1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/IntrinsicsRISCV.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/KnownBits.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "riscv-lower" 45 46 STATISTIC(NumTailCalls, "Number of tail calls"); 47 48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 49 const RISCVSubtarget &STI) 50 : TargetLowering(TM), Subtarget(STI) { 51 52 if (Subtarget.isRV32E()) 53 report_fatal_error("Codegen not yet implemented for RV32E"); 54 55 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 56 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 57 58 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 59 !Subtarget.hasStdExtF()) { 60 errs() << "Hard-float 'f' ABI can't be used for a target that " 61 "doesn't support the F instruction set extension (ignoring " 62 "target-abi)\n"; 63 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 64 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 65 !Subtarget.hasStdExtD()) { 66 errs() << "Hard-float 'd' ABI can't be used for a target that " 67 "doesn't support the D instruction set extension (ignoring " 68 "target-abi)\n"; 69 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 70 } 71 72 switch (ABI) { 73 default: 74 report_fatal_error("Don't know how to lower this ABI"); 75 case RISCVABI::ABI_ILP32: 76 case RISCVABI::ABI_ILP32F: 77 case RISCVABI::ABI_ILP32D: 78 case RISCVABI::ABI_LP64: 79 case RISCVABI::ABI_LP64F: 80 case RISCVABI::ABI_LP64D: 81 break; 82 } 83 84 MVT XLenVT = Subtarget.getXLenVT(); 85 86 // Set up the register classes. 87 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 88 89 if (Subtarget.hasStdExtZfh()) 90 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 91 if (Subtarget.hasStdExtF()) 92 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 93 if (Subtarget.hasStdExtD()) 94 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 95 96 static const MVT::SimpleValueType BoolVecVTs[] = { 97 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 98 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 99 static const MVT::SimpleValueType IntVecVTs[] = { 100 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 101 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 102 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 103 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 104 MVT::nxv4i64, MVT::nxv8i64}; 105 static const MVT::SimpleValueType F16VecVTs[] = { 106 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 107 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 108 static const MVT::SimpleValueType F32VecVTs[] = { 109 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 110 static const MVT::SimpleValueType F64VecVTs[] = { 111 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 112 113 if (Subtarget.hasVInstructions()) { 114 auto addRegClassForRVV = [this](MVT VT) { 115 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 116 const TargetRegisterClass *RC; 117 if (Size <= RISCV::RVVBitsPerBlock) 118 RC = &RISCV::VRRegClass; 119 else if (Size == 2 * RISCV::RVVBitsPerBlock) 120 RC = &RISCV::VRM2RegClass; 121 else if (Size == 4 * RISCV::RVVBitsPerBlock) 122 RC = &RISCV::VRM4RegClass; 123 else if (Size == 8 * RISCV::RVVBitsPerBlock) 124 RC = &RISCV::VRM8RegClass; 125 else 126 llvm_unreachable("Unexpected size"); 127 128 addRegisterClass(VT, RC); 129 }; 130 131 for (MVT VT : BoolVecVTs) 132 addRegClassForRVV(VT); 133 for (MVT VT : IntVecVTs) { 134 if (VT.getVectorElementType() == MVT::i64 && 135 !Subtarget.hasVInstructionsI64()) 136 continue; 137 addRegClassForRVV(VT); 138 } 139 140 if (Subtarget.hasVInstructionsF16()) 141 for (MVT VT : F16VecVTs) 142 addRegClassForRVV(VT); 143 144 if (Subtarget.hasVInstructionsF32()) 145 for (MVT VT : F32VecVTs) 146 addRegClassForRVV(VT); 147 148 if (Subtarget.hasVInstructionsF64()) 149 for (MVT VT : F64VecVTs) 150 addRegClassForRVV(VT); 151 152 if (Subtarget.useRVVForFixedLengthVectors()) { 153 auto addRegClassForFixedVectors = [this](MVT VT) { 154 MVT ContainerVT = getContainerForFixedLengthVector(VT); 155 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 156 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 157 addRegisterClass(VT, TRI.getRegClass(RCID)); 158 }; 159 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 160 if (useRVVForFixedLengthVectorVT(VT)) 161 addRegClassForFixedVectors(VT); 162 163 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 164 if (useRVVForFixedLengthVectorVT(VT)) 165 addRegClassForFixedVectors(VT); 166 } 167 } 168 169 // Compute derived properties from the register classes. 170 computeRegisterProperties(STI.getRegisterInfo()); 171 172 setStackPointerRegisterToSaveRestore(RISCV::X2); 173 174 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, XLenVT, 175 MVT::i1, Promote); 176 177 // TODO: add all necessary setOperationAction calls. 178 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 179 180 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 181 setOperationAction(ISD::BR_CC, XLenVT, Expand); 182 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 183 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 184 185 setOperationAction({ISD::STACKSAVE, ISD::STACKRESTORE}, MVT::Other, Expand); 186 187 setOperationAction(ISD::VASTART, MVT::Other, Custom); 188 setOperationAction({ISD::VAARG, ISD::VACOPY, ISD::VAEND}, MVT::Other, Expand); 189 190 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 191 192 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 193 194 if (!Subtarget.hasStdExtZbb()) 195 setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::i8, MVT::i16}, Expand); 196 197 if (Subtarget.is64Bit()) { 198 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 199 200 setOperationAction({ISD::ADD, ISD::SUB, ISD::SHL, ISD::SRA, ISD::SRL}, 201 MVT::i32, Custom); 202 203 setOperationAction({ISD::UADDO, ISD::USUBO, ISD::UADDSAT, ISD::USUBSAT}, 204 MVT::i32, Custom); 205 } else { 206 setLibcallName( 207 {RTLIB::SHL_I128, RTLIB::SRL_I128, RTLIB::SRA_I128, RTLIB::MUL_I128}, 208 nullptr); 209 setLibcallName(RTLIB::MULO_I64, nullptr); 210 } 211 212 if (!Subtarget.hasStdExtM()) { 213 setOperationAction({ISD::MUL, ISD::MULHS, ISD::MULHU, ISD::SDIV, ISD::UDIV, 214 ISD::SREM, ISD::UREM}, 215 XLenVT, Expand); 216 } else { 217 if (Subtarget.is64Bit()) { 218 setOperationAction(ISD::MUL, {MVT::i32, MVT::i128}, Custom); 219 220 setOperationAction({ISD::SDIV, ISD::UDIV, ISD::UREM}, 221 {MVT::i8, MVT::i16, MVT::i32}, Custom); 222 } else { 223 setOperationAction(ISD::MUL, MVT::i64, Custom); 224 } 225 } 226 227 setOperationAction( 228 {ISD::SDIVREM, ISD::UDIVREM, ISD::SMUL_LOHI, ISD::UMUL_LOHI}, XLenVT, 229 Expand); 230 231 setOperationAction({ISD::SHL_PARTS, ISD::SRL_PARTS, ISD::SRA_PARTS}, XLenVT, 232 Custom); 233 234 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 235 Subtarget.hasStdExtZbkb()) { 236 if (Subtarget.is64Bit()) 237 setOperationAction({ISD::ROTL, ISD::ROTR}, MVT::i32, Custom); 238 } else { 239 setOperationAction({ISD::ROTL, ISD::ROTR}, XLenVT, Expand); 240 } 241 242 if (Subtarget.hasStdExtZbp()) { 243 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 244 // more combining. 245 setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, XLenVT, Custom); 246 247 // BSWAP i8 doesn't exist. 248 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 249 250 setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i16, Custom); 251 252 if (Subtarget.is64Bit()) 253 setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i32, Custom); 254 } else { 255 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 256 // pattern match it directly in isel. 257 setOperationAction(ISD::BSWAP, XLenVT, 258 (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) 259 ? Legal 260 : Expand); 261 // Zbkb can use rev8+brev8 to implement bitreverse. 262 setOperationAction(ISD::BITREVERSE, XLenVT, 263 Subtarget.hasStdExtZbkb() ? Custom : Expand); 264 } 265 266 if (Subtarget.hasStdExtZbb()) { 267 setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, XLenVT, 268 Legal); 269 270 if (Subtarget.is64Bit()) 271 setOperationAction( 272 {ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, 273 MVT::i32, Custom); 274 } else { 275 setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP}, XLenVT, Expand); 276 277 if (Subtarget.is64Bit()) 278 setOperationAction(ISD::ABS, MVT::i32, Custom); 279 } 280 281 if (Subtarget.hasStdExtZbt()) { 282 setOperationAction({ISD::FSHL, ISD::FSHR}, XLenVT, Custom); 283 setOperationAction(ISD::SELECT, XLenVT, Legal); 284 285 if (Subtarget.is64Bit()) 286 setOperationAction({ISD::FSHL, ISD::FSHR}, MVT::i32, Custom); 287 } else { 288 setOperationAction(ISD::SELECT, XLenVT, Custom); 289 } 290 291 static constexpr ISD::NodeType FPLegalNodeTypes[] = { 292 ISD::FMINNUM, ISD::FMAXNUM, ISD::LRINT, 293 ISD::LLRINT, ISD::LROUND, ISD::LLROUND, 294 ISD::STRICT_LRINT, ISD::STRICT_LLRINT, ISD::STRICT_LROUND, 295 ISD::STRICT_LLROUND, ISD::STRICT_FMA, ISD::STRICT_FADD, 296 ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV, 297 ISD::STRICT_FSQRT, ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS}; 298 299 static const ISD::CondCode FPCCToExpand[] = { 300 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 301 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 302 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 303 304 static const ISD::NodeType FPOpToExpand[] = { 305 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 306 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 307 308 if (Subtarget.hasStdExtZfh()) 309 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 310 311 if (Subtarget.hasStdExtZfh()) { 312 for (auto NT : FPLegalNodeTypes) 313 setOperationAction(NT, MVT::f16, Legal); 314 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); 315 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 316 setCondCodeAction(FPCCToExpand, MVT::f16, Expand); 317 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 318 setOperationAction(ISD::SELECT, MVT::f16, Custom); 319 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 320 321 setOperationAction({ISD::FREM, ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, 322 ISD::FRINT, ISD::FROUND, ISD::FROUNDEVEN, ISD::FTRUNC, 323 ISD::FPOW, ISD::FPOWI, ISD::FCOS, ISD::FSIN, 324 ISD::FSINCOS, ISD::FEXP, ISD::FEXP2, ISD::FLOG, 325 ISD::FLOG2, ISD::FLOG10}, 326 MVT::f16, Promote); 327 328 // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have 329 // complete support for all operations in LegalizeDAG. 330 331 // We need to custom promote this. 332 if (Subtarget.is64Bit()) 333 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 334 } 335 336 if (Subtarget.hasStdExtF()) { 337 for (auto NT : FPLegalNodeTypes) 338 setOperationAction(NT, MVT::f32, Legal); 339 setCondCodeAction(FPCCToExpand, MVT::f32, Expand); 340 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 341 setOperationAction(ISD::SELECT, MVT::f32, Custom); 342 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 343 for (auto Op : FPOpToExpand) 344 setOperationAction(Op, MVT::f32, Expand); 345 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 346 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 347 } 348 349 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 350 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 351 352 if (Subtarget.hasStdExtD()) { 353 for (auto NT : FPLegalNodeTypes) 354 setOperationAction(NT, MVT::f64, Legal); 355 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 356 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 357 setCondCodeAction(FPCCToExpand, MVT::f64, Expand); 358 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 359 setOperationAction(ISD::SELECT, MVT::f64, Custom); 360 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 361 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 362 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 363 for (auto Op : FPOpToExpand) 364 setOperationAction(Op, MVT::f64, Expand); 365 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 366 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 367 } 368 369 if (Subtarget.is64Bit()) 370 setOperationAction({ISD::FP_TO_UINT, ISD::FP_TO_SINT, 371 ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT}, 372 MVT::i32, Custom); 373 374 if (Subtarget.hasStdExtF()) { 375 setOperationAction({ISD::FP_TO_UINT_SAT, ISD::FP_TO_SINT_SAT}, XLenVT, 376 Custom); 377 378 setOperationAction({ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT, 379 ISD::STRICT_UINT_TO_FP, ISD::STRICT_SINT_TO_FP}, 380 XLenVT, Legal); 381 382 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 383 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 384 } 385 386 setOperationAction({ISD::GlobalAddress, ISD::BlockAddress, ISD::ConstantPool, 387 ISD::JumpTable}, 388 XLenVT, Custom); 389 390 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 391 392 if (Subtarget.is64Bit()) 393 setOperationAction(ISD::Constant, MVT::i64, Custom); 394 395 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 396 // Unfortunately this can't be determined just from the ISA naming string. 397 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 398 Subtarget.is64Bit() ? Legal : Custom); 399 400 setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Legal); 401 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 402 if (Subtarget.is64Bit()) 403 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 404 405 if (Subtarget.hasStdExtA()) { 406 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 407 setMinCmpXchgSizeInBits(32); 408 } else { 409 setMaxAtomicSizeInBitsSupported(0); 410 } 411 412 setBooleanContents(ZeroOrOneBooleanContent); 413 414 if (Subtarget.hasVInstructions()) { 415 setBooleanVectorContents(ZeroOrOneBooleanContent); 416 417 setOperationAction(ISD::VSCALE, XLenVT, Custom); 418 419 // RVV intrinsics may have illegal operands. 420 // We also need to custom legalize vmv.x.s. 421 setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN}, 422 {MVT::i8, MVT::i16}, Custom); 423 if (Subtarget.is64Bit()) 424 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 425 else 426 setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN}, 427 MVT::i64, Custom); 428 429 setOperationAction({ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID}, 430 MVT::Other, Custom); 431 432 static const unsigned IntegerVPOps[] = { 433 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 434 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 435 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 436 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 437 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 438 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 439 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 440 ISD::VP_MERGE, ISD::VP_SELECT, ISD::VP_FPTOSI, 441 ISD::VP_FPTOUI, ISD::VP_SETCC, ISD::VP_SIGN_EXTEND, 442 ISD::VP_ZERO_EXTEND, ISD::VP_TRUNCATE}; 443 444 static const unsigned FloatingPointVPOps[] = { 445 ISD::VP_FADD, ISD::VP_FSUB, 446 ISD::VP_FMUL, ISD::VP_FDIV, 447 ISD::VP_FNEG, ISD::VP_FMA, 448 ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 449 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, 450 ISD::VP_MERGE, ISD::VP_SELECT, 451 ISD::VP_SITOFP, ISD::VP_UITOFP, 452 ISD::VP_SETCC, ISD::VP_FP_ROUND, 453 ISD::VP_FP_EXTEND}; 454 455 if (!Subtarget.is64Bit()) { 456 // We must custom-lower certain vXi64 operations on RV32 due to the vector 457 // element type being illegal. 458 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, 459 MVT::i64, Custom); 460 461 setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND, 462 ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR, 463 ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN, 464 ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN}, 465 MVT::i64, Custom); 466 467 setOperationAction({ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 468 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, 469 ISD::VP_REDUCE_SMAX, ISD::VP_REDUCE_SMIN, 470 ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN}, 471 MVT::i64, Custom); 472 } 473 474 for (MVT VT : BoolVecVTs) { 475 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 476 477 // Mask VTs are custom-expanded into a series of standard nodes 478 setOperationAction({ISD::TRUNCATE, ISD::CONCAT_VECTORS, 479 ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, 480 VT, Custom); 481 482 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT, 483 Custom); 484 485 setOperationAction(ISD::SELECT, VT, Custom); 486 setOperationAction( 487 {ISD::SELECT_CC, ISD::VSELECT, ISD::VP_MERGE, ISD::VP_SELECT}, VT, 488 Expand); 489 490 setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR}, VT, Custom); 491 492 setOperationAction( 493 {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT, 494 Custom); 495 496 setOperationAction( 497 {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT, 498 Custom); 499 500 // RVV has native int->float & float->int conversions where the 501 // element type sizes are within one power-of-two of each other. Any 502 // wider distances between type sizes have to be lowered as sequences 503 // which progressively narrow the gap in stages. 504 setOperationAction( 505 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}, 506 VT, Custom); 507 508 // Expand all extending loads to types larger than this, and truncating 509 // stores from types larger than this. 510 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 511 setTruncStoreAction(OtherVT, VT, Expand); 512 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT, 513 VT, Expand); 514 } 515 516 setOperationAction( 517 {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_TRUNCATE, ISD::VP_SETCC}, VT, 518 Custom); 519 } 520 521 for (MVT VT : IntVecVTs) { 522 if (VT.getVectorElementType() == MVT::i64 && 523 !Subtarget.hasVInstructionsI64()) 524 continue; 525 526 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 527 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 528 529 // Vectors implement MULHS/MULHU. 530 setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, VT, Expand); 531 532 // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*. 533 if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) 534 setOperationAction({ISD::MULHU, ISD::MULHS}, VT, Expand); 535 536 setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, VT, 537 Legal); 538 539 setOperationAction({ISD::ROTL, ISD::ROTR}, VT, Expand); 540 541 setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP, ISD::BSWAP}, VT, 542 Expand); 543 544 setOperationAction(ISD::BSWAP, VT, Expand); 545 546 // Custom-lower extensions and truncations from/to mask types. 547 setOperationAction({ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, 548 VT, Custom); 549 550 // RVV has native int->float & float->int conversions where the 551 // element type sizes are within one power-of-two of each other. Any 552 // wider distances between type sizes have to be lowered as sequences 553 // which progressively narrow the gap in stages. 554 setOperationAction( 555 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}, 556 VT, Custom); 557 558 setOperationAction( 559 {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT, Legal); 560 561 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 562 // nodes which truncate by one power of two at a time. 563 setOperationAction(ISD::TRUNCATE, VT, Custom); 564 565 // Custom-lower insert/extract operations to simplify patterns. 566 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT, 567 Custom); 568 569 // Custom-lower reduction operations to set up the corresponding custom 570 // nodes' operands. 571 setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND, 572 ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR, 573 ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN, 574 ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN}, 575 VT, Custom); 576 577 setOperationAction(IntegerVPOps, VT, Custom); 578 579 setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom); 580 581 setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, 582 VT, Custom); 583 584 setOperationAction( 585 {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT, 586 Custom); 587 588 setOperationAction( 589 {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, 590 VT, Custom); 591 592 setOperationAction(ISD::SELECT, VT, Custom); 593 setOperationAction(ISD::SELECT_CC, VT, Expand); 594 595 setOperationAction({ISD::STEP_VECTOR, ISD::VECTOR_REVERSE}, VT, Custom); 596 597 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 598 setTruncStoreAction(VT, OtherVT, Expand); 599 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT, 600 VT, Expand); 601 } 602 603 // Splice 604 setOperationAction(ISD::VECTOR_SPLICE, VT, Custom); 605 606 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 607 // type that can represent the value exactly. 608 if (VT.getVectorElementType() != MVT::i64) { 609 MVT FloatEltVT = 610 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 611 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 612 if (isTypeLegal(FloatVT)) { 613 setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT, 614 Custom); 615 } 616 } 617 } 618 619 // Expand various CCs to best match the RVV ISA, which natively supports UNE 620 // but no other unordered comparisons, and supports all ordered comparisons 621 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 622 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 623 // and we pattern-match those back to the "original", swapping operands once 624 // more. This way we catch both operations and both "vf" and "fv" forms with 625 // fewer patterns. 626 static const ISD::CondCode VFPCCToExpand[] = { 627 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 628 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 629 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 630 }; 631 632 // Sets common operation actions on RVV floating-point vector types. 633 const auto SetCommonVFPActions = [&](MVT VT) { 634 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 635 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 636 // sizes are within one power-of-two of each other. Therefore conversions 637 // between vXf16 and vXf64 must be lowered as sequences which convert via 638 // vXf32. 639 setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom); 640 // Custom-lower insert/extract operations to simplify patterns. 641 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT, 642 Custom); 643 // Expand various condition codes (explained above). 644 setCondCodeAction(VFPCCToExpand, VT, Expand); 645 646 setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, VT, Legal); 647 648 setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND}, 649 VT, Custom); 650 651 setOperationAction({ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD, 652 ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAX}, 653 VT, Custom); 654 655 // Expand FP operations that need libcalls. 656 setOperationAction(ISD::FREM, VT, Expand); 657 setOperationAction(ISD::FPOW, VT, Expand); 658 setOperationAction(ISD::FCOS, VT, Expand); 659 setOperationAction(ISD::FSIN, VT, Expand); 660 setOperationAction(ISD::FSINCOS, VT, Expand); 661 setOperationAction(ISD::FEXP, VT, Expand); 662 setOperationAction(ISD::FEXP2, VT, Expand); 663 setOperationAction(ISD::FLOG, VT, Expand); 664 setOperationAction(ISD::FLOG2, VT, Expand); 665 setOperationAction(ISD::FLOG10, VT, Expand); 666 setOperationAction(ISD::FRINT, VT, Expand); 667 setOperationAction(ISD::FNEARBYINT, VT, Expand); 668 669 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 670 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 671 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 672 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 673 674 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 675 676 setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom); 677 678 setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, 679 VT, Custom); 680 681 setOperationAction( 682 {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT, 683 Custom); 684 685 setOperationAction(ISD::SELECT, VT, Custom); 686 setOperationAction(ISD::SELECT_CC, VT, Expand); 687 688 setOperationAction( 689 {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, 690 VT, Custom); 691 692 setOperationAction({ISD::VECTOR_REVERSE, ISD::VECTOR_SPLICE}, VT, Custom); 693 694 setOperationAction(FloatingPointVPOps, VT, Custom); 695 }; 696 697 // Sets common extload/truncstore actions on RVV floating-point vector 698 // types. 699 const auto SetCommonVFPExtLoadTruncStoreActions = 700 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 701 for (auto SmallVT : SmallerVTs) { 702 setTruncStoreAction(VT, SmallVT, Expand); 703 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 704 } 705 }; 706 707 if (Subtarget.hasVInstructionsF16()) 708 for (MVT VT : F16VecVTs) 709 SetCommonVFPActions(VT); 710 711 for (MVT VT : F32VecVTs) { 712 if (Subtarget.hasVInstructionsF32()) 713 SetCommonVFPActions(VT); 714 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 715 } 716 717 for (MVT VT : F64VecVTs) { 718 if (Subtarget.hasVInstructionsF64()) 719 SetCommonVFPActions(VT); 720 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 721 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 722 } 723 724 if (Subtarget.useRVVForFixedLengthVectors()) { 725 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 726 if (!useRVVForFixedLengthVectorVT(VT)) 727 continue; 728 729 // By default everything must be expanded. 730 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 731 setOperationAction(Op, VT, Expand); 732 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 733 setTruncStoreAction(VT, OtherVT, Expand); 734 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, 735 OtherVT, VT, Expand); 736 } 737 738 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 739 setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT, 740 Custom); 741 742 setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS}, VT, 743 Custom); 744 745 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, 746 VT, Custom); 747 748 setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom); 749 750 setOperationAction(ISD::SETCC, VT, Custom); 751 752 setOperationAction(ISD::SELECT, VT, Custom); 753 754 setOperationAction(ISD::TRUNCATE, VT, Custom); 755 756 setOperationAction(ISD::BITCAST, VT, Custom); 757 758 setOperationAction( 759 {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT, 760 Custom); 761 762 setOperationAction( 763 {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT, 764 Custom); 765 766 setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, 767 ISD::FP_TO_UINT}, 768 VT, Custom); 769 770 // Operations below are different for between masks and other vectors. 771 if (VT.getVectorElementType() == MVT::i1) { 772 setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, ISD::AND, 773 ISD::OR, ISD::XOR}, 774 VT, Custom); 775 776 setOperationAction( 777 {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_SETCC, ISD::VP_TRUNCATE}, 778 VT, Custom); 779 continue; 780 } 781 782 // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to 783 // it before type legalization for i64 vectors on RV32. It will then be 784 // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle. 785 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 786 // improvements first. 787 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 788 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 789 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 790 } 791 792 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 793 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 794 795 setOperationAction( 796 {ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, VT, Custom); 797 798 setOperationAction( 799 {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT, 800 Custom); 801 802 setOperationAction({ISD::ADD, ISD::MUL, ISD::SUB, ISD::AND, ISD::OR, 803 ISD::XOR, ISD::SDIV, ISD::SREM, ISD::UDIV, 804 ISD::UREM, ISD::SHL, ISD::SRA, ISD::SRL}, 805 VT, Custom); 806 807 setOperationAction( 808 {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, ISD::ABS}, VT, Custom); 809 810 // vXi64 MULHS/MULHU requires the V extension instead of Zve64*. 811 if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) 812 setOperationAction({ISD::MULHS, ISD::MULHU}, VT, Custom); 813 814 setOperationAction( 815 {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT, 816 Custom); 817 818 setOperationAction(ISD::VSELECT, VT, Custom); 819 setOperationAction(ISD::SELECT_CC, VT, Expand); 820 821 setOperationAction( 822 {ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, VT, Custom); 823 824 // Custom-lower reduction operations to set up the corresponding custom 825 // nodes' operands. 826 setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_SMAX, 827 ISD::VECREDUCE_SMIN, ISD::VECREDUCE_UMAX, 828 ISD::VECREDUCE_UMIN}, 829 VT, Custom); 830 831 setOperationAction(IntegerVPOps, VT, Custom); 832 833 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 834 // type that can represent the value exactly. 835 if (VT.getVectorElementType() != MVT::i64) { 836 MVT FloatEltVT = 837 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 838 EVT FloatVT = 839 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 840 if (isTypeLegal(FloatVT)) 841 setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT, 842 Custom); 843 } 844 } 845 846 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 847 if (!useRVVForFixedLengthVectorVT(VT)) 848 continue; 849 850 // By default everything must be expanded. 851 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 852 setOperationAction(Op, VT, Expand); 853 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 854 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 855 setTruncStoreAction(VT, OtherVT, Expand); 856 } 857 858 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 859 setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT, 860 Custom); 861 862 setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS, 863 ISD::VECTOR_SHUFFLE, ISD::INSERT_VECTOR_ELT, 864 ISD::EXTRACT_VECTOR_ELT}, 865 VT, Custom); 866 867 setOperationAction({ISD::LOAD, ISD::STORE, ISD::MLOAD, ISD::MSTORE, 868 ISD::MGATHER, ISD::MSCATTER}, 869 VT, Custom); 870 871 setOperationAction( 872 {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT, 873 Custom); 874 875 setOperationAction({ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV, 876 ISD::FNEG, ISD::FABS, ISD::FCOPYSIGN, ISD::FSQRT, 877 ISD::FMA, ISD::FMINNUM, ISD::FMAXNUM}, 878 VT, Custom); 879 880 setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom); 881 882 setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND}, 883 VT, Custom); 884 885 for (auto CC : VFPCCToExpand) 886 setCondCodeAction(CC, VT, Expand); 887 888 setOperationAction({ISD::VSELECT, ISD::SELECT}, VT, Custom); 889 setOperationAction(ISD::SELECT_CC, VT, Expand); 890 891 setOperationAction(ISD::BITCAST, VT, Custom); 892 893 setOperationAction({ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD, 894 ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAX}, 895 VT, Custom); 896 897 setOperationAction(FloatingPointVPOps, VT, Custom); 898 } 899 900 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 901 setOperationAction(ISD::BITCAST, {MVT::i8, MVT::i16, MVT::i32, MVT::i64}, 902 Custom); 903 if (Subtarget.hasStdExtZfh()) 904 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 905 if (Subtarget.hasStdExtF()) 906 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 907 if (Subtarget.hasStdExtD()) 908 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 909 } 910 } 911 912 // Function alignments. 913 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 914 setMinFunctionAlignment(FunctionAlignment); 915 setPrefFunctionAlignment(FunctionAlignment); 916 917 setMinimumJumpTableEntries(5); 918 919 // Jumps are expensive, compared to logic 920 setJumpIsExpensive(); 921 922 setTargetDAGCombine({ISD::INTRINSIC_WO_CHAIN, ISD::ADD, ISD::SUB, ISD::AND, 923 ISD::OR, ISD::XOR}); 924 925 if (Subtarget.hasStdExtF()) 926 setTargetDAGCombine({ISD::FADD, ISD::FMAXNUM, ISD::FMINNUM}); 927 928 if (Subtarget.hasStdExtZbp()) 929 setTargetDAGCombine({ISD::ROTL, ISD::ROTR}); 930 931 if (Subtarget.hasStdExtZbb()) 932 setTargetDAGCombine({ISD::UMAX, ISD::UMIN, ISD::SMAX, ISD::SMIN}); 933 934 if (Subtarget.hasStdExtZbkb()) 935 setTargetDAGCombine(ISD::BITREVERSE); 936 if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb()) 937 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 938 if (Subtarget.hasStdExtF()) 939 setTargetDAGCombine({ISD::ZERO_EXTEND, ISD::FP_TO_SINT, ISD::FP_TO_UINT, 940 ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}); 941 if (Subtarget.hasVInstructions()) 942 setTargetDAGCombine({ISD::FCOPYSIGN, ISD::MGATHER, ISD::MSCATTER, 943 ISD::VP_GATHER, ISD::VP_SCATTER, ISD::SRA, ISD::SRL, 944 ISD::SHL, ISD::STORE, ISD::SPLAT_VECTOR}); 945 if (Subtarget.useRVVForFixedLengthVectors()) 946 setTargetDAGCombine(ISD::BITCAST); 947 948 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 949 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 950 } 951 952 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 953 LLVMContext &Context, 954 EVT VT) const { 955 if (!VT.isVector()) 956 return getPointerTy(DL); 957 if (Subtarget.hasVInstructions() && 958 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 959 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 960 return VT.changeVectorElementTypeToInteger(); 961 } 962 963 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 964 return Subtarget.getXLenVT(); 965 } 966 967 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 968 const CallInst &I, 969 MachineFunction &MF, 970 unsigned Intrinsic) const { 971 auto &DL = I.getModule()->getDataLayout(); 972 switch (Intrinsic) { 973 default: 974 return false; 975 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 976 case Intrinsic::riscv_masked_atomicrmw_add_i32: 977 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 978 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 979 case Intrinsic::riscv_masked_atomicrmw_max_i32: 980 case Intrinsic::riscv_masked_atomicrmw_min_i32: 981 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 982 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 983 case Intrinsic::riscv_masked_cmpxchg_i32: 984 Info.opc = ISD::INTRINSIC_W_CHAIN; 985 Info.memVT = MVT::i32; 986 Info.ptrVal = I.getArgOperand(0); 987 Info.offset = 0; 988 Info.align = Align(4); 989 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 990 MachineMemOperand::MOVolatile; 991 return true; 992 case Intrinsic::riscv_masked_strided_load: 993 Info.opc = ISD::INTRINSIC_W_CHAIN; 994 Info.ptrVal = I.getArgOperand(1); 995 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 996 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 997 Info.size = MemoryLocation::UnknownSize; 998 Info.flags |= MachineMemOperand::MOLoad; 999 return true; 1000 case Intrinsic::riscv_masked_strided_store: 1001 Info.opc = ISD::INTRINSIC_VOID; 1002 Info.ptrVal = I.getArgOperand(1); 1003 Info.memVT = 1004 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1005 Info.align = Align( 1006 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1007 8); 1008 Info.size = MemoryLocation::UnknownSize; 1009 Info.flags |= MachineMemOperand::MOStore; 1010 return true; 1011 case Intrinsic::riscv_seg2_load: 1012 case Intrinsic::riscv_seg3_load: 1013 case Intrinsic::riscv_seg4_load: 1014 case Intrinsic::riscv_seg5_load: 1015 case Intrinsic::riscv_seg6_load: 1016 case Intrinsic::riscv_seg7_load: 1017 case Intrinsic::riscv_seg8_load: 1018 Info.opc = ISD::INTRINSIC_W_CHAIN; 1019 Info.ptrVal = I.getArgOperand(0); 1020 Info.memVT = 1021 getValueType(DL, I.getType()->getStructElementType(0)->getScalarType()); 1022 Info.align = 1023 Align(DL.getTypeSizeInBits( 1024 I.getType()->getStructElementType(0)->getScalarType()) / 1025 8); 1026 Info.size = MemoryLocation::UnknownSize; 1027 Info.flags |= MachineMemOperand::MOLoad; 1028 return true; 1029 } 1030 } 1031 1032 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1033 const AddrMode &AM, Type *Ty, 1034 unsigned AS, 1035 Instruction *I) const { 1036 // No global is ever allowed as a base. 1037 if (AM.BaseGV) 1038 return false; 1039 1040 // RVV instructions only support register addressing. 1041 if (Subtarget.hasVInstructions() && isa<VectorType>(Ty)) 1042 return AM.HasBaseReg && AM.Scale == 0 && !AM.BaseOffs; 1043 1044 // Require a 12-bit signed offset. 1045 if (!isInt<12>(AM.BaseOffs)) 1046 return false; 1047 1048 switch (AM.Scale) { 1049 case 0: // "r+i" or just "i", depending on HasBaseReg. 1050 break; 1051 case 1: 1052 if (!AM.HasBaseReg) // allow "r+i". 1053 break; 1054 return false; // disallow "r+r" or "r+r+i". 1055 default: 1056 return false; 1057 } 1058 1059 return true; 1060 } 1061 1062 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1063 return isInt<12>(Imm); 1064 } 1065 1066 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1067 return isInt<12>(Imm); 1068 } 1069 1070 // On RV32, 64-bit integers are split into their high and low parts and held 1071 // in two different registers, so the trunc is free since the low register can 1072 // just be used. 1073 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1074 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1075 return false; 1076 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1077 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1078 return (SrcBits == 64 && DestBits == 32); 1079 } 1080 1081 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1082 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1083 !SrcVT.isInteger() || !DstVT.isInteger()) 1084 return false; 1085 unsigned SrcBits = SrcVT.getSizeInBits(); 1086 unsigned DestBits = DstVT.getSizeInBits(); 1087 return (SrcBits == 64 && DestBits == 32); 1088 } 1089 1090 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1091 // Zexts are free if they can be combined with a load. 1092 // Don't advertise i32->i64 zextload as being free for RV64. It interacts 1093 // poorly with type legalization of compares preferring sext. 1094 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1095 EVT MemVT = LD->getMemoryVT(); 1096 if ((MemVT == MVT::i8 || MemVT == MVT::i16) && 1097 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1098 LD->getExtensionType() == ISD::ZEXTLOAD)) 1099 return true; 1100 } 1101 1102 return TargetLowering::isZExtFree(Val, VT2); 1103 } 1104 1105 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1106 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1107 } 1108 1109 bool RISCVTargetLowering::signExtendConstant(const ConstantInt *CI) const { 1110 return Subtarget.is64Bit() && CI->getType()->isIntegerTy(32); 1111 } 1112 1113 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1114 return Subtarget.hasStdExtZbb(); 1115 } 1116 1117 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1118 return Subtarget.hasStdExtZbb(); 1119 } 1120 1121 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { 1122 EVT VT = Y.getValueType(); 1123 1124 // FIXME: Support vectors once we have tests. 1125 if (VT.isVector()) 1126 return false; 1127 1128 return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 1129 Subtarget.hasStdExtZbkb()) && 1130 !isa<ConstantSDNode>(Y); 1131 } 1132 1133 bool RISCVTargetLowering::hasBitTest(SDValue X, SDValue Y) const { 1134 // We can use ANDI+SEQZ/SNEZ as a bit test. Y contains the bit position. 1135 auto *C = dyn_cast<ConstantSDNode>(Y); 1136 return C && C->getAPIntValue().ule(10); 1137 } 1138 1139 bool RISCVTargetLowering:: 1140 shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 1141 SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, 1142 unsigned OldShiftOpcode, unsigned NewShiftOpcode, 1143 SelectionDAG &DAG) const { 1144 // One interesting pattern that we'd want to form is 'bit extract': 1145 // ((1 >> Y) & 1) ==/!= 0 1146 // But we also need to be careful not to try to reverse that fold. 1147 1148 // Is this '((1 >> Y) & 1)'? 1149 if (XC && OldShiftOpcode == ISD::SRL && XC->isOne()) 1150 return false; // Keep the 'bit extract' pattern. 1151 1152 // Will this be '((1 >> Y) & 1)' after the transform? 1153 if (NewShiftOpcode == ISD::SRL && CC->isOne()) 1154 return true; // Do form the 'bit extract' pattern. 1155 1156 // If 'X' is a constant, and we transform, then we will immediately 1157 // try to undo the fold, thus causing endless combine loop. 1158 // So only do the transform if X is not a constant. This matches the default 1159 // implementation of this function. 1160 return !XC; 1161 } 1162 1163 /// Check if sinking \p I's operands to I's basic block is profitable, because 1164 /// the operands can be folded into a target instruction, e.g. 1165 /// splats of scalars can fold into vector instructions. 1166 bool RISCVTargetLowering::shouldSinkOperands( 1167 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1168 using namespace llvm::PatternMatch; 1169 1170 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1171 return false; 1172 1173 auto IsSinker = [&](Instruction *I, int Operand) { 1174 switch (I->getOpcode()) { 1175 case Instruction::Add: 1176 case Instruction::Sub: 1177 case Instruction::Mul: 1178 case Instruction::And: 1179 case Instruction::Or: 1180 case Instruction::Xor: 1181 case Instruction::FAdd: 1182 case Instruction::FSub: 1183 case Instruction::FMul: 1184 case Instruction::FDiv: 1185 case Instruction::ICmp: 1186 case Instruction::FCmp: 1187 return true; 1188 case Instruction::Shl: 1189 case Instruction::LShr: 1190 case Instruction::AShr: 1191 case Instruction::UDiv: 1192 case Instruction::SDiv: 1193 case Instruction::URem: 1194 case Instruction::SRem: 1195 return Operand == 1; 1196 case Instruction::Call: 1197 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1198 switch (II->getIntrinsicID()) { 1199 case Intrinsic::fma: 1200 case Intrinsic::vp_fma: 1201 return Operand == 0 || Operand == 1; 1202 // FIXME: Our patterns can only match vx/vf instructions when the splat 1203 // it on the RHS, because TableGen doesn't recognize our VP operations 1204 // as commutative. 1205 case Intrinsic::vp_add: 1206 case Intrinsic::vp_mul: 1207 case Intrinsic::vp_and: 1208 case Intrinsic::vp_or: 1209 case Intrinsic::vp_xor: 1210 case Intrinsic::vp_fadd: 1211 case Intrinsic::vp_fmul: 1212 case Intrinsic::vp_shl: 1213 case Intrinsic::vp_lshr: 1214 case Intrinsic::vp_ashr: 1215 case Intrinsic::vp_udiv: 1216 case Intrinsic::vp_sdiv: 1217 case Intrinsic::vp_urem: 1218 case Intrinsic::vp_srem: 1219 return Operand == 1; 1220 // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have 1221 // explicit patterns for both LHS and RHS (as 'vr' versions). 1222 case Intrinsic::vp_sub: 1223 case Intrinsic::vp_fsub: 1224 case Intrinsic::vp_fdiv: 1225 return Operand == 0 || Operand == 1; 1226 default: 1227 return false; 1228 } 1229 } 1230 return false; 1231 default: 1232 return false; 1233 } 1234 }; 1235 1236 for (auto OpIdx : enumerate(I->operands())) { 1237 if (!IsSinker(I, OpIdx.index())) 1238 continue; 1239 1240 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1241 // Make sure we are not already sinking this operand 1242 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1243 continue; 1244 1245 // We are looking for a splat that can be sunk. 1246 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1247 m_Undef(), m_ZeroMask()))) 1248 continue; 1249 1250 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1251 // and vector registers 1252 for (Use &U : Op->uses()) { 1253 Instruction *Insn = cast<Instruction>(U.getUser()); 1254 if (!IsSinker(Insn, U.getOperandNo())) 1255 return false; 1256 } 1257 1258 Ops.push_back(&Op->getOperandUse(0)); 1259 Ops.push_back(&OpIdx.value()); 1260 } 1261 return true; 1262 } 1263 1264 bool RISCVTargetLowering::isOffsetFoldingLegal( 1265 const GlobalAddressSDNode *GA) const { 1266 // In order to maximise the opportunity for common subexpression elimination, 1267 // keep a separate ADD node for the global address offset instead of folding 1268 // it in the global address node. Later peephole optimisations may choose to 1269 // fold it back in when profitable. 1270 return false; 1271 } 1272 1273 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1274 bool ForCodeSize) const { 1275 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1276 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1277 return false; 1278 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1279 return false; 1280 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1281 return false; 1282 return Imm.isZero(); 1283 } 1284 1285 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1286 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1287 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1288 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1289 } 1290 1291 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1292 CallingConv::ID CC, 1293 EVT VT) const { 1294 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1295 // We might still end up using a GPR but that will be decided based on ABI. 1296 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1297 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1298 return MVT::f32; 1299 1300 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1301 } 1302 1303 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1304 CallingConv::ID CC, 1305 EVT VT) const { 1306 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1307 // We might still end up using a GPR but that will be decided based on ABI. 1308 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1309 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1310 return 1; 1311 1312 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1313 } 1314 1315 // Changes the condition code and swaps operands if necessary, so the SetCC 1316 // operation matches one of the comparisons supported directly by branches 1317 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1318 // with 1/-1. 1319 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1320 ISD::CondCode &CC, SelectionDAG &DAG) { 1321 // Convert X > -1 to X >= 0. 1322 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1323 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1324 CC = ISD::SETGE; 1325 return; 1326 } 1327 // Convert X < 1 to 0 >= X. 1328 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1329 RHS = LHS; 1330 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1331 CC = ISD::SETGE; 1332 return; 1333 } 1334 1335 switch (CC) { 1336 default: 1337 break; 1338 case ISD::SETGT: 1339 case ISD::SETLE: 1340 case ISD::SETUGT: 1341 case ISD::SETULE: 1342 CC = ISD::getSetCCSwappedOperands(CC); 1343 std::swap(LHS, RHS); 1344 break; 1345 } 1346 } 1347 1348 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1349 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1350 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1351 if (VT.getVectorElementType() == MVT::i1) 1352 KnownSize *= 8; 1353 1354 switch (KnownSize) { 1355 default: 1356 llvm_unreachable("Invalid LMUL."); 1357 case 8: 1358 return RISCVII::VLMUL::LMUL_F8; 1359 case 16: 1360 return RISCVII::VLMUL::LMUL_F4; 1361 case 32: 1362 return RISCVII::VLMUL::LMUL_F2; 1363 case 64: 1364 return RISCVII::VLMUL::LMUL_1; 1365 case 128: 1366 return RISCVII::VLMUL::LMUL_2; 1367 case 256: 1368 return RISCVII::VLMUL::LMUL_4; 1369 case 512: 1370 return RISCVII::VLMUL::LMUL_8; 1371 } 1372 } 1373 1374 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1375 switch (LMul) { 1376 default: 1377 llvm_unreachable("Invalid LMUL."); 1378 case RISCVII::VLMUL::LMUL_F8: 1379 case RISCVII::VLMUL::LMUL_F4: 1380 case RISCVII::VLMUL::LMUL_F2: 1381 case RISCVII::VLMUL::LMUL_1: 1382 return RISCV::VRRegClassID; 1383 case RISCVII::VLMUL::LMUL_2: 1384 return RISCV::VRM2RegClassID; 1385 case RISCVII::VLMUL::LMUL_4: 1386 return RISCV::VRM4RegClassID; 1387 case RISCVII::VLMUL::LMUL_8: 1388 return RISCV::VRM8RegClassID; 1389 } 1390 } 1391 1392 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1393 RISCVII::VLMUL LMUL = getLMUL(VT); 1394 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1395 LMUL == RISCVII::VLMUL::LMUL_F4 || 1396 LMUL == RISCVII::VLMUL::LMUL_F2 || 1397 LMUL == RISCVII::VLMUL::LMUL_1) { 1398 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1399 "Unexpected subreg numbering"); 1400 return RISCV::sub_vrm1_0 + Index; 1401 } 1402 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1403 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1404 "Unexpected subreg numbering"); 1405 return RISCV::sub_vrm2_0 + Index; 1406 } 1407 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1408 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1409 "Unexpected subreg numbering"); 1410 return RISCV::sub_vrm4_0 + Index; 1411 } 1412 llvm_unreachable("Invalid vector type."); 1413 } 1414 1415 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1416 if (VT.getVectorElementType() == MVT::i1) 1417 return RISCV::VRRegClassID; 1418 return getRegClassIDForLMUL(getLMUL(VT)); 1419 } 1420 1421 // Attempt to decompose a subvector insert/extract between VecVT and 1422 // SubVecVT via subregister indices. Returns the subregister index that 1423 // can perform the subvector insert/extract with the given element index, as 1424 // well as the index corresponding to any leftover subvectors that must be 1425 // further inserted/extracted within the register class for SubVecVT. 1426 std::pair<unsigned, unsigned> 1427 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1428 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1429 const RISCVRegisterInfo *TRI) { 1430 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1431 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1432 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1433 "Register classes not ordered"); 1434 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1435 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1436 // Try to compose a subregister index that takes us from the incoming 1437 // LMUL>1 register class down to the outgoing one. At each step we half 1438 // the LMUL: 1439 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1440 // Note that this is not guaranteed to find a subregister index, such as 1441 // when we are extracting from one VR type to another. 1442 unsigned SubRegIdx = RISCV::NoSubRegister; 1443 for (const unsigned RCID : 1444 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1445 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1446 VecVT = VecVT.getHalfNumVectorElementsVT(); 1447 bool IsHi = 1448 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1449 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1450 getSubregIndexByMVT(VecVT, IsHi)); 1451 if (IsHi) 1452 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1453 } 1454 return {SubRegIdx, InsertExtractIdx}; 1455 } 1456 1457 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1458 // stores for those types. 1459 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1460 return !Subtarget.useRVVForFixedLengthVectors() || 1461 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1462 } 1463 1464 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1465 if (ScalarTy->isPointerTy()) 1466 return true; 1467 1468 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1469 ScalarTy->isIntegerTy(32)) 1470 return true; 1471 1472 if (ScalarTy->isIntegerTy(64)) 1473 return Subtarget.hasVInstructionsI64(); 1474 1475 if (ScalarTy->isHalfTy()) 1476 return Subtarget.hasVInstructionsF16(); 1477 if (ScalarTy->isFloatTy()) 1478 return Subtarget.hasVInstructionsF32(); 1479 if (ScalarTy->isDoubleTy()) 1480 return Subtarget.hasVInstructionsF64(); 1481 1482 return false; 1483 } 1484 1485 static SDValue getVLOperand(SDValue Op) { 1486 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1487 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 1488 "Unexpected opcode"); 1489 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 1490 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 1491 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1492 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 1493 if (!II) 1494 return SDValue(); 1495 return Op.getOperand(II->VLOperand + 1 + HasChain); 1496 } 1497 1498 static bool useRVVForFixedLengthVectorVT(MVT VT, 1499 const RISCVSubtarget &Subtarget) { 1500 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1501 if (!Subtarget.useRVVForFixedLengthVectors()) 1502 return false; 1503 1504 // We only support a set of vector types with a consistent maximum fixed size 1505 // across all supported vector element types to avoid legalization issues. 1506 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1507 // fixed-length vector type we support is 1024 bytes. 1508 if (VT.getFixedSizeInBits() > 1024 * 8) 1509 return false; 1510 1511 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1512 1513 MVT EltVT = VT.getVectorElementType(); 1514 1515 // Don't use RVV for vectors we cannot scalarize if required. 1516 switch (EltVT.SimpleTy) { 1517 // i1 is supported but has different rules. 1518 default: 1519 return false; 1520 case MVT::i1: 1521 // Masks can only use a single register. 1522 if (VT.getVectorNumElements() > MinVLen) 1523 return false; 1524 MinVLen /= 8; 1525 break; 1526 case MVT::i8: 1527 case MVT::i16: 1528 case MVT::i32: 1529 break; 1530 case MVT::i64: 1531 if (!Subtarget.hasVInstructionsI64()) 1532 return false; 1533 break; 1534 case MVT::f16: 1535 if (!Subtarget.hasVInstructionsF16()) 1536 return false; 1537 break; 1538 case MVT::f32: 1539 if (!Subtarget.hasVInstructionsF32()) 1540 return false; 1541 break; 1542 case MVT::f64: 1543 if (!Subtarget.hasVInstructionsF64()) 1544 return false; 1545 break; 1546 } 1547 1548 // Reject elements larger than ELEN. 1549 if (EltVT.getSizeInBits() > Subtarget.getELEN()) 1550 return false; 1551 1552 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1553 // Don't use RVV for types that don't fit. 1554 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1555 return false; 1556 1557 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1558 // the base fixed length RVV support in place. 1559 if (!VT.isPow2VectorType()) 1560 return false; 1561 1562 return true; 1563 } 1564 1565 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1566 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1567 } 1568 1569 // Return the largest legal scalable vector type that matches VT's element type. 1570 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1571 const RISCVSubtarget &Subtarget) { 1572 // This may be called before legal types are setup. 1573 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1574 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1575 "Expected legal fixed length vector!"); 1576 1577 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1578 unsigned MaxELen = Subtarget.getELEN(); 1579 1580 MVT EltVT = VT.getVectorElementType(); 1581 switch (EltVT.SimpleTy) { 1582 default: 1583 llvm_unreachable("unexpected element type for RVV container"); 1584 case MVT::i1: 1585 case MVT::i8: 1586 case MVT::i16: 1587 case MVT::i32: 1588 case MVT::i64: 1589 case MVT::f16: 1590 case MVT::f32: 1591 case MVT::f64: { 1592 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1593 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1594 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1595 unsigned NumElts = 1596 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1597 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1598 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1599 return MVT::getScalableVectorVT(EltVT, NumElts); 1600 } 1601 } 1602 } 1603 1604 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1605 const RISCVSubtarget &Subtarget) { 1606 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1607 Subtarget); 1608 } 1609 1610 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1611 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1612 } 1613 1614 // Grow V to consume an entire RVV register. 1615 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1616 const RISCVSubtarget &Subtarget) { 1617 assert(VT.isScalableVector() && 1618 "Expected to convert into a scalable vector!"); 1619 assert(V.getValueType().isFixedLengthVector() && 1620 "Expected a fixed length vector operand!"); 1621 SDLoc DL(V); 1622 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1623 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1624 } 1625 1626 // Shrink V so it's just big enough to maintain a VT's worth of data. 1627 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1628 const RISCVSubtarget &Subtarget) { 1629 assert(VT.isFixedLengthVector() && 1630 "Expected to convert into a fixed length vector!"); 1631 assert(V.getValueType().isScalableVector() && 1632 "Expected a scalable vector operand!"); 1633 SDLoc DL(V); 1634 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1635 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1636 } 1637 1638 /// Return the type of the mask type suitable for masking the provided 1639 /// vector type. This is simply an i1 element type vector of the same 1640 /// (possibly scalable) length. 