1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicsRISCV.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "riscv-lower"
45 
46 STATISTIC(NumTailCalls, "Number of tail calls");
47 
48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
49                                          const RISCVSubtarget &STI)
50     : TargetLowering(TM), Subtarget(STI) {
51 
52   if (Subtarget.isRV32E())
53     report_fatal_error("Codegen not yet implemented for RV32E");
54 
55   RISCVABI::ABI ABI = Subtarget.getTargetABI();
56   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
57 
58   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
59       !Subtarget.hasStdExtF()) {
60     errs() << "Hard-float 'f' ABI can't be used for a target that "
61                 "doesn't support the F instruction set extension (ignoring "
62                           "target-abi)\n";
63     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
64   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
65              !Subtarget.hasStdExtD()) {
66     errs() << "Hard-float 'd' ABI can't be used for a target that "
67               "doesn't support the D instruction set extension (ignoring "
68               "target-abi)\n";
69     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
70   }
71 
72   switch (ABI) {
73   default:
74     report_fatal_error("Don't know how to lower this ABI");
75   case RISCVABI::ABI_ILP32:
76   case RISCVABI::ABI_ILP32F:
77   case RISCVABI::ABI_ILP32D:
78   case RISCVABI::ABI_LP64:
79   case RISCVABI::ABI_LP64F:
80   case RISCVABI::ABI_LP64D:
81     break;
82   }
83 
84   MVT XLenVT = Subtarget.getXLenVT();
85 
86   // Set up the register classes.
87   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
88 
89   if (Subtarget.hasStdExtZfh())
90     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
91   if (Subtarget.hasStdExtF())
92     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
93   if (Subtarget.hasStdExtD())
94     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
95 
96   static const MVT::SimpleValueType BoolVecVTs[] = {
97       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
98       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
99   static const MVT::SimpleValueType IntVecVTs[] = {
100       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
101       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
102       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
103       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
104       MVT::nxv4i64, MVT::nxv8i64};
105   static const MVT::SimpleValueType F16VecVTs[] = {
106       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
107       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
108   static const MVT::SimpleValueType F32VecVTs[] = {
109       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
110   static const MVT::SimpleValueType F64VecVTs[] = {
111       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
112 
113   if (Subtarget.hasVInstructions()) {
114     auto addRegClassForRVV = [this](MVT VT) {
115       unsigned Size = VT.getSizeInBits().getKnownMinValue();
116       assert(Size <= 512 && isPowerOf2_32(Size));
117       const TargetRegisterClass *RC;
118       if (Size <= 64)
119         RC = &RISCV::VRRegClass;
120       else if (Size == 128)
121         RC = &RISCV::VRM2RegClass;
122       else if (Size == 256)
123         RC = &RISCV::VRM4RegClass;
124       else
125         RC = &RISCV::VRM8RegClass;
126 
127       addRegisterClass(VT, RC);
128     };
129 
130     for (MVT VT : BoolVecVTs)
131       addRegClassForRVV(VT);
132     for (MVT VT : IntVecVTs) {
133       if (VT.getVectorElementType() == MVT::i64 &&
134           !Subtarget.hasVInstructionsI64())
135         continue;
136       addRegClassForRVV(VT);
137     }
138 
139     if (Subtarget.hasVInstructionsF16())
140       for (MVT VT : F16VecVTs)
141         addRegClassForRVV(VT);
142 
143     if (Subtarget.hasVInstructionsF32())
144       for (MVT VT : F32VecVTs)
145         addRegClassForRVV(VT);
146 
147     if (Subtarget.hasVInstructionsF64())
148       for (MVT VT : F64VecVTs)
149         addRegClassForRVV(VT);
150 
151     if (Subtarget.useRVVForFixedLengthVectors()) {
152       auto addRegClassForFixedVectors = [this](MVT VT) {
153         MVT ContainerVT = getContainerForFixedLengthVector(VT);
154         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
155         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
156         addRegisterClass(VT, TRI.getRegClass(RCID));
157       };
158       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
159         if (useRVVForFixedLengthVectorVT(VT))
160           addRegClassForFixedVectors(VT);
161 
162       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
163         if (useRVVForFixedLengthVectorVT(VT))
164           addRegClassForFixedVectors(VT);
165     }
166   }
167 
168   // Compute derived properties from the register classes.
169   computeRegisterProperties(STI.getRegisterInfo());
170 
171   setStackPointerRegisterToSaveRestore(RISCV::X2);
172 
173   setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, XLenVT,
174                    MVT::i1, Promote);
175 
176   // TODO: add all necessary setOperationAction calls.
177   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
178 
179   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
180   setOperationAction(ISD::BR_CC, XLenVT, Expand);
181   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
182   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
183 
184   setOperationAction({ISD::STACKSAVE, ISD::STACKRESTORE}, MVT::Other, Expand);
185 
186   setOperationAction(ISD::VASTART, MVT::Other, Custom);
187   setOperationAction({ISD::VAARG, ISD::VACOPY, ISD::VAEND}, MVT::Other, Expand);
188 
189   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
190   if (!Subtarget.hasStdExtZbb())
191     setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::i8, MVT::i16}, Expand);
192 
193   if (Subtarget.is64Bit()) {
194     setOperationAction({ISD::ADD, ISD::SUB, ISD::SHL, ISD::SRA, ISD::SRL},
195                        MVT::i32, Custom);
196 
197     setOperationAction({ISD::UADDO, ISD::USUBO, ISD::UADDSAT, ISD::USUBSAT},
198                        MVT::i32, Custom);
199   } else {
200     setLibcallName(
201         {RTLIB::SHL_I128, RTLIB::SRL_I128, RTLIB::SRA_I128, RTLIB::MUL_I128},
202         nullptr);
203     setLibcallName(RTLIB::MULO_I64, nullptr);
204   }
205 
206   if (!Subtarget.hasStdExtM()) {
207     setOperationAction({ISD::MUL, ISD::MULHS, ISD::MULHU, ISD::SDIV, ISD::UDIV,
208                         ISD::SREM, ISD::UREM},
209                        XLenVT, Expand);
210   } else {
211     if (Subtarget.is64Bit()) {
212       setOperationAction(ISD::MUL, {MVT::i32, MVT::i128}, Custom);
213 
214       setOperationAction({ISD::SDIV, ISD::UDIV, ISD::UREM},
215                          {MVT::i8, MVT::i16, MVT::i32}, Custom);
216     } else {
217       setOperationAction(ISD::MUL, MVT::i64, Custom);
218     }
219   }
220 
221   setOperationAction(
222       {ISD::SDIVREM, ISD::UDIVREM, ISD::SMUL_LOHI, ISD::UMUL_LOHI}, XLenVT,
223       Expand);
224 
225   setOperationAction({ISD::SHL_PARTS, ISD::SRL_PARTS, ISD::SRA_PARTS}, XLenVT,
226                      Custom);
227 
228   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
229       Subtarget.hasStdExtZbkb()) {
230     if (Subtarget.is64Bit())
231       setOperationAction({ISD::ROTL, ISD::ROTR}, MVT::i32, Custom);
232   } else {
233     setOperationAction({ISD::ROTL, ISD::ROTR}, XLenVT, Expand);
234   }
235 
236   if (Subtarget.hasStdExtZbp()) {
237     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
238     // more combining.
239     setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, XLenVT, Custom);
240 
241     // BSWAP i8 doesn't exist.
242     setOperationAction(ISD::BITREVERSE, MVT::i8, Custom);
243 
244     setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i16, Custom);
245 
246     if (Subtarget.is64Bit())
247       setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i32, Custom);
248   } else {
249     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
250     // pattern match it directly in isel.
251     setOperationAction(ISD::BSWAP, XLenVT,
252                        (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())
253                            ? Legal
254                            : Expand);
255     // Zbkb can use rev8+brev8 to implement bitreverse.
256     setOperationAction(ISD::BITREVERSE, XLenVT,
257                        Subtarget.hasStdExtZbkb() ? Custom : Expand);
258   }
259 
260   if (Subtarget.hasStdExtZbb()) {
261     setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, XLenVT,
262                        Legal);
263 
264     if (Subtarget.is64Bit())
265       setOperationAction(
266           {ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF},
267           MVT::i32, Custom);
268   } else {
269     setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP}, XLenVT, Expand);
270 
271     if (Subtarget.is64Bit())
272       setOperationAction(ISD::ABS, MVT::i32, Custom);
273   }
274 
275   if (Subtarget.hasStdExtZbt()) {
276     setOperationAction({ISD::FSHL, ISD::FSHR}, XLenVT, Custom);
277     setOperationAction(ISD::SELECT, XLenVT, Legal);
278 
279     if (Subtarget.is64Bit())
280       setOperationAction({ISD::FSHL, ISD::FSHR}, MVT::i32, Custom);
281   } else {
282     setOperationAction(ISD::SELECT, XLenVT, Custom);
283   }
284 
285   static constexpr ISD::NodeType FPLegalNodeTypes[] = {
286       ISD::FMINNUM,        ISD::FMAXNUM,       ISD::LRINT,
287       ISD::LLRINT,         ISD::LROUND,        ISD::LLROUND,
288       ISD::STRICT_LRINT,   ISD::STRICT_LLRINT, ISD::STRICT_LROUND,
289       ISD::STRICT_LLROUND, ISD::STRICT_FMA,    ISD::STRICT_FADD,
290       ISD::STRICT_FSUB,    ISD::STRICT_FMUL,   ISD::STRICT_FDIV,
291       ISD::STRICT_FSQRT,   ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS};
292 
293   static const ISD::CondCode FPCCToExpand[] = {
294       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
295       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
296       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
297 
298   static const ISD::NodeType FPOpToExpand[] = {
299       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
300       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
301 
302   if (Subtarget.hasStdExtZfh())
303     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
304 
305   if (Subtarget.hasStdExtZfh()) {
306     for (auto NT : FPLegalNodeTypes)
307       setOperationAction(NT, MVT::f16, Legal);
308     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
309     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
310     for (auto CC : FPCCToExpand)
311       setCondCodeAction(CC, MVT::f16, Expand);
312     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
313     setOperationAction(ISD::SELECT, MVT::f16, Custom);
314     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
315 
316     setOperationAction({ISD::FREM, ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT,
317                         ISD::FRINT, ISD::FROUND, ISD::FROUNDEVEN, ISD::FTRUNC,
318                         ISD::FPOW, ISD::FPOWI, ISD::FCOS, ISD::FSIN,
319                         ISD::FSINCOS, ISD::FEXP, ISD::FEXP2, ISD::FLOG,
320                         ISD::FLOG2, ISD::FLOG10},
321                        MVT::f16, Promote);
322 
323     // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
324     // complete support for all operations in LegalizeDAG.
325 
326     // We need to custom promote this.
