarget.getXLenVT();
4419 
4420   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4421   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
4422   // Even i64-element vectors on RV32 can be lowered without scalar
4423   // legalization if the most-significant 32 bits of the value are not affected
4424   // by the sign-extension of the lower 32 bits.
4425   // TODO: We could also catch sign extensions of a 32-bit value.
4426   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
4427     const auto *CVal = cast<ConstantSDNode>(Val);
4428     if (isInt<32>(CVal->getSExtValue())) {
4429       IsLegalInsert = true;
4430       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4431     }
4432   }
4433 
4434   SDValue Mask, VL;
4435   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4436 
4437   SDValue ValInVec;
4438 
4439   if (IsLegalInsert) {
4440     unsigned Opc =
4441         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
4442     if (isNullConstant(Idx)) {
4443       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
4444       if (!VecVT.isFixedLengthVector())
4445         return Vec;
4446       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
4447     }
4448     ValInVec =
4449         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
4450   } else {
4451     // On RV32, i64-element vectors must be specially handled to place the
4452     // value at element 0, by using two vslide1up instructions in sequence on
4453     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
4454     // this.
4455     SDValue One = DAG.getConstant(1, DL, XLenVT);
4456     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
4457     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
4458     MVT I32ContainerVT =
4459         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
4460     SDValue I32Mask =
4461         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
4462     // Limit the active VL to two.
4463     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
4464     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
4465     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
4466     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT,
4467                            DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL);
4468     // First slide in the hi value, then the lo in underneath it.
4469     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4470                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi,
4471                            I32Mask, InsertI64VL);
4472     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4473                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo,
4474                            I32Mask, InsertI64VL);
4475     // Bitcast back to the right container type.
4476     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
4477   }
4478 
4479   // Now that the value is in a vector, slide it into position.
4480   SDValue InsertVL =
4481       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
4482   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4483                                 ValInVec, Idx, Mask, InsertVL);
4484   if (!VecVT.isFixedLengthVector())
4485     return Slideup;
4486   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4487 }
4488 
4489 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
4490 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
4491 // types this is done using VMV_X_S to allow us to glean information about the
4492 // sign bits of the result.
4493 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4494                                                      SelectionDAG &DAG) const {
4495   SDLoc DL(Op);
4496   SDValue Idx = Op.getOperand(1);
4497   SDValue Vec = Op.getOperand(0);
4498   EVT EltVT = Op.getValueType();
4499   MVT VecVT = Vec.getSimpleValueType();
4500   MVT XLenVT = Subtarget.getXLenVT();
4501 
4502   if (VecVT.getVectorElementType() == MVT::i1) {
4503     if (VecVT.isFixedLengthVector()) {
4504       unsigned NumElts = VecVT.getVectorNumElements();
4505       if (NumElts >= 8) {
4506         MVT WideEltVT;
4507         unsigned WidenVecLen;
4508         SDValue ExtractElementIdx;
4509         SDValue ExtractBitIdx;
4510         unsigned MaxEEW = Subtarget.getELEN();
4511         MVT LargestEltVT = MVT::getIntegerVT(
4512             std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
4513         if (NumElts <= LargestEltVT.getSizeInBits()) {
4514           assert(isPowerOf2_32(NumElts) &&
4515                  "the number of elements should be power of 2");
4516           WideEltVT = MVT::getIntegerVT(NumElts);
4517           WidenVecLen = 1;
4518           ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
4519           ExtractBitIdx = Idx;
4520         } else {
4521           WideEltVT = LargestEltVT;
4522           WidenVecLen = NumElts / WideEltVT.getSizeInBits();
4523           // extract element index = index / element width
4524           ExtractElementIdx = DAG.getNode(
4525               ISD::SRL, DL, XLenVT, Idx,
4526               DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
4527           // mask bit index = index % element width
4528           ExtractBitIdx = DAG.getNode(
4529               ISD::AND, DL, XLenVT, Idx,
4530               DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
4531         }
4532         MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
4533         Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
4534         SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
4535                                          Vec, ExtractElementIdx);
4536         // Extract the bit from GPR.
4537         SDValue ShiftRight =
4538             DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
4539         return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
4540                            DAG.getConstant(1, DL, XLenVT));
4541       }
4542     }
4543     // Otherwise, promote to an i8 vector and extract from that.
4544     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4545     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4546     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4547   }
4548 
4549   // If this is a fixed vector, we need to convert it to a scalable vector.
4550   MVT ContainerVT = VecVT;
4551   if (VecVT.isFixedLengthVector()) {
4552     ContainerVT = getContainerForFixedLengthVector(VecVT);
4553     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4554   }
4555 
4556   // If the index is 0, the vector is already in the right position.
4557   if (!isNullConstant(Idx)) {
4558     // Use a VL of 1 to avoid processing more elements than we need.
4559     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4560     SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
4561     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4562                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4563   }
4564 
4565   if (!EltVT.isInteger()) {
4566     // Floating-point extracts are handled in TableGen.
4567     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4568                        DAG.getConstant(0, DL, XLenVT));
4569   }
4570 
4571   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4572   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4573 }
4574 
4575 // Some RVV intrinsics may claim that they want an integer operand to be
4576 // promoted or expanded.
4577 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG,
4578                                            const RISCVSubtarget &Subtarget) {
4579   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4580           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4581          "Unexpected opcode");
4582 
4583   if (!Subtarget.hasVInstructions())
4584     return SDValue();
4585 
4586   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4587   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4588   SDLoc DL(Op);
4589 
4590   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4591       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4592   if (!II || !II->hasScalarOperand())
4593     return SDValue();
4594 
4595   unsigned SplatOp = II->ScalarOperand + 1 + HasChain;
4596   assert(SplatOp < Op.getNumOperands());
4597 
4598   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4599   SDValue &ScalarOp = Operands[SplatOp];
4600   MVT OpVT = ScalarOp.getSimpleValueType();
4601   MVT XLenVT = Subtarget.getXLenVT();
4602 
4603   // If this isn't a scalar, or its type is XLenVT we're done.
4604   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4605     return SDValue();
4606 
4607   // Simplest case is that the operand needs to be promoted to XLenVT.
4608   if (OpVT.bitsLT(XLenVT)) {
4609     // If the operand is a constant, sign extend to increase our chances
4610     // of being able to use a .vi instruction. ANY_EXTEND would become a
4611     // a zero extend and the simm5 check in isel would fail.
4612     // FIXME: Should we ignore the upper bits in isel instead?
4613     unsigned ExtOpc =
4614         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4615     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4616     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4617   }
4618 
4619   // Use the previous operand to get the vXi64 VT. The result might be a mask
4620   // VT for compares. Using the previous operand assumes that the previous
4621   // operand will never have a smaller element size than a scalar operand and
4622   // that a widening operation never uses SEW=64.
4623   // NOTE: If this fails the below assert, we can probably just find the
4624   // element count from any operand or result and use it to construct the VT.
4625   assert(II->ScalarOperand > 0 && "Unexpected splat operand!");
4626   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4627 
4628   // The more complex case is when the scalar is larger than XLenVT.
4629   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4630          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4631 
4632   // If this is a sign-extended 32-bit value, we can truncate it and rely on the
4633   // instruction to sign-extend since SEW>XLEN.
4634   if (DAG.ComputeNumSignBits(ScalarOp) > 32) {
4635     ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp);
4636     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4637   }
4638 
4639   switch (IntNo) {
4640   case Intrinsic::riscv_vslide1up:
4641   case Intrinsic::riscv_vslide1down:
4642   case Intrinsic::riscv_vslide1up_mask:
4643   case Intrinsic::riscv_vslide1down_mask: {
4644     // We need to special case these when the scalar is larger than XLen.
4645     unsigned NumOps = Op.getNumOperands();
4646     bool IsMasked = NumOps == 7;
4647 
4648     // Convert the vector source to the equivalent nxvXi32 vector.
4649     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4650     SDValue Vec = DAG.getBitcast(I32VT, Operands[2]);
4651 
4652     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4653                                    DAG.getConstant(0, DL, XLenVT));
4654     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4655                                    DAG.getConstant(1, DL, XLenVT));
4656 
4657     // Double the VL since we halved SEW.
4658     SDValue AVL = getVLOperand(Op);
4659     SDValue I32VL;
4660 
4661     // Optimize for constant AVL
4662     if (isa<ConstantSDNode>(AVL)) {
4663       unsigned EltSize = VT.getScalarSizeInBits();
4664       unsigned MinSize = VT.getSizeInBits().getKnownMinValue();
4665 
4666       unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
4667       unsigned MaxVLMAX =
4668           RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
4669 
4670       unsigned VectorBitsMin = Subtarget.getRealMinVLen();
4671       unsigned MinVLMAX =
4672           RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize);
4673 
4674       uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue();
4675       if (AVLInt <= MinVLMAX) {
4676         I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT);
4677       } else if (AVLInt >= 2 * MaxVLMAX) {
4678         // Just set vl to VLMAX in this situation
4679         RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT);
4680         SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4681         unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits());
4682         SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4683         SDValue SETVLMAX = DAG.getTargetConstant(
4684             Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32);
4685         I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW,
4686                             LMUL);
4687       } else {
4688         // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl
4689         // is related to the hardware implementation.
4690         // So let the following code handle
4691       }
4692     }
4693     if (!I32VL) {
4694       RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT);
4695       SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4696       unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits());
4697       SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4698       SDValue SETVL =
4699           DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32);
4700       // Using vsetvli instruction to get actually used length which related to
4701       // the hardware implementation
4702       SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL,
4703                                SEW, LMUL);
4704       I32VL =
4705           DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4706     }
4707 
4708     SDValue I32Mask = getAllOnesMask(I32VT, I32VL, DL, DAG);
4709 
4710     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4711     // instructions.
4712     SDValue Passthru;
4713     if (IsMasked)
4714       Passthru = DAG.getUNDEF(I32VT);
4715     else
4716       Passthru = DAG.getBitcast(I32VT, Operands[1]);
4717 
4718     if (IntNo == Intrinsic::riscv_vslide1up ||
4719         IntNo == Intrinsic::riscv_vslide1up_mask) {
4720       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4721                         ScalarHi, I32Mask, I32VL);
4722       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4723                         ScalarLo, I32Mask, I32VL);
4724     } else {
4725       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4726                         ScalarLo, I32Mask, I32VL);
4727       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4728                         ScalarHi, I32Mask, I32VL);
4729     }
4730 
4731     // Convert back to nxvXi64.
4732     Vec = DAG.getBitcast(VT, Vec);
4733 
4734     if (!IsMasked)
4735       return Vec;
4736     // Apply mask after the operation.
4737     SDValue Mask = Operands[NumOps - 3];
4738     SDValue MaskedOff = Operands[1];
4739     // Assume Policy operand is the last operand.
4740     uint64_t Policy =
4741         cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue();
4742     // We don't need to select maskedoff if it's undef.
4743     if (MaskedOff.isUndef())
4744       return Vec;
4745     // TAMU
4746     if (Policy == RISCVII::TAIL_AGNOSTIC)
4747       return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff,
4748                          AVL);
4749     // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma.
4750     // It's fine because vmerge does not care mask policy.
4751     return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff,
4752                        AVL);
4753   }
4754   }
4755 
4756   // We need to convert the scalar to a splat vector.
4757   SDValue VL = getVLOperand(Op);
4758   assert(VL.getValueType() == XLenVT);
4759   ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG);
4760   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4761 }
4762 
4763 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4764                                                      SelectionDAG &DAG) const {
4765   unsigned IntNo = Op.getConstantOperandVal(0);
4766   SDLoc DL(Op);
4767   MVT XLenVT = Subtarget.getXLenVT();
4768 
4769   switch (IntNo) {
4770   default:
4771     break; // Don't custom lower most intrinsics.
4772   case Intrinsic::thread_pointer: {
4773     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4774     return DAG.getRegister(RISCV::X4, PtrVT);
4775   }
4776   case Intrinsic::riscv_orc_b:
4777   case Intrinsic::riscv_brev8: {
4778     // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8.
4779     unsigned Opc =
4780         IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC;
4781     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4782                        DAG.getConstant(7, DL, XLenVT));
4783   }
4784   case Intrinsic::riscv_grev:
4785   case Intrinsic::riscv_gorc: {
4786     unsigned Opc =
4787         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4788     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4789   }
4790   case Intrinsic::riscv_zip:
4791   case Intrinsic::riscv_unzip: {
4792     // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip.
4793     // For i32 the immediate is 15. For i64 the immediate is 31.
4794     unsigned Opc =
4795         IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4796     unsigned BitWidth = Op.getValueSizeInBits();
4797     assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width");
4798     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4799                        DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT));
4800   }
4801   case Intrinsic::riscv_shfl:
4802   case Intrinsic::riscv_unshfl: {
4803     unsigned Opc =
4804         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4805     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4806   }
4807   case Intrinsic::riscv_bcompress:
4808   case Intrinsic::riscv_bdecompress: {
4809     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4810                                                        : RISCVISD::BDECOMPRESS;
4811     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4812   }
4813   case Intrinsic::riscv_bfp:
4814     return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1),
4815                        Op.getOperand(2));
4816   case Intrinsic::riscv_fsl:
4817     return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1),
4818                        Op.getOperand(2), Op.getOperand(3));
4819   case Intrinsic::riscv_fsr:
4820     return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1),
4821                        Op.getOperand(2), Op.getOperand(3));
4822   case Intrinsic::riscv_vmv_x_s:
4823     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4824     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4825                        Op.getOperand(1));
4826   case Intrinsic::riscv_vmv_v_x:
4827     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4828                             Op.getOperand(3), Op.getSimpleValueType(), DL, DAG,
4829                             Subtarget);
4830   case Intrinsic::riscv_vfmv_v_f:
4831     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4832                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4833   case Intrinsic::riscv_vmv_s_x: {
4834     SDValue Scalar = Op.getOperand(2);
4835 
4836     if (Scalar.getValueType().bitsLE(XLenVT)) {
4837       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4838       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4839                          Op.getOperand(1), Scalar, Op.getOperand(3));
4840     }
4841 
4842     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4843 
4844     // This is an i64 value that lives in two scalar registers. We have to
4845     // insert this in a convoluted way. First we build vXi64 splat containing
4846     // the two values that we assemble using some bit math. Next we'll use
4847     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4848     // to merge element 0 from our splat into the source vector.
4849     // FIXME: This is probably not the best way to do this, but it is
4850     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4851     // point.
4852     //   sw lo, (a0)
4853     //   sw hi, 4(a0)
4854     //   vlse vX, (a0)
4855     //
4856     //   vid.v      vVid
4857     //   vmseq.vx   mMask, vVid, 0
4858     //   vmerge.vvm vDest, vSrc, vVal, mMask
4859     MVT VT = Op.getSimpleValueType();
4860     SDValue Vec = Op.getOperand(1);
4861     SDValue VL = getVLOperand(Op);
4862 
4863     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG);
4864     if (Op.getOperand(1).isUndef())
4865       return SplattedVal;
4866     SDValue SplattedIdx =
4867         DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
4868                     DAG.getConstant(0, DL, MVT::i32), VL);
4869 
4870     MVT MaskVT = getMaskTypeFor(VT);
4871     SDValue Mask = getAllOnesMask(VT, VL, DL, DAG);
4872     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4873     SDValue SelectCond =
4874         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4875                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4876     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4877                        Vec, VL);
4878   }
4879   }
4880 
4881   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4882 }
4883 
4884 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4885                                                     SelectionDAG &DAG) const {
4886   unsigned IntNo = Op.getConstantOperandVal(1);
4887   switch (IntNo) {
4888   default:
4889     break;
4890   case Intrinsic::riscv_masked_strided_load: {
4891     SDLoc DL(Op);
4892     MVT XLenVT = Subtarget.getXLenVT();
4893 
4894     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4895     // the selection of the masked intrinsics doesn't do this for us.
4896     SDValue Mask = Op.getOperand(5);
4897     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4898 
4899     MVT VT = Op->getSimpleValueType(0);
4900     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4901 
4902     SDValue PassThru = Op.getOperand(2);
4903     if (!IsUnmasked) {
4904       MVT MaskVT = getMaskTypeFor(ContainerVT);
4905       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4906       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4907     }
4908 
4909     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4910 
4911     SDValue IntID = DAG.getTargetConstant(
4912         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4913         XLenVT);
4914 
4915     auto *Load = cast<MemIntrinsicSDNode>(Op);
4916     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4917     if (IsUnmasked)
4918       Ops.push_back(DAG.getUNDEF(ContainerVT));
4919     else
4920       Ops.push_back(PassThru);
4921     Ops.push_back(Op.getOperand(3)); // Ptr
4922     Ops.push_back(Op.getOperand(4)); // Stride
4923     if (!IsUnmasked)
4924       Ops.push_back(Mask);
4925     Ops.push_back(VL);
4926     if (!IsUnmasked) {
4927       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4928       Ops.push_back(Policy);
4929     }
4930 
4931     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4932     SDValue Result =
4933         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4934                                 Load->getMemoryVT(), Load->getMemOperand());
4935     SDValue Chain = Result.getValue(1);
4936     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4937     return DAG.getMergeValues({Result, Chain}, DL);
4938   }
4939   case Intrinsic::riscv_seg2_load:
4940   case Intrinsic::riscv_seg3_load:
4941   case Intrinsic::riscv_seg4_load:
4942   case Intrinsic::riscv_seg5_load:
4943   case Intrinsic::riscv_seg6_load:
4944   case Intrinsic::riscv_seg7_load:
4945   case Intrinsic::riscv_seg8_load: {
4946     SDLoc DL(Op);
4947     static const Intrinsic::ID VlsegInts[7] = {
4948         Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3,
4949         Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5,
4950         Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7,
4951         Intrinsic::riscv_vlseg8};
4952     unsigned NF = Op->getNumValues() - 1;
4953     assert(NF >= 2 && NF <= 8 && "Unexpected seg number");
4954     MVT XLenVT = Subtarget.getXLenVT();
4955     MVT VT = Op->getSimpleValueType(0);
4956     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4957 
4958     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4959     SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT);
4960     auto *Load = cast<MemIntrinsicSDNode>(Op);
4961     SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT);
4962     ContainerVTs.push_back(MVT::Other);
4963     SDVTList VTs = DAG.getVTList(ContainerVTs);
4964     SmallVector<SDValue, 12> Ops = {Load->getChain(), IntID};
4965     Ops.insert(Ops.end(), NF, DAG.getUNDEF(ContainerVT));
4966     Ops.push_back(Op.getOperand(2));
4967     Ops.push_back(VL);
4968     SDValue Result =
4969         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4970                                 Load->getMemoryVT(), Load->getMemOperand());
4971     SmallVector<SDValue, 9> Results;
4972     for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++)
4973       Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx),
4974                                                   DAG, Subtarget));
4975     Results.push_back(Result.getValue(NF));
4976     return DAG.getMergeValues(Results, DL);
4977   }
4978   }
4979 
4980   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4981 }
4982 
4983 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4984                                                  SelectionDAG &DAG) const {
4985   unsigned IntNo = Op.getConstantOperandVal(1);
4986   switch (IntNo) {
4987   default:
4988     break;
4989   case Intrinsic::riscv_masked_strided_store: {
4990     SDLoc DL(Op);
4991     MVT XLenVT = Subtarget.getXLenVT();
4992 
4993     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4994     // the selection of the masked intrinsics doesn't do this for us.
4995     SDValue Mask = Op.getOperand(5);
4996     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4997 
4998     SDValue Val = Op.getOperand(2);
4999     MVT VT = Val.getSimpleValueType();
5000     MVT ContainerVT = getContainerForFixedLengthVector(VT);
5001 
5002     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5003     if (!IsUnmasked) {
5004       MVT MaskVT = getMaskTypeFor(ContainerVT);
5005       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5006     }
5007 
5008     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5009 
5010     SDValue IntID = DAG.getTargetConstant(
5011         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
5012         XLenVT);
5013 
5014     auto *Store = cast<MemIntrinsicSDNode>(Op);
5015     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
5016     Ops.push_back(Val);
5017     Ops.push_back(Op.getOperand(3)); // Ptr
5018     Ops.push_back(Op.getOperand(4)); // Stride
5019     if (!IsUnmasked)
5020       Ops.push_back(Mask);
5021     Ops.push_back(VL);
5022 
5023     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
5024                                    Ops, Store->getMemoryVT(),
5025                                    Store->getMemOperand());
5026   }
5027   }
5028 
5029   return SDValue();
5030 }
5031 
5032 static MVT getLMUL1VT(MVT VT) {
5033   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
5034          "Unexpected vector MVT");
5035   return MVT::getScalableVectorVT(
5036       VT.getVectorElementType(),
5037       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
5038 }
5039 
5040 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
5041   switch (ISDOpcode) {
5042   default:
5043     llvm_unreachable("Unhandled reduction");
5044   case ISD::VECREDUCE_ADD:
5045     return RISCVISD::VECREDUCE_ADD_VL;
5046   case ISD::VECREDUCE_UMAX:
5047     return RISCVISD::VECREDUCE_UMAX_VL;
5048   case ISD::VECREDUCE_SMAX:
5049     return RISCVISD::VECREDUCE_SMAX_VL;
5050   case ISD::VECREDUCE_UMIN:
5051     return RISCVISD::VECREDUCE_UMIN_VL;
5052   case ISD::VECREDUCE_SMIN:
5053     return RISCVISD::VECREDUCE_SMIN_VL;
5054   case ISD::VECREDUCE_AND:
5055     return RISCVISD::VECREDUCE_AND_VL;
5056   case ISD::VECREDUCE_OR:
5057     return RISCVISD::VECREDUCE_OR_VL;
5058   case ISD::VECREDUCE_XOR:
5059     return RISCVISD::VECREDUCE_XOR_VL;
5060   }
5061 }
5062 
5063 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
5064                                                          SelectionDAG &DAG,
5065                                                          bool IsVP) const {
5066   SDLoc DL(Op);
5067   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
5068   MVT VecVT = Vec.getSimpleValueType();
5069   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
5070           Op.getOpcode() == ISD::VECREDUCE_OR ||
5071           Op.getOpcode() == ISD::VECREDUCE_XOR ||
5072           Op.getOpcode() == ISD::VP_REDUCE_AND ||
5073           Op.getOpcode() == ISD::VP_REDUCE_OR ||
5074           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
5075          "Unexpected reduction lowering");
5076 
5077   MVT XLenVT = Subtarget.getXLenVT();
5078   assert(Op.getValueType() == XLenVT &&
5079          "Expected reduction output to be legalized to XLenVT");
5080 
5081   MVT ContainerVT = VecVT;
5082   if (VecVT.isFixedLengthVector()) {
5083     ContainerVT = getContainerForFixedLengthVector(VecVT);
5084     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5085   }
5086 
5087   SDValue Mask, VL;
5088   if (IsVP) {
5089     Mask = Op.getOperand(2);
5090     VL = Op.getOperand(3);
5091   } else {
5092     std::tie(Mask, VL) =
5093         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5094   }
5095 
5096   unsigned BaseOpc;
5097   ISD::CondCode CC;
5098   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
5099 
5100   switch (Op.getOpcode()) {
5101   default:
5102     llvm_unreachable("Unhandled reduction");
5103   case ISD::VECREDUCE_AND:
5104   case ISD::VP_REDUCE_AND: {
5105     // vcpop ~x == 0
5106     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
5107     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
5108     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5109     CC = ISD::SETEQ;
5110     BaseOpc = ISD::AND;
5111     break;
5112   }
5113   case ISD::VECREDUCE_OR:
5114   case ISD::VP_REDUCE_OR:
5115     // vcpop x != 0
5116     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5117     CC = ISD::SETNE;
5118     BaseOpc = ISD::OR;
5119     break;
5120   case ISD::VECREDUCE_XOR:
5121   case ISD::VP_REDUCE_XOR: {
5122     // ((vcpop x) & 1) != 0
5123     SDValue One = DAG.getConstant(1, DL, XLenVT);
5124     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5125     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
5126     CC = ISD::SETNE;
5127     BaseOpc = ISD::XOR;
5128     break;
5129   }
5130   }
5131 
5132   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
5133 
5134   if (!IsVP)
5135     return SetCC;
5136 
5137   // Now include the start value in the operation.
5138   // Note that we must return the start value when no elements are operated
5139   // upon. The vcpop instructions we've emitted in each case above will return
5140   // 0 for an inactive vector, and so we've already received the neutral value:
5141   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
5142   // can simply include the start value.
5143   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
5144 }
5145 
5146 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
5147                                             SelectionDAG &DAG) const {
5148   SDLoc DL(Op);
5149   SDValue Vec = Op.getOperand(0);
5150   EVT VecEVT = Vec.getValueType();
5151 
5152   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
5153 
5154   // Due to ordering in legalize types we may have a vector type that needs to
5155   // be split. Do that manually so we can get down to a legal type.
5156   while (getTypeAction(*DAG.getContext(), VecEVT) ==
5157          TargetLowering::TypeSplitVector) {
5158     SDValue Lo, Hi;
5159     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
5160     VecEVT = Lo.getValueType();
5161     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
5162   }
5163 
5164   // TODO: The type may need to be widened rather than split. Or widened before
5165   // it can be split.
5166   if (!isTypeLegal(VecEVT))
5167     return SDValue();
5168 
5169   MVT VecVT = VecEVT.getSimpleVT();
5170   MVT VecEltVT = VecVT.getVectorElementType();
5171   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
5172 
5173   MVT ContainerVT = VecVT;
5174   if (VecVT.isFixedLengthVector()) {
5175     ContainerVT = getContainerForFixedLengthVector(VecVT);
5176     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5177   }
5178 
5179   MVT M1VT = getLMUL1VT(ContainerVT);
5180   MVT XLenVT = Subtarget.getXLenVT();
5181 
5182   SDValue Mask, VL;
5183   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5184 
5185   SDValue NeutralElem =
5186       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
5187   SDValue IdentitySplat =
5188       lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT),
5189                        M1VT, DL, DAG, Subtarget);
5190   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
5191                                   IdentitySplat, Mask, VL);
5192   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5193                              DAG.getConstant(0, DL, XLenVT));
5194   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5195 }
5196 
5197 // Given a reduction op, this function returns the matching reduction opcode,
5198 // the vector SDValue and the scalar SDValue required to lower this to a
5199 // RISCVISD node.
5200 static std::tuple<unsigned, SDValue, SDValue>
5201 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
5202   SDLoc DL(Op);
5203   auto Flags = Op->getFlags();
5204   unsigned Opcode = Op.getOpcode();
5205   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
5206   switch (Opcode) {
5207   default:
5208     llvm_unreachable("Unhandled reduction");
5209   case ISD::VECREDUCE_FADD: {
5210     // Use positive zero if we can. It is cheaper to materialize.
5211     SDValue Zero =
5212         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
5213     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
5214   }
5215   case ISD::VECREDUCE_SEQ_FADD:
5216     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
5217                            Op.getOperand(0));
5218   case ISD::VECREDUCE_FMIN:
5219     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
5220                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5221   case ISD::VECREDUCE_FMAX:
5222     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
5223                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5224   }
5225 }
5226 
5227 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
5228                                               SelectionDAG &DAG) const {
5229   SDLoc DL(Op);
5230   MVT VecEltVT = Op.getSimpleValueType();
5231 
5232   unsigned RVVOpcode;
5233   SDValue VectorVal, ScalarVal;
5234   std::tie(RVVOpcode, VectorVal, ScalarVal) =
5235       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
5236   MVT VecVT = VectorVal.getSimpleValueType();
5237 
5238   MVT ContainerVT = VecVT;
5239   if (VecVT.isFixedLengthVector()) {
5240     ContainerVT = getContainerForFixedLengthVector(VecVT);
5241     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
5242   }
5243 
5244   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
5245   MVT XLenVT = Subtarget.getXLenVT();
5246 
5247   SDValue Mask, VL;
5248   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5249 
5250   SDValue ScalarSplat =
5251       lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT),
5252                        M1VT, DL, DAG, Subtarget);
5253   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
5254                                   VectorVal, ScalarSplat, Mask, VL);
5255   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5256                      DAG.getConstant(0, DL, XLenVT));
5257 }
5258 
5259 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
5260   switch (ISDOpcode) {
5261   default:
5262     llvm_unreachable("Unhandled reduction");
5263   case ISD::VP_REDUCE_ADD:
5264     return RISCVISD::VECREDUCE_ADD_VL;
5265   case ISD::VP_REDUCE_UMAX:
5266     return RISCVISD::VECREDUCE_UMAX_VL;
5267   case ISD::VP_REDUCE_SMAX:
5268     return RISCVISD::VECREDUCE_SMAX_VL;
5269   case ISD::VP_REDUCE_UMIN:
5270     return RISCVISD::VECREDUCE_UMIN_VL;
5271   case ISD::VP_REDUCE_SMIN:
5272     return RISCVISD::VECREDUCE_SMIN_VL;
5273   case ISD::VP_REDUCE_AND:
5274     return RISCVISD::VECREDUCE_AND_VL;
5275   case ISD::VP_REDUCE_OR:
5276     return RISCVISD::VECREDUCE_OR_VL;
5277   case ISD::VP_REDUCE_XOR:
5278     return RISCVISD::VECREDUCE_XOR_VL;
5279   case ISD::VP_REDUCE_FADD:
5280     return RISCVISD::VECREDUCE_FADD_VL;
5281   case ISD::VP_REDUCE_SEQ_FADD:
5282     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
5283   case ISD::VP_REDUCE_FMAX:
5284     return RISCVISD::VECREDUCE_FMAX_VL;
5285   case ISD::VP_REDUCE_FMIN:
5286     return RISCVISD::VECREDUCE_FMIN_VL;
5287   }
5288 }
5289 
5290 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
5291                                            SelectionDAG &DAG) const {
5292   SDLoc DL(Op);
5293   SDValue Vec = Op.getOperand(1);
5294   EVT VecEVT = Vec.getValueType();
5295 
5296   // TODO: The type may need to be widened rather than split. Or widened before
5297   // it can be split.
5298   if (!isTypeLegal(VecEVT))
5299     return SDValue();
5300 
5301   MVT VecVT = VecEVT.getSimpleVT();
5302   MVT VecEltVT = VecVT.getVectorElementType();
5303   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
5304 
5305   MVT ContainerVT = VecVT;
5306   if (VecVT.isFixedLengthVector()) {
5307     ContainerVT = getContainerForFixedLengthVector(VecVT);
5308     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5309   }
5310 
5311   SDValue VL = Op.getOperand(3);
5312   SDValue Mask = Op.getOperand(2);
5313 
5314   MVT M1VT = getLMUL1VT(ContainerVT);
5315   MVT XLenVT = Subtarget.getXLenVT();
5316   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
5317 
5318   SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0),
5319                                         DAG.getConstant(1, DL, XLenVT), M1VT,
5320                                         DL, DAG, Subtarget);
5321   SDValue Reduction =
5322       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
5323   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
5324                              DAG.getConstant(0, DL, XLenVT));
5325   if (!VecVT.isInteger())
5326     return Elt0;
5327   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5328 }
5329 
5330 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5331                                                    SelectionDAG &DAG) const {
5332   SDValue Vec = Op.getOperand(0);
5333   SDValue SubVec = Op.getOperand(1);
5334   MVT VecVT = Vec.getSimpleValueType();
5335   MVT SubVecVT = SubVec.getSimpleValueType();
5336 
5337   SDLoc DL(Op);
5338   MVT XLenVT = Subtarget.getXLenVT();
5339   unsigned OrigIdx = Op.getConstantOperandVal(2);
5340   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5341 
5342   // We don't have the ability to slide mask vectors up indexed by their i1
5343   // elements; the smallest we can do is i8. Often we are able to bitcast to
5344   // equivalent i8 vectors. Note that when inserting a fixed-length vector
5345   // into a scalable one, we might not necessarily have enough scalable
5346   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
5347   if (SubVecVT.getVectorElementType() == MVT::i1 &&
5348       (OrigIdx != 0 || !Vec.isUndef())) {
5349     if (VecVT.getVectorMinNumElements() >= 8 &&
5350         SubVecVT.getVectorMinNumElements() >= 8) {
5351       assert(OrigIdx % 8 == 0 && "Invalid index");
5352       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5353              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5354              "Unexpected mask vector lowering");
5355       OrigIdx /= 8;
5356       SubVecVT =
5357           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5358                            SubVecVT.isScalableVector());
5359       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5360                                VecVT.isScalableVector());
5361       Vec = DAG.getBitcast(VecVT, Vec);
5362       SubVec = DAG.getBitcast(SubVecVT, SubVec);
5363     } else {
5364       // We can't slide this mask vector up indexed by its i1 elements.
5365       // This poses a problem when we wish to insert a scalable vector which
5366       // can't be re-expressed as a larger type. Just choose the slow path and
5367       // extend to a larger type, then truncate back down.
5368       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5369       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5370       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5371       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
5372       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
5373                         Op.getOperand(2));
5374       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
5375       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
5376     }
5377   }
5378 
5379   // If the subvector vector is a fixed-length type, we cannot use subregister
5380   // manipulation to simplify the codegen; we don't know which register of a
5381   // LMUL group contains the specific subvector as we only know the minimum
5382   // register size. Therefore we must slide the vector group up the full
5383   // amount.