1641 static MVT getMaskTypeFor(EVT VecVT) { 1642 assert(VecVT.isVector()); 1643 ElementCount EC = VecVT.getVectorElementCount(); 1644 return MVT::getVectorVT(MVT::i1, EC); 1645 } 1646 1647 /// Creates an all ones mask suitable for masking a vector of type VecTy with 1648 /// vector length VL. . 1649 static SDValue getAllOnesMask(MVT VecVT, SDValue VL, SDLoc DL, 1650 SelectionDAG &DAG) { 1651 MVT MaskVT = getMaskTypeFor(VecVT); 1652 return DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1653 } 1654 1655 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1656 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1657 // the vector type that it is contained in. 1658 static std::pair<SDValue, SDValue> 1659 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1660 const RISCVSubtarget &Subtarget) { 1661 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1662 MVT XLenVT = Subtarget.getXLenVT(); 1663 SDValue VL = VecVT.isFixedLengthVector() 1664 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1665 : DAG.getRegister(RISCV::X0, XLenVT); 1666 SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG); 1667 return {Mask, VL}; 1668 } 1669 1670 // As above but assuming the given type is a scalable vector type. 1671 static std::pair<SDValue, SDValue> 1672 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1673 const RISCVSubtarget &Subtarget) { 1674 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1675 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1676 } 1677 1678 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1679 // of either is (currently) supported. This can get us into an infinite loop 1680 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1681 // as a ..., etc. 1682 // Until either (or both) of these can reliably lower any node, reporting that 1683 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1684 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1685 // which is not desirable. 1686 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1687 EVT VT, unsigned DefinedValues) const { 1688 return false; 1689 } 1690 1691 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, 1692 const RISCVSubtarget &Subtarget) { 1693 // RISCV FP-to-int conversions saturate to the destination register size, but 1694 // don't produce 0 for nan. We can use a conversion instruction and fix the 1695 // nan case with a compare and a select. 1696 SDValue Src = Op.getOperand(0); 1697 1698 EVT DstVT = Op.getValueType(); 1699 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1700 1701 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1702 unsigned Opc; 1703 if (SatVT == DstVT) 1704 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 1705 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1706 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 1707 else 1708 return SDValue(); 1709 // FIXME: Support other SatVTs by clamping before or after the conversion. 1710 1711 SDLoc DL(Op); 1712 SDValue FpToInt = DAG.getNode( 1713 Opc, DL, DstVT, Src, 1714 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT())); 1715 1716 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1717 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1718 } 1719 1720 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1721 // and back. Taking care to avoid converting values that are nan or already 1722 // correct. 1723 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1724 // have FRM dependencies modeled yet. 1725 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1726 MVT VT = Op.getSimpleValueType(); 1727 assert(VT.isVector() && "Unexpected type"); 1728 1729 SDLoc DL(Op); 1730 1731 // Freeze the source since we are increasing the number of uses. 1732 SDValue Src = DAG.getFreeze(Op.getOperand(0)); 1733 1734 // Truncate to integer and convert back to FP. 1735 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1736 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1737 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1738 1739 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1740 1741 if (Op.getOpcode() == ISD::FCEIL) { 1742 // If the truncated value is the greater than or equal to the original 1743 // value, we've computed the ceil. Otherwise, we went the wrong way and 1744 // need to increase by 1. 1745 // FIXME: This should use a masked operation. Handle here or in isel? 1746 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1747 DAG.getConstantFP(1.0, DL, VT)); 1748 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1749 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1750 } else if (Op.getOpcode() == ISD::FFLOOR) { 1751 // If the truncated value is the less than or equal to the original value, 1752 // we've computed the floor. Otherwise, we went the wrong way and need to 1753 // decrease by 1. 1754 // FIXME: This should use a masked operation. Handle here or in isel? 1755 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1756 DAG.getConstantFP(1.0, DL, VT)); 1757 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1758 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1759 } 1760 1761 // Restore the original sign so that -0.0 is preserved. 1762 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1763 1764 // Determine the largest integer that can be represented exactly. This and 1765 // values larger than it don't have any fractional bits so don't need to 1766 // be converted. 1767 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1768 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1769 APFloat MaxVal = APFloat(FltSem); 1770 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1771 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1772 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1773 1774 // If abs(Src) was larger than MaxVal or nan, keep it. 1775 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1776 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1777 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1778 } 1779 1780 // ISD::FROUND is defined to round to nearest with ties rounding away from 0. 1781 // This mode isn't supported in vector hardware on RISCV. But as long as we 1782 // aren't compiling with trapping math, we can emulate this with 1783 // floor(X + copysign(nextafter(0.5, 0.0), X)). 1784 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM 1785 // dependencies modeled yet. 1786 // FIXME: Use masked operations to avoid final merge. 1787 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) { 1788 MVT VT = Op.getSimpleValueType(); 1789 assert(VT.isVector() && "Unexpected type"); 1790 1791 SDLoc DL(Op); 1792 1793 // Freeze the source since we are increasing the number of uses. 1794 SDValue Src = DAG.getFreeze(Op.getOperand(0)); 1795 1796 // We do the conversion on the absolute value and fix the sign at the end. 1797 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1798 1799 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1800 bool Ignored; 1801 APFloat Point5Pred = APFloat(0.5f); 1802 Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored); 1803 Point5Pred.next(/*nextDown*/ true); 1804 1805 // Add the adjustment. 1806 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs, 1807 DAG.getConstantFP(Point5Pred, DL, VT)); 1808 1809 // Truncate to integer and convert back to fp. 1810 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1811 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust); 1812 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1813 1814 // Restore the original sign. 1815 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1816 1817 // Determine the largest integer that can be represented exactly. This and 1818 // values larger than it don't have any fractional bits so don't need to 1819 // be converted. 1820 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1821 APFloat MaxVal = APFloat(FltSem); 1822 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1823 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1824 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1825 1826 // If abs(Src) was larger than MaxVal or nan, keep it. 1827 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1828 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1829 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1830 } 1831 1832 struct VIDSequence { 1833 int64_t StepNumerator; 1834 unsigned StepDenominator; 1835 int64_t Addend; 1836 }; 1837 1838 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1839 // to the (non-zero) step S and start value X. This can be then lowered as the 1840 // RVV sequence (VID * S) + X, for example. 1841 // The step S is represented as an integer numerator divided by a positive 1842 // denominator. Note that the implementation currently only identifies 1843 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1844 // cannot detect 2/3, for example. 1845 // Note that this method will also match potentially unappealing index 1846 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1847 // determine whether this is worth generating code for. 1848 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1849 unsigned NumElts = Op.getNumOperands(); 1850 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1851 if (!Op.getValueType().isInteger()) 1852 return None; 1853 1854 Optional<unsigned> SeqStepDenom; 1855 Optional<int64_t> SeqStepNum, SeqAddend; 1856 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1857 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1858 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1859 // Assume undef elements match the sequence; we just have to be careful 1860 // when interpolating across them. 1861 if (Op.getOperand(Idx).isUndef()) 1862 continue; 1863 // The BUILD_VECTOR must be all constants. 1864 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1865 return None; 1866 1867 uint64_t Val = Op.getConstantOperandVal(Idx) & 1868 maskTrailingOnes<uint64_t>(EltSizeInBits); 1869 1870 if (PrevElt) { 1871 // Calculate the step since the last non-undef element, and ensure 1872 // it's consistent across the entire sequence. 1873 unsigned IdxDiff = Idx - PrevElt->second; 1874 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1875 1876 // A zero-value value difference means that we're somewhere in the middle 1877 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1878 // step change before evaluating the sequence. 1879 if (ValDiff == 0) 1880 continue; 1881 1882 int64_t Remainder = ValDiff % IdxDiff; 1883 // Normalize the step if it's greater than 1. 1884 if (Remainder != ValDiff) { 1885 // The difference must cleanly divide the element span. 1886 if (Remainder != 0) 1887 return None; 1888 ValDiff /= IdxDiff; 1889 IdxDiff = 1; 1890 } 1891 1892 if (!SeqStepNum) 1893 SeqStepNum = ValDiff; 1894 else if (ValDiff != SeqStepNum) 1895 return None; 1896 1897 if (!SeqStepDenom) 1898 SeqStepDenom = IdxDiff; 1899 else if (IdxDiff != *SeqStepDenom) 1900 return None; 1901 } 1902 1903 // Record this non-undef element for later. 1904 if (!PrevElt || PrevElt->first != Val) 1905 PrevElt = std::make_pair(Val, Idx); 1906 } 1907 1908 // We need to have logged a step for this to count as a legal index sequence. 1909 if (!SeqStepNum || !SeqStepDenom) 1910 return None; 1911 1912 // Loop back through the sequence and validate elements we might have skipped 1913 // while waiting for a valid step. While doing this, log any sequence addend. 1914 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1915 if (Op.getOperand(Idx).isUndef()) 1916 continue; 1917 uint64_t Val = Op.getConstantOperandVal(Idx) & 1918 maskTrailingOnes<uint64_t>(EltSizeInBits); 1919 uint64_t ExpectedVal = 1920 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1921 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1922 if (!SeqAddend) 1923 SeqAddend = Addend; 1924 else if (Addend != SeqAddend) 1925 return None; 1926 } 1927 1928 assert(SeqAddend && "Must have an addend if we have a step"); 1929 1930 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1931 } 1932 1933 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT 1934 // and lower it as a VRGATHER_VX_VL from the source vector. 1935 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL, 1936 SelectionDAG &DAG, 1937 const RISCVSubtarget &Subtarget) { 1938 if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1939 return SDValue(); 1940 SDValue Vec = SplatVal.getOperand(0); 1941 // Only perform this optimization on vectors of the same size for simplicity. 1942 // Don't perform this optimization for i1 vectors. 1943 // FIXME: Support i1 vectors, maybe by promoting to i8? 1944 if (Vec.getValueType() != VT || VT.getVectorElementType() == MVT::i1) 1945 return SDValue(); 1946 SDValue Idx = SplatVal.getOperand(1); 1947 // The index must be a legal type. 1948 if (Idx.getValueType() != Subtarget.getXLenVT()) 1949 return SDValue(); 1950 1951 MVT ContainerVT = VT; 1952 if (VT.isFixedLengthVector()) { 1953 ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1954 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 1955 } 1956 1957 SDValue Mask, VL; 1958 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1959 1960 SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, 1961 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 1962 1963 if (!VT.isFixedLengthVector()) 1964 return Gather; 1965 1966 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1967 } 1968 1969 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1970 const RISCVSubtarget &Subtarget) { 1971 MVT VT = Op.getSimpleValueType(); 1972 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1973 1974 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1975 1976 SDLoc DL(Op); 1977 SDValue Mask, VL; 1978 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1979 1980 MVT XLenVT = Subtarget.getXLenVT(); 1981 unsigned NumElts = Op.getNumOperands(); 1982 1983 if (VT.getVectorElementType() == MVT::i1) { 1984 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1985 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1986 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1987 } 1988 1989 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1990 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1991 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1992 } 1993 1994 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1995 // scalar integer chunks whose bit-width depends on the number of mask 1996 // bits and XLEN. 1997 // First, determine the most appropriate scalar integer type to use. This 1998 // is at most XLenVT, but may be shrunk to a smaller vector element type 1999 // according to the size of the final vector - use i8 chunks rather than 2000 // XLenVT if we're producing a v8i1. This results in more consistent 2001 // codegen across RV32 and RV64. 2002 unsigned NumViaIntegerBits = 2003 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 2004 NumViaIntegerBits = std::min(NumViaIntegerBits, Subtarget.getELEN()); 2005 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 2006 // If we have to use more than one INSERT_VECTOR_ELT then this 2007 // optimization is likely to increase code size; avoid peforming it in 2008 // such a case. We can use a load from a constant pool in this case. 2009 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 2010 return SDValue(); 2011 // Now we can create our integer vector type. Note that it may be larger 2012 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 2013 MVT IntegerViaVecVT = 2014 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 2015 divideCeil(NumElts, NumViaIntegerBits)); 2016 2017 uint64_t Bits = 0; 2018 unsigned BitPos = 0, IntegerEltIdx = 0; 2019 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 2020 2021 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 2022 // Once we accumulate enough bits to fill our scalar type, insert into 2023 // our vector and clear our accumulated data. 2024 if (I != 0 && I % NumViaIntegerBits == 0) { 2025 if (NumViaIntegerBits <= 32) 2026 Bits = SignExtend64<32>(Bits); 2027 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2028 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 2029 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2030 Bits = 0; 2031 BitPos = 0; 2032 IntegerEltIdx++; 2033 } 2034 SDValue V = Op.getOperand(I); 2035 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 2036 Bits |= ((uint64_t)BitValue << BitPos); 2037 } 2038 2039 // Insert the (remaining) scalar value into position in our integer 2040 // vector type. 2041 if (NumViaIntegerBits <= 32) 2042 Bits = SignExtend64<32>(Bits); 2043 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2044 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 2045 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2046 2047 if (NumElts < NumViaIntegerBits) { 2048 // If we're producing a smaller vector than our minimum legal integer 2049 // type, bitcast to the equivalent (known-legal) mask type, and extract 2050 // our final mask. 2051 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 2052 Vec = DAG.getBitcast(MVT::v8i1, Vec); 2053 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 2054 DAG.getConstant(0, DL, XLenVT)); 2055 } else { 2056 // Else we must have produced an integer type with the same size as the 2057 // mask type; bitcast for the final result. 2058 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 2059 Vec = DAG.getBitcast(VT, Vec); 2060 } 2061 2062 return Vec; 2063 } 2064 2065 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 2066 // vector type, we have a legal equivalently-sized i8 type, so we can use 2067 // that. 2068 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 2069 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 2070 2071 SDValue WideVec; 2072 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2073 // For a splat, perform a scalar truncate before creating the wider 2074 // vector. 2075 assert(Splat.getValueType() == XLenVT && 2076 "Unexpected type for i1 splat value"); 2077 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 2078 DAG.getConstant(1, DL, XLenVT)); 2079 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 2080 } else { 2081 SmallVector<SDValue, 8> Ops(Op->op_values()); 2082 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 2083 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 2084 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 2085 } 2086 2087 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 2088 } 2089 2090 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2091 if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget)) 2092 return Gather; 2093 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 2094 : RISCVISD::VMV_V_X_VL; 2095 Splat = 2096 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL); 2097 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2098 } 2099 2100 // Try and match index sequences, which we can lower to the vid instruction 2101 // with optional modifications. An all-undef vector is matched by 2102 // getSplatValue, above. 2103 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 2104 int64_t StepNumerator = SimpleVID->StepNumerator; 2105 unsigned StepDenominator = SimpleVID->StepDenominator; 2106 int64_t Addend = SimpleVID->Addend; 2107 2108 assert(StepNumerator != 0 && "Invalid step"); 2109 bool Negate = false; 2110 int64_t SplatStepVal = StepNumerator; 2111 unsigned StepOpcode = ISD::MUL; 2112 if (StepNumerator != 1) { 2113 if (isPowerOf2_64(std::abs(StepNumerator))) { 2114 Negate = StepNumerator < 0; 2115 StepOpcode = ISD::SHL; 2116 SplatStepVal = Log2_64(std::abs(StepNumerator)); 2117 } 2118 } 2119 2120 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 2121 // threshold since it's the immediate value many RVV instructions accept. 2122 // There is no vmul.vi instruction so ensure multiply constant can fit in 2123 // a single addi instruction. 2124 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 2125 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 2126 isPowerOf2_32(StepDenominator) && 2127 (SplatStepVal >= 0 || StepDenominator == 1) && isInt<5>(Addend)) { 2128 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 2129 // Convert right out of the scalable type so we can use standard ISD 2130 // nodes for the rest of the computation. If we used scalable types with 2131 // these, we'd lose the fixed-length vector info and generate worse 2132 // vsetvli code. 2133 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 2134 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 2135 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 2136 SDValue SplatStep = DAG.getSplatBuildVector( 2137 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 2138 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); 2139 } 2140 if (StepDenominator != 1) { 2141 SDValue SplatStep = DAG.getSplatBuildVector( 2142 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 2143 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 2144 } 2145 if (Addend != 0 || Negate) { 2146 SDValue SplatAddend = DAG.getSplatBuildVector( 2147 VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 2148 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 2149 } 2150 return VID; 2151 } 2152 } 2153 2154 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2155 // when re-interpreted as a vector with a larger element type. For example, 2156 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2157 // could be instead splat as 2158 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2159 // TODO: This optimization could also work on non-constant splats, but it 2160 // would require bit-manipulation instructions to construct the splat value. 2161 SmallVector<SDValue> Sequence; 2162 unsigned EltBitSize = VT.getScalarSizeInBits(); 2163 const auto *BV = cast<BuildVectorSDNode>(Op); 2164 if (VT.isInteger() && EltBitSize < 64 && 2165 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2166 BV->getRepeatedSequence(Sequence) && 2167 (Sequence.size() * EltBitSize) <= 64) { 2168 unsigned SeqLen = Sequence.size(); 2169 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2170 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2171 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2172 ViaIntVT == MVT::i64) && 2173 "Unexpected sequence type"); 2174 2175 unsigned EltIdx = 0; 2176 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2177 uint64_t SplatValue = 0; 2178 // Construct the amalgamated value which can be splatted as this larger 2179 // vector type. 2180 for (const auto &SeqV : Sequence) { 2181 if (!SeqV.isUndef()) 2182 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2183 << (EltIdx * EltBitSize)); 2184 EltIdx++; 2185 } 2186 2187 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2188 // achieve better constant materializion. 2189 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2190 SplatValue = SignExtend64<32>(SplatValue); 2191 2192 // Since we can't introduce illegal i64 types at this stage, we can only 2193 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2194 // way we can use RVV instructions to splat. 2195 assert((ViaIntVT.bitsLE(XLenVT) || 2196 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2197 "Unexpected bitcast sequence"); 2198 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2199 SDValue ViaVL = 2200 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2201 MVT ViaContainerVT = 2202 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2203 SDValue Splat = 2204 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2205 DAG.getUNDEF(ViaContainerVT), 2206 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2207 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2208 return DAG.getBitcast(VT, Splat); 2209 } 2210 } 2211 2212 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2213 // which constitute a large proportion of the elements. In such cases we can 2214 // splat a vector with the dominant element and make up the shortfall with 2215 // INSERT_VECTOR_ELTs. 2216 // Note that this includes vectors of 2 elements by association. The 2217 // upper-most element is the "dominant" one, allowing us to use a splat to 2218 // "insert" the upper element, and an insert of the lower element at position 2219 // 0, which improves codegen. 2220 SDValue DominantValue; 2221 unsigned MostCommonCount = 0; 2222 DenseMap<SDValue, unsigned> ValueCounts; 2223 unsigned NumUndefElts = 2224 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2225 2226 // Track the number of scalar loads we know we'd be inserting, estimated as 2227 // any non-zero floating-point constant. Other kinds of element are either 2228 // already in registers or are materialized on demand. The threshold at which 2229 // a vector load is more desirable than several scalar materializion and 2230 // vector-insertion instructions is not known. 2231 unsigned NumScalarLoads = 0; 2232 2233 for (SDValue V : Op->op_values()) { 2234 if (V.isUndef()) 2235 continue; 2236 2237 ValueCounts.insert(std::make_pair(V, 0)); 2238 unsigned &Count = ValueCounts[V]; 2239 2240 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2241 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2242 2243 // Is this value dominant? In case of a tie, prefer the highest element as 2244 // it's cheaper to insert near the beginning of a vector than it is at the 2245 // end. 2246 if (++Count >= MostCommonCount) { 2247 DominantValue = V; 2248 MostCommonCount = Count; 2249 } 2250 } 2251 2252 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2253 unsigned NumDefElts = NumElts - NumUndefElts; 2254 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2255 2256 // Don't perform this optimization when optimizing for size, since 2257 // materializing elements and inserting them tends to cause code bloat. 2258 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2259 ((MostCommonCount > DominantValueCountThreshold) || 2260 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2261 // Start by splatting the most common element. 2262 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2263 2264 DenseSet<SDValue> Processed{DominantValue}; 2265 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2266 for (const auto &OpIdx : enumerate(Op->ops())) { 2267 const SDValue &V = OpIdx.value(); 2268 if (V.isUndef() || !Processed.insert(V).second) 2269 continue; 2270 if (ValueCounts[V] == 1) { 2271 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2272 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2273 } else { 2274 // Blend in all instances of this value using a VSELECT, using a 2275 // mask where each bit signals whether that element is the one 2276 // we're after. 2277 SmallVector<SDValue> Ops; 2278 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2279 return DAG.getConstant(V == V1, DL, XLenVT); 2280 }); 2281 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2282 DAG.getBuildVector(SelMaskTy, DL, Ops), 2283 DAG.getSplatBuildVector(VT, DL, V), Vec); 2284 } 2285 } 2286 2287 return Vec; 2288 } 2289 2290 return SDValue(); 2291 } 2292 2293 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, 2294 SDValue Lo, SDValue Hi, SDValue VL, 2295 SelectionDAG &DAG) { 2296 if (!Passthru) 2297 Passthru = DAG.getUNDEF(VT); 2298 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2299 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2300 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2301 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2302 // node in order to try and match RVV vector/scalar instructions. 2303 if ((LoC >> 31) == HiC) 2304 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL); 2305 2306 // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use 2307 // vmv.v.x whose EEW = 32 to lower it. 2308 auto *Const = dyn_cast<ConstantSDNode>(VL); 2309 if (LoC == HiC && Const && Const->isAllOnesValue()) { 2310 MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 2311 // TODO: if vl <= min(VLMAX), we can also do this. But we could not 2312 // access the subtarget here now. 2313 auto InterVec = DAG.getNode( 2314 RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo, 2315 DAG.getRegister(RISCV::X0, MVT::i32)); 2316 return DAG.getNode(ISD::BITCAST, DL, VT, InterVec); 2317 } 2318 } 2319 2320 // Fall back to a stack store and stride x0 vector load. 2321 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo, 2322 Hi, VL); 2323 } 2324 2325 // Called by type legalization to handle splat of i64 on RV32. 2326 // FIXME: We can optimize this when the type has sign or zero bits in one 2327 // of the halves. 2328 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, 2329 SDValue Scalar, SDValue VL, 2330 SelectionDAG &DAG) { 2331 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2332 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2333 DAG.getConstant(0, DL, MVT::i32)); 2334 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2335 DAG.getConstant(1, DL, MVT::i32)); 2336 return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG); 2337 } 2338 2339 // This function lowers a splat of a scalar operand Splat with the vector 2340 // length VL. It ensures the final sequence is type legal, which is useful when 2341 // lowering a splat after type legalization. 2342 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL, 2343 MVT VT, SDLoc DL, SelectionDAG &DAG, 2344 const RISCVSubtarget &Subtarget) { 2345 bool HasPassthru = Passthru && !Passthru.isUndef(); 2346 if (!HasPassthru && !Passthru) 2347 Passthru = DAG.getUNDEF(VT); 2348 if (VT.isFloatingPoint()) { 2349 // If VL is 1, we could use vfmv.s.f. 2350 if (isOneConstant(VL)) 2351 return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL); 2352 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL); 2353 } 2354 2355 MVT XLenVT = Subtarget.getXLenVT(); 2356 2357 // Simplest case is that the operand needs to be promoted to XLenVT. 2358 if (Scalar.getValueType().bitsLE(XLenVT)) { 2359 // If the operand is a constant, sign extend to increase our chances 2360 // of being able to use a .vi instruction. ANY_EXTEND would become a 2361 // a zero extend and the simm5 check in isel would fail. 2362 // FIXME: Should we ignore the upper bits in isel instead? 2363 unsigned ExtOpc = 2364 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2365 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2366 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar); 2367 // If VL is 1 and the scalar value won't benefit from immediate, we could 2368 // use vmv.s.x. 2369 if (isOneConstant(VL) && 2370 (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue()))) 2371 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL); 2372 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL); 2373 } 2374 2375 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2376 "Unexpected scalar for splat lowering!"); 2377 2378 if (isOneConstant(VL) && isNullConstant(Scalar)) 2379 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, 2380 DAG.getConstant(0, DL, XLenVT), VL); 2381 2382 // Otherwise use the more complicated splatting algorithm. 2383 return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG); 2384 } 2385 2386 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources, 2387 const RISCVSubtarget &Subtarget) { 2388 // We need to be able to widen elements to the next larger integer type. 2389 if (VT.getScalarSizeInBits() >= Subtarget.getELEN()) 2390 return false; 2391 2392 int Size = Mask.size(); 2393 assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); 2394 2395 int Srcs[] = {-1, -1}; 2396 for (int i = 0; i != Size; ++i) { 2397 // Ignore undef elements. 2398 if (Mask[i] < 0) 2399 continue; 2400 2401 // Is this an even or odd element. 2402 int Pol = i % 2; 2403 2404 // Ensure we consistently use the same source for this element polarity. 2405 int Src = Mask[i] / Size; 2406 if (Srcs[Pol] < 0) 2407 Srcs[Pol] = Src; 2408 if (Srcs[Pol] != Src) 2409 return false; 2410 2411 // Make sure the element within the source is appropriate for this element 2412 // in the destination. 2413 int Elt = Mask[i] % Size; 2414 if (Elt != i / 2) 2415 return false; 2416 } 2417 2418 // We need to find a source for each polarity and they can't be the same. 2419 if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1]) 2420 return false; 2421 2422 // Swap the sources if the second source was in the even polarity. 2423 SwapSources = Srcs[0] > Srcs[1]; 2424 2425 return true; 2426 } 2427 2428 /// Match shuffles that concatenate two vectors, rotate the concatenation, 2429 /// and then extract the original number of elements from the rotated result. 2430 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The 2431 /// returned rotation amount is for a rotate right, where elements move from 2432 /// higher elements to lower elements. \p LoSrc indicates the first source 2433 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector 2434 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be 2435 /// 0 or 1 if a rotation is found. 2436 /// 2437 /// NOTE: We talk about rotate to the right which matches how bit shift and 2438 /// rotate instructions are described where LSBs are on the right, but LLVM IR 2439 /// and the table below write vectors with the lowest elements on the left. 2440 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) { 2441 int Size = Mask.size(); 2442 2443 // We need to detect various ways of spelling a rotation: 2444 // [11, 12, 13, 14, 15, 0, 1, 2] 2445 // [-1, 12, 13, 14, -1, -1, 1, -1] 2446 // [-1, -1, -1, -1, -1, -1, 1, 2] 2447 // [ 3, 4, 5, 6, 7, 8, 9, 10] 2448 // [-1, 4, 5, 6, -1, -1, 9, -1] 2449 // [-1, 4, 5, 6, -1, -1, -1, -1] 2450 int Rotation = 0; 2451 LoSrc = -1; 2452 HiSrc = -1; 2453 for (int i = 0; i != Size; ++i) { 2454 int M = Mask[i]; 2455 if (M < 0) 2456 continue; 2457 2458 // Determine where a rotate vector would have started. 2459 int StartIdx = i - (M % Size); 2460 // The identity rotation isn't interesting, stop. 2461 if (StartIdx == 0) 2462 return -1; 2463 2464 // If we found the tail of a vector the rotation must be the missing 2465 // front. If we found the head of a vector, it must be how much of the 2466 // head. 2467 int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx; 2468 2469 if (Rotation == 0) 2470 Rotation = CandidateRotation; 2471 else if (Rotation != CandidateRotation) 2472 // The rotations don't match, so we can't match this mask. 2473 return -1; 2474 2475 // Compute which value this mask is pointing at. 2476 int MaskSrc = M < Size ? 0 : 1; 2477 2478 // Compute which of the two target values this index should be assigned to. 2479 // This reflects whether the high elements are remaining or the low elemnts 2480 // are remaining. 2481 int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc; 2482 2483 // Either set up this value if we've not encountered it before, or check 2484 // that it remains consistent. 2485 if (TargetSrc < 0) 2486 TargetSrc = MaskSrc; 2487 else if (TargetSrc != MaskSrc) 2488 // This may be a rotation, but it pulls from the inputs in some 2489 // unsupported interleaving. 2490 return -1; 2491 } 2492 2493 // Check that we successfully analyzed the mask, and normalize the results. 2494 assert(Rotation != 0 && "Failed to locate a viable rotation!"); 2495 assert((LoSrc >= 0 || HiSrc >= 0) && 2496 "Failed to find a rotated input vector!"); 2497 2498 return Rotation; 2499 } 2500 2501 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2502 const RISCVSubtarget &Subtarget) { 2503 SDValue V1 = Op.getOperand(0); 2504 SDValue V2 = Op.getOperand(1); 2505 SDLoc DL(Op); 2506 MVT XLenVT = Subtarget.getXLenVT(); 2507 MVT VT = Op.getSimpleValueType(); 2508 unsigned NumElts = VT.getVectorNumElements(); 2509 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2510 2511 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2512 2513 SDValue TrueMask, VL; 2514 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2515 2516 if (SVN->isSplat()) { 2517 const int Lane = SVN->getSplatIndex(); 2518 if (Lane >= 0) { 2519 MVT SVT = VT.getVectorElementType(); 2520 2521 // Turn splatted vector load into a strided load with an X0 stride. 2522 SDValue V = V1; 2523 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2524 // with undef. 2525 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2526 int Offset = Lane; 2527 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2528 int OpElements = 2529 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2530 V = V.getOperand(Offset / OpElements); 2531 Offset %= OpElements; 2532 } 2533 2534 // We need to ensure the load isn't atomic or volatile. 2535 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2536 auto *Ld = cast<LoadSDNode>(V); 2537 Offset *= SVT.getStoreSize(); 2538 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2539 TypeSize::Fixed(Offset), DL); 2540 2541 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2542 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2543 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2544 SDValue IntID = 2545 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2546 SDValue Ops[] = {Ld->getChain(), 2547 IntID, 2548 DAG.getUNDEF(ContainerVT), 2549 NewAddr, 2550 DAG.getRegister(RISCV::X0, XLenVT), 2551 VL}; 2552 SDValue NewLoad = DAG.getMemIntrinsicNode( 2553 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2554 DAG.getMachineFunction().getMachineMemOperand( 2555 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2556 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2557 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2558 } 2559 2560 // Otherwise use a scalar load and splat. This will give the best 2561 // opportunity to fold a splat into the operation. ISel can turn it into 2562 // the x0 strided load if we aren't able to fold away the select. 2563 if (SVT.isFloatingPoint()) 2564 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2565 Ld->getPointerInfo().getWithOffset(Offset), 2566 Ld->getOriginalAlign(), 2567 Ld->getMemOperand()->getFlags()); 2568 else 2569 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2570 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2571 Ld->getOriginalAlign(), 2572 Ld->getMemOperand()->getFlags()); 2573 DAG.makeEquivalentMemoryOrdering(Ld, V); 2574 2575 unsigned Opc = 2576 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2577 SDValue Splat = 2578 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL); 2579 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2580 } 2581 2582 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2583 assert(Lane < (int)NumElts && "Unexpected lane!"); 2584 SDValue Gather = DAG.getNode( 2585 RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), 2586 V1, DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2587 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2588 } 2589 } 2590 2591 ArrayRef<int> Mask = SVN->getMask(); 2592 2593 // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may 2594 // be undef which can be handled with a single SLIDEDOWN/UP. 2595 int LoSrc, HiSrc; 2596 int Rotation = isElementRotate(LoSrc, HiSrc, Mask); 2597 if (Rotation > 0) { 2598 SDValue LoV, HiV; 2599 if (LoSrc >= 0) { 2600 LoV = LoSrc == 0 ? V1 : V2; 2601 LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget); 2602 } 2603 if (HiSrc >= 0) { 2604 HiV = HiSrc == 0 ? V1 : V2; 2605 HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget); 2606 } 2607 2608 // We found a rotation. We need to slide HiV down by Rotation. Then we need 2609 // to slide LoV up by (NumElts - Rotation). 2610 unsigned InvRotate = NumElts - Rotation; 2611 2612 SDValue Res = DAG.getUNDEF(ContainerVT); 2613 if (HiV) { 2614 // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN. 2615 // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it 2616 // causes multiple vsetvlis in some test cases such as lowering 2617 // reduce.mul 2618 SDValue DownVL = VL; 2619 if (LoV) 2620 DownVL = DAG.getConstant(InvRotate, DL, XLenVT); 2621 Res = 2622 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV, 2623 DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL); 2624 } 2625 if (LoV) 2626 Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV, 2627 DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL); 2628 2629 return convertFromScalableVector(VT, Res, DAG, Subtarget); 2630 } 2631 2632 // Detect an interleave shuffle and lower to 2633 // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1)) 2634 bool SwapSources; 2635 if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) { 2636 // Swap sources if needed. 2637 if (SwapSources) 2638 std::swap(V1, V2); 2639 2640 // Extract the lower half of the vectors. 2641 MVT HalfVT = VT.getHalfNumVectorElementsVT(); 2642 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1, 2643 DAG.getConstant(0, DL, XLenVT)); 2644 V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2, 2645 DAG.getConstant(0, DL, XLenVT)); 2646 2647 // Double the element width and halve the number of elements in an int type. 2648 unsigned EltBits = VT.getScalarSizeInBits(); 2649 MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2); 2650 MVT WideIntVT = 2651 MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2); 2652 // Convert this to a scalable vector. We need to base this on the 2653 // destination size to ensure there's always a type with a smaller LMUL. 2654 MVT WideIntContainerVT = 2655 getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget); 2656 2657 // Convert sources to scalable vectors with the same element count as the 2658 // larger type. 2659 MVT HalfContainerVT = MVT::getVectorVT( 2660 VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount()); 2661 V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget); 2662 V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget); 2663 2664 // Cast sources to integer. 2665 MVT IntEltVT = MVT::getIntegerVT(EltBits); 2666 MVT IntHalfVT = 2667 MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount()); 2668 V1 = DAG.getBitcast(IntHalfVT, V1); 2669 V2 = DAG.getBitcast(IntHalfVT, V2); 2670 2671 // Freeze V2 since we use it twice and we need to be sure that the add and 2672 // multiply see the same value. 2673 V2 = DAG.getFreeze(V2); 2674 2675 // Recreate TrueMask using the widened type's element count. 2676 TrueMask = getAllOnesMask(HalfContainerVT, VL, DL, DAG); 2677 2678 // Widen V1 and V2 with 0s and add one copy of V2 to V1. 2679 SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1, 2680 V2, TrueMask, VL); 2681 // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer. 2682 SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT, 2683 DAG.getUNDEF(IntHalfVT), 2684 DAG.getAllOnesConstant(DL, XLenVT)); 2685 SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT, 2686 V2, Multiplier, TrueMask, VL); 2687 // Add the new copies to our previous addition giving us 2^eltbits copies of 2688 // V2. This is equivalent to shifting V2 left by eltbits. This should 2689 // combine with the vwmulu.vv above to form vwmaccu.vv. 2690 Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul, 2691 TrueMask, VL); 2692 // Cast back to ContainerVT. We need to re-create a new ContainerVT in case 2693 // WideIntContainerVT is a larger fractional LMUL than implied by the fixed 2694 // vector VT. 2695 ContainerVT = 2696 MVT::getVectorVT(VT.getVectorElementType(), 2697 WideIntContainerVT.getVectorElementCount() * 2); 2698 Add = DAG.getBitcast(ContainerVT, Add); 2699 return convertFromScalableVector(VT, Add, DAG, Subtarget); 2700 } 2701 2702 // Detect shuffles which can be re-expressed as vector selects; these are 2703 // shuffles in which each element in the destination is taken from an element 2704 // at the corresponding index in either source vectors. 2705 bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) { 2706 int MaskIndex = MaskIdx.value(); 2707 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2708 }); 2709 2710 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2711 2712 SmallVector<SDValue> MaskVals; 2713 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2714 // merged with a second vrgather. 2715 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2716 2717 // By default we preserve the original operand order, and use a mask to 2718 // select LHS as true and RHS as false. However, since RVV vector selects may 2719 // feature splats but only on the LHS, we may choose to invert our mask and 2720 // instead select between RHS and LHS. 2721 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2722 bool InvertMask = IsSelect == SwapOps; 2723 2724 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2725 // half. 2726 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2727 2728 // Now construct the mask that will be used by the vselect or blended 2729 // vrgather operation. For vrgathers, construct the appropriate indices into 2730 // each vector. 2731 for (int MaskIndex : Mask) { 2732 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2733 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2734 if (!IsSelect) { 2735 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2736 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2737 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2738 : DAG.getUNDEF(XLenVT)); 2739 GatherIndicesRHS.push_back( 2740 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2741 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2742 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2743 ++LHSIndexCounts[MaskIndex]; 2744 if (!IsLHSOrUndefIndex) 2745 ++RHSIndexCounts[MaskIndex - NumElts]; 2746 } 2747 } 2748 2749 if (SwapOps) { 2750 std::swap(V1, V2); 2751 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2752 } 2753 2754 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2755 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2756 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2757 2758 if (IsSelect) 2759 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2760 2761 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2762 // On such a large vector we're unable to use i8 as the index type. 2763 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2764 // may involve vector splitting if we're already at LMUL=8, or our 2765 // user-supplied maximum fixed-length LMUL. 2766 return SDValue(); 2767 } 2768 2769 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2770 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2771 MVT IndexVT = VT.changeTypeToInteger(); 2772 // Since we can't introduce illegal index types at this stage, use i16 and 2773 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2774 // than XLenVT. 2775 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2776 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2777 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2778 } 2779 2780 MVT IndexContainerVT = 2781 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2782 2783 SDValue Gather; 2784 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2785 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2786 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2787 Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG, 2788 Subtarget); 2789 } else { 2790 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2791 // If only one index is used, we can use a "splat" vrgather. 2792 // TODO: We can splat the most-common index and fix-up any stragglers, if 2793 // that's beneficial. 2794 if (LHSIndexCounts.size() == 1) { 2795 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2796 Gather = DAG.getNode( 2797 GatherVXOpc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V1, 2798 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2799 } else { 2800 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2801 LHSIndices = 2802 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2803 2804 Gather = 2805 DAG.getNode(GatherVVOpc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), 2806 V1, LHSIndices, TrueMask, VL); 2807 } 2808 } 2809 2810 // If a second vector operand is used by this shuffle, blend it in with an 2811 // additional vrgather. 2812 if (!V2.isUndef()) { 2813 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2814 2815 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2816 SelectMask = 2817 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2818 2819 // If only one index is used, we can use a "splat" vrgather. 2820 // TODO: We can splat the most-common index and fix-up any stragglers, if 2821 // that's beneficial. 2822 if (RHSIndexCounts.size() == 1) { 2823 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2824 Gather = 2825 DAG.getNode(GatherVXOpc, DL, ContainerVT, Gather, V2, 2826 DAG.getConstant(SplatIndex, DL, XLenVT), SelectMask, VL); 2827 } else { 2828 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2829 RHSIndices = 2830 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2831 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, Gather, V2, RHSIndices, 2832 SelectMask, VL); 2833 } 2834 } 2835 2836 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2837 } 2838 2839 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 2840 // Support splats for any type. These should type legalize well. 2841 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 2842 return true; 2843 2844 // Only support legal VTs for other shuffles for now. 2845 if (!isTypeLegal(VT)) 2846 return false; 2847 2848 MVT SVT = VT.getSimpleVT(); 2849 2850 bool SwapSources; 2851 int LoSrc, HiSrc; 2852 return (isElementRotate(LoSrc, HiSrc, M) > 0) || 2853 isInterleaveShuffle(M, SVT, SwapSources, Subtarget); 2854 } 2855 2856 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2857 // the exponent. 2858 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2859 MVT VT = Op.getSimpleValueType(); 2860 unsigned EltSize = VT.getScalarSizeInBits(); 2861 SDValue Src = Op.getOperand(0); 2862 SDLoc DL(Op); 2863 2864 // We need a FP type that can represent the value. 2865 // TODO: Use f16 for i8 when possible? 2866 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2867 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2868 2869 // Legal types should have been checked in the RISCVTargetLowering 2870 // constructor. 2871 // TODO: Splitting may make sense in some cases. 2872 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2873 "Expected legal float type!"); 2874 2875 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2876 // The trailing zero count is equal to log2 of this single bit value. 2877 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2878 SDValue Neg = 2879 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2880 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2881 } 2882 2883 // We have a legal FP type, convert to it. 2884 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2885 // Bitcast to integer and shift the exponent to the LSB. 2886 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2887 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2888 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2889 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2890 DAG.getConstant(ShiftAmt, DL, IntVT)); 2891 // Truncate back to original type to allow vnsrl. 2892 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2893 // The exponent contains log2 of the value in biased form. 2894 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2895 2896 // For trailing zeros, we just need to subtract the bias. 2897 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2898 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2899 DAG.getConstant(ExponentBias, DL, VT)); 2900 2901 // For leading zeros, we need to remove the bias and convert from log2 to 2902 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 2903 unsigned Adjust = ExponentBias + (EltSize - 1); 2904 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 2905 } 2906 2907 // While RVV has alignment restrictions, we should always be able to load as a 2908 // legal equivalently-sized byte-typed vector instead. This method is 2909 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2910 // the load is already correctly-aligned, it returns SDValue(). 2911 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2912 SelectionDAG &DAG) const { 2913 auto *Load = cast<LoadSDNode>(Op); 2914 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2915 2916 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2917 Load->getMemoryVT(), 2918 *Load->getMemOperand())) 2919 return SDValue(); 2920 2921 SDLoc DL(Op); 2922 MVT VT = Op.getSimpleValueType(); 2923 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2924 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2925 "Unexpected unaligned RVV load type"); 2926 MVT NewVT = 2927 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2928 assert(NewVT.isValid() && 2929 "Expecting equally-sized RVV vector types to be legal"); 2930 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2931 Load->getPointerInfo(), Load->getOriginalAlign(), 2932 Load->getMemOperand()->getFlags()); 2933 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2934 } 2935 2936 // While RVV has alignment restrictions, we should always be able to store as a 2937 // legal equivalently-sized byte-typed vector instead. This method is 2938 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2939 // returns SDValue() if the store is already correctly aligned. 2940 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2941 SelectionDAG &DAG) const { 2942 auto *Store = cast<StoreSDNode>(Op); 2943 assert(Store && Store->getValue().getValueType().isVector() && 2944 "Expected vector store"); 2945 2946 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2947 Store->getMemoryVT(), 2948 *Store->getMemOperand())) 2949 return SDValue(); 2950 2951 SDLoc DL(Op); 2952 SDValue StoredVal = Store->getValue(); 2953 MVT VT = StoredVal.getSimpleValueType(); 2954 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2955 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2956 "Unexpected unaligned RVV store type"); 2957 MVT NewVT = 2958 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2959 assert(NewVT.isValid() && 2960 "Expecting equally-sized RVV vector types to be legal"); 2961 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2962 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2963 Store->getPointerInfo(), Store->getOriginalAlign(), 2964 Store->getMemOperand()->getFlags()); 2965 } 2966 2967 static SDValue lowerConstant(SDValue Op, SelectionDAG &DAG, 2968 const RISCVSubtarget &Subtarget) { 2969 assert(Op.getValueType() == MVT::i64 && "Unexpected VT"); 2970 2971 int64_t Imm = cast<ConstantSDNode>(Op)->getSExtValue(); 2972 2973 // All simm32 constants should be handled by isel. 2974 // NOTE: The getMaxBuildIntsCost call below should return a value >= 2 making 2975 // this check redundant, but small immediates are common so this check 2976 // should have better compile time. 2977 if (isInt<32>(Imm)) 2978 return Op; 2979 2980 // We only need to cost the immediate, if constant pool lowering is enabled. 2981 if (!Subtarget.useConstantPoolForLargeInts()) 2982 return Op; 2983 2984 RISCVMatInt::InstSeq Seq = 2985 RISCVMatInt::generateInstSeq(Imm, Subtarget.getFeatureBits()); 2986 if (Seq.size() <= Subtarget.getMaxBuildIntsCost()) 2987 return Op; 2988 2989 // Expand to a constant pool using the default expansion code. 2990 return SDValue(); 2991 } 2992 2993 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2994 SelectionDAG &DAG) const { 2995 switch (Op.getOpcode()) { 2996 default: 2997 report_fatal_error("unimplemented operand"); 2998 case ISD::GlobalAddress: 2999 return lowerGlobalAddress(Op, DAG); 3000 case ISD::BlockAddress: 3001 return lowerBlockAddress(Op, DAG); 3002 case ISD::ConstantPool: 3003 return lowerConstantPool(Op, DAG); 3004 case ISD::JumpTable: 3005 return lowerJumpTable(Op, DAG); 3006 case ISD::GlobalTLSAddress: 3007 return lowerGlobalTLSAddress(Op, DAG); 3008 case ISD::Constant: 3009 return lowerConstant(Op, DAG, Subtarget); 3010 case ISD::SELECT: 3011 return lowerSELECT(Op, DAG); 3012 case ISD::BRCOND: 3013 return lowerBRCOND(Op, DAG); 3014 case ISD::VASTART: 3015 return lowerVASTART(Op, DAG); 3016 case ISD::FRAMEADDR: 3017 return lowerFRAMEADDR(Op, DAG); 3018 case ISD::RETURNADDR: 3019 return lowerRETURNADDR(Op, DAG); 3020 case ISD::SHL_PARTS: 3021 return lowerShiftLeftParts(Op, DAG); 3022 case ISD::SRA_PARTS: 3023 return lowerShiftRightParts(Op, DAG, true); 3024 case ISD::SRL_PARTS: 3025 return lowerShiftRightParts(Op, DAG, false); 3026 case ISD::BITCAST: { 3027 SDLoc DL(Op); 3028 EVT VT = Op.getValueType(); 3029 SDValue Op0 = Op.getOperand(0); 3030 EVT Op0VT = Op0.getValueType(); 3031 MVT XLenVT = Subtarget.getXLenVT(); 3032 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 3033 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 3034 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 3035 return FPConv; 3036 } 3037 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 3038 Subtarget.hasStdExtF()) { 3039 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3040 SDValue FPConv = 3041 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 3042 return FPConv; 3043 } 3044 3045 // Consider other scalar<->scalar casts as legal if the types are legal. 3046 // Otherwise expand them. 3047 if (!VT.isVector() && !Op0VT.isVector()) { 3048 if (isTypeLegal(VT) && isTypeLegal(Op0VT)) 3049 return Op; 3050 return SDValue(); 3051 } 3052 3053 assert(!VT.isScalableVector() && !Op0VT.isScalableVector() && 3054 "Unexpected types"); 3055 3056 if (VT.isFixedLengthVector()) { 3057 // We can handle fixed length vector bitcasts with a simple replacement 3058 // in isel. 3059 if (Op0VT.isFixedLengthVector()) 3060 return Op; 3061 // When bitcasting from scalar to fixed-length vector, insert the scalar 3062 // into a one-element vector of the result type, and perform a vector 3063 // bitcast. 