327     if (Subtarget.is64Bit())
328       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
329   }
330 
331   if (Subtarget.hasStdExtF()) {
332     for (auto NT : FPLegalNodeTypes)
333       setOperationAction(NT, MVT::f32, Legal);
334     for (auto CC : FPCCToExpand)
335       setCondCodeAction(CC, MVT::f32, Expand);
336     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
337     setOperationAction(ISD::SELECT, MVT::f32, Custom);
338     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
339     for (auto Op : FPOpToExpand)
340       setOperationAction(Op, MVT::f32, Expand);
341     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
342     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
343   }
344 
345   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
346     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
347 
348   if (Subtarget.hasStdExtD()) {
349     for (auto NT : FPLegalNodeTypes)
350       setOperationAction(NT, MVT::f64, Legal);
351     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
352     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
353     for (auto CC : FPCCToExpand)
354       setCondCodeAction(CC, MVT::f64, Expand);
355     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
356     setOperationAction(ISD::SELECT, MVT::f64, Custom);
357     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
358     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
359     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
360     for (auto Op : FPOpToExpand)
361       setOperationAction(Op, MVT::f64, Expand);
362     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
363     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
364   }
365 
366   if (Subtarget.is64Bit())
367     setOperationAction({ISD::FP_TO_UINT, ISD::FP_TO_SINT,
368                         ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT},
369                        MVT::i32, Custom);
370 
371   if (Subtarget.hasStdExtF()) {
372     setOperationAction({ISD::FP_TO_UINT_SAT, ISD::FP_TO_SINT_SAT}, XLenVT,
373                        Custom);
374 
375     setOperationAction({ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT,
376                         ISD::STRICT_UINT_TO_FP, ISD::STRICT_SINT_TO_FP},
377                        XLenVT, Legal);
378 
379     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
380     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
381   }
382 
383   setOperationAction({ISD::GlobalAddress, ISD::BlockAddress, ISD::ConstantPool,
384                       ISD::JumpTable},
385                      XLenVT, Custom);
386 
387   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
388 
389   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
390   // Unfortunately this can't be determined just from the ISA naming string.
391   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
392                      Subtarget.is64Bit() ? Legal : Custom);
393 
394   setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Legal);
395   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
396   if (Subtarget.is64Bit())
397     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
398 
399   if (Subtarget.hasStdExtA()) {
400     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
401     setMinCmpXchgSizeInBits(32);
402   } else {
403     setMaxAtomicSizeInBitsSupported(0);
404   }
405 
406   setBooleanContents(ZeroOrOneBooleanContent);
407 
408   if (Subtarget.hasVInstructions()) {
409     setBooleanVectorContents(ZeroOrOneBooleanContent);
410 
411     setOperationAction(ISD::VSCALE, XLenVT, Custom);
412 
413     // RVV intrinsics may have illegal operands.
414     // We also need to custom legalize vmv.x.s.
415     setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN},
416                        {MVT::i8, MVT::i16}, Custom);
417     if (Subtarget.is64Bit())
418       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
419     else
420       setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN},
421                          MVT::i64, Custom);
422 
423     setOperationAction({ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID},
424                        MVT::Other, Custom);
425 
426     static const unsigned IntegerVPOps[] = {
427         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
428         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
429         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
430         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
431         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
432         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
433         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
434         ISD::VP_MERGE,       ISD::VP_SELECT,      ISD::VP_FPTOSI,
435         ISD::VP_FPTOUI,      ISD::VP_SETCC,       ISD::VP_SIGN_EXTEND,
436         ISD::VP_ZERO_EXTEND, ISD::VP_TRUNCATE};
437 
438     static const unsigned FloatingPointVPOps[] = {
439         ISD::VP_FADD,        ISD::VP_FSUB,
440         ISD::VP_FMUL,        ISD::VP_FDIV,
441         ISD::VP_FNEG,        ISD::VP_FMA,
442         ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD,
443         ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX,
444         ISD::VP_MERGE,       ISD::VP_SELECT,
445         ISD::VP_SITOFP,      ISD::VP_UITOFP,
446         ISD::VP_SETCC,       ISD::VP_FP_ROUND,
447         ISD::VP_FP_EXTEND};
448 
449     if (!Subtarget.is64Bit()) {
450       // We must custom-lower certain vXi64 operations on RV32 due to the vector
451       // element type being illegal.
452       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
453                          MVT::i64, Custom);
454 
455       setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND,
456                           ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR,
457                           ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
458                           ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN},
459                          MVT::i64, Custom);
460 
461       setOperationAction({ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND,
462                           ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR,
463                           ISD::VP_REDUCE_SMAX, ISD::VP_REDUCE_SMIN,
464                           ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN},
465                          MVT::i64, Custom);
466     }
467 
468     for (MVT VT : BoolVecVTs) {
469       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
470 
471       // Mask VTs are custom-expanded into a series of standard nodes
472       setOperationAction({ISD::TRUNCATE, ISD::CONCAT_VECTORS,
473                           ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
474                          VT, Custom);
475 
476       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
477                          Custom);
478 
479       setOperationAction(ISD::SELECT, VT, Custom);
480       setOperationAction(
481           {ISD::SELECT_CC, ISD::VSELECT, ISD::VP_MERGE, ISD::VP_SELECT}, VT,
482           Expand);
483 
484       setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR}, VT, Custom);
485 
486       setOperationAction(
487           {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
488           Custom);
489 
490       setOperationAction(
491           {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
492           Custom);
493 
494       // RVV has native int->float & float->int conversions where the
495       // element type sizes are within one power-of-two of each other. Any
496       // wider distances between type sizes have to be lowered as sequences
497       // which progressively narrow the gap in stages.
498       setOperationAction(
499           {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
500           VT, Custom);
501 
502       // Expand all extending loads to types larger than this, and truncating
503       // stores from types larger than this.
504       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
505         setTruncStoreAction(OtherVT, VT, Expand);
506         setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT,
507                          VT, Expand);
508       }
509 
510       setOperationAction(
511           {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_TRUNCATE, ISD::VP_SETCC}, VT,
512           Custom);
513     }
514 
515     for (MVT VT : IntVecVTs) {
516       if (VT.getVectorElementType() == MVT::i64 &&
517           !Subtarget.hasVInstructionsI64())
518         continue;
519 
520       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
521       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
522 
523       // Vectors implement MULHS/MULHU.
524       setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, VT, Expand);
525 
526       // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
527       if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV())
528         setOperationAction({ISD::MULHU, ISD::MULHS}, VT, Expand);
529 
530       setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, VT,
531                          Legal);
532 
533       setOperationAction({ISD::ROTL, ISD::ROTR}, VT, Expand);
534 
535       setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP, ISD::BSWAP}, VT,
536                          Expand);
537 
538       setOperationAction(ISD::BSWAP, VT, Expand);
539 
540       // Custom-lower extensions and truncations from/to mask types.
541       setOperationAction({ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND},
542                          VT, Custom);
543 
544       // RVV has native int->float & float->int conversions where the
545       // element type sizes are within one power-of-two of each other. Any
546       // wider distances between type sizes have to be lowered as sequences
547       // which progressively narrow the gap in stages.
548       setOperationAction(
549           {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
550           VT, Custom);
551 
552       setOperationAction(
553           {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT, Legal);
554 
555       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
556       // nodes which truncate by one power of two at a time.
557       setOperationAction(ISD::TRUNCATE, VT, Custom);
558 
559       // Custom-lower insert/extract operations to simplify patterns.
560       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
561                          Custom);
562 
563       // Custom-lower reduction operations to set up the corresponding custom
564       // nodes' operands.
565       setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND,
566                           ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR,
567                           ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
568                           ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN},
569                          VT, Custom);
570 
571       for (unsigned VPOpc : IntegerVPOps)
572         setOperationAction(VPOpc, VT, Custom);
573 
574       setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
575 
576       setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
577                          VT, Custom);
578 
579       setOperationAction(
580           {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
581           Custom);
582 
583       setOperationAction(
584           {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
585           VT, Custom);
586 
587       setOperationAction(ISD::SELECT, VT, Custom);
588       setOperationAction(ISD::SELECT_CC, VT, Expand);
589 
590       setOperationAction({ISD::STEP_VECTOR, ISD::VECTOR_REVERSE}, VT, Custom);
591 
592       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
593         setTruncStoreAction(VT, OtherVT, Expand);
594         setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT,
595                          VT, Expand);
596       }
597 
598       // Splice
599       setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
600 
601       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
602       // type that can represent the value exactly.
603       if (VT.getVectorElementType() != MVT::i64) {
604         MVT FloatEltVT =
605             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
606         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
607         if (isTypeLegal(FloatVT)) {
608           setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
609                              Custom);
610         }
611       }
612     }
613 
614     // Expand various CCs to best match the RVV ISA, which natively supports UNE
615     // but no other unordered comparisons, and supports all ordered comparisons
616     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
617     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
618     // and we pattern-match those back to the "original", swapping operands once
619     // more. This way we catch both operations and both "vf" and "fv" forms with
620     // fewer patterns.
621     static const ISD::CondCode VFPCCToExpand[] = {
622         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
623         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
624         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
625     };
626 
627     // Sets common operation actions on RVV floating-point vector types.
628     const auto SetCommonVFPActions = [&](MVT VT) {
629       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
630       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
631       // sizes are within one power-of-two of each other. Therefore conversions
632       // between vXf16 and vXf64 must be lowered as sequences which convert via
633       // vXf32.
634       setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
635       // Custom-lower insert/extract operations to simplify patterns.
636       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
637                          Custom);
638       // Expand various condition codes (explained above).
639       for (auto CC : VFPCCToExpand)
640         setCondCodeAction(CC, VT, Expand);
641 
642       setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, VT, Legal);
643 
644       setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND},
645                          VT, Custom);
646 
647       setOperationAction({ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD,
648                           ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAX},
649                          VT, Custom);
650 
651       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
652 
653       setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
654 
655       setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
656                          VT, Custom);
657 
658       setOperationAction(
659           {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
660           Custom);
661 
662       setOperationAction(ISD::SELECT, VT, Custom);
663       setOperationAction(ISD::SELECT_CC, VT, Expand);
664 
665       setOperationAction(
666           {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
667           VT, Custom);
668 
669       setOperationAction({ISD::VECTOR_REVERSE, ISD::VECTOR_SPLICE}, VT, Custom);
670 
671       for (unsigned VPOpc : FloatingPointVPOps)
672         setOperationAction(VPOpc, VT, Custom);
673     };
674 
675     // Sets common extload/truncstore actions on RVV floating-point vector
676     // types.
677     const auto SetCommonVFPExtLoadTruncStoreActions =
678         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
679           for (auto SmallVT : SmallerVTs) {
680             setTruncStoreAction(VT, SmallVT, Expand);
681             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
682           }
683         };
684 
685     if (Subtarget.hasVInstructionsF16())
686       for (MVT VT : F16VecVTs)
687         SetCommonVFPActions(VT);
688 
689     for (MVT VT : F32VecVTs) {
690       if (Subtarget.hasVInstructionsF32())
691         SetCommonVFPActions(VT);
692       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
693     }
694 
695     for (MVT VT : F64VecVTs) {
696       if (Subtarget.hasVInstructionsF64())
697         SetCommonVFPActions(VT);
698       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
699       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
700     }
701 
702     if (Subtarget.useRVVForFixedLengthVectors()) {
703       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
704         if (!useRVVForFixedLengthVectorVT(VT))
705           continue;
706 
707         // By default everything must be expanded.
708         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
709           setOperationAction(Op, VT, Expand);
710         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
711           setTruncStoreAction(VT, OtherVT, Expand);
712           setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD},
713                            OtherVT, VT, Expand);
714         }
715 
716         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
717         setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT,
718                            Custom);
719 
720         setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS}, VT,
721                            Custom);
722 
723         setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
724                            VT, Custom);
725 
726         setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
727 
728         setOperationAction(ISD::SETCC, VT, Custom);
729 
730         setOperationAction(ISD::SELECT, VT, Custom);
731 
732         setOperationAction(ISD::TRUNCATE, VT, Custom);
733 
734         setOperationAction(ISD::BITCAST, VT, Custom);
735 
736         setOperationAction(
737             {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
738             Custom);
739 
740         setOperationAction(
741             {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
742             Custom);
743 
744         setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT,
745                             ISD::FP_TO_UINT},
746                            VT, Custom);
747 
748         // Operations below are different for between masks and other vectors.
749         if (VT.getVectorElementType() == MVT::i1) {
750           setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, ISD::AND,
751                               ISD::OR, ISD::XOR},
752                              VT, Custom);
753 
754           setOperationAction(
755               {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_SETCC, ISD::VP_TRUNCATE},
756               VT, Custom);
757           continue;
758         }
759 
760         // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to
761         // it before type legalization for i64 vectors on RV32. It will then be
762         // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle.