5384   if (SubVecVT.isFixedLengthVector()) {
5385     if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
5386       return Op;
5387     MVT ContainerVT = VecVT;
5388     if (VecVT.isFixedLengthVector()) {
5389       ContainerVT = getContainerForFixedLengthVector(VecVT);
5390       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5391     }
5392     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
5393                          DAG.getUNDEF(ContainerVT), SubVec,
5394                          DAG.getConstant(0, DL, XLenVT));
5395     if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
5396       SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
5397       return DAG.getBitcast(Op.getValueType(), SubVec);
5398     }
5399     SDValue Mask =
5400         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5401     // Set the vector length to only the number of elements we care about. Note
5402     // that for slideup this includes the offset.
5403     SDValue VL =
5404         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
5405     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5406     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
5407                                   SubVec, SlideupAmt, Mask, VL);
5408     if (VecVT.isFixedLengthVector())
5409       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
5410     return DAG.getBitcast(Op.getValueType(), Slideup);
5411   }
5412 
5413   unsigned SubRegIdx, RemIdx;
5414   std::tie(SubRegIdx, RemIdx) =
5415       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5416           VecVT, SubVecVT, OrigIdx, TRI);
5417 
5418   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
5419   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
5420                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
5421                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
5422 
5423   // 1. If the Idx has been completely eliminated and this subvector's size is
5424   // a vector register or a multiple thereof, or the surrounding elements are
5425   // undef, then this is a subvector insert which naturally aligns to a vector
5426   // register. These can easily be handled using subregister manipulation.
5427   // 2. If the subvector is smaller than a vector register, then the insertion
5428   // must preserve the undisturbed elements of the register. We do this by
5429   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
5430   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
5431   // subvector within the vector register, and an INSERT_SUBVECTOR of that
5432   // LMUL=1 type back into the larger vector (resolving to another subregister
5433   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
5434   // to avoid allocating a large register group to hold our subvector.
5435   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
5436     return Op;
5437 
5438   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
5439   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
5440   // (in our case undisturbed). This means we can set up a subvector insertion
5441   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
5442   // size of the subvector.
5443   MVT InterSubVT = VecVT;
5444   SDValue AlignedExtract = Vec;
5445   unsigned AlignedIdx = OrigIdx - RemIdx;
5446   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5447     InterSubVT = getLMUL1VT(VecVT);
5448     // Extract a subvector equal to the nearest full vector register type. This
5449     // should resolve to a EXTRACT_SUBREG instruction.
5450     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5451                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
5452   }
5453 
5454   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5455   // For scalable vectors this must be further multiplied by vscale.
5456   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
5457 
5458   SDValue Mask, VL;
5459   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5460 
5461   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
5462   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
5463   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
5464   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
5465 
5466   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
5467                        DAG.getUNDEF(InterSubVT), SubVec,
5468                        DAG.getConstant(0, DL, XLenVT));
5469 
5470   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
5471                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
5472 
5473   // If required, insert this subvector back into the correct vector register.
5474   // This should resolve to an INSERT_SUBREG instruction.
5475   if (VecVT.bitsGT(InterSubVT))
5476     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
5477                           DAG.getConstant(AlignedIdx, DL, XLenVT));
5478 
5479   // We might have bitcast from a mask type: cast back to the original type if
5480   // required.
5481   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
5482 }
5483 
5484 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
5485                                                     SelectionDAG &DAG) const {
5486   SDValue Vec = Op.getOperand(0);
5487   MVT SubVecVT = Op.getSimpleValueType();
5488   MVT VecVT = Vec.getSimpleValueType();
5489 
5490   SDLoc DL(Op);
5491   MVT XLenVT = Subtarget.getXLenVT();
5492   unsigned OrigIdx = Op.getConstantOperandVal(1);
5493   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5494 
5495   // We don't have the ability to slide mask vectors down indexed by their i1
5496   // elements; the smallest we can do is i8. Often we are able to bitcast to
5497   // equivalent i8 vectors. Note that when extracting a fixed-length vector
5498   // from a scalable one, we might not necessarily have enough scalable
5499   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
5500   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
5501     if (VecVT.getVectorMinNumElements() >= 8 &&
5502         SubVecVT.getVectorMinNumElements() >= 8) {
5503       assert(OrigIdx % 8 == 0 && "Invalid index");
5504       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5505              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5506              "Unexpected mask vector lowering");
5507       OrigIdx /= 8;
5508       SubVecVT =
5509           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5510                            SubVecVT.isScalableVector());
5511       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5512                                VecVT.isScalableVector());
5513       Vec = DAG.getBitcast(VecVT, Vec);
5514     } else {
5515       // We can't slide this mask vector down, indexed by its i1 elements.
5516       // This poses a problem when we wish to extract a scalable vector which
5517       // can't be re-expressed as a larger type. Just choose the slow path and
5518       // extend to a larger type, then truncate back down.
5519       // TODO: We could probably improve this when extracting certain fixed
5520       // from fixed, where we can extract as i8 and shift the correct element
5521       // right to reach the desired subvector?
5522       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5523       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5524       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5525       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
5526                         Op.getOperand(1));
5527       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
5528       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
5529     }
5530   }
5531 
5532   // If the subvector vector is a fixed-length type, we cannot use subregister
5533   // manipulation to simplify the codegen; we don't know which register of a
5534   // LMUL group contains the specific subvector as we only know the minimum
5535   // register size. Therefore we must slide the vector group down the full
5536   // amount.
5537   if (SubVecVT.isFixedLengthVector()) {
5538     // With an index of 0 this is a cast-like subvector, which can be performed
5539     // with subregister operations.
5540     if (OrigIdx == 0)
5541       return Op;
5542     MVT ContainerVT = VecVT;
5543     if (VecVT.isFixedLengthVector()) {
5544       ContainerVT = getContainerForFixedLengthVector(VecVT);
5545       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5546     }
5547     SDValue Mask =
5548         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5549     // Set the vector length to only the number of elements we care about. This
5550     // avoids sliding down elements we're going to discard straight away.
5551     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
5552     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5553     SDValue Slidedown =
5554         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5555                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
5556     // Now we can use a cast-like subvector extract to get the result.
5557     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5558                             DAG.getConstant(0, DL, XLenVT));
5559     return DAG.getBitcast(Op.getValueType(), Slidedown);
5560   }
5561 
5562   unsigned SubRegIdx, RemIdx;
5563   std::tie(SubRegIdx, RemIdx) =
5564       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5565           VecVT, SubVecVT, OrigIdx, TRI);
5566 
5567   // If the Idx has been completely eliminated then this is a subvector extract
5568   // which naturally aligns to a vector register. These can easily be handled
5569   // using subregister manipulation.
5570   if (RemIdx == 0)
5571     return Op;
5572 
5573   // Else we must shift our vector register directly to extract the subvector.
5574   // Do this using VSLIDEDOWN.
5575 
5576   // If the vector type is an LMUL-group type, extract a subvector equal to the
5577   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
5578   // instruction.
5579   MVT InterSubVT = VecVT;
5580   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5581     InterSubVT = getLMUL1VT(VecVT);
5582     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5583                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
5584   }
5585 
5586   // Slide this vector register down by the desired number of elements in order
5587   // to place the desired subvector starting at element 0.
5588   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5589   // For scalable vectors this must be further multiplied by vscale.
5590   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
5591 
5592   SDValue Mask, VL;
5593   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
5594   SDValue Slidedown =
5595       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
5596                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
5597 
5598   // Now the vector is in the right position, extract our final subvector. This
5599   // should resolve to a COPY.
5600   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5601                           DAG.getConstant(0, DL, XLenVT));
5602 
5603   // We might have bitcast from a mask type: cast back to the original type if
5604   // required.
5605   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
5606 }
5607 
5608 // Lower step_vector to the vid instruction. Any non-identity step value must
5609 // be accounted for my manual expansion.
5610 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
5611                                               SelectionDAG &DAG) const {
5612   SDLoc DL(Op);
5613   MVT VT = Op.getSimpleValueType();
5614   MVT XLenVT = Subtarget.getXLenVT();
5615   SDValue Mask, VL;
5616   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
5617   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
5618   uint64_t StepValImm = Op.getConstantOperandVal(0);
5619   if (StepValImm != 1) {
5620     if (isPowerOf2_64(StepValImm)) {
5621       SDValue StepVal =
5622           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
5623                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
5624       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
5625     } else {
5626       SDValue StepVal = lowerScalarSplat(
5627           SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()),
5628           VL, VT, DL, DAG, Subtarget);
5629       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
5630     }
5631   }
5632   return StepVec;
5633 }
5634 
5635 // Implement vector_reverse using vrgather.vv with indices determined by
5636 // subtracting the id of each element from (VLMAX-1). This will convert
5637 // the indices like so:
5638 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
5639 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
5640 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
5641                                                  SelectionDAG &DAG) const {
5642   SDLoc DL(Op);
5643   MVT VecVT = Op.getSimpleValueType();
5644   if (VecVT.getVectorElementType() == MVT::i1) {
5645     MVT WidenVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
5646     SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenVT, Op.getOperand(0));
5647     SDValue Op2 = DAG.getNode(ISD::VECTOR_REVERSE, DL, WidenVT, Op1);
5648     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Op2);
5649   }
5650   unsigned EltSize = VecVT.getScalarSizeInBits();
5651   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
5652   unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
5653   unsigned MaxVLMAX =
5654     RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
5655 
5656   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
5657   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
5658 
5659   // If this is SEW=8 and VLMAX is potentially more than 256, we need
5660   // to use vrgatherei16.vv.
5661   // TODO: It's also possible to use vrgatherei16.vv for other types to
5662   // decrease register width for the index calculation.
5663   if (MaxVLMAX > 256 && EltSize == 8) {
5664     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
5665     // Reverse each half, then reassemble them in reverse order.
5666     // NOTE: It's also possible that after splitting that VLMAX no longer
5667     // requires vrgatherei16.vv.
5668     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
5669       SDValue Lo, Hi;
5670       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5671       EVT LoVT, HiVT;
5672       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5673       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5674       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5675       // Reassemble the low and high pieces reversed.
5676       // FIXME: This is a CONCAT_VECTORS.
5677       SDValue Res =
5678           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5679                       DAG.getIntPtrConstant(0, DL));
5680       return DAG.getNode(
5681           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5682           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5683     }
5684 
5685     // Just promote the int type to i16 which will double the LMUL.
5686     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5687     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5688   }
5689 
5690   MVT XLenVT = Subtarget.getXLenVT();
5691   SDValue Mask, VL;
5692   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5693 
5694   // Calculate VLMAX-1 for the desired SEW.
5695   unsigned MinElts = VecVT.getVectorMinNumElements();
5696   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5697                               DAG.getConstant(MinElts, DL, XLenVT));
5698   SDValue VLMinus1 =
5699       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5700 
5701   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5702   bool IsRV32E64 =
5703       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5704   SDValue SplatVL;
5705   if (!IsRV32E64)
5706     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5707   else
5708     SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT),
5709                           VLMinus1, DAG.getRegister(RISCV::X0, XLenVT));
5710 
5711   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5712   SDValue Indices =
5713       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5714 
5715   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask,
5716                      DAG.getUNDEF(VecVT), VL);
5717 }
5718 
5719 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op,
5720                                                 SelectionDAG &DAG) const {
5721   SDLoc DL(Op);
5722   SDValue V1 = Op.getOperand(0);
5723   SDValue V2 = Op.getOperand(1);
5724   MVT XLenVT = Subtarget.getXLenVT();
5725   MVT VecVT = Op.getSimpleValueType();
5726 
5727   unsigned MinElts = VecVT.getVectorMinNumElements();
5728   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5729                               DAG.getConstant(MinElts, DL, XLenVT));
5730 
5731   int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue();
5732   SDValue DownOffset, UpOffset;
5733   if (ImmValue >= 0) {
5734     // The operand is a TargetConstant, we need to rebuild it as a regular
5735     // constant.
5736     DownOffset = DAG.getConstant(ImmValue, DL, XLenVT);
5737     UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset);
5738   } else {
5739     // The operand is a TargetConstant, we need to rebuild it as a regular
5740     // constant rather than negating the original operand.
5741     UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT);
5742     DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset);
5743   }
5744 
5745   SDValue TrueMask = getAllOnesMask(VecVT, VLMax, DL, DAG);
5746 
5747   SDValue SlideDown =
5748       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1,
5749                   DownOffset, TrueMask, UpOffset);
5750   return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset,
5751                      TrueMask,
5752                      DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT));
5753 }
5754 
5755 SDValue
5756 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5757                                                      SelectionDAG &DAG) const {
5758   SDLoc DL(Op);
5759   auto *Load = cast<LoadSDNode>(Op);
5760 
5761   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5762                                         Load->getMemoryVT(),
5763                                         *Load->getMemOperand()) &&
5764          "Expecting a correctly-aligned load");
5765 
5766   MVT VT = Op.getSimpleValueType();
5767   MVT XLenVT = Subtarget.getXLenVT();
5768   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5769 
5770   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5771 
5772   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5773   SDValue IntID = DAG.getTargetConstant(
5774       IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT);
5775   SmallVector<SDValue, 4> Ops{Load->getChain(), IntID};
5776   if (!IsMaskOp)
5777     Ops.push_back(DAG.getUNDEF(ContainerVT));
5778   Ops.push_back(Load->getBasePtr());
5779   Ops.push_back(VL);
5780   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5781   SDValue NewLoad =
5782       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
5783                               Load->getMemoryVT(), Load->getMemOperand());
5784 
5785   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5786   return DAG.getMergeValues({Result, NewLoad.getValue(1)}, DL);
5787 }
5788 
5789 SDValue
5790 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5791                                                       SelectionDAG &DAG) const {
5792   SDLoc DL(Op);
5793   auto *Store = cast<StoreSDNode>(Op);
5794 
5795   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5796                                         Store->getMemoryVT(),
5797                                         *Store->getMemOperand()) &&
5798          "Expecting a correctly-aligned store");
5799 
5800   SDValue StoreVal = Store->getValue();
5801   MVT VT = StoreVal.getSimpleValueType();
5802   MVT XLenVT = Subtarget.getXLenVT();
5803 
5804   // If the size less than a byte, we need to pad with zeros to make a byte.
5805   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5806     VT = MVT::v8i1;
5807     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5808                            DAG.getConstant(0, DL, VT), StoreVal,
5809                            DAG.getIntPtrConstant(0, DL));
5810   }
5811 
5812   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5813 
5814   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5815 
5816   SDValue NewValue =
5817       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5818 
5819   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5820   SDValue IntID = DAG.getTargetConstant(
5821       IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT);
5822   return DAG.getMemIntrinsicNode(
5823       ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
5824       {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL},
5825       Store->getMemoryVT(), Store->getMemOperand());
5826 }
5827 
5828 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5829                                              SelectionDAG &DAG) const {
5830   SDLoc DL(Op);
5831   MVT VT = Op.getSimpleValueType();
5832 
5833   const auto *MemSD = cast<MemSDNode>(Op);
5834   EVT MemVT = MemSD->getMemoryVT();
5835   MachineMemOperand *MMO = MemSD->getMemOperand();
5836   SDValue Chain = MemSD->getChain();
5837   SDValue BasePtr = MemSD->getBasePtr();
5838 
5839   SDValue Mask, PassThru, VL;
5840   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5841     Mask = VPLoad->getMask();
5842     PassThru = DAG.getUNDEF(VT);
5843     VL = VPLoad->getVectorLength();
5844   } else {
5845     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5846     Mask = MLoad->getMask();
5847     PassThru = MLoad->getPassThru();
5848   }
5849 
5850   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5851 
5852   MVT XLenVT = Subtarget.getXLenVT();
5853 
5854   MVT ContainerVT = VT;
5855   if (VT.isFixedLengthVector()) {
5856     ContainerVT = getContainerForFixedLengthVector(VT);
5857     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5858     if (!IsUnmasked) {
5859       MVT MaskVT = getMaskTypeFor(ContainerVT);
5860       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5861     }
5862   }
5863 
5864   if (!VL)
5865     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5866 
5867   unsigned IntID =
5868       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5869   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5870   if (IsUnmasked)
5871     Ops.push_back(DAG.getUNDEF(ContainerVT));
5872   else
5873     Ops.push_back(PassThru);
5874   Ops.push_back(BasePtr);
5875   if (!IsUnmasked)
5876     Ops.push_back(Mask);
5877   Ops.push_back(VL);
5878   if (!IsUnmasked)
5879     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5880 
5881   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5882 
5883   SDValue Result =
5884       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5885   Chain = Result.getValue(1);
5886 
5887   if (VT.isFixedLengthVector())
5888     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5889 
5890   return DAG.getMergeValues({Result, Chain}, DL);
5891 }
5892 
5893 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5894                                               SelectionDAG &DAG) const {
5895   SDLoc DL(Op);
5896 
5897   const auto *MemSD = cast<MemSDNode>(Op);
5898   EVT MemVT = MemSD->getMemoryVT();
5899   MachineMemOperand *MMO = MemSD->getMemOperand();
5900   SDValue Chain = MemSD->getChain();
5901   SDValue BasePtr = MemSD->getBasePtr();
5902   SDValue Val, Mask, VL;
5903 
5904   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5905     Val = VPStore->getValue();
5906     Mask = VPStore->getMask();
5907     VL = VPStore->getVectorLength();
5908   } else {
5909     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5910     Val = MStore->getValue();
5911     Mask = MStore->getMask();
5912   }
5913 
5914   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5915 
5916   MVT VT = Val.getSimpleValueType();
5917   MVT XLenVT = Subtarget.getXLenVT();
5918 
5919   MVT ContainerVT = VT;
5920   if (VT.isFixedLengthVector()) {
5921     ContainerVT = getContainerForFixedLengthVector(VT);
5922 
5923     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5924     if (!IsUnmasked) {
5925       MVT MaskVT = getMaskTypeFor(ContainerVT);
5926       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5927     }
5928   }
5929 
5930   if (!VL)
5931     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5932 
5933   unsigned IntID =
5934       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5935   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5936   Ops.push_back(Val);
5937   Ops.push_back(BasePtr);
5938   if (!IsUnmasked)
5939     Ops.push_back(Mask);
5940   Ops.push_back(VL);
5941 
5942   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5943                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5944 }
5945 
5946 SDValue
5947 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
5948                                                       SelectionDAG &DAG) const {
5949   MVT InVT = Op.getOperand(0).getSimpleValueType();
5950   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
5951 
5952   MVT VT = Op.getSimpleValueType();
5953 
5954   SDValue Op1 =
5955       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
5956   SDValue Op2 =
5957       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5958 
5959   SDLoc DL(Op);
5960   SDValue VL =
5961       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5962 
5963   MVT MaskVT = getMaskTypeFor(ContainerVT);
5964   SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
5965 
5966   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
5967                             Op.getOperand(2), Mask, VL);
5968 
5969   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
5970 }
5971 
5972 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
5973     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
5974   MVT VT = Op.getSimpleValueType();
5975 
5976   if (VT.getVectorElementType() == MVT::i1)
5977     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
5978 
5979   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
5980 }
5981 
5982 SDValue
5983 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
5984                                                       SelectionDAG &DAG) const {
5985   unsigned Opc;
5986   switch (Op.getOpcode()) {
5987   default: llvm_unreachable("Unexpected opcode!");
5988   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
5989   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
5990   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
5991   }
5992 
5993   return lowerToScalableOp(Op, DAG, Opc);
5994 }
5995 
5996 // Lower vector ABS to smax(X, sub(0, X)).
5997 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
5998   SDLoc DL(Op);
5999   MVT VT = Op.getSimpleValueType();
6000   SDValue X = Op.getOperand(0);
6001 
6002   assert(VT.isFixedLengthVector() && "Unexpected type");
6003 
6004   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6005   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
6006 
6007   SDValue Mask, VL;
6008   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6009 
6010   SDValue SplatZero = DAG.getNode(
6011       RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
6012       DAG.getConstant(0, DL, Subtarget.getXLenVT()));
6013   SDValue NegX =
6014       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
6015   SDValue Max =
6016       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
6017 
6018   return convertFromScalableVector(VT, Max, DAG, Subtarget);
6019 }
6020 
6021 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
6022     SDValue Op, SelectionDAG &DAG) const {
6023   SDLoc DL(Op);
6024   MVT VT = Op.getSimpleValueType();
6025   SDValue Mag = Op.getOperand(0);
6026   SDValue Sign = Op.getOperand(1);
6027   assert(Mag.getValueType() == Sign.getValueType() &&
6028          "Can only handle COPYSIGN with matching types.");
6029 
6030   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6031   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
6032   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
6033 
6034   SDValue Mask, VL;
6035   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6036 
6037   SDValue CopySign =
6038       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
6039 
6040   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
6041 }
6042 
6043 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
6044     SDValue Op, SelectionDAG &DAG) const {
6045   MVT VT = Op.getSimpleValueType();
6046   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6047 
6048   MVT I1ContainerVT =
6049       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6050 
6051   SDValue CC =
6052       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
6053   SDValue Op1 =
6054       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
6055   SDValue Op2 =
6056       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
6057 
6058   SDLoc DL(Op);
6059   SDValue Mask, VL;
6060   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6061 
6062   SDValue Select =
6063       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
6064 
6065   return convertFromScalableVector(VT, Select, DAG, Subtarget);
6066 }
6067 
6068 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
6069                                                unsigned NewOpc,
6070                                                bool HasMask) const {
6071   MVT VT = Op.getSimpleValueType();
6072   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6073 
6074   // Create list of operands by converting existing ones to scalable types.
6075   SmallVector<SDValue, 6> Ops;
6076   for (const SDValue &V : Op->op_values()) {
6077     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6078 
6079     // Pass through non-vector operands.
6080     if (!V.getValueType().isVector()) {
6081       Ops.push_back(V);
6082       continue;
6083     }
6084 
6085     // "cast" fixed length vector to a scalable vector.
6086     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
6087            "Only fixed length vectors are supported!");
6088     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6089   }
6090 
6091   SDLoc DL(Op);
6092   SDValue Mask, VL;
6093   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6094   if (HasMask)
6095     Ops.push_back(Mask);
6096   Ops.push_back(VL);
6097 
6098   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
6099   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
6100 }
6101 
6102 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
6103 // * Operands of each node are assumed to be in the same order.
6104 // * The EVL operand is promoted from i32 to i64 on RV64.
6105 // * Fixed-length vectors are converted to their scalable-vector container
6106 //   types.
6107 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
6108                                        unsigned RISCVISDOpc) const {
6109   SDLoc DL(Op);
6110   MVT VT = Op.getSimpleValueType();
6111   SmallVector<SDValue, 4> Ops;
6112 
6113   for (const auto &OpIdx : enumerate(Op->ops())) {
6114     SDValue V = OpIdx.value();
6115     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6116     // Pass through operands which aren't fixed-length vectors.
6117     if (!V.getValueType().isFixedLengthVector()) {
6118       Ops.push_back(V);
6119       continue;
6120     }
6121     // "cast" fixed length vector to a scalable vector.
6122     MVT OpVT = V.getSimpleValueType();
6123     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
6124     assert(useRVVForFixedLengthVectorVT(OpVT) &&
6125            "Only fixed length vectors are supported!");
6126     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6127   }
6128 
6129   if (!VT.isFixedLengthVector())
6130     return DAG.getNode(RISCVISDOpc, DL, VT, Ops, Op->getFlags());
6131 
6132   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6133 
6134   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops, Op->getFlags());
6135 
6136   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
6137 }
6138 
6139 SDValue RISCVTargetLowering::lowerVPExtMaskOp(SDValue Op,
6140                                               SelectionDAG &DAG) const {
6141   SDLoc DL(Op);
6142   MVT VT = Op.getSimpleValueType();
6143 
6144   SDValue Src = Op.getOperand(0);
6145   // NOTE: Mask is dropped.
6146   SDValue VL = Op.getOperand(2);
6147 
6148   MVT ContainerVT = VT;
6149   if (VT.isFixedLengthVector()) {
6150     ContainerVT = getContainerForFixedLengthVector(VT);
6151     MVT SrcVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6152     Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
6153   }
6154 
6155   MVT XLenVT = Subtarget.getXLenVT();
6156   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
6157   SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6158                                   DAG.getUNDEF(ContainerVT), Zero, VL);
6159 
6160   SDValue SplatValue = DAG.getConstant(
6161       Op.getOpcode() == ISD::VP_ZERO_EXTEND ? 1 : -1, DL, XLenVT);
6162   SDValue Splat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6163                               DAG.getUNDEF(ContainerVT), SplatValue, VL);
6164 
6165   SDValue Result = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, Src,
6166                                Splat, ZeroSplat, VL);
6167   if (!VT.isFixedLengthVector())
6168     return Result;
6169   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6170 }
6171 
6172 SDValue RISCVTargetLowering::lowerVPSetCCMaskOp(SDValue Op,
6173                                                 SelectionDAG &DAG) const {
6174   SDLoc DL(Op);
6175   MVT VT = Op.getSimpleValueType();
6176 
6177   SDValue Op1 = Op.getOperand(0);
6178   SDValue Op2 = Op.getOperand(1);
6179   ISD::CondCode Condition = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6180   // NOTE: Mask is dropped.
6181   SDValue VL = Op.getOperand(4);
6182 
6183   MVT ContainerVT = VT;
6184   if (VT.isFixedLengthVector()) {
6185     ContainerVT = getContainerForFixedLengthVector(VT);
6186     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6187     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6188   }
6189 
6190   SDValue Result;
6191   SDValue AllOneMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
6192 
6193   switch (Condition) {
6194   default:
6195     break;
6196   // X != Y  --> (X^Y)
6197   case ISD::SETNE:
6198     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
6199     break;
6200   // X == Y  --> ~(X^Y)
6201   case ISD::SETEQ: {
6202     SDValue Temp =
6203         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
6204     Result =
6205         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, AllOneMask, VL);
6206     break;
6207   }
6208   // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
6209   // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
6210   case ISD::SETGT:
6211   case ISD::SETULT: {
6212     SDValue Temp =
6213         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
6214     Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Temp, Op2, VL);
6215     break;
6216   }
6217   // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
6218   // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
6219   case ISD::SETLT:
6220   case ISD::SETUGT: {
6221     SDValue Temp =
6222         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
6223     Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Op1, Temp, VL);
6224     break;
6225   }
6226   // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
6227   // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
6228   case ISD::SETGE:
6229   case ISD::SETULE: {
6230     SDValue Temp =
6231         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
6232     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op2, VL);
6233     break;
6234   }
6235   // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
6236   // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
6237   case ISD::SETLE:
6238   case ISD::SETUGE: {
6239     SDValue Temp =
6240         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
6241     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op1, VL);
6242     break;
6243   }
6244   }
6245 
6246   if (!VT.isFixedLengthVector())
6247     return Result;
6248   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6249 }
6250 
6251 // Lower Floating-Point/Integer Type-Convert VP SDNodes
6252 SDValue RISCVTargetLowering::lowerVPFPIntConvOp(SDValue Op, SelectionDAG &DAG,
6253                                                 unsigned RISCVISDOpc) const {
6254   SDLoc DL(Op);
6255 
6256   SDValue Src = Op.getOperand(0);
6257   SDValue Mask = Op.getOperand(1);
6258   SDValue VL = Op.getOperand(2);
6259 
6260   MVT DstVT = Op.getSimpleValueType();
6261   MVT SrcVT = Src.getSimpleValueType();
6262   if (DstVT.isFixedLengthVector()) {
6263     DstVT = getContainerForFixedLengthVector(DstVT);
6264     SrcVT = getContainerForFixedLengthVector(SrcVT);
6265     Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
6266     MVT MaskVT = getMaskTypeFor(DstVT);
6267     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6268   }
6269 
6270   unsigned RISCVISDExtOpc = (RISCVISDOpc == RISCVISD::SINT_TO_FP_VL ||
6271                              RISCVISDOpc == RISCVISD::FP_TO_SINT_VL)
6272                                 ? RISCVISD::VSEXT_VL
6273                                 : RISCVISD::VZEXT_VL;
6274 
6275   unsigned DstEltSize = DstVT.getScalarSizeInBits();
6276   unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
6277 
6278   SDValue Result;
6279   if (DstEltSize >= SrcEltSize) { // Single-width and widening conversion.
6280     if (SrcVT.isInteger()) {
6281       assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
6282 
6283       // Do we need to do any pre-widening before converting?
6284       if (SrcEltSize == 1) {
6285         MVT IntVT = DstVT.changeVectorElementTypeToInteger();
6286         MVT XLenVT = Subtarget.getXLenVT();
6287         SDValue Zero = DAG.getConstant(0, DL, XLenVT);
6288         SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
6289                                         DAG.getUNDEF(IntVT), Zero, VL);
6290         SDValue One = DAG.getConstant(
6291             RISCVISDExtOpc == RISCVISD::VZEXT_VL ? 1 : -1, DL, XLenVT);
6292         SDValue OneSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
6293                                        DAG.getUNDEF(IntVT), One, VL);
6294         Src = DAG.getNode(RISCVISD::VSELECT_VL, DL, IntVT, Src, OneSplat,
6295                           ZeroSplat, VL);
6296       } else if (DstEltSize > (2 * SrcEltSize)) {
6297         // Widen before converting.
6298         MVT IntVT = MVT::getVectorVT(MVT::getIntegerVT(DstEltSize / 2),
6299                                      DstVT.getVectorElementCount());
6300         Src = DAG.getNode(RISCVISDExtOpc, DL, IntVT, Src, Mask, VL);
6301       }
6302 
6303       Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
6304     } else {
6305       assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
6306              "Wrong input/output vector types");
6307 
6308       // Convert f16 to f32 then convert f32 to i64.
6309       if (DstEltSize > (2 * SrcEltSize)) {
6310         assert(SrcVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
6311         MVT InterimFVT =
6312             MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
6313         Src =
6314             DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterimFVT, Src, Mask, VL);
6315       }
6316 
6317       Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
6318     }
6319   } else { // Narrowing + Conversion
6320     if (SrcVT.isInteger()) {
6321       assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
6322       // First do a narrowing convert to an FP type half the size, then round
6323       // the FP type to a small FP type if needed.
6324 
6325       MVT InterimFVT = DstVT;
6326       if (SrcEltSize > (2 * DstEltSize)) {
6327         assert(SrcEltSize == (4 * DstEltSize) && "Unexpected types!");
6328         assert(DstVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
6329         InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
6330       }
6331 
6332       Result = DAG.getNode(RISCVISDOpc, DL, InterimFVT, Src, Mask, VL);
6333 
6334       if (InterimFVT != DstVT) {
6335         Src = Result;
6336         Result = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, DstVT, Src, Mask, VL);
6337       }
6338     } else {
6339       assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
6340              "Wrong input/output vector types");
6341       // First do a narrowing conversion to an integer half the size, then
6342       // truncate if needed.
6343 
6344       if (DstEltSize == 1) {
6345         // First convert to the same size integer, then convert to mask using
6346         // setcc.
6347         assert(SrcEltSize >= 16 && "Unexpected FP type!");
6348         MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize),
6349                                           DstVT.getVectorElementCount());
6350         Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
6351 
6352         // Compare the integer result to 0. The integer should be 0 or 1/-1,
6353         // otherwise the conversion was undefined.
6354         MVT XLenVT = Subtarget.getXLenVT();
6355         SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
6356         SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterimIVT,
6357                                 DAG.getUNDEF(InterimIVT), SplatZero);
6358         Result = DAG.getNode(RISCVISD::SETCC_VL, DL, DstVT, Result, SplatZero,
6359                              DAG.getCondCode(ISD::SETNE), Mask, VL);
6360       } else {
6361         MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
6362                                           DstVT.getVectorElementCount());
6363 
6364         Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
6365 
6366         while (InterimIVT != DstVT) {
6367           SrcEltSize /= 2;
6368           Src = Result;
6369           InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
6370                                         DstVT.getVectorElementCount());
6371           Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, InterimIVT,
6372                                Src, Mask, VL);
6373         }
6374       }
6375     }
6376   }
6377 
6378   MVT VT = Op.getSimpleValueType();
6379   if (!VT.isFixedLengthVector())
6380     return Result;
6381   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6382 }
6383 
6384 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
6385                                             unsigned MaskOpc,
6386                                             unsigned VecOpc) const {
6387   MVT VT = Op.getSimpleValueType();
6388   if (VT.getVectorElementType() != MVT::i1)
6389     return lowerVPOp(Op, DAG, VecOpc);
6390 
6391   // It is safe to drop mask parameter as masked-off elements are undef.
6392   SDValue Op1 = Op->getOperand(0);
6393   SDValue Op2 = Op->getOperand(1);
6394   SDValue VL = Op->getOperand(3);
6395 
6396   MVT ContainerVT = VT;
6397   const bool IsFixed = VT.isFixedLengthVector();
6398   if (IsFixed) {
6399     ContainerVT = getContainerForFixedLengthVector(VT);
6400     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6401     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6402   }
6403 
6404   SDLoc DL(Op);
6405   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
6406   if (!IsFixed)
6407     return Val;
6408   return convertFromScalableVector(VT, Val, DAG, Subtarget);
6409 }
6410 
6411 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
6412 // matched to a RVV indexed load. The RVV indexed load instructions only
6413 // support the "unsigned unscaled" addressing mode; indices are implicitly
6414 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6415 // signed or scaled indexing is extended to the XLEN value type and scaled
6416 // accordingly.