3064 if (!Op0VT.isVector()) { 3065 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 3066 if (!isTypeLegal(BVT)) 3067 return SDValue(); 3068 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 3069 DAG.getUNDEF(BVT), Op0, 3070 DAG.getConstant(0, DL, XLenVT))); 3071 } 3072 return SDValue(); 3073 } 3074 // Custom-legalize bitcasts from fixed-length vector types to scalar types 3075 // thus: bitcast the vector to a one-element vector type whose element type 3076 // is the same as the result type, and extract the first element. 3077 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 3078 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 3079 if (!isTypeLegal(BVT)) 3080 return SDValue(); 3081 SDValue BVec = DAG.getBitcast(BVT, Op0); 3082 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 3083 DAG.getConstant(0, DL, XLenVT)); 3084 } 3085 return SDValue(); 3086 } 3087 case ISD::INTRINSIC_WO_CHAIN: 3088 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 3089 case ISD::INTRINSIC_W_CHAIN: 3090 return LowerINTRINSIC_W_CHAIN(Op, DAG); 3091 case ISD::INTRINSIC_VOID: 3092 return LowerINTRINSIC_VOID(Op, DAG); 3093 case ISD::BSWAP: 3094 case ISD::BITREVERSE: { 3095 MVT VT = Op.getSimpleValueType(); 3096 SDLoc DL(Op); 3097 if (Subtarget.hasStdExtZbp()) { 3098 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 3099 // Start with the maximum immediate value which is the bitwidth - 1. 3100 unsigned Imm = VT.getSizeInBits() - 1; 3101 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 3102 if (Op.getOpcode() == ISD::BSWAP) 3103 Imm &= ~0x7U; 3104 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 3105 DAG.getConstant(Imm, DL, VT)); 3106 } 3107 assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization"); 3108 assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode"); 3109 // Expand bitreverse to a bswap(rev8) followed by brev8. 3110 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0)); 3111 // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized 3112 // as brev8 by an isel pattern. 3113 return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap, 3114 DAG.getConstant(7, DL, VT)); 3115 } 3116 case ISD::FSHL: 3117 case ISD::FSHR: { 3118 MVT VT = Op.getSimpleValueType(); 3119 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 3120 SDLoc DL(Op); 3121 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 3122 // use log(XLen) bits. Mask the shift amount accordingly to prevent 3123 // accidentally setting the extra bit. 3124 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 3125 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 3126 DAG.getConstant(ShAmtWidth, DL, VT)); 3127 // fshl and fshr concatenate their operands in the same order. fsr and fsl 3128 // instruction use different orders. fshl will return its first operand for 3129 // shift of zero, fshr will return its second operand. fsl and fsr both 3130 // return rs1 so the ISD nodes need to have different operand orders. 3131 // Shift amount is in rs2. 3132 SDValue Op0 = Op.getOperand(0); 3133 SDValue Op1 = Op.getOperand(1); 3134 unsigned Opc = RISCVISD::FSL; 3135 if (Op.getOpcode() == ISD::FSHR) { 3136 std::swap(Op0, Op1); 3137 Opc = RISCVISD::FSR; 3138 } 3139 return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt); 3140 } 3141 case ISD::TRUNCATE: 3142 // Only custom-lower vector truncates 3143 if (!Op.getSimpleValueType().isVector()) 3144 return Op; 3145 return lowerVectorTruncLike(Op, DAG); 3146 case ISD::ANY_EXTEND: 3147 case ISD::ZERO_EXTEND: 3148 if (Op.getOperand(0).getValueType().isVector() && 3149 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3150 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 3151 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 3152 case ISD::SIGN_EXTEND: 3153 if (Op.getOperand(0).getValueType().isVector() && 3154 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3155 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 3156 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 3157 case ISD::SPLAT_VECTOR_PARTS: 3158 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 3159 case ISD::INSERT_VECTOR_ELT: 3160 return lowerINSERT_VECTOR_ELT(Op, DAG); 3161 case ISD::EXTRACT_VECTOR_ELT: 3162 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 3163 case ISD::VSCALE: { 3164 MVT VT = Op.getSimpleValueType(); 3165 SDLoc DL(Op); 3166 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 3167 // We define our scalable vector types for lmul=1 to use a 64 bit known 3168 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 3169 // vscale as VLENB / 8. 3170 static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); 3171 if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock) 3172 report_fatal_error("Support for VLEN==32 is incomplete."); 3173 // We assume VLENB is a multiple of 8. We manually choose the best shift 3174 // here because SimplifyDemandedBits isn't always able to simplify it. 3175 uint64_t Val = Op.getConstantOperandVal(0); 3176 if (isPowerOf2_64(Val)) { 3177 uint64_t Log2 = Log2_64(Val); 3178 if (Log2 < 3) 3179 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 3180 DAG.getConstant(3 - Log2, DL, VT)); 3181 if (Log2 > 3) 3182 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 3183 DAG.getConstant(Log2 - 3, DL, VT)); 3184 return VLENB; 3185 } 3186 // If the multiplier is a multiple of 8, scale it down to avoid needing 3187 // to shift the VLENB value. 3188 if ((Val % 8) == 0) 3189 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 3190 DAG.getConstant(Val / 8, DL, VT)); 3191 3192 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 3193 DAG.getConstant(3, DL, VT)); 3194 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 3195 } 3196 case ISD::FPOWI: { 3197 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 3198 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 3199 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 3200 Op.getOperand(1).getValueType() == MVT::i32) { 3201 SDLoc DL(Op); 3202 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 3203 SDValue Powi = 3204 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 3205 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 3206 DAG.getIntPtrConstant(0, DL)); 3207 } 3208 return SDValue(); 3209 } 3210 case ISD::FP_EXTEND: 3211 case ISD::FP_ROUND: 3212 if (!Op.getValueType().isVector()) 3213 return Op; 3214 return lowerVectorFPExtendOrRoundLike(Op, DAG); 3215 case ISD::FP_TO_SINT: 3216 case ISD::FP_TO_UINT: 3217 case ISD::SINT_TO_FP: 3218 case ISD::UINT_TO_FP: { 3219 // RVV can only do fp<->int conversions to types half/double the size as 3220 // the source. We custom-lower any conversions that do two hops into 3221 // sequences. 3222 MVT VT = Op.getSimpleValueType(); 3223 if (!VT.isVector()) 3224 return Op; 3225 SDLoc DL(Op); 3226 SDValue Src = Op.getOperand(0); 3227 MVT EltVT = VT.getVectorElementType(); 3228 MVT SrcVT = Src.getSimpleValueType(); 3229 MVT SrcEltVT = SrcVT.getVectorElementType(); 3230 unsigned EltSize = EltVT.getSizeInBits(); 3231 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 3232 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 3233 "Unexpected vector element types"); 3234 3235 bool IsInt2FP = SrcEltVT.isInteger(); 3236 // Widening conversions 3237 if (EltSize > (2 * SrcEltSize)) { 3238 if (IsInt2FP) { 3239 // Do a regular integer sign/zero extension then convert to float. 3240 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), 3241 VT.getVectorElementCount()); 3242 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 3243 ? ISD::ZERO_EXTEND 3244 : ISD::SIGN_EXTEND; 3245 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 3246 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 3247 } 3248 // FP2Int 3249 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 3250 // Do one doubling fp_extend then complete the operation by converting 3251 // to int. 3252 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3253 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 3254 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 3255 } 3256 3257 // Narrowing conversions 3258 if (SrcEltSize > (2 * EltSize)) { 3259 if (IsInt2FP) { 3260 // One narrowing int_to_fp, then an fp_round. 3261 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 3262 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3263 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 3264 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 3265 } 3266 // FP2Int 3267 // One narrowing fp_to_int, then truncate the integer. If the float isn't 3268 // representable by the integer, the result is poison. 3269 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), 3270 VT.getVectorElementCount()); 3271 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 3272 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 3273 } 3274 3275 // Scalable vectors can exit here. Patterns will handle equally-sized 3276 // conversions halving/doubling ones. 3277 if (!VT.isFixedLengthVector()) 3278 return Op; 3279 3280 // For fixed-length vectors we lower to a custom "VL" node. 3281 unsigned RVVOpc = 0; 3282 switch (Op.getOpcode()) { 3283 default: 3284 llvm_unreachable("Impossible opcode"); 3285 case ISD::FP_TO_SINT: 3286 RVVOpc = RISCVISD::FP_TO_SINT_VL; 3287 break; 3288 case ISD::FP_TO_UINT: 3289 RVVOpc = RISCVISD::FP_TO_UINT_VL; 3290 break; 3291 case ISD::SINT_TO_FP: 3292 RVVOpc = RISCVISD::SINT_TO_FP_VL; 3293 break; 3294 case ISD::UINT_TO_FP: 3295 RVVOpc = RISCVISD::UINT_TO_FP_VL; 3296 break; 3297 } 3298 3299 MVT ContainerVT, SrcContainerVT; 3300 // Derive the reference container type from the larger vector type. 3301 if (SrcEltSize > EltSize) { 3302 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3303 ContainerVT = 3304 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3305 } else { 3306 ContainerVT = getContainerForFixedLengthVector(VT); 3307 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 3308 } 3309 3310 SDValue Mask, VL; 3311 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3312 3313 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3314 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 3315 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3316 } 3317 case ISD::FP_TO_SINT_SAT: 3318 case ISD::FP_TO_UINT_SAT: 3319 return lowerFP_TO_INT_SAT(Op, DAG, Subtarget); 3320 case ISD::FTRUNC: 3321 case ISD::FCEIL: 3322 case ISD::FFLOOR: 3323 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 3324 case ISD::FROUND: 3325 return lowerFROUND(Op, DAG); 3326 case ISD::VECREDUCE_ADD: 3327 case ISD::VECREDUCE_UMAX: 3328 case ISD::VECREDUCE_SMAX: 3329 case ISD::VECREDUCE_UMIN: 3330 case ISD::VECREDUCE_SMIN: 3331 return lowerVECREDUCE(Op, DAG); 3332 case ISD::VECREDUCE_AND: 3333 case ISD::VECREDUCE_OR: 3334 case ISD::VECREDUCE_XOR: 3335 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3336 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 3337 return lowerVECREDUCE(Op, DAG); 3338 case ISD::VECREDUCE_FADD: 3339 case ISD::VECREDUCE_SEQ_FADD: 3340 case ISD::VECREDUCE_FMIN: 3341 case ISD::VECREDUCE_FMAX: 3342 return lowerFPVECREDUCE(Op, DAG); 3343 case ISD::VP_REDUCE_ADD: 3344 case ISD::VP_REDUCE_UMAX: 3345 case ISD::VP_REDUCE_SMAX: 3346 case ISD::VP_REDUCE_UMIN: 3347 case ISD::VP_REDUCE_SMIN: 3348 case ISD::VP_REDUCE_FADD: 3349 case ISD::VP_REDUCE_SEQ_FADD: 3350 case ISD::VP_REDUCE_FMIN: 3351 case ISD::VP_REDUCE_FMAX: 3352 return lowerVPREDUCE(Op, DAG); 3353 case ISD::VP_REDUCE_AND: 3354 case ISD::VP_REDUCE_OR: 3355 case ISD::VP_REDUCE_XOR: 3356 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 3357 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 3358 return lowerVPREDUCE(Op, DAG); 3359 case ISD::INSERT_SUBVECTOR: 3360 return lowerINSERT_SUBVECTOR(Op, DAG); 3361 case ISD::EXTRACT_SUBVECTOR: 3362 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3363 case ISD::STEP_VECTOR: 3364 return lowerSTEP_VECTOR(Op, DAG); 3365 case ISD::VECTOR_REVERSE: 3366 return lowerVECTOR_REVERSE(Op, DAG); 3367 case ISD::VECTOR_SPLICE: 3368 return lowerVECTOR_SPLICE(Op, DAG); 3369 case ISD::BUILD_VECTOR: 3370 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3371 case ISD::SPLAT_VECTOR: 3372 if (Op.getValueType().getVectorElementType() == MVT::i1) 3373 return lowerVectorMaskSplat(Op, DAG); 3374 return SDValue(); 3375 case ISD::VECTOR_SHUFFLE: 3376 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3377 case ISD::CONCAT_VECTORS: { 3378 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3379 // better than going through the stack, as the default expansion does. 3380 SDLoc DL(Op); 3381 MVT VT = Op.getSimpleValueType(); 3382 unsigned NumOpElts = 3383 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3384 SDValue Vec = DAG.getUNDEF(VT); 3385 for (const auto &OpIdx : enumerate(Op->ops())) { 3386 SDValue SubVec = OpIdx.value(); 3387 // Don't insert undef subvectors. 3388 if (SubVec.isUndef()) 3389 continue; 3390 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec, 3391 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3392 } 3393 return Vec; 3394 } 3395 case ISD::LOAD: 3396 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3397 return V; 3398 if (Op.getValueType().isFixedLengthVector()) 3399 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3400 return Op; 3401 case ISD::STORE: 3402 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3403 return V; 3404 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3405 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3406 return Op; 3407 case ISD::MLOAD: 3408 case ISD::VP_LOAD: 3409 return lowerMaskedLoad(Op, DAG); 3410 case ISD::MSTORE: 3411 case ISD::VP_STORE: 3412 return lowerMaskedStore(Op, DAG); 3413 case ISD::SETCC: 3414 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3415 case ISD::ADD: 3416 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3417 case ISD::SUB: 3418 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3419 case ISD::MUL: 3420 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3421 case ISD::MULHS: 3422 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3423 case ISD::MULHU: 3424 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3425 case ISD::AND: 3426 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3427 RISCVISD::AND_VL); 3428 case ISD::OR: 3429 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3430 RISCVISD::OR_VL); 3431 case ISD::XOR: 3432 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3433 RISCVISD::XOR_VL); 3434 case ISD::SDIV: 3435 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3436 case ISD::SREM: 3437 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3438 case ISD::UDIV: 3439 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3440 case ISD::UREM: 3441 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3442 case ISD::SHL: 3443 case ISD::SRA: 3444 case ISD::SRL: 3445 if (Op.getSimpleValueType().isFixedLengthVector()) 3446 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3447 // This can be called for an i32 shift amount that needs to be promoted. 3448 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3449 "Unexpected custom legalisation"); 3450 return SDValue(); 3451 case ISD::SADDSAT: 3452 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3453 case ISD::UADDSAT: 3454 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3455 case ISD::SSUBSAT: 3456 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3457 case ISD::USUBSAT: 3458 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3459 case ISD::FADD: 3460 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3461 case ISD::FSUB: 3462 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3463 case ISD::FMUL: 3464 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3465 case ISD::FDIV: 3466 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3467 case ISD::FNEG: 3468 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3469 case ISD::FABS: 3470 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3471 case ISD::FSQRT: 3472 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3473 case ISD::FMA: 3474 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 3475 case ISD::SMIN: 3476 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3477 case ISD::SMAX: 3478 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3479 case ISD::UMIN: 3480 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3481 case ISD::UMAX: 3482 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3483 case ISD::FMINNUM: 3484 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3485 case ISD::FMAXNUM: 3486 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3487 case ISD::ABS: 3488 return lowerABS(Op, DAG); 3489 case ISD::CTLZ_ZERO_UNDEF: 3490 case ISD::CTTZ_ZERO_UNDEF: 3491 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3492 case ISD::VSELECT: 3493 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3494 case ISD::FCOPYSIGN: 3495 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3496 case ISD::MGATHER: 3497 case ISD::VP_GATHER: 3498 return lowerMaskedGather(Op, DAG); 3499 case ISD::MSCATTER: 3500 case ISD::VP_SCATTER: 3501 return lowerMaskedScatter(Op, DAG); 3502 case ISD::FLT_ROUNDS_: 3503 return lowerGET_ROUNDING(Op, DAG); 3504 case ISD::SET_ROUNDING: 3505 return lowerSET_ROUNDING(Op, DAG); 3506 case ISD::EH_DWARF_CFA: 3507 return lowerEH_DWARF_CFA(Op, DAG); 3508 case ISD::VP_SELECT: 3509 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3510 case ISD::VP_MERGE: 3511 return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL); 3512 case ISD::VP_ADD: 3513 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3514 case ISD::VP_SUB: 3515 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3516 case ISD::VP_MUL: 3517 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3518 case ISD::VP_SDIV: 3519 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3520 case ISD::VP_UDIV: 3521 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3522 case ISD::VP_SREM: 3523 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3524 case ISD::VP_UREM: 3525 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3526 case ISD::VP_AND: 3527 return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL); 3528 case ISD::VP_OR: 3529 return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL); 3530 case ISD::VP_XOR: 3531 return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL); 3532 case ISD::VP_ASHR: 3533 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3534 case ISD::VP_LSHR: 3535 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3536 case ISD::VP_SHL: 3537 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3538 case ISD::VP_FADD: 3539 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3540 case ISD::VP_FSUB: 3541 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3542 case ISD::VP_FMUL: 3543 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3544 case ISD::VP_FDIV: 3545 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3546 case ISD::VP_FNEG: 3547 return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL); 3548 case ISD::VP_FMA: 3549 return lowerVPOp(Op, DAG, RISCVISD::FMA_VL); 3550 case ISD::VP_SIGN_EXTEND: 3551 case ISD::VP_ZERO_EXTEND: 3552 if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1) 3553 return lowerVPExtMaskOp(Op, DAG); 3554 return lowerVPOp(Op, DAG, 3555 Op.getOpcode() == ISD::VP_SIGN_EXTEND 3556 ? RISCVISD::VSEXT_VL 3557 : RISCVISD::VZEXT_VL); 3558 case ISD::VP_TRUNCATE: 3559 return lowerVectorTruncLike(Op, DAG); 3560 case ISD::VP_FP_EXTEND: 3561 case ISD::VP_FP_ROUND: 3562 return lowerVectorFPExtendOrRoundLike(Op, DAG); 3563 case ISD::VP_FPTOSI: 3564 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_SINT_VL); 3565 case ISD::VP_FPTOUI: 3566 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_UINT_VL); 3567 case ISD::VP_SITOFP: 3568 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::SINT_TO_FP_VL); 3569 case ISD::VP_UITOFP: 3570 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::UINT_TO_FP_VL); 3571 case ISD::VP_SETCC: 3572 if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1) 3573 return lowerVPSetCCMaskOp(Op, DAG); 3574 return lowerVPOp(Op, DAG, RISCVISD::SETCC_VL); 3575 } 3576 } 3577 3578 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3579 SelectionDAG &DAG, unsigned Flags) { 3580 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3581 } 3582 3583 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3584 SelectionDAG &DAG, unsigned Flags) { 3585 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3586 Flags); 3587 } 3588 3589 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3590 SelectionDAG &DAG, unsigned Flags) { 3591 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3592 N->getOffset(), Flags); 3593 } 3594 3595 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3596 SelectionDAG &DAG, unsigned Flags) { 3597 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3598 } 3599 3600 template <class NodeTy> 3601 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3602 bool IsLocal) const { 3603 SDLoc DL(N); 3604 EVT Ty = getPointerTy(DAG.getDataLayout()); 3605 3606 if (isPositionIndependent()) { 3607 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3608 if (IsLocal) 3609 // Use PC-relative addressing to access the symbol. This generates the 3610 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3611 // %pcrel_lo(auipc)). 3612 return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr); 3613 3614 // Use PC-relative addressing to access the GOT for this symbol, then load 3615 // the address from the GOT. This generates the pattern (PseudoLA sym), 3616 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3617 SDValue Load = 3618 SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3619 MachineFunction &MF = DAG.getMachineFunction(); 3620 MachineMemOperand *MemOp = MF.getMachineMemOperand( 3621 MachinePointerInfo::getGOT(MF), 3622 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 3623 MachineMemOperand::MOInvariant, 3624 LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); 3625 DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp}); 3626 return Load; 3627 } 3628 3629 switch (getTargetMachine().getCodeModel()) { 3630 default: 3631 report_fatal_error("Unsupported code model for lowering"); 3632 case CodeModel::Small: { 3633 // Generate a sequence for accessing addresses within the first 2 GiB of 3634 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3635 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3636 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3637 SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi); 3638 return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNHi, AddrLo); 3639 } 3640 case CodeModel::Medium: { 3641 // Generate a sequence for accessing addresses within any 2GiB range within 3642 // the address space. This generates the pattern (PseudoLLA sym), which 3643 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3644 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3645 return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr); 3646 } 3647 } 3648 } 3649 3650 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3651 SelectionDAG &DAG) const { 3652 SDLoc DL(Op); 3653 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3654 assert(N->getOffset() == 0 && "unexpected offset in global node"); 3655 3656 const GlobalValue *GV = N->getGlobal(); 3657 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3658 return getAddr(N, DAG, IsLocal); 3659 } 3660 3661 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3662 SelectionDAG &DAG) const { 3663 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3664 3665 return getAddr(N, DAG); 3666 } 3667 3668 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3669 SelectionDAG &DAG) const { 3670 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3671 3672 return getAddr(N, DAG); 3673 } 3674 3675 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3676 SelectionDAG &DAG) const { 3677 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3678 3679 return getAddr(N, DAG); 3680 } 3681 3682 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3683 SelectionDAG &DAG, 3684 bool UseGOT) const { 3685 SDLoc DL(N); 3686 EVT Ty = getPointerTy(DAG.getDataLayout()); 3687 const GlobalValue *GV = N->getGlobal(); 3688 MVT XLenVT = Subtarget.getXLenVT(); 3689 3690 if (UseGOT) { 3691 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3692 // load the address from the GOT and add the thread pointer. This generates 3693 // the pattern (PseudoLA_TLS_IE sym), which expands to 3694 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3695 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3696 SDValue Load = 3697 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3698 MachineFunction &MF = DAG.getMachineFunction(); 3699 MachineMemOperand *MemOp = MF.getMachineMemOperand( 3700 MachinePointerInfo::getGOT(MF), 3701 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 3702 MachineMemOperand::MOInvariant, 3703 LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); 3704 DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp}); 3705 3706 // Add the thread pointer. 3707 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3708 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3709 } 3710 3711 // Generate a sequence for accessing the address relative to the thread 3712 // pointer, with the appropriate adjustment for the thread pointer offset. 3713 // This generates the pattern 3714 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3715 SDValue AddrHi = 3716 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3717 SDValue AddrAdd = 3718 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3719 SDValue AddrLo = 3720 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3721 3722 SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi); 3723 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3724 SDValue MNAdd = 3725 DAG.getNode(RISCVISD::ADD_TPREL, DL, Ty, MNHi, TPReg, AddrAdd); 3726 return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNAdd, AddrLo); 3727 } 3728 3729 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3730 SelectionDAG &DAG) const { 3731 SDLoc DL(N); 3732 EVT Ty = getPointerTy(DAG.getDataLayout()); 3733 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3734 const GlobalValue *GV = N->getGlobal(); 3735 3736 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3737 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3738 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3739 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3740 SDValue Load = 3741 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3742 3743 // Prepare argument list to generate call. 3744 ArgListTy Args; 3745 ArgListEntry Entry; 3746 Entry.Node = Load; 3747 Entry.Ty = CallTy; 3748 Args.push_back(Entry); 3749 3750 // Setup call to __tls_get_addr. 3751 TargetLowering::CallLoweringInfo CLI(DAG); 3752 CLI.setDebugLoc(DL) 3753 .setChain(DAG.getEntryNode()) 3754 .setLibCallee(CallingConv::C, CallTy, 3755 DAG.getExternalSymbol("__tls_get_addr", Ty), 3756 std::move(Args)); 3757 3758 return LowerCallTo(CLI).first; 3759 } 3760 3761 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3762 SelectionDAG &DAG) const { 3763 SDLoc DL(Op); 3764 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3765 assert(N->getOffset() == 0 && "unexpected offset in global node"); 3766 3767 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3768 3769 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3770 CallingConv::GHC) 3771 report_fatal_error("In GHC calling convention TLS is not supported"); 3772 3773 SDValue Addr; 3774 switch (Model) { 3775 case TLSModel::LocalExec: 3776 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3777 break; 3778 case TLSModel::InitialExec: 3779 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3780 break; 3781 case TLSModel::LocalDynamic: 3782 case TLSModel::GeneralDynamic: 3783 Addr = getDynamicTLSAddr(N, DAG); 3784 break; 3785 } 3786 3787 return Addr; 3788 } 3789 3790 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3791 SDValue CondV = Op.getOperand(0); 3792 SDValue TrueV = Op.getOperand(1); 3793 SDValue FalseV = Op.getOperand(2); 3794 SDLoc DL(Op); 3795 MVT VT = Op.getSimpleValueType(); 3796 MVT XLenVT = Subtarget.getXLenVT(); 3797 3798 // Lower vector SELECTs to VSELECTs by splatting the condition. 3799 if (VT.isVector()) { 3800 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3801 SDValue CondSplat = VT.isScalableVector() 3802 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3803 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3804 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3805 } 3806 3807 // If the result type is XLenVT and CondV is the output of a SETCC node 3808 // which also operated on XLenVT inputs, then merge the SETCC node into the 3809 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3810 // compare+branch instructions. i.e.: 3811 // (select (setcc lhs, rhs, cc), truev, falsev) 3812 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3813 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3814 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3815 SDValue LHS = CondV.getOperand(0); 3816 SDValue RHS = CondV.getOperand(1); 3817 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3818 ISD::CondCode CCVal = CC->get(); 3819 3820 // Special case for a select of 2 constants that have a diffence of 1. 3821 // Normally this is done by DAGCombine, but if the select is introduced by 3822 // type legalization or op legalization, we miss it. Restricting to SETLT 3823 // case for now because that is what signed saturating add/sub need. 3824 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3825 // but we would probably want to swap the true/false values if the condition 3826 // is SETGE/SETLE to avoid an XORI. 3827 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3828 CCVal == ISD::SETLT) { 3829 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3830 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3831 if (TrueVal - 1 == FalseVal) 3832 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3833 if (TrueVal + 1 == FalseVal) 3834 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3835 } 3836 3837 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3838 3839 SDValue TargetCC = DAG.getCondCode(CCVal); 3840 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3841 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3842 } 3843 3844 // Otherwise: 3845 // (select condv, truev, falsev) 3846 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3847 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3848 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3849 3850 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3851 3852 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3853 } 3854 3855 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3856 SDValue CondV = Op.getOperand(1); 3857 SDLoc DL(Op); 3858 MVT XLenVT = Subtarget.getXLenVT(); 3859 3860 if (CondV.getOpcode() == ISD::SETCC && 3861 CondV.getOperand(0).getValueType() == XLenVT) { 3862 SDValue LHS = CondV.getOperand(0); 3863 SDValue RHS = CondV.getOperand(1); 3864 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3865 3866 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3867 3868 SDValue TargetCC = DAG.getCondCode(CCVal); 3869 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3870 LHS, RHS, TargetCC, Op.getOperand(2)); 3871 } 3872 3873 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3874 CondV, DAG.getConstant(0, DL, XLenVT), 3875 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3876 } 3877 3878 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3879 MachineFunction &MF = DAG.getMachineFunction(); 3880 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3881 3882 SDLoc DL(Op); 3883 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3884 getPointerTy(MF.getDataLayout())); 3885 3886 // vastart just stores the address of the VarArgsFrameIndex slot into the 3887 // memory location argument. 3888 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3889 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3890 MachinePointerInfo(SV)); 3891 } 3892 3893 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3894 SelectionDAG &DAG) const { 3895 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3896 MachineFunction &MF = DAG.getMachineFunction(); 3897 MachineFrameInfo &MFI = MF.getFrameInfo(); 3898 MFI.setFrameAddressIsTaken(true); 3899 Register FrameReg = RI.getFrameRegister(MF); 3900 int XLenInBytes = Subtarget.getXLen() / 8; 3901 3902 EVT VT = Op.getValueType(); 3903 SDLoc DL(Op); 3904 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3905 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3906 while (Depth--) { 3907 int Offset = -(XLenInBytes * 2); 3908 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3909 DAG.getIntPtrConstant(Offset, DL)); 3910 FrameAddr = 3911 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3912 } 3913 return FrameAddr; 3914 } 3915 3916 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3917 SelectionDAG &DAG) const { 3918 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3919 MachineFunction &MF = DAG.getMachineFunction(); 3920 MachineFrameInfo &MFI = MF.getFrameInfo(); 3921 MFI.setReturnAddressIsTaken(true); 3922 MVT XLenVT = Subtarget.getXLenVT(); 3923 int XLenInBytes = Subtarget.getXLen() / 8; 3924 3925 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3926 return SDValue(); 3927 3928 EVT VT = Op.getValueType(); 3929 SDLoc DL(Op); 3930 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3931 if (Depth) { 3932 int Off = -XLenInBytes; 3933 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3934 SDValue Offset = DAG.getConstant(Off, DL, VT); 3935 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3936 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3937 MachinePointerInfo()); 3938 } 3939 3940 // Return the value of the return address register, marking it an implicit 3941 // live-in. 3942 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3943 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3944 } 3945 3946 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3947 SelectionDAG &DAG) const { 3948 SDLoc DL(Op); 3949 SDValue Lo = Op.getOperand(0); 3950 SDValue Hi = Op.getOperand(1); 3951 SDValue Shamt = Op.getOperand(2); 3952 EVT VT = Lo.getValueType(); 3953 3954 // if Shamt-XLEN < 0: // Shamt < XLEN 3955 // Lo = Lo << Shamt 3956 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt)) 3957 // else: 3958 // Lo = 0 3959 // Hi = Lo << (Shamt-XLEN) 3960 3961 SDValue Zero = DAG.getConstant(0, DL, VT); 3962 SDValue One = DAG.getConstant(1, DL, VT); 3963 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3964 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3965 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3966 SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1); 3967 3968 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3969 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3970 SDValue ShiftRightLo = 3971 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3972 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3973 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3974 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3975 3976 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3977 3978 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3979 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3980 3981 SDValue Parts[2] = {Lo, Hi}; 3982 return DAG.getMergeValues(Parts, DL); 3983 } 3984 3985 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3986 bool IsSRA) const { 3987 SDLoc DL(Op); 3988 SDValue Lo = Op.getOperand(0); 3989 SDValue Hi = Op.getOperand(1); 3990 SDValue Shamt = Op.getOperand(2); 3991 EVT VT = Lo.getValueType(); 3992 3993 // SRA expansion: 3994 // if Shamt-XLEN < 0: // Shamt < XLEN 3995 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1)) 3996 // Hi = Hi >>s Shamt 3997 // else: 3998 // Lo = Hi >>s (Shamt-XLEN); 3999 // Hi = Hi >>s (XLEN-1) 4000 // 4001 // SRL expansion: 4002 // if Shamt-XLEN < 0: // Shamt < XLEN 4003 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1)) 4004 // Hi = Hi >>u Shamt 4005 // else: 4006 // Lo = Hi >>u (Shamt-XLEN); 4007 // Hi = 0; 4008 4009 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 4010 4011 SDValue Zero = DAG.getConstant(0, DL, VT); 4012 SDValue One = DAG.getConstant(1, DL, VT); 4013 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 4014 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 4015 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 4016 SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1); 4017 4018 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 4019 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 4020 SDValue ShiftLeftHi = 4021 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 4022 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 4023 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 4024 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 4025 SDValue HiFalse = 4026 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 4027 4028 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 4029 4030 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 4031 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 4032 4033 SDValue Parts[2] = {Lo, Hi}; 4034 return DAG.getMergeValues(Parts, DL); 4035 } 4036 4037 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 4038 // legal equivalently-sized i8 type, so we can use that as a go-between. 4039 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 4040 SelectionDAG &DAG) const { 4041 SDLoc DL(Op); 4042 MVT VT = Op.getSimpleValueType(); 4043 SDValue SplatVal = Op.getOperand(0); 4044 // All-zeros or all-ones splats are handled specially. 4045 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 4046 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4047 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 4048 } 4049 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 4050 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4051 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 4052 } 4053 MVT XLenVT = Subtarget.getXLenVT(); 4054 assert(SplatVal.getValueType() == XLenVT && 4055 "Unexpected type for i1 splat value"); 4056 MVT InterVT = VT.changeVectorElementType(MVT::i8); 4057 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 4058 DAG.getConstant(1, DL, XLenVT)); 4059 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 4060 SDValue Zero = DAG.getConstant(0, DL, InterVT); 4061 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 4062 } 4063 4064 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 4065 // illegal (currently only vXi64 RV32). 4066 // FIXME: We could also catch non-constant sign-extended i32 values and lower 4067 // them to VMV_V_X_VL. 4068 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 4069 SelectionDAG &DAG) const { 4070 SDLoc DL(Op); 4071 MVT VecVT = Op.getSimpleValueType(); 4072 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 4073 "Unexpected SPLAT_VECTOR_PARTS lowering"); 4074 4075 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 4076 SDValue Lo = Op.getOperand(0); 4077 SDValue Hi = Op.getOperand(1); 4078 4079 if (VecVT.isFixedLengthVector()) { 4080 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4081 SDLoc DL(Op); 4082 SDValue Mask, VL; 4083 std::tie(Mask, VL) = 4084 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4085 4086 SDValue Res = 4087 splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG); 4088 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 4089 } 4090 4091 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 4092 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 4093 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 4094 // If Hi constant is all the same sign bit as Lo, lower this as a custom 4095 // node in order to try and match RVV vector/scalar instructions. 4096 if ((LoC >> 31) == HiC) 4097 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 4098 Lo, DAG.getRegister(RISCV::X0, MVT::i32)); 4099 } 4100 4101 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 4102 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 4103 isa<ConstantSDNode>(Hi.getOperand(1)) && 4104 Hi.getConstantOperandVal(1) == 31) 4105 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo, 4106 DAG.getRegister(RISCV::X0, MVT::i32)); 4107 4108 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 4109 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, 4110 DAG.getUNDEF(VecVT), Lo, Hi, 4111 DAG.getRegister(RISCV::X0, MVT::i32)); 4112 } 4113 4114 // Custom-lower extensions from mask vectors by using a vselect either with 1 4115 // for zero/any-extension or -1 for sign-extension: 4116 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 4117 // Note that any-extension is lowered identically to zero-extension. 4118 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 4119 int64_t ExtTrueVal) const { 4120 SDLoc DL(Op); 4121 MVT VecVT = Op.getSimpleValueType(); 4122 SDValue Src = Op.getOperand(0); 4123 // Only custom-lower extensions from mask types 4124 assert(Src.getValueType().isVector() && 4125 Src.getValueType().getVectorElementType() == MVT::i1); 4126 4127 if (VecVT.isScalableVector()) { 4128 SDValue SplatZero = DAG.getConstant(0, DL, VecVT); 4129 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT); 4130 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 4131 } 4132 4133 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4134 MVT I1ContainerVT = 4135 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4136 4137 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 4138 4139 SDValue Mask, VL; 4140 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4141 4142 MVT XLenVT = Subtarget.getXLenVT(); 4143 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 4144 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 4145 4146 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4147 DAG.getUNDEF(ContainerVT), SplatZero, VL); 4148 SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4149 DAG.getUNDEF(ContainerVT), SplatTrueVal, VL); 4150 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 4151 SplatTrueVal, SplatZero, VL); 4152 4153 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 4154 } 4155 4156 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 4157 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 4158 MVT ExtVT = Op.getSimpleValueType(); 4159 // Only custom-lower extensions from fixed-length vector types. 4160 if (!ExtVT.isFixedLengthVector()) 4161 return Op; 4162 MVT VT = Op.getOperand(0).getSimpleValueType(); 4163 // Grab the canonical container type for the extended type. Infer the smaller 4164 // type from that to ensure the same number of vector elements, as we know 4165 // the LMUL will be sufficient to hold the smaller type. 4166 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 4167 // Get the extended container type manually to ensure the same number of 4168 // vector elements between source and dest. 4169 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4170 ContainerExtVT.getVectorElementCount()); 4171 4172 SDValue Op1 = 4173 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4174 4175 SDLoc DL(Op); 4176 SDValue Mask, VL; 4177 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4178 4179 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 4180 4181 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 4182 } 4183 4184 // Custom-lower truncations from vectors to mask vectors by using a mask and a 4185 // setcc operation: 4186 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 4187 SDValue RISCVTargetLowering::lowerVectorMaskTruncLike(SDValue Op, 4188 SelectionDAG &DAG) const { 4189 bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE; 4190 SDLoc DL(Op); 4191 EVT MaskVT = Op.getValueType(); 4192 // Only expect to custom-lower truncations to mask types 4193 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 4194 "Unexpected type for vector mask lowering"); 4195 SDValue Src = Op.getOperand(0); 4196 MVT VecVT = Src.getSimpleValueType(); 4197 SDValue Mask, VL; 4198 if (IsVPTrunc) { 4199 Mask = Op.getOperand(1); 4200 VL = Op.getOperand(2); 4201 } 4202 // If this is a fixed vector, we need to convert it to a scalable vector. 4203 MVT ContainerVT = VecVT; 4204 4205 if (VecVT.isFixedLengthVector()) { 4206 ContainerVT = getContainerForFixedLengthVector(VecVT); 4207 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 4208 if (IsVPTrunc) { 4209 MVT MaskContainerVT = 4210 getContainerForFixedLengthVector(Mask.getSimpleValueType()); 4211 Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget); 4212 } 4213 } 4214 4215 if (!IsVPTrunc) { 4216 std::tie(Mask, VL) = 4217 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4218 } 4219 4220 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 4221 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 4222 4223 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4224 DAG.getUNDEF(ContainerVT), SplatOne, VL); 4225 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4226 DAG.getUNDEF(ContainerVT), SplatZero, VL); 4227 4228 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 4229 SDValue Trunc = 4230 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 4231 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 4232 DAG.getCondCode(ISD::SETNE), Mask, VL); 4233 if (MaskVT.isFixedLengthVector()) 4234 Trunc = convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 4235 return Trunc; 4236 } 4237 4238 SDValue RISCVTargetLowering::lowerVectorTruncLike(SDValue Op, 4239 SelectionDAG &DAG) const { 4240 bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE; 4241 SDLoc DL(Op); 4242 4243 MVT VT = Op.getSimpleValueType(); 4244 // Only custom-lower vector truncates 4245 assert(VT.isVector() && "Unexpected type for vector truncate lowering"); 4246 4247 // Truncates to mask types are handled differently 4248 if (VT.getVectorElementType() == MVT::i1) 4249 return lowerVectorMaskTruncLike(Op, DAG); 4250 4251 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 4252 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 4253 // truncate by one power of two at a time. 4254 MVT DstEltVT = VT.getVectorElementType(); 4255 4256 SDValue Src = Op.getOperand(0); 4257 MVT SrcVT = Src.getSimpleValueType(); 4258 MVT SrcEltVT = SrcVT.getVectorElementType(); 4259 4260 assert(DstEltVT.bitsLT(SrcEltVT) && isPowerOf2_64(DstEltVT.getSizeInBits()) && 4261 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 4262 "Unexpected vector truncate lowering"); 4263 4264 MVT ContainerVT = SrcVT; 4265 SDValue Mask, VL; 4266 if (IsVPTrunc) { 4267 Mask = Op.getOperand(1); 4268 VL = Op.getOperand(2); 4269 } 4270 if (SrcVT.isFixedLengthVector()) { 4271 ContainerVT = getContainerForFixedLengthVector(SrcVT); 4272 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 4273 if (IsVPTrunc) { 4274 MVT MaskVT = getMaskTypeFor(ContainerVT); 4275 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4276 } 4277 } 4278 4279 SDValue Result = Src; 4280 if (!IsVPTrunc) { 4281 std::tie(Mask, VL) = 4282 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 4283 } 4284 4285 LLVMContext &Context = *DAG.getContext(); 4286 const ElementCount Count = ContainerVT.getVectorElementCount(); 4287 do { 4288 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 4289 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 4290 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 4291 Mask, VL); 4292 } while (SrcEltVT != DstEltVT); 4293 4294 if (SrcVT.isFixedLengthVector()) 4295 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4296 4297 return Result; 4298 } 4299 4300 SDValue 4301 RISCVTargetLowering::lowerVectorFPExtendOrRoundLike(SDValue Op, 4302 SelectionDAG &DAG) const { 4303 bool IsVP = 4304 Op.getOpcode() == ISD::VP_FP_ROUND || Op.getOpcode() == ISD::VP_FP_EXTEND; 4305 bool IsExtend = 4306 Op.getOpcode() == ISD::VP_FP_EXTEND || Op.getOpcode() == ISD::FP_EXTEND; 4307 // RVV can only do truncate fp to types half the size as the source. We 4308 // custom-lower f64->f16 rounds via RVV's round-to-odd float 4309 // conversion instruction. 4310 SDLoc DL(Op); 4311 MVT VT = Op.getSimpleValueType(); 4312 4313 assert(VT.isVector() && "Unexpected type for vector truncate lowering"); 4314 4315 SDValue Src = Op.getOperand(0); 4316 MVT SrcVT = Src.getSimpleValueType(); 4317 4318 bool IsDirectExtend = IsExtend && (VT.getVectorElementType() != MVT::f64 || 4319 SrcVT.getVectorElementType() != MVT::f16); 4320 bool IsDirectTrunc = !IsExtend && (VT.getVectorElementType() != MVT::f16 || 4321 SrcVT.getVectorElementType() != MVT::f64); 4322 4323 bool IsDirectConv = IsDirectExtend || IsDirectTrunc; 4324 4325 // Prepare any fixed-length vector operands. 4326 MVT ContainerVT = VT; 4327 SDValue Mask, VL; 4328 if (IsVP) { 4329 Mask = Op.getOperand(1); 4330 VL = Op.getOperand(2); 4331 } 4332 if (VT.isFixedLengthVector()) { 4333 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 4334 ContainerVT = 4335 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 4336 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 4337 if (IsVP) { 4338 MVT MaskVT = getMaskTypeFor(ContainerVT); 4339 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4340 } 4341 } 4342 4343 if (!IsVP) 4344 std::tie(Mask, VL) = 4345 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 4346 4347 unsigned ConvOpc = IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::FP_ROUND_VL; 4348 4349 if (IsDirectConv) { 4350 Src = DAG.getNode(ConvOpc, DL, ContainerVT, Src, Mask, VL); 4351 if (VT.isFixedLengthVector()) 4352 Src = convertFromScalableVector(VT, Src, DAG, Subtarget); 4353 return Src; 4354 } 4355 4356 unsigned InterConvOpc = 4357 IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::VFNCVT_ROD_VL; 4358 4359 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 4360 SDValue IntermediateConv = 4361 DAG.getNode(InterConvOpc, DL, InterVT, Src, Mask, VL); 4362 SDValue Result = 4363 DAG.getNode(ConvOpc, DL, ContainerVT, IntermediateConv, Mask, VL); 4364 if (VT.isFixedLengthVector()) 4365 return convertFromScalableVector(VT, Result, DAG, Subtarget); 4366 return Result; 4367 } 4368 4369 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 4370 // first position of a vector, and that vector is slid up to the insert index. 4371 // By limiting the active vector length to index+1 and merging with the 4372 // original vector (with an undisturbed tail policy for elements >= VL), we 4373 // achieve the desired result of leaving all elements untouched except the one 4374 // at VL-1, which is replaced with the desired value. 4375 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4376 SelectionDAG &DAG) const { 4377 SDLoc DL(Op); 4378 MVT VecVT = Op.getSimpleValueType(); 4379 SDValue Vec = Op.getOperand(0); 4380 SDValue Val = Op.getOperand(1); 4381 SDValue Idx = Op.getOperand(2); 4382 4383 if (VecVT.getVectorElementType() == MVT::i1) { 4384 // FIXME: For now we just promote to an i8 vector and insert into that, 4385 // but this is probably not optimal. 4386 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4387 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4388 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 4389 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 4390 } 4391 4392 MVT ContainerVT = VecVT; 4393 // If the operand is a fixed-length vector, convert to a scalable one. 4394 if (VecVT.isFixedLengthVector()) { 4395 ContainerVT = getContainerForFixedLengthVector(VecVT); 4396 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4397 } 4398 4399 MVT XLenVT = Subtarget.getXLenVT(); 4400 4401 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4402 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 4403 // Even i64-element vectors on RV32 can be lowered without scalar 4404 // legalization if the most-significant 32 bits of the value are not affected 4405 // by the sign-extension of the lower 32 bits. 4406 // TODO: We could also catch sign extensions of a 32-bit value. 4407 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 4408 const auto *CVal = cast<ConstantSDNode>(Val); 4409 if (isInt<32>(CVal->getSExtValue())) { 4410 IsLegalInsert = true; 4411 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4412 } 4413 } 4414 4415 SDValue Mask, VL; 4416 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4417 4418 SDValue ValInVec; 4419 4420 if (IsLegalInsert) { 4421 unsigned Opc = 4422 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 4423 if (isNullConstant(Idx)) { 4424 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 4425 if (!VecVT.isFixedLengthVector()) 4426 return Vec; 4427 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 4428 } 4429 ValInVec = 4430 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 4431 } else { 4432 // On RV32, i64-element vectors must be specially handled to place the 4433 // value at element 0, by using two vslide1up instructions in sequence on 4434 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 4435 // this. 4436 SDValue One = DAG.getConstant(1, DL, XLenVT); 4437 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 4438 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 4439 MVT I32ContainerVT = 4440 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 4441 SDValue I32Mask = 4442 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 4443 // Limit the active VL to two. 4444 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 4445 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 4446 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 4447 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, 4448 DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL); 4449 // First slide in the hi value, then the lo in underneath it. 4450 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, 4451 DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi, 4452 I32Mask, InsertI64VL); 4453 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, 4454 DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo, 4455 I32Mask, InsertI64VL); 4456 // Bitcast back to the right container type. 4457 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 4458 } 4459 4460 // Now that the value is in a vector, slide it into position. 4461 SDValue InsertVL = 4462 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 4463 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4464 ValInVec, Idx, Mask, InsertVL); 4465 if (!VecVT.isFixedLengthVector()) 4466 return Slideup; 4467 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4468 } 4469 4470 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 4471 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 4472 // types this is done using VMV_X_S to allow us to glean information about the 4473 // sign bits of the result. 4474 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4475 SelectionDAG &DAG) const { 4476 SDLoc DL(Op); 4477 SDValue Idx = Op.getOperand(1); 4478 SDValue Vec = Op.getOperand(0); 4479 EVT EltVT = Op.getValueType(); 4480 MVT VecVT = Vec.getSimpleValueType(); 4481 MVT XLenVT = Subtarget.getXLenVT(); 4482 4483 if (VecVT.getVectorElementType() == MVT::i1) { 4484 if (VecVT.isFixedLengthVector()) { 4485 unsigned NumElts = VecVT.getVectorNumElements(); 4486 if (NumElts >= 8) { 4487 MVT WideEltVT; 4488 unsigned WidenVecLen; 4489 SDValue ExtractElementIdx; 4490 SDValue ExtractBitIdx; 4491 unsigned MaxEEW = Subtarget.getELEN(); 4492 MVT LargestEltVT = MVT::getIntegerVT( 4493 std::min(MaxEEW, unsigned(XLenVT.getSizeInBits()))); 4494 if (NumElts <= LargestEltVT.getSizeInBits()) { 4495 assert(isPowerOf2_32(NumElts) && 4496 "the number of elements should be power of 2"); 4497 WideEltVT = MVT::getIntegerVT(NumElts); 4498 WidenVecLen = 1; 4499 ExtractElementIdx = DAG.getConstant(0, DL, XLenVT); 4500 ExtractBitIdx = Idx; 4501 } else { 4502 WideEltVT = LargestEltVT; 4503 WidenVecLen = NumElts / WideEltVT.getSizeInBits(); 4504 // extract element index = index / element width 4505 ExtractElementIdx = DAG.getNode( 4506 ISD::SRL, DL, XLenVT, Idx, 4507 DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT)); 4508 // mask bit index = index % element width 4509 ExtractBitIdx = DAG.getNode( 4510 ISD::AND, DL, XLenVT, Idx, 4511 DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT)); 4512 } 4513 MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen); 4514 Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec); 4515 SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT, 4516 Vec, ExtractElementIdx); 4517 // Extract the bit from GPR. 4518 SDValue ShiftRight = 4519 DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx); 4520 return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight, 4521 DAG.getConstant(1, DL, XLenVT)); 4522 } 4523 } 4524 // Otherwise, promote to an i8 vector and extract from that. 4525 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4526 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4527 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 4528 } 4529 4530 // If this is a fixed vector, we need to convert it to a scalable vector. 