763         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
764         // improvements first.
765         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
766           setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
767           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
768         }
769 
770         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
771         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
772 
773         setOperationAction(
774             {ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, VT, Custom);
775 
776         setOperationAction(
777             {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
778             Custom);
779 
780         setOperationAction({ISD::ADD, ISD::MUL, ISD::SUB, ISD::AND, ISD::OR,
781                             ISD::XOR, ISD::SDIV, ISD::SREM, ISD::UDIV,
782                             ISD::UREM, ISD::SHL, ISD::SRA, ISD::SRL},
783                            VT, Custom);
784 
785         setOperationAction(
786             {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, ISD::ABS}, VT, Custom);
787 
788         // vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
789         if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV())
790           setOperationAction({ISD::MULHS, ISD::MULHU}, VT, Custom);
791 
792         setOperationAction(
793             {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT,
794             Custom);
795 
796         setOperationAction(ISD::VSELECT, VT, Custom);
797         setOperationAction(ISD::SELECT_CC, VT, Expand);
798 
799         setOperationAction(
800             {ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, VT, Custom);
801 
802         // Custom-lower reduction operations to set up the corresponding custom
803         // nodes' operands.
804         setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_SMAX,
805                             ISD::VECREDUCE_SMIN, ISD::VECREDUCE_UMAX,
806                             ISD::VECREDUCE_UMIN},
807                            VT, Custom);
808 
809         for (unsigned VPOpc : IntegerVPOps)
810           setOperationAction(VPOpc, VT, Custom);
811 
812         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
813         // type that can represent the value exactly.
814         if (VT.getVectorElementType() != MVT::i64) {
815           MVT FloatEltVT =
816               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
817           EVT FloatVT =
818               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
819           if (isTypeLegal(FloatVT))
820             setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
821                                Custom);
822         }
823       }
824 
825       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
826         if (!useRVVForFixedLengthVectorVT(VT))
827           continue;
828 
829         // By default everything must be expanded.
830         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
831           setOperationAction(Op, VT, Expand);
832         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
833           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
834           setTruncStoreAction(VT, OtherVT, Expand);
835         }
836 
837         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
838         setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT,
839                            Custom);
840 
841         setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS,
842                             ISD::VECTOR_SHUFFLE, ISD::INSERT_VECTOR_ELT,
843                             ISD::EXTRACT_VECTOR_ELT},
844                            VT, Custom);
845 
846         setOperationAction({ISD::LOAD, ISD::STORE, ISD::MLOAD, ISD::MSTORE,
847                             ISD::MGATHER, ISD::MSCATTER},
848                            VT, Custom);
849 
850         setOperationAction(
851             {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
852             Custom);
853 
854         setOperationAction({ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV,
855                             ISD::FNEG, ISD::FABS, ISD::FCOPYSIGN, ISD::FSQRT,
856                             ISD::FMA, ISD::FMINNUM, ISD::FMAXNUM},
857                            VT, Custom);
858 
859         setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
860 
861         setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND},
862                            VT, Custom);
863 
864         for (auto CC : VFPCCToExpand)
865           setCondCodeAction(CC, VT, Expand);
866 
867         setOperationAction({ISD::VSELECT, ISD::SELECT}, VT, Custom);
868         setOperationAction(ISD::SELECT_CC, VT, Expand);
869 
870         setOperationAction(ISD::BITCAST, VT, Custom);
871 
872         setOperationAction({ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD,
873                             ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAX},
874                            VT, Custom);
875 
876         for (unsigned VPOpc : FloatingPointVPOps)
877           setOperationAction(VPOpc, VT, Custom);
878       }
879 
880       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
881       setOperationAction(ISD::BITCAST, {MVT::i8, MVT::i16, MVT::i32, MVT::i64},
882                          Custom);
883       if (Subtarget.hasStdExtZfh())
884         setOperationAction(ISD::BITCAST, MVT::f16, Custom);
885       if (Subtarget.hasStdExtF())
886         setOperationAction(ISD::BITCAST, MVT::f32, Custom);
887       if (Subtarget.hasStdExtD())
888         setOperationAction(ISD::BITCAST, MVT::f64, Custom);
889     }
890   }
891 
892   // Function alignments.
893   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
894   setMinFunctionAlignment(FunctionAlignment);
895   setPrefFunctionAlignment(FunctionAlignment);
896 
897   setMinimumJumpTableEntries(5);
898 
899   // Jumps are expensive, compared to logic
900   setJumpIsExpensive();
901 
902   setTargetDAGCombine({ISD::INTRINSIC_WO_CHAIN, ISD::ADD, ISD::SUB, ISD::AND,
903                        ISD::OR, ISD::XOR});
904 
905   if (Subtarget.hasStdExtF())
906     setTargetDAGCombine({ISD::FADD, ISD::FMAXNUM, ISD::FMINNUM});
907 
908   if (Subtarget.hasStdExtZbp())
909     setTargetDAGCombine({ISD::ROTL, ISD::ROTR});
910 
911   if (Subtarget.hasStdExtZbb())
912     setTargetDAGCombine({ISD::UMAX, ISD::UMIN, ISD::SMAX, ISD::SMIN});
913 
914   if (Subtarget.hasStdExtZbkb())
915     setTargetDAGCombine(ISD::BITREVERSE);
916   if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb())
917     setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
918   if (Subtarget.hasStdExtF())
919     setTargetDAGCombine({ISD::ZERO_EXTEND, ISD::FP_TO_SINT, ISD::FP_TO_UINT,
920                          ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT});
921   if (Subtarget.hasVInstructions())
922     setTargetDAGCombine({ISD::FCOPYSIGN, ISD::MGATHER, ISD::MSCATTER,
923                          ISD::VP_GATHER, ISD::VP_SCATTER, ISD::SRA, ISD::SRL,
924                          ISD::SHL, ISD::STORE, ISD::SPLAT_VECTOR});
925 
926   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
927   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
928 }
929 
930 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
931                                             LLVMContext &Context,
932                                             EVT VT) const {
933   if (!VT.isVector())
934     return getPointerTy(DL);
935   if (Subtarget.hasVInstructions() &&
936       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
937     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
938   return VT.changeVectorElementTypeToInteger();
939 }
940 
941 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
942   return Subtarget.getXLenVT();
943 }
944 
945 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
946                                              const CallInst &I,
947                                              MachineFunction &MF,
948                                              unsigned Intrinsic) const {
949   auto &DL = I.getModule()->getDataLayout();
950   switch (Intrinsic) {
951   default:
952     return false;
953   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
954   case Intrinsic::riscv_masked_atomicrmw_add_i32:
955   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
956   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
957   case Intrinsic::riscv_masked_atomicrmw_max_i32:
958   case Intrinsic::riscv_masked_atomicrmw_min_i32:
959   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
960   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
961   case Intrinsic::riscv_masked_cmpxchg_i32:
962     Info.opc = ISD::INTRINSIC_W_CHAIN;
963     Info.memVT = MVT::i32;
964     Info.ptrVal = I.getArgOperand(0);
965     Info.offset = 0;
966     Info.align = Align(4);
967     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
968                  MachineMemOperand::MOVolatile;
969     return true;
970   case Intrinsic::riscv_masked_strided_load:
971     Info.opc = ISD::INTRINSIC_W_CHAIN;
972     Info.ptrVal = I.getArgOperand(1);
973     Info.memVT = getValueType(DL, I.getType()->getScalarType());
974     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
975     Info.size = MemoryLocation::UnknownSize;
976     Info.flags |= MachineMemOperand::MOLoad;
977     return true;
978   case Intrinsic::riscv_masked_strided_store:
979     Info.opc = ISD::INTRINSIC_VOID;
980     Info.ptrVal = I.getArgOperand(1);
981     Info.memVT =
982         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
983     Info.align = Align(
984         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
985         8);
986     Info.size = MemoryLocation::UnknownSize;
987     Info.flags |= MachineMemOperand::MOStore;
988     return true;
989   case Intrinsic::riscv_seg2_load:
990   case Intrinsic::riscv_seg3_load:
991   case Intrinsic::riscv_seg4_load:
992   case Intrinsic::riscv_seg5_load:
993   case Intrinsic::riscv_seg6_load:
994   case Intrinsic::riscv_seg7_load:
995   case Intrinsic::riscv_seg8_load:
996     Info.opc = ISD::INTRINSIC_W_CHAIN;
997     Info.ptrVal = I.getArgOperand(0);
998     Info.memVT =
999         getValueType(DL, I.getType()->getStructElementType(0)->getScalarType());
1000     Info.align =
1001         Align(DL.getTypeSizeInBits(
1002                   I.getType()->getStructElementType(0)->getScalarType()) /
1003               8);
1004     Info.size = MemoryLocation::UnknownSize;
1005     Info.flags |= MachineMemOperand::MOLoad;
1006     return true;
1007   }
1008 }
1009 
1010 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1011                                                 const AddrMode &AM, Type *Ty,
1012                                                 unsigned AS,
1013                                                 Instruction *I) const {
1014   // No global is ever allowed as a base.
1015   if (AM.BaseGV)
1016     return false;
1017 
1018   // RVV instructions only support register addressing.
1019   if (Subtarget.hasVInstructions() && isa<VectorType>(Ty))
1020     return AM.HasBaseReg && AM.Scale == 0 && !AM.BaseOffs;
1021 
1022   // Require a 12-bit signed offset.
1023   if (!isInt<12>(AM.BaseOffs))
1024     return false;
1025 
1026   switch (AM.Scale) {
1027   case 0: // "r+i" or just "i", depending on HasBaseReg.
1028     break;
1029   case 1:
1030     if (!AM.HasBaseReg) // allow "r+i".
1031       break;
1032     return false; // disallow "r+r" or "r+r+i".
1033   default:
1034     return false;
1035   }
1036 
1037   return true;
1038 }
1039 
1040 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1041   return isInt<12>(Imm);
1042 }
1043 
1044 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1045   return isInt<12>(Imm);
1046 }
1047 
1048 // On RV32, 64-bit integers are split into their high and low parts and held
1049 // in two different registers, so the trunc is free since the low register can
1050 // just be used.
1051 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1052   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1053     return false;
1054   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1055   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1056   return (SrcBits == 64 && DestBits == 32);
1057 }
1058 
1059 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1060   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1061       !SrcVT.isInteger() || !DstVT.isInteger())
1062     return false;
1063   unsigned SrcBits = SrcVT.getSizeInBits();
1064   unsigned DestBits = DstVT.getSizeInBits();
1065   return (SrcBits == 64 && DestBits == 32);
1066 }
1067 
1068 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1069   // Zexts are free if they can be combined with a load.
1070   // Don't advertise i32->i64 zextload as being free for RV64. It interacts
1071   // poorly with type legalization of compares preferring sext.
1072   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1073     EVT MemVT = LD->getMemoryVT();
1074     if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1075         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1076          LD->getExtensionType() == ISD::ZEXTLOAD))
1077       return true;
1078   }
1079 
1080   return TargetLowering::isZExtFree(Val, VT2);
1081 }
1082 
1083 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1084   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1085 }
1086 
1087 bool RISCVTargetLowering::signExtendConstant(const ConstantInt *CI) const {
1088   return Subtarget.is64Bit() && CI->getType()->isIntegerTy(32);
1089 }
1090 
1091 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1092   return Subtarget.hasStdExtZbb();
1093 }
1094 
1095 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1096   return Subtarget.hasStdExtZbb();
1097 }
1098 
1099 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1100   EVT VT = Y.getValueType();
1101 
1102   // FIXME: Support vectors once we have tests.