6417 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
6418                                                SelectionDAG &DAG) const {
6419   SDLoc DL(Op);
6420   MVT VT = Op.getSimpleValueType();
6421 
6422   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6423   EVT MemVT = MemSD->getMemoryVT();
6424   MachineMemOperand *MMO = MemSD->getMemOperand();
6425   SDValue Chain = MemSD->getChain();
6426   SDValue BasePtr = MemSD->getBasePtr();
6427 
6428   ISD::LoadExtType LoadExtType;
6429   SDValue Index, Mask, PassThru, VL;
6430 
6431   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
6432     Index = VPGN->getIndex();
6433     Mask = VPGN->getMask();
6434     PassThru = DAG.getUNDEF(VT);
6435     VL = VPGN->getVectorLength();
6436     // VP doesn't support extending loads.
6437     LoadExtType = ISD::NON_EXTLOAD;
6438   } else {
6439     // Else it must be a MGATHER.
6440     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
6441     Index = MGN->getIndex();
6442     Mask = MGN->getMask();
6443     PassThru = MGN->getPassThru();
6444     LoadExtType = MGN->getExtensionType();
6445   }
6446 
6447   MVT IndexVT = Index.getSimpleValueType();
6448   MVT XLenVT = Subtarget.getXLenVT();
6449 
6450   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6451          "Unexpected VTs!");
6452   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6453   // Targets have to explicitly opt-in for extending vector loads.
6454   assert(LoadExtType == ISD::NON_EXTLOAD &&
6455          "Unexpected extending MGATHER/VP_GATHER");
6456   (void)LoadExtType;
6457 
6458   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6459   // the selection of the masked intrinsics doesn't do this for us.
6460   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6461 
6462   MVT ContainerVT = VT;
6463   if (VT.isFixedLengthVector()) {
6464     ContainerVT = getContainerForFixedLengthVector(VT);
6465     IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6466                                ContainerVT.getVectorElementCount());
6467 
6468     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6469 
6470     if (!IsUnmasked) {
6471       MVT MaskVT = getMaskTypeFor(ContainerVT);
6472       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6473       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
6474     }
6475   }
6476 
6477   if (!VL)
6478     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6479 
6480   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6481     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6482     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6483                                    VL);
6484     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6485                         TrueMask, VL);
6486   }
6487 
6488   unsigned IntID =
6489       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
6490   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6491   if (IsUnmasked)
6492     Ops.push_back(DAG.getUNDEF(ContainerVT));
6493   else
6494     Ops.push_back(PassThru);
6495   Ops.push_back(BasePtr);
6496   Ops.push_back(Index);
6497   if (!IsUnmasked)
6498     Ops.push_back(Mask);
6499   Ops.push_back(VL);
6500   if (!IsUnmasked)
6501     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
6502 
6503   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
6504   SDValue Result =
6505       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
6506   Chain = Result.getValue(1);
6507 
6508   if (VT.isFixedLengthVector())
6509     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
6510 
6511   return DAG.getMergeValues({Result, Chain}, DL);
6512 }
6513 
6514 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
6515 // matched to a RVV indexed store. The RVV indexed store instructions only
6516 // support the "unsigned unscaled" addressing mode; indices are implicitly
6517 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6518 // signed or scaled indexing is extended to the XLEN value type and scaled
6519 // accordingly.
6520 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
6521                                                 SelectionDAG &DAG) const {
6522   SDLoc DL(Op);
6523   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6524   EVT MemVT = MemSD->getMemoryVT();
6525   MachineMemOperand *MMO = MemSD->getMemOperand();
6526   SDValue Chain = MemSD->getChain();
6527   SDValue BasePtr = MemSD->getBasePtr();
6528 
6529   bool IsTruncatingStore = false;
6530   SDValue Index, Mask, Val, VL;
6531 
6532   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
6533     Index = VPSN->getIndex();
6534     Mask = VPSN->getMask();
6535     Val = VPSN->getValue();
6536     VL = VPSN->getVectorLength();
6537     // VP doesn't support truncating stores.
6538     IsTruncatingStore = false;
6539   } else {
6540     // Else it must be a MSCATTER.
6541     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
6542     Index = MSN->getIndex();
6543     Mask = MSN->getMask();
6544     Val = MSN->getValue();
6545     IsTruncatingStore = MSN->isTruncatingStore();
6546   }
6547 
6548   MVT VT = Val.getSimpleValueType();
6549   MVT IndexVT = Index.getSimpleValueType();
6550   MVT XLenVT = Subtarget.getXLenVT();
6551 
6552   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6553          "Unexpected VTs!");
6554   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6555   // Targets have to explicitly opt-in for extending vector loads and
6556   // truncating vector stores.
6557   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
6558   (void)IsTruncatingStore;
6559 
6560   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6561   // the selection of the masked intrinsics doesn't do this for us.
6562   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6563 
6564   MVT ContainerVT = VT;
6565   if (VT.isFixedLengthVector()) {
6566     ContainerVT = getContainerForFixedLengthVector(VT);
6567     IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6568                                ContainerVT.getVectorElementCount());
6569 
6570     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6571     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
6572 
6573     if (!IsUnmasked) {
6574       MVT MaskVT = getMaskTypeFor(ContainerVT);
6575       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6576     }
6577   }
6578 
6579   if (!VL)
6580     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6581 
6582   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6583     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6584     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6585                                    VL);
6586     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6587                         TrueMask, VL);
6588   }
6589 
6590   unsigned IntID =
6591       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
6592   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6593   Ops.push_back(Val);
6594   Ops.push_back(BasePtr);
6595   Ops.push_back(Index);
6596   if (!IsUnmasked)
6597     Ops.push_back(Mask);
6598   Ops.push_back(VL);
6599 
6600   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
6601                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
6602 }
6603 
6604 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
6605                                                SelectionDAG &DAG) const {
6606   const MVT XLenVT = Subtarget.getXLenVT();
6607   SDLoc DL(Op);
6608   SDValue Chain = Op->getOperand(0);
6609   SDValue SysRegNo = DAG.getTargetConstant(
6610       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6611   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
6612   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
6613 
6614   // Encoding used for rounding mode in RISCV differs from that used in
6615   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
6616   // table, which consists of a sequence of 4-bit fields, each representing
6617   // corresponding FLT_ROUNDS mode.
6618   static const int Table =
6619       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
6620       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
6621       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
6622       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
6623       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
6624 
6625   SDValue Shift =
6626       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
6627   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6628                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6629   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6630                                DAG.getConstant(7, DL, XLenVT));
6631 
6632   return DAG.getMergeValues({Masked, Chain}, DL);
6633 }
6634 
6635 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
6636                                                SelectionDAG &DAG) const {
6637   const MVT XLenVT = Subtarget.getXLenVT();
6638   SDLoc DL(Op);
6639   SDValue Chain = Op->getOperand(0);
6640   SDValue RMValue = Op->getOperand(1);
6641   SDValue SysRegNo = DAG.getTargetConstant(
6642       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6643 
6644   // Encoding used for rounding mode in RISCV differs from that used in
6645   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
6646   // a table, which consists of a sequence of 4-bit fields, each representing
6647   // corresponding RISCV mode.
6648   static const unsigned Table =
6649       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
6650       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
6651       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
6652       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
6653       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
6654 
6655   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
6656                               DAG.getConstant(2, DL, XLenVT));
6657   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6658                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6659   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6660                         DAG.getConstant(0x7, DL, XLenVT));
6661   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
6662                      RMValue);
6663 }
6664 
6665 SDValue RISCVTargetLowering::lowerEH_DWARF_CFA(SDValue Op,
6666                                                SelectionDAG &DAG) const {
6667   MachineFunction &MF = DAG.getMachineFunction();
6668 
6669   bool isRISCV64 = Subtarget.is64Bit();
6670   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6671 
6672   int FI = MF.getFrameInfo().CreateFixedObject(isRISCV64 ? 8 : 4, 0, false);
6673   return DAG.getFrameIndex(FI, PtrVT);
6674 }
6675 
6676 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) {
6677   switch (IntNo) {
6678   default:
6679     llvm_unreachable("Unexpected Intrinsic");
6680   case Intrinsic::riscv_bcompress:
6681     return RISCVISD::BCOMPRESSW;
6682   case Intrinsic::riscv_bdecompress:
6683     return RISCVISD::BDECOMPRESSW;
6684   case Intrinsic::riscv_bfp:
6685     return RISCVISD::BFPW;
6686   case Intrinsic::riscv_fsl:
6687     return RISCVISD::FSLW;
6688   case Intrinsic::riscv_fsr:
6689     return RISCVISD::FSRW;
6690   }
6691 }
6692 
6693 // Converts the given intrinsic to a i64 operation with any extension.
6694 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG,
6695                                          unsigned IntNo) {
6696   SDLoc DL(N);
6697   RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo);
6698   // Deal with the Instruction Operands
6699   SmallVector<SDValue, 3> NewOps;
6700   for (SDValue Op : drop_begin(N->ops()))
6701     // Promote the operand to i64 type
6702     NewOps.push_back(DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op));
6703   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOps);
6704   // ReplaceNodeResults requires we maintain the same type for the return value.
6705   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6706 }
6707 
6708 // Returns the opcode of the target-specific SDNode that implements the 32-bit
6709 // form of the given Opcode.
6710 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
6711   switch (Opcode) {
6712   default:
6713     llvm_unreachable("Unexpected opcode");
6714   case ISD::SHL:
6715     return RISCVISD::SLLW;
6716   case ISD::SRA:
6717     return RISCVISD::SRAW;
6718   case ISD::SRL:
6719     return RISCVISD::SRLW;
6720   case ISD::SDIV:
6721     return RISCVISD::DIVW;
6722   case ISD::UDIV:
6723     return RISCVISD::DIVUW;
6724   case ISD::UREM:
6725     return RISCVISD::REMUW;
6726   case ISD::ROTL:
6727     return RISCVISD::ROLW;
6728   case ISD::ROTR:
6729     return RISCVISD::RORW;
6730   }
6731 }
6732 
6733 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
6734 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
6735 // otherwise be promoted to i64, making it difficult to select the
6736 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
6737 // type i8/i16/i32 is lost.
6738 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
6739                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
6740   SDLoc DL(N);
6741   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6742   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
6743   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
6744   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6745   // ReplaceNodeResults requires we maintain the same type for the return value.
6746   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6747 }
6748 
6749 // Converts the given 32-bit operation to a i64 operation with signed extension
6750 // semantic to reduce the signed extension instructions.
6751 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
6752   SDLoc DL(N);
6753   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6754   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6755   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
6756   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6757                                DAG.getValueType(MVT::i32));
6758   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
6759 }
6760 
6761 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
6762                                              SmallVectorImpl<SDValue> &Results,
6763                                              SelectionDAG &DAG) const {
6764   SDLoc DL(N);
6765   switch (N->getOpcode()) {
6766   default:
6767     llvm_unreachable("Don't know how to custom type legalize this operation!");
6768   case ISD::STRICT_FP_TO_SINT:
6769   case ISD::STRICT_FP_TO_UINT:
6770   case ISD::FP_TO_SINT:
6771   case ISD::FP_TO_UINT: {
6772     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6773            "Unexpected custom legalisation");
6774     bool IsStrict = N->isStrictFPOpcode();
6775     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
6776                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
6777     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
6778     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
6779         TargetLowering::TypeSoftenFloat) {
6780       if (!isTypeLegal(Op0.getValueType()))
6781         return;
6782       if (IsStrict) {
6783         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
6784                                 : RISCVISD::STRICT_FCVT_WU_RV64;
6785         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
6786         SDValue Res = DAG.getNode(
6787             Opc, DL, VTs, N->getOperand(0), Op0,
6788             DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6789         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6790         Results.push_back(Res.getValue(1));
6791         return;
6792       }
6793       unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
6794       SDValue Res =
6795           DAG.getNode(Opc, DL, MVT::i64, Op0,
6796                       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6797       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6798       return;
6799     }
6800     // If the FP type needs to be softened, emit a library call using the 'si'
6801     // version. If we left it to default legalization we'd end up with 'di'. If
6802     // the FP type doesn't need to be softened just let generic type
6803     // legalization promote the result type.
6804     RTLIB::Libcall LC;
6805     if (IsSigned)
6806       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
6807     else
6808       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
6809     MakeLibCallOptions CallOptions;
6810     EVT OpVT = Op0.getValueType();
6811     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
6812     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
6813     SDValue Result;
6814     std::tie(Result, Chain) =
6815         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
6816     Results.push_back(Result);
6817     if (IsStrict)
6818       Results.push_back(Chain);
6819     break;
6820   }
6821   case ISD::READCYCLECOUNTER: {
6822     assert(!Subtarget.is64Bit() &&
6823            "READCYCLECOUNTER only has custom type legalization on riscv32");
6824 
6825     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6826     SDValue RCW =
6827         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
6828 
6829     Results.push_back(
6830         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
6831     Results.push_back(RCW.getValue(2));
6832     break;
6833   }
6834   case ISD::MUL: {
6835     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
6836     unsigned XLen = Subtarget.getXLen();
6837     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
6838     if (Size > XLen) {
6839       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
6840       SDValue LHS = N->getOperand(0);
6841       SDValue RHS = N->getOperand(1);
6842       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
6843 
6844       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
6845       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
6846       // We need exactly one side to be unsigned.
6847       if (LHSIsU == RHSIsU)
6848         return;
6849 
6850       auto MakeMULPair = [&](SDValue S, SDValue U) {
6851         MVT XLenVT = Subtarget.getXLenVT();
6852         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
6853         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
6854         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
6855         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
6856         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
6857       };
6858 
6859       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
6860       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
6861 
6862       // The other operand should be signed, but still prefer MULH when
6863       // possible.
6864       if (RHSIsU && LHSIsS && !RHSIsS)
6865         Results.push_back(MakeMULPair(LHS, RHS));
6866       else if (LHSIsU && RHSIsS && !LHSIsS)
6867         Results.push_back(MakeMULPair(RHS, LHS));
6868 
6869       return;
6870     }
6871     LLVM_FALLTHROUGH;
6872   }
6873   case ISD::ADD:
6874   case ISD::SUB:
6875     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6876            "Unexpected custom legalisation");
6877     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
6878     break;
6879   case ISD::SHL:
6880   case ISD::SRA:
6881   case ISD::SRL:
6882     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6883            "Unexpected custom legalisation");
6884     if (N->getOperand(1).getOpcode() != ISD::Constant) {
6885       // If we can use a BSET instruction, allow default promotion to apply.
6886       if (N->getOpcode() == ISD::SHL && Subtarget.hasStdExtZbs() &&
6887           isOneConstant(N->getOperand(0)))
6888         break;
6889       Results.push_back(customLegalizeToWOp(N, DAG));
6890       break;
6891     }
6892 
6893     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
6894     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
6895     // shift amount.
6896     if (N->getOpcode() == ISD::SHL) {
6897       SDLoc DL(N);
6898       SDValue NewOp0 =
6899           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6900       SDValue NewOp1 =
6901           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
6902       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
6903       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6904                                    DAG.getValueType(MVT::i32));
6905       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6906     }
6907 
6908     break;
6909   case ISD::ROTL:
6910   case ISD::ROTR:
6911     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6912            "Unexpected custom legalisation");
6913     Results.push_back(customLegalizeToWOp(N, DAG));
6914     break;
6915   case ISD::CTTZ:
6916   case ISD::CTTZ_ZERO_UNDEF:
6917   case ISD::CTLZ:
6918   case ISD::CTLZ_ZERO_UNDEF: {
6919     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6920            "Unexpected custom legalisation");
6921 
6922     SDValue NewOp0 =
6923         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6924     bool IsCTZ =
6925         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
6926     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
6927     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
6928     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6929     return;
6930   }
6931   case ISD::SDIV:
6932   case ISD::UDIV:
6933   case ISD::UREM: {
6934     MVT VT = N->getSimpleValueType(0);
6935     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
6936            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
6937            "Unexpected custom legalisation");
6938     // Don't promote division/remainder by constant since we should expand those
6939     // to multiply by magic constant.
6940     // FIXME: What if the expansion is disabled for minsize.
6941     if (N->getOperand(1).getOpcode() == ISD::Constant)
6942       return;
6943 
6944     // If the input is i32, use ANY_EXTEND since the W instructions don't read
6945     // the upper 32 bits. For other types we need to sign or zero extend
6946     // based on the opcode.
6947     unsigned ExtOpc = ISD::ANY_EXTEND;
6948     if (VT != MVT::i32)
6949       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
6950                                            : ISD::ZERO_EXTEND;
6951 
6952     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
6953     break;
6954   }
6955   case ISD::UADDO:
6956   case ISD::USUBO: {
6957     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6958            "Unexpected custom legalisation");
6959     bool IsAdd = N->getOpcode() == ISD::UADDO;
6960     // Create an ADDW or SUBW.
6961     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6962     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6963     SDValue Res =
6964         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
6965     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
6966                       DAG.getValueType(MVT::i32));
6967 
6968     SDValue Overflow;
6969     if (IsAdd && isOneConstant(RHS)) {
6970       // Special case uaddo X, 1 overflowed if the addition result is 0.
6971       // The general case (X + C) < C is not necessarily beneficial. Although we
6972       // reduce the live range of X, we may introduce the materialization of
6973       // constant C, especially when the setcc result is used by branch. We have
6974       // no compare with constant and branch instructions.
6975       Overflow = DAG.getSetCC(DL, N->getValueType(1), Res,
6976                               DAG.getConstant(0, DL, MVT::i64), ISD::SETEQ);
6977     } else {
6978       // Sign extend the LHS and perform an unsigned compare with the ADDW
6979       // result. Since the inputs are sign extended from i32, this is equivalent
6980       // to comparing the lower 32 bits.
6981       LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6982       Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
6983                               IsAdd ? ISD::SETULT : ISD::SETUGT);
6984     }
6985 
6986     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6987     Results.push_back(Overflow);
6988     return;
6989   }
6990   case ISD::UADDSAT:
6991   case ISD::USUBSAT: {
6992     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6993            "Unexpected custom legalisation");
6994     if (Subtarget.hasStdExtZbb()) {
6995       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
6996       // sign extend allows overflow of the lower 32 bits to be detected on
6997       // the promoted size.
6998       SDValue LHS =
6999           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
7000       SDValue RHS =
7001           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
7002       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
7003       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7004       return;
7005     }
7006 
7007     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
7008     // promotion for UADDO/USUBO.
7009     Results.push_back(expandAddSubSat(N, DAG));
7010     return;
7011   }
7012   case ISD::ABS: {
7013     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7014            "Unexpected custom legalisation");
7015 
7016     // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y)
7017 
7018     SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
7019 
7020     // Freeze the source so we can increase it's use count.
7021     Src = DAG.getFreeze(Src);
7022 
7023     // Copy sign bit to all bits using the sraiw pattern.
7024     SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src,
7025                                    DAG.getValueType(MVT::i32));
7026     SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill,
7027                            DAG.getConstant(31, DL, MVT::i64));
7028 
7029     SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill);
7030     NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill);
7031 
7032     // NOTE: The result is only required to be anyextended, but sext is
7033     // consistent with type legalization of sub.
7034     NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes,
7035                          DAG.getValueType(MVT::i32));
7036     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
7037     return;
7038   }
7039   case ISD::BITCAST: {
7040     EVT VT = N->getValueType(0);
7041     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
7042     SDValue Op0 = N->getOperand(0);
7043     EVT Op0VT = Op0.getValueType();
7044     MVT XLenVT = Subtarget.getXLenVT();
7045     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
7046       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
7047       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
7048     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
7049                Subtarget.hasStdExtF()) {
7050       SDValue FPConv =
7051           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
7052       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
7053     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
7054                isTypeLegal(Op0VT)) {
7055       // Custom-legalize bitcasts from fixed-length vector types to illegal
7056       // scalar types in order to improve codegen. Bitcast the vector to a
7057       // one-element vector type whose element type is the same as the result
7058       // type, and extract the first element.
7059       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
7060       if (isTypeLegal(BVT)) {
7061         SDValue BVec = DAG.getBitcast(BVT, Op0);
7062         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
7063                                       DAG.getConstant(0, DL, XLenVT)));
7064       }
7065     }
7066     break;
7067   }
7068   case RISCVISD::GREV:
7069   case RISCVISD::GORC:
7070   case RISCVISD::SHFL: {
7071     MVT VT = N->getSimpleValueType(0);
7072     MVT XLenVT = Subtarget.getXLenVT();
7073     assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
7074            "Unexpected custom legalisation");
7075     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
7076     assert((Subtarget.hasStdExtZbp() ||
7077             (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV &&
7078              N->getConstantOperandVal(1) == 7)) &&
7079            "Unexpected extension");
7080     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
7081     SDValue NewOp1 =
7082         DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1));
7083     SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1);
7084     // ReplaceNodeResults requires we maintain the same type for the return
7085     // value.
7086     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes));
7087     break;
7088   }
7089   case ISD::BSWAP:
7090   case ISD::BITREVERSE: {
7091     MVT VT = N->getSimpleValueType(0);
7092     MVT XLenVT = Subtarget.getXLenVT();
7093     assert((VT == MVT::i8 || VT == MVT::i16 ||
7094             (VT == MVT::i32 && Subtarget.is64Bit())) &&
7095            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
7096     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
7097     unsigned Imm = VT.getSizeInBits() - 1;
7098     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
7099     if (N->getOpcode() == ISD::BSWAP)
7100       Imm &= ~0x7U;
7101     SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0,
7102                                 DAG.getConstant(Imm, DL, XLenVT));
7103     // ReplaceNodeResults requires we maintain the same type for the return
7104     // value.
7105     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
7106     break;
7107   }
7108   case ISD::FSHL:
7109   case ISD::FSHR: {
7110     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7111            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
7112     SDValue NewOp0 =
7113         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
7114     SDValue NewOp1 =
7115         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7116     SDValue NewShAmt =
7117         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7118     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
7119     // Mask the shift amount to 5 bits to prevent accidentally setting bit 5.
7120     NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt,
7121                            DAG.getConstant(0x1f, DL, MVT::i64));
7122     // fshl and fshr concatenate their operands in the same order. fsrw and fslw
7123     // instruction use different orders. fshl will return its first operand for
7124     // shift of zero, fshr will return its second operand. fsl and fsr both
7125     // return rs1 so the ISD nodes need to have different operand orders.
7126     // Shift amount is in rs2.
7127     unsigned Opc = RISCVISD::FSLW;
7128     if (N->getOpcode() == ISD::FSHR) {
7129       std::swap(NewOp0, NewOp1);
7130       Opc = RISCVISD::FSRW;
7131     }
7132     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt);
7133     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
7134     break;
7135   }
7136   case ISD::EXTRACT_VECTOR_ELT: {
7137     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
7138     // type is illegal (currently only vXi64 RV32).
7139     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
7140     // transferred to the destination register. We issue two of these from the
7141     // upper- and lower- halves of the SEW-bit vector element, slid down to the
7142     // first element.
7143     SDValue Vec = N->getOperand(0);
7144     SDValue Idx = N->getOperand(1);
7145 
7146     // The vector type hasn't been legalized yet so we can't issue target
7147     // specific nodes if it needs legalization.
7148     // FIXME: We would manually legalize if it's important.
7149     if (!isTypeLegal(Vec.getValueType()))
7150       return;
7151 
7152     MVT VecVT = Vec.getSimpleValueType();
7153 
7154     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
7155            VecVT.getVectorElementType() == MVT::i64 &&
7156            "Unexpected EXTRACT_VECTOR_ELT legalization");
7157 
7158     // If this is a fixed vector, we need to convert it to a scalable vector.
7159     MVT ContainerVT = VecVT;
7160     if (VecVT.isFixedLengthVector()) {
7161       ContainerVT = getContainerForFixedLengthVector(VecVT);
7162       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
7163     }
7164 
7165     MVT XLenVT = Subtarget.getXLenVT();
7166 
7167     // Use a VL of 1 to avoid processing more elements than we need.
7168     SDValue VL = DAG.getConstant(1, DL, XLenVT);
7169     SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
7170 
7171     // Unless the index is known to be 0, we must slide the vector down to get
7172     // the desired element into index 0.
7173     if (!isNullConstant(Idx)) {
7174       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
7175                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
7176     }
7177 
7178     // Extract the lower XLEN bits of the correct vector element.
7179     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7180 
7181     // To extract the upper XLEN bits of the vector element, shift the first
7182     // element right by 32 bits and re-extract the lower XLEN bits.
7183     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
7184                                      DAG.getUNDEF(ContainerVT),
7185                                      DAG.getConstant(32, DL, XLenVT), VL);
7186     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
7187                                  ThirtyTwoV, Mask, VL);
7188 
7189     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7190 
7191     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7192     break;
7193   }
7194   case ISD::INTRINSIC_WO_CHAIN: {
7195     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
7196     switch (IntNo) {
7197     default:
7198       llvm_unreachable(
7199           "Don't know how to custom type legalize this intrinsic!");
7200     case Intrinsic::riscv_grev:
7201     case Intrinsic::riscv_gorc: {
7202       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7203              "Unexpected custom legalisation");
7204       SDValue NewOp1 =
7205           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7206       SDValue NewOp2 =
7207           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7208       unsigned Opc =
7209           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
7210       // If the control is a constant, promote the node by clearing any extra
7211       // bits bits in the control. isel will form greviw/gorciw if the result is
7212       // sign extended.
7213       if (isa<ConstantSDNode>(NewOp2)) {
7214         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7215                              DAG.getConstant(0x1f, DL, MVT::i64));
7216         Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
7217       }
7218       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7219       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7220       break;
7221     }
7222     case Intrinsic::riscv_bcompress:
7223     case Intrinsic::riscv_bdecompress:
7224     case Intrinsic::riscv_bfp:
7225     case Intrinsic::riscv_fsl:
7226     case Intrinsic::riscv_fsr: {
7227       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7228              "Unexpected custom legalisation");
7229       Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo));
7230       break;
7231     }
7232     case Intrinsic::riscv_orc_b: {
7233       // Lower to the GORCI encoding for orc.b with the operand extended.
7234       SDValue NewOp =
7235           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7236       SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp,
7237                                 DAG.getConstant(7, DL, MVT::i64));
7238       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7239       return;
7240     }
7241     case Intrinsic::riscv_shfl:
7242     case Intrinsic::riscv_unshfl: {
7243       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7244              "Unexpected custom legalisation");
7245       SDValue NewOp1 =
7246           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7247       SDValue NewOp2 =
7248           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7249       unsigned Opc =
7250           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
7251       // There is no (UN)SHFLIW. If the control word is a constant, we can use
7252       // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half
7253       // will be shuffled the same way as the lower 32 bit half, but the two
7254       // halves won't cross.
7255       if (isa<ConstantSDNode>(NewOp2)) {
7256         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7257                              DAG.getConstant(0xf, DL, MVT::i64));
7258         Opc =
7259             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
7260       }
7261       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7262       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7263       break;
7264     }
7265     case Intrinsic::riscv_vmv_x_s: {
7266       EVT VT = N->getValueType(0);
7267       MVT XLenVT = Subtarget.getXLenVT();
7268       if (VT.bitsLT(XLenVT)) {
7269         // Simple case just extract using vmv.x.s and truncate.
7270         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
7271                                       Subtarget.getXLenVT(), N->getOperand(1));
7272         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
7273         return;
7274       }
7275 
7276       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
7277              "Unexpected custom legalization");
7278 
7279       // We need to do the move in two steps.
7280       SDValue Vec = N->getOperand(1);
7281       MVT VecVT = Vec.getSimpleValueType();
7282 
7283       // First extract the lower XLEN bits of the element.
7284       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7285 
7286       // To extract the upper XLEN bits of the vector element, shift the first
7287       // element right by 32 bits and re-extract the lower XLEN bits.
7288       SDValue VL = DAG.getConstant(1, DL, XLenVT);
7289       SDValue Mask = getAllOnesMask(VecVT, VL, DL, DAG);
7290 
7291       SDValue ThirtyTwoV =
7292           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
7293                       DAG.getConstant(32, DL, XLenVT), VL);
7294       SDValue LShr32 =
7295           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
7296       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7297 
7298       Results.push_back(
7299           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7300       break;
7301     }
7302     }
7303     break;
7304   }
7305   case ISD::VECREDUCE_ADD:
7306   case ISD::VECREDUCE_AND:
7307   case ISD::VECREDUCE_OR:
7308   case ISD::VECREDUCE_XOR:
7309   case ISD::VECREDUCE_SMAX:
7310   case ISD::VECREDUCE_UMAX:
7311   case ISD::VECREDUCE_SMIN:
7312   case ISD::VECREDUCE_UMIN:
7313     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
7314       Results.push_back(V);
7315     break;
7316   case ISD::VP_REDUCE_ADD:
7317   case ISD::VP_REDUCE_AND:
7318   case ISD::VP_REDUCE_OR:
7319   case ISD::VP_REDUCE_XOR:
7320   case ISD::VP_REDUCE_SMAX:
7321   case ISD::VP_REDUCE_UMAX:
7322   case ISD::VP_REDUCE_SMIN:
7323   case ISD::VP_REDUCE_UMIN:
7324     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
7325       Results.push_back(V);
7326     break;
7327   case ISD::FLT_ROUNDS_: {
7328     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
7329     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
7330     Results.push_back(Res.getValue(0));
7331     Results.push_back(Res.getValue(1));
7332     break;
7333   }
7334   }
7335 }
7336 
7337 // A structure to hold one of the bit-manipulation patterns below. Together, a
7338 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
7339 //   (or (and (shl x, 1), 0xAAAAAAAA),
7340 //       (and (srl x, 1), 0x55555555))
7341 struct RISCVBitmanipPat {
7342   SDValue Op;
7343   unsigned ShAmt;
7344   bool IsSHL;
7345 
7346   bool formsPairWith(const RISCVBitmanipPat &Other) const {
7347     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
7348   }
7349 };
7350 
7351 // Matches patterns of the form
7352 //   (and (shl x, C2), (C1 << C2))
7353 //   (and (srl x, C2), C1)
7354 //   (shl (and x, C1), C2)
7355 //   (srl (and x, (C1 << C2)), C2)
7356 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
7357 // The expected masks for each shift amount are specified in BitmanipMasks where
7358 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
7359 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
7360 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
7361 // XLen is 64.
7362 static Optional<RISCVBitmanipPat>
7363 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
7364   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
7365          "Unexpected number of masks");
7366   Optional<uint64_t> Mask;
7367   // Optionally consume a mask around the shift operation.
7368   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
7369     Mask = Op.getConstantOperandVal(1);
7370     Op = Op.getOperand(0);
7371   }
7372   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
7373     return None;
7374   bool IsSHL = Op.getOpcode() == ISD::SHL;
7375 
7376   if (!isa<ConstantSDNode>(Op.getOperand(1)))
7377     return None;
7378   uint64_t ShAmt = Op.getConstantOperandVal(1);
7379 
7380   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7381   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
7382     return None;
7383   // If we don't have enough masks for 64 bit, then we must be trying to
7384   // match SHFL so we're only allowed to shift 1/4 of the width.
7385   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
7386     return None;
7387 
7388   SDValue Src = Op.getOperand(0);
7389 
7390   // The expected mask is shifted left when the AND is found around SHL
7391   // patterns.
7392   //   ((x >> 1) & 0x55555555)
7393   //   ((x << 1) & 0xAAAAAAAA)
7394   bool SHLExpMask = IsSHL;
7395 
7396   if (!Mask) {
7397     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
7398     // the mask is all ones: consume that now.
7399     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
7400       Mask = Src.getConstantOperandVal(1);
7401       Src = Src.getOperand(0);
7402       // The expected mask is now in fact shifted left for SRL, so reverse the
7403       // decision.
7404       //   ((x & 0xAAAAAAAA) >> 1)
7405       //   ((x & 0x55555555) << 1)
7406       SHLExpMask = !SHLExpMask;
7407     } else {
7408       // Use a default shifted mask of all-ones if there's no AND, truncated
7409       // down to the expected width. This simplifies the logic later on.
7410       Mask = maskTrailingOnes<uint64_t>(Width);
7411       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
7412     }
7413   }
7414 
7415   unsigned MaskIdx = Log2_32(ShAmt);
7416   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7417 
7418   if (SHLExpMask)
7419     ExpMask <<= ShAmt;
7420 
7421   if (Mask != ExpMask)
7422     return None;
7423 
7424   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
7425 }
7426 
7427 // Matches any of the following bit-manipulation patterns:
7428 //   (and (shl x, 1), (0x55555555 << 1))
7429 //   (and (srl x, 1), 0x55555555)
7430 //   (shl (and x, 0x55555555), 1)
7431 //   (srl (and x, (0x55555555 << 1)), 1)
7432 // where the shift amount and mask may vary thus:
7433 //   [1]  = 0x55555555 / 0xAAAAAAAA
7434 //   [2]  = 0x33333333 / 0xCCCCCCCC
7435 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
7436 //   [8]  = 0x00FF00FF / 0xFF00FF00
7437 //   [16] = 0x0000FFFF / 0xFFFFFFFF
7438 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
7439 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
7440   // These are the unshifted masks which we use to match bit-manipulation
7441   // patterns. They may be shifted left in certain circumstances.