4531 MVT ContainerVT = VecVT; 4532 if (VecVT.isFixedLengthVector()) { 4533 ContainerVT = getContainerForFixedLengthVector(VecVT); 4534 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4535 } 4536 4537 // If the index is 0, the vector is already in the right position. 4538 if (!isNullConstant(Idx)) { 4539 // Use a VL of 1 to avoid processing more elements than we need. 4540 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4541 SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG); 4542 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4543 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4544 } 4545 4546 if (!EltVT.isInteger()) { 4547 // Floating-point extracts are handled in TableGen. 4548 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 4549 DAG.getConstant(0, DL, XLenVT)); 4550 } 4551 4552 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4553 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 4554 } 4555 4556 // Some RVV intrinsics may claim that they want an integer operand to be 4557 // promoted or expanded. 4558 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG, 4559 const RISCVSubtarget &Subtarget) { 4560 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 4561 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 4562 "Unexpected opcode"); 4563 4564 if (!Subtarget.hasVInstructions()) 4565 return SDValue(); 4566 4567 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 4568 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 4569 SDLoc DL(Op); 4570 4571 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4572 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4573 if (!II || !II->hasScalarOperand()) 4574 return SDValue(); 4575 4576 unsigned SplatOp = II->ScalarOperand + 1 + HasChain; 4577 assert(SplatOp < Op.getNumOperands()); 4578 4579 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4580 SDValue &ScalarOp = Operands[SplatOp]; 4581 MVT OpVT = ScalarOp.getSimpleValueType(); 4582 MVT XLenVT = Subtarget.getXLenVT(); 4583 4584 // If this isn't a scalar, or its type is XLenVT we're done. 4585 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4586 return SDValue(); 4587 4588 // Simplest case is that the operand needs to be promoted to XLenVT. 4589 if (OpVT.bitsLT(XLenVT)) { 4590 // If the operand is a constant, sign extend to increase our chances 4591 // of being able to use a .vi instruction. ANY_EXTEND would become a 4592 // a zero extend and the simm5 check in isel would fail. 4593 // FIXME: Should we ignore the upper bits in isel instead? 4594 unsigned ExtOpc = 4595 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4596 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4597 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4598 } 4599 4600 // Use the previous operand to get the vXi64 VT. The result might be a mask 4601 // VT for compares. Using the previous operand assumes that the previous 4602 // operand will never have a smaller element size than a scalar operand and 4603 // that a widening operation never uses SEW=64. 4604 // NOTE: If this fails the below assert, we can probably just find the 4605 // element count from any operand or result and use it to construct the VT. 4606 assert(II->ScalarOperand > 0 && "Unexpected splat operand!"); 4607 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4608 4609 // The more complex case is when the scalar is larger than XLenVT. 4610 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4611 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4612 4613 // If this is a sign-extended 32-bit value, we can truncate it and rely on the 4614 // instruction to sign-extend since SEW>XLEN. 4615 if (DAG.ComputeNumSignBits(ScalarOp) > 32) { 4616 ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp); 4617 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4618 } 4619 4620 switch (IntNo) { 4621 case Intrinsic::riscv_vslide1up: 4622 case Intrinsic::riscv_vslide1down: 4623 case Intrinsic::riscv_vslide1up_mask: 4624 case Intrinsic::riscv_vslide1down_mask: { 4625 // We need to special case these when the scalar is larger than XLen. 4626 unsigned NumOps = Op.getNumOperands(); 4627 bool IsMasked = NumOps == 7; 4628 4629 // Convert the vector source to the equivalent nxvXi32 vector. 4630 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4631 SDValue Vec = DAG.getBitcast(I32VT, Operands[2]); 4632 4633 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp, 4634 DAG.getConstant(0, DL, XLenVT)); 4635 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp, 4636 DAG.getConstant(1, DL, XLenVT)); 4637 4638 // Double the VL since we halved SEW. 4639 SDValue AVL = getVLOperand(Op); 4640 SDValue I32VL; 4641 4642 // Optimize for constant AVL 4643 if (isa<ConstantSDNode>(AVL)) { 4644 unsigned EltSize = VT.getScalarSizeInBits(); 4645 unsigned MinSize = VT.getSizeInBits().getKnownMinValue(); 4646 4647 unsigned VectorBitsMax = Subtarget.getRealMaxVLen(); 4648 unsigned MaxVLMAX = 4649 RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); 4650 4651 unsigned VectorBitsMin = Subtarget.getRealMinVLen(); 4652 unsigned MinVLMAX = 4653 RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize); 4654 4655 uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue(); 4656 if (AVLInt <= MinVLMAX) { 4657 I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT); 4658 } else if (AVLInt >= 2 * MaxVLMAX) { 4659 // Just set vl to VLMAX in this situation 4660 RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT); 4661 SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); 4662 unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits()); 4663 SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); 4664 SDValue SETVLMAX = DAG.getTargetConstant( 4665 Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32); 4666 I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW, 4667 LMUL); 4668 } else { 4669 // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl 4670 // is related to the hardware implementation. 4671 // So let the following code handle 4672 } 4673 } 4674 if (!I32VL) { 4675 RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT); 4676 SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); 4677 unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits()); 4678 SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); 4679 SDValue SETVL = 4680 DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32); 4681 // Using vsetvli instruction to get actually used length which related to 4682 // the hardware implementation 4683 SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL, 4684 SEW, LMUL); 4685 I32VL = 4686 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4687 } 4688 4689 SDValue I32Mask = getAllOnesMask(I32VT, I32VL, DL, DAG); 4690 4691 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4692 // instructions. 4693 SDValue Passthru; 4694 if (IsMasked) 4695 Passthru = DAG.getUNDEF(I32VT); 4696 else 4697 Passthru = DAG.getBitcast(I32VT, Operands[1]); 4698 4699 if (IntNo == Intrinsic::riscv_vslide1up || 4700 IntNo == Intrinsic::riscv_vslide1up_mask) { 4701 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, 4702 ScalarHi, I32Mask, I32VL); 4703 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, 4704 ScalarLo, I32Mask, I32VL); 4705 } else { 4706 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, 4707 ScalarLo, I32Mask, I32VL); 4708 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, 4709 ScalarHi, I32Mask, I32VL); 4710 } 4711 4712 // Convert back to nxvXi64. 4713 Vec = DAG.getBitcast(VT, Vec); 4714 4715 if (!IsMasked) 4716 return Vec; 4717 // Apply mask after the operation. 4718 SDValue Mask = Operands[NumOps - 3]; 4719 SDValue MaskedOff = Operands[1]; 4720 // Assume Policy operand is the last operand. 4721 uint64_t Policy = 4722 cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue(); 4723 // We don't need to select maskedoff if it's undef. 4724 if (MaskedOff.isUndef()) 4725 return Vec; 4726 // TAMU 4727 if (Policy == RISCVII::TAIL_AGNOSTIC) 4728 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, 4729 AVL); 4730 // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma. 4731 // It's fine because vmerge does not care mask policy. 4732 return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff, 4733 AVL); 4734 } 4735 } 4736 4737 // We need to convert the scalar to a splat vector. 4738 SDValue VL = getVLOperand(Op); 4739 assert(VL.getValueType() == XLenVT); 4740 ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG); 4741 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4742 } 4743 4744 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4745 SelectionDAG &DAG) const { 4746 unsigned IntNo = Op.getConstantOperandVal(0); 4747 SDLoc DL(Op); 4748 MVT XLenVT = Subtarget.getXLenVT(); 4749 4750 switch (IntNo) { 4751 default: 4752 break; // Don't custom lower most intrinsics. 4753 case Intrinsic::thread_pointer: { 4754 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4755 return DAG.getRegister(RISCV::X4, PtrVT); 4756 } 4757 case Intrinsic::riscv_orc_b: 4758 case Intrinsic::riscv_brev8: { 4759 // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8. 4760 unsigned Opc = 4761 IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC; 4762 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4763 DAG.getConstant(7, DL, XLenVT)); 4764 } 4765 case Intrinsic::riscv_grev: 4766 case Intrinsic::riscv_gorc: { 4767 unsigned Opc = 4768 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4769 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4770 } 4771 case Intrinsic::riscv_zip: 4772 case Intrinsic::riscv_unzip: { 4773 // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip. 4774 // For i32 the immediate is 15. For i64 the immediate is 31. 4775 unsigned Opc = 4776 IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4777 unsigned BitWidth = Op.getValueSizeInBits(); 4778 assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width"); 4779 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4780 DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT)); 4781 } 4782 case Intrinsic::riscv_shfl: 4783 case Intrinsic::riscv_unshfl: { 4784 unsigned Opc = 4785 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4786 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4787 } 4788 case Intrinsic::riscv_bcompress: 4789 case Intrinsic::riscv_bdecompress: { 4790 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4791 : RISCVISD::BDECOMPRESS; 4792 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4793 } 4794 case Intrinsic::riscv_bfp: 4795 return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1), 4796 Op.getOperand(2)); 4797 case Intrinsic::riscv_fsl: 4798 return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1), 4799 Op.getOperand(2), Op.getOperand(3)); 4800 case Intrinsic::riscv_fsr: 4801 return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1), 4802 Op.getOperand(2), Op.getOperand(3)); 4803 case Intrinsic::riscv_vmv_x_s: 4804 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4805 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4806 Op.getOperand(1)); 4807 case Intrinsic::riscv_vmv_v_x: 4808 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4809 Op.getOperand(3), Op.getSimpleValueType(), DL, DAG, 4810 Subtarget); 4811 case Intrinsic::riscv_vfmv_v_f: 4812 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4813 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4814 case Intrinsic::riscv_vmv_s_x: { 4815 SDValue Scalar = Op.getOperand(2); 4816 4817 if (Scalar.getValueType().bitsLE(XLenVT)) { 4818 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4819 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4820 Op.getOperand(1), Scalar, Op.getOperand(3)); 4821 } 4822 4823 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4824 4825 // This is an i64 value that lives in two scalar registers. We have to 4826 // insert this in a convoluted way. First we build vXi64 splat containing 4827 // the two values that we assemble using some bit math. Next we'll use 4828 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4829 // to merge element 0 from our splat into the source vector. 4830 // FIXME: This is probably not the best way to do this, but it is 4831 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4832 // point. 4833 // sw lo, (a0) 4834 // sw hi, 4(a0) 4835 // vlse vX, (a0) 4836 // 4837 // vid.v vVid 4838 // vmseq.vx mMask, vVid, 0 4839 // vmerge.vvm vDest, vSrc, vVal, mMask 4840 MVT VT = Op.getSimpleValueType(); 4841 SDValue Vec = Op.getOperand(1); 4842 SDValue VL = getVLOperand(Op); 4843 4844 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG); 4845 if (Op.getOperand(1).isUndef()) 4846 return SplattedVal; 4847 SDValue SplattedIdx = 4848 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 4849 DAG.getConstant(0, DL, MVT::i32), VL); 4850 4851 MVT MaskVT = getMaskTypeFor(VT); 4852 SDValue Mask = getAllOnesMask(VT, VL, DL, DAG); 4853 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4854 SDValue SelectCond = 4855 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4856 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4857 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4858 Vec, VL); 4859 } 4860 } 4861 4862 return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); 4863 } 4864 4865 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4866 SelectionDAG &DAG) const { 4867 unsigned IntNo = Op.getConstantOperandVal(1); 4868 switch (IntNo) { 4869 default: 4870 break; 4871 case Intrinsic::riscv_masked_strided_load: { 4872 SDLoc DL(Op); 4873 MVT XLenVT = Subtarget.getXLenVT(); 4874 4875 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4876 // the selection of the masked intrinsics doesn't do this for us. 4877 SDValue Mask = Op.getOperand(5); 4878 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4879 4880 MVT VT = Op->getSimpleValueType(0); 4881 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4882 4883 SDValue PassThru = Op.getOperand(2); 4884 if (!IsUnmasked) { 4885 MVT MaskVT = getMaskTypeFor(ContainerVT); 4886 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4887 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4888 } 4889 4890 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4891 4892 SDValue IntID = DAG.getTargetConstant( 4893 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4894 XLenVT); 4895 4896 auto *Load = cast<MemIntrinsicSDNode>(Op); 4897 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4898 if (IsUnmasked) 4899 Ops.push_back(DAG.getUNDEF(ContainerVT)); 4900 else 4901 Ops.push_back(PassThru); 4902 Ops.push_back(Op.getOperand(3)); // Ptr 4903 Ops.push_back(Op.getOperand(4)); // Stride 4904 if (!IsUnmasked) 4905 Ops.push_back(Mask); 4906 Ops.push_back(VL); 4907 if (!IsUnmasked) { 4908 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4909 Ops.push_back(Policy); 4910 } 4911 4912 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4913 SDValue Result = 4914 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4915 Load->getMemoryVT(), Load->getMemOperand()); 4916 SDValue Chain = Result.getValue(1); 4917 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4918 return DAG.getMergeValues({Result, Chain}, DL); 4919 } 4920 case Intrinsic::riscv_seg2_load: 4921 case Intrinsic::riscv_seg3_load: 4922 case Intrinsic::riscv_seg4_load: 4923 case Intrinsic::riscv_seg5_load: 4924 case Intrinsic::riscv_seg6_load: 4925 case Intrinsic::riscv_seg7_load: 4926 case Intrinsic::riscv_seg8_load: { 4927 SDLoc DL(Op); 4928 static const Intrinsic::ID VlsegInts[7] = { 4929 Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3, 4930 Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5, 4931 Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7, 4932 Intrinsic::riscv_vlseg8}; 4933 unsigned NF = Op->getNumValues() - 1; 4934 assert(NF >= 2 && NF <= 8 && "Unexpected seg number"); 4935 MVT XLenVT = Subtarget.getXLenVT(); 4936 MVT VT = Op->getSimpleValueType(0); 4937 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4938 4939 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4940 SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT); 4941 auto *Load = cast<MemIntrinsicSDNode>(Op); 4942 SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT); 4943 ContainerVTs.push_back(MVT::Other); 4944 SDVTList VTs = DAG.getVTList(ContainerVTs); 4945 SmallVector<SDValue, 12> Ops = {Load->getChain(), IntID}; 4946 Ops.insert(Ops.end(), NF, DAG.getUNDEF(ContainerVT)); 4947 Ops.push_back(Op.getOperand(2)); 4948 Ops.push_back(VL); 4949 SDValue Result = 4950 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4951 Load->getMemoryVT(), Load->getMemOperand()); 4952 SmallVector<SDValue, 9> Results; 4953 for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++) 4954 Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx), 4955 DAG, Subtarget)); 4956 Results.push_back(Result.getValue(NF)); 4957 return DAG.getMergeValues(Results, DL); 4958 } 4959 } 4960 4961 return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); 4962 } 4963 4964 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4965 SelectionDAG &DAG) const { 4966 unsigned IntNo = Op.getConstantOperandVal(1); 4967 switch (IntNo) { 4968 default: 4969 break; 4970 case Intrinsic::riscv_masked_strided_store: { 4971 SDLoc DL(Op); 4972 MVT XLenVT = Subtarget.getXLenVT(); 4973 4974 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4975 // the selection of the masked intrinsics doesn't do this for us. 4976 SDValue Mask = Op.getOperand(5); 4977 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4978 4979 SDValue Val = Op.getOperand(2); 4980 MVT VT = Val.getSimpleValueType(); 4981 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4982 4983 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4984 if (!IsUnmasked) { 4985 MVT MaskVT = getMaskTypeFor(ContainerVT); 4986 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4987 } 4988 4989 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4990 4991 SDValue IntID = DAG.getTargetConstant( 4992 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4993 XLenVT); 4994 4995 auto *Store = cast<MemIntrinsicSDNode>(Op); 4996 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4997 Ops.push_back(Val); 4998 Ops.push_back(Op.getOperand(3)); // Ptr 4999 Ops.push_back(Op.getOperand(4)); // Stride 5000 if (!IsUnmasked) 5001 Ops.push_back(Mask); 5002 Ops.push_back(VL); 5003 5004 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 5005 Ops, Store->getMemoryVT(), 5006 Store->getMemOperand()); 5007 } 5008 } 5009 5010 return SDValue(); 5011 } 5012 5013 static MVT getLMUL1VT(MVT VT) { 5014 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 5015 "Unexpected vector MVT"); 5016 return MVT::getScalableVectorVT( 5017 VT.getVectorElementType(), 5018 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 5019 } 5020 5021 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 5022 switch (ISDOpcode) { 5023 default: 5024 llvm_unreachable("Unhandled reduction"); 5025 case ISD::VECREDUCE_ADD: 5026 return RISCVISD::VECREDUCE_ADD_VL; 5027 case ISD::VECREDUCE_UMAX: 5028 return RISCVISD::VECREDUCE_UMAX_VL; 5029 case ISD::VECREDUCE_SMAX: 5030 return RISCVISD::VECREDUCE_SMAX_VL; 5031 case ISD::VECREDUCE_UMIN: 5032 return RISCVISD::VECREDUCE_UMIN_VL; 5033 case ISD::VECREDUCE_SMIN: 5034 return RISCVISD::VECREDUCE_SMIN_VL; 5035 case ISD::VECREDUCE_AND: 5036 return RISCVISD::VECREDUCE_AND_VL; 5037 case ISD::VECREDUCE_OR: 5038 return RISCVISD::VECREDUCE_OR_VL; 5039 case ISD::VECREDUCE_XOR: 5040 return RISCVISD::VECREDUCE_XOR_VL; 5041 } 5042 } 5043 5044 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 5045 SelectionDAG &DAG, 5046 bool IsVP) const { 5047 SDLoc DL(Op); 5048 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 5049 MVT VecVT = Vec.getSimpleValueType(); 5050 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 5051 Op.getOpcode() == ISD::VECREDUCE_OR || 5052 Op.getOpcode() == ISD::VECREDUCE_XOR || 5053 Op.getOpcode() == ISD::VP_REDUCE_AND || 5054 Op.getOpcode() == ISD::VP_REDUCE_OR || 5055 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 5056 "Unexpected reduction lowering"); 5057 5058 MVT XLenVT = Subtarget.getXLenVT(); 5059 assert(Op.getValueType() == XLenVT && 5060 "Expected reduction output to be legalized to XLenVT"); 5061 5062 MVT ContainerVT = VecVT; 5063 if (VecVT.isFixedLengthVector()) { 5064 ContainerVT = getContainerForFixedLengthVector(VecVT); 5065 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5066 } 5067 5068 SDValue Mask, VL; 5069 if (IsVP) { 5070 Mask = Op.getOperand(2); 5071 VL = Op.getOperand(3); 5072 } else { 5073 std::tie(Mask, VL) = 5074 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5075 } 5076 5077 unsigned BaseOpc; 5078 ISD::CondCode CC; 5079 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 5080 5081 switch (Op.getOpcode()) { 5082 default: 5083 llvm_unreachable("Unhandled reduction"); 5084 case ISD::VECREDUCE_AND: 5085 case ISD::VP_REDUCE_AND: { 5086 // vcpop ~x == 0 5087 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 5088 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 5089 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5090 CC = ISD::SETEQ; 5091 BaseOpc = ISD::AND; 5092 break; 5093 } 5094 case ISD::VECREDUCE_OR: 5095 case ISD::VP_REDUCE_OR: 5096 // vcpop x != 0 5097 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5098 CC = ISD::SETNE; 5099 BaseOpc = ISD::OR; 5100 break; 5101 case ISD::VECREDUCE_XOR: 5102 case ISD::VP_REDUCE_XOR: { 5103 // ((vcpop x) & 1) != 0 5104 SDValue One = DAG.getConstant(1, DL, XLenVT); 5105 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5106 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 5107 CC = ISD::SETNE; 5108 BaseOpc = ISD::XOR; 5109 break; 5110 } 5111 } 5112 5113 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 5114 5115 if (!IsVP) 5116 return SetCC; 5117 5118 // Now include the start value in the operation. 5119 // Note that we must return the start value when no elements are operated 5120 // upon. The vcpop instructions we've emitted in each case above will return 5121 // 0 for an inactive vector, and so we've already received the neutral value: 5122 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 5123 // can simply include the start value. 5124 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 5125 } 5126 5127 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 5128 SelectionDAG &DAG) const { 5129 SDLoc DL(Op); 5130 SDValue Vec = Op.getOperand(0); 5131 EVT VecEVT = Vec.getValueType(); 5132 5133 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 5134 5135 // Due to ordering in legalize types we may have a vector type that needs to 5136 // be split. Do that manually so we can get down to a legal type. 5137 while (getTypeAction(*DAG.getContext(), VecEVT) == 5138 TargetLowering::TypeSplitVector) { 5139 SDValue Lo, Hi; 5140 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 5141 VecEVT = Lo.getValueType(); 5142 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 5143 } 5144 5145 // TODO: The type may need to be widened rather than split. Or widened before 5146 // it can be split. 5147 if (!isTypeLegal(VecEVT)) 5148 return SDValue(); 5149 5150 MVT VecVT = VecEVT.getSimpleVT(); 5151 MVT VecEltVT = VecVT.getVectorElementType(); 5152 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 5153 5154 MVT ContainerVT = VecVT; 5155 if (VecVT.isFixedLengthVector()) { 5156 ContainerVT = getContainerForFixedLengthVector(VecVT); 5157 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5158 } 5159 5160 MVT M1VT = getLMUL1VT(ContainerVT); 5161 MVT XLenVT = Subtarget.getXLenVT(); 5162 5163 SDValue Mask, VL; 5164 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5165 5166 SDValue NeutralElem = 5167 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 5168 SDValue IdentitySplat = 5169 lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT), 5170 M1VT, DL, DAG, Subtarget); 5171 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 5172 IdentitySplat, Mask, VL); 5173 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5174 DAG.getConstant(0, DL, XLenVT)); 5175 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5176 } 5177 5178 // Given a reduction op, this function returns the matching reduction opcode, 5179 // the vector SDValue and the scalar SDValue required to lower this to a 5180 // RISCVISD node. 5181 static std::tuple<unsigned, SDValue, SDValue> 5182 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 5183 SDLoc DL(Op); 5184 auto Flags = Op->getFlags(); 5185 unsigned Opcode = Op.getOpcode(); 5186 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 5187 switch (Opcode) { 5188 default: 5189 llvm_unreachable("Unhandled reduction"); 5190 case ISD::VECREDUCE_FADD: { 5191 // Use positive zero if we can. It is cheaper to materialize. 5192 SDValue Zero = 5193 DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); 5194 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); 5195 } 5196 case ISD::VECREDUCE_SEQ_FADD: 5197 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 5198 Op.getOperand(0)); 5199 case ISD::VECREDUCE_FMIN: 5200 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 5201 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5202 case ISD::VECREDUCE_FMAX: 5203 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 5204 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5205 } 5206 } 5207 5208 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 5209 SelectionDAG &DAG) const { 5210 SDLoc DL(Op); 5211 MVT VecEltVT = Op.getSimpleValueType(); 5212 5213 unsigned RVVOpcode; 5214 SDValue VectorVal, ScalarVal; 5215 std::tie(RVVOpcode, VectorVal, ScalarVal) = 5216 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 5217 MVT VecVT = VectorVal.getSimpleValueType(); 5218 5219 MVT ContainerVT = VecVT; 5220 if (VecVT.isFixedLengthVector()) { 5221 ContainerVT = getContainerForFixedLengthVector(VecVT); 5222 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 5223 } 5224 5225 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 5226 MVT XLenVT = Subtarget.getXLenVT(); 5227 5228 SDValue Mask, VL; 5229 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5230 5231 SDValue ScalarSplat = 5232 lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT), 5233 M1VT, DL, DAG, Subtarget); 5234 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 5235 VectorVal, ScalarSplat, Mask, VL); 5236 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5237 DAG.getConstant(0, DL, XLenVT)); 5238 } 5239 5240 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 5241 switch (ISDOpcode) { 5242 default: 5243 llvm_unreachable("Unhandled reduction"); 5244 case ISD::VP_REDUCE_ADD: 5245 return RISCVISD::VECREDUCE_ADD_VL; 5246 case ISD::VP_REDUCE_UMAX: 5247 return RISCVISD::VECREDUCE_UMAX_VL; 5248 case ISD::VP_REDUCE_SMAX: 5249 return RISCVISD::VECREDUCE_SMAX_VL; 5250 case ISD::VP_REDUCE_UMIN: 5251 return RISCVISD::VECREDUCE_UMIN_VL; 5252 case ISD::VP_REDUCE_SMIN: 5253 return RISCVISD::VECREDUCE_SMIN_VL; 5254 case ISD::VP_REDUCE_AND: 5255 return RISCVISD::VECREDUCE_AND_VL; 5256 case ISD::VP_REDUCE_OR: 5257 return RISCVISD::VECREDUCE_OR_VL; 5258 case ISD::VP_REDUCE_XOR: 5259 return RISCVISD::VECREDUCE_XOR_VL; 5260 case ISD::VP_REDUCE_FADD: 5261 return RISCVISD::VECREDUCE_FADD_VL; 5262 case ISD::VP_REDUCE_SEQ_FADD: 5263 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 5264 case ISD::VP_REDUCE_FMAX: 5265 return RISCVISD::VECREDUCE_FMAX_VL; 5266 case ISD::VP_REDUCE_FMIN: 5267 return RISCVISD::VECREDUCE_FMIN_VL; 5268 } 5269 } 5270 5271 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 5272 SelectionDAG &DAG) const { 5273 SDLoc DL(Op); 5274 SDValue Vec = Op.getOperand(1); 5275 EVT VecEVT = Vec.getValueType(); 5276 5277 // TODO: The type may need to be widened rather than split. Or widened before 5278 // it can be split. 5279 if (!isTypeLegal(VecEVT)) 5280 return SDValue(); 5281 5282 MVT VecVT = VecEVT.getSimpleVT(); 5283 MVT VecEltVT = VecVT.getVectorElementType(); 5284 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 5285 5286 MVT ContainerVT = VecVT; 5287 if (VecVT.isFixedLengthVector()) { 5288 ContainerVT = getContainerForFixedLengthVector(VecVT); 5289 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5290 } 5291 5292 SDValue VL = Op.getOperand(3); 5293 SDValue Mask = Op.getOperand(2); 5294 5295 MVT M1VT = getLMUL1VT(ContainerVT); 5296 MVT XLenVT = Subtarget.getXLenVT(); 5297 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 5298 5299 SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0), 5300 DAG.getConstant(1, DL, XLenVT), M1VT, 5301 DL, DAG, Subtarget); 5302 SDValue Reduction = 5303 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 5304 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 5305 DAG.getConstant(0, DL, XLenVT)); 5306 if (!VecVT.isInteger()) 5307 return Elt0; 5308 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5309 } 5310 5311 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 5312 SelectionDAG &DAG) const { 5313 SDValue Vec = Op.getOperand(0); 5314 SDValue SubVec = Op.getOperand(1); 5315 MVT VecVT = Vec.getSimpleValueType(); 5316 MVT SubVecVT = SubVec.getSimpleValueType(); 5317 5318 SDLoc DL(Op); 5319 MVT XLenVT = Subtarget.getXLenVT(); 5320 unsigned OrigIdx = Op.getConstantOperandVal(2); 5321 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5322 5323 // We don't have the ability to slide mask vectors up indexed by their i1 5324 // elements; the smallest we can do is i8. Often we are able to bitcast to 5325 // equivalent i8 vectors. Note that when inserting a fixed-length vector 5326 // into a scalable one, we might not necessarily have enough scalable 5327 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 5328 if (SubVecVT.getVectorElementType() == MVT::i1 && 5329 (OrigIdx != 0 || !Vec.isUndef())) { 5330 if (VecVT.getVectorMinNumElements() >= 8 && 5331 SubVecVT.getVectorMinNumElements() >= 8) { 5332 assert(OrigIdx % 8 == 0 && "Invalid index"); 5333 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5334 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5335 "Unexpected mask vector lowering"); 5336 OrigIdx /= 8; 5337 SubVecVT = 5338 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5339 SubVecVT.isScalableVector()); 5340 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5341 VecVT.isScalableVector()); 5342 Vec = DAG.getBitcast(VecVT, Vec); 5343 SubVec = DAG.getBitcast(SubVecVT, SubVec); 5344 } else { 5345 // We can't slide this mask vector up indexed by its i1 elements. 5346 // This poses a problem when we wish to insert a scalable vector which 5347 // can't be re-expressed as a larger type. Just choose the slow path and 5348 // extend to a larger type, then truncate back down. 5349 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5350 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5351 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5352 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 5353 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 5354 Op.getOperand(2)); 5355 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 5356 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 5357 } 5358 } 5359 5360 // If the subvector vector is a fixed-length type, we cannot use subregister 5361 // manipulation to simplify the codegen; we don't know which register of a 5362 // LMUL group contains the specific subvector as we only know the minimum 5363 // register size. Therefore we must slide the vector group up the full 5364 // amount. 5365 if (SubVecVT.isFixedLengthVector()) { 5366 if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector()) 5367 return Op; 5368 MVT ContainerVT = VecVT; 5369 if (VecVT.isFixedLengthVector()) { 5370 ContainerVT = getContainerForFixedLengthVector(VecVT); 5371 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5372 } 5373 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 5374 DAG.getUNDEF(ContainerVT), SubVec, 5375 DAG.getConstant(0, DL, XLenVT)); 5376 if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) { 5377 SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget); 5378 return DAG.getBitcast(Op.getValueType(), SubVec); 5379 } 5380 SDValue Mask = 5381 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5382 // Set the vector length to only the number of elements we care about. Note 5383 // that for slideup this includes the offset. 5384 SDValue VL = 5385 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 5386 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5387 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 5388 SubVec, SlideupAmt, Mask, VL); 5389 if (VecVT.isFixedLengthVector()) 5390 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 5391 return DAG.getBitcast(Op.getValueType(), Slideup); 5392 } 5393 5394 unsigned SubRegIdx, RemIdx; 5395 std::tie(SubRegIdx, RemIdx) = 5396 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5397 VecVT, SubVecVT, OrigIdx, TRI); 5398 5399 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 5400 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 5401 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 5402 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 5403 5404 // 1. If the Idx has been completely eliminated and this subvector's size is 5405 // a vector register or a multiple thereof, or the surrounding elements are 5406 // undef, then this is a subvector insert which naturally aligns to a vector 5407 // register. These can easily be handled using subregister manipulation. 5408 // 2. If the subvector is smaller than a vector register, then the insertion 5409 // must preserve the undisturbed elements of the register. We do this by 5410 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 5411 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 5412 // subvector within the vector register, and an INSERT_SUBVECTOR of that 5413 // LMUL=1 type back into the larger vector (resolving to another subregister 5414 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 5415 // to avoid allocating a large register group to hold our subvector. 5416 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 5417 return Op; 5418 5419 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 5420 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 5421 // (in our case undisturbed). This means we can set up a subvector insertion 5422 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 5423 // size of the subvector. 5424 MVT InterSubVT = VecVT; 5425 SDValue AlignedExtract = Vec; 5426 unsigned AlignedIdx = OrigIdx - RemIdx; 5427 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5428 InterSubVT = getLMUL1VT(VecVT); 5429 // Extract a subvector equal to the nearest full vector register type. This 5430 // should resolve to a EXTRACT_SUBREG instruction. 5431 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5432 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5433 } 5434 5435 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5436 // For scalable vectors this must be further multiplied by vscale. 5437 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 5438 5439 SDValue Mask, VL; 5440 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5441 5442 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 5443 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 5444 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 5445 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 5446 5447 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 5448 DAG.getUNDEF(InterSubVT), SubVec, 5449 DAG.getConstant(0, DL, XLenVT)); 5450 5451 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 5452 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 5453 5454 // If required, insert this subvector back into the correct vector register. 5455 // This should resolve to an INSERT_SUBREG instruction. 5456 if (VecVT.bitsGT(InterSubVT)) 5457 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 5458 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5459 5460 // We might have bitcast from a mask type: cast back to the original type if 5461 // required. 5462 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 5463 } 5464 5465 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 5466 SelectionDAG &DAG) const { 5467 SDValue Vec = Op.getOperand(0); 5468 MVT SubVecVT = Op.getSimpleValueType(); 5469 MVT VecVT = Vec.getSimpleValueType(); 5470 5471 SDLoc DL(Op); 5472 MVT XLenVT = Subtarget.getXLenVT(); 5473 unsigned OrigIdx = Op.getConstantOperandVal(1); 5474 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5475 5476 // We don't have the ability to slide mask vectors down indexed by their i1 5477 // elements; the smallest we can do is i8. Often we are able to bitcast to 5478 // equivalent i8 vectors. Note that when extracting a fixed-length vector 5479 // from a scalable one, we might not necessarily have enough scalable 5480 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 5481 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 5482 if (VecVT.getVectorMinNumElements() >= 8 && 5483 SubVecVT.getVectorMinNumElements() >= 8) { 5484 assert(OrigIdx % 8 == 0 && "Invalid index"); 5485 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5486 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5487 "Unexpected mask vector lowering"); 5488 OrigIdx /= 8; 5489 SubVecVT = 5490 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5491 SubVecVT.isScalableVector()); 5492 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5493 VecVT.isScalableVector()); 5494 Vec = DAG.getBitcast(VecVT, Vec); 5495 } else { 5496 // We can't slide this mask vector down, indexed by its i1 elements. 5497 // This poses a problem when we wish to extract a scalable vector which 5498 // can't be re-expressed as a larger type. Just choose the slow path and 5499 // extend to a larger type, then truncate back down. 5500 // TODO: We could probably improve this when extracting certain fixed 5501 // from fixed, where we can extract as i8 and shift the correct element 5502 // right to reach the desired subvector? 5503 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5504 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5505 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5506 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 5507 Op.getOperand(1)); 5508 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 5509 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 5510 } 5511 } 5512 5513 // If the subvector vector is a fixed-length type, we cannot use subregister 5514 // manipulation to simplify the codegen; we don't know which register of a 5515 // LMUL group contains the specific subvector as we only know the minimum 5516 // register size. Therefore we must slide the vector group down the full 5517 // amount. 5518 if (SubVecVT.isFixedLengthVector()) { 5519 // With an index of 0 this is a cast-like subvector, which can be performed 5520 // with subregister operations. 5521 if (OrigIdx == 0) 5522 return Op; 5523 MVT ContainerVT = VecVT; 5524 if (VecVT.isFixedLengthVector()) { 5525 ContainerVT = getContainerForFixedLengthVector(VecVT); 5526 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5527 } 5528 SDValue Mask = 5529 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5530 // Set the vector length to only the number of elements we care about. This 5531 // avoids sliding down elements we're going to discard straight away. 5532 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 5533 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5534 SDValue Slidedown = 5535 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5536 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 5537 // Now we can use a cast-like subvector extract to get the result. 5538 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5539 DAG.getConstant(0, DL, XLenVT)); 5540 return DAG.getBitcast(Op.getValueType(), Slidedown); 5541 } 5542 5543 unsigned SubRegIdx, RemIdx; 5544 std::tie(SubRegIdx, RemIdx) = 5545 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5546 VecVT, SubVecVT, OrigIdx, TRI); 5547 5548 // If the Idx has been completely eliminated then this is a subvector extract 5549 // which naturally aligns to a vector register. These can easily be handled 5550 // using subregister manipulation. 5551 if (RemIdx == 0) 5552 return Op; 5553 5554 // Else we must shift our vector register directly to extract the subvector. 5555 // Do this using VSLIDEDOWN. 5556 5557 // If the vector type is an LMUL-group type, extract a subvector equal to the 5558 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 5559 // instruction. 5560 MVT InterSubVT = VecVT; 5561 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5562 InterSubVT = getLMUL1VT(VecVT); 5563 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5564 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 5565 } 5566 5567 // Slide this vector register down by the desired number of elements in order 5568 // to place the desired subvector starting at element 0. 5569 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5570 // For scalable vectors this must be further multiplied by vscale. 5571 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 5572 5573 SDValue Mask, VL; 5574 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 5575 SDValue Slidedown = 5576 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 5577 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 5578 5579 // Now the vector is in the right position, extract our final subvector. This 5580 // should resolve to a COPY. 5581 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5582 DAG.getConstant(0, DL, XLenVT)); 5583 5584 // We might have bitcast from a mask type: cast back to the original type if 5585 // required. 5586 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 5587 } 5588 5589 // Lower step_vector to the vid instruction. Any non-identity step value must 5590 // be accounted for my manual expansion. 5591 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 5592 SelectionDAG &DAG) const { 5593 SDLoc DL(Op); 5594 MVT VT = Op.getSimpleValueType(); 5595 MVT XLenVT = Subtarget.getXLenVT(); 5596 SDValue Mask, VL; 5597 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 5598 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 5599 uint64_t StepValImm = Op.getConstantOperandVal(0); 5600 if (StepValImm != 1) { 5601 if (isPowerOf2_64(StepValImm)) { 5602 SDValue StepVal = 5603 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 5604 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 5605 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 5606 } else { 5607 SDValue StepVal = lowerScalarSplat( 5608 SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), 5609 VL, VT, DL, DAG, Subtarget); 5610 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 5611 } 5612 } 5613 return StepVec; 5614 } 5615 5616 // Implement vector_reverse using vrgather.vv with indices determined by 5617 // subtracting the id of each element from (VLMAX-1). This will convert 5618 // the indices like so: 5619 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 5620 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 5621 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 5622 SelectionDAG &DAG) const { 5623 SDLoc DL(Op); 5624 MVT VecVT = Op.getSimpleValueType(); 5625 unsigned EltSize = VecVT.getScalarSizeInBits(); 5626 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 5627 5628 unsigned MaxVLMAX = 0; 5629 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 5630 if (VectorBitsMax != 0) 5631 MaxVLMAX = 5632 RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); 5633 5634 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 5635 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 5636 5637 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 5638 // to use vrgatherei16.vv. 5639 // TODO: It's also possible to use vrgatherei16.vv for other types to 5640 // decrease register width for the index calculation. 5641 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 5642 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 5643 // Reverse each half, then reassemble them in reverse order. 5644 // NOTE: It's also possible that after splitting that VLMAX no longer 5645 // requires vrgatherei16.vv. 5646 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 5647 SDValue Lo, Hi; 5648 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 5649 EVT LoVT, HiVT; 5650 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5651 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 5652 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 5653 // Reassemble the low and high pieces reversed. 5654 // FIXME: This is a CONCAT_VECTORS. 5655 SDValue Res = 5656 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 5657 DAG.getIntPtrConstant(0, DL)); 5658 return DAG.getNode( 5659 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 5660 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 5661 } 5662 5663 // Just promote the int type to i16 which will double the LMUL. 5664 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 5665 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 5666 } 5667 5668 MVT XLenVT = Subtarget.getXLenVT(); 5669 SDValue Mask, VL; 5670 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5671 5672 // Calculate VLMAX-1 for the desired SEW. 5673 unsigned MinElts = VecVT.getVectorMinNumElements(); 5674 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5675 DAG.getConstant(MinElts, DL, XLenVT)); 5676 SDValue VLMinus1 = 5677 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 5678 5679 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 5680 bool IsRV32E64 = 5681 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 5682 SDValue SplatVL; 5683 if (!IsRV32E64) 5684 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 5685 else 5686 SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT), 5687 VLMinus1, DAG.getRegister(RISCV::X0, XLenVT)); 5688 5689 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 5690 SDValue Indices = 5691 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 5692 5693 return DAG.getNode(GatherOpc, DL, VecVT, DAG.getUNDEF(VecVT), 5694 Op.getOperand(0), Indices, Mask, VL); 5695 } 5696 5697 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op, 5698 SelectionDAG &DAG) const { 5699 SDLoc DL(Op); 5700 SDValue V1 = Op.getOperand(0); 5701 SDValue V2 = Op.getOperand(1); 5702 MVT XLenVT = Subtarget.getXLenVT(); 5703 MVT VecVT = Op.getSimpleValueType(); 5704 5705 unsigned MinElts = VecVT.getVectorMinNumElements(); 5706 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5707 DAG.getConstant(MinElts, DL, XLenVT)); 5708 5709 int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue(); 5710 SDValue DownOffset, UpOffset; 5711 if (ImmValue >= 0) { 5712 // The operand is a TargetConstant, we need to rebuild it as a regular 5713 // constant. 5714 DownOffset = DAG.getConstant(ImmValue, DL, XLenVT); 5715 UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset); 5716 } else { 5717 // The operand is a TargetConstant, we need to rebuild it as a regular 5718 // constant rather than negating the original operand. 5719 UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT); 5720 DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset); 5721 } 5722 5723 SDValue TrueMask = getAllOnesMask(VecVT, VLMax, DL, DAG); 5724 5725 SDValue SlideDown = 5726 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1, 5727 DownOffset, TrueMask, UpOffset); 5728 return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset, 5729 TrueMask, 5730 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT)); 5731 } 5732 5733 SDValue 5734 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5735 SelectionDAG &DAG) const { 5736 SDLoc DL(Op); 5737 auto *Load = cast<LoadSDNode>(Op); 5738 5739 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5740 Load->getMemoryVT(), 5741 *Load->getMemOperand()) && 5742 "Expecting a correctly-aligned load"); 5743 5744 MVT VT = Op.getSimpleValueType(); 5745 MVT XLenVT = Subtarget.getXLenVT(); 5746 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5747 5748 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5749 5750 bool IsMaskOp = VT.getVectorElementType() == MVT::i1; 5751 SDValue IntID = DAG.getTargetConstant( 5752 IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT); 5753 SmallVector<SDValue, 4> Ops{Load->getChain(), IntID}; 5754 if (!IsMaskOp) 5755 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5756 Ops.push_back(Load->getBasePtr()); 5757 Ops.push_back(VL); 5758 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5759 SDValue NewLoad = 5760 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 5761 Load->getMemoryVT(), Load->getMemOperand()); 5762 5763 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5764 return DAG.getMergeValues({Result, NewLoad.getValue(1)}, DL); 5765 } 5766 5767 SDValue 5768 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5769 SelectionDAG &DAG) const { 5770 SDLoc DL(Op); 5771 auto *Store = cast<StoreSDNode>(Op); 5772 5773 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5774 Store->getMemoryVT(), 5775 *Store->getMemOperand()) && 5776 "Expecting a correctly-aligned store"); 5777 5778 SDValue StoreVal = Store->getValue(); 5779 MVT VT = StoreVal.getSimpleValueType(); 5780 MVT XLenVT = Subtarget.getXLenVT(); 5781 5782 // If the size less than a byte, we need to pad with zeros to make a byte. 5783 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5784 VT = MVT::v8i1; 5785 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5786 DAG.getConstant(0, DL, VT), StoreVal, 5787 DAG.getIntPtrConstant(0, DL)); 5788 } 5789 5790 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5791 5792 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5793 5794 SDValue NewValue = 5795 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5796 5797 bool IsMaskOp = VT.getVectorElementType() == MVT::i1; 5798 SDValue IntID = DAG.getTargetConstant( 5799 IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT); 5800 return DAG.getMemIntrinsicNode( 5801 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), 5802 {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL}, 5803 Store->getMemoryVT(), Store->getMemOperand()); 5804 } 5805 5806 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5807 SelectionDAG &DAG) const { 5808 SDLoc DL(Op); 5809 MVT VT = Op.getSimpleValueType(); 5810 5811 const auto *MemSD = cast<MemSDNode>(Op); 5812 EVT MemVT = MemSD->getMemoryVT(); 5813 MachineMemOperand *MMO = MemSD->getMemOperand(); 5814 SDValue Chain = MemSD->getChain(); 5815 SDValue BasePtr = MemSD->getBasePtr(); 5816 5817 SDValue Mask, PassThru, VL; 5818 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5819 Mask = VPLoad->getMask(); 5820 PassThru = DAG.getUNDEF(VT); 5821 VL = VPLoad->getVectorLength(); 5822 } else { 5823 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5824 Mask = MLoad->getMask(); 5825 PassThru = MLoad->getPassThru(); 5826 } 5827 5828 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5829 5830 MVT XLenVT = Subtarget.getXLenVT(); 5831 5832 MVT ContainerVT = VT; 5833 if (VT.isFixedLengthVector()) { 5834 ContainerVT = getContainerForFixedLengthVector(VT); 5835 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5836 if (!IsUnmasked) { 5837 MVT MaskVT = getMaskTypeFor(ContainerVT); 5838 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5839 } 5840 } 5841 5842 if (!VL) 5843 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5844 5845 unsigned IntID = 5846 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5847 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5848 if (IsUnmasked) 5849 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5850 else 5851 Ops.push_back(PassThru); 5852 Ops.push_back(BasePtr); 5853 if (!IsUnmasked) 5854 Ops.push_back(Mask); 5855 Ops.push_back(VL); 5856 if (!IsUnmasked) 5857 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5858 5859 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5860 5861 SDValue Result = 5862 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5863 Chain = Result.getValue(1); 5864 5865 if (VT.isFixedLengthVector()) 5866 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5867 5868 return DAG.getMergeValues({Result, Chain}, DL); 5869 } 5870 5871 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5872 SelectionDAG &DAG) const { 5873 SDLoc DL(Op); 5874 5875 const auto *MemSD = cast<MemSDNode>(Op); 5876 EVT MemVT = MemSD->getMemoryVT(); 5877 MachineMemOperand *MMO = MemSD->getMemOperand(); 5878 SDValue Chain = MemSD->getChain(); 5879 SDValue BasePtr = MemSD->getBasePtr(); 5880 SDValue Val, Mask, VL; 5881 5882 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5883 Val = VPStore->getValue(); 5884 Mask = VPStore->getMask(); 5885 VL = VPStore->getVectorLength(); 5886 } else { 5887 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5888 Val = MStore->getValue(); 5889 Mask = MStore->getMask(); 5890 } 5891 5892 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5893 5894 MVT VT = Val.getSimpleValueType(); 5895 MVT XLenVT = Subtarget.getXLenVT(); 5896 5897 MVT ContainerVT = VT; 5898 if (VT.isFixedLengthVector()) { 5899 ContainerVT = getContainerForFixedLengthVector(VT); 5900 5901 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5902 if (!IsUnmasked) { 5903 MVT MaskVT = getMaskTypeFor(ContainerVT); 5904 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5905 } 5906 } 5907 5908 if (!VL) 5909 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5910 5911 unsigned IntID = 5912 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 5913 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5914 Ops.push_back(Val); 5915 Ops.push_back(BasePtr); 5916 if (!IsUnmasked) 5917 Ops.push_back(Mask); 5918 Ops.push_back(VL); 5919 5920 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5921 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5922 } 5923 5924 SDValue 5925 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 5926 SelectionDAG &DAG) const { 5927 MVT InVT = Op.getOperand(0).getSimpleValueType(); 5928 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 5929 5930 MVT VT = Op.getSimpleValueType(); 5931 5932 SDValue Op1 = 5933 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 5934 SDValue Op2 = 5935 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5936 5937 SDLoc DL(Op); 5938 SDValue VL = 5939 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5940 5941 MVT MaskVT = getMaskTypeFor(ContainerVT); 5942 SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG); 5943 5944 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 5945 Op.getOperand(2), Mask, VL); 5946 5947 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 5948 } 5949 5950 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5951 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5952 MVT VT = Op.getSimpleValueType(); 5953 5954 if (VT.getVectorElementType() == MVT::i1) 5955 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5956 5957 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5958 } 5959 5960 SDValue 5961 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5962 SelectionDAG &DAG) const { 5963 unsigned Opc; 5964 switch (Op.getOpcode()) { 5965 default: llvm_unreachable("Unexpected opcode!"); 5966 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5967 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5968 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5969 } 5970 5971 return lowerToScalableOp(Op, DAG, Opc); 5972 } 5973 5974 // Lower vector ABS to smax(X, sub(0, X)). 5975 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5976 SDLoc DL(Op); 5977 MVT VT = Op.getSimpleValueType(); 5978 SDValue X = Op.getOperand(0); 5979 5980 assert(VT.isFixedLengthVector() && "Unexpected type"); 5981 5982 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5983 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5984 5985 SDValue Mask, VL; 5986 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5987 5988 SDValue SplatZero = DAG.getNode( 5989 RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), 5990 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 5991 SDValue NegX = 5992 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 5993 SDValue Max = 5994 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 5995 5996 return convertFromScalableVector(VT, Max, DAG, Subtarget); 5997 } 5998 5999 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 6000 SDValue Op, SelectionDAG &DAG) const { 6001 SDLoc DL(Op); 6002 MVT VT = Op.getSimpleValueType(); 6003 SDValue Mag = Op.getOperand(0); 6004 SDValue Sign = Op.getOperand(1); 6005 assert(Mag.getValueType() == Sign.getValueType() && 6006 "Can only handle COPYSIGN with matching types."); 6007 6008 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6009 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 6010 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 6011 6012 SDValue Mask, VL; 6013 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6014 6015 SDValue CopySign = 6016 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 6017 6018 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 6019 } 6020 6021 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 6022 SDValue Op, SelectionDAG &DAG) const { 6023 MVT VT = Op.getSimpleValueType(); 6024 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6025 6026 MVT I1ContainerVT = 6027 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6028 6029 SDValue CC = 6030 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 6031 SDValue Op1 = 6032 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 6033 SDValue Op2 = 6034 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 6035 6036 SDLoc DL(Op); 6037 SDValue Mask, VL; 6038 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6039 6040 SDValue Select = 6041 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 6042 6043 return convertFromScalableVector(VT, Select, DAG, Subtarget); 6044 } 6045 6046 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 6047 unsigned NewOpc, 6048 bool HasMask) const { 6049 MVT VT = Op.getSimpleValueType(); 6050 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6051 6052 // Create list of operands by converting existing ones to scalable types. 