1103   if (VT.isVector())
1104     return false;
1105 
1106   return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
1107           Subtarget.hasStdExtZbkb()) &&
1108          !isa<ConstantSDNode>(Y);
1109 }
1110 
1111 bool RISCVTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
1112   // We can use ANDI+SEQZ/SNEZ as a bit test. Y contains the bit position.
1113   auto *C = dyn_cast<ConstantSDNode>(Y);
1114   return C && C->getAPIntValue().ule(10);
1115 }
1116 
1117 bool RISCVTargetLowering::
1118     shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
1119         SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
1120         unsigned OldShiftOpcode, unsigned NewShiftOpcode,
1121         SelectionDAG &DAG) const {
1122   // One interesting pattern that we'd want to form is 'bit extract':
1123   //   ((1 >> Y) & 1) ==/!= 0
1124   // But we also need to be careful not to try to reverse that fold.
1125 
1126   // Is this '((1 >> Y) & 1)'?
1127   if (XC && OldShiftOpcode == ISD::SRL && XC->isOne())
1128     return false; // Keep the 'bit extract' pattern.
1129 
1130   // Will this be '((1 >> Y) & 1)' after the transform?
1131   if (NewShiftOpcode == ISD::SRL && CC->isOne())
1132     return true; // Do form the 'bit extract' pattern.
1133 
1134   // If 'X' is a constant, and we transform, then we will immediately
1135   // try to undo the fold, thus causing endless combine loop.
1136   // So only do the transform if X is not a constant. This matches the default
1137   // implementation of this function.
1138   return !XC;
1139 }
1140 
1141 /// Check if sinking \p I's operands to I's basic block is profitable, because
1142 /// the operands can be folded into a target instruction, e.g.
1143 /// splats of scalars can fold into vector instructions.
1144 bool RISCVTargetLowering::shouldSinkOperands(
1145     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1146   using namespace llvm::PatternMatch;
1147 
1148   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1149     return false;
1150 
1151   auto IsSinker = [&](Instruction *I, int Operand) {
1152     switch (I->getOpcode()) {
1153     case Instruction::Add:
1154     case Instruction::Sub:
1155     case Instruction::Mul:
1156     case Instruction::And:
1157     case Instruction::Or:
1158     case Instruction::Xor:
1159     case Instruction::FAdd:
1160     case Instruction::FSub:
1161     case Instruction::FMul:
1162     case Instruction::FDiv:
1163     case Instruction::ICmp:
1164     case Instruction::FCmp:
1165       return true;
1166     case Instruction::Shl:
1167     case Instruction::LShr:
1168     case Instruction::AShr:
1169     case Instruction::UDiv:
1170     case Instruction::SDiv:
1171     case Instruction::URem:
1172     case Instruction::SRem:
1173       return Operand == 1;
1174     case Instruction::Call:
1175       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1176         switch (II->getIntrinsicID()) {
1177         case Intrinsic::fma:
1178         case Intrinsic::vp_fma:
1179           return Operand == 0 || Operand == 1;
1180         // FIXME: Our patterns can only match vx/vf instructions when the splat
1181         // it on the RHS, because TableGen doesn't recognize our VP operations
1182         // as commutative.
1183         case Intrinsic::vp_add:
1184         case Intrinsic::vp_mul:
1185         case Intrinsic::vp_and:
1186         case Intrinsic::vp_or:
1187         case Intrinsic::vp_xor:
1188         case Intrinsic::vp_fadd:
1189         case Intrinsic::vp_fmul:
1190         case Intrinsic::vp_shl:
1191         case Intrinsic::vp_lshr:
1192         case Intrinsic::vp_ashr:
1193         case Intrinsic::vp_udiv:
1194         case Intrinsic::vp_sdiv:
1195         case Intrinsic::vp_urem:
1196         case Intrinsic::vp_srem:
1197           return Operand == 1;
1198         // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have
1199         // explicit patterns for both LHS and RHS (as 'vr' versions).
1200         case Intrinsic::vp_sub:
1201         case Intrinsic::vp_fsub:
1202         case Intrinsic::vp_fdiv:
1203           return Operand == 0 || Operand == 1;
1204         default:
1205           return false;
1206         }
1207       }
1208       return false;
1209     default:
1210       return false;
1211     }
1212   };
1213 
1214   for (auto OpIdx : enumerate(I->operands())) {
1215     if (!IsSinker(I, OpIdx.index()))
1216       continue;
1217 
1218     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1219     // Make sure we are not already sinking this operand
1220     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1221       continue;
1222 
1223     // We are looking for a splat that can be sunk.
1224     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1225                              m_Undef(), m_ZeroMask())))
1226       continue;
1227 
1228     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1229     // and vector registers
1230     for (Use &U : Op->uses()) {
1231       Instruction *Insn = cast<Instruction>(U.getUser());
1232       if (!IsSinker(Insn, U.getOperandNo()))
1233         return false;
1234     }
1235 
1236     Ops.push_back(&Op->getOperandUse(0));
1237     Ops.push_back(&OpIdx.value());
1238   }
1239   return true;
1240 }
1241 
1242 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1243                                        bool ForCodeSize) const {
1244   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1245   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1246     return false;
1247   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1248     return false;
1249   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1250     return false;
1251   return Imm.isZero();
1252 }
1253 
1254 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1255   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1256          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1257          (VT == MVT::f64 && Subtarget.hasStdExtD());
1258 }
1259 
1260 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1261                                                       CallingConv::ID CC,
1262                                                       EVT VT) const {
1263   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1264   // We might still end up using a GPR but that will be decided based on ABI.
1265   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1266   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1267     return MVT::f32;
1268 
1269   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1270 }
1271 
1272 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1273                                                            CallingConv::ID CC,
1274                                                            EVT VT) const {
1275   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1276   // We might still end up using a GPR but that will be decided based on ABI.
1277   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1278   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1279     return 1;
1280 
1281   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1282 }
1283 
1284 // Changes the condition code and swaps operands if necessary, so the SetCC
1285 // operation matches one of the comparisons supported directly by branches
1286 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1287 // with 1/-1.
1288 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1289                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1290   // Convert X > -1 to X >= 0.
1291   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1292     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1293     CC = ISD::SETGE;
1294     return;
1295   }
1296   // Convert X < 1 to 0 >= X.
1297   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1298     RHS = LHS;
1299     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1300     CC = ISD::SETGE;
1301     return;
1302   }
1303 
1304   switch (CC) {
1305   default:
1306     break;
1307   case ISD::SETGT:
1308   case ISD::SETLE:
1309   case ISD::SETUGT:
1310   case ISD::SETULE:
1311     CC = ISD::getSetCCSwappedOperands(CC);
1312     std::swap(LHS, RHS);
1313     break;
1314   }
1315 }
1316 
1317 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1318   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1319   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1320   if (VT.getVectorElementType() == MVT::i1)
1321     KnownSize *= 8;
1322 
1323   switch (KnownSize) {
1324   default:
1325     llvm_unreachable("Invalid LMUL.");
1326   case 8:
1327     return RISCVII::VLMUL::LMUL_F8;
1328   case 16:
1329     return RISCVII::VLMUL::LMUL_F4;
1330   case 32:
1331     return RISCVII::VLMUL::LMUL_F2;
1332   case 64:
1333     return RISCVII::VLMUL::LMUL_1;
1334   case 128:
1335     return RISCVII::VLMUL::LMUL_2;
1336   case 256:
1337     return RISCVII::VLMUL::LMUL_4;
1338   case 512:
1339     return RISCVII::VLMUL::LMUL_8;
1340   }
1341 }
1342 
1343 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1344   switch (LMul) {
1345   default:
1346     llvm_unreachable("Invalid LMUL.");
1347   case RISCVII::VLMUL::LMUL_F8:
1348   case RISCVII::VLMUL::LMUL_F4:
1349   case RISCVII::VLMUL::LMUL_F2:
1350   case RISCVII::VLMUL::LMUL_1:
1351     return RISCV::VRRegClassID;
1352   case RISCVII::VLMUL::LMUL_2:
1353     return RISCV::VRM2RegClassID;
1354   case RISCVII::VLMUL::LMUL_4:
1355     return RISCV::VRM4RegClassID;
1356   case RISCVII::VLMUL::LMUL_8:
1357     return RISCV::VRM8RegClassID;
1358   }
1359 }
1360 
1361 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1362   RISCVII::VLMUL LMUL = getLMUL(VT);
1363   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1364       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1365       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1366       LMUL == RISCVII::VLMUL::LMUL_1) {
1367     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1368                   "Unexpected subreg numbering");
1369     return RISCV::sub_vrm1_0 + Index;
1370   }
1371   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1372     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1373                   "Unexpected subreg numbering");
1374     return RISCV::sub_vrm2_0 + Index;
1375   }
1376   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1377     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1378                   "Unexpected subreg numbering");
1379     return RISCV::sub_vrm4_0 + Index;
1380   }
1381   llvm_unreachable("Invalid vector type.");
1382 }
1383 
1384 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1385   if (VT.getVectorElementType() == MVT::i1)
1386     return RISCV::VRRegClassID;
1387   return getRegClassIDForLMUL(getLMUL(VT));
1388 }
1389 
1390 // Attempt to decompose a subvector insert/extract between VecVT and
1391 // SubVecVT via subregister indices. Returns the subregister index that
1392 // can perform the subvector insert/extract with the given element index, as
1393 // well as the index corresponding to any leftover subvectors that must be
1394 // further inserted/extracted within the register class for SubVecVT.
1395 std::pair<unsigned, unsigned>
1396 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1397     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1398     const RISCVRegisterInfo *TRI) {
1399   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1400                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1401                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1402                 "Register classes not ordered");
1403   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1404   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1405   // Try to compose a subregister index that takes us from the incoming
1406   // LMUL>1 register class down to the outgoing one. At each step we half
1407   // the LMUL:
1408   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1409   // Note that this is not guaranteed to find a subregister index, such as
1410   // when we are extracting from one VR type to another.
1411   unsigned SubRegIdx = RISCV::NoSubRegister;
1412   for (const unsigned RCID :
1413        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1414     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1415       VecVT = VecVT.getHalfNumVectorElementsVT();
1416       bool IsHi =
1417           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1418       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1419                                             getSubregIndexByMVT(VecVT, IsHi));
1420       if (IsHi)
1421         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1422     }
1423   return {SubRegIdx, InsertExtractIdx};
1424 }
1425 
1426 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1427 // stores for those types.
1428 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1429   return !Subtarget.useRVVForFixedLengthVectors() ||
1430          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1431 }
1432 
1433 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1434   if (ScalarTy->isPointerTy())
1435     return true;
1436 
1437   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1438       ScalarTy->isIntegerTy(32))
1439     return true;
1440 
1441   if (ScalarTy->isIntegerTy(64))
1442     return Subtarget.hasVInstructionsI64();
1443 
1444   if (ScalarTy->isHalfTy())
1445     return Subtarget.hasVInstructionsF16();
1446   if (ScalarTy->isFloatTy())
1447     return Subtarget.hasVInstructionsF32();
1448   if (ScalarTy->isDoubleTy())
1449     return Subtarget.hasVInstructionsF64();
1450 
1451   return false;
1452 }
1453 
1454 static SDValue getVLOperand(SDValue Op) {
1455   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1456           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
1457          "Unexpected opcode");
1458   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
1459   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
1460   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
1461       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
1462   if (!II)
1463     return SDValue();
1464   return Op.getOperand(II->VLOperand + 1 + HasChain);
1465 }
1466 
1467 static bool useRVVForFixedLengthVectorVT(MVT VT,
1468                                          const RISCVSubtarget &Subtarget) {
1469   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1470   if (!Subtarget.useRVVForFixedLengthVectors())
1471     return false;
1472 
1473   // We only support a set of vector types with a consistent maximum fixed size
1474   // across all supported vector element types to avoid legalization issues.