7442   static const uint64_t BitmanipMasks[] = {
7443       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
7444       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
7445 
7446   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7447 }
7448 
7449 // Try to fold (<bop> x, (reduction.<bop> vec, start))
7450 static SDValue combineBinOpToReduce(SDNode *N, SelectionDAG &DAG) {
7451   auto BinOpToRVVReduce = [](unsigned Opc) {
7452     switch (Opc) {
7453     default:
7454       llvm_unreachable("Unhandled binary to transfrom reduction");
7455     case ISD::ADD:
7456       return RISCVISD::VECREDUCE_ADD_VL;
7457     case ISD::UMAX:
7458       return RISCVISD::VECREDUCE_UMAX_VL;
7459     case ISD::SMAX:
7460       return RISCVISD::VECREDUCE_SMAX_VL;
7461     case ISD::UMIN:
7462       return RISCVISD::VECREDUCE_UMIN_VL;
7463     case ISD::SMIN:
7464       return RISCVISD::VECREDUCE_SMIN_VL;
7465     case ISD::AND:
7466       return RISCVISD::VECREDUCE_AND_VL;
7467     case ISD::OR:
7468       return RISCVISD::VECREDUCE_OR_VL;
7469     case ISD::XOR:
7470       return RISCVISD::VECREDUCE_XOR_VL;
7471     case ISD::FADD:
7472       return RISCVISD::VECREDUCE_FADD_VL;
7473     case ISD::FMAXNUM:
7474       return RISCVISD::VECREDUCE_FMAX_VL;
7475     case ISD::FMINNUM:
7476       return RISCVISD::VECREDUCE_FMIN_VL;
7477     }
7478   };
7479 
7480   auto IsReduction = [&BinOpToRVVReduce](SDValue V, unsigned Opc) {
7481     return V.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7482            isNullConstant(V.getOperand(1)) &&
7483            V.getOperand(0).getOpcode() == BinOpToRVVReduce(Opc);
7484   };
7485 
7486   unsigned Opc = N->getOpcode();
7487   unsigned ReduceIdx;
7488   if (IsReduction(N->getOperand(0), Opc))
7489     ReduceIdx = 0;
7490   else if (IsReduction(N->getOperand(1), Opc))
7491     ReduceIdx = 1;
7492   else
7493     return SDValue();
7494 
7495   // Skip if FADD disallows reassociation but the combiner needs.
7496   if (Opc == ISD::FADD && !N->getFlags().hasAllowReassociation())
7497     return SDValue();
7498 
7499   SDValue Extract = N->getOperand(ReduceIdx);
7500   SDValue Reduce = Extract.getOperand(0);
7501   if (!Reduce.hasOneUse())
7502     return SDValue();
7503 
7504   SDValue ScalarV = Reduce.getOperand(2);
7505 
7506   // Make sure that ScalarV is a splat with VL=1.
7507   if (ScalarV.getOpcode() != RISCVISD::VFMV_S_F_VL &&
7508       ScalarV.getOpcode() != RISCVISD::VMV_S_X_VL &&
7509       ScalarV.getOpcode() != RISCVISD::VMV_V_X_VL)
7510     return SDValue();
7511 
7512   if (!isOneConstant(ScalarV.getOperand(2)))
7513     return SDValue();
7514 
7515   // TODO: Deal with value other than neutral element.
7516   auto IsRVVNeutralElement = [Opc, &DAG](SDNode *N, SDValue V) {
7517     if (Opc == ISD::FADD && N->getFlags().hasNoSignedZeros() &&
7518         isNullFPConstant(V))
7519       return true;
7520     return DAG.getNeutralElement(Opc, SDLoc(V), V.getSimpleValueType(),
7521                                  N->getFlags()) == V;
7522   };
7523 
7524   // Check the scalar of ScalarV is neutral element
7525   if (!IsRVVNeutralElement(N, ScalarV.getOperand(1)))
7526     return SDValue();
7527 
7528   if (!ScalarV.hasOneUse())
7529     return SDValue();
7530 
7531   EVT SplatVT = ScalarV.getValueType();
7532   SDValue NewStart = N->getOperand(1 - ReduceIdx);
7533   unsigned SplatOpc = RISCVISD::VFMV_S_F_VL;
7534   if (SplatVT.isInteger()) {
7535     auto *C = dyn_cast<ConstantSDNode>(NewStart.getNode());
7536     if (!C || C->isZero() || !isInt<5>(C->getSExtValue()))
7537       SplatOpc = RISCVISD::VMV_S_X_VL;
7538     else
7539       SplatOpc = RISCVISD::VMV_V_X_VL;
7540   }
7541 
7542   SDValue NewScalarV =
7543       DAG.getNode(SplatOpc, SDLoc(N), SplatVT, ScalarV.getOperand(0), NewStart,
7544                   ScalarV.getOperand(2));
7545   SDValue NewReduce =
7546       DAG.getNode(Reduce.getOpcode(), SDLoc(Reduce), Reduce.getValueType(),
7547                   Reduce.getOperand(0), Reduce.getOperand(1), NewScalarV,
7548                   Reduce.getOperand(3), Reduce.getOperand(4));
7549   return DAG.getNode(Extract.getOpcode(), SDLoc(Extract),
7550                      Extract.getValueType(), NewReduce, Extract.getOperand(1));
7551 }
7552 
7553 // Match the following pattern as a GREVI(W) operation
7554 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
7555 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
7556                                const RISCVSubtarget &Subtarget) {
7557   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7558   EVT VT = Op.getValueType();
7559 
7560   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7561     auto LHS = matchGREVIPat(Op.getOperand(0));
7562     auto RHS = matchGREVIPat(Op.getOperand(1));
7563     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
7564       SDLoc DL(Op);
7565       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
7566                          DAG.getConstant(LHS->ShAmt, DL, VT));
7567     }
7568   }
7569   return SDValue();
7570 }
7571 
7572 // Matches any the following pattern as a GORCI(W) operation
7573 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
7574 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
7575 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
7576 // Note that with the variant of 3.,
7577 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
7578 // the inner pattern will first be matched as GREVI and then the outer
7579 // pattern will be matched to GORC via the first rule above.
7580 // 4.  (or (rotl/rotr x, bitwidth/2), x)
7581 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
7582                                const RISCVSubtarget &Subtarget) {
7583   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7584   EVT VT = Op.getValueType();
7585 
7586   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7587     SDLoc DL(Op);
7588     SDValue Op0 = Op.getOperand(0);
7589     SDValue Op1 = Op.getOperand(1);
7590 
7591     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
7592       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
7593           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
7594           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
7595         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
7596       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
7597       if ((Reverse.getOpcode() == ISD::ROTL ||
7598            Reverse.getOpcode() == ISD::ROTR) &&
7599           Reverse.getOperand(0) == X &&
7600           isa<ConstantSDNode>(Reverse.getOperand(1))) {
7601         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
7602         if (RotAmt == (VT.getSizeInBits() / 2))
7603           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
7604                              DAG.getConstant(RotAmt, DL, VT));
7605       }
7606       return SDValue();
7607     };
7608 
7609     // Check for either commutable permutation of (or (GREVI x, shamt), x)
7610     if (SDValue V = MatchOROfReverse(Op0, Op1))
7611       return V;
7612     if (SDValue V = MatchOROfReverse(Op1, Op0))
7613       return V;
7614 
7615     // OR is commutable so canonicalize its OR operand to the left
7616     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
7617       std::swap(Op0, Op1);
7618     if (Op0.getOpcode() != ISD::OR)
7619       return SDValue();
7620     SDValue OrOp0 = Op0.getOperand(0);
7621     SDValue OrOp1 = Op0.getOperand(1);
7622     auto LHS = matchGREVIPat(OrOp0);
7623     // OR is commutable so swap the operands and try again: x might have been
7624     // on the left
7625     if (!LHS) {
7626       std::swap(OrOp0, OrOp1);
7627       LHS = matchGREVIPat(OrOp0);
7628     }
7629     auto RHS = matchGREVIPat(Op1);
7630     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
7631       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
7632                          DAG.getConstant(LHS->ShAmt, DL, VT));
7633     }
7634   }
7635   return SDValue();
7636 }
7637 
7638 // Matches any of the following bit-manipulation patterns:
7639 //   (and (shl x, 1), (0x22222222 << 1))
7640 //   (and (srl x, 1), 0x22222222)
7641 //   (shl (and x, 0x22222222), 1)
7642 //   (srl (and x, (0x22222222 << 1)), 1)
7643 // where the shift amount and mask may vary thus:
7644 //   [1]  = 0x22222222 / 0x44444444
7645 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
7646 //   [4]  = 0x00F000F0 / 0x0F000F00
7647 //   [8]  = 0x0000FF00 / 0x00FF0000
7648 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
7649 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
7650   // These are the unshifted masks which we use to match bit-manipulation
7651   // patterns. They may be shifted left in certain circumstances.
7652   static const uint64_t BitmanipMasks[] = {
7653       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
7654       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
7655 
7656   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7657 }
7658 
7659 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
7660 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
7661                                const RISCVSubtarget &Subtarget) {
7662   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7663   EVT VT = Op.getValueType();
7664 
7665   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
7666     return SDValue();
7667 
7668   SDValue Op0 = Op.getOperand(0);
7669   SDValue Op1 = Op.getOperand(1);
7670 
7671   // Or is commutable so canonicalize the second OR to the LHS.
7672   if (Op0.getOpcode() != ISD::OR)
7673     std::swap(Op0, Op1);
7674   if (Op0.getOpcode() != ISD::OR)
7675     return SDValue();
7676 
7677   // We found an inner OR, so our operands are the operands of the inner OR
7678   // and the other operand of the outer OR.
7679   SDValue A = Op0.getOperand(0);
7680   SDValue B = Op0.getOperand(1);
7681   SDValue C = Op1;
7682 
7683   auto Match1 = matchSHFLPat(A);
7684   auto Match2 = matchSHFLPat(B);
7685 
7686   // If neither matched, we failed.
7687   if (!Match1 && !Match2)
7688     return SDValue();
7689 
7690   // We had at least one match. if one failed, try the remaining C operand.
7691   if (!Match1) {
7692     std::swap(A, C);
7693     Match1 = matchSHFLPat(A);
7694     if (!Match1)
7695       return SDValue();
7696   } else if (!Match2) {
7697     std::swap(B, C);
7698     Match2 = matchSHFLPat(B);
7699     if (!Match2)
7700       return SDValue();
7701   }
7702   assert(Match1 && Match2);
7703 
7704   // Make sure our matches pair up.
7705   if (!Match1->formsPairWith(*Match2))
7706     return SDValue();
7707 
7708   // All the remains is to make sure C is an AND with the same input, that masks
7709   // out the bits that are being shuffled.
7710   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
7711       C.getOperand(0) != Match1->Op)
7712     return SDValue();
7713 
7714   uint64_t Mask = C.getConstantOperandVal(1);
7715 
7716   static const uint64_t BitmanipMasks[] = {
7717       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
7718       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
7719   };
7720 
7721   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7722   unsigned MaskIdx = Log2_32(Match1->ShAmt);
7723   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7724 
7725   if (Mask != ExpMask)
7726     return SDValue();
7727 
7728   SDLoc DL(Op);
7729   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
7730                      DAG.getConstant(Match1->ShAmt, DL, VT));
7731 }
7732 
7733 // Optimize (add (shl x, c0), (shl y, c1)) ->
7734 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
7735 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
7736                                   const RISCVSubtarget &Subtarget) {
7737   // Perform this optimization only in the zba extension.
7738   if (!Subtarget.hasStdExtZba())
7739     return SDValue();
7740 
7741   // Skip for vector types and larger types.
7742   EVT VT = N->getValueType(0);
7743   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7744     return SDValue();
7745 
7746   // The two operand nodes must be SHL and have no other use.
7747   SDValue N0 = N->getOperand(0);
7748   SDValue N1 = N->getOperand(1);
7749   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
7750       !N0->hasOneUse() || !N1->hasOneUse())
7751     return SDValue();
7752 
7753   // Check c0 and c1.
7754   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7755   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
7756   if (!N0C || !N1C)
7757     return SDValue();
7758   int64_t C0 = N0C->getSExtValue();
7759   int64_t C1 = N1C->getSExtValue();
7760   if (C0 <= 0 || C1 <= 0)
7761     return SDValue();
7762 
7763   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
7764   int64_t Bits = std::min(C0, C1);
7765   int64_t Diff = std::abs(C0 - C1);
7766   if (Diff != 1 && Diff != 2 && Diff != 3)
7767     return SDValue();
7768 
7769   // Build nodes.
7770   SDLoc DL(N);
7771   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
7772   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
7773   SDValue NA0 =
7774       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
7775   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
7776   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
7777 }
7778 
7779 // Combine
7780 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7781 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7782 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7783 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7784 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7785 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7786 // The grev patterns represents BSWAP.
7787 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB
7788 // off the grev.
7789 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG,
7790                                           const RISCVSubtarget &Subtarget) {
7791   bool IsWInstruction =
7792       N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW;
7793   assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL ||
7794           IsWInstruction) &&
7795          "Unexpected opcode!");
7796   SDValue Src = N->getOperand(0);
7797   EVT VT = N->getValueType(0);
7798   SDLoc DL(N);
7799 
7800   if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV)
7801     return SDValue();
7802 
7803   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7804       !isa<ConstantSDNode>(Src.getOperand(1)))
7805     return SDValue();
7806 
7807   unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits();
7808   assert(isPowerOf2_32(BitWidth) && "Expected a power of 2");
7809 
7810   // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for
7811   // RORW/ROLW. And the grev should be the encoding for bswap for this width.
7812   unsigned ShAmt1 = N->getConstantOperandVal(1);
7813   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7814   if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8))
7815     return SDValue();
7816 
7817   Src = Src.getOperand(0);
7818 
7819   // Toggle bit the MSB of the shift.
7820   unsigned CombinedShAmt = ShAmt1 ^ ShAmt2;
7821   if (CombinedShAmt == 0)
7822     return Src;
7823 
7824   SDValue Res = DAG.getNode(
7825       RISCVISD::GREV, DL, VT, Src,
7826       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7827   if (!IsWInstruction)
7828     return Res;
7829 
7830   // Sign extend the result to match the behavior of the rotate. This will be
7831   // selected to GREVIW in isel.
7832   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res,
7833                      DAG.getValueType(MVT::i32));
7834 }
7835 
7836 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
7837 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
7838 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
7839 // not undo itself, but they are redundant.
7840 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
7841   bool IsGORC = N->getOpcode() == RISCVISD::GORC;
7842   assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode");
7843   SDValue Src = N->getOperand(0);
7844 
7845   if (Src.getOpcode() != N->getOpcode())
7846     return SDValue();
7847 
7848   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7849       !isa<ConstantSDNode>(Src.getOperand(1)))
7850     return SDValue();
7851 
7852   unsigned ShAmt1 = N->getConstantOperandVal(1);
7853   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7854   Src = Src.getOperand(0);
7855 
7856   unsigned CombinedShAmt;
7857   if (IsGORC)
7858     CombinedShAmt = ShAmt1 | ShAmt2;
7859   else
7860     CombinedShAmt = ShAmt1 ^ ShAmt2;
7861 
7862   if (CombinedShAmt == 0)
7863     return Src;
7864 
7865   SDLoc DL(N);
7866   return DAG.getNode(
7867       N->getOpcode(), DL, N->getValueType(0), Src,
7868       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7869 }
7870 
7871 // Combine a constant select operand into its use:
7872 //
7873 // (and (select cond, -1, c), x)
7874 //   -> (select cond, x, (and x, c))  [AllOnes=1]
7875 // (or  (select cond, 0, c), x)
7876 //   -> (select cond, x, (or x, c))  [AllOnes=0]
7877 // (xor (select cond, 0, c), x)
7878 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
7879 // (add (select cond, 0, c), x)
7880 //   -> (select cond, x, (add x, c))  [AllOnes=0]
7881 // (sub x, (select cond, 0, c))
7882 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
7883 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7884                                    SelectionDAG &DAG, bool AllOnes) {
7885   EVT VT = N->getValueType(0);
7886 
7887   // Skip vectors.
7888   if (VT.isVector())
7889     return SDValue();
7890 
7891   if ((Slct.getOpcode() != ISD::SELECT &&
7892        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
7893       !Slct.hasOneUse())
7894     return SDValue();
7895 
7896   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
7897     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
7898   };
7899 
7900   bool SwapSelectOps;
7901   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
7902   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
7903   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
7904   SDValue NonConstantVal;
7905   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
7906     SwapSelectOps = false;
7907     NonConstantVal = FalseVal;
7908   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
7909     SwapSelectOps = true;
7910     NonConstantVal = TrueVal;
7911   } else
7912     return SDValue();
7913 
7914   // Slct is now know to be the desired identity constant when CC is true.
7915   TrueVal = OtherOp;
7916   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
7917   // Unless SwapSelectOps says the condition should be false.
7918   if (SwapSelectOps)
7919     std::swap(TrueVal, FalseVal);
7920 
7921   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
7922     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
7923                        {Slct.getOperand(0), Slct.getOperand(1),
7924                         Slct.getOperand(2), TrueVal, FalseVal});
7925 
7926   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
7927                      {Slct.getOperand(0), TrueVal, FalseVal});
7928 }
7929 
7930 // Attempt combineSelectAndUse on each operand of a commutative operator N.
7931 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
7932                                               bool AllOnes) {
7933   SDValue N0 = N->getOperand(0);
7934   SDValue N1 = N->getOperand(1);
7935   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
7936     return Result;
7937   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
7938     return Result;
7939   return SDValue();
7940 }
7941 
7942 // Transform (add (mul x, c0), c1) ->
7943 //           (add (mul (add x, c1/c0), c0), c1%c0).
7944 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
7945 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
7946 // to an infinite loop in DAGCombine if transformed.
7947 // Or transform (add (mul x, c0), c1) ->
7948 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
7949 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
7950 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
7951 // lead to an infinite loop in DAGCombine if transformed.
7952 // Or transform (add (mul x, c0), c1) ->
7953 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
7954 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
7955 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
7956 // lead to an infinite loop in DAGCombine if transformed.
7957 // Or transform (add (mul x, c0), c1) ->
7958 //              (mul (add x, c1/c0), c0).
7959 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
7960 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
7961                                      const RISCVSubtarget &Subtarget) {
7962   // Skip for vector types and larger types.
7963   EVT VT = N->getValueType(0);
7964   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7965     return SDValue();
7966   // The first operand node must be a MUL and has no other use.
7967   SDValue N0 = N->getOperand(0);
7968   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
7969     return SDValue();
7970   // Check if c0 and c1 match above conditions.
7971   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7972   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
7973   if (!N0C || !N1C)
7974     return SDValue();
7975   // If N0C has multiple uses it's possible one of the cases in
7976   // DAGCombiner::isMulAddWithConstProfitable will be true, which would result
7977   // in an infinite loop.
7978   if (!N0C->hasOneUse())
7979     return SDValue();
7980   int64_t C0 = N0C->getSExtValue();
7981   int64_t C1 = N1C->getSExtValue();
7982   int64_t CA, CB;
7983   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
7984     return SDValue();
7985   // Search for proper CA (non-zero) and CB that both are simm12.
7986   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
7987       !isInt<12>(C0 * (C1 / C0))) {
7988     CA = C1 / C0;
7989     CB = C1 % C0;
7990   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
7991              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
7992     CA = C1 / C0 + 1;
7993     CB = C1 % C0 - C0;
7994   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
7995              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
7996     CA = C1 / C0 - 1;
7997     CB = C1 % C0 + C0;
7998   } else
7999     return SDValue();
8000   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
8001   SDLoc DL(N);
8002   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
8003                              DAG.getConstant(CA, DL, VT));
8004   SDValue New1 =
8005       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
8006   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
8007 }
8008 
8009 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
8010                                  const RISCVSubtarget &Subtarget) {
8011   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
8012     return V;
8013   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
8014     return V;
8015   if (SDValue V = combineBinOpToReduce(N, DAG))
8016     return V;
8017   // fold (add (select lhs, rhs, cc, 0, y), x) ->
8018   //      (select lhs, rhs, cc, x, (add x, y))
8019   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
8020 }
8021 
8022 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
8023   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
8024   //      (select lhs, rhs, cc, x, (sub x, y))
8025   SDValue N0 = N->getOperand(0);
8026   SDValue N1 = N->getOperand(1);
8027   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
8028 }
8029 
8030 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
8031                                  const RISCVSubtarget &Subtarget) {
8032   SDValue N0 = N->getOperand(0);
8033   // Pre-promote (i32 (and (srl X, Y), 1)) on RV64 with Zbs without zero
8034   // extending X. This is safe since we only need the LSB after the shift and
8035   // shift amounts larger than 31 would produce poison. If we wait until
8036   // type legalization, we'll create RISCVISD::SRLW and we can't recover it
8037   // to use a BEXT instruction.
8038   if (Subtarget.is64Bit() && Subtarget.hasStdExtZbs() &&
8039       N->getValueType(0) == MVT::i32 && isOneConstant(N->getOperand(1)) &&
8040       N0.getOpcode() == ISD::SRL && !isa<ConstantSDNode>(N0.getOperand(1)) &&
8041       N0.hasOneUse()) {
8042     SDLoc DL(N);
8043     SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0));
8044     SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1));
8045     SDValue Srl = DAG.getNode(ISD::SRL, DL, MVT::i64, Op0, Op1);
8046     SDValue And = DAG.getNode(ISD::AND, DL, MVT::i64, Srl,
8047                               DAG.getConstant(1, DL, MVT::i64));
8048     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, And);
8049   }
8050 
8051   if (SDValue V = combineBinOpToReduce(N, DAG))
8052     return V;
8053 
8054   // fold (and (select lhs, rhs, cc, -1, y), x) ->
8055   //      (select lhs, rhs, cc, x, (and x, y))
8056   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
8057 }
8058 
8059 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
8060                                 const RISCVSubtarget &Subtarget) {
8061   if (Subtarget.hasStdExtZbp()) {
8062     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
8063       return GREV;
8064     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
8065       return GORC;
8066     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
8067       return SHFL;
8068   }
8069 
8070   if (SDValue V = combineBinOpToReduce(N, DAG))
8071     return V;
8072   // fold (or (select cond, 0, y), x) ->
8073   //      (select cond, x, (or x, y))
8074   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
8075 }
8076 
8077 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
8078   SDValue N0 = N->getOperand(0);
8079   SDValue N1 = N->getOperand(1);
8080 
8081   // fold (xor (sllw 1, x), -1) -> (rolw ~1, x)
8082   // NOTE: Assumes ROL being legal means ROLW is legal.
8083   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8084   if (N0.getOpcode() == RISCVISD::SLLW &&
8085       isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0)) &&
8086       TLI.isOperationLegal(ISD::ROTL, MVT::i64)) {
8087     SDLoc DL(N);
8088     return DAG.getNode(RISCVISD::ROLW, DL, MVT::i64,
8089                        DAG.getConstant(~1, DL, MVT::i64), N0.getOperand(1));
8090   }
8091 
8092   if (SDValue V = combineBinOpToReduce(N, DAG))
8093     return V;
8094   // fold (xor (select cond, 0, y), x) ->
8095   //      (select cond, x, (xor x, y))
8096   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
8097 }
8098 
8099 static SDValue
8100 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
8101                                 const RISCVSubtarget &Subtarget) {
8102   SDValue Src = N->getOperand(0);
8103   EVT VT = N->getValueType(0);
8104 
8105   // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X)
8106   if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8107       cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16))
8108     return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT,
8109                        Src.getOperand(0));
8110 
8111   // Fold (i64 (sext_inreg (abs X), i32)) ->
8112   // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits.
8113   // The (sext_inreg (neg X), i32) will be selected to negw by isel. This
8114   // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user
8115   // of the (i32 (abs X)) is a sext or setcc or something else that causes type
8116   // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have
8117   // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg
8118   // may get combined into an earlier operation so we need to use
8119   // ComputeNumSignBits.
8120   // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for
8121   // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so
8122   // we can't assume that X has 33 sign bits. We must check.
8123   if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() &&
8124       Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 &&
8125       cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 &&
8126       DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) {
8127     SDLoc DL(N);
8128     SDValue Freeze = DAG.getFreeze(Src.getOperand(0));
8129     SDValue Neg =
8130         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze);
8131     Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg,
8132                       DAG.getValueType(MVT::i32));
8133     return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg);
8134   }
8135 
8136   return SDValue();
8137 }
8138 
8139 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to
8140 // vwadd(u).vv/vx or vwsub(u).vv/vx.
8141 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG,
8142                                              bool Commute = false) {
8143   assert((N->getOpcode() == RISCVISD::ADD_VL ||
8144           N->getOpcode() == RISCVISD::SUB_VL) &&
8145          "Unexpected opcode");
8146   bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL;
8147   SDValue Op0 = N->getOperand(0);
8148   SDValue Op1 = N->getOperand(1);
8149   if (Commute)
8150     std::swap(Op0, Op1);
8151 
8152   MVT VT = N->getSimpleValueType(0);
8153 
8154   // Determine the narrow size for a widening add/sub.
8155   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
8156   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
8157                                   VT.getVectorElementCount());
8158 
8159   SDValue Mask = N->getOperand(2);
8160   SDValue VL = N->getOperand(3);
8161 
8162   SDLoc DL(N);
8163 
8164   // If the RHS is a sext or zext, we can form a widening op.
8165   if ((Op1.getOpcode() == RISCVISD::VZEXT_VL ||
8166        Op1.getOpcode() == RISCVISD::VSEXT_VL) &&
8167       Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) {
8168     unsigned ExtOpc = Op1.getOpcode();
8169     Op1 = Op1.getOperand(0);
8170     // Re-introduce narrower extends if needed.
8171     if (Op1.getValueType() != NarrowVT)
8172       Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
8173 
8174     unsigned WOpc;
8175     if (ExtOpc == RISCVISD::VSEXT_VL)
8176       WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL;
8177     else
8178       WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL;
8179 
8180     return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL);
8181   }
8182 
8183   // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar
8184   // sext/zext?
8185 
8186   return SDValue();
8187 }
8188 
8189 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or
8190 // vwsub(u).vv/vx.
8191 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) {
8192   SDValue Op0 = N->getOperand(0);
8193   SDValue Op1 = N->getOperand(1);
8194   SDValue Mask = N->getOperand(2);
8195   SDValue VL = N->getOperand(3);
8196 
8197   MVT VT = N->getSimpleValueType(0);
8198   MVT NarrowVT = Op1.getSimpleValueType();
8199   unsigned NarrowSize = NarrowVT.getScalarSizeInBits();
8200 
8201   unsigned VOpc;
8202   switch (N->getOpcode()) {
8203   default: llvm_unreachable("Unexpected opcode");
8204   case RISCVISD::VWADD_W_VL:  VOpc = RISCVISD::VWADD_VL;  break;
8205   case RISCVISD::VWSUB_W_VL:  VOpc = RISCVISD::VWSUB_VL;  break;
8206   case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break;
8207   case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break;
8208   }
8209 
8210   bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL ||
8211                   N->getOpcode() == RISCVISD::VWSUB_W_VL;
8212 
8213   SDLoc DL(N);
8214 
8215   // If the LHS is a sext or zext, we can narrow this op to the same size as
8216   // the RHS.
8217   if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) ||
8218        (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) &&
8219       Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) {
8220     unsigned ExtOpc = Op0.getOpcode();
8221     Op0 = Op0.getOperand(0);
8222     // Re-introduce narrower extends if needed.
8223     if (Op0.getValueType() != NarrowVT)
8224       Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
8225     return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL);
8226   }
8227 
8228   bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL ||
8229                N->getOpcode() == RISCVISD::VWADDU_W_VL;
8230 
8231   // Look for splats on the left hand side of a vwadd(u).wv. We might be able
8232   // to commute and use a vwadd(u).vx instead.
8233   if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL &&
8234       Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) {
8235     Op0 = Op0.getOperand(1);
8236 
8237     // See if have enough sign bits or zero bits in the scalar to use a
8238     // widening add/sub by splatting to smaller element size.
8239     unsigned EltBits = VT.getScalarSizeInBits();
8240     unsigned ScalarBits = Op0.getValueSizeInBits();
8241     // Make sure we're getting all element bits from the scalar register.
8242     // FIXME: Support implicit sign extension of vmv.v.x?
8243     if (ScalarBits < EltBits)
8244       return SDValue();
8245 
8246     if (IsSigned) {
8247       if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize))
8248         return SDValue();
8249     } else {
8250       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
8251       if (!DAG.MaskedValueIsZero(Op0, Mask))
8252         return SDValue();
8253     }
8254 
8255     Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
8256                       DAG.getUNDEF(NarrowVT), Op0, VL);
8257     return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL);
8258   }
8259 
8260   return SDValue();
8261 }
8262 
8263 // Try to form VWMUL, VWMULU or VWMULSU.
8264 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op.
8265 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG,
8266                                        bool Commute) {
8267   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
8268   SDValue Op0 = N->getOperand(0);
8269   SDValue Op1 = N->getOperand(1);
8270   if (Commute)
8271     std::swap(Op0, Op1);
8272 
8273   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
8274   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
8275   bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL;
8276   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
8277     return SDValue();
8278 
8279   SDValue Mask = N->getOperand(2);
8280   SDValue VL = N->getOperand(3);
8281 
8282   // Make sure the mask and VL match.
8283   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
8284     return SDValue();
8285 
8286   MVT VT = N->getSimpleValueType(0);
8287 
8288   // Determine the narrow size for a widening multiply.
8289   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
8290   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
8291                                   VT.getVectorElementCount());
8292 
8293   SDLoc DL(N);
8294 
8295   // See if the other operand is the same opcode.
8296   if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) {
8297     if (!Op1.hasOneUse())
8298       return SDValue();
8299 
8300     // Make sure the mask and VL match.
8301     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
8302       return SDValue();
8303 
8304     Op1 = Op1.getOperand(0);
8305   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
8306     // The operand is a splat of a scalar.
8307 
8308     // The pasthru must be undef for tail agnostic
8309     if (!Op1.getOperand(0).isUndef())
8310       return SDValue();
8311     // The VL must be the same.
8312     if (Op1.getOperand(2) != VL)
8313       return SDValue();
8314 
8315     // Get the scalar value.
8316     Op1 = Op1.getOperand(1);
8317 
8318     // See if have enough sign bits or zero bits in the scalar to use a
8319     // widening multiply by splatting to smaller element size.
8320     unsigned EltBits = VT.getScalarSizeInBits();
8321     unsigned ScalarBits = Op1.getValueSizeInBits();
8322     // Make sure we're getting all element bits from the scalar register.
8323     // FIXME: Support implicit sign extension of vmv.v.x?
8324     if (ScalarBits < EltBits)
8325       return SDValue();
8326 
8327     // If the LHS is a sign extend, try to use vwmul.
8328     if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) {
8329       // Can use vwmul.
8330     } else {
8331       // Otherwise try to use vwmulu or vwmulsu.
8332       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
8333       if (DAG.MaskedValueIsZero(Op1, Mask))
8334         IsVWMULSU = IsSignExt;
8335       else
8336         return SDValue();
8337     }
8338 
8339     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
8340                       DAG.getUNDEF(NarrowVT), Op1, VL);
8341   } else
8342     return SDValue();
8343 
8344   Op0 = Op0.getOperand(0);
8345 
8346   // Re-introduce narrower extends if needed.
8347   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
8348   if (Op0.getValueType() != NarrowVT)
8349     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
8350   // vwmulsu requires second operand to be zero extended.
8351   ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc;
8352   if (Op1.getValueType() != NarrowVT)
8353     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
8354 
8355   unsigned WMulOpc = RISCVISD::VWMULSU_VL;
8356   if (!IsVWMULSU)
8357     WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
8358   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
8359 }
8360 
8361 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) {
8362   switch (Op.getOpcode()) {
8363   case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE;
8364   case ISD::FTRUNC:     return RISCVFPRndMode::RTZ;
8365   case ISD::FFLOOR:     return RISCVFPRndMode::RDN;
8366   case ISD::FCEIL:      return RISCVFPRndMode::RUP;
8367   case ISD::FROUND:     return RISCVFPRndMode::RMM;
8368   }
8369 
8370   return RISCVFPRndMode::Invalid;
8371 }
8372 
8373 // Fold
8374 //   (fp_to_int (froundeven X)) -> fcvt X, rne
8375 //   (fp_to_int (ftrunc X))     -> fcvt X, rtz
8376 //   (fp_to_int (ffloor X))     -> fcvt X, rdn
8377 //   (fp_to_int (fceil X))      -> fcvt X, rup
8378 //   (fp_to_int (fround X))     -> fcvt X, rmm
8379 static SDValue performFP_TO_INTCombine(SDNode *N,
8380                                        TargetLowering::DAGCombinerInfo &DCI,
8381                                        const RISCVSubtarget &Subtarget) {
8382   SelectionDAG &DAG = DCI.DAG;
8383   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8384   MVT XLenVT = Subtarget.getXLenVT();
8385 
8386   // Only handle XLen or i32 types. Other types narrower than XLen will
8387   // eventually be legalized to XLenVT.
8388   EVT VT = N->getValueType(0);
8389   if (VT != MVT::i32 && VT != XLenVT)
8390     return SDValue();
8391 
8392   SDValue Src = N->getOperand(0);
8393 
8394   // Ensure the FP type is also legal.
8395   if (!TLI.isTypeLegal(Src.getValueType()))
8396     return SDValue();
8397 
8398   // Don't do this for f16 with Zfhmin and not Zfh.