6053 SmallVector<SDValue, 6> Ops; 6054 for (const SDValue &V : Op->op_values()) { 6055 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 6056 6057 // Pass through non-vector operands. 6058 if (!V.getValueType().isVector()) { 6059 Ops.push_back(V); 6060 continue; 6061 } 6062 6063 // "cast" fixed length vector to a scalable vector. 6064 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 6065 "Only fixed length vectors are supported!"); 6066 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 6067 } 6068 6069 SDLoc DL(Op); 6070 SDValue Mask, VL; 6071 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6072 if (HasMask) 6073 Ops.push_back(Mask); 6074 Ops.push_back(VL); 6075 6076 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 6077 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 6078 } 6079 6080 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 6081 // * Operands of each node are assumed to be in the same order. 6082 // * The EVL operand is promoted from i32 to i64 on RV64. 6083 // * Fixed-length vectors are converted to their scalable-vector container 6084 // types. 6085 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 6086 unsigned RISCVISDOpc) const { 6087 SDLoc DL(Op); 6088 MVT VT = Op.getSimpleValueType(); 6089 SmallVector<SDValue, 4> Ops; 6090 6091 for (const auto &OpIdx : enumerate(Op->ops())) { 6092 SDValue V = OpIdx.value(); 6093 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 6094 // Pass through operands which aren't fixed-length vectors. 6095 if (!V.getValueType().isFixedLengthVector()) { 6096 Ops.push_back(V); 6097 continue; 6098 } 6099 // "cast" fixed length vector to a scalable vector. 6100 MVT OpVT = V.getSimpleValueType(); 6101 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 6102 assert(useRVVForFixedLengthVectorVT(OpVT) && 6103 "Only fixed length vectors are supported!"); 6104 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 6105 } 6106 6107 if (!VT.isFixedLengthVector()) 6108 return DAG.getNode(RISCVISDOpc, DL, VT, Ops, Op->getFlags()); 6109 6110 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6111 6112 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops, Op->getFlags()); 6113 6114 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 6115 } 6116 6117 SDValue RISCVTargetLowering::lowerVPExtMaskOp(SDValue Op, 6118 SelectionDAG &DAG) const { 6119 SDLoc DL(Op); 6120 MVT VT = Op.getSimpleValueType(); 6121 6122 SDValue Src = Op.getOperand(0); 6123 // NOTE: Mask is dropped. 6124 SDValue VL = Op.getOperand(2); 6125 6126 MVT ContainerVT = VT; 6127 if (VT.isFixedLengthVector()) { 6128 ContainerVT = getContainerForFixedLengthVector(VT); 6129 MVT SrcVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6130 Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget); 6131 } 6132 6133 MVT XLenVT = Subtarget.getXLenVT(); 6134 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 6135 SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6136 DAG.getUNDEF(ContainerVT), Zero, VL); 6137 6138 SDValue SplatValue = DAG.getConstant( 6139 Op.getOpcode() == ISD::VP_ZERO_EXTEND ? 1 : -1, DL, XLenVT); 6140 SDValue Splat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6141 DAG.getUNDEF(ContainerVT), SplatValue, VL); 6142 6143 SDValue Result = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, Src, 6144 Splat, ZeroSplat, VL); 6145 if (!VT.isFixedLengthVector()) 6146 return Result; 6147 return convertFromScalableVector(VT, Result, DAG, Subtarget); 6148 } 6149 6150 SDValue RISCVTargetLowering::lowerVPSetCCMaskOp(SDValue Op, 6151 SelectionDAG &DAG) const { 6152 SDLoc DL(Op); 6153 MVT VT = Op.getSimpleValueType(); 6154 6155 SDValue Op1 = Op.getOperand(0); 6156 SDValue Op2 = Op.getOperand(1); 6157 ISD::CondCode Condition = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 6158 // NOTE: Mask is dropped. 6159 SDValue VL = Op.getOperand(4); 6160 6161 MVT ContainerVT = VT; 6162 if (VT.isFixedLengthVector()) { 6163 ContainerVT = getContainerForFixedLengthVector(VT); 6164 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 6165 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 6166 } 6167 6168 SDValue Result; 6169 SDValue AllOneMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 6170 6171 switch (Condition) { 6172 default: 6173 break; 6174 // X != Y --> (X^Y) 6175 case ISD::SETNE: 6176 Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL); 6177 break; 6178 // X == Y --> ~(X^Y) 6179 case ISD::SETEQ: { 6180 SDValue Temp = 6181 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL); 6182 Result = 6183 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, AllOneMask, VL); 6184 break; 6185 } 6186 // X >s Y --> X == 0 & Y == 1 --> ~X & Y 6187 // X <u Y --> X == 0 & Y == 1 --> ~X & Y 6188 case ISD::SETGT: 6189 case ISD::SETULT: { 6190 SDValue Temp = 6191 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL); 6192 Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Temp, Op2, VL); 6193 break; 6194 } 6195 // X <s Y --> X == 1 & Y == 0 --> ~Y & X 6196 // X >u Y --> X == 1 & Y == 0 --> ~Y & X 6197 case ISD::SETLT: 6198 case ISD::SETUGT: { 6199 SDValue Temp = 6200 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL); 6201 Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Op1, Temp, VL); 6202 break; 6203 } 6204 // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 6205 // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 6206 case ISD::SETGE: 6207 case ISD::SETULE: { 6208 SDValue Temp = 6209 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL); 6210 Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op2, VL); 6211 break; 6212 } 6213 // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 6214 // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 6215 case ISD::SETLE: 6216 case ISD::SETUGE: { 6217 SDValue Temp = 6218 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL); 6219 Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op1, VL); 6220 break; 6221 } 6222 } 6223 6224 if (!VT.isFixedLengthVector()) 6225 return Result; 6226 return convertFromScalableVector(VT, Result, DAG, Subtarget); 6227 } 6228 6229 // Lower Floating-Point/Integer Type-Convert VP SDNodes 6230 SDValue RISCVTargetLowering::lowerVPFPIntConvOp(SDValue Op, SelectionDAG &DAG, 6231 unsigned RISCVISDOpc) const { 6232 SDLoc DL(Op); 6233 6234 SDValue Src = Op.getOperand(0); 6235 SDValue Mask = Op.getOperand(1); 6236 SDValue VL = Op.getOperand(2); 6237 6238 MVT DstVT = Op.getSimpleValueType(); 6239 MVT SrcVT = Src.getSimpleValueType(); 6240 if (DstVT.isFixedLengthVector()) { 6241 DstVT = getContainerForFixedLengthVector(DstVT); 6242 SrcVT = getContainerForFixedLengthVector(SrcVT); 6243 Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget); 6244 MVT MaskVT = getMaskTypeFor(DstVT); 6245 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6246 } 6247 6248 unsigned RISCVISDExtOpc = (RISCVISDOpc == RISCVISD::SINT_TO_FP_VL || 6249 RISCVISDOpc == RISCVISD::FP_TO_SINT_VL) 6250 ? RISCVISD::VSEXT_VL 6251 : RISCVISD::VZEXT_VL; 6252 6253 unsigned DstEltSize = DstVT.getScalarSizeInBits(); 6254 unsigned SrcEltSize = SrcVT.getScalarSizeInBits(); 6255 6256 SDValue Result; 6257 if (DstEltSize >= SrcEltSize) { // Single-width and widening conversion. 6258 if (SrcVT.isInteger()) { 6259 assert(DstVT.isFloatingPoint() && "Wrong input/output vector types"); 6260 6261 // Do we need to do any pre-widening before converting? 6262 if (SrcEltSize == 1) { 6263 MVT IntVT = DstVT.changeVectorElementTypeToInteger(); 6264 MVT XLenVT = Subtarget.getXLenVT(); 6265 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 6266 SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, 6267 DAG.getUNDEF(IntVT), Zero, VL); 6268 SDValue One = DAG.getConstant( 6269 RISCVISDExtOpc == RISCVISD::VZEXT_VL ? 1 : -1, DL, XLenVT); 6270 SDValue OneSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, 6271 DAG.getUNDEF(IntVT), One, VL); 6272 Src = DAG.getNode(RISCVISD::VSELECT_VL, DL, IntVT, Src, OneSplat, 6273 ZeroSplat, VL); 6274 } else if (DstEltSize > (2 * SrcEltSize)) { 6275 // Widen before converting. 6276 MVT IntVT = MVT::getVectorVT(MVT::getIntegerVT(DstEltSize / 2), 6277 DstVT.getVectorElementCount()); 6278 Src = DAG.getNode(RISCVISDExtOpc, DL, IntVT, Src, Mask, VL); 6279 } 6280 6281 Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL); 6282 } else { 6283 assert(SrcVT.isFloatingPoint() && DstVT.isInteger() && 6284 "Wrong input/output vector types"); 6285 6286 // Convert f16 to f32 then convert f32 to i64. 6287 if (DstEltSize > (2 * SrcEltSize)) { 6288 assert(SrcVT.getVectorElementType() == MVT::f16 && "Unexpected type!"); 6289 MVT InterimFVT = 6290 MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount()); 6291 Src = 6292 DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterimFVT, Src, Mask, VL); 6293 } 6294 6295 Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL); 6296 } 6297 } else { // Narrowing + Conversion 6298 if (SrcVT.isInteger()) { 6299 assert(DstVT.isFloatingPoint() && "Wrong input/output vector types"); 6300 // First do a narrowing convert to an FP type half the size, then round 6301 // the FP type to a small FP type if needed. 6302 6303 MVT InterimFVT = DstVT; 6304 if (SrcEltSize > (2 * DstEltSize)) { 6305 assert(SrcEltSize == (4 * DstEltSize) && "Unexpected types!"); 6306 assert(DstVT.getVectorElementType() == MVT::f16 && "Unexpected type!"); 6307 InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount()); 6308 } 6309 6310 Result = DAG.getNode(RISCVISDOpc, DL, InterimFVT, Src, Mask, VL); 6311 6312 if (InterimFVT != DstVT) { 6313 Src = Result; 6314 Result = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, DstVT, Src, Mask, VL); 6315 } 6316 } else { 6317 assert(SrcVT.isFloatingPoint() && DstVT.isInteger() && 6318 "Wrong input/output vector types"); 6319 // First do a narrowing conversion to an integer half the size, then 6320 // truncate if needed. 6321 6322 if (DstEltSize == 1) { 6323 // First convert to the same size integer, then convert to mask using 6324 // setcc. 6325 assert(SrcEltSize >= 16 && "Unexpected FP type!"); 6326 MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize), 6327 DstVT.getVectorElementCount()); 6328 Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL); 6329 6330 // Compare the integer result to 0. The integer should be 0 or 1/-1, 6331 // otherwise the conversion was undefined. 6332 MVT XLenVT = Subtarget.getXLenVT(); 6333 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 6334 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterimIVT, 6335 DAG.getUNDEF(InterimIVT), SplatZero); 6336 Result = DAG.getNode(RISCVISD::SETCC_VL, DL, DstVT, Result, SplatZero, 6337 DAG.getCondCode(ISD::SETNE), Mask, VL); 6338 } else { 6339 MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), 6340 DstVT.getVectorElementCount()); 6341 6342 Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL); 6343 6344 while (InterimIVT != DstVT) { 6345 SrcEltSize /= 2; 6346 Src = Result; 6347 InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), 6348 DstVT.getVectorElementCount()); 6349 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, InterimIVT, 6350 Src, Mask, VL); 6351 } 6352 } 6353 } 6354 } 6355 6356 MVT VT = Op.getSimpleValueType(); 6357 if (!VT.isFixedLengthVector()) 6358 return Result; 6359 return convertFromScalableVector(VT, Result, DAG, Subtarget); 6360 } 6361 6362 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG, 6363 unsigned MaskOpc, 6364 unsigned VecOpc) const { 6365 MVT VT = Op.getSimpleValueType(); 6366 if (VT.getVectorElementType() != MVT::i1) 6367 return lowerVPOp(Op, DAG, VecOpc); 6368 6369 // It is safe to drop mask parameter as masked-off elements are undef. 6370 SDValue Op1 = Op->getOperand(0); 6371 SDValue Op2 = Op->getOperand(1); 6372 SDValue VL = Op->getOperand(3); 6373 6374 MVT ContainerVT = VT; 6375 const bool IsFixed = VT.isFixedLengthVector(); 6376 if (IsFixed) { 6377 ContainerVT = getContainerForFixedLengthVector(VT); 6378 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 6379 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 6380 } 6381 6382 SDLoc DL(Op); 6383 SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL); 6384 if (!IsFixed) 6385 return Val; 6386 return convertFromScalableVector(VT, Val, DAG, Subtarget); 6387 } 6388 6389 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 6390 // matched to a RVV indexed load. The RVV indexed load instructions only 6391 // support the "unsigned unscaled" addressing mode; indices are implicitly 6392 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 6393 // signed or scaled indexing is extended to the XLEN value type and scaled 6394 // accordingly. 6395 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 6396 SelectionDAG &DAG) const { 6397 SDLoc DL(Op); 6398 MVT VT = Op.getSimpleValueType(); 6399 6400 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 6401 EVT MemVT = MemSD->getMemoryVT(); 6402 MachineMemOperand *MMO = MemSD->getMemOperand(); 6403 SDValue Chain = MemSD->getChain(); 6404 SDValue BasePtr = MemSD->getBasePtr(); 6405 6406 ISD::LoadExtType LoadExtType; 6407 SDValue Index, Mask, PassThru, VL; 6408 6409 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 6410 Index = VPGN->getIndex(); 6411 Mask = VPGN->getMask(); 6412 PassThru = DAG.getUNDEF(VT); 6413 VL = VPGN->getVectorLength(); 6414 // VP doesn't support extending loads. 6415 LoadExtType = ISD::NON_EXTLOAD; 6416 } else { 6417 // Else it must be a MGATHER. 6418 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 6419 Index = MGN->getIndex(); 6420 Mask = MGN->getMask(); 6421 PassThru = MGN->getPassThru(); 6422 LoadExtType = MGN->getExtensionType(); 6423 } 6424 6425 MVT IndexVT = Index.getSimpleValueType(); 6426 MVT XLenVT = Subtarget.getXLenVT(); 6427 6428 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 6429 "Unexpected VTs!"); 6430 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 6431 // Targets have to explicitly opt-in for extending vector loads. 6432 assert(LoadExtType == ISD::NON_EXTLOAD && 6433 "Unexpected extending MGATHER/VP_GATHER"); 6434 (void)LoadExtType; 6435 6436 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 6437 // the selection of the masked intrinsics doesn't do this for us. 6438 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 6439 6440 MVT ContainerVT = VT; 6441 if (VT.isFixedLengthVector()) { 6442 ContainerVT = getContainerForFixedLengthVector(VT); 6443 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6444 ContainerVT.getVectorElementCount()); 6445 6446 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6447 6448 if (!IsUnmasked) { 6449 MVT MaskVT = getMaskTypeFor(ContainerVT); 6450 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6451 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 6452 } 6453 } 6454 6455 if (!VL) 6456 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6457 6458 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6459 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6460 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6461 VL); 6462 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6463 TrueMask, VL); 6464 } 6465 6466 unsigned IntID = 6467 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 6468 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6469 if (IsUnmasked) 6470 Ops.push_back(DAG.getUNDEF(ContainerVT)); 6471 else 6472 Ops.push_back(PassThru); 6473 Ops.push_back(BasePtr); 6474 Ops.push_back(Index); 6475 if (!IsUnmasked) 6476 Ops.push_back(Mask); 6477 Ops.push_back(VL); 6478 if (!IsUnmasked) 6479 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 6480 6481 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 6482 SDValue Result = 6483 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 6484 Chain = Result.getValue(1); 6485 6486 if (VT.isFixedLengthVector()) 6487 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 6488 6489 return DAG.getMergeValues({Result, Chain}, DL); 6490 } 6491 6492 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 6493 // matched to a RVV indexed store. The RVV indexed store instructions only 6494 // support the "unsigned unscaled" addressing mode; indices are implicitly 6495 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 6496 // signed or scaled indexing is extended to the XLEN value type and scaled 6497 // accordingly. 6498 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 6499 SelectionDAG &DAG) const { 6500 SDLoc DL(Op); 6501 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 6502 EVT MemVT = MemSD->getMemoryVT(); 6503 MachineMemOperand *MMO = MemSD->getMemOperand(); 6504 SDValue Chain = MemSD->getChain(); 6505 SDValue BasePtr = MemSD->getBasePtr(); 6506 6507 bool IsTruncatingStore = false; 6508 SDValue Index, Mask, Val, VL; 6509 6510 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 6511 Index = VPSN->getIndex(); 6512 Mask = VPSN->getMask(); 6513 Val = VPSN->getValue(); 6514 VL = VPSN->getVectorLength(); 6515 // VP doesn't support truncating stores. 6516 IsTruncatingStore = false; 6517 } else { 6518 // Else it must be a MSCATTER. 6519 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 6520 Index = MSN->getIndex(); 6521 Mask = MSN->getMask(); 6522 Val = MSN->getValue(); 6523 IsTruncatingStore = MSN->isTruncatingStore(); 6524 } 6525 6526 MVT VT = Val.getSimpleValueType(); 6527 MVT IndexVT = Index.getSimpleValueType(); 6528 MVT XLenVT = Subtarget.getXLenVT(); 6529 6530 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 6531 "Unexpected VTs!"); 6532 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 6533 // Targets have to explicitly opt-in for extending vector loads and 6534 // truncating vector stores. 6535 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 6536 (void)IsTruncatingStore; 6537 6538 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 6539 // the selection of the masked intrinsics doesn't do this for us. 6540 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 6541 6542 MVT ContainerVT = VT; 6543 if (VT.isFixedLengthVector()) { 6544 ContainerVT = getContainerForFixedLengthVector(VT); 6545 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6546 ContainerVT.getVectorElementCount()); 6547 6548 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6549 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 6550 6551 if (!IsUnmasked) { 6552 MVT MaskVT = getMaskTypeFor(ContainerVT); 6553 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6554 } 6555 } 6556 6557 if (!VL) 6558 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6559 6560 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6561 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6562 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6563 VL); 6564 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6565 TrueMask, VL); 6566 } 6567 6568 unsigned IntID = 6569 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 6570 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6571 Ops.push_back(Val); 6572 Ops.push_back(BasePtr); 6573 Ops.push_back(Index); 6574 if (!IsUnmasked) 6575 Ops.push_back(Mask); 6576 Ops.push_back(VL); 6577 6578 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 6579 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 6580 } 6581 6582 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 6583 SelectionDAG &DAG) const { 6584 const MVT XLenVT = Subtarget.getXLenVT(); 6585 SDLoc DL(Op); 6586 SDValue Chain = Op->getOperand(0); 6587 SDValue SysRegNo = DAG.getTargetConstant( 6588 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6589 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 6590 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 6591 6592 // Encoding used for rounding mode in RISCV differs from that used in 6593 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 6594 // table, which consists of a sequence of 4-bit fields, each representing 6595 // corresponding FLT_ROUNDS mode. 6596 static const int Table = 6597 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 6598 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 6599 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 6600 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 6601 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 6602 6603 SDValue Shift = 6604 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 6605 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6606 DAG.getConstant(Table, DL, XLenVT), Shift); 6607 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6608 DAG.getConstant(7, DL, XLenVT)); 6609 6610 return DAG.getMergeValues({Masked, Chain}, DL); 6611 } 6612 6613 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 6614 SelectionDAG &DAG) const { 6615 const MVT XLenVT = Subtarget.getXLenVT(); 6616 SDLoc DL(Op); 6617 SDValue Chain = Op->getOperand(0); 6618 SDValue RMValue = Op->getOperand(1); 6619 SDValue SysRegNo = DAG.getTargetConstant( 6620 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6621 6622 // Encoding used for rounding mode in RISCV differs from that used in 6623 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 6624 // a table, which consists of a sequence of 4-bit fields, each representing 6625 // corresponding RISCV mode. 6626 static const unsigned Table = 6627 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 6628 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 6629 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 6630 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 6631 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 6632 6633 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 6634 DAG.getConstant(2, DL, XLenVT)); 6635 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6636 DAG.getConstant(Table, DL, XLenVT), Shift); 6637 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6638 DAG.getConstant(0x7, DL, XLenVT)); 6639 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 6640 RMValue); 6641 } 6642 6643 SDValue RISCVTargetLowering::lowerEH_DWARF_CFA(SDValue Op, 6644 SelectionDAG &DAG) const { 6645 MachineFunction &MF = DAG.getMachineFunction(); 6646 6647 bool isRISCV64 = Subtarget.is64Bit(); 6648 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6649 6650 int FI = MF.getFrameInfo().CreateFixedObject(isRISCV64 ? 8 : 4, 0, false); 6651 return DAG.getFrameIndex(FI, PtrVT); 6652 } 6653 6654 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) { 6655 switch (IntNo) { 6656 default: 6657 llvm_unreachable("Unexpected Intrinsic"); 6658 case Intrinsic::riscv_bcompress: 6659 return RISCVISD::BCOMPRESSW; 6660 case Intrinsic::riscv_bdecompress: 6661 return RISCVISD::BDECOMPRESSW; 6662 case Intrinsic::riscv_bfp: 6663 return RISCVISD::BFPW; 6664 case Intrinsic::riscv_fsl: 6665 return RISCVISD::FSLW; 6666 case Intrinsic::riscv_fsr: 6667 return RISCVISD::FSRW; 6668 } 6669 } 6670 6671 // Converts the given intrinsic to a i64 operation with any extension. 6672 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG, 6673 unsigned IntNo) { 6674 SDLoc DL(N); 6675 RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo); 6676 // Deal with the Instruction Operands 6677 SmallVector<SDValue, 3> NewOps; 6678 for (SDValue Op : drop_begin(N->ops())) 6679 // Promote the operand to i64 type 6680 NewOps.push_back(DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op)); 6681 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOps); 6682 // ReplaceNodeResults requires we maintain the same type for the return value. 6683 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6684 } 6685 6686 // Returns the opcode of the target-specific SDNode that implements the 32-bit 6687 // form of the given Opcode. 6688 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 6689 switch (Opcode) { 6690 default: 6691 llvm_unreachable("Unexpected opcode"); 6692 case ISD::SHL: 6693 return RISCVISD::SLLW; 6694 case ISD::SRA: 6695 return RISCVISD::SRAW; 6696 case ISD::SRL: 6697 return RISCVISD::SRLW; 6698 case ISD::SDIV: 6699 return RISCVISD::DIVW; 6700 case ISD::UDIV: 6701 return RISCVISD::DIVUW; 6702 case ISD::UREM: 6703 return RISCVISD::REMUW; 6704 case ISD::ROTL: 6705 return RISCVISD::ROLW; 6706 case ISD::ROTR: 6707 return RISCVISD::RORW; 6708 } 6709 } 6710 6711 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 6712 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 6713 // otherwise be promoted to i64, making it difficult to select the 6714 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 6715 // type i8/i16/i32 is lost. 6716 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 6717 unsigned ExtOpc = ISD::ANY_EXTEND) { 6718 SDLoc DL(N); 6719 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6720 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 6721 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 6722 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6723 // ReplaceNodeResults requires we maintain the same type for the return value. 6724 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6725 } 6726 6727 // Converts the given 32-bit operation to a i64 operation with signed extension 6728 // semantic to reduce the signed extension instructions. 6729 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 6730 SDLoc DL(N); 6731 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6732 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6733 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 6734 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6735 DAG.getValueType(MVT::i32)); 6736 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 6737 } 6738 6739 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 6740 SmallVectorImpl<SDValue> &Results, 6741 SelectionDAG &DAG) const { 6742 SDLoc DL(N); 6743 switch (N->getOpcode()) { 6744 default: 6745 llvm_unreachable("Don't know how to custom type legalize this operation!"); 6746 case ISD::STRICT_FP_TO_SINT: 6747 case ISD::STRICT_FP_TO_UINT: 6748 case ISD::FP_TO_SINT: 6749 case ISD::FP_TO_UINT: { 6750 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6751 "Unexpected custom legalisation"); 6752 bool IsStrict = N->isStrictFPOpcode(); 6753 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 6754 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 6755 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 6756 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 6757 TargetLowering::TypeSoftenFloat) { 6758 if (!isTypeLegal(Op0.getValueType())) 6759 return; 6760 if (IsStrict) { 6761 unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64 6762 : RISCVISD::STRICT_FCVT_WU_RV64; 6763 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 6764 SDValue Res = DAG.getNode( 6765 Opc, DL, VTs, N->getOperand(0), Op0, 6766 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6767 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6768 Results.push_back(Res.getValue(1)); 6769 return; 6770 } 6771 unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 6772 SDValue Res = 6773 DAG.getNode(Opc, DL, MVT::i64, Op0, 6774 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6775 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6776 return; 6777 } 6778 // If the FP type needs to be softened, emit a library call using the 'si' 6779 // version. If we left it to default legalization we'd end up with 'di'. If 6780 // the FP type doesn't need to be softened just let generic type 6781 // legalization promote the result type. 6782 RTLIB::Libcall LC; 6783 if (IsSigned) 6784 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 6785 else 6786 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 6787 MakeLibCallOptions CallOptions; 6788 EVT OpVT = Op0.getValueType(); 6789 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 6790 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 6791 SDValue Result; 6792 std::tie(Result, Chain) = 6793 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 6794 Results.push_back(Result); 6795 if (IsStrict) 6796 Results.push_back(Chain); 6797 break; 6798 } 6799 case ISD::READCYCLECOUNTER: { 6800 assert(!Subtarget.is64Bit() && 6801 "READCYCLECOUNTER only has custom type legalization on riscv32"); 6802 6803 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 6804 SDValue RCW = 6805 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 6806 6807 Results.push_back( 6808 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 6809 Results.push_back(RCW.getValue(2)); 6810 break; 6811 } 6812 case ISD::MUL: { 6813 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 6814 unsigned XLen = Subtarget.getXLen(); 6815 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 6816 if (Size > XLen) { 6817 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 6818 SDValue LHS = N->getOperand(0); 6819 SDValue RHS = N->getOperand(1); 6820 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 6821 6822 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 6823 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 6824 // We need exactly one side to be unsigned. 6825 if (LHSIsU == RHSIsU) 6826 return; 6827 6828 auto MakeMULPair = [&](SDValue S, SDValue U) { 6829 MVT XLenVT = Subtarget.getXLenVT(); 6830 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 6831 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 6832 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 6833 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 6834 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 6835 }; 6836 6837 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 6838 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 6839 6840 // The other operand should be signed, but still prefer MULH when 6841 // possible. 6842 if (RHSIsU && LHSIsS && !RHSIsS) 6843 Results.push_back(MakeMULPair(LHS, RHS)); 6844 else if (LHSIsU && RHSIsS && !LHSIsS) 6845 Results.push_back(MakeMULPair(RHS, LHS)); 6846 6847 return; 6848 } 6849 LLVM_FALLTHROUGH; 6850 } 6851 case ISD::ADD: 6852 case ISD::SUB: 6853 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6854 "Unexpected custom legalisation"); 6855 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 6856 break; 6857 case ISD::SHL: 6858 case ISD::SRA: 6859 case ISD::SRL: 6860 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6861 "Unexpected custom legalisation"); 6862 if (N->getOperand(1).getOpcode() != ISD::Constant) { 6863 // If we can use a BSET instruction, allow default promotion to apply. 6864 if (N->getOpcode() == ISD::SHL && Subtarget.hasStdExtZbs() && 6865 isOneConstant(N->getOperand(0))) 6866 break; 6867 Results.push_back(customLegalizeToWOp(N, DAG)); 6868 break; 6869 } 6870 6871 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 6872 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 6873 // shift amount. 6874 if (N->getOpcode() == ISD::SHL) { 6875 SDLoc DL(N); 6876 SDValue NewOp0 = 6877 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6878 SDValue NewOp1 = 6879 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 6880 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 6881 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6882 DAG.getValueType(MVT::i32)); 6883 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6884 } 6885 6886 break; 6887 case ISD::ROTL: 6888 case ISD::ROTR: 6889 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6890 "Unexpected custom legalisation"); 6891 Results.push_back(customLegalizeToWOp(N, DAG)); 6892 break; 6893 case ISD::CTTZ: 6894 case ISD::CTTZ_ZERO_UNDEF: 6895 case ISD::CTLZ: 6896 case ISD::CTLZ_ZERO_UNDEF: { 6897 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6898 "Unexpected custom legalisation"); 6899 6900 SDValue NewOp0 = 6901 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6902 bool IsCTZ = 6903 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 6904 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 6905 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 6906 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6907 return; 6908 } 6909 case ISD::SDIV: 6910 case ISD::UDIV: 6911 case ISD::UREM: { 6912 MVT VT = N->getSimpleValueType(0); 6913 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 6914 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 6915 "Unexpected custom legalisation"); 6916 // Don't promote division/remainder by constant since we should expand those 6917 // to multiply by magic constant. 6918 // FIXME: What if the expansion is disabled for minsize. 6919 if (N->getOperand(1).getOpcode() == ISD::Constant) 6920 return; 6921 6922 // If the input is i32, use ANY_EXTEND since the W instructions don't read 6923 // the upper 32 bits. For other types we need to sign or zero extend 6924 // based on the opcode. 6925 unsigned ExtOpc = ISD::ANY_EXTEND; 6926 if (VT != MVT::i32) 6927 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 6928 : ISD::ZERO_EXTEND; 6929 6930 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 6931 break; 6932 } 6933 case ISD::UADDO: 6934 case ISD::USUBO: { 6935 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6936 "Unexpected custom legalisation"); 6937 bool IsAdd = N->getOpcode() == ISD::UADDO; 6938 // Create an ADDW or SUBW. 6939 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6940 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6941 SDValue Res = 6942 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 6943 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 6944 DAG.getValueType(MVT::i32)); 6945 6946 SDValue Overflow; 6947 if (IsAdd && isOneConstant(RHS)) { 6948 // Special case uaddo X, 1 overflowed if the addition result is 0. 6949 // The general case (X + C) < C is not necessarily beneficial. Although we 6950 // reduce the live range of X, we may introduce the materialization of 6951 // constant C, especially when the setcc result is used by branch. We have 6952 // no compare with constant and branch instructions. 6953 Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, 6954 DAG.getConstant(0, DL, MVT::i64), ISD::SETEQ); 6955 } else { 6956 // Sign extend the LHS and perform an unsigned compare with the ADDW 6957 // result. Since the inputs are sign extended from i32, this is equivalent 6958 // to comparing the lower 32 bits. 6959 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6960 Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 6961 IsAdd ? ISD::SETULT : ISD::SETUGT); 6962 } 6963 6964 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6965 Results.push_back(Overflow); 6966 return; 6967 } 6968 case ISD::UADDSAT: 6969 case ISD::USUBSAT: { 6970 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6971 "Unexpected custom legalisation"); 6972 if (Subtarget.hasStdExtZbb()) { 6973 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 6974 // sign extend allows overflow of the lower 32 bits to be detected on 6975 // the promoted size. 6976 SDValue LHS = 6977 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6978 SDValue RHS = 6979 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 6980 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 6981 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6982 return; 6983 } 6984 6985 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 6986 // promotion for UADDO/USUBO. 6987 Results.push_back(expandAddSubSat(N, DAG)); 6988 return; 6989 } 6990 case ISD::ABS: { 6991 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6992 "Unexpected custom legalisation"); 6993 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6994 6995 // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y) 6996 6997 SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6998 6999 // Freeze the source so we can increase it's use count. 7000 Src = DAG.getFreeze(Src); 7001 7002 // Copy sign bit to all bits using the sraiw pattern. 7003 SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src, 7004 DAG.getValueType(MVT::i32)); 7005 SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill, 7006 DAG.getConstant(31, DL, MVT::i64)); 7007 7008 SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill); 7009 NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill); 7010 7011 // NOTE: The result is only required to be anyextended, but sext is 7012 // consistent with type legalization of sub. 7013 NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes, 7014 DAG.getValueType(MVT::i32)); 7015 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 7016 return; 7017 } 7018 case ISD::BITCAST: { 7019 EVT VT = N->getValueType(0); 7020 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 7021 SDValue Op0 = N->getOperand(0); 7022 EVT Op0VT = Op0.getValueType(); 7023 MVT XLenVT = Subtarget.getXLenVT(); 7024 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 7025 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 7026 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 7027 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 7028 Subtarget.hasStdExtF()) { 7029 SDValue FPConv = 7030 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 7031 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 7032 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 7033 isTypeLegal(Op0VT)) { 7034 // Custom-legalize bitcasts from fixed-length vector types to illegal 7035 // scalar types in order to improve codegen. Bitcast the vector to a 7036 // one-element vector type whose element type is the same as the result 7037 // type, and extract the first element. 7038 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 7039 if (isTypeLegal(BVT)) { 7040 SDValue BVec = DAG.getBitcast(BVT, Op0); 7041 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 7042 DAG.getConstant(0, DL, XLenVT))); 7043 } 7044 } 7045 break; 7046 } 7047 case RISCVISD::GREV: 7048 case RISCVISD::GORC: 7049 case RISCVISD::SHFL: { 7050 MVT VT = N->getSimpleValueType(0); 7051 MVT XLenVT = Subtarget.getXLenVT(); 7052 assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) && 7053 "Unexpected custom legalisation"); 7054 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 7055 assert((Subtarget.hasStdExtZbp() || 7056 (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV && 7057 N->getConstantOperandVal(1) == 7)) && 7058 "Unexpected extension"); 7059 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 7060 SDValue NewOp1 = 7061 DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1)); 7062 SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1); 7063 // ReplaceNodeResults requires we maintain the same type for the return 7064 // value. 7065 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes)); 7066 break; 7067 } 7068 case ISD::BSWAP: 7069 case ISD::BITREVERSE: { 7070 MVT VT = N->getSimpleValueType(0); 7071 MVT XLenVT = Subtarget.getXLenVT(); 7072 assert((VT == MVT::i8 || VT == MVT::i16 || 7073 (VT == MVT::i32 && Subtarget.is64Bit())) && 7074 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 7075 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 7076 unsigned Imm = VT.getSizeInBits() - 1; 7077 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 7078 if (N->getOpcode() == ISD::BSWAP) 7079 Imm &= ~0x7U; 7080 SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0, 7081 DAG.getConstant(Imm, DL, XLenVT)); 7082 // ReplaceNodeResults requires we maintain the same type for the return 7083 // value. 7084 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 7085 break; 7086 } 7087 case ISD::FSHL: 7088 case ISD::FSHR: { 7089 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7090 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 7091 SDValue NewOp0 = 7092 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 7093 SDValue NewOp1 = 7094 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7095 SDValue NewShAmt = 7096 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 7097 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 7098 // Mask the shift amount to 5 bits to prevent accidentally setting bit 5. 7099 NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt, 7100 DAG.getConstant(0x1f, DL, MVT::i64)); 7101 // fshl and fshr concatenate their operands in the same order. fsrw and fslw 7102 // instruction use different orders. fshl will return its first operand for 7103 // shift of zero, fshr will return its second operand. fsl and fsr both 7104 // return rs1 so the ISD nodes need to have different operand orders. 7105 // Shift amount is in rs2. 7106 unsigned Opc = RISCVISD::FSLW; 7107 if (N->getOpcode() == ISD::FSHR) { 7108 std::swap(NewOp0, NewOp1); 7109 Opc = RISCVISD::FSRW; 7110 } 7111 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt); 7112 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 7113 break; 7114 } 7115 case ISD::EXTRACT_VECTOR_ELT: { 7116 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 7117 // type is illegal (currently only vXi64 RV32). 7118 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 7119 // transferred to the destination register. We issue two of these from the 7120 // upper- and lower- halves of the SEW-bit vector element, slid down to the 7121 // first element. 7122 SDValue Vec = N->getOperand(0); 7123 SDValue Idx = N->getOperand(1); 7124 7125 // The vector type hasn't been legalized yet so we can't issue target 7126 // specific nodes if it needs legalization. 7127 // FIXME: We would manually legalize if it's important. 7128 if (!isTypeLegal(Vec.getValueType())) 7129 return; 7130 7131 MVT VecVT = Vec.getSimpleValueType(); 7132 7133 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 7134 VecVT.getVectorElementType() == MVT::i64 && 7135 "Unexpected EXTRACT_VECTOR_ELT legalization"); 7136 7137 // If this is a fixed vector, we need to convert it to a scalable vector. 7138 MVT ContainerVT = VecVT; 7139 if (VecVT.isFixedLengthVector()) { 7140 ContainerVT = getContainerForFixedLengthVector(VecVT); 7141 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 7142 } 7143 7144 MVT XLenVT = Subtarget.getXLenVT(); 7145 7146 // Use a VL of 1 to avoid processing more elements than we need. 7147 SDValue VL = DAG.getConstant(1, DL, XLenVT); 7148 SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG); 7149 7150 // Unless the index is known to be 0, we must slide the vector down to get 7151 // the desired element into index 0. 7152 if (!isNullConstant(Idx)) { 7153 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 7154 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 7155 } 7156 7157 // Extract the lower XLEN bits of the correct vector element. 7158 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 7159 7160 // To extract the upper XLEN bits of the vector element, shift the first 7161 // element right by 32 bits and re-extract the lower XLEN bits. 7162 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 7163 DAG.getUNDEF(ContainerVT), 7164 DAG.getConstant(32, DL, XLenVT), VL); 7165 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 7166 ThirtyTwoV, Mask, VL); 7167 7168 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 7169 7170 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 7171 break; 7172 } 7173 case ISD::INTRINSIC_WO_CHAIN: { 7174 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 7175 switch (IntNo) { 7176 default: 7177 llvm_unreachable( 7178 "Don't know how to custom type legalize this intrinsic!"); 7179 case Intrinsic::riscv_grev: 7180 case Intrinsic::riscv_gorc: { 7181 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7182 "Unexpected custom legalisation"); 7183 SDValue NewOp1 = 7184 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7185 SDValue NewOp2 = 7186 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 7187 unsigned Opc = 7188 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 7189 // If the control is a constant, promote the node by clearing any extra 7190 // bits bits in the control. isel will form greviw/gorciw if the result is 7191 // sign extended. 7192 if (isa<ConstantSDNode>(NewOp2)) { 7193 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 7194 DAG.getConstant(0x1f, DL, MVT::i64)); 7195 Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 7196 } 7197 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 7198 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7199 break; 7200 } 7201 case Intrinsic::riscv_bcompress: 7202 case Intrinsic::riscv_bdecompress: 7203 case Intrinsic::riscv_bfp: 7204 case Intrinsic::riscv_fsl: 7205 case Intrinsic::riscv_fsr: { 7206 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7207 "Unexpected custom legalisation"); 7208 Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo)); 7209 break; 7210 } 7211 case Intrinsic::riscv_orc_b: { 7212 // Lower to the GORCI encoding for orc.b with the operand extended. 7213 SDValue NewOp = 7214 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7215 SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp, 7216 DAG.getConstant(7, DL, MVT::i64)); 7217 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7218 return; 7219 } 7220 case Intrinsic::riscv_shfl: 7221 case Intrinsic::riscv_unshfl: { 7222 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7223 "Unexpected custom legalisation"); 7224 SDValue NewOp1 = 7225 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7226 SDValue NewOp2 = 7227 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 7228 unsigned Opc = 7229 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 7230 // There is no (UN)SHFLIW. If the control word is a constant, we can use 7231 // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half 7232 // will be shuffled the same way as the lower 32 bit half, but the two 7233 // halves won't cross. 7234 if (isa<ConstantSDNode>(NewOp2)) { 7235 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 7236 DAG.getConstant(0xf, DL, MVT::i64)); 7237 Opc = 7238 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 7239 } 7240 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 7241 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7242 break; 7243 } 7244 case Intrinsic::riscv_vmv_x_s: { 7245 EVT VT = N->getValueType(0); 7246 MVT XLenVT = Subtarget.getXLenVT(); 7247 if (VT.bitsLT(XLenVT)) { 7248 // Simple case just extract using vmv.x.s and truncate. 7249 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 7250 Subtarget.getXLenVT(), N->getOperand(1)); 7251 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 7252 return; 7253 } 7254 7255 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 7256 "Unexpected custom legalization"); 7257 7258 // We need to do the move in two steps. 7259 SDValue Vec = N->getOperand(1); 7260 MVT VecVT = Vec.getSimpleValueType(); 7261 7262 // First extract the lower XLEN bits of the element. 7263 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 7264 7265 // To extract the upper XLEN bits of the vector element, shift the first 7266 // element right by 32 bits and re-extract the lower XLEN bits. 7267 SDValue VL = DAG.getConstant(1, DL, XLenVT); 7268 SDValue Mask = getAllOnesMask(VecVT, VL, DL, DAG); 7269 7270 SDValue ThirtyTwoV = 7271 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 7272 DAG.getConstant(32, DL, XLenVT), VL); 7273 SDValue LShr32 = 7274 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 7275 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 7276 7277 Results.push_back( 7278 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 7279 break; 7280 } 7281 } 7282 break; 7283 } 7284 case ISD::VECREDUCE_ADD: 7285 case ISD::VECREDUCE_AND: 7286 case ISD::VECREDUCE_OR: 7287 case ISD::VECREDUCE_XOR: 7288 case ISD::VECREDUCE_SMAX: 7289 case ISD::VECREDUCE_UMAX: 7290 case ISD::VECREDUCE_SMIN: 7291 case ISD::VECREDUCE_UMIN: 7292 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 7293 Results.push_back(V); 7294 break; 7295 case ISD::VP_REDUCE_ADD: 7296 case ISD::VP_REDUCE_AND: 7297 case ISD::VP_REDUCE_OR: 7298 case ISD::VP_REDUCE_XOR: 7299 case ISD::VP_REDUCE_SMAX: 7300 case ISD::VP_REDUCE_UMAX: 7301 case ISD::VP_REDUCE_SMIN: 7302 case ISD::VP_REDUCE_UMIN: 7303 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 7304 Results.push_back(V); 7305 break; 7306 case ISD::FLT_ROUNDS_: { 7307 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 7308 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 7309 Results.push_back(Res.getValue(0)); 7310 Results.push_back(Res.getValue(1)); 7311 break; 7312 } 7313 } 7314 } 7315 7316 // A structure to hold one of the bit-manipulation patterns below. Together, a 7317 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 7318 // (or (and (shl x, 1), 0xAAAAAAAA), 7319 // (and (srl x, 1), 0x55555555)) 7320 struct RISCVBitmanipPat { 7321 SDValue Op; 7322 unsigned ShAmt; 7323 bool IsSHL; 7324 7325 bool formsPairWith(const RISCVBitmanipPat &Other) const { 7326 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 7327 } 7328 }; 7329 7330 // Matches patterns of the form 7331 // (and (shl x, C2), (C1 << C2)) 7332 // (and (srl x, C2), C1) 7333 // (shl (and x, C1), C2) 7334 // (srl (and x, (C1 << C2)), C2) 7335 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 7336 // The expected masks for each shift amount are specified in BitmanipMasks where 7337 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 7338 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 7339 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 7340 // XLen is 64. 7341 static Optional<RISCVBitmanipPat> 7342 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 7343 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 7344 "Unexpected number of masks"); 7345 Optional<uint64_t> Mask; 7346 // Optionally consume a mask around the shift operation. 7347 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 7348 Mask = Op.getConstantOperandVal(1); 7349 Op = Op.getOperand(0); 7350 } 7351 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 7352 return None; 7353 bool IsSHL = Op.getOpcode() == ISD::SHL; 7354 7355 if (!isa<ConstantSDNode>(Op.getOperand(1))) 7356 return None; 7357 uint64_t ShAmt = Op.getConstantOperandVal(1); 7358 7359 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7360 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 7361 return None; 7362 // If we don't have enough masks for 64 bit, then we must be trying to 7363 // match SHFL so we're only allowed to shift 1/4 of the width. 7364 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 7365 return None; 7366 7367 SDValue Src = Op.getOperand(0); 7368 7369 // The expected mask is shifted left when the AND is found around SHL 7370 // patterns. 7371 // ((x >> 1) & 0x55555555) 7372 // ((x << 1) & 0xAAAAAAAA) 7373 bool SHLExpMask = IsSHL; 7374 7375 if (!Mask) { 7376 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 7377 // the mask is all ones: consume that now. 7378 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 7379 Mask = Src.getConstantOperandVal(1); 7380 Src = Src.getOperand(0); 7381 // The expected mask is now in fact shifted left for SRL, so reverse the 7382 // decision. 7383 // ((x & 0xAAAAAAAA) >> 1) 7384 // ((x & 0x55555555) << 1) 7385 SHLExpMask = !SHLExpMask; 7386 } else { 7387 // Use a default shifted mask of all-ones if there's no AND, truncated 7388 // down to the expected width. This simplifies the logic later on. 7389 Mask = maskTrailingOnes<uint64_t>(Width); 7390 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 7391 } 7392 } 7393 7394 unsigned MaskIdx = Log2_32(ShAmt); 7395 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7396 7397 if (SHLExpMask) 7398 ExpMask <<= ShAmt; 7399 7400 if (Mask != ExpMask) 7401 return None; 7402 7403 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 7404 } 7405 7406 // Matches any of the following bit-manipulation patterns: 7407 // (and (shl x, 1), (0x55555555 << 1)) 7408 // (and (srl x, 1), 0x55555555) 7409 // (shl (and x, 0x55555555), 1) 7410 // (srl (and x, (0x55555555 << 1)), 1) 7411 // where the shift amount and mask may vary thus: 7412 // [1] = 0x55555555 / 0xAAAAAAAA 7413 // [2] = 0x33333333 / 0xCCCCCCCC 7414 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 7415 // [8] = 0x00FF00FF / 0xFF00FF00 7416 // [16] = 0x0000FFFF / 0xFFFFFFFF 7417 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 7418 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 7419 // These are the unshifted masks which we use to match bit-manipulation 7420 // patterns. They may be shifted left in certain circumstances. 7421 static const uint64_t BitmanipMasks[] = { 7422 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 7423 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 7424 7425 return matchRISCVBitmanipPat(Op, BitmanipMasks); 7426 } 7427 7428 // Try to fold (<bop> x, (reduction.<bop> vec, start)) 7429 static SDValue combineBinOpToReduce(SDNode *N, SelectionDAG &DAG) { 7430 auto BinOpToRVVReduce = [](unsigned Opc) { 7431 switch (Opc) { 7432 default: 7433 llvm_unreachable("Unhandled binary to transfrom reduction"); 7434 case ISD::ADD: 7435 return RISCVISD::VECREDUCE_ADD_VL; 7436 case ISD::UMAX: 7437 return RISCVISD::VECREDUCE_UMAX_VL; 7438 case ISD::SMAX: 7439 return RISCVISD::VECREDUCE_SMAX_VL; 7440 case ISD::UMIN: 7441 return RISCVISD::VECREDUCE_UMIN_VL; 7442 case ISD::SMIN: 7443 return RISCVISD::VECREDUCE_SMIN_VL; 7444 case ISD::AND: 7445 return RISCVISD::VECREDUCE_AND_VL; 7446 case ISD::OR: 7447 return RISCVISD::VECREDUCE_OR_VL; 7448 case ISD::XOR: 7449 return RISCVISD::VECREDUCE_XOR_VL; 7450 case ISD::FADD: 7451 return RISCVISD::VECREDUCE_FADD_VL; 7452 case ISD::FMAXNUM: 7453 return RISCVISD::VECREDUCE_FMAX_VL; 7454 case ISD::FMINNUM: 7455 return RISCVISD::VECREDUCE_FMIN_VL; 7456 } 7457 }; 7458 7459 auto IsReduction = [&BinOpToRVVReduce](SDValue V, unsigned Opc) { 7460 return V.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 7461 isNullConstant(V.getOperand(1)) && 7462 V.getOperand(0).getOpcode() == BinOpToRVVReduce(Opc); 7463 }; 7464 7465 unsigned Opc = N->getOpcode(); 7466 unsigned ReduceIdx; 7467 if (IsReduction(N->getOperand(0), Opc)) 7468 ReduceIdx = 0; 7469 else if (IsReduction(N->getOperand(1), Opc)) 7470 ReduceIdx = 1; 7471 else 7472 return SDValue(); 7473 7474 // Skip if FADD disallows reassociation but the combiner needs. 7475 if (Opc == ISD::FADD && !N->getFlags().hasAllowReassociation()) 7476 return SDValue(); 7477 7478 SDValue Extract = N->getOperand(ReduceIdx); 7479 SDValue Reduce = Extract.getOperand(0); 7480 if (!Reduce.hasOneUse()) 7481 return SDValue(); 7482 7483 SDValue ScalarV = Reduce.getOperand(2); 7484 7485 // Make sure that ScalarV is a splat with VL=1. 7486 if (ScalarV.getOpcode() != RISCVISD::VFMV_S_F_VL && 7487 ScalarV.getOpcode() != RISCVISD::VMV_S_X_VL && 7488 ScalarV.getOpcode() != RISCVISD::VMV_V_X_VL) 7489 return SDValue(); 7490 7491 if (!isOneConstant(ScalarV.getOperand(2))) 7492 return SDValue(); 7493 7494 // TODO: Deal with value other than neutral element. 7495 auto IsRVVNeutralElement = [Opc, &DAG](SDNode *N, SDValue V) { 7496 if (Opc == ISD::FADD && N->getFlags().hasNoSignedZeros() && 7497 isNullFPConstant(V)) 7498 return true; 7499 return DAG.getNeutralElement(Opc, SDLoc(V), V.getSimpleValueType(), 7500 N->getFlags()) == V; 7501 }; 7502 7503 // Check the scalar of ScalarV is neutral element 7504 if (!IsRVVNeutralElement(N, ScalarV.getOperand(1))) 7505 return SDValue(); 7506 7507 if (!ScalarV.hasOneUse()) 7508 return SDValue(); 7509 7510 EVT SplatVT = ScalarV.getValueType(); 7511 SDValue NewStart = N->getOperand(1 - ReduceIdx); 7512 unsigned SplatOpc = RISCVISD::VFMV_S_F_VL; 7513 if (SplatVT.isInteger()) { 7514 auto *C = dyn_cast<ConstantSDNode>(NewStart.getNode()); 7515 if (!C || C->isZero() || !isInt<5>(C->getSExtValue())) 7516 SplatOpc = RISCVISD::VMV_S_X_VL; 7517 else 7518 SplatOpc = RISCVISD::VMV_V_X_VL; 7519 } 7520 7521 SDValue NewScalarV = 7522 DAG.getNode(SplatOpc, SDLoc(N), SplatVT, ScalarV.getOperand(0), NewStart, 7523 ScalarV.getOperand(2)); 7524 SDValue NewReduce = 7525 DAG.getNode(Reduce.getOpcode(), SDLoc(Reduce), Reduce.getValueType(), 7526 Reduce.getOperand(0), Reduce.getOperand(1), NewScalarV, 7527 Reduce.getOperand(3), Reduce.getOperand(4)); 7528 return DAG.getNode(Extract.getOpcode(), SDLoc(Extract), 7529 Extract.getValueType(), NewReduce, Extract.getOperand(1)); 7530 } 7531 7532 // Match the following pattern as a GREVI(W) operation 7533 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 7534 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 7535 const RISCVSubtarget &Subtarget) { 7536 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7537 EVT VT = Op.getValueType(); 7538 7539 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 7540 auto LHS = matchGREVIPat(Op.getOperand(0)); 7541 auto RHS = matchGREVIPat(Op.getOperand(1)); 7542 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 7543 SDLoc DL(Op); 7544 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 7545 DAG.getConstant(LHS->ShAmt, DL, VT)); 7546 } 7547 } 7548 return SDValue(); 7549 } 7550 7551 // Matches any the following pattern as a GORCI(W) operation 7552 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 7553 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 7554 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 7555 // Note that with the variant of 3., 7556 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 7557 // the inner pattern will first be matched as GREVI and then the outer 7558 // pattern will be matched to GORC via the first rule above. 