1475   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1476   // fixed-length vector type we support is 1024 bytes.
1477   if (VT.getFixedSizeInBits() > 1024 * 8)
1478     return false;
1479 
1480   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1481 
1482   MVT EltVT = VT.getVectorElementType();
1483 
1484   // Don't use RVV for vectors we cannot scalarize if required.
1485   switch (EltVT.SimpleTy) {
1486   // i1 is supported but has different rules.
1487   default:
1488     return false;
1489   case MVT::i1:
1490     // Masks can only use a single register.
1491     if (VT.getVectorNumElements() > MinVLen)
1492       return false;
1493     MinVLen /= 8;
1494     break;
1495   case MVT::i8:
1496   case MVT::i16:
1497   case MVT::i32:
1498     break;
1499   case MVT::i64:
1500     if (!Subtarget.hasVInstructionsI64())
1501       return false;
1502     break;
1503   case MVT::f16:
1504     if (!Subtarget.hasVInstructionsF16())
1505       return false;
1506     break;
1507   case MVT::f32:
1508     if (!Subtarget.hasVInstructionsF32())
1509       return false;
1510     break;
1511   case MVT::f64:
1512     if (!Subtarget.hasVInstructionsF64())
1513       return false;
1514     break;
1515   }
1516 
1517   // Reject elements larger than ELEN.
1518   if (EltVT.getSizeInBits() > Subtarget.getELEN())
1519     return false;
1520 
1521   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1522   // Don't use RVV for types that don't fit.
1523   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1524     return false;
1525 
1526   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1527   // the base fixed length RVV support in place.
1528   if (!VT.isPow2VectorType())
1529     return false;
1530 
1531   return true;
1532 }
1533 
1534 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1535   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1536 }
1537 
1538 // Return the largest legal scalable vector type that matches VT's element type.
1539 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1540                                             const RISCVSubtarget &Subtarget) {
1541   // This may be called before legal types are setup.
1542   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1543           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1544          "Expected legal fixed length vector!");
1545 
1546   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1547   unsigned MaxELen = Subtarget.getELEN();
1548 
1549   MVT EltVT = VT.getVectorElementType();
1550   switch (EltVT.SimpleTy) {
1551   default:
1552     llvm_unreachable("unexpected element type for RVV container");
1553   case MVT::i1:
1554   case MVT::i8:
1555   case MVT::i16:
1556   case MVT::i32:
1557   case MVT::i64:
1558   case MVT::f16:
1559   case MVT::f32:
1560   case MVT::f64: {
1561     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1562     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1563     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1564     unsigned NumElts =
1565         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1566     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1567     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1568     return MVT::getScalableVectorVT(EltVT, NumElts);
1569   }
1570   }
1571 }
1572 
1573 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1574                                             const RISCVSubtarget &Subtarget) {
1575   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1576                                           Subtarget);
1577 }
1578 
1579 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1580   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1581 }
1582 
1583 // Grow V to consume an entire RVV register.
1584 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1585                                        const RISCVSubtarget &Subtarget) {
1586   assert(VT.isScalableVector() &&
1587          "Expected to convert into a scalable vector!");
1588   assert(V.getValueType().isFixedLengthVector() &&
1589          "Expected a fixed length vector operand!");
1590   SDLoc DL(V);
1591   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1592   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1593 }
1594 
1595 // Shrink V so it's just big enough to maintain a VT's worth of data.
1596 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1597                                          const RISCVSubtarget &Subtarget) {
1598   assert(VT.isFixedLengthVector() &&
1599          "Expected to convert into a fixed length vector!");
1600   assert(V.getValueType().isScalableVector() &&
1601          "Expected a scalable vector operand!");
1602   SDLoc DL(V);
1603   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1604   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1605 }
1606 
1607 /// Return the type of the mask type suitable for masking the provided
1608 /// vector type.  This is simply an i1 element type vector of the same
1609 /// (possibly scalable) length.
1610 static MVT getMaskTypeFor(EVT VecVT) {
1611   assert(VecVT.isVector());
1612   ElementCount EC = VecVT.getVectorElementCount();
1613   return MVT::getVectorVT(MVT::i1, EC);
1614 }
1615 
1616 /// Creates an all ones mask suitable for masking a vector of type VecTy with
1617 /// vector length VL.  .
1618 static SDValue getAllOnesMask(MVT VecVT, SDValue VL, SDLoc DL,
1619                               SelectionDAG &DAG) {
1620   MVT MaskVT = getMaskTypeFor(VecVT);
1621   return DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1622 }
1623 
1624 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1625 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1626 // the vector type that it is contained in.
1627 static std::pair<SDValue, SDValue>
1628 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1629                 const RISCVSubtarget &Subtarget) {
1630   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1631   MVT XLenVT = Subtarget.getXLenVT();
1632   SDValue VL = VecVT.isFixedLengthVector()
1633                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1634                    : DAG.getRegister(RISCV::X0, XLenVT);
1635   SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
1636   return {Mask, VL};
1637 }
1638 
1639 // As above but assuming the given type is a scalable vector type.
1640 static std::pair<SDValue, SDValue>
1641 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1642                         const RISCVSubtarget &Subtarget) {
1643   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1644   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1645 }
1646 
1647 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1648 // of either is (currently) supported. This can get us into an infinite loop
1649 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1650 // as a ..., etc.
1651 // Until either (or both) of these can reliably lower any node, reporting that
1652 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1653 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1654 // which is not desirable.
1655 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1656     EVT VT, unsigned DefinedValues) const {
1657   return false;
1658 }
1659 
1660 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
1661                                   const RISCVSubtarget &Subtarget) {
1662   // RISCV FP-to-int conversions saturate to the destination register size, but
1663   // don't produce 0 for nan. We can use a conversion instruction and fix the
1664   // nan case with a compare and a select.
1665   SDValue Src = Op.getOperand(0);
1666 
1667   EVT DstVT = Op.getValueType();
1668   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1669 
1670   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1671   unsigned Opc;
1672   if (SatVT == DstVT)
1673     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
1674   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1675     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
1676   else
1677     return SDValue();
1678   // FIXME: Support other SatVTs by clamping before or after the conversion.
1679 
1680   SDLoc DL(Op);
1681   SDValue FpToInt = DAG.getNode(
1682       Opc, DL, DstVT, Src,
1683       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
1684 
1685   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1686   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1687 }
1688 
1689 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1690 // and back. Taking care to avoid converting values that are nan or already
1691 // correct.
1692 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1693 // have FRM dependencies modeled yet.
1694 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1695   MVT VT = Op.getSimpleValueType();
1696   assert(VT.isVector() && "Unexpected type");
1697 
1698   SDLoc DL(Op);
1699 
1700   // Freeze the source since we are increasing the number of uses.
1701   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1702 
1703   // Truncate to integer and convert back to FP.
1704   MVT IntVT = VT.changeVectorElementTypeToInteger();
1705   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1706   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1707 
1708   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1709 
1710   if (Op.getOpcode() == ISD::FCEIL) {
1711     // If the truncated value is the greater than or equal to the original
1712     // value, we've computed the ceil. Otherwise, we went the wrong way and
1713     // need to increase by 1.
1714     // FIXME: This should use a masked operation. Handle here or in isel?
1715     SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1716                                  DAG.getConstantFP(1.0, DL, VT));
1717     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1718     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1719   } else if (Op.getOpcode() == ISD::FFLOOR) {
1720     // If the truncated value is the less than or equal to the original value,
1721     // we've computed the floor. Otherwise, we went the wrong way and need to
1722     // decrease by 1.
1723     // FIXME: This should use a masked operation. Handle here or in isel?
1724     SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1725                                  DAG.getConstantFP(1.0, DL, VT));
1726     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1727     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1728   }
1729 
1730   // Restore the original sign so that -0.0 is preserved.
1731   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1732 
1733   // Determine the largest integer that can be represented exactly. This and
1734   // values larger than it don't have any fractional bits so don't need to
1735   // be converted.
1736   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1737   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1738   APFloat MaxVal = APFloat(FltSem);
1739   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1740                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1741   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1742 
1743   // If abs(Src) was larger than MaxVal or nan, keep it.
1744   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1745   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1746   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1747 }
1748 
1749 // ISD::FROUND is defined to round to nearest with ties rounding away from 0.
1750 // This mode isn't supported in vector hardware on RISCV. But as long as we
1751 // aren't compiling with trapping math, we can emulate this with
1752 // floor(X + copysign(nextafter(0.5, 0.0), X)).
1753 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM
1754 // dependencies modeled yet.
1755 // FIXME: Use masked operations to avoid final merge.
1756 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) {
1757   MVT VT = Op.getSimpleValueType();
1758   assert(VT.isVector() && "Unexpected type");
1759 
1760   SDLoc DL(Op);
1761 
1762   // Freeze the source since we are increasing the number of uses.
1763   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1764 
1765   // We do the conversion on the absolute value and fix the sign at the end.
1766   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1767 
1768   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1769   bool Ignored;
1770   APFloat Point5Pred = APFloat(0.5f);
1771   Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored);
1772   Point5Pred.next(/*nextDown*/ true);
1773 
1774   // Add the adjustment.
1775   SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs,
1776                                DAG.getConstantFP(Point5Pred, DL, VT));
1777 
1778   // Truncate to integer and convert back to fp.
1779   MVT IntVT = VT.changeVectorElementTypeToInteger();
1780   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust);
1781   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1782 
1783   // Restore the original sign.
1784   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1785 
1786   // Determine the largest integer that can be represented exactly. This and
1787   // values larger than it don't have any fractional bits so don't need to
1788   // be converted.
1789   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1790   APFloat MaxVal = APFloat(FltSem);
1791   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1792                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1793   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1794 
1795   // If abs(Src) was larger than MaxVal or nan, keep it.
1796   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1797   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1798   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1799 }
1800 
1801 struct VIDSequence {
1802   int64_t StepNumerator;
1803   unsigned StepDenominator;
1804   int64_t Addend;
1805 };
1806 
1807 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1808 // to the (non-zero) step S and start value X. This can be then lowered as the
1809 // RVV sequence (VID * S) + X, for example.
1810 // The step S is represented as an integer numerator divided by a positive
1811 // denominator. Note that the implementation currently only identifies
1812 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1813 // cannot detect 2/3, for example.
1814 // Note that this method will also match potentially unappealing index
1815 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1816 // determine whether this is worth generating code for.
1817 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1818   unsigned NumElts = Op.getNumOperands();
1819   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1820   if (!Op.getValueType().isInteger())
1821     return None;
1822 
1823   Optional<unsigned> SeqStepDenom;
1824   Optional<int64_t> SeqStepNum, SeqAddend;
1825   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1826   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1827   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1828     // Assume undef elements match the sequence; we just have to be careful
1829     // when interpolating across them.
1830     if (Op.getOperand(Idx).isUndef())
1831       continue;
1832     // The BUILD_VECTOR must be all constants.
1833     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1834       return None;
1835 
1836     uint64_t Val = Op.getConstantOperandVal(Idx) &
1837                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1838 
1839     if (PrevElt) {
1840       // Calculate the step since the last non-undef element, and ensure
1841       // it's consistent across the entire sequence.
1842       unsigned IdxDiff = Idx - PrevElt->second;
1843       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1844 
1845       // A zero-value value difference means that we're somewhere in the middle
1846       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1847       // step change before evaluating the sequence.
1848       if (ValDiff == 0)
1849         continue;
1850 
1851       int64_t Remainder = ValDiff % IdxDiff;
1852       // Normalize the step if it's greater than 1.