8399   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8400     return SDValue();
8401 
8402   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8403   if (FRM == RISCVFPRndMode::Invalid)
8404     return SDValue();
8405 
8406   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
8407 
8408   unsigned Opc;
8409   if (VT == XLenVT)
8410     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8411   else
8412     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8413 
8414   SDLoc DL(N);
8415   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
8416                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8417   return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
8418 }
8419 
8420 // Fold
8421 //   (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
8422 //   (fp_to_int_sat (ftrunc X))     -> (select X == nan, 0, (fcvt X, rtz))
8423 //   (fp_to_int_sat (ffloor X))     -> (select X == nan, 0, (fcvt X, rdn))
8424 //   (fp_to_int_sat (fceil X))      -> (select X == nan, 0, (fcvt X, rup))
8425 //   (fp_to_int_sat (fround X))     -> (select X == nan, 0, (fcvt X, rmm))
8426 static SDValue performFP_TO_INT_SATCombine(SDNode *N,
8427                                        TargetLowering::DAGCombinerInfo &DCI,
8428                                        const RISCVSubtarget &Subtarget) {
8429   SelectionDAG &DAG = DCI.DAG;
8430   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8431   MVT XLenVT = Subtarget.getXLenVT();
8432 
8433   // Only handle XLen types. Other types narrower than XLen will eventually be
8434   // legalized to XLenVT.
8435   EVT DstVT = N->getValueType(0);
8436   if (DstVT != XLenVT)
8437     return SDValue();
8438 
8439   SDValue Src = N->getOperand(0);
8440 
8441   // Ensure the FP type is also legal.
8442   if (!TLI.isTypeLegal(Src.getValueType()))
8443     return SDValue();
8444 
8445   // Don't do this for f16 with Zfhmin and not Zfh.
8446   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8447     return SDValue();
8448 
8449   EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
8450 
8451   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8452   if (FRM == RISCVFPRndMode::Invalid)
8453     return SDValue();
8454 
8455   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
8456 
8457   unsigned Opc;
8458   if (SatVT == DstVT)
8459     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8460   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
8461     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8462   else
8463     return SDValue();
8464   // FIXME: Support other SatVTs by clamping before or after the conversion.
8465 
8466   Src = Src.getOperand(0);
8467 
8468   SDLoc DL(N);
8469   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
8470                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8471 
8472   // RISCV FP-to-int conversions saturate to the destination register size, but
8473   // don't produce 0 for nan.
8474   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
8475   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
8476 }
8477 
8478 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is
8479 // smaller than XLenVT.
8480 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG,
8481                                         const RISCVSubtarget &Subtarget) {
8482   assert(Subtarget.hasStdExtZbkb() && "Unexpected extension");
8483 
8484   SDValue Src = N->getOperand(0);
8485   if (Src.getOpcode() != ISD::BSWAP)
8486     return SDValue();
8487 
8488   EVT VT = N->getValueType(0);
8489   if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() ||
8490       !isPowerOf2_32(VT.getSizeInBits()))
8491     return SDValue();
8492 
8493   SDLoc DL(N);
8494   return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0),
8495                      DAG.getConstant(7, DL, VT));
8496 }
8497 
8498 // Convert from one FMA opcode to another based on whether we are negating the
8499 // multiply result and/or the accumulator.
8500 // NOTE: Only supports RVV operations with VL.
8501 static unsigned negateFMAOpcode(unsigned Opcode, bool NegMul, bool NegAcc) {
8502   assert((NegMul || NegAcc) && "Not negating anything?");
8503 
8504   // Negating the multiply result changes ADD<->SUB and toggles 'N'.
8505   if (NegMul) {
8506     // clang-format off
8507     switch (Opcode) {
8508     default: llvm_unreachable("Unexpected opcode");
8509     case RISCVISD::VFMADD_VL:  Opcode = RISCVISD::VFNMSUB_VL; break;
8510     case RISCVISD::VFNMSUB_VL: Opcode = RISCVISD::VFMADD_VL;  break;
8511     case RISCVISD::VFNMADD_VL: Opcode = RISCVISD::VFMSUB_VL;  break;
8512     case RISCVISD::VFMSUB_VL:  Opcode = RISCVISD::VFNMADD_VL; break;
8513     }
8514     // clang-format on
8515   }
8516 
8517   // Negating the accumulator changes ADD<->SUB.
8518   if (NegAcc) {
8519     // clang-format off
8520     switch (Opcode) {
8521     default: llvm_unreachable("Unexpected opcode");
8522     case RISCVISD::VFMADD_VL:  Opcode = RISCVISD::VFMSUB_VL;  break;
8523     case RISCVISD::VFMSUB_VL:  Opcode = RISCVISD::VFMADD_VL;  break;
8524     case RISCVISD::VFNMADD_VL: Opcode = RISCVISD::VFNMSUB_VL; break;
8525     case RISCVISD::VFNMSUB_VL: Opcode = RISCVISD::VFNMADD_VL; break;
8526     }
8527     // clang-format on
8528   }
8529 
8530   return Opcode;
8531 }
8532 
8533 // Combine (sra (shl X, 32), 32 - C) -> (shl (sext_inreg X, i32), C)
8534 // FIXME: Should this be a generic combine? There's a similar combine on X86.
8535 //
8536 // Also try these folds where an add or sub is in the middle.
8537 // (sra (add (shl X, 32), C1), 32 - C) -> (shl (sext_inreg (add X, C1), C)
8538 // (sra (sub C1, (shl X, 32)), 32 - C) -> (shl (sext_inreg (sub C1, X), C)
8539 static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
8540                                  const RISCVSubtarget &Subtarget) {
8541   assert(N->getOpcode() == ISD::SRA && "Unexpected opcode");
8542 
8543   if (N->getValueType(0) != MVT::i64 || !Subtarget.is64Bit())
8544     return SDValue();
8545 
8546   auto *ShAmtC = dyn_cast<ConstantSDNode>(N->getOperand(1));
8547   if (!ShAmtC || ShAmtC->getZExtValue() > 32)
8548     return SDValue();
8549 
8550   SDValue N0 = N->getOperand(0);
8551 
8552   SDValue Shl;
8553   ConstantSDNode *AddC = nullptr;
8554 
8555   // We might have an ADD or SUB between the SRA and SHL.
8556   bool IsAdd = N0.getOpcode() == ISD::ADD;
8557   if ((IsAdd || N0.getOpcode() == ISD::SUB)) {
8558     if (!N0.hasOneUse())
8559       return SDValue();
8560     // Other operand needs to be a constant we can modify.
8561     AddC = dyn_cast<ConstantSDNode>(N0.getOperand(IsAdd ? 1 : 0));
8562     if (!AddC)
8563       return SDValue();
8564 
8565     // AddC needs to have at least 32 trailing zeros.
8566     if (AddC->getAPIntValue().countTrailingZeros() < 32)
8567       return SDValue();
8568 
8569     Shl = N0.getOperand(IsAdd ? 0 : 1);
8570   } else {
8571     // Not an ADD or SUB.
8572     Shl = N0;
8573   }
8574 
8575   // Look for a shift left by 32.
8576   if (Shl.getOpcode() != ISD::SHL || !Shl.hasOneUse() ||
8577       !isa<ConstantSDNode>(Shl.getOperand(1)) ||
8578       Shl.getConstantOperandVal(1) != 32)
8579     return SDValue();
8580 
8581   SDLoc DL(N);
8582   SDValue In = Shl.getOperand(0);
8583 
8584   // If we looked through an ADD or SUB, we need to rebuild it with the shifted
8585   // constant.
8586   if (AddC) {
8587     SDValue ShiftedAddC =
8588         DAG.getConstant(AddC->getAPIntValue().lshr(32), DL, MVT::i64);
8589     if (IsAdd)
8590       In = DAG.getNode(ISD::ADD, DL, MVT::i64, In, ShiftedAddC);
8591     else
8592       In = DAG.getNode(ISD::SUB, DL, MVT::i64, ShiftedAddC, In);
8593   }
8594 
8595   SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, In,
8596                              DAG.getValueType(MVT::i32));
8597   if (ShAmtC->getZExtValue() == 32)
8598     return SExt;
8599 
8600   return DAG.getNode(
8601       ISD::SHL, DL, MVT::i64, SExt,
8602       DAG.getConstant(32 - ShAmtC->getZExtValue(), DL, MVT::i64));
8603 }
8604 
8605 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
8606                                                DAGCombinerInfo &DCI) const {
8607   SelectionDAG &DAG = DCI.DAG;
8608 
8609   // Helper to call SimplifyDemandedBits on an operand of N where only some low
8610   // bits are demanded. N will be added to the Worklist if it was not deleted.
8611   // Caller should return SDValue(N, 0) if this returns true.
8612   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
8613     SDValue Op = N->getOperand(OpNo);
8614     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
8615     if (!SimplifyDemandedBits(Op, Mask, DCI))
8616       return false;
8617 
8618     if (N->getOpcode() != ISD::DELETED_NODE)
8619       DCI.AddToWorklist(N);
8620     return true;
8621   };
8622 
8623   switch (N->getOpcode()) {
8624   default:
8625     break;
8626   case RISCVISD::SplitF64: {
8627     SDValue Op0 = N->getOperand(0);
8628     // If the input to SplitF64 is just BuildPairF64 then the operation is
8629     // redundant. Instead, use BuildPairF64's operands directly.
8630     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
8631       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
8632 
8633     if (Op0->isUndef()) {
8634       SDValue Lo = DAG.getUNDEF(MVT::i32);
8635       SDValue Hi = DAG.getUNDEF(MVT::i32);
8636       return DCI.CombineTo(N, Lo, Hi);
8637     }
8638 
8639     SDLoc DL(N);
8640 
8641     // It's cheaper to materialise two 32-bit integers than to load a double
8642     // from the constant pool and transfer it to integer registers through the
8643     // stack.
8644     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
8645       APInt V = C->getValueAPF().bitcastToAPInt();
8646       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
8647       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
8648       return DCI.CombineTo(N, Lo, Hi);
8649     }
8650 
8651     // This is a target-specific version of a DAGCombine performed in
8652     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8653     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8654     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8655     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8656         !Op0.getNode()->hasOneUse())
8657       break;
8658     SDValue NewSplitF64 =
8659         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
8660                     Op0.getOperand(0));
8661     SDValue Lo = NewSplitF64.getValue(0);
8662     SDValue Hi = NewSplitF64.getValue(1);
8663     APInt SignBit = APInt::getSignMask(32);
8664     if (Op0.getOpcode() == ISD::FNEG) {
8665       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
8666                                   DAG.getConstant(SignBit, DL, MVT::i32));
8667       return DCI.CombineTo(N, Lo, NewHi);
8668     }
8669     assert(Op0.getOpcode() == ISD::FABS);
8670     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
8671                                 DAG.getConstant(~SignBit, DL, MVT::i32));
8672     return DCI.CombineTo(N, Lo, NewHi);
8673   }
8674   case RISCVISD::SLLW:
8675   case RISCVISD::SRAW:
8676   case RISCVISD::SRLW: {
8677     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8678     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8679         SimplifyDemandedLowBitsHelper(1, 5))
8680       return SDValue(N, 0);
8681 
8682     break;
8683   }
8684   case ISD::ROTR:
8685   case ISD::ROTL:
8686   case RISCVISD::RORW:
8687   case RISCVISD::ROLW: {
8688     if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) {
8689       // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8690       if (SimplifyDemandedLowBitsHelper(0, 32) ||
8691           SimplifyDemandedLowBitsHelper(1, 5))
8692         return SDValue(N, 0);
8693     }
8694 
8695     return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget);
8696   }
8697   case RISCVISD::CLZW:
8698   case RISCVISD::CTZW: {
8699     // Only the lower 32 bits of the first operand are read
8700     if (SimplifyDemandedLowBitsHelper(0, 32))
8701       return SDValue(N, 0);
8702     break;
8703   }
8704   case RISCVISD::GREV:
8705   case RISCVISD::GORC: {
8706     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
8707     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8708     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8709     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
8710       return SDValue(N, 0);
8711 
8712     return combineGREVI_GORCI(N, DAG);
8713   }
8714   case RISCVISD::GREVW:
8715   case RISCVISD::GORCW: {
8716     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8717     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8718         SimplifyDemandedLowBitsHelper(1, 5))
8719       return SDValue(N, 0);
8720 
8721     break;
8722   }
8723   case RISCVISD::SHFL:
8724   case RISCVISD::UNSHFL: {
8725     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
8726     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8727     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8728     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
8729       return SDValue(N, 0);
8730 
8731     break;
8732   }
8733   case RISCVISD::SHFLW:
8734   case RISCVISD::UNSHFLW: {
8735     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
8736     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8737         SimplifyDemandedLowBitsHelper(1, 4))
8738       return SDValue(N, 0);
8739 
8740     break;
8741   }
8742   case RISCVISD::BCOMPRESSW:
8743   case RISCVISD::BDECOMPRESSW: {
8744     // Only the lower 32 bits of LHS and RHS are read.
8745     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8746         SimplifyDemandedLowBitsHelper(1, 32))
8747       return SDValue(N, 0);
8748 
8749     break;
8750   }
8751   case RISCVISD::FSR:
8752   case RISCVISD::FSL:
8753   case RISCVISD::FSRW:
8754   case RISCVISD::FSLW: {
8755     bool IsWInstruction =
8756         N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW;
8757     unsigned BitWidth =
8758         IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits();
8759     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8760     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
8761     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1))
8762       return SDValue(N, 0);
8763 
8764     break;
8765   }
8766   case RISCVISD::FMV_X_ANYEXTH:
8767   case RISCVISD::FMV_X_ANYEXTW_RV64: {
8768     SDLoc DL(N);
8769     SDValue Op0 = N->getOperand(0);
8770     MVT VT = N->getSimpleValueType(0);
8771     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
8772     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
8773     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
8774     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
8775          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
8776         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8777          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
8778       assert(Op0.getOperand(0).getValueType() == VT &&
8779              "Unexpected value type!");
8780       return Op0.getOperand(0);
8781     }
8782 
8783     // This is a target-specific version of a DAGCombine performed in
8784     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8785     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8786     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8787     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8788         !Op0.getNode()->hasOneUse())
8789       break;
8790     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
8791     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
8792     APInt SignBit = APInt::getSignMask(FPBits).sext(VT.getSizeInBits());
8793     if (Op0.getOpcode() == ISD::FNEG)
8794       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
8795                          DAG.getConstant(SignBit, DL, VT));
8796 
8797     assert(Op0.getOpcode() == ISD::FABS);
8798     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
8799                        DAG.getConstant(~SignBit, DL, VT));
8800   }
8801   case ISD::ADD:
8802     return performADDCombine(N, DAG, Subtarget);
8803   case ISD::SUB:
8804     return performSUBCombine(N, DAG);
8805   case ISD::AND:
8806     return performANDCombine(N, DAG, Subtarget);
8807   case ISD::OR:
8808     return performORCombine(N, DAG, Subtarget);
8809   case ISD::XOR:
8810     return performXORCombine(N, DAG);
8811   case ISD::FADD:
8812   case ISD::UMAX:
8813   case ISD::UMIN:
8814   case ISD::SMAX:
8815   case ISD::SMIN:
8816   case ISD::FMAXNUM:
8817   case ISD::FMINNUM:
8818     return combineBinOpToReduce(N, DAG);
8819   case ISD::SIGN_EXTEND_INREG:
8820     return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
8821   case ISD::ZERO_EXTEND:
8822     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
8823     // type legalization. This is safe because fp_to_uint produces poison if
8824     // it overflows.
8825     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
8826       SDValue Src = N->getOperand(0);
8827       if (Src.getOpcode() == ISD::FP_TO_UINT &&
8828           isTypeLegal(Src.getOperand(0).getValueType()))
8829         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
8830                            Src.getOperand(0));
8831       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
8832           isTypeLegal(Src.getOperand(1).getValueType())) {
8833         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
8834         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
8835                                   Src.getOperand(0), Src.getOperand(1));
8836         DCI.CombineTo(N, Res);
8837         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
8838         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
8839         return SDValue(N, 0); // Return N so it doesn't get rechecked.
8840       }
8841     }
8842     return SDValue();
8843   case RISCVISD::SELECT_CC: {
8844     // Transform
8845     SDValue LHS = N->getOperand(0);
8846     SDValue RHS = N->getOperand(1);
8847     SDValue TrueV = N->getOperand(3);
8848     SDValue FalseV = N->getOperand(4);
8849 
8850     // If the True and False values are the same, we don't need a select_cc.
8851     if (TrueV == FalseV)
8852       return TrueV;
8853 
8854     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
8855     if (!ISD::isIntEqualitySetCC(CCVal))
8856       break;
8857 
8858     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
8859     //      (select_cc X, Y, lt, trueV, falseV)
8860     // Sometimes the setcc is introduced after select_cc has been formed.
8861     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8862         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8863       // If we're looking for eq 0 instead of ne 0, we need to invert the
8864       // condition.
8865       bool Invert = CCVal == ISD::SETEQ;
8866       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8867       if (Invert)
8868         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8869 
8870       SDLoc DL(N);
8871       RHS = LHS.getOperand(1);
8872       LHS = LHS.getOperand(0);
8873       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8874 
8875       SDValue TargetCC = DAG.getCondCode(CCVal);
8876       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8877                          {LHS, RHS, TargetCC, TrueV, FalseV});
8878     }
8879 
8880     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
8881     //      (select_cc X, Y, eq/ne, trueV, falseV)
8882     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8883       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
8884                          {LHS.getOperand(0), LHS.getOperand(1),
8885                           N->getOperand(2), TrueV, FalseV});
8886     // (select_cc X, 1, setne, trueV, falseV) ->
8887     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
8888     // This can occur when legalizing some floating point comparisons.
8889     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8890     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8891       SDLoc DL(N);
8892       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8893       SDValue TargetCC = DAG.getCondCode(CCVal);
8894       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8895       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8896                          {LHS, RHS, TargetCC, TrueV, FalseV});
8897     }
8898 
8899     break;
8900   }
8901   case RISCVISD::BR_CC: {
8902     SDValue LHS = N->getOperand(1);
8903     SDValue RHS = N->getOperand(2);
8904     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
8905     if (!ISD::isIntEqualitySetCC(CCVal))
8906       break;
8907 
8908     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
8909     //      (br_cc X, Y, lt, dest)
8910     // Sometimes the setcc is introduced after br_cc has been formed.
8911     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8912         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8913       // If we're looking for eq 0 instead of ne 0, we need to invert the
8914       // condition.
8915       bool Invert = CCVal == ISD::SETEQ;
8916       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8917       if (Invert)
8918         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8919 
8920       SDLoc DL(N);
8921       RHS = LHS.getOperand(1);
8922       LHS = LHS.getOperand(0);
8923       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8924 
8925       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8926                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
8927                          N->getOperand(4));
8928     }
8929 
8930     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
8931     //      (br_cc X, Y, eq/ne, trueV, falseV)
8932     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8933       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
8934                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
8935                          N->getOperand(3), N->getOperand(4));
8936 
8937     // (br_cc X, 1, setne, br_cc) ->
8938     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
8939     // This can occur when legalizing some floating point comparisons.
8940     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8941     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8942       SDLoc DL(N);
8943       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8944       SDValue TargetCC = DAG.getCondCode(CCVal);
8945       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8946       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8947                          N->getOperand(0), LHS, RHS, TargetCC,
8948                          N->getOperand(4));
8949     }
8950     break;
8951   }
8952   case ISD::BITREVERSE:
8953     return performBITREVERSECombine(N, DAG, Subtarget);
8954   case ISD::FP_TO_SINT:
8955   case ISD::FP_TO_UINT:
8956     return performFP_TO_INTCombine(N, DCI, Subtarget);
8957   case ISD::FP_TO_SINT_SAT:
8958   case ISD::FP_TO_UINT_SAT:
8959     return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
8960   case ISD::FCOPYSIGN: {
8961     EVT VT = N->getValueType(0);
8962     if (!VT.isVector())
8963       break;
8964     // There is a form of VFSGNJ which injects the negated sign of its second
8965     // operand. Try and bubble any FNEG up after the extend/round to produce
8966     // this optimized pattern. Avoid modifying cases where FP_ROUND and
8967     // TRUNC=1.
8968     SDValue In2 = N->getOperand(1);
8969     // Avoid cases where the extend/round has multiple uses, as duplicating
8970     // those is typically more expensive than removing a fneg.
8971     if (!In2.hasOneUse())
8972       break;
8973     if (In2.getOpcode() != ISD::FP_EXTEND &&
8974         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
8975       break;
8976     In2 = In2.getOperand(0);
8977     if (In2.getOpcode() != ISD::FNEG)
8978       break;
8979     SDLoc DL(N);
8980     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
8981     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
8982                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
8983   }
8984   case ISD::MGATHER:
8985   case ISD::MSCATTER:
8986   case ISD::VP_GATHER:
8987   case ISD::VP_SCATTER: {
8988     if (!DCI.isBeforeLegalize())
8989       break;
8990     SDValue Index, ScaleOp;
8991     bool IsIndexScaled = false;
8992     bool IsIndexSigned = false;
8993     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
8994       Index = VPGSN->getIndex();
8995       ScaleOp = VPGSN->getScale();
8996       IsIndexScaled = VPGSN->isIndexScaled();
8997       IsIndexSigned = VPGSN->isIndexSigned();
8998     } else {
8999       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
9000       Index = MGSN->getIndex();
9001       ScaleOp = MGSN->getScale();
9002       IsIndexScaled = MGSN->isIndexScaled();
9003       IsIndexSigned = MGSN->isIndexSigned();
9004     }
9005     EVT IndexVT = Index.getValueType();
9006     MVT XLenVT = Subtarget.getXLenVT();
9007     // RISCV indexed loads only support the "unsigned unscaled" addressing
9008     // mode, so anything else must be manually legalized.
9009     bool NeedsIdxLegalization =
9010         IsIndexScaled ||
9011         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
9012     if (!NeedsIdxLegalization)
9013       break;
9014 
9015     SDLoc DL(N);
9016 
9017     // Any index legalization should first promote to XLenVT, so we don't lose
9018     // bits when scaling. This may create an illegal index type so we let
9019     // LLVM's legalization take care of the splitting.
9020     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
9021     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
9022       IndexVT = IndexVT.changeVectorElementType(XLenVT);
9023       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
9024                           DL, IndexVT, Index);
9025     }
9026 
9027     if (IsIndexScaled) {
9028       // Manually scale the indices.
9029       // TODO: Sanitize the scale operand here?
9030       // TODO: For VP nodes, should we use VP_SHL here?
9031       unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
9032       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
9033       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
9034       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
9035       ScaleOp = DAG.getTargetConstant(1, DL, ScaleOp.getValueType());
9036     }
9037 
9038     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_SCALED;
9039     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
9040       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
9041                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
9042                               ScaleOp, VPGN->getMask(),
9043                               VPGN->getVectorLength()},
9044                              VPGN->getMemOperand(), NewIndexTy);
9045     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
9046       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
9047                               {VPSN->getChain(), VPSN->getValue(),
9048                                VPSN->getBasePtr(), Index, ScaleOp,
9049                                VPSN->getMask(), VPSN->getVectorLength()},
9050                               VPSN->getMemOperand(), NewIndexTy);
9051     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
9052       return DAG.getMaskedGather(
9053           N->getVTList(), MGN->getMemoryVT(), DL,
9054           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
9055            MGN->getBasePtr(), Index, ScaleOp},
9056           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
9057     const auto *MSN = cast<MaskedScatterSDNode>(N);
9058     return DAG.getMaskedScatter(
9059         N->getVTList(), MSN->getMemoryVT(), DL,
9060         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
9061          Index, ScaleOp},
9062         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
9063   }
9064   case RISCVISD::SRA_VL:
9065   case RISCVISD::SRL_VL:
9066   case RISCVISD::SHL_VL: {
9067     SDValue ShAmt = N->getOperand(1);
9068     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
9069       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
9070       SDLoc DL(N);
9071       SDValue VL = N->getOperand(3);
9072       EVT VT = N->getValueType(0);
9073       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
9074                           ShAmt.getOperand(1), VL);
9075       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
9076                          N->getOperand(2), N->getOperand(3));
9077     }
9078     break;
9079   }
9080   case ISD::SRA:
9081     if (SDValue V = performSRACombine(N, DAG, Subtarget))
9082       return V;
9083     LLVM_FALLTHROUGH;
9084   case ISD::SRL:
9085   case ISD::SHL: {
9086     SDValue ShAmt = N->getOperand(1);
9087     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
9088       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
9089       SDLoc DL(N);
9090       EVT VT = N->getValueType(0);
9091       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
9092                           ShAmt.getOperand(1),
9093                           DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()));
9094       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
9095     }
9096     break;
9097   }
9098   case RISCVISD::ADD_VL:
9099     if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false))
9100       return V;
9101     return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true);
9102   case RISCVISD::SUB_VL:
9103     return combineADDSUB_VLToVWADDSUB_VL(N, DAG);
9104   case RISCVISD::VWADD_W_VL:
9105   case RISCVISD::VWADDU_W_VL:
9106   case RISCVISD::VWSUB_W_VL:
9107   case RISCVISD::VWSUBU_W_VL:
9108     return combineVWADD_W_VL_VWSUB_W_VL(N, DAG);
9109   case RISCVISD::MUL_VL:
9110     if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false))
9111       return V;
9112     // Mul is commutative.
9113     return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true);
9114   case RISCVISD::VFMADD_VL:
9115   case RISCVISD::VFNMADD_VL:
9116   case RISCVISD::VFMSUB_VL:
9117   case RISCVISD::VFNMSUB_VL: {
9118     // Fold FNEG_VL into FMA opcodes.
9119     SDValue A = N->getOperand(0);
9120     SDValue B = N->getOperand(1);
9121     SDValue C = N->getOperand(2);
9122     SDValue Mask = N->getOperand(3);
9123     SDValue VL = N->getOperand(4);
9124 
9125     auto invertIfNegative = [&Mask, &VL](SDValue &V) {
9126       if (V.getOpcode() == RISCVISD::FNEG_VL && V.getOperand(1) == Mask &&
9127           V.getOperand(2) == VL) {
9128         // Return the negated input.
9129         V = V.getOperand(0);
9130         return true;
9131       }
9132 
9133       return false;
9134     };
9135 
9136     bool NegA = invertIfNegative(A);
9137     bool NegB = invertIfNegative(B);
9138     bool NegC = invertIfNegative(C);
9139 
9140     // If no operands are negated, we're done.
9141     if (!NegA && !NegB && !NegC)
9142       return SDValue();
9143 
9144     unsigned NewOpcode = negateFMAOpcode(N->getOpcode(), NegA != NegB, NegC);
9145     return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), A, B, C, Mask,
9146                        VL);
9147   }
9148   case ISD::STORE: {
9149     auto *Store = cast<StoreSDNode>(N);
9150     SDValue Val = Store->getValue();
9151     // Combine store of vmv.x.s to vse with VL of 1.
9152     // FIXME: Support FP.
9153     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
9154       SDValue Src = Val.getOperand(0);
9155       EVT VecVT = Src.getValueType();
9156       EVT MemVT = Store->getMemoryVT();
9157       // The memory VT and the element type must match.
9158       if (VecVT.getVectorElementType() == MemVT) {
9159         SDLoc DL(N);
9160         MVT MaskVT = getMaskTypeFor(VecVT);
9161         return DAG.getStoreVP(
9162             Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
9163             DAG.getConstant(1, DL, MaskVT),
9164             DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
9165             Store->getMemOperand(), Store->getAddressingMode(),
9166             Store->isTruncatingStore(), /*IsCompress*/ false);
9167       }
9168     }
9169 
9170     break;
9171   }
9172   case ISD::SPLAT_VECTOR: {
9173     EVT VT = N->getValueType(0);
9174     // Only perform this combine on legal MVT types.
9175     if (!isTypeLegal(VT))
9176       break;
9177     if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N,
9178                                          DAG, Subtarget))
9179       return Gather;
9180     break;
9181   }
9182   case RISCVISD::VMV_V_X_VL: {
9183     // Tail agnostic VMV.V.X only demands the vector element bitwidth from the
9184     // scalar input.
9185     unsigned ScalarSize = N->getOperand(1).getValueSizeInBits();
9186     unsigned EltWidth = N->getValueType(0).getScalarSizeInBits();
9187     if (ScalarSize > EltWidth && N->getOperand(0).isUndef())
9188       if (SimplifyDemandedLowBitsHelper(1, EltWidth))
9189         return SDValue(N, 0);
9190 
9191     break;
9192   }
9193   case ISD::INTRINSIC_WO_CHAIN: {
9194     unsigned IntNo = N->getConstantOperandVal(0);
9195     switch (IntNo) {
9196       // By default we do not combine any intrinsic.
9197     default:
9198       return SDValue();
9199     case Intrinsic::riscv_vcpop:
9200     case Intrinsic::riscv_vcpop_mask:
9201     case Intrinsic::riscv_vfirst:
9202     case Intrinsic::riscv_vfirst_mask: {
9203       SDValue VL = N->getOperand(2);
9204       if (IntNo == Intrinsic::riscv_vcpop_mask ||
9205           IntNo == Intrinsic::riscv_vfirst_mask)
9206         VL = N->getOperand(3);
9207       if (!isNullConstant(VL))
9208         return SDValue();
9209       // If VL is 0, vcpop -> li 0, vfirst -> li -1.
9210       SDLoc DL(N);
9211       EVT VT = N->getValueType(0);
9212       if (IntNo == Intrinsic::riscv_vfirst ||
9213           IntNo == Intrinsic::riscv_vfirst_mask)
9214         return DAG.getConstant(-1, DL, VT);
9215       return DAG.getConstant(0, DL, VT);
9216     }
9217     }
9218   }
9219   case ISD::BITCAST: {
9220     assert(Subtarget.useRVVForFixedLengthVectors());
9221     SDValue N0 = N->getOperand(0);
9222     EVT VT = N->getValueType(0);
9223     EVT SrcVT = N0.getValueType();
9224     // If this is a bitcast between a MVT::v4i1/v2i1/v1i1 and an illegal integer
9225     // type, widen both sides to avoid a trip through memory.
9226     if ((SrcVT == MVT::v1i1 || SrcVT == MVT::v2i1 || SrcVT == MVT::v4i1) &&
9227         VT.isScalarInteger()) {
9228       unsigned NumConcats = 8 / SrcVT.getVectorNumElements();
9229       SmallVector<SDValue, 4> Ops(NumConcats, DAG.getUNDEF(SrcVT));
9230       Ops[0] = N0;
9231       SDLoc DL(N);
9232       N0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i1, Ops);
9233       N0 = DAG.getBitcast(MVT::i8, N0);
9234       return DAG.getNode(ISD::TRUNCATE, DL, VT, N0);
9235     }
9236 
9237     return SDValue();
9238   }
9239   }
9240 
9241   return SDValue();
9242 }
9243 
9244 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
9245     const SDNode *N, CombineLevel Level) const {
9246   // The following folds are only desirable if `(OP _, c1 << c2)` can be
9247   // materialised in fewer instructions than `(OP _, c1)`:
9248   //
9249   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
9250   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
9251   SDValue N0 = N->getOperand(0);
9252   EVT Ty = N0.getValueType();
9253   if (Ty.isScalarInteger() &&
9254       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
9255     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
9256     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
9257     if (C1 && C2) {
9258       const APInt &C1Int = C1->getAPIntValue();
9259       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
9260 
9261       // We can materialise `c1 << c2` into an add immediate, so it's "free",
9262       // and the combine should happen, to potentially allow further combines
9263       // later.
9264       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
9265           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
9266         return true;
9267 
9268       // We can materialise `c1` in an add immediate, so it's "free", and the
9269       // combine should be prevented.
9270       if (C1Int.getMinSignedBits() <= 64 &&
9271           isLegalAddImmediate(C1Int.getSExtValue()))
9272         return false;
9273 
9274       // Neither constant will fit into an immediate, so find materialisation
9275       // costs.
9276       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
9277                                               Subtarget.getFeatureBits(),
9278                                               /*CompressionCost*/true);
9279       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
9280           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
9281           /*CompressionCost*/true);
9282 
9283       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
9284       // combine should be prevented.
9285       if (C1Cost < ShiftedC1Cost)
9286         return false;
9287     }
9288   }
9289   return true;
9290 }
9291 
9292 bool RISCVTargetLowering::targetShrinkDemandedConstant(
9293     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
9294     TargetLoweringOpt &TLO) const {
9295   // Delay this optimization as late as possible.
9296   if (!TLO.LegalOps)
9297     return false;
9298 
9299   EVT VT = Op.getValueType();
9300   if (VT.isVector())
9301     return false;
9302 
9303   // Only handle AND for now.
9304   if (Op.getOpcode() != ISD::AND)
9305     return false;
9306 
9307   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9308   if (!C)
9309     return false;
9310 
9311   const APInt &Mask = C->getAPIntValue();
9312 
9313   // Clear all non-demanded bits initially.
9314   APInt ShrunkMask = Mask & DemandedBits;
9315 
9316   // Try to make a smaller immediate by setting undemanded bits.
9317 
9318   APInt ExpandedMask = Mask | ~DemandedBits;
9319 
9320   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
9321     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
9322   };
9323   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
9324     if (NewMask == Mask)
9325       return true;
9326     SDLoc DL(Op);
9327     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
9328     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
9329     return TLO.CombineTo(Op, NewOp);
9330   };
9331 
9332   // If the shrunk mask fits in sign extended 12 bits, let the target
9333   // independent code apply it.
9334   if (ShrunkMask.isSignedIntN(12))
9335     return false;
9336 
9337   // Preserve (and X, 0xffff) when zext.h is supported.