7559 // 4. (or (rotl/rotr x, bitwidth/2), x) 7560 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 7561 const RISCVSubtarget &Subtarget) { 7562 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7563 EVT VT = Op.getValueType(); 7564 7565 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 7566 SDLoc DL(Op); 7567 SDValue Op0 = Op.getOperand(0); 7568 SDValue Op1 = Op.getOperand(1); 7569 7570 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 7571 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 7572 isa<ConstantSDNode>(Reverse.getOperand(1)) && 7573 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 7574 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 7575 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 7576 if ((Reverse.getOpcode() == ISD::ROTL || 7577 Reverse.getOpcode() == ISD::ROTR) && 7578 Reverse.getOperand(0) == X && 7579 isa<ConstantSDNode>(Reverse.getOperand(1))) { 7580 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 7581 if (RotAmt == (VT.getSizeInBits() / 2)) 7582 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 7583 DAG.getConstant(RotAmt, DL, VT)); 7584 } 7585 return SDValue(); 7586 }; 7587 7588 // Check for either commutable permutation of (or (GREVI x, shamt), x) 7589 if (SDValue V = MatchOROfReverse(Op0, Op1)) 7590 return V; 7591 if (SDValue V = MatchOROfReverse(Op1, Op0)) 7592 return V; 7593 7594 // OR is commutable so canonicalize its OR operand to the left 7595 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 7596 std::swap(Op0, Op1); 7597 if (Op0.getOpcode() != ISD::OR) 7598 return SDValue(); 7599 SDValue OrOp0 = Op0.getOperand(0); 7600 SDValue OrOp1 = Op0.getOperand(1); 7601 auto LHS = matchGREVIPat(OrOp0); 7602 // OR is commutable so swap the operands and try again: x might have been 7603 // on the left 7604 if (!LHS) { 7605 std::swap(OrOp0, OrOp1); 7606 LHS = matchGREVIPat(OrOp0); 7607 } 7608 auto RHS = matchGREVIPat(Op1); 7609 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 7610 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 7611 DAG.getConstant(LHS->ShAmt, DL, VT)); 7612 } 7613 } 7614 return SDValue(); 7615 } 7616 7617 // Matches any of the following bit-manipulation patterns: 7618 // (and (shl x, 1), (0x22222222 << 1)) 7619 // (and (srl x, 1), 0x22222222) 7620 // (shl (and x, 0x22222222), 1) 7621 // (srl (and x, (0x22222222 << 1)), 1) 7622 // where the shift amount and mask may vary thus: 7623 // [1] = 0x22222222 / 0x44444444 7624 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 7625 // [4] = 0x00F000F0 / 0x0F000F00 7626 // [8] = 0x0000FF00 / 0x00FF0000 7627 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 7628 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 7629 // These are the unshifted masks which we use to match bit-manipulation 7630 // patterns. They may be shifted left in certain circumstances. 7631 static const uint64_t BitmanipMasks[] = { 7632 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 7633 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 7634 7635 return matchRISCVBitmanipPat(Op, BitmanipMasks); 7636 } 7637 7638 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 7639 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 7640 const RISCVSubtarget &Subtarget) { 7641 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7642 EVT VT = Op.getValueType(); 7643 7644 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 7645 return SDValue(); 7646 7647 SDValue Op0 = Op.getOperand(0); 7648 SDValue Op1 = Op.getOperand(1); 7649 7650 // Or is commutable so canonicalize the second OR to the LHS. 7651 if (Op0.getOpcode() != ISD::OR) 7652 std::swap(Op0, Op1); 7653 if (Op0.getOpcode() != ISD::OR) 7654 return SDValue(); 7655 7656 // We found an inner OR, so our operands are the operands of the inner OR 7657 // and the other operand of the outer OR. 7658 SDValue A = Op0.getOperand(0); 7659 SDValue B = Op0.getOperand(1); 7660 SDValue C = Op1; 7661 7662 auto Match1 = matchSHFLPat(A); 7663 auto Match2 = matchSHFLPat(B); 7664 7665 // If neither matched, we failed. 7666 if (!Match1 && !Match2) 7667 return SDValue(); 7668 7669 // We had at least one match. if one failed, try the remaining C operand. 7670 if (!Match1) { 7671 std::swap(A, C); 7672 Match1 = matchSHFLPat(A); 7673 if (!Match1) 7674 return SDValue(); 7675 } else if (!Match2) { 7676 std::swap(B, C); 7677 Match2 = matchSHFLPat(B); 7678 if (!Match2) 7679 return SDValue(); 7680 } 7681 assert(Match1 && Match2); 7682 7683 // Make sure our matches pair up. 7684 if (!Match1->formsPairWith(*Match2)) 7685 return SDValue(); 7686 7687 // All the remains is to make sure C is an AND with the same input, that masks 7688 // out the bits that are being shuffled. 7689 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 7690 C.getOperand(0) != Match1->Op) 7691 return SDValue(); 7692 7693 uint64_t Mask = C.getConstantOperandVal(1); 7694 7695 static const uint64_t BitmanipMasks[] = { 7696 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 7697 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 7698 }; 7699 7700 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7701 unsigned MaskIdx = Log2_32(Match1->ShAmt); 7702 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7703 7704 if (Mask != ExpMask) 7705 return SDValue(); 7706 7707 SDLoc DL(Op); 7708 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 7709 DAG.getConstant(Match1->ShAmt, DL, VT)); 7710 } 7711 7712 // Optimize (add (shl x, c0), (shl y, c1)) -> 7713 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 7714 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 7715 const RISCVSubtarget &Subtarget) { 7716 // Perform this optimization only in the zba extension. 7717 if (!Subtarget.hasStdExtZba()) 7718 return SDValue(); 7719 7720 // Skip for vector types and larger types. 7721 EVT VT = N->getValueType(0); 7722 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7723 return SDValue(); 7724 7725 // The two operand nodes must be SHL and have no other use. 7726 SDValue N0 = N->getOperand(0); 7727 SDValue N1 = N->getOperand(1); 7728 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 7729 !N0->hasOneUse() || !N1->hasOneUse()) 7730 return SDValue(); 7731 7732 // Check c0 and c1. 7733 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7734 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 7735 if (!N0C || !N1C) 7736 return SDValue(); 7737 int64_t C0 = N0C->getSExtValue(); 7738 int64_t C1 = N1C->getSExtValue(); 7739 if (C0 <= 0 || C1 <= 0) 7740 return SDValue(); 7741 7742 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 7743 int64_t Bits = std::min(C0, C1); 7744 int64_t Diff = std::abs(C0 - C1); 7745 if (Diff != 1 && Diff != 2 && Diff != 3) 7746 return SDValue(); 7747 7748 // Build nodes. 7749 SDLoc DL(N); 7750 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 7751 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 7752 SDValue NA0 = 7753 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 7754 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 7755 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 7756 } 7757 7758 // Combine 7759 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32 7760 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32 7761 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64 7762 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64 7763 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64 7764 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64 7765 // The grev patterns represents BSWAP. 7766 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB 7767 // off the grev. 7768 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG, 7769 const RISCVSubtarget &Subtarget) { 7770 bool IsWInstruction = 7771 N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW; 7772 assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL || 7773 IsWInstruction) && 7774 "Unexpected opcode!"); 7775 SDValue Src = N->getOperand(0); 7776 EVT VT = N->getValueType(0); 7777 SDLoc DL(N); 7778 7779 if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV) 7780 return SDValue(); 7781 7782 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7783 !isa<ConstantSDNode>(Src.getOperand(1))) 7784 return SDValue(); 7785 7786 unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits(); 7787 assert(isPowerOf2_32(BitWidth) && "Expected a power of 2"); 7788 7789 // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for 7790 // RORW/ROLW. And the grev should be the encoding for bswap for this width. 7791 unsigned ShAmt1 = N->getConstantOperandVal(1); 7792 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7793 if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8)) 7794 return SDValue(); 7795 7796 Src = Src.getOperand(0); 7797 7798 // Toggle bit the MSB of the shift. 7799 unsigned CombinedShAmt = ShAmt1 ^ ShAmt2; 7800 if (CombinedShAmt == 0) 7801 return Src; 7802 7803 SDValue Res = DAG.getNode( 7804 RISCVISD::GREV, DL, VT, Src, 7805 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7806 if (!IsWInstruction) 7807 return Res; 7808 7809 // Sign extend the result to match the behavior of the rotate. This will be 7810 // selected to GREVIW in isel. 7811 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res, 7812 DAG.getValueType(MVT::i32)); 7813 } 7814 7815 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 7816 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 7817 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 7818 // not undo itself, but they are redundant. 7819 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 7820 bool IsGORC = N->getOpcode() == RISCVISD::GORC; 7821 assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode"); 7822 SDValue Src = N->getOperand(0); 7823 7824 if (Src.getOpcode() != N->getOpcode()) 7825 return SDValue(); 7826 7827 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7828 !isa<ConstantSDNode>(Src.getOperand(1))) 7829 return SDValue(); 7830 7831 unsigned ShAmt1 = N->getConstantOperandVal(1); 7832 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7833 Src = Src.getOperand(0); 7834 7835 unsigned CombinedShAmt; 7836 if (IsGORC) 7837 CombinedShAmt = ShAmt1 | ShAmt2; 7838 else 7839 CombinedShAmt = ShAmt1 ^ ShAmt2; 7840 7841 if (CombinedShAmt == 0) 7842 return Src; 7843 7844 SDLoc DL(N); 7845 return DAG.getNode( 7846 N->getOpcode(), DL, N->getValueType(0), Src, 7847 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7848 } 7849 7850 // Combine a constant select operand into its use: 7851 // 7852 // (and (select cond, -1, c), x) 7853 // -> (select cond, x, (and x, c)) [AllOnes=1] 7854 // (or (select cond, 0, c), x) 7855 // -> (select cond, x, (or x, c)) [AllOnes=0] 7856 // (xor (select cond, 0, c), x) 7857 // -> (select cond, x, (xor x, c)) [AllOnes=0] 7858 // (add (select cond, 0, c), x) 7859 // -> (select cond, x, (add x, c)) [AllOnes=0] 7860 // (sub x, (select cond, 0, c)) 7861 // -> (select cond, x, (sub x, c)) [AllOnes=0] 7862 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 7863 SelectionDAG &DAG, bool AllOnes) { 7864 EVT VT = N->getValueType(0); 7865 7866 // Skip vectors. 7867 if (VT.isVector()) 7868 return SDValue(); 7869 7870 if ((Slct.getOpcode() != ISD::SELECT && 7871 Slct.getOpcode() != RISCVISD::SELECT_CC) || 7872 !Slct.hasOneUse()) 7873 return SDValue(); 7874 7875 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 7876 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 7877 }; 7878 7879 bool SwapSelectOps; 7880 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 7881 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 7882 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 7883 SDValue NonConstantVal; 7884 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 7885 SwapSelectOps = false; 7886 NonConstantVal = FalseVal; 7887 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 7888 SwapSelectOps = true; 7889 NonConstantVal = TrueVal; 7890 } else 7891 return SDValue(); 7892 7893 // Slct is now know to be the desired identity constant when CC is true. 7894 TrueVal = OtherOp; 7895 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 7896 // Unless SwapSelectOps says the condition should be false. 7897 if (SwapSelectOps) 7898 std::swap(TrueVal, FalseVal); 7899 7900 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 7901 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 7902 {Slct.getOperand(0), Slct.getOperand(1), 7903 Slct.getOperand(2), TrueVal, FalseVal}); 7904 7905 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 7906 {Slct.getOperand(0), TrueVal, FalseVal}); 7907 } 7908 7909 // Attempt combineSelectAndUse on each operand of a commutative operator N. 7910 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 7911 bool AllOnes) { 7912 SDValue N0 = N->getOperand(0); 7913 SDValue N1 = N->getOperand(1); 7914 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 7915 return Result; 7916 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 7917 return Result; 7918 return SDValue(); 7919 } 7920 7921 // Transform (add (mul x, c0), c1) -> 7922 // (add (mul (add x, c1/c0), c0), c1%c0). 7923 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 7924 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 7925 // to an infinite loop in DAGCombine if transformed. 7926 // Or transform (add (mul x, c0), c1) -> 7927 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 7928 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 7929 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 7930 // lead to an infinite loop in DAGCombine if transformed. 7931 // Or transform (add (mul x, c0), c1) -> 7932 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 7933 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 7934 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 7935 // lead to an infinite loop in DAGCombine if transformed. 7936 // Or transform (add (mul x, c0), c1) -> 7937 // (mul (add x, c1/c0), c0). 7938 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 7939 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 7940 const RISCVSubtarget &Subtarget) { 7941 // Skip for vector types and larger types. 7942 EVT VT = N->getValueType(0); 7943 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7944 return SDValue(); 7945 // The first operand node must be a MUL and has no other use. 7946 SDValue N0 = N->getOperand(0); 7947 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 7948 return SDValue(); 7949 // Check if c0 and c1 match above conditions. 7950 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7951 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7952 if (!N0C || !N1C) 7953 return SDValue(); 7954 // If N0C has multiple uses it's possible one of the cases in 7955 // DAGCombiner::isMulAddWithConstProfitable will be true, which would result 7956 // in an infinite loop. 7957 if (!N0C->hasOneUse()) 7958 return SDValue(); 7959 int64_t C0 = N0C->getSExtValue(); 7960 int64_t C1 = N1C->getSExtValue(); 7961 int64_t CA, CB; 7962 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 7963 return SDValue(); 7964 // Search for proper CA (non-zero) and CB that both are simm12. 7965 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 7966 !isInt<12>(C0 * (C1 / C0))) { 7967 CA = C1 / C0; 7968 CB = C1 % C0; 7969 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 7970 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 7971 CA = C1 / C0 + 1; 7972 CB = C1 % C0 - C0; 7973 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 7974 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 7975 CA = C1 / C0 - 1; 7976 CB = C1 % C0 + C0; 7977 } else 7978 return SDValue(); 7979 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 7980 SDLoc DL(N); 7981 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 7982 DAG.getConstant(CA, DL, VT)); 7983 SDValue New1 = 7984 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 7985 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 7986 } 7987 7988 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 7989 const RISCVSubtarget &Subtarget) { 7990 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 7991 return V; 7992 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 7993 return V; 7994 if (SDValue V = combineBinOpToReduce(N, DAG)) 7995 return V; 7996 // fold (add (select lhs, rhs, cc, 0, y), x) -> 7997 // (select lhs, rhs, cc, x, (add x, y)) 7998 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7999 } 8000 8001 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 8002 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 8003 // (select lhs, rhs, cc, x, (sub x, y)) 8004 SDValue N0 = N->getOperand(0); 8005 SDValue N1 = N->getOperand(1); 8006 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 8007 } 8008 8009 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG, 8010 const RISCVSubtarget &Subtarget) { 8011 SDValue N0 = N->getOperand(0); 8012 // Pre-promote (i32 (and (srl X, Y), 1)) on RV64 with Zbs without zero 8013 // extending X. This is safe since we only need the LSB after the shift and 8014 // shift amounts larger than 31 would produce poison. If we wait until 8015 // type legalization, we'll create RISCVISD::SRLW and we can't recover it 8016 // to use a BEXT instruction. 8017 if (Subtarget.is64Bit() && Subtarget.hasStdExtZbs() && 8018 N->getValueType(0) == MVT::i32 && isOneConstant(N->getOperand(1)) && 8019 N0.getOpcode() == ISD::SRL && !isa<ConstantSDNode>(N0.getOperand(1)) && 8020 N0.hasOneUse()) { 8021 SDLoc DL(N); 8022 SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0)); 8023 SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1)); 8024 SDValue Srl = DAG.getNode(ISD::SRL, DL, MVT::i64, Op0, Op1); 8025 SDValue And = DAG.getNode(ISD::AND, DL, MVT::i64, Srl, 8026 DAG.getConstant(1, DL, MVT::i64)); 8027 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, And); 8028 } 8029 8030 if (SDValue V = combineBinOpToReduce(N, DAG)) 8031 return V; 8032 8033 // fold (and (select lhs, rhs, cc, -1, y), x) -> 8034 // (select lhs, rhs, cc, x, (and x, y)) 8035 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 8036 } 8037 8038 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 8039 const RISCVSubtarget &Subtarget) { 8040 if (Subtarget.hasStdExtZbp()) { 8041 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 8042 return GREV; 8043 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 8044 return GORC; 8045 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 8046 return SHFL; 8047 } 8048 8049 if (SDValue V = combineBinOpToReduce(N, DAG)) 8050 return V; 8051 // fold (or (select cond, 0, y), x) -> 8052 // (select cond, x, (or x, y)) 8053 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 8054 } 8055 8056 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 8057 SDValue N0 = N->getOperand(0); 8058 SDValue N1 = N->getOperand(1); 8059 8060 // fold (xor (sllw 1, x), -1) -> (rolw ~1, x) 8061 // NOTE: Assumes ROL being legal means ROLW is legal. 8062 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8063 if (N0.getOpcode() == RISCVISD::SLLW && 8064 isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0)) && 8065 TLI.isOperationLegal(ISD::ROTL, MVT::i64)) { 8066 SDLoc DL(N); 8067 return DAG.getNode(RISCVISD::ROLW, DL, MVT::i64, 8068 DAG.getConstant(~1, DL, MVT::i64), N0.getOperand(1)); 8069 } 8070 8071 if (SDValue V = combineBinOpToReduce(N, DAG)) 8072 return V; 8073 // fold (xor (select cond, 0, y), x) -> 8074 // (select cond, x, (xor x, y)) 8075 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 8076 } 8077 8078 static SDValue 8079 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG, 8080 const RISCVSubtarget &Subtarget) { 8081 SDValue Src = N->getOperand(0); 8082 EVT VT = N->getValueType(0); 8083 8084 // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X) 8085 if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH && 8086 cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16)) 8087 return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT, 8088 Src.getOperand(0)); 8089 8090 // Fold (i64 (sext_inreg (abs X), i32)) -> 8091 // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits. 8092 // The (sext_inreg (neg X), i32) will be selected to negw by isel. This 8093 // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user 8094 // of the (i32 (abs X)) is a sext or setcc or something else that causes type 8095 // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have 8096 // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg 8097 // may get combined into an earlier operation so we need to use 8098 // ComputeNumSignBits. 8099 // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for 8100 // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so 8101 // we can't assume that X has 33 sign bits. We must check. 8102 if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() && 8103 Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 && 8104 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 && 8105 DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) { 8106 SDLoc DL(N); 8107 SDValue Freeze = DAG.getFreeze(Src.getOperand(0)); 8108 SDValue Neg = 8109 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze); 8110 Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg, 8111 DAG.getValueType(MVT::i32)); 8112 return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg); 8113 } 8114 8115 return SDValue(); 8116 } 8117 8118 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to 8119 // vwadd(u).vv/vx or vwsub(u).vv/vx. 8120 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG, 8121 bool Commute = false) { 8122 assert((N->getOpcode() == RISCVISD::ADD_VL || 8123 N->getOpcode() == RISCVISD::SUB_VL) && 8124 "Unexpected opcode"); 8125 bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL; 8126 SDValue Op0 = N->getOperand(0); 8127 SDValue Op1 = N->getOperand(1); 8128 if (Commute) 8129 std::swap(Op0, Op1); 8130 8131 MVT VT = N->getSimpleValueType(0); 8132 8133 // Determine the narrow size for a widening add/sub. 8134 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 8135 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 8136 VT.getVectorElementCount()); 8137 8138 SDValue Mask = N->getOperand(2); 8139 SDValue VL = N->getOperand(3); 8140 8141 SDLoc DL(N); 8142 8143 // If the RHS is a sext or zext, we can form a widening op. 8144 if ((Op1.getOpcode() == RISCVISD::VZEXT_VL || 8145 Op1.getOpcode() == RISCVISD::VSEXT_VL) && 8146 Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) { 8147 unsigned ExtOpc = Op1.getOpcode(); 8148 Op1 = Op1.getOperand(0); 8149 // Re-introduce narrower extends if needed. 8150 if (Op1.getValueType() != NarrowVT) 8151 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 8152 8153 unsigned WOpc; 8154 if (ExtOpc == RISCVISD::VSEXT_VL) 8155 WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL; 8156 else 8157 WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL; 8158 8159 return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL); 8160 } 8161 8162 // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar 8163 // sext/zext? 8164 8165 return SDValue(); 8166 } 8167 8168 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or 8169 // vwsub(u).vv/vx. 8170 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) { 8171 SDValue Op0 = N->getOperand(0); 8172 SDValue Op1 = N->getOperand(1); 8173 SDValue Mask = N->getOperand(2); 8174 SDValue VL = N->getOperand(3); 8175 8176 MVT VT = N->getSimpleValueType(0); 8177 MVT NarrowVT = Op1.getSimpleValueType(); 8178 unsigned NarrowSize = NarrowVT.getScalarSizeInBits(); 8179 8180 unsigned VOpc; 8181 switch (N->getOpcode()) { 8182 default: llvm_unreachable("Unexpected opcode"); 8183 case RISCVISD::VWADD_W_VL: VOpc = RISCVISD::VWADD_VL; break; 8184 case RISCVISD::VWSUB_W_VL: VOpc = RISCVISD::VWSUB_VL; break; 8185 case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break; 8186 case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break; 8187 } 8188 8189 bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL || 8190 N->getOpcode() == RISCVISD::VWSUB_W_VL; 8191 8192 SDLoc DL(N); 8193 8194 // If the LHS is a sext or zext, we can narrow this op to the same size as 8195 // the RHS. 8196 if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) || 8197 (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) && 8198 Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) { 8199 unsigned ExtOpc = Op0.getOpcode(); 8200 Op0 = Op0.getOperand(0); 8201 // Re-introduce narrower extends if needed. 8202 if (Op0.getValueType() != NarrowVT) 8203 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 8204 return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL); 8205 } 8206 8207 bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL || 8208 N->getOpcode() == RISCVISD::VWADDU_W_VL; 8209 8210 // Look for splats on the left hand side of a vwadd(u).wv. We might be able 8211 // to commute and use a vwadd(u).vx instead. 8212 if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL && 8213 Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) { 8214 Op0 = Op0.getOperand(1); 8215 8216 // See if have enough sign bits or zero bits in the scalar to use a 8217 // widening add/sub by splatting to smaller element size. 8218 unsigned EltBits = VT.getScalarSizeInBits(); 8219 unsigned ScalarBits = Op0.getValueSizeInBits(); 8220 // Make sure we're getting all element bits from the scalar register. 8221 // FIXME: Support implicit sign extension of vmv.v.x? 8222 if (ScalarBits < EltBits) 8223 return SDValue(); 8224 8225 if (IsSigned) { 8226 if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize)) 8227 return SDValue(); 8228 } else { 8229 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 8230 if (!DAG.MaskedValueIsZero(Op0, Mask)) 8231 return SDValue(); 8232 } 8233 8234 Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, 8235 DAG.getUNDEF(NarrowVT), Op0, VL); 8236 return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL); 8237 } 8238 8239 return SDValue(); 8240 } 8241 8242 // Try to form VWMUL, VWMULU or VWMULSU. 8243 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op. 8244 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG, 8245 bool Commute) { 8246 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 8247 SDValue Op0 = N->getOperand(0); 8248 SDValue Op1 = N->getOperand(1); 8249 if (Commute) 8250 std::swap(Op0, Op1); 8251 8252 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 8253 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 8254 bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL; 8255 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 8256 return SDValue(); 8257 8258 SDValue Mask = N->getOperand(2); 8259 SDValue VL = N->getOperand(3); 8260 8261 // Make sure the mask and VL match. 8262 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 8263 return SDValue(); 8264 8265 MVT VT = N->getSimpleValueType(0); 8266 8267 // Determine the narrow size for a widening multiply. 8268 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 8269 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 8270 VT.getVectorElementCount()); 8271 8272 SDLoc DL(N); 8273 8274 // See if the other operand is the same opcode. 8275 if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) { 8276 if (!Op1.hasOneUse()) 8277 return SDValue(); 8278 8279 // Make sure the mask and VL match. 8280 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 8281 return SDValue(); 8282 8283 Op1 = Op1.getOperand(0); 8284 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 8285 // The operand is a splat of a scalar. 8286 8287 // The pasthru must be undef for tail agnostic 8288 if (!Op1.getOperand(0).isUndef()) 8289 return SDValue(); 8290 // The VL must be the same. 8291 if (Op1.getOperand(2) != VL) 8292 return SDValue(); 8293 8294 // Get the scalar value. 8295 Op1 = Op1.getOperand(1); 8296 8297 // See if have enough sign bits or zero bits in the scalar to use a 8298 // widening multiply by splatting to smaller element size. 8299 unsigned EltBits = VT.getScalarSizeInBits(); 8300 unsigned ScalarBits = Op1.getValueSizeInBits(); 8301 // Make sure we're getting all element bits from the scalar register. 8302 // FIXME: Support implicit sign extension of vmv.v.x? 8303 if (ScalarBits < EltBits) 8304 return SDValue(); 8305 8306 // If the LHS is a sign extend, try to use vwmul. 8307 if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) { 8308 // Can use vwmul. 8309 } else { 8310 // Otherwise try to use vwmulu or vwmulsu. 8311 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 8312 if (DAG.MaskedValueIsZero(Op1, Mask)) 8313 IsVWMULSU = IsSignExt; 8314 else 8315 return SDValue(); 8316 } 8317 8318 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, 8319 DAG.getUNDEF(NarrowVT), Op1, VL); 8320 } else 8321 return SDValue(); 8322 8323 Op0 = Op0.getOperand(0); 8324 8325 // Re-introduce narrower extends if needed. 8326 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 8327 if (Op0.getValueType() != NarrowVT) 8328 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 8329 // vwmulsu requires second operand to be zero extended. 8330 ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc; 8331 if (Op1.getValueType() != NarrowVT) 8332 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 8333 8334 unsigned WMulOpc = RISCVISD::VWMULSU_VL; 8335 if (!IsVWMULSU) 8336 WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 8337 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 8338 } 8339 8340 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) { 8341 switch (Op.getOpcode()) { 8342 case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE; 8343 case ISD::FTRUNC: return RISCVFPRndMode::RTZ; 8344 case ISD::FFLOOR: return RISCVFPRndMode::RDN; 8345 case ISD::FCEIL: return RISCVFPRndMode::RUP; 8346 case ISD::FROUND: return RISCVFPRndMode::RMM; 8347 } 8348 8349 return RISCVFPRndMode::Invalid; 8350 } 8351 8352 // Fold 8353 // (fp_to_int (froundeven X)) -> fcvt X, rne 8354 // (fp_to_int (ftrunc X)) -> fcvt X, rtz 8355 // (fp_to_int (ffloor X)) -> fcvt X, rdn 8356 // (fp_to_int (fceil X)) -> fcvt X, rup 8357 // (fp_to_int (fround X)) -> fcvt X, rmm 8358 static SDValue performFP_TO_INTCombine(SDNode *N, 8359 TargetLowering::DAGCombinerInfo &DCI, 8360 const RISCVSubtarget &Subtarget) { 8361 SelectionDAG &DAG = DCI.DAG; 8362 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8363 MVT XLenVT = Subtarget.getXLenVT(); 8364 8365 // Only handle XLen or i32 types. Other types narrower than XLen will 8366 // eventually be legalized to XLenVT. 8367 EVT VT = N->getValueType(0); 8368 if (VT != MVT::i32 && VT != XLenVT) 8369 return SDValue(); 8370 8371 SDValue Src = N->getOperand(0); 8372 8373 // Ensure the FP type is also legal. 8374 if (!TLI.isTypeLegal(Src.getValueType())) 8375 return SDValue(); 8376 8377 // Don't do this for f16 with Zfhmin and not Zfh. 8378 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 8379 return SDValue(); 8380 8381 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 8382 if (FRM == RISCVFPRndMode::Invalid) 8383 return SDValue(); 8384 8385 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; 8386 8387 unsigned Opc; 8388 if (VT == XLenVT) 8389 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 8390 else 8391 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 8392 8393 SDLoc DL(N); 8394 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0), 8395 DAG.getTargetConstant(FRM, DL, XLenVT)); 8396 return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt); 8397 } 8398 8399 // Fold 8400 // (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne)) 8401 // (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz)) 8402 // (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn)) 8403 // (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup)) 8404 // (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm)) 8405 static SDValue performFP_TO_INT_SATCombine(SDNode *N, 8406 TargetLowering::DAGCombinerInfo &DCI, 8407 const RISCVSubtarget &Subtarget) { 8408 SelectionDAG &DAG = DCI.DAG; 8409 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8410 MVT XLenVT = Subtarget.getXLenVT(); 8411 8412 // Only handle XLen types. Other types narrower than XLen will eventually be 8413 // legalized to XLenVT. 8414 EVT DstVT = N->getValueType(0); 8415 if (DstVT != XLenVT) 8416 return SDValue(); 8417 8418 SDValue Src = N->getOperand(0); 8419 8420 // Ensure the FP type is also legal. 8421 if (!TLI.isTypeLegal(Src.getValueType())) 8422 return SDValue(); 8423 8424 // Don't do this for f16 with Zfhmin and not Zfh. 8425 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 8426 return SDValue(); 8427 8428 EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 8429 8430 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 8431 if (FRM == RISCVFPRndMode::Invalid) 8432 return SDValue(); 8433 8434 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT; 8435 8436 unsigned Opc; 8437 if (SatVT == DstVT) 8438 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 8439 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 8440 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 8441 else 8442 return SDValue(); 8443 // FIXME: Support other SatVTs by clamping before or after the conversion. 8444 8445 Src = Src.getOperand(0); 8446 8447 SDLoc DL(N); 8448 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src, 8449 DAG.getTargetConstant(FRM, DL, XLenVT)); 8450 8451 // RISCV FP-to-int conversions saturate to the destination register size, but 8452 // don't produce 0 for nan. 8453 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 8454 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 8455 } 8456 8457 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is 8458 // smaller than XLenVT. 8459 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG, 8460 const RISCVSubtarget &Subtarget) { 8461 assert(Subtarget.hasStdExtZbkb() && "Unexpected extension"); 8462 8463 SDValue Src = N->getOperand(0); 8464 if (Src.getOpcode() != ISD::BSWAP) 8465 return SDValue(); 8466 8467 EVT VT = N->getValueType(0); 8468 if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() || 8469 !isPowerOf2_32(VT.getSizeInBits())) 8470 return SDValue(); 8471 8472 SDLoc DL(N); 8473 return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0), 8474 DAG.getConstant(7, DL, VT)); 8475 } 8476 8477 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 8478 DAGCombinerInfo &DCI) const { 8479 SelectionDAG &DAG = DCI.DAG; 8480 8481 // Helper to call SimplifyDemandedBits on an operand of N where only some low 8482 // bits are demanded. N will be added to the Worklist if it was not deleted. 8483 // Caller should return SDValue(N, 0) if this returns true. 8484 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 8485 SDValue Op = N->getOperand(OpNo); 8486 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 8487 if (!SimplifyDemandedBits(Op, Mask, DCI)) 8488 return false; 8489 8490 if (N->getOpcode() != ISD::DELETED_NODE) 8491 DCI.AddToWorklist(N); 8492 return true; 8493 }; 8494 8495 switch (N->getOpcode()) { 8496 default: 8497 break; 8498 case RISCVISD::SplitF64: { 8499 SDValue Op0 = N->getOperand(0); 8500 // If the input to SplitF64 is just BuildPairF64 then the operation is 8501 // redundant. Instead, use BuildPairF64's operands directly. 8502 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 8503 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 8504 8505 if (Op0->isUndef()) { 8506 SDValue Lo = DAG.getUNDEF(MVT::i32); 8507 SDValue Hi = DAG.getUNDEF(MVT::i32); 8508 return DCI.CombineTo(N, Lo, Hi); 8509 } 8510 8511 SDLoc DL(N); 8512 8513 // It's cheaper to materialise two 32-bit integers than to load a double 8514 // from the constant pool and transfer it to integer registers through the 8515 // stack. 8516 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 8517 APInt V = C->getValueAPF().bitcastToAPInt(); 8518 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 8519 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 8520 return DCI.CombineTo(N, Lo, Hi); 8521 } 8522 8523 // This is a target-specific version of a DAGCombine performed in 8524 // DAGCombiner::visitBITCAST. It performs the equivalent of: 8525 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 8526 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 8527 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 8528 !Op0.getNode()->hasOneUse()) 8529 break; 8530 SDValue NewSplitF64 = 8531 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 8532 Op0.getOperand(0)); 8533 SDValue Lo = NewSplitF64.getValue(0); 8534 SDValue Hi = NewSplitF64.getValue(1); 8535 APInt SignBit = APInt::getSignMask(32); 8536 if (Op0.getOpcode() == ISD::FNEG) { 8537 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 8538 DAG.getConstant(SignBit, DL, MVT::i32)); 8539 return DCI.CombineTo(N, Lo, NewHi); 8540 } 8541 assert(Op0.getOpcode() == ISD::FABS); 8542 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 8543 DAG.getConstant(~SignBit, DL, MVT::i32)); 8544 return DCI.CombineTo(N, Lo, NewHi); 8545 } 8546 case RISCVISD::SLLW: 8547 case RISCVISD::SRAW: 8548 case RISCVISD::SRLW: { 8549 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8550 if (SimplifyDemandedLowBitsHelper(0, 32) || 8551 SimplifyDemandedLowBitsHelper(1, 5)) 8552 return SDValue(N, 0); 8553 8554 break; 8555 } 8556 case ISD::ROTR: 8557 case ISD::ROTL: 8558 case RISCVISD::RORW: 8559 case RISCVISD::ROLW: { 8560 if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) { 8561 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8562 if (SimplifyDemandedLowBitsHelper(0, 32) || 8563 SimplifyDemandedLowBitsHelper(1, 5)) 8564 return SDValue(N, 0); 8565 } 8566 8567 return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget); 8568 } 8569 case RISCVISD::CLZW: 8570 case RISCVISD::CTZW: { 8571 // Only the lower 32 bits of the first operand are read 8572 if (SimplifyDemandedLowBitsHelper(0, 32)) 8573 return SDValue(N, 0); 8574 break; 8575 } 8576 case RISCVISD::GREV: 8577 case RISCVISD::GORC: { 8578 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 8579 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 8580 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8581 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 8582 return SDValue(N, 0); 8583 8584 return combineGREVI_GORCI(N, DAG); 8585 } 8586 case RISCVISD::GREVW: 8587 case RISCVISD::GORCW: { 8588 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8589 if (SimplifyDemandedLowBitsHelper(0, 32) || 8590 SimplifyDemandedLowBitsHelper(1, 5)) 8591 return SDValue(N, 0); 8592 8593 break; 8594 } 8595 case RISCVISD::SHFL: 8596 case RISCVISD::UNSHFL: { 8597 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 8598 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 8599 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8600 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 8601 return SDValue(N, 0); 8602 8603 break; 8604 } 8605 case RISCVISD::SHFLW: 8606 case RISCVISD::UNSHFLW: { 8607 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 8608 if (SimplifyDemandedLowBitsHelper(0, 32) || 8609 SimplifyDemandedLowBitsHelper(1, 4)) 8610 return SDValue(N, 0); 8611 8612 break; 8613 } 8614 case RISCVISD::BCOMPRESSW: 8615 case RISCVISD::BDECOMPRESSW: { 8616 // Only the lower 32 bits of LHS and RHS are read. 8617 if (SimplifyDemandedLowBitsHelper(0, 32) || 8618 SimplifyDemandedLowBitsHelper(1, 32)) 8619 return SDValue(N, 0); 8620 8621 break; 8622 } 8623 case RISCVISD::FSR: 8624 case RISCVISD::FSL: 8625 case RISCVISD::FSRW: 8626 case RISCVISD::FSLW: { 8627 bool IsWInstruction = 8628 N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW; 8629 unsigned BitWidth = 8630 IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits(); 8631 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8632 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 8633 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1)) 8634 return SDValue(N, 0); 8635 8636 break; 8637 } 8638 case RISCVISD::FMV_X_ANYEXTH: 8639 case RISCVISD::FMV_X_ANYEXTW_RV64: { 8640 SDLoc DL(N); 8641 SDValue Op0 = N->getOperand(0); 8642 MVT VT = N->getSimpleValueType(0); 8643 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 8644 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 8645 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 8646 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 8647 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 8648 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 8649 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 8650 assert(Op0.getOperand(0).getValueType() == VT && 8651 "Unexpected value type!"); 8652 return Op0.getOperand(0); 8653 } 8654 8655 // This is a target-specific version of a DAGCombine performed in 8656 // DAGCombiner::visitBITCAST. It performs the equivalent of: 8657 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 8658 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 8659 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 8660 !Op0.getNode()->hasOneUse()) 8661 break; 8662 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 8663 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 8664 APInt SignBit = APInt::getSignMask(FPBits).sext(VT.getSizeInBits()); 8665 if (Op0.getOpcode() == ISD::FNEG) 8666 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 8667 DAG.getConstant(SignBit, DL, VT)); 8668 8669 assert(Op0.getOpcode() == ISD::FABS); 8670 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 8671 DAG.getConstant(~SignBit, DL, VT)); 8672 } 8673 case ISD::ADD: 8674 return performADDCombine(N, DAG, Subtarget); 8675 case ISD::SUB: 8676 return performSUBCombine(N, DAG); 8677 case ISD::AND: 8678 return performANDCombine(N, DAG, Subtarget); 8679 case ISD::OR: 8680 return performORCombine(N, DAG, Subtarget); 8681 case ISD::XOR: 8682 return performXORCombine(N, DAG); 8683 case ISD::FADD: 8684 case ISD::UMAX: 8685 case ISD::UMIN: 8686 case ISD::SMAX: 8687 case ISD::SMIN: 8688 case ISD::FMAXNUM: 8689 case ISD::FMINNUM: 8690 return combineBinOpToReduce(N, DAG); 8691 case ISD::SIGN_EXTEND_INREG: 8692 return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget); 8693 case ISD::ZERO_EXTEND: 8694 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 8695 // type legalization. This is safe because fp_to_uint produces poison if 8696 // it overflows. 8697 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { 8698 SDValue Src = N->getOperand(0); 8699 if (Src.getOpcode() == ISD::FP_TO_UINT && 8700 isTypeLegal(Src.getOperand(0).getValueType())) 8701 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 8702 Src.getOperand(0)); 8703 if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && 8704 isTypeLegal(Src.getOperand(1).getValueType())) { 8705 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 8706 SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, 8707 Src.getOperand(0), Src.getOperand(1)); 8708 DCI.CombineTo(N, Res); 8709 DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); 8710 DCI.recursivelyDeleteUnusedNodes(Src.getNode()); 8711 return SDValue(N, 0); // Return N so it doesn't get rechecked. 8712 } 8713 } 8714 return SDValue(); 8715 case RISCVISD::SELECT_CC: { 8716 // Transform 8717 SDValue LHS = N->getOperand(0); 8718 SDValue RHS = N->getOperand(1); 8719 SDValue TrueV = N->getOperand(3); 8720 SDValue FalseV = N->getOperand(4); 8721 8722 // If the True and False values are the same, we don't need a select_cc. 8723 if (TrueV == FalseV) 8724 return TrueV; 8725 8726 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 8727 if (!ISD::isIntEqualitySetCC(CCVal)) 8728 break; 8729 8730 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 8731 // (select_cc X, Y, lt, trueV, falseV) 8732 // Sometimes the setcc is introduced after select_cc has been formed. 8733 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 8734 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 8735 // If we're looking for eq 0 instead of ne 0, we need to invert the 8736 // condition. 8737 bool Invert = CCVal == ISD::SETEQ; 8738 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8739 if (Invert) 8740 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8741 8742 SDLoc DL(N); 8743 RHS = LHS.getOperand(1); 8744 LHS = LHS.getOperand(0); 8745 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 8746 8747 SDValue TargetCC = DAG.getCondCode(CCVal); 8748 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 8749 {LHS, RHS, TargetCC, TrueV, FalseV}); 8750 } 8751 8752 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 8753 // (select_cc X, Y, eq/ne, trueV, falseV) 8754 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 8755 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 8756 {LHS.getOperand(0), LHS.getOperand(1), 8757 N->getOperand(2), TrueV, FalseV}); 8758 // (select_cc X, 1, setne, trueV, falseV) -> 8759 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 8760 // This can occur when legalizing some floating point comparisons. 8761 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 8762 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 8763 SDLoc DL(N); 8764 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8765 SDValue TargetCC = DAG.getCondCode(CCVal); 8766 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 8767 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 8768 {LHS, RHS, TargetCC, TrueV, FalseV}); 8769 } 8770 8771 break; 8772 } 8773 case RISCVISD::BR_CC: { 8774 SDValue LHS = N->getOperand(1); 8775 SDValue RHS = N->getOperand(2); 8776 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 8777 if (!ISD::isIntEqualitySetCC(CCVal)) 8778 break; 8779 8780 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 8781 // (br_cc X, Y, lt, dest) 8782 // Sometimes the setcc is introduced after br_cc has been formed. 8783 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 8784 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 8785 // If we're looking for eq 0 instead of ne 0, we need to invert the 8786 // condition. 8787 bool Invert = CCVal == ISD::SETEQ; 8788 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8789 if (Invert) 8790 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8791 8792 SDLoc DL(N); 8793 RHS = LHS.getOperand(1); 8794 LHS = LHS.getOperand(0); 8795 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 8796 8797 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 8798 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 8799 N->getOperand(4)); 8800 } 8801 8802 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 8803 // (br_cc X, Y, eq/ne, trueV, falseV) 8804 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 8805 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 8806 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 8807 N->getOperand(3), N->getOperand(4)); 8808 8809 // (br_cc X, 1, setne, br_cc) -> 8810 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 8811 // This can occur when legalizing some floating point comparisons. 8812 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 8813 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 8814 SDLoc DL(N); 8815 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8816 SDValue TargetCC = DAG.getCondCode(CCVal); 8817 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 8818 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 8819 N->getOperand(0), LHS, RHS, TargetCC, 8820 N->getOperand(4)); 8821 } 8822 break; 8823 } 8824 case ISD::BITREVERSE: 8825 return performBITREVERSECombine(N, DAG, Subtarget); 8826 case ISD::FP_TO_SINT: 8827 case ISD::FP_TO_UINT: 8828 return performFP_TO_INTCombine(N, DCI, Subtarget); 8829 case ISD::FP_TO_SINT_SAT: 8830 case ISD::FP_TO_UINT_SAT: 8831 return performFP_TO_INT_SATCombine(N, DCI, Subtarget); 8832 case ISD::FCOPYSIGN: { 8833 EVT VT = N->getValueType(0); 8834 if (!VT.isVector()) 8835 break; 8836 // There is a form of VFSGNJ which injects the negated sign of its second 8837 // operand. Try and bubble any FNEG up after the extend/round to produce 8838 // this optimized pattern. Avoid modifying cases where FP_ROUND and 8839 // TRUNC=1. 8840 SDValue In2 = N->getOperand(1); 8841 // Avoid cases where the extend/round has multiple uses, as duplicating 8842 // those is typically more expensive than removing a fneg. 8843 if (!In2.hasOneUse()) 8844 break; 8845 if (In2.getOpcode() != ISD::FP_EXTEND && 8846 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 8847 break; 8848 In2 = In2.getOperand(0); 8849 if (In2.getOpcode() != ISD::FNEG) 8850 break; 8851 SDLoc DL(N); 8852 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 8853 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 8854 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 8855 } 8856 case ISD::MGATHER: 8857 case ISD::MSCATTER: 8858 case ISD::VP_GATHER: 8859 case ISD::VP_SCATTER: { 8860 if (!DCI.isBeforeLegalize()) 8861 break; 8862 SDValue Index, ScaleOp; 8863 bool IsIndexScaled = false; 8864 bool IsIndexSigned = false; 8865 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 8866 Index = VPGSN->getIndex(); 8867 ScaleOp = VPGSN->getScale(); 8868 IsIndexScaled = VPGSN->isIndexScaled(); 8869 IsIndexSigned = VPGSN->isIndexSigned(); 8870 } else { 8871 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 8872 Index = MGSN->getIndex(); 8873 ScaleOp = MGSN->getScale(); 8874 IsIndexScaled = MGSN->isIndexScaled(); 8875 IsIndexSigned = MGSN->isIndexSigned(); 8876 } 8877 EVT IndexVT = Index.getValueType(); 8878 MVT XLenVT = Subtarget.getXLenVT(); 8879 // RISCV indexed loads only support the "unsigned unscaled" addressing 8880 // mode, so anything else must be manually legalized. 8881 bool NeedsIdxLegalization = 8882 IsIndexScaled || 8883 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 8884 if (!NeedsIdxLegalization) 8885 break; 8886 8887 SDLoc DL(N); 8888 8889 // Any index legalization should first promote to XLenVT, so we don't lose 8890 // bits when scaling. This may create an illegal index type so we let 8891 // LLVM's legalization take care of the splitting. 8892 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 8893 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 8894 IndexVT = IndexVT.changeVectorElementType(XLenVT); 8895 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 8896 DL, IndexVT, Index); 8897 } 8898 8899 if (IsIndexScaled) { 8900 // Manually scale the indices. 8901 // TODO: Sanitize the scale operand here? 8902 // TODO: For VP nodes, should we use VP_SHL here? 8903 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 8904 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 8905 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 8906 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 8907 ScaleOp = DAG.getTargetConstant(1, DL, ScaleOp.getValueType()); 8908 } 8909 8910 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_SCALED; 8911 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 8912 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 8913 {VPGN->getChain(), VPGN->getBasePtr(), Index, 8914 ScaleOp, VPGN->getMask(), 8915 VPGN->getVectorLength()}, 8916 VPGN->getMemOperand(), NewIndexTy); 8917 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 8918 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 8919 {VPSN->getChain(), VPSN->getValue(), 8920 VPSN->getBasePtr(), Index, ScaleOp, 8921 VPSN->getMask(), VPSN->getVectorLength()}, 8922 VPSN->getMemOperand(), NewIndexTy); 8923 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 8924 return DAG.getMaskedGather( 8925 N->getVTList(), MGN->getMemoryVT(), DL, 8926 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 8927 MGN->getBasePtr(), Index, ScaleOp}, 8928 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 8929 const auto *MSN = cast<MaskedScatterSDNode>(N); 8930 return DAG.getMaskedScatter( 8931 N->getVTList(), MSN->getMemoryVT(), DL, 8932 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 8933 Index, ScaleOp}, 8934 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 8935 } 8936 case RISCVISD::SRA_VL: 8937 case RISCVISD::SRL_VL: 8938 case RISCVISD::SHL_VL: { 8939 SDValue ShAmt = N->getOperand(1); 8940 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8941 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8942 SDLoc DL(N); 8943 SDValue VL = N->getOperand(3); 8944 EVT VT = N->getValueType(0); 8945 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 8946 ShAmt.getOperand(1), VL); 8947 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 8948 N->getOperand(2), N->getOperand(3)); 8949 } 8950 break; 8951 } 8952 case ISD::SRA: 8953 case ISD::SRL: 8954 case ISD::SHL: { 8955 SDValue ShAmt = N->getOperand(1); 8956 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8957 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8958 SDLoc DL(N); 8959 EVT VT = N->getValueType(0); 8960 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 8961 ShAmt.getOperand(1), 8962 DAG.getRegister(RISCV::X0, Subtarget.getXLenVT())); 8963 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 8964 } 8965 break; 8966 } 8967 case RISCVISD::ADD_VL: 8968 if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false)) 8969 return V; 8970 return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true); 8971 case RISCVISD::SUB_VL: 8972 return combineADDSUB_VLToVWADDSUB_VL(N, DAG); 8973 case RISCVISD::VWADD_W_VL: 8974 case RISCVISD::VWADDU_W_VL: 8975 case RISCVISD::VWSUB_W_VL: 8976 case RISCVISD::VWSUBU_W_VL: 8977 return combineVWADD_W_VL_VWSUB_W_VL(N, DAG); 8978 case RISCVISD::MUL_VL: 8979 if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false)) 8980 return V; 8981 // Mul is commutative. 8982 return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true); 8983 case ISD::STORE: { 8984 auto *Store = cast<StoreSDNode>(N); 8985 SDValue Val = Store->getValue(); 8986 // Combine store of vmv.x.s to vse with VL of 1. 8987 // FIXME: Support FP. 8988 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 8989 SDValue Src = Val.getOperand(0); 8990 EVT VecVT = Src.getValueType(); 8991 EVT MemVT = Store->getMemoryVT(); 8992 // The memory VT and the element type must match. 8993 if (VecVT.getVectorElementType() == MemVT) { 8994 SDLoc DL(N); 8995 MVT MaskVT = getMaskTypeFor(VecVT); 8996 return DAG.getStoreVP( 8997 Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(), 8998 DAG.getConstant(1, DL, MaskVT), 8999 DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT, 9000 Store->getMemOperand(), Store->getAddressingMode(), 9001 Store->isTruncatingStore(), /*IsCompress*/ false); 9002 } 9003 } 9004 9005 break; 9006 } 9007 case ISD::SPLAT_VECTOR: { 9008 EVT VT = N->getValueType(0); 9009 // Only perform this combine on legal MVT types. 9010 if (!isTypeLegal(VT)) 9011 break; 9012 if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N, 9013 DAG, Subtarget)) 9014 return Gather; 9015 break; 9016 } 9017 case RISCVISD::VMV_V_X_VL: { 9018 // Tail agnostic VMV.V.X only demands the vector element bitwidth from the 9019 // scalar input. 9020 unsigned ScalarSize = N->getOperand(1).getValueSizeInBits(); 9021 unsigned EltWidth = N->getValueType(0).getScalarSizeInBits(); 9022 if (ScalarSize > EltWidth && N->getOperand(0).isUndef()) 9023 if (SimplifyDemandedLowBitsHelper(1, EltWidth)) 9024 return SDValue(N, 0); 9025 9026 break; 9027 } 9028 case ISD::INTRINSIC_WO_CHAIN: { 9029 unsigned IntNo = N->getConstantOperandVal(0); 9030 switch (IntNo) { 9031 // By default we do not combine any intrinsic. 9032 default: 9033 return SDValue(); 9034 case Intrinsic::riscv_vcpop: 9035 case Intrinsic::riscv_vcpop_mask: 9036 case Intrinsic::riscv_vfirst: 9037 case Intrinsic::riscv_vfirst_mask: { 9038 SDValue VL = N->getOperand(2); 9039 if (IntNo == Intrinsic::riscv_vcpop_mask || 9040 IntNo == Intrinsic::riscv_vfirst_mask) 9041 VL = N->getOperand(3); 9042 if (!isNullConstant(VL)) 9043 return SDValue(); 9044 // If VL is 0, vcpop -> li 0, vfirst -> li -1. 9045 SDLoc DL(N); 9046 EVT VT = N->getValueType(0); 9047 if (IntNo == Intrinsic::riscv_vfirst || 9048 IntNo == Intrinsic::riscv_vfirst_mask) 9049 return DAG.getConstant(-1, DL, VT); 9050 return DAG.getConstant(0, DL, VT); 9051 } 9052 } 9053 } 9054 case ISD::BITCAST: { 9055 assert(Subtarget.useRVVForFixedLengthVectors()); 9056 SDValue N0 = N->getOperand(0); 9057 EVT VT = N->getValueType(0); 9058 EVT SrcVT = N0.getValueType(); 9059 // If this is a bitcast between a MVT::v4i1/v2i1/v1i1 and an illegal integer 9060 // type, widen both sides to avoid a trip through memory. 