1853       if (Remainder != ValDiff) {
1854         // The difference must cleanly divide the element span.
1855         if (Remainder != 0)
1856           return None;
1857         ValDiff /= IdxDiff;
1858         IdxDiff = 1;
1859       }
1860 
1861       if (!SeqStepNum)
1862         SeqStepNum = ValDiff;
1863       else if (ValDiff != SeqStepNum)
1864         return None;
1865 
1866       if (!SeqStepDenom)
1867         SeqStepDenom = IdxDiff;
1868       else if (IdxDiff != *SeqStepDenom)
1869         return None;
1870     }
1871 
1872     // Record this non-undef element for later.
1873     if (!PrevElt || PrevElt->first != Val)
1874       PrevElt = std::make_pair(Val, Idx);
1875   }
1876 
1877   // We need to have logged a step for this to count as a legal index sequence.
1878   if (!SeqStepNum || !SeqStepDenom)
1879     return None;
1880 
1881   // Loop back through the sequence and validate elements we might have skipped
1882   // while waiting for a valid step. While doing this, log any sequence addend.
1883   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1884     if (Op.getOperand(Idx).isUndef())
1885       continue;
1886     uint64_t Val = Op.getConstantOperandVal(Idx) &
1887                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1888     uint64_t ExpectedVal =
1889         (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1890     int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1891     if (!SeqAddend)
1892       SeqAddend = Addend;
1893     else if (Addend != SeqAddend)
1894       return None;
1895   }
1896 
1897   assert(SeqAddend && "Must have an addend if we have a step");
1898 
1899   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1900 }
1901 
1902 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT
1903 // and lower it as a VRGATHER_VX_VL from the source vector.
1904 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL,
1905                                   SelectionDAG &DAG,
1906                                   const RISCVSubtarget &Subtarget) {
1907   if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1908     return SDValue();
1909   SDValue Vec = SplatVal.getOperand(0);
1910   // Only perform this optimization on vectors of the same size for simplicity.
1911   if (Vec.getValueType() != VT)
1912     return SDValue();
1913   SDValue Idx = SplatVal.getOperand(1);
1914   // The index must be a legal type.
1915   if (Idx.getValueType() != Subtarget.getXLenVT())
1916     return SDValue();
1917 
1918   MVT ContainerVT = VT;
1919   if (VT.isFixedLengthVector()) {
1920     ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1921     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
1922   }
1923 
1924   SDValue Mask, VL;
1925   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1926 
1927   SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec,
1928                                Idx, Mask, VL);
1929 
1930   if (!VT.isFixedLengthVector())
1931     return Gather;
1932 
1933   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
1934 }
1935 
1936 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1937                                  const RISCVSubtarget &Subtarget) {
1938   MVT VT = Op.getSimpleValueType();
1939   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1940 
1941   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1942 
1943   SDLoc DL(Op);
1944   SDValue Mask, VL;
1945   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1946 
1947   MVT XLenVT = Subtarget.getXLenVT();
1948   unsigned NumElts = Op.getNumOperands();
1949 
1950   if (VT.getVectorElementType() == MVT::i1) {
1951     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1952       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1953       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1954     }
1955 
1956     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1957       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1958       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1959     }
1960 
1961     // Lower constant mask BUILD_VECTORs via an integer vector type, in
1962     // scalar integer chunks whose bit-width depends on the number of mask
1963     // bits and XLEN.
1964     // First, determine the most appropriate scalar integer type to use. This
1965     // is at most XLenVT, but may be shrunk to a smaller vector element type
1966     // according to the size of the final vector - use i8 chunks rather than
1967     // XLenVT if we're producing a v8i1. This results in more consistent
1968     // codegen across RV32 and RV64.
1969     unsigned NumViaIntegerBits =
1970         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
1971     NumViaIntegerBits = std::min(NumViaIntegerBits, Subtarget.getELEN());
1972     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
1973       // If we have to use more than one INSERT_VECTOR_ELT then this
1974       // optimization is likely to increase code size; avoid peforming it in
1975       // such a case. We can use a load from a constant pool in this case.
1976       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
1977         return SDValue();
1978       // Now we can create our integer vector type. Note that it may be larger
1979       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
1980       MVT IntegerViaVecVT =
1981           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
1982                            divideCeil(NumElts, NumViaIntegerBits));
1983 
1984       uint64_t Bits = 0;
1985       unsigned BitPos = 0, IntegerEltIdx = 0;
1986       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
1987 
1988       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
1989         // Once we accumulate enough bits to fill our scalar type, insert into
1990         // our vector and clear our accumulated data.
1991         if (I != 0 && I % NumViaIntegerBits == 0) {
1992           if (NumViaIntegerBits <= 32)
1993             Bits = SignExtend64(Bits, 32);
1994           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1995           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
1996                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1997           Bits = 0;
1998           BitPos = 0;
1999           IntegerEltIdx++;
2000         }
2001         SDValue V = Op.getOperand(I);
2002         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
2003         Bits |= ((uint64_t)BitValue << BitPos);
2004       }
2005 
2006       // Insert the (remaining) scalar value into position in our integer
2007       // vector type.
2008       if (NumViaIntegerBits <= 32)
2009         Bits = SignExtend64(Bits, 32);
2010       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2011       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
2012                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2013 
2014       if (NumElts < NumViaIntegerBits) {
2015         // If we're producing a smaller vector than our minimum legal integer
2016         // type, bitcast to the equivalent (known-legal) mask type, and extract
2017         // our final mask.
2018         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
2019         Vec = DAG.getBitcast(MVT::v8i1, Vec);
2020         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
2021                           DAG.getConstant(0, DL, XLenVT));
2022       } else {
2023         // Else we must have produced an integer type with the same size as the
2024         // mask type; bitcast for the final result.
2025         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
2026         Vec = DAG.getBitcast(VT, Vec);
2027       }
2028 
2029       return Vec;
2030     }
2031 
2032     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
2033     // vector type, we have a legal equivalently-sized i8 type, so we can use
2034     // that.
2035     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
2036     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
2037 
2038     SDValue WideVec;
2039     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2040       // For a splat, perform a scalar truncate before creating the wider
2041       // vector.
2042       assert(Splat.getValueType() == XLenVT &&
2043              "Unexpected type for i1 splat value");
2044       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
2045                           DAG.getConstant(1, DL, XLenVT));
2046       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
2047     } else {
2048       SmallVector<SDValue, 8> Ops(Op->op_values());
2049       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
2050       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
2051       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
2052     }
2053 
2054     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
2055   }
2056 
2057   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2058     if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget))
2059       return Gather;
2060     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2061                                         : RISCVISD::VMV_V_X_VL;
2062     Splat =
2063         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL);
2064     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2065   }
2066 
2067   // Try and match index sequences, which we can lower to the vid instruction
2068   // with optional modifications. An all-undef vector is matched by
2069   // getSplatValue, above.
2070   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2071     int64_t StepNumerator = SimpleVID->StepNumerator;
2072     unsigned StepDenominator = SimpleVID->StepDenominator;
2073     int64_t Addend = SimpleVID->Addend;
2074 
2075     assert(StepNumerator != 0 && "Invalid step");
2076     bool Negate = false;
2077     int64_t SplatStepVal = StepNumerator;
2078     unsigned StepOpcode = ISD::MUL;
2079     if (StepNumerator != 1) {
2080       if (isPowerOf2_64(std::abs(StepNumerator))) {
2081         Negate = StepNumerator < 0;
2082         StepOpcode = ISD::SHL;
2083         SplatStepVal = Log2_64(std::abs(StepNumerator));
2084       }
2085     }
2086 
2087     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2088     // threshold since it's the immediate value many RVV instructions accept.
2089     // There is no vmul.vi instruction so ensure multiply constant can fit in
2090     // a single addi instruction.
2091     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2092          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2093         isPowerOf2_32(StepDenominator) &&
2094         (SplatStepVal >= 0 || StepDenominator == 1) && isInt<5>(Addend)) {
2095       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2096       // Convert right out of the scalable type so we can use standard ISD
2097       // nodes for the rest of the computation. If we used scalable types with
2098       // these, we'd lose the fixed-length vector info and generate worse
2099       // vsetvli code.
2100       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2101       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2102           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2103         SDValue SplatStep = DAG.getSplatBuildVector(
2104             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2105         VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2106       }
2107       if (StepDenominator != 1) {
2108         SDValue SplatStep = DAG.getSplatBuildVector(
2109             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2110         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2111       }
2112       if (Addend != 0 || Negate) {
2113         SDValue SplatAddend = DAG.getSplatBuildVector(
2114             VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2115         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2116       }
2117       return VID;
2118     }
2119   }
2120 
2121   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2122   // when re-interpreted as a vector with a larger element type. For example,
2123   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2124   // could be instead splat as
2125   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2126   // TODO: This optimization could also work on non-constant splats, but it
2127   // would require bit-manipulation instructions to construct the splat value.
2128   SmallVector<SDValue> Sequence;
2129   unsigned EltBitSize = VT.getScalarSizeInBits();
2130   const auto *BV = cast<BuildVectorSDNode>(Op);
2131   if (VT.isInteger() && EltBitSize < 64 &&
2132       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2133       BV->getRepeatedSequence(Sequence) &&
2134       (Sequence.size() * EltBitSize) <= 64) {
2135     unsigned SeqLen = Sequence.size();
2136     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2137     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2138     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2139             ViaIntVT == MVT::i64) &&
2140            "Unexpected sequence type");
2141 
2142     unsigned EltIdx = 0;
2143     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2144     uint64_t SplatValue = 0;
2145     // Construct the amalgamated value which can be splatted as this larger
2146     // vector type.
2147     for (const auto &SeqV : Sequence) {
2148       if (!SeqV.isUndef())
2149         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2150                        << (EltIdx * EltBitSize));
2151       EltIdx++;
2152     }
2153 
2154     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2155     // achieve better constant materializion.
2156     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2157       SplatValue = SignExtend64(SplatValue, 32);
2158 
2159     // Since we can't introduce illegal i64 types at this stage, we can only
2160     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2161     // way we can use RVV instructions to splat.
2162     assert((ViaIntVT.bitsLE(XLenVT) ||
2163             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2164            "Unexpected bitcast sequence");
2165     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2166       SDValue ViaVL =
2167           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2168       MVT ViaContainerVT =
2169           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2170       SDValue Splat =
2171           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2172                       DAG.getUNDEF(ViaContainerVT),
2173                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2174       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2175       return DAG.getBitcast(VT, Splat);
2176     }
2177   }
2178 
2179   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2180   // which constitute a large proportion of the elements. In such cases we can
2181   // splat a vector with the dominant element and make up the shortfall with
2182   // INSERT_VECTOR_ELTs.
2183   // Note that this includes vectors of 2 elements by association. The
2184   // upper-most element is the "dominant" one, allowing us to use a splat to
2185   // "insert" the upper element, and an insert of the lower element at position
2186   // 0, which improves codegen.
2187   SDValue DominantValue;
2188   unsigned MostCommonCount = 0;
2189   DenseMap<SDValue, unsigned> ValueCounts;
2190   unsigned NumUndefElts =
2191       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2192 
2193   // Track the number of scalar loads we know we'd be inserting, estimated as
2194   // any non-zero floating-point constant. Other kinds of element are either
2195   // already in registers or are materialized on demand. The threshold at which
2196   // a vector load is more desirable than several scalar materializion and
2197   // vector-insertion instructions is not known.
2198   unsigned NumScalarLoads = 0;
2199 
2200   for (SDValue V : Op->op_values()) {
2201     if (V.isUndef())
2202       continue;
2203 
2204     ValueCounts.insert(std::make_pair(V, 0));
2205     unsigned &Count = ValueCounts[V];
2206 
2207     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2208       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2209 
2210     // Is this value dominant? In case of a tie, prefer the highest element as
2211     // it's cheaper to insert near the beginning of a vector than it is at the
2212     // end.