9338   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
9339     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
9340     if (IsLegalMask(NewMask))
9341       return UseMask(NewMask);
9342   }
9343 
9344   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
9345   if (VT == MVT::i64) {
9346     APInt NewMask = APInt(64, 0xffffffff);
9347     if (IsLegalMask(NewMask))
9348       return UseMask(NewMask);
9349   }
9350 
9351   // For the remaining optimizations, we need to be able to make a negative
9352   // number through a combination of mask and undemanded bits.
9353   if (!ExpandedMask.isNegative())
9354     return false;
9355 
9356   // What is the fewest number of bits we need to represent the negative number.
9357   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
9358 
9359   // Try to make a 12 bit negative immediate. If that fails try to make a 32
9360   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
9361   APInt NewMask = ShrunkMask;
9362   if (MinSignedBits <= 12)
9363     NewMask.setBitsFrom(11);
9364   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
9365     NewMask.setBitsFrom(31);
9366   else
9367     return false;
9368 
9369   // Check that our new mask is a subset of the demanded mask.
9370   assert(IsLegalMask(NewMask));
9371   return UseMask(NewMask);
9372 }
9373 
9374 static uint64_t computeGREVOrGORC(uint64_t x, unsigned ShAmt, bool IsGORC) {
9375   static const uint64_t GREVMasks[] = {
9376       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
9377       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
9378 
9379   for (unsigned Stage = 0; Stage != 6; ++Stage) {
9380     unsigned Shift = 1 << Stage;
9381     if (ShAmt & Shift) {
9382       uint64_t Mask = GREVMasks[Stage];
9383       uint64_t Res = ((x & Mask) << Shift) | ((x >> Shift) & Mask);
9384       if (IsGORC)
9385         Res |= x;
9386       x = Res;
9387     }
9388   }
9389 
9390   return x;
9391 }
9392 
9393 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
9394                                                         KnownBits &Known,
9395                                                         const APInt &DemandedElts,
9396                                                         const SelectionDAG &DAG,
9397                                                         unsigned Depth) const {
9398   unsigned BitWidth = Known.getBitWidth();
9399   unsigned Opc = Op.getOpcode();
9400   assert((Opc >= ISD::BUILTIN_OP_END ||
9401           Opc == ISD::INTRINSIC_WO_CHAIN ||
9402           Opc == ISD::INTRINSIC_W_CHAIN ||
9403           Opc == ISD::INTRINSIC_VOID) &&
9404          "Should use MaskedValueIsZero if you don't know whether Op"
9405          " is a target node!");
9406 
9407   Known.resetAll();
9408   switch (Opc) {
9409   default: break;
9410   case RISCVISD::SELECT_CC: {
9411     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
9412     // If we don't know any bits, early out.
9413     if (Known.isUnknown())
9414       break;
9415     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
9416 
9417     // Only known if known in both the LHS and RHS.
9418     Known = KnownBits::commonBits(Known, Known2);
9419     break;
9420   }
9421   case RISCVISD::REMUW: {
9422     KnownBits Known2;
9423     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
9424     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
9425     // We only care about the lower 32 bits.
9426     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
9427     // Restore the original width by sign extending.
9428     Known = Known.sext(BitWidth);
9429     break;
9430   }
9431   case RISCVISD::DIVUW: {
9432     KnownBits Known2;
9433     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
9434     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
9435     // We only care about the lower 32 bits.
9436     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
9437     // Restore the original width by sign extending.
9438     Known = Known.sext(BitWidth);
9439     break;
9440   }
9441   case RISCVISD::CTZW: {
9442     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9443     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
9444     unsigned LowBits = Log2_32(PossibleTZ) + 1;
9445     Known.Zero.setBitsFrom(LowBits);
9446     break;
9447   }
9448   case RISCVISD::CLZW: {
9449     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9450     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
9451     unsigned LowBits = Log2_32(PossibleLZ) + 1;
9452     Known.Zero.setBitsFrom(LowBits);
9453     break;
9454   }
9455   case RISCVISD::GREV:
9456   case RISCVISD::GORC: {
9457     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9458       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9459       unsigned ShAmt = C->getZExtValue() & (Known.getBitWidth() - 1);
9460       bool IsGORC = Op.getOpcode() == RISCVISD::GORC;
9461       // To compute zeros, we need to invert the value and invert it back after.
9462       Known.Zero =
9463           ~computeGREVOrGORC(~Known.Zero.getZExtValue(), ShAmt, IsGORC);
9464       Known.One = computeGREVOrGORC(Known.One.getZExtValue(), ShAmt, IsGORC);
9465     }
9466     break;
9467   }
9468   case RISCVISD::READ_VLENB: {
9469     // We can use the minimum and maximum VLEN values to bound VLENB.  We
9470     // know VLEN must be a power of two.
9471     const unsigned MinVLenB = Subtarget.getRealMinVLen() / 8;
9472     const unsigned MaxVLenB = Subtarget.getRealMaxVLen() / 8;
9473     assert(MinVLenB > 0 && "READ_VLENB without vector extension enabled?");
9474     Known.Zero.setLowBits(Log2_32(MinVLenB));
9475     Known.Zero.setBitsFrom(Log2_32(MaxVLenB)+1);
9476     if (MaxVLenB == MinVLenB)
9477       Known.One.setBit(Log2_32(MinVLenB));
9478     break;
9479   }
9480   case ISD::INTRINSIC_W_CHAIN:
9481   case ISD::INTRINSIC_WO_CHAIN: {
9482     unsigned IntNo =
9483         Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
9484     switch (IntNo) {
9485     default:
9486       // We can't do anything for most intrinsics.
9487       break;
9488     case Intrinsic::riscv_vsetvli:
9489     case Intrinsic::riscv_vsetvlimax:
9490     case Intrinsic::riscv_vsetvli_opt:
9491     case Intrinsic::riscv_vsetvlimax_opt:
9492       // Assume that VL output is positive and would fit in an int32_t.
9493       // TODO: VLEN might be capped at 16 bits in a future V spec update.
9494       if (BitWidth >= 32)
9495         Known.Zero.setBitsFrom(31);
9496       break;
9497     }
9498     break;
9499   }
9500   }
9501 }
9502 
9503 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
9504     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
9505     unsigned Depth) const {
9506   switch (Op.getOpcode()) {
9507   default:
9508     break;
9509   case RISCVISD::SELECT_CC: {
9510     unsigned Tmp =
9511         DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
9512     if (Tmp == 1) return 1;  // Early out.
9513     unsigned Tmp2 =
9514         DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
9515     return std::min(Tmp, Tmp2);
9516   }
9517   case RISCVISD::SLLW:
9518   case RISCVISD::SRAW:
9519   case RISCVISD::SRLW:
9520   case RISCVISD::DIVW:
9521   case RISCVISD::DIVUW:
9522   case RISCVISD::REMUW:
9523   case RISCVISD::ROLW:
9524   case RISCVISD::RORW:
9525   case RISCVISD::GREVW:
9526   case RISCVISD::GORCW:
9527   case RISCVISD::FSLW:
9528   case RISCVISD::FSRW:
9529   case RISCVISD::SHFLW:
9530   case RISCVISD::UNSHFLW:
9531   case RISCVISD::BCOMPRESSW:
9532   case RISCVISD::BDECOMPRESSW:
9533   case RISCVISD::BFPW:
9534   case RISCVISD::FCVT_W_RV64:
9535   case RISCVISD::FCVT_WU_RV64:
9536   case RISCVISD::STRICT_FCVT_W_RV64:
9537   case RISCVISD::STRICT_FCVT_WU_RV64:
9538     // TODO: As the result is sign-extended, this is conservatively correct. A
9539     // more precise answer could be calculated for SRAW depending on known
9540     // bits in the shift amount.
9541     return 33;
9542   case RISCVISD::SHFL:
9543   case RISCVISD::UNSHFL: {
9544     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
9545     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
9546     // will stay within the upper 32 bits. If there were more than 32 sign bits
9547     // before there will be at least 33 sign bits after.
9548     if (Op.getValueType() == MVT::i64 &&
9549         isa<ConstantSDNode>(Op.getOperand(1)) &&
9550         (Op.getConstantOperandVal(1) & 0x10) == 0) {
9551       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
9552       if (Tmp > 32)
9553         return 33;
9554     }
9555     break;
9556   }
9557   case RISCVISD::VMV_X_S: {
9558     // The number of sign bits of the scalar result is computed by obtaining the
9559     // element type of the input vector operand, subtracting its width from the
9560     // XLEN, and then adding one (sign bit within the element type). If the
9561     // element type is wider than XLen, the least-significant XLEN bits are
9562     // taken.
9563     unsigned XLen = Subtarget.getXLen();
9564     unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits();
9565     if (EltBits <= XLen)
9566       return XLen - EltBits + 1;
9567     break;
9568   }
9569   }
9570 
9571   return 1;
9572 }
9573 
9574 const Constant *
9575 RISCVTargetLowering::getTargetConstantFromLoad(LoadSDNode *Ld) const {
9576   assert(Ld && "Unexpected null LoadSDNode");
9577   if (!ISD::isNormalLoad(Ld))
9578     return nullptr;
9579 
9580   SDValue Ptr = Ld->getBasePtr();
9581 
9582   // Only constant pools with no offset are supported.
9583   auto GetSupportedConstantPool = [](SDValue Ptr) -> ConstantPoolSDNode * {
9584     auto *CNode = dyn_cast<ConstantPoolSDNode>(Ptr);
9585     if (!CNode || CNode->isMachineConstantPoolEntry() ||
9586         CNode->getOffset() != 0)
9587       return nullptr;
9588 
9589     return CNode;
9590   };
9591 
9592   // Simple case, LLA.
9593   if (Ptr.getOpcode() == RISCVISD::LLA) {
9594     auto *CNode = GetSupportedConstantPool(Ptr);
9595     if (!CNode || CNode->getTargetFlags() != 0)
9596       return nullptr;
9597 
9598     return CNode->getConstVal();
9599   }
9600 
9601   // Look for a HI and ADD_LO pair.
9602   if (Ptr.getOpcode() != RISCVISD::ADD_LO ||
9603       Ptr.getOperand(0).getOpcode() != RISCVISD::HI)
9604     return nullptr;
9605 
9606   auto *CNodeLo = GetSupportedConstantPool(Ptr.getOperand(1));
9607   auto *CNodeHi = GetSupportedConstantPool(Ptr.getOperand(0).getOperand(0));
9608 
9609   if (!CNodeLo || CNodeLo->getTargetFlags() != RISCVII::MO_LO ||
9610       !CNodeHi || CNodeHi->getTargetFlags() != RISCVII::MO_HI)
9611     return nullptr;
9612 
9613   if (CNodeLo->getConstVal() != CNodeHi->getConstVal())
9614     return nullptr;
9615 
9616   return CNodeLo->getConstVal();
9617 }
9618 
9619 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
9620                                                   MachineBasicBlock *BB) {
9621   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
9622 
9623   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
9624   // Should the count have wrapped while it was being read, we need to try
9625   // again.
9626   // ...
9627   // read:
9628   // rdcycleh x3 # load high word of cycle
9629   // rdcycle  x2 # load low word of cycle
9630   // rdcycleh x4 # load high word of cycle
9631   // bne x3, x4, read # check if high word reads match, otherwise try again
9632   // ...
9633 
9634   MachineFunction &MF = *BB->getParent();
9635   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9636   MachineFunction::iterator It = ++BB->getIterator();
9637 
9638   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9639   MF.insert(It, LoopMBB);
9640 
9641   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9642   MF.insert(It, DoneMBB);
9643 
9644   // Transfer the remainder of BB and its successor edges to DoneMBB.
9645   DoneMBB->splice(DoneMBB->begin(), BB,
9646                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9647   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
9648 
9649   BB->addSuccessor(LoopMBB);
9650 
9651   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9652   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9653   Register LoReg = MI.getOperand(0).getReg();
9654   Register HiReg = MI.getOperand(1).getReg();
9655   DebugLoc DL = MI.getDebugLoc();
9656 
9657   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
9658   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
9659       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9660       .addReg(RISCV::X0);
9661   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
9662       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
9663       .addReg(RISCV::X0);
9664   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
9665       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9666       .addReg(RISCV::X0);
9667 
9668   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
9669       .addReg(HiReg)
9670       .addReg(ReadAgainReg)
9671       .addMBB(LoopMBB);
9672 
9673   LoopMBB->addSuccessor(LoopMBB);
9674   LoopMBB->addSuccessor(DoneMBB);
9675 
9676   MI.eraseFromParent();
9677 
9678   return DoneMBB;
9679 }
9680 
9681 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
9682                                              MachineBasicBlock *BB) {
9683   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
9684 
9685   MachineFunction &MF = *BB->getParent();
9686   DebugLoc DL = MI.getDebugLoc();
9687   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9688   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9689   Register LoReg = MI.getOperand(0).getReg();
9690   Register HiReg = MI.getOperand(1).getReg();
9691   Register SrcReg = MI.getOperand(2).getReg();
9692   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
9693   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9694 
9695   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
9696                           RI);
9697   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9698   MachineMemOperand *MMOLo =
9699       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
9700   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9701       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
9702   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
9703       .addFrameIndex(FI)
9704       .addImm(0)
9705       .addMemOperand(MMOLo);
9706   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
9707       .addFrameIndex(FI)
9708       .addImm(4)
9709       .addMemOperand(MMOHi);
9710   MI.eraseFromParent(); // The pseudo instruction is gone now.
9711   return BB;
9712 }
9713 
9714 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
9715                                                  MachineBasicBlock *BB) {
9716   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
9717          "Unexpected instruction");
9718 
9719   MachineFunction &MF = *BB->getParent();
9720   DebugLoc DL = MI.getDebugLoc();
9721   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9722   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9723   Register DstReg = MI.getOperand(0).getReg();
9724   Register LoReg = MI.getOperand(1).getReg();
9725   Register HiReg = MI.getOperand(2).getReg();
9726   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
9727   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9728 
9729   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9730   MachineMemOperand *MMOLo =
9731       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
9732   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9733       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
9734   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9735       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
9736       .addFrameIndex(FI)
9737       .addImm(0)
9738       .addMemOperand(MMOLo);
9739   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9740       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
9741       .addFrameIndex(FI)
9742       .addImm(4)
9743       .addMemOperand(MMOHi);
9744   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
9745   MI.eraseFromParent(); // The pseudo instruction is gone now.
9746   return BB;
9747 }
9748 
9749 static bool isSelectPseudo(MachineInstr &MI) {
9750   switch (MI.getOpcode()) {
9751   default:
9752     return false;
9753   case RISCV::Select_GPR_Using_CC_GPR:
9754   case RISCV::Select_FPR16_Using_CC_GPR:
9755   case RISCV::Select_FPR32_Using_CC_GPR:
9756   case RISCV::Select_FPR64_Using_CC_GPR:
9757     return true;
9758   }
9759 }
9760 
9761 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
9762                                         unsigned RelOpcode, unsigned EqOpcode,
9763                                         const RISCVSubtarget &Subtarget) {
9764   DebugLoc DL = MI.getDebugLoc();
9765   Register DstReg = MI.getOperand(0).getReg();
9766   Register Src1Reg = MI.getOperand(1).getReg();
9767   Register Src2Reg = MI.getOperand(2).getReg();
9768   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
9769   Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
9770   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
9771 
9772   // Save the current FFLAGS.
9773   BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
9774 
9775   auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
9776                  .addReg(Src1Reg)
9777                  .addReg(Src2Reg);
9778   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9779     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
9780 
9781   // Restore the FFLAGS.
9782   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
9783       .addReg(SavedFFlags, RegState::Kill);
9784 
9785   // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
9786   auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
9787                   .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
9788                   .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
9789   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9790     MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
9791 
9792   // Erase the pseudoinstruction.
9793   MI.eraseFromParent();
9794   return BB;
9795 }
9796 
9797 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
9798                                            MachineBasicBlock *BB,
9799                                            const RISCVSubtarget &Subtarget) {
9800   // To "insert" Select_* instructions, we actually have to insert the triangle
9801   // control-flow pattern.  The incoming instructions know the destination vreg
9802   // to set, the condition code register to branch on, the true/false values to
9803   // select between, and the condcode to use to select the appropriate branch.
9804   //
9805   // We produce the following control flow:
9806   //     HeadMBB
9807   //     |  \
9808   //     |  IfFalseMBB
9809   //     | /
9810   //    TailMBB
9811   //
9812   // When we find a sequence of selects we attempt to optimize their emission
9813   // by sharing the control flow. Currently we only handle cases where we have
9814   // multiple selects with the exact same condition (same LHS, RHS and CC).
9815   // The selects may be interleaved with other instructions if the other
9816   // instructions meet some requirements we deem safe:
9817   // - They are debug instructions. Otherwise,
9818   // - They do not have side-effects, do not access memory and their inputs do
9819   //   not depend on the results of the select pseudo-instructions.
9820   // The TrueV/FalseV operands of the selects cannot depend on the result of
9821   // previous selects in the sequence.
9822   // These conditions could be further relaxed. See the X86 target for a
9823   // related approach and more information.
9824   Register LHS = MI.getOperand(1).getReg();
9825   Register RHS = MI.getOperand(2).getReg();
9826   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
9827 
9828   SmallVector<MachineInstr *, 4> SelectDebugValues;
9829   SmallSet<Register, 4> SelectDests;
9830   SelectDests.insert(MI.getOperand(0).getReg());
9831 
9832   MachineInstr *LastSelectPseudo = &MI;
9833 
9834   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
9835        SequenceMBBI != E; ++SequenceMBBI) {
9836     if (SequenceMBBI->isDebugInstr())
9837       continue;
9838     if (isSelectPseudo(*SequenceMBBI)) {
9839       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
9840           SequenceMBBI->getOperand(2).getReg() != RHS ||
9841           SequenceMBBI->getOperand(3).getImm() != CC ||
9842           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
9843           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
9844         break;
9845       LastSelectPseudo = &*SequenceMBBI;
9846       SequenceMBBI->collectDebugValues(SelectDebugValues);
9847       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
9848     } else {
9849       if (SequenceMBBI->hasUnmodeledSideEffects() ||
9850           SequenceMBBI->mayLoadOrStore())
9851         break;
9852       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
9853             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
9854           }))
9855         break;
9856     }
9857   }
9858 
9859   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
9860   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9861   DebugLoc DL = MI.getDebugLoc();
9862   MachineFunction::iterator I = ++BB->getIterator();
9863 
9864   MachineBasicBlock *HeadMBB = BB;
9865   MachineFunction *F = BB->getParent();
9866   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
9867   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
9868 
9869   F->insert(I, IfFalseMBB);
9870   F->insert(I, TailMBB);
9871 
9872   // Transfer debug instructions associated with the selects to TailMBB.
9873   for (MachineInstr *DebugInstr : SelectDebugValues) {
9874     TailMBB->push_back(DebugInstr->removeFromParent());
9875   }
9876 
9877   // Move all instructions after the sequence to TailMBB.
9878   TailMBB->splice(TailMBB->end(), HeadMBB,
9879                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
9880   // Update machine-CFG edges by transferring all successors of the current
9881   // block to the new block which will contain the Phi nodes for the selects.
9882   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
9883   // Set the successors for HeadMBB.
9884   HeadMBB->addSuccessor(IfFalseMBB);
9885   HeadMBB->addSuccessor(TailMBB);
9886 
9887   // Insert appropriate branch.
9888   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
9889     .addReg(LHS)
9890     .addReg(RHS)
9891     .addMBB(TailMBB);
9892 
9893   // IfFalseMBB just falls through to TailMBB.
9894   IfFalseMBB->addSuccessor(TailMBB);
9895 
9896   // Create PHIs for all of the select pseudo-instructions.
9897   auto SelectMBBI = MI.getIterator();
9898   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
9899   auto InsertionPoint = TailMBB->begin();
9900   while (SelectMBBI != SelectEnd) {
9901     auto Next = std::next(SelectMBBI);
9902     if (isSelectPseudo(*SelectMBBI)) {
9903       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
9904       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
9905               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
9906           .addReg(SelectMBBI->getOperand(4).getReg())
9907           .addMBB(HeadMBB)
9908           .addReg(SelectMBBI->getOperand(5).getReg())
9909           .addMBB(IfFalseMBB);
9910       SelectMBBI->eraseFromParent();
9911     }
9912     SelectMBBI = Next;
9913   }
9914 
9915   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
9916   return TailMBB;
9917 }
9918 
9919 MachineBasicBlock *
9920 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9921                                                  MachineBasicBlock *BB) const {
9922   switch (MI.getOpcode()) {
9923   default:
9924     llvm_unreachable("Unexpected instr type to insert");
9925   case RISCV::ReadCycleWide:
9926     assert(!Subtarget.is64Bit() &&
9927            "ReadCycleWrite is only to be used on riscv32");
9928     return emitReadCycleWidePseudo(MI, BB);
9929   case RISCV::Select_GPR_Using_CC_GPR:
9930   case RISCV::Select_FPR16_Using_CC_GPR:
9931   case RISCV::Select_FPR32_Using_CC_GPR:
9932   case RISCV::Select_FPR64_Using_CC_GPR:
9933     return emitSelectPseudo(MI, BB, Subtarget);
9934   case RISCV::BuildPairF64Pseudo:
9935     return emitBuildPairF64Pseudo(MI, BB);
9936   case RISCV::SplitF64Pseudo:
9937     return emitSplitF64Pseudo(MI, BB);
9938   case RISCV::PseudoQuietFLE_H:
9939     return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
9940   case RISCV::PseudoQuietFLT_H:
9941     return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
9942   case RISCV::PseudoQuietFLE_S:
9943     return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
9944   case RISCV::PseudoQuietFLT_S:
9945     return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
9946   case RISCV::PseudoQuietFLE_D:
9947     return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
9948   case RISCV::PseudoQuietFLT_D:
9949     return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
9950   }
9951 }
9952 
9953 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
9954                                                         SDNode *Node) const {
9955   // Add FRM dependency to any instructions with dynamic rounding mode.
9956   unsigned Opc = MI.getOpcode();
9957   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
9958   if (Idx < 0)
9959     return;
9960   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
9961     return;
9962   // If the instruction already reads FRM, don't add another read.
9963   if (MI.readsRegister(RISCV::FRM))
9964     return;
9965   MI.addOperand(
9966       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
9967 }
9968 
9969 // Calling Convention Implementation.
9970 // The expectations for frontend ABI lowering vary from target to target.
9971 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
9972 // details, but this is a longer term goal. For now, we simply try to keep the
9973 // role of the frontend as simple and well-defined as possible. The rules can
9974 // be summarised as:
9975 // * Never split up large scalar arguments. We handle them here.
9976 // * If a hardfloat calling convention is being used, and the struct may be
9977 // passed in a pair of registers (fp+fp, int+fp), and both registers are
9978 // available, then pass as two separate arguments. If either the GPRs or FPRs
9979 // are exhausted, then pass according to the rule below.
9980 // * If a struct could never be passed in registers or directly in a stack
9981 // slot (as it is larger than 2*XLEN and the floating point rules don't
9982 // apply), then pass it using a pointer with the byval attribute.
9983 // * If a struct is less than 2*XLEN, then coerce to either a two-element
9984 // word-sized array or a 2*XLEN scalar (depending on alignment).
9985 // * The frontend can determine whether a struct is returned by reference or
9986 // not based on its size and fields. If it will be returned by reference, the
9987 // frontend must modify the prototype so a pointer with the sret annotation is
9988 // passed as the first argument. This is not necessary for large scalar
9989 // returns.
9990 // * Struct return values and varargs should be coerced to structs containing
9991 // register-size fields in the same situations they would be for fixed
9992 // arguments.
9993 
9994 static const MCPhysReg ArgGPRs[] = {
9995   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
9996   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
9997 };
9998 static const MCPhysReg ArgFPR16s[] = {
9999   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
10000   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
10001 };
10002 static const MCPhysReg ArgFPR32s[] = {
10003   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
10004   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
10005 };
10006 static const MCPhysReg ArgFPR64s[] = {
10007   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
10008   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
10009 };
10010 // This is an interim calling convention and it may be changed in the future.
10011 static const MCPhysReg ArgVRs[] = {
10012     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
10013     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
10014     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
10015 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
10016                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
10017                                      RISCV::V20M2, RISCV::V22M2};
10018 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
10019                                      RISCV::V20M4};
10020 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
10021 
10022 // Pass a 2*XLEN argument that has been split into two XLEN values through
10023 // registers or the stack as necessary.
10024 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
10025                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
10026                                 MVT ValVT2, MVT LocVT2,
10027                                 ISD::ArgFlagsTy ArgFlags2) {
10028   unsigned XLenInBytes = XLen / 8;
10029   if (Register Reg = State.AllocateReg(ArgGPRs)) {
10030     // At least one half can be passed via register.
10031     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
10032                                      VA1.getLocVT(), CCValAssign::Full));
10033   } else {
10034     // Both halves must be passed on the stack, with proper alignment.
10035     Align StackAlign =
10036         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
10037     State.addLoc(
10038         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
10039                             State.AllocateStack(XLenInBytes, StackAlign),
10040                             VA1.getLocVT(), CCValAssign::Full));
10041     State.addLoc(CCValAssign::getMem(
10042         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
10043         LocVT2, CCValAssign::Full));
10044     return false;
10045   }
10046 
10047   if (Register Reg = State.AllocateReg(ArgGPRs)) {
10048     // The second half can also be passed via register.
10049     State.addLoc(
10050         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
10051   } else {
10052     // The second half is passed via the stack, without additional alignment.
10053     State.addLoc(CCValAssign::getMem(
10054         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
10055         LocVT2, CCValAssign::Full));
10056   }
10057 
10058   return false;
10059 }
10060 
10061 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
10062                                Optional<unsigned> FirstMaskArgument,
10063                                CCState &State, const RISCVTargetLowering &TLI) {
10064   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
10065   if (RC == &RISCV::VRRegClass) {
10066     // Assign the first mask argument to V0.
10067     // This is an interim calling convention and it may be changed in the
10068     // future.
10069     if (FirstMaskArgument && ValNo == *FirstMaskArgument)
10070       return State.AllocateReg(RISCV::V0);
10071     return State.AllocateReg(ArgVRs);
10072   }
10073   if (RC == &RISCV::VRM2RegClass)
10074     return State.AllocateReg(ArgVRM2s);
10075   if (RC == &RISCV::VRM4RegClass)
10076     return State.AllocateReg(ArgVRM4s);
10077   if (RC == &RISCV::VRM8RegClass)
10078     return State.AllocateReg(ArgVRM8s);
10079   llvm_unreachable("Unhandled register class for ValueType");
10080 }
10081 
10082 // Implements the RISC-V calling convention. Returns true upon failure.
10083 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
10084                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
10085                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
10086                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
10087                      Optional<unsigned> FirstMaskArgument) {
10088   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
10089   assert(XLen == 32 || XLen == 64);
10090   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
10091 
10092   // Any return value split in to more than two values can't be returned
10093   // directly. Vectors are returned via the available vector registers.
10094   if (!LocVT.isVector() && IsRet && ValNo > 1)
10095     return true;
10096 
10097   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
10098   // variadic argument, or if no F16/F32 argument registers are available.
10099   bool UseGPRForF16_F32 = true;
10100   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
10101   // variadic argument, or if no F64 argument registers are available.
10102   bool UseGPRForF64 = true;
10103 
10104   switch (ABI) {
10105   default:
10106     llvm_unreachable("Unexpected ABI");
10107   case RISCVABI::ABI_ILP32:
10108   case RISCVABI::ABI_LP64:
10109     break;
10110   case RISCVABI::ABI_ILP32F:
10111   case RISCVABI::ABI_LP64F:
10112     UseGPRForF16_F32 = !IsFixed;
10113     break;
10114   case RISCVABI::ABI_ILP32D:
10115   case RISCVABI::ABI_LP64D:
10116     UseGPRForF16_F32 = !IsFixed;
10117     UseGPRForF64 = !IsFixed;
10118     break;
10119   }
10120 
10121   // FPR16, FPR32, and FPR64 alias each other.
10122   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
10123     UseGPRForF16_F32 = true;
10124     UseGPRForF64 = true;
10125   }
10126 
10127   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
10128   // similar local variables rather than directly checking against the target
10129   // ABI.
10130 
10131   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
10132     LocVT = XLenVT;
10133     LocInfo = CCValAssign::BCvt;
10134   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
10135     LocVT = MVT::i64;
10136     LocInfo = CCValAssign::BCvt;
10137   }
10138 
10139   // If this is a variadic argument, the RISC-V calling convention requires
10140   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
10141   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
10142   // be used regardless of whether the original argument was split during
10143   // legalisation or not. The argument will not be passed by registers if the
10144   // original type is larger than 2*XLEN, so the register alignment rule does
10145   // not apply.
10146   unsigned TwoXLenInBytes = (2 * XLen) / 8;
10147   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
10148       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
10149     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
10150     // Skip 'odd' register if necessary.
10151     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
10152       State.AllocateReg(ArgGPRs);
10153   }
10154 
10155   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
10156   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
10157       State.getPendingArgFlags();
10158 
10159   assert(PendingLocs.size() == PendingArgFlags.size() &&
10160          "PendingLocs and PendingArgFlags out of sync");
10161 
10162   // Handle passing f64 on RV32D with a soft float ABI or when floating point
10163   // registers are exhausted.
10164   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
10165     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
10166            "Can't lower f64 if it is split");
10167     // Depending on available argument GPRS, f64 may be passed in a pair of
10168     // GPRs, split between a GPR and the stack, or passed completely on the
10169     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
10170     // cases.
10171     Register Reg = State.AllocateReg(ArgGPRs);
10172     LocVT = MVT::i32;
10173     if (!Reg) {
10174       unsigned StackOffset = State.AllocateStack(8, Align(8));
10175       State.addLoc(
10176           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10177       return false;
10178     }
10179     if (!State.AllocateReg(ArgGPRs))
10180       State.AllocateStack(4, Align(4));
10181     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10182     return false;
10183   }
10184 
10185   // Fixed-length vectors are located in the corresponding scalable-vector
10186   // container types.
10187   if (ValVT.isFixedLengthVector())
10188     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
10189 
10190   // Split arguments might be passed indirectly, so keep track of the pending
10191   // values. Split vectors are passed via a mix of registers and indirectly, so
10192   // treat them as we would any other argument.
10193   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
10194     LocVT = XLenVT;
10195     LocInfo = CCValAssign::Indirect;
10196     PendingLocs.push_back(
10197         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
10198     PendingArgFlags.push_back(ArgFlags);
10199     if (!ArgFlags.isSplitEnd()) {
10200       return false;
10201     }
10202   }
10203 
10204   // If the split argument only had two elements, it should be passed directly
10205   // in registers or on the stack.
10206   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
10207       PendingLocs.size() <= 2) {
10208     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
10209     // Apply the normal calling convention rules to the first half of the
10210     // split argument.
10211     CCValAssign VA = PendingLocs[0];
10212     ISD::ArgFlagsTy AF = PendingArgFlags[0];
10213     PendingLocs.clear();
10214     PendingArgFlags.clear();
10215     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
10216                                ArgFlags);
10217   }
10218 
10219   // Allocate to a register if possible, or else a stack slot.
10220   Register Reg;
10221   unsigned StoreSizeBytes = XLen / 8;
10222   Align StackAlign = Align(XLen / 8);
10223 
10224   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
10225     Reg = State.AllocateReg(ArgFPR16s);
10226   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
10227     Reg = State.AllocateReg(ArgFPR32s);
10228   else if (ValVT == MVT::f64 && !UseGPRForF64)
10229     Reg = State.AllocateReg(ArgFPR64s);
10230   else if (ValVT.isVector()) {
10231     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
10232     if (!Reg) {
10233       // For return values, the vector must be passed fully via registers or
10234       // via the stack.
10235       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
10236       // but we're using all of them.
10237       if (IsRet)
10238         return true;
10239       // Try using a GPR to pass the address
10240       if ((Reg = State.AllocateReg(ArgGPRs))) {
10241         LocVT = XLenVT;
10242         LocInfo = CCValAssign::Indirect;
10243       } else if (ValVT.isScalableVector()) {
10244         LocVT = XLenVT;
10245         LocInfo = CCValAssign::Indirect;
10246       } else {
10247         // Pass fixed-length vectors on the stack.
10248         LocVT = ValVT;
10249         StoreSizeBytes = ValVT.getStoreSize();
10250         // Align vectors to their element sizes, being careful for vXi1
10251         // vectors.
10252         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
10253       }
10254     }
10255   } else {
10256     Reg = State.AllocateReg(ArgGPRs);
10257   }
10258 
10259   unsigned StackOffset =
10260       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
10261 
10262   // If we reach this point and PendingLocs is non-empty, we must be at the
10263   // end of a split argument that must be passed indirectly.
10264   if (!PendingLocs.empty()) {
10265     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
10266     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
10267 
10268     for (auto &It : PendingLocs) {
10269       if (Reg)
10270         It.convertToReg(Reg);
10271       else
10272         It.convertToMem(StackOffset);
10273       State.addLoc(It);
10274     }
10275     PendingLocs.clear();
10276     PendingArgFlags.clear();
10277     return false;
10278   }
10279 
10280   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
10281           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
10282          "Expected an XLenVT or vector types at this stage");
10283 
10284   if (Reg) {
10285     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10286     return false;
10287   }
10288 
10289   // When a floating-point value is passed on the stack, no bit-conversion is
10290   // needed.