9061 if ((SrcVT == MVT::v1i1 || SrcVT == MVT::v2i1 || SrcVT == MVT::v4i1) && 9062 VT.isScalarInteger()) { 9063 unsigned NumConcats = 8 / SrcVT.getVectorNumElements(); 9064 SmallVector<SDValue, 4> Ops(NumConcats, DAG.getUNDEF(SrcVT)); 9065 Ops[0] = N0; 9066 SDLoc DL(N); 9067 N0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i1, Ops); 9068 N0 = DAG.getBitcast(MVT::i8, N0); 9069 return DAG.getNode(ISD::TRUNCATE, DL, VT, N0); 9070 } 9071 9072 return SDValue(); 9073 } 9074 } 9075 9076 return SDValue(); 9077 } 9078 9079 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 9080 const SDNode *N, CombineLevel Level) const { 9081 // The following folds are only desirable if `(OP _, c1 << c2)` can be 9082 // materialised in fewer instructions than `(OP _, c1)`: 9083 // 9084 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 9085 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 9086 SDValue N0 = N->getOperand(0); 9087 EVT Ty = N0.getValueType(); 9088 if (Ty.isScalarInteger() && 9089 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 9090 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 9091 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9092 if (C1 && C2) { 9093 const APInt &C1Int = C1->getAPIntValue(); 9094 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 9095 9096 // We can materialise `c1 << c2` into an add immediate, so it's "free", 9097 // and the combine should happen, to potentially allow further combines 9098 // later. 9099 if (ShiftedC1Int.getMinSignedBits() <= 64 && 9100 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 9101 return true; 9102 9103 // We can materialise `c1` in an add immediate, so it's "free", and the 9104 // combine should be prevented. 9105 if (C1Int.getMinSignedBits() <= 64 && 9106 isLegalAddImmediate(C1Int.getSExtValue())) 9107 return false; 9108 9109 // Neither constant will fit into an immediate, so find materialisation 9110 // costs. 9111 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 9112 Subtarget.getFeatureBits(), 9113 /*CompressionCost*/true); 9114 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 9115 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 9116 /*CompressionCost*/true); 9117 9118 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 9119 // combine should be prevented. 9120 if (C1Cost < ShiftedC1Cost) 9121 return false; 9122 } 9123 } 9124 return true; 9125 } 9126 9127 bool RISCVTargetLowering::targetShrinkDemandedConstant( 9128 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 9129 TargetLoweringOpt &TLO) const { 9130 // Delay this optimization as late as possible. 9131 if (!TLO.LegalOps) 9132 return false; 9133 9134 EVT VT = Op.getValueType(); 9135 if (VT.isVector()) 9136 return false; 9137 9138 // Only handle AND for now. 9139 if (Op.getOpcode() != ISD::AND) 9140 return false; 9141 9142 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 9143 if (!C) 9144 return false; 9145 9146 const APInt &Mask = C->getAPIntValue(); 9147 9148 // Clear all non-demanded bits initially. 9149 APInt ShrunkMask = Mask & DemandedBits; 9150 9151 // Try to make a smaller immediate by setting undemanded bits. 9152 9153 APInt ExpandedMask = Mask | ~DemandedBits; 9154 9155 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 9156 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 9157 }; 9158 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 9159 if (NewMask == Mask) 9160 return true; 9161 SDLoc DL(Op); 9162 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 9163 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 9164 return TLO.CombineTo(Op, NewOp); 9165 }; 9166 9167 // If the shrunk mask fits in sign extended 12 bits, let the target 9168 // independent code apply it. 9169 if (ShrunkMask.isSignedIntN(12)) 9170 return false; 9171 9172 // Preserve (and X, 0xffff) when zext.h is supported. 9173 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 9174 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 9175 if (IsLegalMask(NewMask)) 9176 return UseMask(NewMask); 9177 } 9178 9179 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 9180 if (VT == MVT::i64) { 9181 APInt NewMask = APInt(64, 0xffffffff); 9182 if (IsLegalMask(NewMask)) 9183 return UseMask(NewMask); 9184 } 9185 9186 // For the remaining optimizations, we need to be able to make a negative 9187 // number through a combination of mask and undemanded bits. 9188 if (!ExpandedMask.isNegative()) 9189 return false; 9190 9191 // What is the fewest number of bits we need to represent the negative number. 9192 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 9193 9194 // Try to make a 12 bit negative immediate. If that fails try to make a 32 9195 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 9196 APInt NewMask = ShrunkMask; 9197 if (MinSignedBits <= 12) 9198 NewMask.setBitsFrom(11); 9199 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 9200 NewMask.setBitsFrom(31); 9201 else 9202 return false; 9203 9204 // Check that our new mask is a subset of the demanded mask. 9205 assert(IsLegalMask(NewMask)); 9206 return UseMask(NewMask); 9207 } 9208 9209 static uint64_t computeGREVOrGORC(uint64_t x, unsigned ShAmt, bool IsGORC) { 9210 static const uint64_t GREVMasks[] = { 9211 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 9212 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 9213 9214 for (unsigned Stage = 0; Stage != 6; ++Stage) { 9215 unsigned Shift = 1 << Stage; 9216 if (ShAmt & Shift) { 9217 uint64_t Mask = GREVMasks[Stage]; 9218 uint64_t Res = ((x & Mask) << Shift) | ((x >> Shift) & Mask); 9219 if (IsGORC) 9220 Res |= x; 9221 x = Res; 9222 } 9223 } 9224 9225 return x; 9226 } 9227 9228 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 9229 KnownBits &Known, 9230 const APInt &DemandedElts, 9231 const SelectionDAG &DAG, 9232 unsigned Depth) const { 9233 unsigned BitWidth = Known.getBitWidth(); 9234 unsigned Opc = Op.getOpcode(); 9235 assert((Opc >= ISD::BUILTIN_OP_END || 9236 Opc == ISD::INTRINSIC_WO_CHAIN || 9237 Opc == ISD::INTRINSIC_W_CHAIN || 9238 Opc == ISD::INTRINSIC_VOID) && 9239 "Should use MaskedValueIsZero if you don't know whether Op" 9240 " is a target node!"); 9241 9242 Known.resetAll(); 9243 switch (Opc) { 9244 default: break; 9245 case RISCVISD::SELECT_CC: { 9246 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 9247 // If we don't know any bits, early out. 9248 if (Known.isUnknown()) 9249 break; 9250 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 9251 9252 // Only known if known in both the LHS and RHS. 9253 Known = KnownBits::commonBits(Known, Known2); 9254 break; 9255 } 9256 case RISCVISD::REMUW: { 9257 KnownBits Known2; 9258 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 9259 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 9260 // We only care about the lower 32 bits. 9261 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 9262 // Restore the original width by sign extending. 9263 Known = Known.sext(BitWidth); 9264 break; 9265 } 9266 case RISCVISD::DIVUW: { 9267 KnownBits Known2; 9268 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 9269 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 9270 // We only care about the lower 32 bits. 9271 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 9272 // Restore the original width by sign extending. 9273 Known = Known.sext(BitWidth); 9274 break; 9275 } 9276 case RISCVISD::CTZW: { 9277 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 9278 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 9279 unsigned LowBits = Log2_32(PossibleTZ) + 1; 9280 Known.Zero.setBitsFrom(LowBits); 9281 break; 9282 } 9283 case RISCVISD::CLZW: { 9284 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 9285 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 9286 unsigned LowBits = Log2_32(PossibleLZ) + 1; 9287 Known.Zero.setBitsFrom(LowBits); 9288 break; 9289 } 9290 case RISCVISD::GREV: 9291 case RISCVISD::GORC: { 9292 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 9293 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 9294 unsigned ShAmt = C->getZExtValue() & (Known.getBitWidth() - 1); 9295 bool IsGORC = Op.getOpcode() == RISCVISD::GORC; 9296 // To compute zeros, we need to invert the value and invert it back after. 9297 Known.Zero = 9298 ~computeGREVOrGORC(~Known.Zero.getZExtValue(), ShAmt, IsGORC); 9299 Known.One = computeGREVOrGORC(Known.One.getZExtValue(), ShAmt, IsGORC); 9300 } 9301 break; 9302 } 9303 case RISCVISD::READ_VLENB: { 9304 // If we know the minimum VLen from Zvl extensions, we can use that to 9305 // determine the trailing zeros of VLENB. 9306 // FIXME: Limit to 128 bit vectors until we have more testing. 9307 unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8; 9308 if (MinVLenB > 0) 9309 Known.Zero.setLowBits(Log2_32(MinVLenB)); 9310 // We assume VLENB is no more than 65536 / 8 bytes. 9311 Known.Zero.setBitsFrom(14); 9312 break; 9313 } 9314 case ISD::INTRINSIC_W_CHAIN: 9315 case ISD::INTRINSIC_WO_CHAIN: { 9316 unsigned IntNo = 9317 Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1); 9318 switch (IntNo) { 9319 default: 9320 // We can't do anything for most intrinsics. 9321 break; 9322 case Intrinsic::riscv_vsetvli: 9323 case Intrinsic::riscv_vsetvlimax: 9324 case Intrinsic::riscv_vsetvli_opt: 9325 case Intrinsic::riscv_vsetvlimax_opt: 9326 // Assume that VL output is positive and would fit in an int32_t. 9327 // TODO: VLEN might be capped at 16 bits in a future V spec update. 9328 if (BitWidth >= 32) 9329 Known.Zero.setBitsFrom(31); 9330 break; 9331 } 9332 break; 9333 } 9334 } 9335 } 9336 9337 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 9338 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 9339 unsigned Depth) const { 9340 switch (Op.getOpcode()) { 9341 default: 9342 break; 9343 case RISCVISD::SELECT_CC: { 9344 unsigned Tmp = 9345 DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 9346 if (Tmp == 1) return 1; // Early out. 9347 unsigned Tmp2 = 9348 DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 9349 return std::min(Tmp, Tmp2); 9350 } 9351 case RISCVISD::SLLW: 9352 case RISCVISD::SRAW: 9353 case RISCVISD::SRLW: 9354 case RISCVISD::DIVW: 9355 case RISCVISD::DIVUW: 9356 case RISCVISD::REMUW: 9357 case RISCVISD::ROLW: 9358 case RISCVISD::RORW: 9359 case RISCVISD::GREVW: 9360 case RISCVISD::GORCW: 9361 case RISCVISD::FSLW: 9362 case RISCVISD::FSRW: 9363 case RISCVISD::SHFLW: 9364 case RISCVISD::UNSHFLW: 9365 case RISCVISD::BCOMPRESSW: 9366 case RISCVISD::BDECOMPRESSW: 9367 case RISCVISD::BFPW: 9368 case RISCVISD::FCVT_W_RV64: 9369 case RISCVISD::FCVT_WU_RV64: 9370 case RISCVISD::STRICT_FCVT_W_RV64: 9371 case RISCVISD::STRICT_FCVT_WU_RV64: 9372 // TODO: As the result is sign-extended, this is conservatively correct. A 9373 // more precise answer could be calculated for SRAW depending on known 9374 // bits in the shift amount. 9375 return 33; 9376 case RISCVISD::SHFL: 9377 case RISCVISD::UNSHFL: { 9378 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 9379 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 9380 // will stay within the upper 32 bits. If there were more than 32 sign bits 9381 // before there will be at least 33 sign bits after. 9382 if (Op.getValueType() == MVT::i64 && 9383 isa<ConstantSDNode>(Op.getOperand(1)) && 9384 (Op.getConstantOperandVal(1) & 0x10) == 0) { 9385 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 9386 if (Tmp > 32) 9387 return 33; 9388 } 9389 break; 9390 } 9391 case RISCVISD::VMV_X_S: { 9392 // The number of sign bits of the scalar result is computed by obtaining the 9393 // element type of the input vector operand, subtracting its width from the 9394 // XLEN, and then adding one (sign bit within the element type). If the 9395 // element type is wider than XLen, the least-significant XLEN bits are 9396 // taken. 9397 unsigned XLen = Subtarget.getXLen(); 9398 unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits(); 9399 if (EltBits <= XLen) 9400 return XLen - EltBits + 1; 9401 break; 9402 } 9403 } 9404 9405 return 1; 9406 } 9407 9408 const Constant * 9409 RISCVTargetLowering::getTargetConstantFromLoad(LoadSDNode *Ld) const { 9410 assert(Ld && "Unexpected null LoadSDNode"); 9411 if (!ISD::isNormalLoad(Ld)) 9412 return nullptr; 9413 9414 SDValue Ptr = Ld->getBasePtr(); 9415 9416 // Only constant pools with no offset are supported. 9417 auto GetSupportedConstantPool = [](SDValue Ptr) -> ConstantPoolSDNode * { 9418 auto *CNode = dyn_cast<ConstantPoolSDNode>(Ptr); 9419 if (!CNode || CNode->isMachineConstantPoolEntry() || 9420 CNode->getOffset() != 0) 9421 return nullptr; 9422 9423 return CNode; 9424 }; 9425 9426 // Simple case, LLA. 9427 if (Ptr.getOpcode() == RISCVISD::LLA) { 9428 auto *CNode = GetSupportedConstantPool(Ptr); 9429 if (!CNode || CNode->getTargetFlags() != 0) 9430 return nullptr; 9431 9432 return CNode->getConstVal(); 9433 } 9434 9435 // Look for a HI and ADD_LO pair. 9436 if (Ptr.getOpcode() != RISCVISD::ADD_LO || 9437 Ptr.getOperand(0).getOpcode() != RISCVISD::HI) 9438 return nullptr; 9439 9440 auto *CNodeLo = GetSupportedConstantPool(Ptr.getOperand(1)); 9441 auto *CNodeHi = GetSupportedConstantPool(Ptr.getOperand(0).getOperand(0)); 9442 9443 if (!CNodeLo || CNodeLo->getTargetFlags() != RISCVII::MO_LO || 9444 !CNodeHi || CNodeHi->getTargetFlags() != RISCVII::MO_HI) 9445 return nullptr; 9446 9447 if (CNodeLo->getConstVal() != CNodeHi->getConstVal()) 9448 return nullptr; 9449 9450 return CNodeLo->getConstVal(); 9451 } 9452 9453 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 9454 MachineBasicBlock *BB) { 9455 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 9456 9457 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 9458 // Should the count have wrapped while it was being read, we need to try 9459 // again. 9460 // ... 9461 // read: 9462 // rdcycleh x3 # load high word of cycle 9463 // rdcycle x2 # load low word of cycle 9464 // rdcycleh x4 # load high word of cycle 9465 // bne x3, x4, read # check if high word reads match, otherwise try again 9466 // ... 9467 9468 MachineFunction &MF = *BB->getParent(); 9469 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9470 MachineFunction::iterator It = ++BB->getIterator(); 9471 9472 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 9473 MF.insert(It, LoopMBB); 9474 9475 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 9476 MF.insert(It, DoneMBB); 9477 9478 // Transfer the remainder of BB and its successor edges to DoneMBB. 9479 DoneMBB->splice(DoneMBB->begin(), BB, 9480 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9481 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 9482 9483 BB->addSuccessor(LoopMBB); 9484 9485 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9486 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9487 Register LoReg = MI.getOperand(0).getReg(); 9488 Register HiReg = MI.getOperand(1).getReg(); 9489 DebugLoc DL = MI.getDebugLoc(); 9490 9491 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 9492 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 9493 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 9494 .addReg(RISCV::X0); 9495 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 9496 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 9497 .addReg(RISCV::X0); 9498 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 9499 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 9500 .addReg(RISCV::X0); 9501 9502 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 9503 .addReg(HiReg) 9504 .addReg(ReadAgainReg) 9505 .addMBB(LoopMBB); 9506 9507 LoopMBB->addSuccessor(LoopMBB); 9508 LoopMBB->addSuccessor(DoneMBB); 9509 9510 MI.eraseFromParent(); 9511 9512 return DoneMBB; 9513 } 9514 9515 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 9516 MachineBasicBlock *BB) { 9517 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 9518 9519 MachineFunction &MF = *BB->getParent(); 9520 DebugLoc DL = MI.getDebugLoc(); 9521 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 9522 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 9523 Register LoReg = MI.getOperand(0).getReg(); 9524 Register HiReg = MI.getOperand(1).getReg(); 9525 Register SrcReg = MI.getOperand(2).getReg(); 9526 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 9527 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 9528 9529 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 9530 RI); 9531 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 9532 MachineMemOperand *MMOLo = 9533 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 9534 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 9535 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 9536 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 9537 .addFrameIndex(FI) 9538 .addImm(0) 9539 .addMemOperand(MMOLo); 9540 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 9541 .addFrameIndex(FI) 9542 .addImm(4) 9543 .addMemOperand(MMOHi); 9544 MI.eraseFromParent(); // The pseudo instruction is gone now. 9545 return BB; 9546 } 9547 9548 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 9549 MachineBasicBlock *BB) { 9550 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 9551 "Unexpected instruction"); 9552 9553 MachineFunction &MF = *BB->getParent(); 9554 DebugLoc DL = MI.getDebugLoc(); 9555 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 9556 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 9557 Register DstReg = MI.getOperand(0).getReg(); 9558 Register LoReg = MI.getOperand(1).getReg(); 9559 Register HiReg = MI.getOperand(2).getReg(); 9560 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 9561 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 9562 9563 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 9564 MachineMemOperand *MMOLo = 9565 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 9566 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 9567 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 9568 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 9569 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 9570 .addFrameIndex(FI) 9571 .addImm(0) 9572 .addMemOperand(MMOLo); 9573 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 9574 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 9575 .addFrameIndex(FI) 9576 .addImm(4) 9577 .addMemOperand(MMOHi); 9578 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 9579 MI.eraseFromParent(); // The pseudo instruction is gone now. 9580 return BB; 9581 } 9582 9583 static bool isSelectPseudo(MachineInstr &MI) { 9584 switch (MI.getOpcode()) { 9585 default: 9586 return false; 9587 case RISCV::Select_GPR_Using_CC_GPR: 9588 case RISCV::Select_FPR16_Using_CC_GPR: 9589 case RISCV::Select_FPR32_Using_CC_GPR: 9590 case RISCV::Select_FPR64_Using_CC_GPR: 9591 return true; 9592 } 9593 } 9594 9595 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB, 9596 unsigned RelOpcode, unsigned EqOpcode, 9597 const RISCVSubtarget &Subtarget) { 9598 DebugLoc DL = MI.getDebugLoc(); 9599 Register DstReg = MI.getOperand(0).getReg(); 9600 Register Src1Reg = MI.getOperand(1).getReg(); 9601 Register Src2Reg = MI.getOperand(2).getReg(); 9602 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 9603 Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass); 9604 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 9605 9606 // Save the current FFLAGS. 9607 BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags); 9608 9609 auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg) 9610 .addReg(Src1Reg) 9611 .addReg(Src2Reg); 9612 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 9613 MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); 9614 9615 // Restore the FFLAGS. 9616 BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) 9617 .addReg(SavedFFlags, RegState::Kill); 9618 9619 // Issue a dummy FEQ opcode to raise exception for signaling NaNs. 9620 auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0) 9621 .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill())) 9622 .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill())); 9623 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 9624 MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept); 9625 9626 // Erase the pseudoinstruction. 9627 MI.eraseFromParent(); 9628 return BB; 9629 } 9630 9631 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 9632 MachineBasicBlock *BB, 9633 const RISCVSubtarget &Subtarget) { 9634 // To "insert" Select_* instructions, we actually have to insert the triangle 9635 // control-flow pattern. The incoming instructions know the destination vreg 9636 // to set, the condition code register to branch on, the true/false values to 9637 // select between, and the condcode to use to select the appropriate branch. 9638 // 9639 // We produce the following control flow: 9640 // HeadMBB 9641 // | \ 9642 // | IfFalseMBB 9643 // | / 9644 // TailMBB 9645 // 9646 // When we find a sequence of selects we attempt to optimize their emission 9647 // by sharing the control flow. Currently we only handle cases where we have 9648 // multiple selects with the exact same condition (same LHS, RHS and CC). 9649 // The selects may be interleaved with other instructions if the other 9650 // instructions meet some requirements we deem safe: 9651 // - They are debug instructions. Otherwise, 9652 // - They do not have side-effects, do not access memory and their inputs do 9653 // not depend on the results of the select pseudo-instructions. 9654 // The TrueV/FalseV operands of the selects cannot depend on the result of 9655 // previous selects in the sequence. 9656 // These conditions could be further relaxed. See the X86 target for a 9657 // related approach and more information. 9658 Register LHS = MI.getOperand(1).getReg(); 9659 Register RHS = MI.getOperand(2).getReg(); 9660 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 9661 9662 SmallVector<MachineInstr *, 4> SelectDebugValues; 9663 SmallSet<Register, 4> SelectDests; 9664 SelectDests.insert(MI.getOperand(0).getReg()); 9665 9666 MachineInstr *LastSelectPseudo = &MI; 9667 9668 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 9669 SequenceMBBI != E; ++SequenceMBBI) { 9670 if (SequenceMBBI->isDebugInstr()) 9671 continue; 9672 if (isSelectPseudo(*SequenceMBBI)) { 9673 if (SequenceMBBI->getOperand(1).getReg() != LHS || 9674 SequenceMBBI->getOperand(2).getReg() != RHS || 9675 SequenceMBBI->getOperand(3).getImm() != CC || 9676 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 9677 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 9678 break; 9679 LastSelectPseudo = &*SequenceMBBI; 9680 SequenceMBBI->collectDebugValues(SelectDebugValues); 9681 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 9682 } else { 9683 if (SequenceMBBI->hasUnmodeledSideEffects() || 9684 SequenceMBBI->mayLoadOrStore()) 9685 break; 9686 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 9687 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 9688 })) 9689 break; 9690 } 9691 } 9692 9693 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 9694 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9695 DebugLoc DL = MI.getDebugLoc(); 9696 MachineFunction::iterator I = ++BB->getIterator(); 9697 9698 MachineBasicBlock *HeadMBB = BB; 9699 MachineFunction *F = BB->getParent(); 9700 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 9701 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 9702 9703 F->insert(I, IfFalseMBB); 9704 F->insert(I, TailMBB); 9705 9706 // Transfer debug instructions associated with the selects to TailMBB. 9707 for (MachineInstr *DebugInstr : SelectDebugValues) { 9708 TailMBB->push_back(DebugInstr->removeFromParent()); 9709 } 9710 9711 // Move all instructions after the sequence to TailMBB. 9712 TailMBB->splice(TailMBB->end(), HeadMBB, 9713 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 9714 // Update machine-CFG edges by transferring all successors of the current 9715 // block to the new block which will contain the Phi nodes for the selects. 9716 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 9717 // Set the successors for HeadMBB. 9718 HeadMBB->addSuccessor(IfFalseMBB); 9719 HeadMBB->addSuccessor(TailMBB); 9720 9721 // Insert appropriate branch. 9722 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 9723 .addReg(LHS) 9724 .addReg(RHS) 9725 .addMBB(TailMBB); 9726 9727 // IfFalseMBB just falls through to TailMBB. 9728 IfFalseMBB->addSuccessor(TailMBB); 9729 9730 // Create PHIs for all of the select pseudo-instructions. 9731 auto SelectMBBI = MI.getIterator(); 9732 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 9733 auto InsertionPoint = TailMBB->begin(); 9734 while (SelectMBBI != SelectEnd) { 9735 auto Next = std::next(SelectMBBI); 9736 if (isSelectPseudo(*SelectMBBI)) { 9737 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 9738 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 9739 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 9740 .addReg(SelectMBBI->getOperand(4).getReg()) 9741 .addMBB(HeadMBB) 9742 .addReg(SelectMBBI->getOperand(5).getReg()) 9743 .addMBB(IfFalseMBB); 9744 SelectMBBI->eraseFromParent(); 9745 } 9746 SelectMBBI = Next; 9747 } 9748 9749 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 9750 return TailMBB; 9751 } 9752 9753 MachineBasicBlock * 9754 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 9755 MachineBasicBlock *BB) const { 9756 switch (MI.getOpcode()) { 9757 default: 9758 llvm_unreachable("Unexpected instr type to insert"); 9759 case RISCV::ReadCycleWide: 9760 assert(!Subtarget.is64Bit() && 9761 "ReadCycleWrite is only to be used on riscv32"); 9762 return emitReadCycleWidePseudo(MI, BB); 9763 case RISCV::Select_GPR_Using_CC_GPR: 9764 case RISCV::Select_FPR16_Using_CC_GPR: 9765 case RISCV::Select_FPR32_Using_CC_GPR: 9766 case RISCV::Select_FPR64_Using_CC_GPR: 9767 return emitSelectPseudo(MI, BB, Subtarget); 9768 case RISCV::BuildPairF64Pseudo: 9769 return emitBuildPairF64Pseudo(MI, BB); 9770 case RISCV::SplitF64Pseudo: 9771 return emitSplitF64Pseudo(MI, BB); 9772 case RISCV::PseudoQuietFLE_H: 9773 return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget); 9774 case RISCV::PseudoQuietFLT_H: 9775 return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget); 9776 case RISCV::PseudoQuietFLE_S: 9777 return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget); 9778 case RISCV::PseudoQuietFLT_S: 9779 return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget); 9780 case RISCV::PseudoQuietFLE_D: 9781 return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget); 9782 case RISCV::PseudoQuietFLT_D: 9783 return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget); 9784 } 9785 } 9786 9787 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 9788 SDNode *Node) const { 9789 // Add FRM dependency to any instructions with dynamic rounding mode. 9790 unsigned Opc = MI.getOpcode(); 9791 auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); 9792 if (Idx < 0) 9793 return; 9794 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) 9795 return; 9796 // If the instruction already reads FRM, don't add another read. 9797 if (MI.readsRegister(RISCV::FRM)) 9798 return; 9799 MI.addOperand( 9800 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); 9801 } 9802 9803 // Calling Convention Implementation. 9804 // The expectations for frontend ABI lowering vary from target to target. 9805 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 9806 // details, but this is a longer term goal. For now, we simply try to keep the 9807 // role of the frontend as simple and well-defined as possible. The rules can 9808 // be summarised as: 9809 // * Never split up large scalar arguments. We handle them here. 9810 // * If a hardfloat calling convention is being used, and the struct may be 9811 // passed in a pair of registers (fp+fp, int+fp), and both registers are 9812 // available, then pass as two separate arguments. If either the GPRs or FPRs 9813 // are exhausted, then pass according to the rule below. 9814 // * If a struct could never be passed in registers or directly in a stack 9815 // slot (as it is larger than 2*XLEN and the floating point rules don't 9816 // apply), then pass it using a pointer with the byval attribute. 9817 // * If a struct is less than 2*XLEN, then coerce to either a two-element 9818 // word-sized array or a 2*XLEN scalar (depending on alignment). 9819 // * The frontend can determine whether a struct is returned by reference or 9820 // not based on its size and fields. If it will be returned by reference, the 9821 // frontend must modify the prototype so a pointer with the sret annotation is 9822 // passed as the first argument. This is not necessary for large scalar 9823 // returns. 9824 // * Struct return values and varargs should be coerced to structs containing 9825 // register-size fields in the same situations they would be for fixed 9826 // arguments. 9827 9828 static const MCPhysReg ArgGPRs[] = { 9829 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 9830 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 9831 }; 9832 static const MCPhysReg ArgFPR16s[] = { 9833 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 9834 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 9835 }; 9836 static const MCPhysReg ArgFPR32s[] = { 9837 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 9838 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 9839 }; 9840 static const MCPhysReg ArgFPR64s[] = { 9841 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 9842 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 9843 }; 9844 // This is an interim calling convention and it may be changed in the future. 9845 static const MCPhysReg ArgVRs[] = { 9846 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 9847 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 9848 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 9849 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 9850 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 9851 RISCV::V20M2, RISCV::V22M2}; 9852 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 9853 RISCV::V20M4}; 9854 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 9855 9856 // Pass a 2*XLEN argument that has been split into two XLEN values through 9857 // registers or the stack as necessary. 9858 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 9859 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 9860 MVT ValVT2, MVT LocVT2, 9861 ISD::ArgFlagsTy ArgFlags2) { 9862 unsigned XLenInBytes = XLen / 8; 9863 if (Register Reg = State.AllocateReg(ArgGPRs)) { 9864 // At least one half can be passed via register. 9865 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 9866 VA1.getLocVT(), CCValAssign::Full)); 9867 } else { 9868 // Both halves must be passed on the stack, with proper alignment. 9869 Align StackAlign = 9870 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 9871 State.addLoc( 9872 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 9873 State.AllocateStack(XLenInBytes, StackAlign), 9874 VA1.getLocVT(), CCValAssign::Full)); 9875 State.addLoc(CCValAssign::getMem( 9876 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 9877 LocVT2, CCValAssign::Full)); 9878 return false; 9879 } 9880 9881 if (Register Reg = State.AllocateReg(ArgGPRs)) { 9882 // The second half can also be passed via register. 9883 State.addLoc( 9884 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 9885 } else { 9886 // The second half is passed via the stack, without additional alignment. 9887 State.addLoc(CCValAssign::getMem( 9888 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 9889 LocVT2, CCValAssign::Full)); 9890 } 9891 9892 return false; 9893 } 9894 9895 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 9896 Optional<unsigned> FirstMaskArgument, 9897 CCState &State, const RISCVTargetLowering &TLI) { 9898 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 9899 if (RC == &RISCV::VRRegClass) { 9900 // Assign the first mask argument to V0. 9901 // This is an interim calling convention and it may be changed in the 9902 // future. 9903 if (FirstMaskArgument && ValNo == *FirstMaskArgument) 9904 return State.AllocateReg(RISCV::V0); 9905 return State.AllocateReg(ArgVRs); 9906 } 9907 if (RC == &RISCV::VRM2RegClass) 9908 return State.AllocateReg(ArgVRM2s); 9909 if (RC == &RISCV::VRM4RegClass) 9910 return State.AllocateReg(ArgVRM4s); 9911 if (RC == &RISCV::VRM8RegClass) 9912 return State.AllocateReg(ArgVRM8s); 9913 llvm_unreachable("Unhandled register class for ValueType"); 9914 } 9915 9916 // Implements the RISC-V calling convention. Returns true upon failure. 9917 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 9918 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 9919 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 9920 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 9921 Optional<unsigned> FirstMaskArgument) { 9922 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 9923 assert(XLen == 32 || XLen == 64); 9924 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 9925 9926 // Any return value split in to more than two values can't be returned 9927 // directly. Vectors are returned via the available vector registers. 9928 if (!LocVT.isVector() && IsRet && ValNo > 1) 9929 return true; 9930 9931 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 9932 // variadic argument, or if no F16/F32 argument registers are available. 9933 bool UseGPRForF16_F32 = true; 9934 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 9935 // variadic argument, or if no F64 argument registers are available. 9936 bool UseGPRForF64 = true; 9937 9938 switch (ABI) { 9939 default: 9940 llvm_unreachable("Unexpected ABI"); 9941 case RISCVABI::ABI_ILP32: 9942 case RISCVABI::ABI_LP64: 9943 break; 9944 case RISCVABI::ABI_ILP32F: 9945 case RISCVABI::ABI_LP64F: 9946 UseGPRForF16_F32 = !IsFixed; 9947 break; 9948 case RISCVABI::ABI_ILP32D: 9949 case RISCVABI::ABI_LP64D: 9950 UseGPRForF16_F32 = !IsFixed; 9951 UseGPRForF64 = !IsFixed; 9952 break; 9953 } 9954 9955 // FPR16, FPR32, and FPR64 alias each other. 9956 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 9957 UseGPRForF16_F32 = true; 9958 UseGPRForF64 = true; 9959 } 9960 9961 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 9962 // similar local variables rather than directly checking against the target 9963 // ABI. 9964 9965 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 9966 LocVT = XLenVT; 9967 LocInfo = CCValAssign::BCvt; 9968 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 9969 LocVT = MVT::i64; 9970 LocInfo = CCValAssign::BCvt; 9971 } 9972 9973 // If this is a variadic argument, the RISC-V calling convention requires 9974 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 9975 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 9976 // be used regardless of whether the original argument was split during 9977 // legalisation or not. The argument will not be passed by registers if the 9978 // original type is larger than 2*XLEN, so the register alignment rule does 9979 // not apply. 9980 unsigned TwoXLenInBytes = (2 * XLen) / 8; 9981 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 9982 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 9983 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 9984 // Skip 'odd' register if necessary. 9985 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 9986 State.AllocateReg(ArgGPRs); 9987 } 9988 9989 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 9990 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 9991 State.getPendingArgFlags(); 9992 9993 assert(PendingLocs.size() == PendingArgFlags.size() && 9994 "PendingLocs and PendingArgFlags out of sync"); 9995 9996 // Handle passing f64 on RV32D with a soft float ABI or when floating point 9997 // registers are exhausted. 9998 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 9999 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 10000 "Can't lower f64 if it is split"); 10001 // Depending on available argument GPRS, f64 may be passed in a pair of 10002 // GPRs, split between a GPR and the stack, or passed completely on the 10003 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 10004 // cases. 10005 Register Reg = State.AllocateReg(ArgGPRs); 10006 LocVT = MVT::i32; 10007 if (!Reg) { 10008 unsigned StackOffset = State.AllocateStack(8, Align(8)); 10009 State.addLoc( 10010 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 10011 return false; 10012 } 10013 if (!State.AllocateReg(ArgGPRs)) 10014 State.AllocateStack(4, Align(4)); 10015 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10016 return false; 10017 } 10018 10019 // Fixed-length vectors are located in the corresponding scalable-vector 10020 // container types. 10021 if (ValVT.isFixedLengthVector()) 10022 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 10023 10024 // Split arguments might be passed indirectly, so keep track of the pending 10025 // values. Split vectors are passed via a mix of registers and indirectly, so 10026 // treat them as we would any other argument. 10027 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 10028 LocVT = XLenVT; 10029 LocInfo = CCValAssign::Indirect; 10030 PendingLocs.push_back( 10031 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 10032 PendingArgFlags.push_back(ArgFlags); 10033 if (!ArgFlags.isSplitEnd()) { 10034 return false; 10035 } 10036 } 10037 10038 // If the split argument only had two elements, it should be passed directly 10039 // in registers or on the stack. 10040 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 10041 PendingLocs.size() <= 2) { 10042 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 10043 // Apply the normal calling convention rules to the first half of the 10044 // split argument. 10045 CCValAssign VA = PendingLocs[0]; 10046 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 10047 PendingLocs.clear(); 10048 PendingArgFlags.clear(); 10049 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 10050 ArgFlags); 10051 } 10052 10053 // Allocate to a register if possible, or else a stack slot. 10054 Register Reg; 10055 unsigned StoreSizeBytes = XLen / 8; 10056 Align StackAlign = Align(XLen / 8); 10057 10058 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 10059 Reg = State.AllocateReg(ArgFPR16s); 10060 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 10061 Reg = State.AllocateReg(ArgFPR32s); 10062 else if (ValVT == MVT::f64 && !UseGPRForF64) 10063 Reg = State.AllocateReg(ArgFPR64s); 10064 else if (ValVT.isVector()) { 10065 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 10066 if (!Reg) { 10067 // For return values, the vector must be passed fully via registers or 10068 // via the stack. 10069 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 10070 // but we're using all of them. 10071 if (IsRet) 10072 return true; 10073 // Try using a GPR to pass the address 10074 if ((Reg = State.AllocateReg(ArgGPRs))) { 10075 LocVT = XLenVT; 10076 LocInfo = CCValAssign::Indirect; 10077 } else if (ValVT.isScalableVector()) { 10078 LocVT = XLenVT; 10079 LocInfo = CCValAssign::Indirect; 10080 } else { 10081 // Pass fixed-length vectors on the stack. 10082 LocVT = ValVT; 10083 StoreSizeBytes = ValVT.getStoreSize(); 10084 // Align vectors to their element sizes, being careful for vXi1 10085 // vectors. 10086 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 10087 } 10088 } 10089 } else { 10090 Reg = State.AllocateReg(ArgGPRs); 10091 } 10092 10093 unsigned StackOffset = 10094 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 10095 10096 // If we reach this point and PendingLocs is non-empty, we must be at the 10097 // end of a split argument that must be passed indirectly. 10098 if (!PendingLocs.empty()) { 10099 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 10100 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 10101 10102 for (auto &It : PendingLocs) { 10103 if (Reg) 10104 It.convertToReg(Reg); 10105 else 10106 It.convertToMem(StackOffset); 10107 State.addLoc(It); 10108 } 10109 PendingLocs.clear(); 10110 PendingArgFlags.clear(); 10111 return false; 10112 } 10113 10114 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 10115 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 10116 "Expected an XLenVT or vector types at this stage"); 10117 10118 if (Reg) { 10119 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10120 return false; 10121 } 10122 10123 // When a floating-point value is passed on the stack, no bit-conversion is 10124 // needed. 10125 if (ValVT.isFloatingPoint()) { 10126 LocVT = ValVT; 10127 LocInfo = CCValAssign::Full; 10128 } 10129 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 10130 return false; 10131 } 10132 10133 template <typename ArgTy> 10134 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 10135 for (const auto &ArgIdx : enumerate(Args)) { 10136 MVT ArgVT = ArgIdx.value().VT; 10137 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 10138 return ArgIdx.index(); 10139 } 10140 return None; 10141 } 10142 10143 void RISCVTargetLowering::analyzeInputArgs( 10144 MachineFunction &MF, CCState &CCInfo, 10145 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 10146 RISCVCCAssignFn Fn) const { 10147 unsigned NumArgs = Ins.size(); 10148 FunctionType *FType = MF.getFunction().getFunctionType(); 10149 10150 Optional<unsigned> FirstMaskArgument; 10151 if (Subtarget.hasVInstructions()) 10152 FirstMaskArgument = preAssignMask(Ins); 10153 10154 for (unsigned i = 0; i != NumArgs; ++i) { 10155 MVT ArgVT = Ins[i].VT; 10156 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 10157 10158 Type *ArgTy = nullptr; 10159 if (IsRet) 10160 ArgTy = FType->getReturnType(); 10161 else if (Ins[i].isOrigArg()) 10162 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 10163 10164 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 10165 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 10166 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 10167 FirstMaskArgument)) { 10168 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 10169 << EVT(ArgVT).getEVTString() << '\n'); 10170 llvm_unreachable(nullptr); 10171 } 10172 } 10173 } 10174 10175 void RISCVTargetLowering::analyzeOutputArgs( 10176 MachineFunction &MF, CCState &CCInfo, 10177 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 10178 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 10179 unsigned NumArgs = Outs.size(); 10180 10181 Optional<unsigned> FirstMaskArgument; 10182 if (Subtarget.hasVInstructions()) 10183 FirstMaskArgument = preAssignMask(Outs); 10184 10185 for (unsigned i = 0; i != NumArgs; i++) { 10186 MVT ArgVT = Outs[i].VT; 10187 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 10188 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 10189 10190 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 10191 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 10192 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 10193 FirstMaskArgument)) { 10194 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 10195 << EVT(ArgVT).getEVTString() << "\n"); 10196 llvm_unreachable(nullptr); 10197 } 10198 } 10199 } 10200 10201 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 10202 // values. 10203 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 10204 const CCValAssign &VA, const SDLoc &DL, 10205 const RISCVSubtarget &Subtarget) { 10206 switch (VA.getLocInfo()) { 10207 default: 10208 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 10209 case CCValAssign::Full: 10210 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 10211 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 10212 break; 10213 case CCValAssign::BCvt: 10214 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 10215 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 10216 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 10217 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 10218 else 10219 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 10220 break; 10221 } 10222 return Val; 10223 } 10224 10225 // The caller is responsible for loading the full value if the argument is 10226 // passed with CCValAssign::Indirect. 10227 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 10228 const CCValAssign &VA, const SDLoc &DL, 10229 const RISCVTargetLowering &TLI) { 10230 MachineFunction &MF = DAG.getMachineFunction(); 10231 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 10232 EVT LocVT = VA.getLocVT(); 10233 SDValue Val; 10234 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 10235 Register VReg = RegInfo.createVirtualRegister(RC); 10236 RegInfo.addLiveIn(VA.getLocReg(), VReg); 10237 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 10238 10239 if (VA.getLocInfo() == CCValAssign::Indirect) 10240 return Val; 10241 10242 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 10243 } 10244 10245 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 10246 const CCValAssign &VA, const SDLoc &DL, 10247 const RISCVSubtarget &Subtarget) { 10248 EVT LocVT = VA.getLocVT(); 10249 10250 switch (VA.getLocInfo()) { 10251 default: 10252 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 10253 case CCValAssign::Full: 10254 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 10255 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 10256 break; 10257 case CCValAssign::BCvt: 10258 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 10259 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 10260 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 10261 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 10262 else 10263 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 10264 break; 10265 } 10266 return Val; 10267 } 10268 10269 // The caller is responsible for loading the full value if the argument is 10270 // passed with CCValAssign::Indirect. 10271 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 10272 const CCValAssign &VA, const SDLoc &DL) { 10273 MachineFunction &MF = DAG.getMachineFunction(); 10274 MachineFrameInfo &MFI = MF.getFrameInfo(); 10275 EVT LocVT = VA.getLocVT(); 10276 EVT ValVT = VA.getValVT(); 10277 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 10278 if (ValVT.isScalableVector()) { 10279 // When the value is a scalable vector, we save the pointer which points to 10280 // the scalable vector value in the stack. The ValVT will be the pointer 10281 // type, instead of the scalable vector type. 10282 ValVT = LocVT; 10283 } 10284 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 10285 /*IsImmutable=*/true); 10286 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 10287 SDValue Val; 10288 10289 ISD::LoadExtType ExtType; 10290 switch (VA.getLocInfo()) { 10291 default: 10292 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 10293 case CCValAssign::Full: 10294 case CCValAssign::Indirect: 10295 case CCValAssign::BCvt: 10296 ExtType = ISD::NON_EXTLOAD; 10297 break; 10298 } 10299 Val = DAG.getExtLoad( 10300 ExtType, DL, LocVT, Chain, FIN, 10301 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 10302 return Val; 10303 } 10304 10305 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 10306 const CCValAssign &VA, const SDLoc &DL) { 10307 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 10308 "Unexpected VA"); 10309 MachineFunction &MF = DAG.getMachineFunction(); 10310 MachineFrameInfo &MFI = MF.getFrameInfo(); 10311 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 10312 10313 if (VA.isMemLoc()) { 10314 // f64 is passed on the stack. 10315 int FI = 10316 MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true); 10317 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 10318 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 10319 MachinePointerInfo::getFixedStack(MF, FI)); 10320 } 10321 10322 assert(VA.isRegLoc() && "Expected register VA assignment"); 10323 10324 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 10325 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 10326 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 10327 SDValue Hi; 10328 if (VA.getLocReg() == RISCV::X17) { 10329 // Second half of f64 is passed on the stack. 10330 int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true); 10331 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 10332 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 10333 MachinePointerInfo::getFixedStack(MF, FI)); 10334 } else { 10335 // Second half of f64 is passed in another GPR. 10336 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 10337 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 10338 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 10339 } 10340 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 10341 } 10342 10343 // FastCC has less than 1% performance improvement for some particular 10344 // benchmark. But theoretically, it may has benenfit for some cases. 10345 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 10346 unsigned ValNo, MVT ValVT, MVT LocVT, 10347 CCValAssign::LocInfo LocInfo, 10348 ISD::ArgFlagsTy ArgFlags, CCState &State, 10349 bool IsFixed, bool IsRet, Type *OrigTy, 10350 const RISCVTargetLowering &TLI, 10351 Optional<unsigned> FirstMaskArgument) { 10352 10353 // X5 and X6 might be used for save-restore libcall. 10354 static const MCPhysReg GPRList[] = { 10355 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 10356 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 10357 RISCV::X29, RISCV::X30, RISCV::X31}; 10358 10359 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 10360 if (unsigned Reg = State.AllocateReg(GPRList)) { 10361 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10362 return false; 10363 } 10364 } 10365 10366 if (LocVT == MVT::f16) { 10367 static const MCPhysReg FPR16List[] = { 10368 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 10369 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 10370 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 10371 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 10372 if (unsigned Reg = State.AllocateReg(FPR16List)) { 10373 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10374 return false; 10375 } 10376 } 10377 10378 if (LocVT == MVT::f32) { 10379 static const MCPhysReg FPR32List[] = { 10380 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 10381 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 10382 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 10383 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 10384 if (unsigned Reg = State.AllocateReg(FPR32List)) { 10385 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10386 return false; 10387 } 10388 } 10389 10390 if (LocVT == MVT::f64) { 10391 static const MCPhysReg FPR64List[] = { 10392 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 10393 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 10394 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 10395 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 10396 if (unsigned Reg = State.AllocateReg(FPR64List)) { 10397 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10398 return false; 10399 } 10400 } 10401 10402 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 10403 unsigned Offset4 = State.AllocateStack(4, Align(4)); 10404 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 10405 return false; 10406 } 10407 10408 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 10409 unsigned Offset5 = State.AllocateStack(8, Align(8)); 10410 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 10411 return false; 10412 } 10413 10414 if (LocVT.isVector()) { 10415 if (unsigned Reg = 10416 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 10417 // Fixed-length vectors are located in the corresponding scalable-vector 10418 // container types. 10419 if (ValVT.isFixedLengthVector()) 10420 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 10421 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10422 } else { 10423 // Try and pass the address via a "fast" GPR. 10424 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 10425 LocInfo = CCValAssign::Indirect; 10426 LocVT = TLI.getSubtarget().getXLenVT(); 10427 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 10428 } else if (ValVT.isFixedLengthVector()) { 10429 auto StackAlign = 10430 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 10431 unsigned StackOffset = 10432 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 10433 State.addLoc( 10434 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 10435 } else { 10436 // Can't pass scalable vectors on the stack. 10437 return true; 10438 } 10439 } 10440 10441 return false; 10442 } 10443 10444 return true; // CC didn't match. 10445 } 10446 10447 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 10448 CCValAssign::LocInfo LocInfo, 10449 ISD::ArgFlagsTy ArgFlags, CCState &State) { 10450 10451 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 10452 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 10453 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 10454 static const MCPhysReg GPRList[] = { 10455 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 10456 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 10457 if (unsigned Reg = State.AllocateReg(GPRList)) { 10458 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10459 return false; 10460 } 10461 } 10462 10463 if (LocVT == MVT::f32) { 10464 // Pass in STG registers: F1, ..., F6 10465 // fs0 ... fs5 10466 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 10467 RISCV::F18_F, RISCV::F19_F, 10468 RISCV::F20_F, RISCV::F21_F}; 10469 if (unsigned Reg = State.AllocateReg(FPR32List)) { 10470 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10471 return false; 10472 } 10473 } 10474 10475 if (LocVT == MVT::f64) { 10476 // Pass in STG registers: D1, ..., D6 10477 // fs6 ... fs11 10478 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 10479 RISCV::F24_D, RISCV::F25_D, 10480 RISCV::F26_D, RISCV::F27_D}; 10481 if (unsigned Reg = State.AllocateReg(FPR64List)) { 10482 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10483 return false; 10484 } 10485 } 10486 10487 report_fatal_error("No registers left in GHC calling convention"); 10488 return true; 10489 } 10490 10491 // Transform physical registers into virtual registers. 10492 SDValue RISCVTargetLowering::LowerFormalArguments( 10493 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 10494 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 10495 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 10496 10497 MachineFunction &MF = DAG.getMachineFunction(); 10498 10499 switch (CallConv) { 10500 default: 10501 report_fatal_error("Unsupported calling convention"); 10502 case CallingConv::C: 10503 case CallingConv::Fast: 10504 break; 10505 case CallingConv::GHC: 10506 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 10507 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 10508 report_fatal_error( 10509 "GHC calling convention requires the F and D instruction set extensions"); 10510 } 10511 10512 const Function &Func = MF.getFunction(); 10513 if (Func.hasFnAttribute("interrupt")) { 10514 if (!Func.arg_empty()) 10515 report_fatal_error( 10516 "Functions with the interrupt attribute cannot have arguments!"); 10517 10518 StringRef Kind = 10519 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 10520 10521 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 10522 report_fatal_error( 10523 "Function interrupt attribute argument not supported!"); 10524 } 10525 10526 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10527 MVT XLenVT = Subtarget.getXLenVT(); 10528 unsigned XLenInBytes = Subtarget.getXLen() / 8; 10529 // Used with vargs to acumulate store chains. 10530 std::vector<SDValue> OutChains; 10531 10532 // Assign locations to all of the incoming arguments. 10533 SmallVector<CCValAssign, 16> ArgLocs; 10534 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 10535 10536 if (CallConv == CallingConv::GHC) 10537 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 10538 else 10539 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 10540 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 10541 : CC_RISCV); 10542 10543 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 10544 CCValAssign &VA = ArgLocs[i]; 10545 SDValue ArgValue; 10546 // Passing f64 on RV32D with a soft float ABI must be handled as a special 10547 // case. 10548 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 10549 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 10550 else if (VA.isRegLoc()) 10551 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 10552 else 10553 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 10554 10555 if (VA.getLocInfo() == CCValAssign::Indirect) { 10556 // If the original argument was split and passed by reference (e.g. i128 10557 // on RV32), we need to load all parts of it here (using the same 10558 // address). Vectors may be partly split to registers and partly to the 10559 // stack, in which case the base address is partly offset and subsequent 10560 // stores are relative to that. 10561 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 10562 MachinePointerInfo())); 10563 unsigned ArgIndex = Ins[i].OrigArgIndex; 10564 unsigned ArgPartOffset = Ins[i].PartOffset; 10565 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 10566 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 10567 CCValAssign &PartVA = ArgLocs[i + 1]; 10568 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 10569 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 10570 if (PartVA.getValVT().isScalableVector()) 10571 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 10572 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 10573 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 10574 MachinePointerInfo())); 10575 ++i; 10576 } 10577 continue; 10578 } 10579 InVals.push_back(ArgValue); 10580 } 10581 10582 if (IsVarArg) { 10583 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 10584 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 10585 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 10586 MachineFrameInfo &MFI = MF.getFrameInfo(); 10587 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 10588 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 10589 10590 // Offset of the first variable argument from stack pointer, and size of 10591 // the vararg save area. For now, the varargs save area is either zero or 10592 // large enough to hold a0-a7. 