2213     if (++Count >= MostCommonCount) {
2214       DominantValue = V;
2215       MostCommonCount = Count;
2216     }
2217   }
2218 
2219   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2220   unsigned NumDefElts = NumElts - NumUndefElts;
2221   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2222 
2223   // Don't perform this optimization when optimizing for size, since
2224   // materializing elements and inserting them tends to cause code bloat.
2225   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2226       ((MostCommonCount > DominantValueCountThreshold) ||
2227        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2228     // Start by splatting the most common element.
2229     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2230 
2231     DenseSet<SDValue> Processed{DominantValue};
2232     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2233     for (const auto &OpIdx : enumerate(Op->ops())) {
2234       const SDValue &V = OpIdx.value();
2235       if (V.isUndef() || !Processed.insert(V).second)
2236         continue;
2237       if (ValueCounts[V] == 1) {
2238         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2239                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2240       } else {
2241         // Blend in all instances of this value using a VSELECT, using a
2242         // mask where each bit signals whether that element is the one
2243         // we're after.
2244         SmallVector<SDValue> Ops;
2245         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2246           return DAG.getConstant(V == V1, DL, XLenVT);
2247         });
2248         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2249                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2250                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2251       }
2252     }
2253 
2254     return Vec;
2255   }
2256 
2257   return SDValue();
2258 }
2259 
2260 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2261                                    SDValue Lo, SDValue Hi, SDValue VL,
2262                                    SelectionDAG &DAG) {
2263   if (!Passthru)
2264     Passthru = DAG.getUNDEF(VT);
2265   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2266     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2267     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2268     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2269     // node in order to try and match RVV vector/scalar instructions.
2270     if ((LoC >> 31) == HiC)
2271       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
2272 
2273     // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use
2274     // vmv.v.x whose EEW = 32 to lower it.
2275     auto *Const = dyn_cast<ConstantSDNode>(VL);
2276     if (LoC == HiC && Const && Const->isAllOnesValue()) {
2277       MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
2278       // TODO: if vl <= min(VLMAX), we can also do this. But we could not
2279       // access the subtarget here now.
2280       auto InterVec = DAG.getNode(
2281           RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo,
2282                                   DAG.getRegister(RISCV::X0, MVT::i32));
2283       return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
2284     }
2285   }
2286 
2287   // Fall back to a stack store and stride x0 vector load.
2288   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo,
2289                      Hi, VL);
2290 }
2291 
2292 // Called by type legalization to handle splat of i64 on RV32.
2293 // FIXME: We can optimize this when the type has sign or zero bits in one
2294 // of the halves.
2295 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2296                                    SDValue Scalar, SDValue VL,
2297                                    SelectionDAG &DAG) {
2298   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2299   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2300                            DAG.getConstant(0, DL, MVT::i32));
2301   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2302                            DAG.getConstant(1, DL, MVT::i32));
2303   return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG);
2304 }
2305 
2306 // This function lowers a splat of a scalar operand Splat with the vector
2307 // length VL. It ensures the final sequence is type legal, which is useful when
2308 // lowering a splat after type legalization.
2309 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL,
2310                                 MVT VT, SDLoc DL, SelectionDAG &DAG,
2311                                 const RISCVSubtarget &Subtarget) {
2312   bool HasPassthru = Passthru && !Passthru.isUndef();
2313   if (!HasPassthru && !Passthru)
2314     Passthru = DAG.getUNDEF(VT);
2315   if (VT.isFloatingPoint()) {
2316     // If VL is 1, we could use vfmv.s.f.
2317     if (isOneConstant(VL))
2318       return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL);
2319     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL);
2320   }
2321 
2322   MVT XLenVT = Subtarget.getXLenVT();
2323 
2324   // Simplest case is that the operand needs to be promoted to XLenVT.
2325   if (Scalar.getValueType().bitsLE(XLenVT)) {
2326     // If the operand is a constant, sign extend to increase our chances
2327     // of being able to use a .vi instruction. ANY_EXTEND would become a
2328     // a zero extend and the simm5 check in isel would fail.
2329     // FIXME: Should we ignore the upper bits in isel instead?
2330     unsigned ExtOpc =
2331         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2332     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2333     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
2334     // If VL is 1 and the scalar value won't benefit from immediate, we could
2335     // use vmv.s.x.
2336     if (isOneConstant(VL) &&
2337         (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
2338       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL);
2339     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
2340   }
2341 
2342   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2343          "Unexpected scalar for splat lowering!");
2344 
2345   if (isOneConstant(VL) && isNullConstant(Scalar))
2346     return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru,
2347                        DAG.getConstant(0, DL, XLenVT), VL);
2348 
2349   // Otherwise use the more complicated splatting algorithm.
2350   return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG);
2351 }
2352 
2353 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources,
2354                                 const RISCVSubtarget &Subtarget) {
2355   // We need to be able to widen elements to the next larger integer type.
2356   if (VT.getScalarSizeInBits() >= Subtarget.getELEN())
2357     return false;
2358 
2359   int Size = Mask.size();
2360   assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
2361 
2362   int Srcs[] = {-1, -1};
2363   for (int i = 0; i != Size; ++i) {
2364     // Ignore undef elements.
2365     if (Mask[i] < 0)
2366       continue;
2367 
2368     // Is this an even or odd element.
2369     int Pol = i % 2;
2370 
2371     // Ensure we consistently use the same source for this element polarity.
2372     int Src = Mask[i] / Size;
2373     if (Srcs[Pol] < 0)
2374       Srcs[Pol] = Src;
2375     if (Srcs[Pol] != Src)
2376       return false;
2377 
2378     // Make sure the element within the source is appropriate for this element
2379     // in the destination.
2380     int Elt = Mask[i] % Size;
2381     if (Elt != i / 2)
2382       return false;
2383   }
2384 
2385   // We need to find a source for each polarity and they can't be the same.
2386   if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1])
2387     return false;
2388 
2389   // Swap the sources if the second source was in the even polarity.
2390   SwapSources = Srcs[0] > Srcs[1];
2391 
2392   return true;
2393 }
2394 
2395 /// Match shuffles that concatenate two vectors, rotate the concatenation,
2396 /// and then extract the original number of elements from the rotated result.
2397 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The
2398 /// returned rotation amount is for a rotate right, where elements move from
2399 /// higher elements to lower elements. \p LoSrc indicates the first source
2400 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector
2401 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be
2402 /// 0 or 1 if a rotation is found.
2403 ///
2404 /// NOTE: We talk about rotate to the right which matches how bit shift and
2405 /// rotate instructions are described where LSBs are on the right, but LLVM IR
2406 /// and the table below write vectors with the lowest elements on the left.
2407 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) {
2408   int Size = Mask.size();
2409 
2410   // We need to detect various ways of spelling a rotation:
2411   //   [11, 12, 13, 14, 15,  0,  1,  2]
2412   //   [-1, 12, 13, 14, -1, -1,  1, -1]
2413   //   [-1, -1, -1, -1, -1, -1,  1,  2]
2414   //   [ 3,  4,  5,  6,  7,  8,  9, 10]
2415   //   [-1,  4,  5,  6, -1, -1,  9, -1]
2416   //   [-1,  4,  5,  6, -1, -1, -1, -1]
2417   int Rotation = 0;
2418   LoSrc = -1;
2419   HiSrc = -1;
2420   for (int i = 0; i != Size; ++i) {
2421     int M = Mask[i];
2422     if (M < 0)
2423       continue;
2424 
2425     // Determine where a rotate vector would have started.
2426     int StartIdx = i - (M % Size);
2427     // The identity rotation isn't interesting, stop.
2428     if (StartIdx == 0)
2429       return -1;
2430 
2431     // If we found the tail of a vector the rotation must be the missing
2432     // front. If we found the head of a vector, it must be how much of the
2433     // head.
2434     int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
2435 
2436     if (Rotation == 0)
2437       Rotation = CandidateRotation;
2438     else if (Rotation != CandidateRotation)
2439       // The rotations don't match, so we can't match this mask.
2440       return -1;
2441 
2442     // Compute which value this mask is pointing at.
2443     int MaskSrc = M < Size ? 0 : 1;
2444 
2445     // Compute which of the two target values this index should be assigned to.
2446     // This reflects whether the high elements are remaining or the low elemnts
2447     // are remaining.
2448     int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc;
2449 
2450     // Either set up this value if we've not encountered it before, or check
2451     // that it remains consistent.
2452     if (TargetSrc < 0)
2453       TargetSrc = MaskSrc;
2454     else if (TargetSrc != MaskSrc)
2455       // This may be a rotation, but it pulls from the inputs in some
2456       // unsupported interleaving.
2457       return -1;
2458   }
2459 
2460   // Check that we successfully analyzed the mask, and normalize the results.
2461   assert(Rotation != 0 && "Failed to locate a viable rotation!");
2462   assert((LoSrc >= 0 || HiSrc >= 0) &&
2463          "Failed to find a rotated input vector!");
2464 
2465   return Rotation;
2466 }
2467 
2468 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2469                                    const RISCVSubtarget &Subtarget) {
2470   SDValue V1 = Op.getOperand(0);
2471   SDValue V2 = Op.getOperand(1);
2472   SDLoc DL(Op);
2473   MVT XLenVT = Subtarget.getXLenVT();
2474   MVT VT = Op.getSimpleValueType();
2475   unsigned NumElts = VT.getVectorNumElements();
2476   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2477 
2478   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2479 
2480   SDValue TrueMask, VL;
2481   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2482 
2483   if (SVN->isSplat()) {
2484     const int Lane = SVN->getSplatIndex();
2485     if (Lane >= 0) {
2486       MVT SVT = VT.getVectorElementType();
2487 
2488       // Turn splatted vector load into a strided load with an X0 stride.
2489       SDValue V = V1;
2490       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2491       // with undef.
2492       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2493       int Offset = Lane;
2494       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2495         int OpElements =
2496             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2497         V = V.getOperand(Offset / OpElements);
2498         Offset %= OpElements;
2499       }
2500 
2501       // We need to ensure the load isn't atomic or volatile.
2502       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2503         auto *Ld = cast<LoadSDNode>(V);
2504         Offset *= SVT.getStoreSize();
2505         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2506                                                    TypeSize::Fixed(Offset), DL);
2507 
2508         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2509         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2510           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2511           SDValue IntID =
2512               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2513           SDValue Ops[] = {Ld->getChain(),
2514                            IntID,
2515                            DAG.getUNDEF(ContainerVT),
2516                            NewAddr,
2517                            DAG.getRegister(RISCV::X0, XLenVT),
2518                            VL};
2519           SDValue NewLoad = DAG.getMemIntrinsicNode(
2520               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2521               DAG.getMachineFunction().getMachineMemOperand(
2522                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2523           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2524           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2525         }
2526 
2527         // Otherwise use a scalar load and splat. This will give the best
2528         // opportunity to fold a splat into the operation. ISel can turn it into
2529         // the x0 strided load if we aren't able to fold away the select.
2530         if (SVT.isFloatingPoint())
2531           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2532                           Ld->getPointerInfo().getWithOffset(Offset),
2533                           Ld->getOriginalAlign(),
2534                           Ld->getMemOperand()->getFlags());
2535         else
2536           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2537                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2538                              Ld->getOriginalAlign(),
2539                              Ld->getMemOperand()->getFlags());
2540         DAG.makeEquivalentMemoryOrdering(Ld, V);
2541 
2542         unsigned Opc =
2543             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2544         SDValue Splat =
2545             DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL);
2546         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2547       }
2548 
2549       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2550       assert(Lane < (int)NumElts && "Unexpected lane!");
2551       SDValue Gather =
2552           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
2553                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
2554       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2555     }
2556   }
2557 
2558   ArrayRef<int> Mask = SVN->getMask();
2559 
2560   // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may
2561   // be undef which can be handled with a single SLIDEDOWN/UP.