10291   if (ValVT.isFloatingPoint()) {
10292     LocVT = ValVT;
10293     LocInfo = CCValAssign::Full;
10294   }
10295   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10296   return false;
10297 }
10298 
10299 template <typename ArgTy>
10300 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
10301   for (const auto &ArgIdx : enumerate(Args)) {
10302     MVT ArgVT = ArgIdx.value().VT;
10303     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
10304       return ArgIdx.index();
10305   }
10306   return None;
10307 }
10308 
10309 void RISCVTargetLowering::analyzeInputArgs(
10310     MachineFunction &MF, CCState &CCInfo,
10311     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
10312     RISCVCCAssignFn Fn) const {
10313   unsigned NumArgs = Ins.size();
10314   FunctionType *FType = MF.getFunction().getFunctionType();
10315 
10316   Optional<unsigned> FirstMaskArgument;
10317   if (Subtarget.hasVInstructions())
10318     FirstMaskArgument = preAssignMask(Ins);
10319 
10320   for (unsigned i = 0; i != NumArgs; ++i) {
10321     MVT ArgVT = Ins[i].VT;
10322     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
10323 
10324     Type *ArgTy = nullptr;
10325     if (IsRet)
10326       ArgTy = FType->getReturnType();
10327     else if (Ins[i].isOrigArg())
10328       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
10329 
10330     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10331     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
10332            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
10333            FirstMaskArgument)) {
10334       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
10335                         << EVT(ArgVT).getEVTString() << '\n');
10336       llvm_unreachable(nullptr);
10337     }
10338   }
10339 }
10340 
10341 void RISCVTargetLowering::analyzeOutputArgs(
10342     MachineFunction &MF, CCState &CCInfo,
10343     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
10344     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
10345   unsigned NumArgs = Outs.size();
10346 
10347   Optional<unsigned> FirstMaskArgument;
10348   if (Subtarget.hasVInstructions())
10349     FirstMaskArgument = preAssignMask(Outs);
10350 
10351   for (unsigned i = 0; i != NumArgs; i++) {
10352     MVT ArgVT = Outs[i].VT;
10353     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10354     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
10355 
10356     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10357     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
10358            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
10359            FirstMaskArgument)) {
10360       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
10361                         << EVT(ArgVT).getEVTString() << "\n");
10362       llvm_unreachable(nullptr);
10363     }
10364   }
10365 }
10366 
10367 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
10368 // values.
10369 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
10370                                    const CCValAssign &VA, const SDLoc &DL,
10371                                    const RISCVSubtarget &Subtarget) {
10372   switch (VA.getLocInfo()) {
10373   default:
10374     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10375   case CCValAssign::Full:
10376     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
10377       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
10378     break;
10379   case CCValAssign::BCvt:
10380     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
10381       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
10382     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
10383       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
10384     else
10385       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
10386     break;
10387   }
10388   return Val;
10389 }
10390 
10391 // The caller is responsible for loading the full value if the argument is
10392 // passed with CCValAssign::Indirect.
10393 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
10394                                 const CCValAssign &VA, const SDLoc &DL,
10395                                 const RISCVTargetLowering &TLI) {
10396   MachineFunction &MF = DAG.getMachineFunction();
10397   MachineRegisterInfo &RegInfo = MF.getRegInfo();
10398   EVT LocVT = VA.getLocVT();
10399   SDValue Val;
10400   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
10401   Register VReg = RegInfo.createVirtualRegister(RC);
10402   RegInfo.addLiveIn(VA.getLocReg(), VReg);
10403   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
10404 
10405   if (VA.getLocInfo() == CCValAssign::Indirect)
10406     return Val;
10407 
10408   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
10409 }
10410 
10411 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
10412                                    const CCValAssign &VA, const SDLoc &DL,
10413                                    const RISCVSubtarget &Subtarget) {
10414   EVT LocVT = VA.getLocVT();
10415 
10416   switch (VA.getLocInfo()) {
10417   default:
10418     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10419   case CCValAssign::Full:
10420     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
10421       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
10422     break;
10423   case CCValAssign::BCvt:
10424     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
10425       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
10426     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
10427       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
10428     else
10429       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
10430     break;
10431   }
10432   return Val;
10433 }
10434 
10435 // The caller is responsible for loading the full value if the argument is
10436 // passed with CCValAssign::Indirect.
10437 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
10438                                 const CCValAssign &VA, const SDLoc &DL) {
10439   MachineFunction &MF = DAG.getMachineFunction();
10440   MachineFrameInfo &MFI = MF.getFrameInfo();
10441   EVT LocVT = VA.getLocVT();
10442   EVT ValVT = VA.getValVT();
10443   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
10444   if (ValVT.isScalableVector()) {
10445     // When the value is a scalable vector, we save the pointer which points to
10446     // the scalable vector value in the stack. The ValVT will be the pointer
10447     // type, instead of the scalable vector type.
10448     ValVT = LocVT;
10449   }
10450   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
10451                                  /*IsImmutable=*/true);
10452   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
10453   SDValue Val;
10454 
10455   ISD::LoadExtType ExtType;
10456   switch (VA.getLocInfo()) {
10457   default:
10458     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10459   case CCValAssign::Full:
10460   case CCValAssign::Indirect:
10461   case CCValAssign::BCvt:
10462     ExtType = ISD::NON_EXTLOAD;
10463     break;
10464   }
10465   Val = DAG.getExtLoad(
10466       ExtType, DL, LocVT, Chain, FIN,
10467       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
10468   return Val;
10469 }
10470 
10471 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
10472                                        const CCValAssign &VA, const SDLoc &DL) {
10473   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
10474          "Unexpected VA");
10475   MachineFunction &MF = DAG.getMachineFunction();
10476   MachineFrameInfo &MFI = MF.getFrameInfo();
10477   MachineRegisterInfo &RegInfo = MF.getRegInfo();
10478 
10479   if (VA.isMemLoc()) {
10480     // f64 is passed on the stack.
10481     int FI =
10482         MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
10483     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
10484     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
10485                        MachinePointerInfo::getFixedStack(MF, FI));
10486   }
10487 
10488   assert(VA.isRegLoc() && "Expected register VA assignment");
10489 
10490   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
10491   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
10492   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
10493   SDValue Hi;
10494   if (VA.getLocReg() == RISCV::X17) {
10495     // Second half of f64 is passed on the stack.
10496     int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
10497     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
10498     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
10499                      MachinePointerInfo::getFixedStack(MF, FI));
10500   } else {
10501     // Second half of f64 is passed in another GPR.
10502     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
10503     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
10504     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
10505   }
10506   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
10507 }
10508 
10509 // FastCC has less than 1% performance improvement for some particular
10510 // benchmark. But theoretically, it may has benenfit for some cases.
10511 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
10512                             unsigned ValNo, MVT ValVT, MVT LocVT,
10513                             CCValAssign::LocInfo LocInfo,
10514                             ISD::ArgFlagsTy ArgFlags, CCState &State,
10515                             bool IsFixed, bool IsRet, Type *OrigTy,
10516                             const RISCVTargetLowering &TLI,
10517                             Optional<unsigned> FirstMaskArgument) {
10518 
10519   // X5 and X6 might be used for save-restore libcall.
10520   static const MCPhysReg GPRList[] = {
10521       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
10522       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
10523       RISCV::X29, RISCV::X30, RISCV::X31};
10524 
10525   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10526     if (unsigned Reg = State.AllocateReg(GPRList)) {
10527       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10528       return false;
10529     }
10530   }
10531 
10532   if (LocVT == MVT::f16) {
10533     static const MCPhysReg FPR16List[] = {
10534         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
10535         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
10536         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
10537         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
10538     if (unsigned Reg = State.AllocateReg(FPR16List)) {
10539       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10540       return false;
10541     }
10542   }
10543 
10544   if (LocVT == MVT::f32) {
10545     static const MCPhysReg FPR32List[] = {
10546         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
10547         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
10548         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
10549         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
10550     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10551       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10552       return false;
10553     }
10554   }
10555 
10556   if (LocVT == MVT::f64) {
10557     static const MCPhysReg FPR64List[] = {
10558         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
10559         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
10560         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
10561         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
10562     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10563       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10564       return false;
10565     }
10566   }
10567 
10568   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
10569     unsigned Offset4 = State.AllocateStack(4, Align(4));
10570     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
10571     return false;
10572   }
10573 
10574   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
10575     unsigned Offset5 = State.AllocateStack(8, Align(8));
10576     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
10577     return false;
10578   }
10579 
10580   if (LocVT.isVector()) {
10581     if (unsigned Reg =
10582             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
10583       // Fixed-length vectors are located in the corresponding scalable-vector
10584       // container types.
10585       if (ValVT.isFixedLengthVector())
10586         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
10587       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10588     } else {
10589       // Try and pass the address via a "fast" GPR.
10590       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
10591         LocInfo = CCValAssign::Indirect;
10592         LocVT = TLI.getSubtarget().getXLenVT();
10593         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
10594       } else if (ValVT.isFixedLengthVector()) {
10595         auto StackAlign =
10596             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
10597         unsigned StackOffset =
10598             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
10599         State.addLoc(
10600             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10601       } else {
10602         // Can't pass scalable vectors on the stack.
10603         return true;
10604       }
10605     }
10606 
10607     return false;
10608   }
10609 
10610   return true; // CC didn't match.
10611 }
10612 
10613 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
10614                          CCValAssign::LocInfo LocInfo,
10615                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
10616 
10617   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10618     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
10619     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
10620     static const MCPhysReg GPRList[] = {
10621         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
10622         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
10623     if (unsigned Reg = State.AllocateReg(GPRList)) {
10624       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10625       return false;
10626     }
10627   }
10628 
10629   if (LocVT == MVT::f32) {
10630     // Pass in STG registers: F1, ..., F6
10631     //                        fs0 ... fs5
10632     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
10633                                           RISCV::F18_F, RISCV::F19_F,
10634                                           RISCV::F20_F, RISCV::F21_F};
10635     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10636       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10637       return false;
10638     }
10639   }
10640 
10641   if (LocVT == MVT::f64) {
10642     // Pass in STG registers: D1, ..., D6
10643     //                        fs6 ... fs11
10644     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
10645                                           RISCV::F24_D, RISCV::F25_D,
10646                                           RISCV::F26_D, RISCV::F27_D};
10647     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10648       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10649       return false;
10650     }
10651   }
10652 
10653   report_fatal_error("No registers left in GHC calling convention");
10654   return true;
10655 }
10656 
10657 // Transform physical registers into virtual registers.
10658 SDValue RISCVTargetLowering::LowerFormalArguments(
10659     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
10660     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
10661     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
10662 
10663   MachineFunction &MF = DAG.getMachineFunction();
10664 
10665   switch (CallConv) {
10666   default:
10667     report_fatal_error("Unsupported calling convention");
10668   case CallingConv::C:
10669   case CallingConv::Fast:
10670     break;
10671   case CallingConv::GHC:
10672     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
10673         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
10674       report_fatal_error(
10675         "GHC calling convention requires the F and D instruction set extensions");
10676   }
10677 
10678   const Function &Func = MF.getFunction();
10679   if (Func.hasFnAttribute("interrupt")) {
10680     if (!Func.arg_empty())
10681       report_fatal_error(
10682         "Functions with the interrupt attribute cannot have arguments!");
10683 
10684     StringRef Kind =
10685       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10686 
10687     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
10688       report_fatal_error(
10689         "Function interrupt attribute argument not supported!");
10690   }
10691 
10692   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10693   MVT XLenVT = Subtarget.getXLenVT();
10694   unsigned XLenInBytes = Subtarget.getXLen() / 8;
10695   // Used with vargs to acumulate store chains.
10696   std::vector<SDValue> OutChains;
10697 
10698   // Assign locations to all of the incoming arguments.
10699   SmallVector<CCValAssign, 16> ArgLocs;
10700   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10701 
10702   if (CallConv == CallingConv::GHC)
10703     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
10704   else
10705     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
10706                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10707                                                    : CC_RISCV);
10708 
10709   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
10710     CCValAssign &VA = ArgLocs[i];
10711     SDValue ArgValue;
10712     // Passing f64 on RV32D with a soft float ABI must be handled as a special
10713     // case.
10714     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
10715       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
10716     else if (VA.isRegLoc())
10717       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
10718     else
10719       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
10720 
10721     if (VA.getLocInfo() == CCValAssign::Indirect) {
10722       // If the original argument was split and passed by reference (e.g. i128
10723       // on RV32), we need to load all parts of it here (using the same
10724       // address). Vectors may be partly split to registers and partly to the
10725       // stack, in which case the base address is partly offset and subsequent
10726       // stores are relative to that.
10727       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
10728                                    MachinePointerInfo()));
10729       unsigned ArgIndex = Ins[i].OrigArgIndex;
10730       unsigned ArgPartOffset = Ins[i].PartOffset;
10731       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10732       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
10733         CCValAssign &PartVA = ArgLocs[i + 1];
10734         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
10735         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10736         if (PartVA.getValVT().isScalableVector())
10737           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10738         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
10739         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
10740                                      MachinePointerInfo()));
10741         ++i;
10742       }
10743       continue;
10744     }
10745     InVals.push_back(ArgValue);
10746   }
10747 
10748   if (IsVarArg) {
10749     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
10750     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
10751     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
10752     MachineFrameInfo &MFI = MF.getFrameInfo();
10753     MachineRegisterInfo &RegInfo = MF.getRegInfo();
10754     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
10755 
10756     // Offset of the first variable argument from stack pointer, and size of
10757     // the vararg save area. For now, the varargs save area is either zero or
10758     // large enough to hold a0-a7.
10759     int VaArgOffset, VarArgsSaveSize;
10760 
10761     // If all registers are allocated, then all varargs must be passed on the
10762     // stack and we don't need to save any argregs.
10763     if (ArgRegs.size() == Idx) {
10764       VaArgOffset = CCInfo.getNextStackOffset();
10765       VarArgsSaveSize = 0;
10766     } else {
10767       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
10768       VaArgOffset = -VarArgsSaveSize;
10769     }
10770 
10771     // Record the frame index of the first variable argument
10772     // which is a value necessary to VASTART.
10773     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10774     RVFI->setVarArgsFrameIndex(FI);
10775 
10776     // If saving an odd number of registers then create an extra stack slot to
10777     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
10778     // offsets to even-numbered registered remain 2*XLEN-aligned.
10779     if (Idx % 2) {
10780       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
10781       VarArgsSaveSize += XLenInBytes;
10782     }
10783 
10784     // Copy the integer registers that may have been used for passing varargs
10785     // to the vararg save area.
10786     for (unsigned I = Idx; I < ArgRegs.size();
10787          ++I, VaArgOffset += XLenInBytes) {
10788       const Register Reg = RegInfo.createVirtualRegister(RC);
10789       RegInfo.addLiveIn(ArgRegs[I], Reg);
10790       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
10791       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10792       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10793       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
10794                                    MachinePointerInfo::getFixedStack(MF, FI));
10795       cast<StoreSDNode>(Store.getNode())
10796           ->getMemOperand()
10797           ->setValue((Value *)nullptr);
10798       OutChains.push_back(Store);
10799     }
10800     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
10801   }
10802 
10803   // All stores are grouped in one node to allow the matching between
10804   // the size of Ins and InVals. This only happens for vararg functions.
10805   if (!OutChains.empty()) {
10806     OutChains.push_back(Chain);
10807     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
10808   }
10809 
10810   return Chain;
10811 }
10812 
10813 /// isEligibleForTailCallOptimization - Check whether the call is eligible
10814 /// for tail call optimization.
10815 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
10816 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
10817     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
10818     const SmallVector<CCValAssign, 16> &ArgLocs) const {
10819 
10820   auto &Callee = CLI.Callee;
10821   auto CalleeCC = CLI.CallConv;
10822   auto &Outs = CLI.Outs;
10823   auto &Caller = MF.getFunction();
10824   auto CallerCC = Caller.getCallingConv();
10825 
10826   // Exception-handling functions need a special set of instructions to
10827   // indicate a return to the hardware. Tail-calling another function would
10828   // probably break this.
10829   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
10830   // should be expanded as new function attributes are introduced.
10831   if (Caller.hasFnAttribute("interrupt"))
10832     return false;
10833 
10834   // Do not tail call opt if the stack is used to pass parameters.
10835   if (CCInfo.getNextStackOffset() != 0)
10836     return false;
10837 
10838   // Do not tail call opt if any parameters need to be passed indirectly.
10839   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
10840   // passed indirectly. So the address of the value will be passed in a
10841   // register, or if not available, then the address is put on the stack. In
10842   // order to pass indirectly, space on the stack often needs to be allocated
10843   // in order to store the value. In this case the CCInfo.getNextStackOffset()
10844   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
10845   // are passed CCValAssign::Indirect.
10846   for (auto &VA : ArgLocs)
10847     if (VA.getLocInfo() == CCValAssign::Indirect)
10848       return false;
10849 
10850   // Do not tail call opt if either caller or callee uses struct return
10851   // semantics.
10852   auto IsCallerStructRet = Caller.hasStructRetAttr();
10853   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
10854   if (IsCallerStructRet || IsCalleeStructRet)
10855     return false;
10856 
10857   // Externally-defined functions with weak linkage should not be
10858   // tail-called. The behaviour of branch instructions in this situation (as
10859   // used for tail calls) is implementation-defined, so we cannot rely on the
10860   // linker replacing the tail call with a return.
10861   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
10862     const GlobalValue *GV = G->getGlobal();
10863     if (GV->hasExternalWeakLinkage())
10864       return false;
10865   }
10866 
10867   // The callee has to preserve all registers the caller needs to preserve.
10868   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
10869   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
10870   if (CalleeCC != CallerCC) {
10871     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
10872     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
10873       return false;
10874   }
10875 
10876   // Byval parameters hand the function a pointer directly into the stack area
10877   // we want to reuse during a tail call. Working around this *is* possible
10878   // but less efficient and uglier in LowerCall.
10879   for (auto &Arg : Outs)
10880     if (Arg.Flags.isByVal())
10881       return false;
10882 
10883   return true;
10884 }
10885 
10886 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
10887   return DAG.getDataLayout().getPrefTypeAlign(
10888       VT.getTypeForEVT(*DAG.getContext()));
10889 }
10890 
10891 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
10892 // and output parameter nodes.
10893 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
10894                                        SmallVectorImpl<SDValue> &InVals) const {
10895   SelectionDAG &DAG = CLI.DAG;
10896   SDLoc &DL = CLI.DL;
10897   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
10898   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
10899   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
10900   SDValue Chain = CLI.Chain;
10901   SDValue Callee = CLI.Callee;
10902   bool &IsTailCall = CLI.IsTailCall;
10903   CallingConv::ID CallConv = CLI.CallConv;
10904   bool IsVarArg = CLI.IsVarArg;
10905   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10906   MVT XLenVT = Subtarget.getXLenVT();
10907 
10908   MachineFunction &MF = DAG.getMachineFunction();
10909 
10910   // Analyze the operands of the call, assigning locations to each operand.
10911   SmallVector<CCValAssign, 16> ArgLocs;
10912   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10913 
10914   if (CallConv == CallingConv::GHC)
10915     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
10916   else
10917     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
10918                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10919                                                     : CC_RISCV);
10920 
10921   // Check if it's really possible to do a tail call.
10922   if (IsTailCall)
10923     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
10924 
10925   if (IsTailCall)
10926     ++NumTailCalls;
10927   else if (CLI.CB && CLI.CB->isMustTailCall())
10928     report_fatal_error("failed to perform tail call elimination on a call "
10929                        "site marked musttail");
10930 
10931   // Get a count of how many bytes are to be pushed on the stack.
10932   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
10933 
10934   // Create local copies for byval args
10935   SmallVector<SDValue, 8> ByValArgs;
10936   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10937     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10938     if (!Flags.isByVal())
10939       continue;
10940 
10941     SDValue Arg = OutVals[i];
10942     unsigned Size = Flags.getByValSize();
10943     Align Alignment = Flags.getNonZeroByValAlign();
10944 
10945     int FI =
10946         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
10947     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10948     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
10949 
10950     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
10951                           /*IsVolatile=*/false,
10952                           /*AlwaysInline=*/false, IsTailCall,
10953                           MachinePointerInfo(), MachinePointerInfo());
10954     ByValArgs.push_back(FIPtr);
10955   }
10956 
10957   if (!IsTailCall)
10958     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
10959 
10960   // Copy argument values to their designated locations.
10961   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
10962   SmallVector<SDValue, 8> MemOpChains;
10963   SDValue StackPtr;
10964   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
10965     CCValAssign &VA = ArgLocs[i];
10966     SDValue ArgValue = OutVals[i];
10967     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10968 
10969     // Handle passing f64 on RV32D with a soft float ABI as a special case.
10970     bool IsF64OnRV32DSoftABI =
10971         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
10972     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
10973       SDValue SplitF64 = DAG.getNode(
10974           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
10975       SDValue Lo = SplitF64.getValue(0);
10976       SDValue Hi = SplitF64.getValue(1);
10977 
10978       Register RegLo = VA.getLocReg();
10979       RegsToPass.push_back(std::make_pair(RegLo, Lo));
10980 
10981       if (RegLo == RISCV::X17) {
10982         // Second half of f64 is passed on the stack.
10983         // Work out the address of the stack slot.
10984         if (!StackPtr.getNode())
10985           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10986         // Emit the store.
10987         MemOpChains.push_back(
10988             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
10989       } else {
10990         // Second half of f64 is passed in another GPR.
10991         assert(RegLo < RISCV::X31 && "Invalid register pair");
10992         Register RegHigh = RegLo + 1;
10993         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
10994       }
10995       continue;
10996     }
10997 
10998     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
10999     // as any other MemLoc.
11000 
11001     // Promote the value if needed.
11002     // For now, only handle fully promoted and indirect arguments.
11003     if (VA.getLocInfo() == CCValAssign::Indirect) {
11004       // Store the argument in a stack slot and pass its address.
11005       Align StackAlign =
11006           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
11007                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
11008       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
11009       // If the original argument was split (e.g. i128), we need
11010       // to store the required parts of it here (and pass just one address).
11011       // Vectors may be partly split to registers and partly to the stack, in
11012       // which case the base address is partly offset and subsequent stores are
11013       // relative to that.
11014       unsigned ArgIndex = Outs[i].OrigArgIndex;
11015       unsigned ArgPartOffset = Outs[i].PartOffset;
11016       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
11017       // Calculate the total size to store. We don't have access to what we're
11018       // actually storing other than performing the loop and collecting the
11019       // info.
11020       SmallVector<std::pair<SDValue, SDValue>> Parts;
11021       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
11022         SDValue PartValue = OutVals[i + 1];
11023         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
11024         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
11025         EVT PartVT = PartValue.getValueType();
11026         if (PartVT.isScalableVector())
11027           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
11028         StoredSize += PartVT.getStoreSize();
11029         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
11030         Parts.push_back(std::make_pair(PartValue, Offset));
11031         ++i;
11032       }
11033       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
11034       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
11035       MemOpChains.push_back(
11036           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
11037                        MachinePointerInfo::getFixedStack(MF, FI)));
11038       for (const auto &Part : Parts) {
11039         SDValue PartValue = Part.first;
11040         SDValue PartOffset = Part.second;
11041         SDValue Address =
11042             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
11043         MemOpChains.push_back(
11044             DAG.getStore(Chain, DL, PartValue, Address,
11045                          MachinePointerInfo::getFixedStack(MF, FI)));
11046       }
11047       ArgValue = SpillSlot;
11048     } else {
11049       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
11050     }
11051 
11052     // Use local copy if it is a byval arg.
11053     if (Flags.isByVal())
11054       ArgValue = ByValArgs[j++];
11055 
11056     if (VA.isRegLoc()) {
11057       // Queue up the argument copies and emit them at the end.
11058       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
11059     } else {
11060       assert(VA.isMemLoc() && "Argument not register or memory");
11061       assert(!IsTailCall && "Tail call not allowed if stack is used "
11062                             "for passing parameters");
11063 
11064       // Work out the address of the stack slot.
11065       if (!StackPtr.getNode())
11066         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
11067       SDValue Address =
11068           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
11069                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
11070 
11071       // Emit the store.
11072       MemOpChains.push_back(
11073           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
11074     }
11075   }
11076 
11077   // Join the stores, which are independent of one another.
11078   if (!MemOpChains.empty())
11079     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
11080 
11081   SDValue Glue;
11082 
11083   // Build a sequence of copy-to-reg nodes, chained and glued together.
11084   for (auto &Reg : RegsToPass) {
11085     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
11086     Glue = Chain.getValue(1);
11087   }
11088 
11089   // Validate that none of the argument registers have been marked as
11090   // reserved, if so report an error. Do the same for the return address if this
11091   // is not a tailcall.
11092   validateCCReservedRegs(RegsToPass, MF);
11093   if (!IsTailCall &&
11094       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
11095     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
11096         MF.getFunction(),
11097         "Return address register required, but has been reserved."});
11098 
11099   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
11100   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
11101   // split it and then direct call can be matched by PseudoCALL.
11102   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
11103     const GlobalValue *GV = S->getGlobal();
11104 
11105     unsigned OpFlags = RISCVII::MO_CALL;
11106     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
11107       OpFlags = RISCVII::MO_PLT;
11108 
11109     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
11110   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
11111     unsigned OpFlags = RISCVII::MO_CALL;
11112 
11113     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
11114                                                  nullptr))
11115       OpFlags = RISCVII::MO_PLT;
11116 
11117     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
11118   }
11119 
11120   // The first call operand is the chain and the second is the target address.
11121   SmallVector<SDValue, 8> Ops;
11122   Ops.push_back(Chain);
11123   Ops.push_back(Callee);
11124 
11125   // Add argument registers to the end of the list so that they are
11126   // known live into the call.
11127   for (auto &Reg : RegsToPass)
11128     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
11129 
11130   if (!IsTailCall) {
11131     // Add a register mask operand representing the call-preserved registers.
11132     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
11133     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
11134     assert(Mask && "Missing call preserved mask for calling convention");
11135     Ops.push_back(DAG.getRegisterMask(Mask));
11136   }
11137 
11138   // Glue the call to the argument copies, if any.
11139   if (Glue.getNode())
11140     Ops.push_back(Glue);
11141 
11142   // Emit the call.
11143   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
11144 
11145   if (IsTailCall) {
11146     MF.getFrameInfo().setHasTailCall();
11147     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
11148   }
11149 
11150   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
11151   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
11152   Glue = Chain.getValue(1);
11153 
11154   // Mark the end of the call, which is glued to the call itself.
11155   Chain = DAG.getCALLSEQ_END(Chain,
11156                              DAG.getConstant(NumBytes, DL, PtrVT, true),
11157                              DAG.getConstant(0, DL, PtrVT, true),
11158                              Glue, DL);
11159   Glue = Chain.getValue(1);
11160 
11161   // Assign locations to each value returned by this call.
11162   SmallVector<CCValAssign, 16> RVLocs;
11163   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
11164   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
11165 
11166   // Copy all of the result registers out of their specified physreg.
11167   for (auto &VA : RVLocs) {
11168     // Copy the value out
11169     SDValue RetValue =
11170         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
11171     // Glue the RetValue to the end of the call sequence
11172     Chain = RetValue.getValue(1);
11173     Glue = RetValue.getValue(2);
11174 
11175     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
11176       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
11177       SDValue RetValue2 =
11178           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
11179       Chain = RetValue2.getValue(1);
11180       Glue = RetValue2.getValue(2);
11181       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
11182                              RetValue2);
11183     }
11184 
11185     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
11186 
11187     InVals.push_back(RetValue);
11188   }
11189 
11190   return Chain;
11191 }
11192 
11193 bool RISCVTargetLowering::CanLowerReturn(
11194     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
11195     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
11196   SmallVector<CCValAssign, 16> RVLocs;
11197   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
11198 
11199   Optional<unsigned> FirstMaskArgument;
11200   if (Subtarget.hasVInstructions())
11201     FirstMaskArgument = preAssignMask(Outs);
11202 
11203   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
11204     MVT VT = Outs[i].VT;
11205     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
11206     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
11207     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
11208                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
11209                  *this, FirstMaskArgument))
11210       return false;
11211   }
11212   return true;
11213 }
11214 
11215 SDValue
11216 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
11217                                  bool IsVarArg,
11218                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
11219                                  const SmallVectorImpl<SDValue> &OutVals,
11220                                  const SDLoc &DL, SelectionDAG &DAG) const {
11221   const MachineFunction &MF = DAG.getMachineFunction();
11222   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
11223 
11224   // Stores the assignment of the return value to a location.
11225   SmallVector<CCValAssign, 16> RVLocs;
11226 
11227   // Info about the registers and stack slot.
11228   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
11229                  *DAG.getContext());
11230 
11231   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
11232                     nullptr, CC_RISCV);
11233 
11234   if (CallConv == CallingConv::GHC && !RVLocs.empty())
11235     report_fatal_error("GHC functions return void only");
11236 
11237   SDValue Glue;
11238   SmallVector<SDValue, 4> RetOps(1, Chain);
11239 
11240   // Copy the result values into the output registers.
11241   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
11242     SDValue Val = OutVals[i];
11243     CCValAssign &VA = RVLocs[i];
11244     assert(VA.isRegLoc() && "Can only return in registers!");
11245 
11246     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
11247       // Handle returning f64 on RV32D with a soft float ABI.
11248       assert(VA.isRegLoc() && "Expected return via registers");
11249       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
11250                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
11251       SDValue Lo = SplitF64.getValue(0);
11252       SDValue Hi = SplitF64.getValue(1);
11253       Register RegLo = VA.getLocReg();
11254       assert(RegLo < RISCV::X31 && "Invalid register pair");
11255       Register RegHi = RegLo + 1;
11256 
11257       if (STI.isRegisterReservedByUser(RegLo) ||
11258           STI.isRegisterReservedByUser(RegHi))
11259         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
11260             MF.getFunction(),
11261             "Return value register required, but has been reserved."});
11262 
11263       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
11264       Glue = Chain.getValue(1);
11265       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
11266       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
11267       Glue = Chain.getValue(1);
11268       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
11269     } else {
11270       // Handle a 'normal' return.
11271       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
11272       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
11273 
11274       if (STI.isRegisterReservedByUser(VA.getLocReg()))
11275         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
11276             MF.getFunction(),
11277             "Return value register required, but has been reserved."});
11278 
11279       // Guarantee that all emitted copies are stuck together.
11280       Glue = Chain.getValue(1);
11281       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
11282     }
11283   }
11284 
11285   RetOps[0] = Chain; // Update chain.
11286 
11287   // Add the glue node if we have it.
11288   if (Glue.getNode()) {
11289     RetOps.push_back(Glue);
11290   }
11291 
11292   unsigned RetOpc = RISCVISD::RET_FLAG;
11293   // Interrupt service routines use different return instructions.