10593 int VaArgOffset, VarArgsSaveSize; 10594 10595 // If all registers are allocated, then all varargs must be passed on the 10596 // stack and we don't need to save any argregs. 10597 if (ArgRegs.size() == Idx) { 10598 VaArgOffset = CCInfo.getNextStackOffset(); 10599 VarArgsSaveSize = 0; 10600 } else { 10601 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 10602 VaArgOffset = -VarArgsSaveSize; 10603 } 10604 10605 // Record the frame index of the first variable argument 10606 // which is a value necessary to VASTART. 10607 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 10608 RVFI->setVarArgsFrameIndex(FI); 10609 10610 // If saving an odd number of registers then create an extra stack slot to 10611 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 10612 // offsets to even-numbered registered remain 2*XLEN-aligned. 10613 if (Idx % 2) { 10614 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 10615 VarArgsSaveSize += XLenInBytes; 10616 } 10617 10618 // Copy the integer registers that may have been used for passing varargs 10619 // to the vararg save area. 10620 for (unsigned I = Idx; I < ArgRegs.size(); 10621 ++I, VaArgOffset += XLenInBytes) { 10622 const Register Reg = RegInfo.createVirtualRegister(RC); 10623 RegInfo.addLiveIn(ArgRegs[I], Reg); 10624 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 10625 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 10626 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 10627 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 10628 MachinePointerInfo::getFixedStack(MF, FI)); 10629 cast<StoreSDNode>(Store.getNode()) 10630 ->getMemOperand() 10631 ->setValue((Value *)nullptr); 10632 OutChains.push_back(Store); 10633 } 10634 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 10635 } 10636 10637 // All stores are grouped in one node to allow the matching between 10638 // the size of Ins and InVals. This only happens for vararg functions. 10639 if (!OutChains.empty()) { 10640 OutChains.push_back(Chain); 10641 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 10642 } 10643 10644 return Chain; 10645 } 10646 10647 /// isEligibleForTailCallOptimization - Check whether the call is eligible 10648 /// for tail call optimization. 10649 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 10650 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 10651 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 10652 const SmallVector<CCValAssign, 16> &ArgLocs) const { 10653 10654 auto &Callee = CLI.Callee; 10655 auto CalleeCC = CLI.CallConv; 10656 auto &Outs = CLI.Outs; 10657 auto &Caller = MF.getFunction(); 10658 auto CallerCC = Caller.getCallingConv(); 10659 10660 // Exception-handling functions need a special set of instructions to 10661 // indicate a return to the hardware. Tail-calling another function would 10662 // probably break this. 10663 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 10664 // should be expanded as new function attributes are introduced. 10665 if (Caller.hasFnAttribute("interrupt")) 10666 return false; 10667 10668 // Do not tail call opt if the stack is used to pass parameters. 10669 if (CCInfo.getNextStackOffset() != 0) 10670 return false; 10671 10672 // Do not tail call opt if any parameters need to be passed indirectly. 10673 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 10674 // passed indirectly. So the address of the value will be passed in a 10675 // register, or if not available, then the address is put on the stack. In 10676 // order to pass indirectly, space on the stack often needs to be allocated 10677 // in order to store the value. In this case the CCInfo.getNextStackOffset() 10678 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 10679 // are passed CCValAssign::Indirect. 10680 for (auto &VA : ArgLocs) 10681 if (VA.getLocInfo() == CCValAssign::Indirect) 10682 return false; 10683 10684 // Do not tail call opt if either caller or callee uses struct return 10685 // semantics. 10686 auto IsCallerStructRet = Caller.hasStructRetAttr(); 10687 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 10688 if (IsCallerStructRet || IsCalleeStructRet) 10689 return false; 10690 10691 // Externally-defined functions with weak linkage should not be 10692 // tail-called. The behaviour of branch instructions in this situation (as 10693 // used for tail calls) is implementation-defined, so we cannot rely on the 10694 // linker replacing the tail call with a return. 10695 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 10696 const GlobalValue *GV = G->getGlobal(); 10697 if (GV->hasExternalWeakLinkage()) 10698 return false; 10699 } 10700 10701 // The callee has to preserve all registers the caller needs to preserve. 10702 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10703 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 10704 if (CalleeCC != CallerCC) { 10705 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 10706 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 10707 return false; 10708 } 10709 10710 // Byval parameters hand the function a pointer directly into the stack area 10711 // we want to reuse during a tail call. Working around this *is* possible 10712 // but less efficient and uglier in LowerCall. 10713 for (auto &Arg : Outs) 10714 if (Arg.Flags.isByVal()) 10715 return false; 10716 10717 return true; 10718 } 10719 10720 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 10721 return DAG.getDataLayout().getPrefTypeAlign( 10722 VT.getTypeForEVT(*DAG.getContext())); 10723 } 10724 10725 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 10726 // and output parameter nodes. 10727 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 10728 SmallVectorImpl<SDValue> &InVals) const { 10729 SelectionDAG &DAG = CLI.DAG; 10730 SDLoc &DL = CLI.DL; 10731 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 10732 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 10733 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 10734 SDValue Chain = CLI.Chain; 10735 SDValue Callee = CLI.Callee; 10736 bool &IsTailCall = CLI.IsTailCall; 10737 CallingConv::ID CallConv = CLI.CallConv; 10738 bool IsVarArg = CLI.IsVarArg; 10739 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10740 MVT XLenVT = Subtarget.getXLenVT(); 10741 10742 MachineFunction &MF = DAG.getMachineFunction(); 10743 10744 // Analyze the operands of the call, assigning locations to each operand. 10745 SmallVector<CCValAssign, 16> ArgLocs; 10746 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 10747 10748 if (CallConv == CallingConv::GHC) 10749 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 10750 else 10751 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 10752 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 10753 : CC_RISCV); 10754 10755 // Check if it's really possible to do a tail call. 10756 if (IsTailCall) 10757 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 10758 10759 if (IsTailCall) 10760 ++NumTailCalls; 10761 else if (CLI.CB && CLI.CB->isMustTailCall()) 10762 report_fatal_error("failed to perform tail call elimination on a call " 10763 "site marked musttail"); 10764 10765 // Get a count of how many bytes are to be pushed on the stack. 10766 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 10767 10768 // Create local copies for byval args 10769 SmallVector<SDValue, 8> ByValArgs; 10770 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 10771 ISD::ArgFlagsTy Flags = Outs[i].Flags; 10772 if (!Flags.isByVal()) 10773 continue; 10774 10775 SDValue Arg = OutVals[i]; 10776 unsigned Size = Flags.getByValSize(); 10777 Align Alignment = Flags.getNonZeroByValAlign(); 10778 10779 int FI = 10780 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 10781 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 10782 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 10783 10784 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 10785 /*IsVolatile=*/false, 10786 /*AlwaysInline=*/false, IsTailCall, 10787 MachinePointerInfo(), MachinePointerInfo()); 10788 ByValArgs.push_back(FIPtr); 10789 } 10790 10791 if (!IsTailCall) 10792 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 10793 10794 // Copy argument values to their designated locations. 10795 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 10796 SmallVector<SDValue, 8> MemOpChains; 10797 SDValue StackPtr; 10798 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 10799 CCValAssign &VA = ArgLocs[i]; 10800 SDValue ArgValue = OutVals[i]; 10801 ISD::ArgFlagsTy Flags = Outs[i].Flags; 10802 10803 // Handle passing f64 on RV32D with a soft float ABI as a special case. 10804 bool IsF64OnRV32DSoftABI = 10805 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 10806 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 10807 SDValue SplitF64 = DAG.getNode( 10808 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 10809 SDValue Lo = SplitF64.getValue(0); 10810 SDValue Hi = SplitF64.getValue(1); 10811 10812 Register RegLo = VA.getLocReg(); 10813 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 10814 10815 if (RegLo == RISCV::X17) { 10816 // Second half of f64 is passed on the stack. 10817 // Work out the address of the stack slot. 10818 if (!StackPtr.getNode()) 10819 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 10820 // Emit the store. 10821 MemOpChains.push_back( 10822 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 10823 } else { 10824 // Second half of f64 is passed in another GPR. 10825 assert(RegLo < RISCV::X31 && "Invalid register pair"); 10826 Register RegHigh = RegLo + 1; 10827 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 10828 } 10829 continue; 10830 } 10831 10832 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 10833 // as any other MemLoc. 10834 10835 // Promote the value if needed. 10836 // For now, only handle fully promoted and indirect arguments. 10837 if (VA.getLocInfo() == CCValAssign::Indirect) { 10838 // Store the argument in a stack slot and pass its address. 10839 Align StackAlign = 10840 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 10841 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 10842 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 10843 // If the original argument was split (e.g. i128), we need 10844 // to store the required parts of it here (and pass just one address). 10845 // Vectors may be partly split to registers and partly to the stack, in 10846 // which case the base address is partly offset and subsequent stores are 10847 // relative to that. 10848 unsigned ArgIndex = Outs[i].OrigArgIndex; 10849 unsigned ArgPartOffset = Outs[i].PartOffset; 10850 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 10851 // Calculate the total size to store. We don't have access to what we're 10852 // actually storing other than performing the loop and collecting the 10853 // info. 10854 SmallVector<std::pair<SDValue, SDValue>> Parts; 10855 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 10856 SDValue PartValue = OutVals[i + 1]; 10857 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 10858 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 10859 EVT PartVT = PartValue.getValueType(); 10860 if (PartVT.isScalableVector()) 10861 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 10862 StoredSize += PartVT.getStoreSize(); 10863 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 10864 Parts.push_back(std::make_pair(PartValue, Offset)); 10865 ++i; 10866 } 10867 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 10868 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 10869 MemOpChains.push_back( 10870 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 10871 MachinePointerInfo::getFixedStack(MF, FI))); 10872 for (const auto &Part : Parts) { 10873 SDValue PartValue = Part.first; 10874 SDValue PartOffset = Part.second; 10875 SDValue Address = 10876 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 10877 MemOpChains.push_back( 10878 DAG.getStore(Chain, DL, PartValue, Address, 10879 MachinePointerInfo::getFixedStack(MF, FI))); 10880 } 10881 ArgValue = SpillSlot; 10882 } else { 10883 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 10884 } 10885 10886 // Use local copy if it is a byval arg. 10887 if (Flags.isByVal()) 10888 ArgValue = ByValArgs[j++]; 10889 10890 if (VA.isRegLoc()) { 10891 // Queue up the argument copies and emit them at the end. 10892 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 10893 } else { 10894 assert(VA.isMemLoc() && "Argument not register or memory"); 10895 assert(!IsTailCall && "Tail call not allowed if stack is used " 10896 "for passing parameters"); 10897 10898 // Work out the address of the stack slot. 10899 if (!StackPtr.getNode()) 10900 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 10901 SDValue Address = 10902 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 10903 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 10904 10905 // Emit the store. 10906 MemOpChains.push_back( 10907 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 10908 } 10909 } 10910 10911 // Join the stores, which are independent of one another. 10912 if (!MemOpChains.empty()) 10913 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 10914 10915 SDValue Glue; 10916 10917 // Build a sequence of copy-to-reg nodes, chained and glued together. 10918 for (auto &Reg : RegsToPass) { 10919 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 10920 Glue = Chain.getValue(1); 10921 } 10922 10923 // Validate that none of the argument registers have been marked as 10924 // reserved, if so report an error. Do the same for the return address if this 10925 // is not a tailcall. 10926 validateCCReservedRegs(RegsToPass, MF); 10927 if (!IsTailCall && 10928 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 10929 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10930 MF.getFunction(), 10931 "Return address register required, but has been reserved."}); 10932 10933 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 10934 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 10935 // split it and then direct call can be matched by PseudoCALL. 10936 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 10937 const GlobalValue *GV = S->getGlobal(); 10938 10939 unsigned OpFlags = RISCVII::MO_CALL; 10940 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 10941 OpFlags = RISCVII::MO_PLT; 10942 10943 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 10944 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 10945 unsigned OpFlags = RISCVII::MO_CALL; 10946 10947 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 10948 nullptr)) 10949 OpFlags = RISCVII::MO_PLT; 10950 10951 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 10952 } 10953 10954 // The first call operand is the chain and the second is the target address. 10955 SmallVector<SDValue, 8> Ops; 10956 Ops.push_back(Chain); 10957 Ops.push_back(Callee); 10958 10959 // Add argument registers to the end of the list so that they are 10960 // known live into the call. 10961 for (auto &Reg : RegsToPass) 10962 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 10963 10964 if (!IsTailCall) { 10965 // Add a register mask operand representing the call-preserved registers. 10966 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10967 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 10968 assert(Mask && "Missing call preserved mask for calling convention"); 10969 Ops.push_back(DAG.getRegisterMask(Mask)); 10970 } 10971 10972 // Glue the call to the argument copies, if any. 10973 if (Glue.getNode()) 10974 Ops.push_back(Glue); 10975 10976 // Emit the call. 10977 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10978 10979 if (IsTailCall) { 10980 MF.getFrameInfo().setHasTailCall(); 10981 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 10982 } 10983 10984 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 10985 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 10986 Glue = Chain.getValue(1); 10987 10988 // Mark the end of the call, which is glued to the call itself. 10989 Chain = DAG.getCALLSEQ_END(Chain, 10990 DAG.getConstant(NumBytes, DL, PtrVT, true), 10991 DAG.getConstant(0, DL, PtrVT, true), 10992 Glue, DL); 10993 Glue = Chain.getValue(1); 10994 10995 // Assign locations to each value returned by this call. 10996 SmallVector<CCValAssign, 16> RVLocs; 10997 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 10998 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 10999 11000 // Copy all of the result registers out of their specified physreg. 11001 for (auto &VA : RVLocs) { 11002 // Copy the value out 11003 SDValue RetValue = 11004 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 11005 // Glue the RetValue to the end of the call sequence 11006 Chain = RetValue.getValue(1); 11007 Glue = RetValue.getValue(2); 11008 11009 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 11010 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 11011 SDValue RetValue2 = 11012 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 11013 Chain = RetValue2.getValue(1); 11014 Glue = RetValue2.getValue(2); 11015 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 11016 RetValue2); 11017 } 11018 11019 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 11020 11021 InVals.push_back(RetValue); 11022 } 11023 11024 return Chain; 11025 } 11026 11027 bool RISCVTargetLowering::CanLowerReturn( 11028 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 11029 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 11030 SmallVector<CCValAssign, 16> RVLocs; 11031 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 11032 11033 Optional<unsigned> FirstMaskArgument; 11034 if (Subtarget.hasVInstructions()) 11035 FirstMaskArgument = preAssignMask(Outs); 11036 11037 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 11038 MVT VT = Outs[i].VT; 11039 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 11040 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 11041 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 11042 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 11043 *this, FirstMaskArgument)) 11044 return false; 11045 } 11046 return true; 11047 } 11048 11049 SDValue 11050 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 11051 bool IsVarArg, 11052 const SmallVectorImpl<ISD::OutputArg> &Outs, 11053 const SmallVectorImpl<SDValue> &OutVals, 11054 const SDLoc &DL, SelectionDAG &DAG) const { 11055 const MachineFunction &MF = DAG.getMachineFunction(); 11056 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 11057 11058 // Stores the assignment of the return value to a location. 11059 SmallVector<CCValAssign, 16> RVLocs; 11060 11061 // Info about the registers and stack slot. 11062 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 11063 *DAG.getContext()); 11064 11065 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 11066 nullptr, CC_RISCV); 11067 11068 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 11069 report_fatal_error("GHC functions return void only"); 11070 11071 SDValue Glue; 11072 SmallVector<SDValue, 4> RetOps(1, Chain); 11073 11074 // Copy the result values into the output registers. 11075 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 11076 SDValue Val = OutVals[i]; 11077 CCValAssign &VA = RVLocs[i]; 11078 assert(VA.isRegLoc() && "Can only return in registers!"); 11079 11080 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 11081 // Handle returning f64 on RV32D with a soft float ABI. 11082 assert(VA.isRegLoc() && "Expected return via registers"); 11083 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 11084 DAG.getVTList(MVT::i32, MVT::i32), Val); 11085 SDValue Lo = SplitF64.getValue(0); 11086 SDValue Hi = SplitF64.getValue(1); 11087 Register RegLo = VA.getLocReg(); 11088 assert(RegLo < RISCV::X31 && "Invalid register pair"); 11089 Register RegHi = RegLo + 1; 11090 11091 if (STI.isRegisterReservedByUser(RegLo) || 11092 STI.isRegisterReservedByUser(RegHi)) 11093 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 11094 MF.getFunction(), 11095 "Return value register required, but has been reserved."}); 11096 11097 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 11098 Glue = Chain.getValue(1); 11099 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 11100 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 11101 Glue = Chain.getValue(1); 11102 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 11103 } else { 11104 // Handle a 'normal' return. 11105 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 11106 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 11107 11108 if (STI.isRegisterReservedByUser(VA.getLocReg())) 11109 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 11110 MF.getFunction(), 11111 "Return value register required, but has been reserved."}); 11112 11113 // Guarantee that all emitted copies are stuck together. 11114 Glue = Chain.getValue(1); 11115 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 11116 } 11117 } 11118 11119 RetOps[0] = Chain; // Update chain. 11120 11121 // Add the glue node if we have it. 11122 if (Glue.getNode()) { 11123 RetOps.push_back(Glue); 11124 } 11125 11126 unsigned RetOpc = RISCVISD::RET_FLAG; 11127 // Interrupt service routines use different return instructions. 11128 const Function &Func = DAG.getMachineFunction().getFunction(); 11129 if (Func.hasFnAttribute("interrupt")) { 11130 if (!Func.getReturnType()->isVoidTy()) 11131 report_fatal_error( 11132 "Functions with the interrupt attribute must have void return type!"); 11133 11134 MachineFunction &MF = DAG.getMachineFunction(); 11135 StringRef Kind = 11136 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 11137 11138 if (Kind == "user") 11139 RetOpc = RISCVISD::URET_FLAG; 11140 else if (Kind == "supervisor") 11141 RetOpc = RISCVISD::SRET_FLAG; 11142 else 11143 RetOpc = RISCVISD::MRET_FLAG; 11144 } 11145 11146 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 11147 } 11148 11149 void RISCVTargetLowering::validateCCReservedRegs( 11150 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 11151 MachineFunction &MF) const { 11152 const Function &F = MF.getFunction(); 11153 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 11154 11155 if (llvm::any_of(Regs, [&STI](auto Reg) { 11156 return STI.isRegisterReservedByUser(Reg.first); 11157 })) 11158 F.getContext().diagnose(DiagnosticInfoUnsupported{ 11159 F, "Argument register required, but has been reserved."}); 11160 } 11161 11162 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 11163 return CI->isTailCall(); 11164 } 11165 11166 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 11167 #define NODE_NAME_CASE(NODE) \ 11168 case RISCVISD::NODE: \ 11169 return "RISCVISD::" #NODE; 11170 // clang-format off 11171 switch ((RISCVISD::NodeType)Opcode) { 11172 case RISCVISD::FIRST_NUMBER: 11173 break; 11174 NODE_NAME_CASE(RET_FLAG) 11175 NODE_NAME_CASE(URET_FLAG) 11176 NODE_NAME_CASE(SRET_FLAG) 11177 NODE_NAME_CASE(MRET_FLAG) 11178 NODE_NAME_CASE(CALL) 11179 NODE_NAME_CASE(SELECT_CC) 11180 NODE_NAME_CASE(BR_CC) 11181 NODE_NAME_CASE(BuildPairF64) 11182 NODE_NAME_CASE(SplitF64) 11183 NODE_NAME_CASE(TAIL) 11184 NODE_NAME_CASE(ADD_LO) 11185 NODE_NAME_CASE(HI) 11186 NODE_NAME_CASE(LLA) 11187 NODE_NAME_CASE(ADD_TPREL) 11188 NODE_NAME_CASE(MULHSU) 11189 NODE_NAME_CASE(SLLW) 11190 NODE_NAME_CASE(SRAW) 11191 NODE_NAME_CASE(SRLW) 11192 NODE_NAME_CASE(DIVW) 11193 NODE_NAME_CASE(DIVUW) 11194 NODE_NAME_CASE(REMUW) 11195 NODE_NAME_CASE(ROLW) 11196 NODE_NAME_CASE(RORW) 11197 NODE_NAME_CASE(CLZW) 11198 NODE_NAME_CASE(CTZW) 11199 NODE_NAME_CASE(FSLW) 11200 NODE_NAME_CASE(FSRW) 11201 NODE_NAME_CASE(FSL) 11202 NODE_NAME_CASE(FSR) 11203 NODE_NAME_CASE(FMV_H_X) 11204 NODE_NAME_CASE(FMV_X_ANYEXTH) 11205 NODE_NAME_CASE(FMV_X_SIGNEXTH) 11206 NODE_NAME_CASE(FMV_W_X_RV64) 11207 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 11208 NODE_NAME_CASE(FCVT_X) 11209 NODE_NAME_CASE(FCVT_XU) 11210 NODE_NAME_CASE(FCVT_W_RV64) 11211 NODE_NAME_CASE(FCVT_WU_RV64) 11212 NODE_NAME_CASE(STRICT_FCVT_W_RV64) 11213 NODE_NAME_CASE(STRICT_FCVT_WU_RV64) 11214 NODE_NAME_CASE(READ_CYCLE_WIDE) 11215 NODE_NAME_CASE(GREV) 11216 NODE_NAME_CASE(GREVW) 11217 NODE_NAME_CASE(GORC) 11218 NODE_NAME_CASE(GORCW) 11219 NODE_NAME_CASE(SHFL) 11220 NODE_NAME_CASE(SHFLW) 11221 NODE_NAME_CASE(UNSHFL) 11222 NODE_NAME_CASE(UNSHFLW) 11223 NODE_NAME_CASE(BFP) 11224 NODE_NAME_CASE(BFPW) 11225 NODE_NAME_CASE(BCOMPRESS) 11226 NODE_NAME_CASE(BCOMPRESSW) 11227 NODE_NAME_CASE(BDECOMPRESS) 11228 NODE_NAME_CASE(BDECOMPRESSW) 11229 NODE_NAME_CASE(VMV_V_X_VL) 11230 NODE_NAME_CASE(VFMV_V_F_VL) 11231 NODE_NAME_CASE(VMV_X_S) 11232 NODE_NAME_CASE(VMV_S_X_VL) 11233 NODE_NAME_CASE(VFMV_S_F_VL) 11234 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 11235 NODE_NAME_CASE(READ_VLENB) 11236 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 11237 NODE_NAME_CASE(VSLIDEUP_VL) 11238 NODE_NAME_CASE(VSLIDE1UP_VL) 11239 NODE_NAME_CASE(VSLIDEDOWN_VL) 11240 NODE_NAME_CASE(VSLIDE1DOWN_VL) 11241 NODE_NAME_CASE(VID_VL) 11242 NODE_NAME_CASE(VFNCVT_ROD_VL) 11243 NODE_NAME_CASE(VECREDUCE_ADD_VL) 11244 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 11245 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 11246 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 11247 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 11248 NODE_NAME_CASE(VECREDUCE_AND_VL) 11249 NODE_NAME_CASE(VECREDUCE_OR_VL) 11250 NODE_NAME_CASE(VECREDUCE_XOR_VL) 11251 NODE_NAME_CASE(VECREDUCE_FADD_VL) 11252 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 11253 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 11254 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 11255 NODE_NAME_CASE(ADD_VL) 11256 NODE_NAME_CASE(AND_VL) 11257 NODE_NAME_CASE(MUL_VL) 11258 NODE_NAME_CASE(OR_VL) 11259 NODE_NAME_CASE(SDIV_VL) 11260 NODE_NAME_CASE(SHL_VL) 11261 NODE_NAME_CASE(SREM_VL) 11262 NODE_NAME_CASE(SRA_VL) 11263 NODE_NAME_CASE(SRL_VL) 11264 NODE_NAME_CASE(SUB_VL) 11265 NODE_NAME_CASE(UDIV_VL) 11266 NODE_NAME_CASE(UREM_VL) 11267 NODE_NAME_CASE(XOR_VL) 11268 NODE_NAME_CASE(SADDSAT_VL) 11269 NODE_NAME_CASE(UADDSAT_VL) 11270 NODE_NAME_CASE(SSUBSAT_VL) 11271 NODE_NAME_CASE(USUBSAT_VL) 11272 NODE_NAME_CASE(FADD_VL) 11273 NODE_NAME_CASE(FSUB_VL) 11274 NODE_NAME_CASE(FMUL_VL) 11275 NODE_NAME_CASE(FDIV_VL) 11276 NODE_NAME_CASE(FNEG_VL) 11277 NODE_NAME_CASE(FABS_VL) 11278 NODE_NAME_CASE(FSQRT_VL) 11279 NODE_NAME_CASE(FMA_VL) 11280 NODE_NAME_CASE(FCOPYSIGN_VL) 11281 NODE_NAME_CASE(SMIN_VL) 11282 NODE_NAME_CASE(SMAX_VL) 11283 NODE_NAME_CASE(UMIN_VL) 11284 NODE_NAME_CASE(UMAX_VL) 11285 NODE_NAME_CASE(FMINNUM_VL) 11286 NODE_NAME_CASE(FMAXNUM_VL) 11287 NODE_NAME_CASE(MULHS_VL) 11288 NODE_NAME_CASE(MULHU_VL) 11289 NODE_NAME_CASE(FP_TO_SINT_VL) 11290 NODE_NAME_CASE(FP_TO_UINT_VL) 11291 NODE_NAME_CASE(SINT_TO_FP_VL) 11292 NODE_NAME_CASE(UINT_TO_FP_VL) 11293 NODE_NAME_CASE(FP_EXTEND_VL) 11294 NODE_NAME_CASE(FP_ROUND_VL) 11295 NODE_NAME_CASE(VWMUL_VL) 11296 NODE_NAME_CASE(VWMULU_VL) 11297 NODE_NAME_CASE(VWMULSU_VL) 11298 NODE_NAME_CASE(VWADD_VL) 11299 NODE_NAME_CASE(VWADDU_VL) 11300 NODE_NAME_CASE(VWSUB_VL) 11301 NODE_NAME_CASE(VWSUBU_VL) 11302 NODE_NAME_CASE(VWADD_W_VL) 11303 NODE_NAME_CASE(VWADDU_W_VL) 11304 NODE_NAME_CASE(VWSUB_W_VL) 11305 NODE_NAME_CASE(VWSUBU_W_VL) 11306 NODE_NAME_CASE(SETCC_VL) 11307 NODE_NAME_CASE(VSELECT_VL) 11308 NODE_NAME_CASE(VP_MERGE_VL) 11309 NODE_NAME_CASE(VMAND_VL) 11310 NODE_NAME_CASE(VMOR_VL) 11311 NODE_NAME_CASE(VMXOR_VL) 11312 NODE_NAME_CASE(VMCLR_VL) 11313 NODE_NAME_CASE(VMSET_VL) 11314 NODE_NAME_CASE(VRGATHER_VX_VL) 11315 NODE_NAME_CASE(VRGATHER_VV_VL) 11316 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 11317 NODE_NAME_CASE(VSEXT_VL) 11318 NODE_NAME_CASE(VZEXT_VL) 11319 NODE_NAME_CASE(VCPOP_VL) 11320 NODE_NAME_CASE(READ_CSR) 11321 NODE_NAME_CASE(WRITE_CSR) 11322 NODE_NAME_CASE(SWAP_CSR) 11323 } 11324 // clang-format on 11325 return nullptr; 11326 #undef NODE_NAME_CASE 11327 } 11328 11329 /// getConstraintType - Given a constraint letter, return the type of 11330 /// constraint it is for this target. 11331 RISCVTargetLowering::ConstraintType 11332 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 11333 if (Constraint.size() == 1) { 11334 switch (Constraint[0]) { 11335 default: 11336 break; 11337 case 'f': 11338 return C_RegisterClass; 11339 case 'I': 11340 case 'J': 11341 case 'K': 11342 return C_Immediate; 11343 case 'A': 11344 return C_Memory; 11345 case 'S': // A symbolic address 11346 return C_Other; 11347 } 11348 } else { 11349 if (Constraint == "vr" || Constraint == "vm") 11350 return C_RegisterClass; 11351 } 11352 return TargetLowering::getConstraintType(Constraint); 11353 } 11354 11355 std::pair<unsigned, const TargetRegisterClass *> 11356 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 11357 StringRef Constraint, 11358 MVT VT) const { 11359 // First, see if this is a constraint that directly corresponds to a 11360 // RISCV register class. 11361 if (Constraint.size() == 1) { 11362 switch (Constraint[0]) { 11363 case 'r': 11364 // TODO: Support fixed vectors up to XLen for P extension? 11365 if (VT.isVector()) 11366 break; 11367 return std::make_pair(0U, &RISCV::GPRRegClass); 11368 case 'f': 11369 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 11370 return std::make_pair(0U, &RISCV::FPR16RegClass); 11371 if (Subtarget.hasStdExtF() && VT == MVT::f32) 11372 return std::make_pair(0U, &RISCV::FPR32RegClass); 11373 if (Subtarget.hasStdExtD() && VT == MVT::f64) 11374 return std::make_pair(0U, &RISCV::FPR64RegClass); 11375 break; 11376 default: 11377 break; 11378 } 11379 } else if (Constraint == "vr") { 11380 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 11381 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 11382 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 11383 return std::make_pair(0U, RC); 11384 } 11385 } else if (Constraint == "vm") { 11386 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 11387 return std::make_pair(0U, &RISCV::VMV0RegClass); 11388 } 11389 11390 // Clang will correctly decode the usage of register name aliases into their 11391 // official names. However, other frontends like `rustc` do not. This allows 11392 // users of these frontends to use the ABI names for registers in LLVM-style 11393 // register constraints. 11394 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 11395 .Case("{zero}", RISCV::X0) 11396 .Case("{ra}", RISCV::X1) 11397 .Case("{sp}", RISCV::X2) 11398 .Case("{gp}", RISCV::X3) 11399 .Case("{tp}", RISCV::X4) 11400 .Case("{t0}", RISCV::X5) 11401 .Case("{t1}", RISCV::X6) 11402 .Case("{t2}", RISCV::X7) 11403 .Cases("{s0}", "{fp}", RISCV::X8) 11404 .Case("{s1}", RISCV::X9) 11405 .Case("{a0}", RISCV::X10) 11406 .Case("{a1}", RISCV::X11) 11407 .Case("{a2}", RISCV::X12) 11408 .Case("{a3}", RISCV::X13) 11409 .Case("{a4}", RISCV::X14) 11410 .Case("{a5}", RISCV::X15) 11411 .Case("{a6}", RISCV::X16) 11412 .Case("{a7}", RISCV::X17) 11413 .Case("{s2}", RISCV::X18) 11414 .Case("{s3}", RISCV::X19) 11415 .Case("{s4}", RISCV::X20) 11416 .Case("{s5}", RISCV::X21) 11417 .Case("{s6}", RISCV::X22) 11418 .Case("{s7}", RISCV::X23) 11419 .Case("{s8}", RISCV::X24) 11420 .Case("{s9}", RISCV::X25) 11421 .Case("{s10}", RISCV::X26) 11422 .Case("{s11}", RISCV::X27) 11423 .Case("{t3}", RISCV::X28) 11424 .Case("{t4}", RISCV::X29) 11425 .Case("{t5}", RISCV::X30) 11426 .Case("{t6}", RISCV::X31) 11427 .Default(RISCV::NoRegister); 11428 if (XRegFromAlias != RISCV::NoRegister) 11429 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 11430 11431 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 11432 // TableGen record rather than the AsmName to choose registers for InlineAsm 11433 // constraints, plus we want to match those names to the widest floating point 11434 // register type available, manually select floating point registers here. 11435 // 11436 // The second case is the ABI name of the register, so that frontends can also 11437 // use the ABI names in register constraint lists. 11438 if (Subtarget.hasStdExtF()) { 11439 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 11440 .Cases("{f0}", "{ft0}", RISCV::F0_F) 11441 .Cases("{f1}", "{ft1}", RISCV::F1_F) 11442 .Cases("{f2}", "{ft2}", RISCV::F2_F) 11443 .Cases("{f3}", "{ft3}", RISCV::F3_F) 11444 .Cases("{f4}", "{ft4}", RISCV::F4_F) 11445 .Cases("{f5}", "{ft5}", RISCV::F5_F) 11446 .Cases("{f6}", "{ft6}", RISCV::F6_F) 11447 .Cases("{f7}", "{ft7}", RISCV::F7_F) 11448 .Cases("{f8}", "{fs0}", RISCV::F8_F) 11449 .Cases("{f9}", "{fs1}", RISCV::F9_F) 11450 .Cases("{f10}", "{fa0}", RISCV::F10_F) 11451 .Cases("{f11}", "{fa1}", RISCV::F11_F) 11452 .Cases("{f12}", "{fa2}", RISCV::F12_F) 11453 .Cases("{f13}", "{fa3}", RISCV::F13_F) 11454 .Cases("{f14}", "{fa4}", RISCV::F14_F) 11455 .Cases("{f15}", "{fa5}", RISCV::F15_F) 11456 .Cases("{f16}", "{fa6}", RISCV::F16_F) 11457 .Cases("{f17}", "{fa7}", RISCV::F17_F) 11458 .Cases("{f18}", "{fs2}", RISCV::F18_F) 11459 .Cases("{f19}", "{fs3}", RISCV::F19_F) 11460 .Cases("{f20}", "{fs4}", RISCV::F20_F) 11461 .Cases("{f21}", "{fs5}", RISCV::F21_F) 11462 .Cases("{f22}", "{fs6}", RISCV::F22_F) 11463 .Cases("{f23}", "{fs7}", RISCV::F23_F) 11464 .Cases("{f24}", "{fs8}", RISCV::F24_F) 11465 .Cases("{f25}", "{fs9}", RISCV::F25_F) 11466 .Cases("{f26}", "{fs10}", RISCV::F26_F) 11467 .Cases("{f27}", "{fs11}", RISCV::F27_F) 11468 .Cases("{f28}", "{ft8}", RISCV::F28_F) 11469 .Cases("{f29}", "{ft9}", RISCV::F29_F) 11470 .Cases("{f30}", "{ft10}", RISCV::F30_F) 11471 .Cases("{f31}", "{ft11}", RISCV::F31_F) 11472 .Default(RISCV::NoRegister); 11473 if (FReg != RISCV::NoRegister) { 11474 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 11475 if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) { 11476 unsigned RegNo = FReg - RISCV::F0_F; 11477 unsigned DReg = RISCV::F0_D + RegNo; 11478 return std::make_pair(DReg, &RISCV::FPR64RegClass); 11479 } 11480 if (VT == MVT::f32 || VT == MVT::Other) 11481 return std::make_pair(FReg, &RISCV::FPR32RegClass); 11482 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) { 11483 unsigned RegNo = FReg - RISCV::F0_F; 11484 unsigned HReg = RISCV::F0_H + RegNo; 11485 return std::make_pair(HReg, &RISCV::FPR16RegClass); 11486 } 11487 } 11488 } 11489 11490 if (Subtarget.hasVInstructions()) { 11491 Register VReg = StringSwitch<Register>(Constraint.lower()) 11492 .Case("{v0}", RISCV::V0) 11493 .Case("{v1}", RISCV::V1) 11494 .Case("{v2}", RISCV::V2) 11495 .Case("{v3}", RISCV::V3) 11496 .Case("{v4}", RISCV::V4) 11497 .Case("{v5}", RISCV::V5) 11498 .Case("{v6}", RISCV::V6) 11499 .Case("{v7}", RISCV::V7) 11500 .Case("{v8}", RISCV::V8) 11501 .Case("{v9}", RISCV::V9) 11502 .Case("{v10}", RISCV::V10) 11503 .Case("{v11}", RISCV::V11) 11504 .Case("{v12}", RISCV::V12) 11505 .Case("{v13}", RISCV::V13) 11506 .Case("{v14}", RISCV::V14) 11507 .Case("{v15}", RISCV::V15) 11508 .Case("{v16}", RISCV::V16) 11509 .Case("{v17}", RISCV::V17) 11510 .Case("{v18}", RISCV::V18) 11511 .Case("{v19}", RISCV::V19) 11512 .Case("{v20}", RISCV::V20) 11513 .Case("{v21}", RISCV::V21) 11514 .Case("{v22}", RISCV::V22) 11515 .Case("{v23}", RISCV::V23) 11516 .Case("{v24}", RISCV::V24) 11517 .Case("{v25}", RISCV::V25) 11518 .Case("{v26}", RISCV::V26) 11519 .Case("{v27}", RISCV::V27) 11520 .Case("{v28}", RISCV::V28) 11521 .Case("{v29}", RISCV::V29) 11522 .Case("{v30}", RISCV::V30) 11523 .Case("{v31}", RISCV::V31) 11524 .Default(RISCV::NoRegister); 11525 if (VReg != RISCV::NoRegister) { 11526 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 11527 return std::make_pair(VReg, &RISCV::VMRegClass); 11528 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 11529 return std::make_pair(VReg, &RISCV::VRRegClass); 11530 for (const auto *RC : 11531 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 11532 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 11533 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 11534 return std::make_pair(VReg, RC); 11535 } 11536 } 11537 } 11538 } 11539 11540 std::pair<Register, const TargetRegisterClass *> Res = 11541 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 11542 11543 // If we picked one of the Zfinx register classes, remap it to the GPR class. 11544 // FIXME: When Zfinx is supported in CodeGen this will need to take the 11545 // Subtarget into account. 11546 if (Res.second == &RISCV::GPRF16RegClass || 11547 Res.second == &RISCV::GPRF32RegClass || 11548 Res.second == &RISCV::GPRF64RegClass) 11549 return std::make_pair(Res.first, &RISCV::GPRRegClass); 11550 11551 return Res; 11552 } 11553 11554 unsigned 11555 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 11556 // Currently only support length 1 constraints. 11557 if (ConstraintCode.size() == 1) { 11558 switch (ConstraintCode[0]) { 11559 case 'A': 11560 return InlineAsm::Constraint_A; 11561 default: 11562 break; 11563 } 11564 } 11565 11566 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 11567 } 11568 11569 void RISCVTargetLowering::LowerAsmOperandForConstraint( 11570 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 11571 SelectionDAG &DAG) const { 11572 // Currently only support length 1 constraints. 11573 if (Constraint.length() == 1) { 11574 switch (Constraint[0]) { 11575 case 'I': 11576 // Validate & create a 12-bit signed immediate operand. 11577 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 11578 uint64_t CVal = C->getSExtValue(); 11579 if (isInt<12>(CVal)) 11580 Ops.push_back( 11581 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 11582 } 11583 return; 11584 case 'J': 11585 // Validate & create an integer zero operand. 11586 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 11587 if (C->getZExtValue() == 0) 11588 Ops.push_back( 11589 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 11590 return; 11591 case 'K': 11592 // Validate & create a 5-bit unsigned immediate operand. 11593 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 11594 uint64_t CVal = C->getZExtValue(); 11595 if (isUInt<5>(CVal)) 11596 Ops.push_back( 11597 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 11598 } 11599 return; 11600 case 'S': 11601 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 11602 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 11603 GA->getValueType(0))); 11604 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 11605 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 11606 BA->getValueType(0))); 11607 } 11608 return; 11609 default: 11610 break; 11611 } 11612 } 11613 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 11614 } 11615 11616 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 11617 Instruction *Inst, 11618 AtomicOrdering Ord) const { 11619 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 11620 return Builder.CreateFence(Ord); 11621 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 11622 return Builder.CreateFence(AtomicOrdering::Release); 11623 return nullptr; 11624 } 11625 11626 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 11627 Instruction *Inst, 11628 AtomicOrdering Ord) const { 11629 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 11630 return Builder.CreateFence(AtomicOrdering::Acquire); 11631 return nullptr; 11632 } 11633 11634 TargetLowering::AtomicExpansionKind 11635 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 11636 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 11637 // point operations can't be used in an lr/sc sequence without breaking the 11638 // forward-progress guarantee. 11639 if (AI->isFloatingPointOperation()) 11640 return AtomicExpansionKind::CmpXChg; 11641 11642 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 11643 if (Size == 8 || Size == 16) 11644 return AtomicExpansionKind::MaskedIntrinsic; 11645 return AtomicExpansionKind::None; 11646 } 11647 11648 static Intrinsic::ID 11649 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 11650 if (XLen == 32) { 11651 switch (BinOp) { 11652 default: 11653 llvm_unreachable("Unexpected AtomicRMW BinOp"); 11654 case AtomicRMWInst::Xchg: 11655 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 11656 case AtomicRMWInst::Add: 11657 return Intrinsic::riscv_masked_atomicrmw_add_i32; 11658 case AtomicRMWInst::Sub: 11659 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 11660 case AtomicRMWInst::Nand: 11661 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 11662 case AtomicRMWInst::Max: 11663 return Intrinsic::riscv_masked_atomicrmw_max_i32; 11664 case AtomicRMWInst::Min: 11665 return Intrinsic::riscv_masked_atomicrmw_min_i32; 11666 case AtomicRMWInst::UMax: 11667 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 11668 case AtomicRMWInst::UMin: 11669 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 11670 } 11671 } 11672 11673 if (XLen == 64) { 11674 switch (BinOp) { 11675 default: 11676 llvm_unreachable("Unexpected AtomicRMW BinOp"); 11677 case AtomicRMWInst::Xchg: 11678 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 11679 case AtomicRMWInst::Add: 11680 return Intrinsic::riscv_masked_atomicrmw_add_i64; 11681 case AtomicRMWInst::Sub: 11682 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 11683 case AtomicRMWInst::Nand: 11684 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 11685 case AtomicRMWInst::Max: 11686 return Intrinsic::riscv_masked_atomicrmw_max_i64; 11687 case AtomicRMWInst::Min: 11688 return Intrinsic::riscv_masked_atomicrmw_min_i64; 11689 case AtomicRMWInst::UMax: 11690 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 11691 case AtomicRMWInst::UMin: 11692 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 11693 } 11694 } 11695 11696 llvm_unreachable("Unexpected XLen\n"); 11697 } 11698 11699 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 11700 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 11701 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 11702 unsigned XLen = Subtarget.getXLen(); 11703 Value *Ordering = 11704 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 11705 Type *Tys[] = {AlignedAddr->getType()}; 11706 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 11707 AI->getModule(), 11708 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 11709 11710 if (XLen == 64) { 11711 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 11712 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 11713 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 11714 } 11715 11716 Value *Result; 11717 11718 // Must pass the shift amount needed to sign extend the loaded value prior 11719 // to performing a signed comparison for min/max. ShiftAmt is the number of 11720 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 11721 // is the number of bits to left+right shift the value in order to 11722 // sign-extend. 11723 if (AI->getOperation() == AtomicRMWInst::Min || 11724 AI->getOperation() == AtomicRMWInst::Max) { 11725 const DataLayout &DL = AI->getModule()->getDataLayout(); 11726 unsigned ValWidth = 11727 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 11728 Value *SextShamt = 11729 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 11730 Result = Builder.CreateCall(LrwOpScwLoop, 11731 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 11732 } else { 11733 Result = 11734 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 11735 } 11736 11737 if (XLen == 64) 11738 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 11739 return Result; 11740 } 11741 11742 TargetLowering::AtomicExpansionKind 11743 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 11744 AtomicCmpXchgInst *CI) const { 11745 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 11746 if (Size == 8 || Size == 16) 11747 return AtomicExpansionKind::MaskedIntrinsic; 11748 return AtomicExpansionKind::None; 11749 } 11750 11751 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 11752 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 11753 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 11754 unsigned XLen = Subtarget.getXLen(); 11755 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 11756 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 11757 if (XLen == 64) { 11758 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 11759 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 11760 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 11761 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 11762 } 11763 Type *Tys[] = {AlignedAddr->getType()}; 11764 Function *MaskedCmpXchg = 11765 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 11766 Value *Result = Builder.CreateCall( 11767 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 11768 if (XLen == 64) 11769 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 11770 return Result; 11771 } 11772 11773 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT IndexVT, 11774 EVT DataVT) const { 11775 return false; 11776 } 11777 11778 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 11779 EVT VT) const { 11780 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 11781 return false; 11782 11783 switch (FPVT.getSimpleVT().SimpleTy) { 11784 case MVT::f16: 11785 return Subtarget.hasStdExtZfh(); 11786 case MVT::f32: 11787 return Subtarget.hasStdExtF(); 11788 case MVT::f64: 11789 return Subtarget.hasStdExtD(); 11790 default: 11791 return false; 11792 } 11793 } 11794 11795 unsigned RISCVTargetLowering::getJumpTableEncoding() const { 11796 // If we are using the small code model, we can reduce size of jump table 11797 // entry to 4 bytes. 11798 if (Subtarget.is64Bit() && !isPositionIndependent() && 11799 getTargetMachine().getCodeModel() == CodeModel::Small) { 11800 return MachineJumpTableInfo::EK_Custom32; 11801 } 11802 return TargetLowering::getJumpTableEncoding(); 11803 } 11804 11805 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry( 11806 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 11807 unsigned uid, MCContext &Ctx) const { 11808 assert(Subtarget.is64Bit() && !isPositionIndependent() && 11809 getTargetMachine().getCodeModel() == CodeModel::Small); 11810 return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 11811 } 11812 11813 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 11814 EVT VT) const { 11815 VT = VT.getScalarType(); 11816 11817 if (!VT.isSimple()) 11818 return false; 11819 11820 switch (VT.getSimpleVT().SimpleTy) { 11821 case MVT::f16: 11822 return Subtarget.hasStdExtZfh(); 11823 case MVT::f32: 11824 return Subtarget.hasStdExtF(); 11825 case MVT::f64: 11826 return Subtarget.hasStdExtD(); 11827 default: 11828 break; 11829 } 11830 11831 return false; 11832 } 11833 11834 Register RISCVTargetLowering::getExceptionPointerRegister( 11835 const Constant *PersonalityFn) const { 11836 return RISCV::X10; 11837 } 11838 11839 Register RISCVTargetLowering::getExceptionSelectorRegister( 11840 const Constant *PersonalityFn) const { 11841 return RISCV::X11; 11842 } 11843 11844 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 11845 // Return false to suppress the unnecessary extensions if the LibCall 11846 // arguments or return value is f32 type for LP64 ABI. 11847 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 11848 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 11849 return false; 11850 11851 return true; 11852 } 11853 11854 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 11855 if (Subtarget.is64Bit() && Type == MVT::i32) 11856 return true; 11857 11858 return IsSigned; 11859 } 11860 11861 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 11862 SDValue C) const { 11863 // Check integral scalar types. 11864 if (VT.isScalarInteger()) { 11865 // Omit the optimization if the sub target has the M extension and the data 11866 // size exceeds XLen. 11867 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 11868 return false; 11869 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 11870 // Break the MUL to a SLLI and an ADD/SUB. 11871 const APInt &Imm = ConstNode->getAPIntValue(); 11872 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 11873 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 11874 return true; 11875 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 11876 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 11877 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 11878 (Imm - 8).isPowerOf2())) 11879 return true; 11880 // Omit the following optimization if the sub target has the M extension 11881 // and the data size >= XLen. 11882 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 11883 return false; 11884 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 11885 // a pair of LUI/ADDI. 11886 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 11887 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 11888 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 11889 (1 - ImmS).isPowerOf2()) 11890 return true; 11891 } 11892 } 11893 } 11894 11895 return false; 11896 } 11897 11898 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode, 11899 SDValue ConstNode) const { 11900 // Let the DAGCombiner decide for vectors. 11901 EVT VT = AddNode.getValueType(); 11902 if (VT.isVector()) 11903 return true; 11904 11905 // Let the DAGCombiner decide for larger types. 11906 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 11907 return true; 11908 11909 // It is worse if c1 is simm12 while c1*c2 is not. 11910 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 11911 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 11912 const APInt &C1 = C1Node->getAPIntValue(); 11913 const APInt &C2 = C2Node->getAPIntValue(); 11914 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 11915 return false; 11916 11917 // Default to true and let the DAGCombiner decide. 11918 return true; 11919 } 11920 11921 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 11922 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 11923 bool *Fast) const { 11924 if (!VT.isVector()) { 11925 if (Fast) 11926 *Fast = false; 11927 return Subtarget.enableUnalignedScalarMem(); 11928 } 11929 11930 // All vector implementations must support element alignment 11931 EVT ElemVT = VT.getVectorElementType(); 11932 if (Alignment >= ElemVT.getStoreSize()) { 11933 if (Fast) 11934 *Fast = true; 11935 return true; 11936 } 11937 11938 return false; 11939 } 11940 11941 bool RISCVTargetLowering::splitValueIntoRegisterParts( 11942 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 11943 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 11944 bool IsABIRegCopy = CC.has_value(); 11945 EVT ValueVT = Val.getValueType(); 11946 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 11947 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 11948 // and cast to f32. 11949 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 11950 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 11951 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 11952 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 11953 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 11954 Parts[0] = Val; 11955 return true; 11956 } 11957 11958 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 11959 LLVMContext &Context = *DAG.getContext(); 11960 EVT ValueEltVT = ValueVT.getVectorElementType(); 11961 EVT PartEltVT = PartVT.getVectorElementType(); 11962 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 11963 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 11964 if (PartVTBitSize % ValueVTBitSize == 0) { 11965 assert(PartVTBitSize >= ValueVTBitSize); 11966 // If the element types are different, bitcast to the same element type of 11967 // PartVT first. 11968 // Give an example here, we want copy a <vscale x 1 x i8> value to 11969 // <vscale x 4 x i16>. 11970 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 11971 // subvector, then we can bitcast to <vscale x 4 x i16>. 11972 if (ValueEltVT != PartEltVT) { 11973 if (PartVTBitSize > ValueVTBitSize) { 11974 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 11975 assert(Count != 0 && "The number of element should not be zero."); 11976 EVT SameEltTypeVT = 11977 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 11978 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 11979 DAG.getUNDEF(SameEltTypeVT), Val, 11980 DAG.getVectorIdxConstant(0, DL)); 11981 } 11982 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 11983 } else { 11984 Val = 11985 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 11986 Val, DAG.getVectorIdxConstant(0, DL)); 11987 } 11988 Parts[0] = Val; 11989 return true; 11990 } 11991 } 11992 return false; 11993 } 11994 11995 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 11996 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 11997 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 11998 bool IsABIRegCopy = CC.has_value(); 11999 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 12000 SDValue Val = Parts[0]; 12001 12002 // Cast the f32 to i32, truncate to i16, and cast back to f16. 12003 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 12004 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 12005 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 12006 return Val; 12007 } 12008 12009 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 12010 LLVMContext &Context = *DAG.getContext(); 12011 SDValue Val = Parts[0]; 12012 EVT ValueEltVT = ValueVT.getVectorElementType(); 12013 EVT PartEltVT = PartVT.getVectorElementType(); 12014 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 12015 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 12016 if (PartVTBitSize % ValueVTBitSize == 0) { 12017 assert(PartVTBitSize >= ValueVTBitSize); 12018 EVT SameEltTypeVT = ValueVT; 12019 // If the element types are different, convert it to the same element type 12020 // of PartVT. 12021 // Give an example here, we want copy a <vscale x 1 x i8> value from 12022 // <vscale x 4 x i16>. 12023 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 12024 // then we can extract <vscale x 1 x i8>. 12025 if (ValueEltVT != PartEltVT) { 12026 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 12027 assert(Count != 0 && "The number of element should not be zero."); 12028 SameEltTypeVT = 12029 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 12030 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 12031 } 12032 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 12033 DAG.getVectorIdxConstant(0, DL)); 12034 return Val; 12035 } 12036 } 12037 return SDValue(); 12038 } 12039 12040 SDValue 12041 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 12042 SelectionDAG &DAG, 12043 SmallVectorImpl<SDNode *> &Created) const { 12044 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 12045 if (isIntDivCheap(N->getValueType(0), Attr)) 12046 return SDValue(N, 0); // Lower SDIV as SDIV 12047 12048 assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) && 12049 "Unexpected divisor!"); 12050 12051 // Conditional move is needed, so do the transformation iff Zbt is enabled. 12052 if (!Subtarget.hasStdExtZbt()) 12053 return SDValue(); 12054 12055 // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation. 12056 // Besides, more critical path instructions will be generated when dividing 12057 // by 2. So we keep using the original DAGs for these cases. 12058 unsigned Lg2 = Divisor.countTrailingZeros(); 12059 if (Lg2 == 1 || Lg2 >= 12) 12060 return SDValue(); 12061 12062 // fold (sdiv X, pow2) 12063 EVT VT = N->getValueType(0); 12064 if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64)) 12065 return SDValue(); 12066 12067 SDLoc DL(N); 12068 SDValue N0 = N->getOperand(0); 12069 SDValue Zero = DAG.getConstant(0, DL, VT); 12070 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); 12071 12072 // Add (N0 < 0) ? Pow2 - 1 : 0; 12073 SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT); 12074 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 12075 SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 12076 12077 Created.push_back(Cmp.getNode()); 12078 Created.push_back(Add.getNode()); 12079 Created.push_back(Sel.getNode()); 12080 12081 // Divide by pow2. 12082 SDValue SRA = 12083 DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT)); 12084 12085 // If we're dividing by a positive value, we're done. Otherwise, we must 12086 // negate the result. 12087 if (Divisor.isNonNegative()) 12088 return SRA; 12089 12090 Created.push_back(SRA.getNode()); 12091 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 12092 } 12093 12094 #define GET_REGISTER_MATCHER 12095 #include "RISCVGenAsmMatcher.inc" 12096 12097 Register 12098 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 12099 const MachineFunction &MF) const { 12100 Register Reg = MatchRegisterAltName(RegName); 12101 if (Reg == RISCV::NoRegister) 12102 Reg = MatchRegisterName(RegName); 12103 if (Reg == RISCV::NoRegister) 12104 report_fatal_error( 12105 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 12106 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 12107 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 12108 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 12109 StringRef(RegName) + "\".")); 12110 return Reg; 12111 } 12112 12113 namespace llvm { 12114 namespace RISCVVIntrinsicsTable { 12115 12116 #define GET_RISCVVIntrinsicsTable_IMPL 12117 #include "RISCVGenSearchableTables.inc" 12118 12119 } // namespace RISCVVIntrinsicsTable 12120 12121 } // namespace llvm 12122