11294   const Function &Func = DAG.getMachineFunction().getFunction();
11295   if (Func.hasFnAttribute("interrupt")) {
11296     if (!Func.getReturnType()->isVoidTy())
11297       report_fatal_error(
11298           "Functions with the interrupt attribute must have void return type!");
11299 
11300     MachineFunction &MF = DAG.getMachineFunction();
11301     StringRef Kind =
11302       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
11303 
11304     if (Kind == "user")
11305       RetOpc = RISCVISD::URET_FLAG;
11306     else if (Kind == "supervisor")
11307       RetOpc = RISCVISD::SRET_FLAG;
11308     else
11309       RetOpc = RISCVISD::MRET_FLAG;
11310   }
11311 
11312   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
11313 }
11314 
11315 void RISCVTargetLowering::validateCCReservedRegs(
11316     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
11317     MachineFunction &MF) const {
11318   const Function &F = MF.getFunction();
11319   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
11320 
11321   if (llvm::any_of(Regs, [&STI](auto Reg) {
11322         return STI.isRegisterReservedByUser(Reg.first);
11323       }))
11324     F.getContext().diagnose(DiagnosticInfoUnsupported{
11325         F, "Argument register required, but has been reserved."});
11326 }
11327 
11328 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
11329   return CI->isTailCall();
11330 }
11331 
11332 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
11333 #define NODE_NAME_CASE(NODE)                                                   \
11334   case RISCVISD::NODE:                                                         \
11335     return "RISCVISD::" #NODE;
11336   // clang-format off
11337   switch ((RISCVISD::NodeType)Opcode) {
11338   case RISCVISD::FIRST_NUMBER:
11339     break;
11340   NODE_NAME_CASE(RET_FLAG)
11341   NODE_NAME_CASE(URET_FLAG)
11342   NODE_NAME_CASE(SRET_FLAG)
11343   NODE_NAME_CASE(MRET_FLAG)
11344   NODE_NAME_CASE(CALL)
11345   NODE_NAME_CASE(SELECT_CC)
11346   NODE_NAME_CASE(BR_CC)
11347   NODE_NAME_CASE(BuildPairF64)
11348   NODE_NAME_CASE(SplitF64)
11349   NODE_NAME_CASE(TAIL)
11350   NODE_NAME_CASE(ADD_LO)
11351   NODE_NAME_CASE(HI)
11352   NODE_NAME_CASE(LLA)
11353   NODE_NAME_CASE(ADD_TPREL)
11354   NODE_NAME_CASE(LA)
11355   NODE_NAME_CASE(LA_TLS_IE)
11356   NODE_NAME_CASE(LA_TLS_GD)
11357   NODE_NAME_CASE(MULHSU)
11358   NODE_NAME_CASE(SLLW)
11359   NODE_NAME_CASE(SRAW)
11360   NODE_NAME_CASE(SRLW)
11361   NODE_NAME_CASE(DIVW)
11362   NODE_NAME_CASE(DIVUW)
11363   NODE_NAME_CASE(REMUW)
11364   NODE_NAME_CASE(ROLW)
11365   NODE_NAME_CASE(RORW)
11366   NODE_NAME_CASE(CLZW)
11367   NODE_NAME_CASE(CTZW)
11368   NODE_NAME_CASE(FSLW)
11369   NODE_NAME_CASE(FSRW)
11370   NODE_NAME_CASE(FSL)
11371   NODE_NAME_CASE(FSR)
11372   NODE_NAME_CASE(FMV_H_X)
11373   NODE_NAME_CASE(FMV_X_ANYEXTH)
11374   NODE_NAME_CASE(FMV_X_SIGNEXTH)
11375   NODE_NAME_CASE(FMV_W_X_RV64)
11376   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
11377   NODE_NAME_CASE(FCVT_X)
11378   NODE_NAME_CASE(FCVT_XU)
11379   NODE_NAME_CASE(FCVT_W_RV64)
11380   NODE_NAME_CASE(FCVT_WU_RV64)
11381   NODE_NAME_CASE(STRICT_FCVT_W_RV64)
11382   NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
11383   NODE_NAME_CASE(READ_CYCLE_WIDE)
11384   NODE_NAME_CASE(GREV)
11385   NODE_NAME_CASE(GREVW)
11386   NODE_NAME_CASE(GORC)
11387   NODE_NAME_CASE(GORCW)
11388   NODE_NAME_CASE(SHFL)
11389   NODE_NAME_CASE(SHFLW)
11390   NODE_NAME_CASE(UNSHFL)
11391   NODE_NAME_CASE(UNSHFLW)
11392   NODE_NAME_CASE(BFP)
11393   NODE_NAME_CASE(BFPW)
11394   NODE_NAME_CASE(BCOMPRESS)
11395   NODE_NAME_CASE(BCOMPRESSW)
11396   NODE_NAME_CASE(BDECOMPRESS)
11397   NODE_NAME_CASE(BDECOMPRESSW)
11398   NODE_NAME_CASE(VMV_V_X_VL)
11399   NODE_NAME_CASE(VFMV_V_F_VL)
11400   NODE_NAME_CASE(VMV_X_S)
11401   NODE_NAME_CASE(VMV_S_X_VL)
11402   NODE_NAME_CASE(VFMV_S_F_VL)
11403   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
11404   NODE_NAME_CASE(READ_VLENB)
11405   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
11406   NODE_NAME_CASE(VSLIDEUP_VL)
11407   NODE_NAME_CASE(VSLIDE1UP_VL)
11408   NODE_NAME_CASE(VSLIDEDOWN_VL)
11409   NODE_NAME_CASE(VSLIDE1DOWN_VL)
11410   NODE_NAME_CASE(VID_VL)
11411   NODE_NAME_CASE(VFNCVT_ROD_VL)
11412   NODE_NAME_CASE(VECREDUCE_ADD_VL)
11413   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
11414   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
11415   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
11416   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
11417   NODE_NAME_CASE(VECREDUCE_AND_VL)
11418   NODE_NAME_CASE(VECREDUCE_OR_VL)
11419   NODE_NAME_CASE(VECREDUCE_XOR_VL)
11420   NODE_NAME_CASE(VECREDUCE_FADD_VL)
11421   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
11422   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
11423   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
11424   NODE_NAME_CASE(ADD_VL)
11425   NODE_NAME_CASE(AND_VL)
11426   NODE_NAME_CASE(MUL_VL)
11427   NODE_NAME_CASE(OR_VL)
11428   NODE_NAME_CASE(SDIV_VL)
11429   NODE_NAME_CASE(SHL_VL)
11430   NODE_NAME_CASE(SREM_VL)
11431   NODE_NAME_CASE(SRA_VL)
11432   NODE_NAME_CASE(SRL_VL)
11433   NODE_NAME_CASE(SUB_VL)
11434   NODE_NAME_CASE(UDIV_VL)
11435   NODE_NAME_CASE(UREM_VL)
11436   NODE_NAME_CASE(XOR_VL)
11437   NODE_NAME_CASE(SADDSAT_VL)
11438   NODE_NAME_CASE(UADDSAT_VL)
11439   NODE_NAME_CASE(SSUBSAT_VL)
11440   NODE_NAME_CASE(USUBSAT_VL)
11441   NODE_NAME_CASE(FADD_VL)
11442   NODE_NAME_CASE(FSUB_VL)
11443   NODE_NAME_CASE(FMUL_VL)
11444   NODE_NAME_CASE(FDIV_VL)
11445   NODE_NAME_CASE(FNEG_VL)
11446   NODE_NAME_CASE(FABS_VL)
11447   NODE_NAME_CASE(FSQRT_VL)
11448   NODE_NAME_CASE(VFMADD_VL)
11449   NODE_NAME_CASE(VFNMADD_VL)
11450   NODE_NAME_CASE(VFMSUB_VL)
11451   NODE_NAME_CASE(VFNMSUB_VL)
11452   NODE_NAME_CASE(FCOPYSIGN_VL)
11453   NODE_NAME_CASE(SMIN_VL)
11454   NODE_NAME_CASE(SMAX_VL)
11455   NODE_NAME_CASE(UMIN_VL)
11456   NODE_NAME_CASE(UMAX_VL)
11457   NODE_NAME_CASE(FMINNUM_VL)
11458   NODE_NAME_CASE(FMAXNUM_VL)
11459   NODE_NAME_CASE(MULHS_VL)
11460   NODE_NAME_CASE(MULHU_VL)
11461   NODE_NAME_CASE(FP_TO_SINT_VL)
11462   NODE_NAME_CASE(FP_TO_UINT_VL)
11463   NODE_NAME_CASE(SINT_TO_FP_VL)
11464   NODE_NAME_CASE(UINT_TO_FP_VL)
11465   NODE_NAME_CASE(FP_EXTEND_VL)
11466   NODE_NAME_CASE(FP_ROUND_VL)
11467   NODE_NAME_CASE(VWMUL_VL)
11468   NODE_NAME_CASE(VWMULU_VL)
11469   NODE_NAME_CASE(VWMULSU_VL)
11470   NODE_NAME_CASE(VWADD_VL)
11471   NODE_NAME_CASE(VWADDU_VL)
11472   NODE_NAME_CASE(VWSUB_VL)
11473   NODE_NAME_CASE(VWSUBU_VL)
11474   NODE_NAME_CASE(VWADD_W_VL)
11475   NODE_NAME_CASE(VWADDU_W_VL)
11476   NODE_NAME_CASE(VWSUB_W_VL)
11477   NODE_NAME_CASE(VWSUBU_W_VL)
11478   NODE_NAME_CASE(SETCC_VL)
11479   NODE_NAME_CASE(VSELECT_VL)
11480   NODE_NAME_CASE(VP_MERGE_VL)
11481   NODE_NAME_CASE(VMAND_VL)
11482   NODE_NAME_CASE(VMOR_VL)
11483   NODE_NAME_CASE(VMXOR_VL)
11484   NODE_NAME_CASE(VMCLR_VL)
11485   NODE_NAME_CASE(VMSET_VL)
11486   NODE_NAME_CASE(VRGATHER_VX_VL)
11487   NODE_NAME_CASE(VRGATHER_VV_VL)
11488   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
11489   NODE_NAME_CASE(VSEXT_VL)
11490   NODE_NAME_CASE(VZEXT_VL)
11491   NODE_NAME_CASE(VCPOP_VL)
11492   NODE_NAME_CASE(READ_CSR)
11493   NODE_NAME_CASE(WRITE_CSR)
11494   NODE_NAME_CASE(SWAP_CSR)
11495   }
11496   // clang-format on
11497   return nullptr;
11498 #undef NODE_NAME_CASE
11499 }
11500 
11501 /// getConstraintType - Given a constraint letter, return the type of
11502 /// constraint it is for this target.
11503 RISCVTargetLowering::ConstraintType
11504 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
11505   if (Constraint.size() == 1) {
11506     switch (Constraint[0]) {
11507     default:
11508       break;
11509     case 'f':
11510       return C_RegisterClass;
11511     case 'I':
11512     case 'J':
11513     case 'K':
11514       return C_Immediate;
11515     case 'A':
11516       return C_Memory;
11517     case 'S': // A symbolic address
11518       return C_Other;
11519     }
11520   } else {
11521     if (Constraint == "vr" || Constraint == "vm")
11522       return C_RegisterClass;
11523   }
11524   return TargetLowering::getConstraintType(Constraint);
11525 }
11526 
11527 std::pair<unsigned, const TargetRegisterClass *>
11528 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
11529                                                   StringRef Constraint,
11530                                                   MVT VT) const {
11531   // First, see if this is a constraint that directly corresponds to a
11532   // RISCV register class.
11533   if (Constraint.size() == 1) {
11534     switch (Constraint[0]) {
11535     case 'r':
11536       // TODO: Support fixed vectors up to XLen for P extension?
11537       if (VT.isVector())
11538         break;
11539       return std::make_pair(0U, &RISCV::GPRRegClass);
11540     case 'f':
11541       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
11542         return std::make_pair(0U, &RISCV::FPR16RegClass);
11543       if (Subtarget.hasStdExtF() && VT == MVT::f32)
11544         return std::make_pair(0U, &RISCV::FPR32RegClass);
11545       if (Subtarget.hasStdExtD() && VT == MVT::f64)
11546         return std::make_pair(0U, &RISCV::FPR64RegClass);
11547       break;
11548     default:
11549       break;
11550     }
11551   } else if (Constraint == "vr") {
11552     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
11553                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11554       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
11555         return std::make_pair(0U, RC);
11556     }
11557   } else if (Constraint == "vm") {
11558     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
11559       return std::make_pair(0U, &RISCV::VMV0RegClass);
11560   }
11561 
11562   // Clang will correctly decode the usage of register name aliases into their
11563   // official names. However, other frontends like `rustc` do not. This allows
11564   // users of these frontends to use the ABI names for registers in LLVM-style
11565   // register constraints.
11566   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
11567                                .Case("{zero}", RISCV::X0)
11568                                .Case("{ra}", RISCV::X1)
11569                                .Case("{sp}", RISCV::X2)
11570                                .Case("{gp}", RISCV::X3)
11571                                .Case("{tp}", RISCV::X4)
11572                                .Case("{t0}", RISCV::X5)
11573                                .Case("{t1}", RISCV::X6)
11574                                .Case("{t2}", RISCV::X7)
11575                                .Cases("{s0}", "{fp}", RISCV::X8)
11576                                .Case("{s1}", RISCV::X9)
11577                                .Case("{a0}", RISCV::X10)
11578                                .Case("{a1}", RISCV::X11)
11579                                .Case("{a2}", RISCV::X12)
11580                                .Case("{a3}", RISCV::X13)
11581                                .Case("{a4}", RISCV::X14)
11582                                .Case("{a5}", RISCV::X15)
11583                                .Case("{a6}", RISCV::X16)
11584                                .Case("{a7}", RISCV::X17)
11585                                .Case("{s2}", RISCV::X18)
11586                                .Case("{s3}", RISCV::X19)
11587                                .Case("{s4}", RISCV::X20)
11588                                .Case("{s5}", RISCV::X21)
11589                                .Case("{s6}", RISCV::X22)
11590                                .Case("{s7}", RISCV::X23)
11591                                .Case("{s8}", RISCV::X24)
11592                                .Case("{s9}", RISCV::X25)
11593                                .Case("{s10}", RISCV::X26)
11594                                .Case("{s11}", RISCV::X27)
11595                                .Case("{t3}", RISCV::X28)
11596                                .Case("{t4}", RISCV::X29)
11597                                .Case("{t5}", RISCV::X30)
11598                                .Case("{t6}", RISCV::X31)
11599                                .Default(RISCV::NoRegister);
11600   if (XRegFromAlias != RISCV::NoRegister)
11601     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
11602 
11603   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
11604   // TableGen record rather than the AsmName to choose registers for InlineAsm
11605   // constraints, plus we want to match those names to the widest floating point
11606   // register type available, manually select floating point registers here.
11607   //
11608   // The second case is the ABI name of the register, so that frontends can also
11609   // use the ABI names in register constraint lists.
11610   if (Subtarget.hasStdExtF()) {
11611     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
11612                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
11613                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
11614                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
11615                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
11616                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
11617                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
11618                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
11619                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
11620                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
11621                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
11622                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
11623                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
11624                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
11625                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
11626                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
11627                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
11628                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
11629                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
11630                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
11631                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
11632                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
11633                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
11634                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
11635                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
11636                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
11637                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
11638                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
11639                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
11640                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
11641                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
11642                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
11643                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
11644                         .Default(RISCV::NoRegister);
11645     if (FReg != RISCV::NoRegister) {
11646       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
11647       if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
11648         unsigned RegNo = FReg - RISCV::F0_F;
11649         unsigned DReg = RISCV::F0_D + RegNo;
11650         return std::make_pair(DReg, &RISCV::FPR64RegClass);
11651       }
11652       if (VT == MVT::f32 || VT == MVT::Other)
11653         return std::make_pair(FReg, &RISCV::FPR32RegClass);
11654       if (Subtarget.hasStdExtZfh() && VT == MVT::f16) {
11655         unsigned RegNo = FReg - RISCV::F0_F;
11656         unsigned HReg = RISCV::F0_H + RegNo;
11657         return std::make_pair(HReg, &RISCV::FPR16RegClass);
11658       }
11659     }
11660   }
11661 
11662   if (Subtarget.hasVInstructions()) {
11663     Register VReg = StringSwitch<Register>(Constraint.lower())
11664                         .Case("{v0}", RISCV::V0)
11665                         .Case("{v1}", RISCV::V1)
11666                         .Case("{v2}", RISCV::V2)
11667                         .Case("{v3}", RISCV::V3)
11668                         .Case("{v4}", RISCV::V4)
11669                         .Case("{v5}", RISCV::V5)
11670                         .Case("{v6}", RISCV::V6)
11671                         .Case("{v7}", RISCV::V7)
11672                         .Case("{v8}", RISCV::V8)
11673                         .Case("{v9}", RISCV::V9)
11674                         .Case("{v10}", RISCV::V10)
11675                         .Case("{v11}", RISCV::V11)
11676                         .Case("{v12}", RISCV::V12)
11677                         .Case("{v13}", RISCV::V13)
11678                         .Case("{v14}", RISCV::V14)
11679                         .Case("{v15}", RISCV::V15)
11680                         .Case("{v16}", RISCV::V16)
11681                         .Case("{v17}", RISCV::V17)
11682                         .Case("{v18}", RISCV::V18)
11683                         .Case("{v19}", RISCV::V19)
11684                         .Case("{v20}", RISCV::V20)
11685                         .Case("{v21}", RISCV::V21)
11686                         .Case("{v22}", RISCV::V22)
11687                         .Case("{v23}", RISCV::V23)
11688                         .Case("{v24}", RISCV::V24)
11689                         .Case("{v25}", RISCV::V25)
11690                         .Case("{v26}", RISCV::V26)
11691                         .Case("{v27}", RISCV::V27)
11692                         .Case("{v28}", RISCV::V28)
11693                         .Case("{v29}", RISCV::V29)
11694                         .Case("{v30}", RISCV::V30)
11695                         .Case("{v31}", RISCV::V31)
11696                         .Default(RISCV::NoRegister);
11697     if (VReg != RISCV::NoRegister) {
11698       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
11699         return std::make_pair(VReg, &RISCV::VMRegClass);
11700       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
11701         return std::make_pair(VReg, &RISCV::VRRegClass);
11702       for (const auto *RC :
11703            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11704         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
11705           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
11706           return std::make_pair(VReg, RC);
11707         }
11708       }
11709     }
11710   }
11711 
11712   std::pair<Register, const TargetRegisterClass *> Res =
11713       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11714 
11715   // If we picked one of the Zfinx register classes, remap it to the GPR class.
11716   // FIXME: When Zfinx is supported in CodeGen this will need to take the
11717   // Subtarget into account.
11718   if (Res.second == &RISCV::GPRF16RegClass ||
11719       Res.second == &RISCV::GPRF32RegClass ||
11720       Res.second == &RISCV::GPRF64RegClass)
11721     return std::make_pair(Res.first, &RISCV::GPRRegClass);
11722 
11723   return Res;
11724 }
11725 
11726 unsigned
11727 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
11728   // Currently only support length 1 constraints.
11729   if (ConstraintCode.size() == 1) {
11730     switch (ConstraintCode[0]) {
11731     case 'A':
11732       return InlineAsm::Constraint_A;
11733     default:
11734       break;
11735     }
11736   }
11737 
11738   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
11739 }
11740 
11741 void RISCVTargetLowering::LowerAsmOperandForConstraint(
11742     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
11743     SelectionDAG &DAG) const {
11744   // Currently only support length 1 constraints.
11745   if (Constraint.length() == 1) {
11746     switch (Constraint[0]) {
11747     case 'I':
11748       // Validate & create a 12-bit signed immediate operand.
11749       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11750         uint64_t CVal = C->getSExtValue();
11751         if (isInt<12>(CVal))
11752           Ops.push_back(
11753               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11754       }
11755       return;
11756     case 'J':
11757       // Validate & create an integer zero operand.
11758       if (auto *C = dyn_cast<ConstantSDNode>(Op))
11759         if (C->getZExtValue() == 0)
11760           Ops.push_back(
11761               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
11762       return;
11763     case 'K':
11764       // Validate & create a 5-bit unsigned immediate operand.
11765       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11766         uint64_t CVal = C->getZExtValue();
11767         if (isUInt<5>(CVal))
11768           Ops.push_back(
11769               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11770       }
11771       return;
11772     case 'S':
11773       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
11774         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
11775                                                  GA->getValueType(0)));
11776       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
11777         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
11778                                                 BA->getValueType(0)));
11779       }
11780       return;
11781     default:
11782       break;
11783     }
11784   }
11785   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11786 }
11787 
11788 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
11789                                                    Instruction *Inst,
11790                                                    AtomicOrdering Ord) const {
11791   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
11792     return Builder.CreateFence(Ord);
11793   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
11794     return Builder.CreateFence(AtomicOrdering::Release);
11795   return nullptr;
11796 }
11797 
11798 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
11799                                                     Instruction *Inst,
11800                                                     AtomicOrdering Ord) const {
11801   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
11802     return Builder.CreateFence(AtomicOrdering::Acquire);
11803   return nullptr;
11804 }
11805 
11806 TargetLowering::AtomicExpansionKind
11807 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
11808   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
11809   // point operations can't be used in an lr/sc sequence without breaking the
11810   // forward-progress guarantee.
11811   if (AI->isFloatingPointOperation())
11812     return AtomicExpansionKind::CmpXChg;
11813 
11814   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
11815   if (Size == 8 || Size == 16)
11816     return AtomicExpansionKind::MaskedIntrinsic;
11817   return AtomicExpansionKind::None;
11818 }
11819 
11820 static Intrinsic::ID
11821 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
11822   if (XLen == 32) {
11823     switch (BinOp) {
11824     default:
11825       llvm_unreachable("Unexpected AtomicRMW BinOp");
11826     case AtomicRMWInst::Xchg:
11827       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
11828     case AtomicRMWInst::Add:
11829       return Intrinsic::riscv_masked_atomicrmw_add_i32;
11830     case AtomicRMWInst::Sub:
11831       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
11832     case AtomicRMWInst::Nand:
11833       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
11834     case AtomicRMWInst::Max:
11835       return Intrinsic::riscv_masked_atomicrmw_max_i32;
11836     case AtomicRMWInst::Min:
11837       return Intrinsic::riscv_masked_atomicrmw_min_i32;
11838     case AtomicRMWInst::UMax:
11839       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
11840     case AtomicRMWInst::UMin:
11841       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
11842     }
11843   }
11844 
11845   if (XLen == 64) {
11846     switch (BinOp) {
11847     default:
11848       llvm_unreachable("Unexpected AtomicRMW BinOp");
11849     case AtomicRMWInst::Xchg:
11850       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
11851     case AtomicRMWInst::Add:
11852       return Intrinsic::riscv_masked_atomicrmw_add_i64;
11853     case AtomicRMWInst::Sub:
11854       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
11855     case AtomicRMWInst::Nand:
11856       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
11857     case AtomicRMWInst::Max:
11858       return Intrinsic::riscv_masked_atomicrmw_max_i64;
11859     case AtomicRMWInst::Min:
11860       return Intrinsic::riscv_masked_atomicrmw_min_i64;
11861     case AtomicRMWInst::UMax:
11862       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
11863     case AtomicRMWInst::UMin:
11864       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
11865     }
11866   }
11867 
11868   llvm_unreachable("Unexpected XLen\n");
11869 }
11870 
11871 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
11872     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
11873     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
11874   unsigned XLen = Subtarget.getXLen();
11875   Value *Ordering =
11876       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
11877   Type *Tys[] = {AlignedAddr->getType()};
11878   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
11879       AI->getModule(),
11880       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
11881 
11882   if (XLen == 64) {
11883     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
11884     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11885     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
11886   }
11887 
11888   Value *Result;
11889 
11890   // Must pass the shift amount needed to sign extend the loaded value prior
11891   // to performing a signed comparison for min/max. ShiftAmt is the number of
11892   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
11893   // is the number of bits to left+right shift the value in order to
11894   // sign-extend.
11895   if (AI->getOperation() == AtomicRMWInst::Min ||
11896       AI->getOperation() == AtomicRMWInst::Max) {
11897     const DataLayout &DL = AI->getModule()->getDataLayout();
11898     unsigned ValWidth =
11899         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
11900     Value *SextShamt =
11901         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
11902     Result = Builder.CreateCall(LrwOpScwLoop,
11903                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
11904   } else {
11905     Result =
11906         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
11907   }
11908 
11909   if (XLen == 64)
11910     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11911   return Result;
11912 }
11913 
11914 TargetLowering::AtomicExpansionKind
11915 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
11916     AtomicCmpXchgInst *CI) const {
11917   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
11918   if (Size == 8 || Size == 16)
11919     return AtomicExpansionKind::MaskedIntrinsic;
11920   return AtomicExpansionKind::None;
11921 }
11922 
11923 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
11924     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
11925     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
11926   unsigned XLen = Subtarget.getXLen();
11927   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
11928   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
11929   if (XLen == 64) {
11930     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
11931     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
11932     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11933     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
11934   }
11935   Type *Tys[] = {AlignedAddr->getType()};
11936   Function *MaskedCmpXchg =
11937       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
11938   Value *Result = Builder.CreateCall(
11939       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
11940   if (XLen == 64)
11941     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11942   return Result;
11943 }
11944 
11945 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT IndexVT,
11946                                                         EVT DataVT) const {
11947   return false;
11948 }
11949 
11950 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
11951                                                EVT VT) const {
11952   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
11953     return false;
11954 
11955   switch (FPVT.getSimpleVT().SimpleTy) {
11956   case MVT::f16:
11957     return Subtarget.hasStdExtZfh();
11958   case MVT::f32:
11959     return Subtarget.hasStdExtF();
11960   case MVT::f64:
11961     return Subtarget.hasStdExtD();
11962   default:
11963     return false;
11964   }
11965 }
11966 
11967 unsigned RISCVTargetLowering::getJumpTableEncoding() const {
11968   // If we are using the small code model, we can reduce size of jump table
11969   // entry to 4 bytes.
11970   if (Subtarget.is64Bit() && !isPositionIndependent() &&
11971       getTargetMachine().getCodeModel() == CodeModel::Small) {
11972     return MachineJumpTableInfo::EK_Custom32;
11973   }
11974   return TargetLowering::getJumpTableEncoding();
11975 }
11976 
11977 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
11978     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
11979     unsigned uid, MCContext &Ctx) const {
11980   assert(Subtarget.is64Bit() && !isPositionIndependent() &&
11981          getTargetMachine().getCodeModel() == CodeModel::Small);
11982   return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
11983 }
11984 
11985 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
11986                                                      EVT VT) const {
11987   VT = VT.getScalarType();
11988 
11989   if (!VT.isSimple())
11990     return false;
11991 
11992   switch (VT.getSimpleVT().SimpleTy) {
11993   case MVT::f16:
11994     return Subtarget.hasStdExtZfh();
11995   case MVT::f32:
11996     return Subtarget.hasStdExtF();
11997   case MVT::f64:
11998     return Subtarget.hasStdExtD();
11999   default:
12000     break;
12001   }
12002 
12003   return false;
12004 }
12005 
12006 Register RISCVTargetLowering::getExceptionPointerRegister(
12007     const Constant *PersonalityFn) const {
12008   return RISCV::X10;
12009 }
12010 
12011 Register RISCVTargetLowering::getExceptionSelectorRegister(
12012     const Constant *PersonalityFn) const {
12013   return RISCV::X11;
12014 }
12015 
12016 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
12017   // Return false to suppress the unnecessary extensions if the LibCall
12018   // arguments or return value is f32 type for LP64 ABI.
12019   RISCVABI::ABI ABI = Subtarget.getTargetABI();
12020   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
12021     return false;
12022 
12023   return true;
12024 }
12025 
12026 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
12027   if (Subtarget.is64Bit() && Type == MVT::i32)
12028     return true;
12029 
12030   return IsSigned;
12031 }
12032 
12033 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
12034                                                  SDValue C) const {
12035   // Check integral scalar types.
12036   if (VT.isScalarInteger()) {
12037     // Omit the optimization if the sub target has the M extension and the data
12038     // size exceeds XLen.
12039     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
12040       return false;
12041     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
12042       // Break the MUL to a SLLI and an ADD/SUB.
12043       const APInt &Imm = ConstNode->getAPIntValue();
12044       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
12045           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
12046         return true;
12047       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
12048       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
12049           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
12050            (Imm - 8).isPowerOf2()))
12051         return true;
12052       // Omit the following optimization if the sub target has the M extension
12053       // and the data size >= XLen.
12054       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
12055         return false;
12056       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
12057       // a pair of LUI/ADDI.
12058       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
12059         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
12060         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
12061             (1 - ImmS).isPowerOf2())
12062           return true;
12063       }
12064     }
12065   }
12066 
12067   return false;
12068 }
12069 
12070 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
12071                                                       SDValue ConstNode) const {
12072   // Let the DAGCombiner decide for vectors.
12073   EVT VT = AddNode.getValueType();
12074   if (VT.isVector())
12075     return true;
12076 
12077   // Let the DAGCombiner decide for larger types.
12078   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
12079     return true;
12080 
12081   // It is worse if c1 is simm12 while c1*c2 is not.
12082   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
12083   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
12084   const APInt &C1 = C1Node->getAPIntValue();
12085   const APInt &C2 = C2Node->getAPIntValue();
12086   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
12087     return false;
12088 
12089   // Default to true and let the DAGCombiner decide.
12090   return true;
12091 }
12092 
12093 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
12094     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
12095     bool *Fast) const {
12096   if (!VT.isVector()) {
12097     if (Fast)
12098       *Fast = false;
12099     return Subtarget.enableUnalignedScalarMem();
12100   }
12101 
12102   // All vector implementations must support element alignment
12103   EVT ElemVT = VT.getVectorElementType();
12104   if (Alignment >= ElemVT.getStoreSize()) {
12105     if (Fast)
12106       *Fast = true;
12107     return true;
12108   }
12109 
12110   return false;
12111 }
12112 
12113 bool RISCVTargetLowering::splitValueIntoRegisterParts(
12114     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
12115     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
12116   bool IsABIRegCopy = CC.has_value();
12117   EVT ValueVT = Val.getValueType();
12118   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
12119     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
12120     // and cast to f32.
12121     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
12122     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
12123     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
12124                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
12125     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
12126     Parts[0] = Val;
12127     return true;
12128   }
12129 
12130   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
12131     LLVMContext &Context = *DAG.getContext();
12132     EVT ValueEltVT = ValueVT.getVectorElementType();
12133     EVT PartEltVT = PartVT.getVectorElementType();
12134     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
12135     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
12136     if (PartVTBitSize % ValueVTBitSize == 0) {
12137       assert(PartVTBitSize >= ValueVTBitSize);
12138       // If the element types are different, bitcast to the same element type of
12139       // PartVT first.
12140       // Give an example here, we want copy a <vscale x 1 x i8> value to
12141       // <vscale x 4 x i16>.
12142       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
12143       // subvector, then we can bitcast to <vscale x 4 x i16>.
12144       if (ValueEltVT != PartEltVT) {
12145         if (PartVTBitSize > ValueVTBitSize) {
12146           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
12147           assert(Count != 0 && "The number of element should not be zero.");
12148           EVT SameEltTypeVT =
12149               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
12150           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
12151                             DAG.getUNDEF(SameEltTypeVT), Val,
12152                             DAG.getVectorIdxConstant(0, DL));
12153         }
12154         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
12155       } else {
12156         Val =
12157             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
12158                         Val, DAG.getVectorIdxConstant(0, DL));
12159       }
12160       Parts[0] = Val;
12161       return true;
12162     }
12163   }
12164   return false;
12165 }
12166 
12167 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
12168     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
12169     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
12170   bool IsABIRegCopy = CC.has_value();
12171   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
12172     SDValue Val = Parts[0];
12173 
12174     // Cast the f32 to i32, truncate to i16, and cast back to f16.
12175     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
12176     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
12177     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
12178     return Val;
12179   }
12180 
12181   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
12182     LLVMContext &Context = *DAG.getContext();
12183     SDValue Val = Parts[0];
12184     EVT ValueEltVT = ValueVT.getVectorElementType();
12185     EVT PartEltVT = PartVT.getVectorElementType();
12186     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
12187     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
12188     if (PartVTBitSize % ValueVTBitSize == 0) {
12189       assert(PartVTBitSize >= ValueVTBitSize);
12190       EVT SameEltTypeVT = ValueVT;
12191       // If the element types are different, convert it to the same element type
12192       // of PartVT.
12193       // Give an example here, we want copy a <vscale x 1 x i8> value from
12194       // <vscale x 4 x i16>.
12195       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
12196       // then we can extract <vscale x 1 x i8>.
12197       if (ValueEltVT != PartEltVT) {
12198         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
12199         assert(Count != 0 && "The number of element should not be zero.");
12200         SameEltTypeVT =
12201             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
12202         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
12203       }
12204       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
12205                         DAG.getVectorIdxConstant(0, DL));
12206       return Val;
12207     }
12208   }
12209   return SDValue();
12210 }
12211 
12212 SDValue
12213 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
12214                                    SelectionDAG &DAG,
12215                                    SmallVectorImpl<SDNode *> &Created) const {
12216   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
12217   if (isIntDivCheap(N->getValueType(0), Attr))
12218     return SDValue(N, 0); // Lower SDIV as SDIV
12219 
12220   assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) &&
12221          "Unexpected divisor!");
12222 
12223   // Conditional move is needed, so do the transformation iff Zbt is enabled.
12224   if (!Subtarget.hasStdExtZbt())
12225     return SDValue();
12226 
12227   // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation.
12228   // Besides, more critical path instructions will be generated when dividing
12229   // by 2. So we keep using the original DAGs for these cases.
12230   unsigned Lg2 = Divisor.countTrailingZeros();
12231   if (Lg2 == 1 || Lg2 >= 12)
12232     return SDValue();
12233 
12234   // fold (sdiv X, pow2)
12235   EVT VT = N->getValueType(0);
12236   if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64))
12237     return SDValue();
12238 
12239   SDLoc DL(N);
12240   SDValue N0 = N->getOperand(0);
12241   SDValue Zero = DAG.getConstant(0, DL, VT);
12242   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
12243 
12244   // Add (N0 < 0) ? Pow2 - 1 : 0;
12245   SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT);
12246   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
12247   SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
12248 
12249   Created.push_back(Cmp.getNode());
12250   Created.push_back(Add.getNode());
12251   Created.push_back(Sel.getNode());
12252 
12253   // Divide by pow2.
12254   SDValue SRA =
12255       DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT));
12256 
12257   // If we're dividing by a positive value, we're done.  Otherwise, we must
12258   // negate the result.
12259   if (Divisor.isNonNegative())
12260     return SRA;
12261 
12262   Created.push_back(SRA.getNode());
12263   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
12264 }
12265 
12266 #define GET_REGISTER_MATCHER
12267 #include "RISCVGenAsmMatcher.inc"
12268 
12269 Register
12270 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
12271                                        const MachineFunction &MF) const {
12272   Register Reg = MatchRegisterAltName(RegName);
12273   if (Reg == RISCV::NoRegister)
12274     Reg = MatchRegisterName(RegName);
12275   if (Reg == RISCV::NoRegister)
12276     report_fatal_error(
12277         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
12278   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
12279   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
12280     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
12281                              StringRef(RegName) + "\"."));
12282   return Reg;
12283 }
12284 
12285 namespace llvm {
12286 namespace RISCVVIntrinsicsTable {
12287 
12288 #define GET_RISCVVIntrinsicsTable_IMPL
12289 #include "RISCVGenSearchableTables.inc"
12290 
12291 } // namespace RISCVVIntrinsicsTable
12292 
12293 } // namespace llvm
12294