2562   int LoSrc, HiSrc;
2563   int Rotation = isElementRotate(LoSrc, HiSrc, Mask);
2564   if (Rotation > 0) {
2565     SDValue LoV, HiV;
2566     if (LoSrc >= 0) {
2567       LoV = LoSrc == 0 ? V1 : V2;
2568       LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget);
2569     }
2570     if (HiSrc >= 0) {
2571       HiV = HiSrc == 0 ? V1 : V2;
2572       HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget);
2573     }
2574 
2575     // We found a rotation. We need to slide HiV down by Rotation. Then we need
2576     // to slide LoV up by (NumElts - Rotation).
2577     unsigned InvRotate = NumElts - Rotation;
2578 
2579     SDValue Res = DAG.getUNDEF(ContainerVT);
2580     if (HiV) {
2581       // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN.
2582       // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it
2583       // causes multiple vsetvlis in some test cases such as lowering
2584       // reduce.mul
2585       SDValue DownVL = VL;
2586       if (LoV)
2587         DownVL = DAG.getConstant(InvRotate, DL, XLenVT);
2588       Res =
2589           DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV,
2590                       DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL);
2591     }
2592     if (LoV)
2593       Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV,
2594                         DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL);
2595 
2596     return convertFromScalableVector(VT, Res, DAG, Subtarget);
2597   }
2598 
2599   // Detect an interleave shuffle and lower to
2600   // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
2601   bool SwapSources;
2602   if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) {
2603     // Swap sources if needed.
2604     if (SwapSources)
2605       std::swap(V1, V2);
2606 
2607     // Extract the lower half of the vectors.
2608     MVT HalfVT = VT.getHalfNumVectorElementsVT();
2609     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
2610                      DAG.getConstant(0, DL, XLenVT));
2611     V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2,
2612                      DAG.getConstant(0, DL, XLenVT));
2613 
2614     // Double the element width and halve the number of elements in an int type.
2615     unsigned EltBits = VT.getScalarSizeInBits();
2616     MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
2617     MVT WideIntVT =
2618         MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2);
2619     // Convert this to a scalable vector. We need to base this on the
2620     // destination size to ensure there's always a type with a smaller LMUL.
2621     MVT WideIntContainerVT =
2622         getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget);
2623 
2624     // Convert sources to scalable vectors with the same element count as the
2625     // larger type.
2626     MVT HalfContainerVT = MVT::getVectorVT(
2627         VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount());
2628     V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget);
2629     V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget);
2630 
2631     // Cast sources to integer.
2632     MVT IntEltVT = MVT::getIntegerVT(EltBits);
2633     MVT IntHalfVT =
2634         MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount());
2635     V1 = DAG.getBitcast(IntHalfVT, V1);
2636     V2 = DAG.getBitcast(IntHalfVT, V2);
2637 
2638     // Freeze V2 since we use it twice and we need to be sure that the add and
2639     // multiply see the same value.
2640     V2 = DAG.getFreeze(V2);
2641 
2642     // Recreate TrueMask using the widened type's element count.
2643     TrueMask = getAllOnesMask(HalfContainerVT, VL, DL, DAG);
2644 
2645     // Widen V1 and V2 with 0s and add one copy of V2 to V1.
2646     SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1,
2647                               V2, TrueMask, VL);
2648     // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer.
2649     SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT,
2650                                      DAG.getUNDEF(IntHalfVT),
2651                                      DAG.getAllOnesConstant(DL, XLenVT));
2652     SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT,
2653                                    V2, Multiplier, TrueMask, VL);
2654     // Add the new copies to our previous addition giving us 2^eltbits copies of
2655     // V2. This is equivalent to shifting V2 left by eltbits. This should
2656     // combine with the vwmulu.vv above to form vwmaccu.vv.
2657     Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul,
2658                       TrueMask, VL);
2659     // Cast back to ContainerVT. We need to re-create a new ContainerVT in case
2660     // WideIntContainerVT is a larger fractional LMUL than implied by the fixed
2661     // vector VT.
2662     ContainerVT =
2663         MVT::getVectorVT(VT.getVectorElementType(),
2664                          WideIntContainerVT.getVectorElementCount() * 2);
2665     Add = DAG.getBitcast(ContainerVT, Add);
2666     return convertFromScalableVector(VT, Add, DAG, Subtarget);
2667   }
2668 
2669   // Detect shuffles which can be re-expressed as vector selects; these are
2670   // shuffles in which each element in the destination is taken from an element
2671   // at the corresponding index in either source vectors.
2672   bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) {
2673     int MaskIndex = MaskIdx.value();
2674     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2675   });
2676 
2677   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2678 
2679   SmallVector<SDValue> MaskVals;
2680   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2681   // merged with a second vrgather.
2682   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2683 
2684   // By default we preserve the original operand order, and use a mask to
2685   // select LHS as true and RHS as false. However, since RVV vector selects may
2686   // feature splats but only on the LHS, we may choose to invert our mask and
2687   // instead select between RHS and LHS.
2688   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2689   bool InvertMask = IsSelect == SwapOps;
2690 
2691   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2692   // half.
2693   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2694 
2695   // Now construct the mask that will be used by the vselect or blended
2696   // vrgather operation. For vrgathers, construct the appropriate indices into
2697   // each vector.
2698   for (int MaskIndex : Mask) {
2699     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2700     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2701     if (!IsSelect) {
2702       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2703       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2704                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2705                                      : DAG.getUNDEF(XLenVT));
2706       GatherIndicesRHS.push_back(
2707           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2708                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2709       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2710         ++LHSIndexCounts[MaskIndex];
2711       if (!IsLHSOrUndefIndex)
2712         ++RHSIndexCounts[MaskIndex - NumElts];
2713     }
2714   }
2715 
2716   if (SwapOps) {
2717     std::swap(V1, V2);
2718     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2719   }
2720 
2721   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2722   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2723   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2724 
2725   if (IsSelect)
2726     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2727 
2728   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2729     // On such a large vector we're unable to use i8 as the index type.
2730     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2731     // may involve vector splitting if we're already at LMUL=8, or our
2732     // user-supplied maximum fixed-length LMUL.
2733     return SDValue();
2734   }
2735 
2736   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2737   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2738   MVT IndexVT = VT.changeTypeToInteger();
2739   // Since we can't introduce illegal index types at this stage, use i16 and
2740   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2741   // than XLenVT.
2742   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2743     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2744     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2745   }
2746 
2747   MVT IndexContainerVT =
2748       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2749 
2750   SDValue Gather;
2751   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2752   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2753   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2754     Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG,
2755                               Subtarget);
2756   } else {
2757     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2758     // If only one index is used, we can use a "splat" vrgather.
2759     // TODO: We can splat the most-common index and fix-up any stragglers, if
2760     // that's beneficial.
2761     if (LHSIndexCounts.size() == 1) {
2762       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2763       Gather =
2764           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2765                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2766     } else {
2767       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2768       LHSIndices =
2769           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2770 
2771       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2772                            TrueMask, VL);
2773     }
2774   }
2775 
2776   // If a second vector operand is used by this shuffle, blend it in with an
2777   // additional vrgather.
2778   if (!V2.isUndef()) {
2779     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2780     // If only one index is used, we can use a "splat" vrgather.
2781     // TODO: We can splat the most-common index and fix-up any stragglers, if
2782     // that's beneficial.
2783     if (RHSIndexCounts.size() == 1) {
2784       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2785       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2786                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2787     } else {
2788       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2789       RHSIndices =
2790           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2791       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2792                        VL);
2793     }
2794 
2795     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2796     SelectMask =
2797         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2798 
2799     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2800                          Gather, VL);
2801   }
2802 
2803   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2804 }
2805 
2806 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
2807   // Support splats for any type. These should type legalize well.
2808   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
2809     return true;
2810 
2811   // Only support legal VTs for other shuffles for now.
2812   if (!isTypeLegal(VT))
2813     return false;
2814 
2815   MVT SVT = VT.getSimpleVT();
2816 
2817   bool SwapSources;
2818   int LoSrc, HiSrc;
2819   return (isElementRotate(LoSrc, HiSrc, M) > 0) ||
2820          isInterleaveShuffle(M, SVT, SwapSources, Subtarget);
2821 }
2822 
2823 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2824 // the exponent.
2825 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2826   MVT VT = Op.getSimpleValueType();
2827   unsigned EltSize = VT.getScalarSizeInBits();
2828   SDValue Src = Op.getOperand(0);
2829   SDLoc DL(Op);
2830 
2831   // We need a FP type that can represent the value.
2832   // TODO: Use f16 for i8 when possible?
2833   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2834   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2835 
2836   // Legal types should have been checked in the RISCVTargetLowering
2837   // constructor.
2838   // TODO: Splitting may make sense in some cases.
2839   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2840          "Expected legal float type!");
2841 
2842   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2843   // The trailing zero count is equal to log2 of this single bit value.
2844   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2845     SDValue Neg =
2846         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2847     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2848   }
2849 
2850   // We have a legal FP type, convert to it.
2851   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2852   // Bitcast to integer and shift the exponent to the LSB.
2853   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2854   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2855   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2856   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2857                               DAG.getConstant(ShiftAmt, DL, IntVT));
2858   // Truncate back to original type to allow vnsrl.
2859   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2860   // The exponent contains log2 of the value in biased form.
2861   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2862 
2863   // For trailing zeros, we just need to subtract the bias.
2864   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2865     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2866                        DAG.getConstant(ExponentBias, DL, VT));
2867 
2868   // For leading zeros, we need to remove the bias and convert from log2 to
2869   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2870   unsigned Adjust = ExponentBias + (EltSize - 1);
2871   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2872 }
2873 
2874 // While RVV has alignment restrictions, we should always be able to load as a
2875 // legal equivalently-sized byte-typed vector instead. This method is
2876 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2877 // the load is already correctly-aligned, it returns SDValue().
2878 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2879                                                     SelectionDAG &DAG) const {
2880   auto *Load = cast<LoadSDNode>(Op);
2881   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2882 
2883   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2884                                      Load->getMemoryVT(),
2885                                      *Load->getMemOperand()))
2886     return SDValue();
2887 
2888   SDLoc DL(Op);
2889   MVT VT = Op.getSimpleValueType();
2890   unsigned EltSizeBits = VT.getScalarSizeInBits();
2891   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2892          "Unexpected unaligned RVV load type");
2893   MVT NewVT =
2894       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2895   assert(NewVT.isValid() &&
2896          "Expecting equally-sized RVV vector types to be legal");
2897   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2898                           Load->getPointerInfo(), Load->getOriginalAlign(),
2899                           Load->getMemOperand()->getFlags());
2900   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2901 }
2902 
2903 // While RVV has alignment restrictions, we should always be able to store as a
2904 // legal equivalently-sized byte-typed vector instead. This method is
2905 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
2906 // returns SDValue() if the store is already correctly aligned.
2907 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
2908                                                      SelectionDAG &DAG) const {
2909   auto *Store = cast<StoreSDNode>(Op);
2910   assert(Store && Store->getValue().getValueType().isVector() &&
2911          "Expected vector store");
2912 
2913   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2914                                      Store->getMemoryVT(),
2915                                      *Store->getMemOperand()))
2916     return SDValue();
2917 
2918   SDLoc DL(Op);
2919   SDValue StoredVal = Store->getValue();
2920   MVT VT = StoredVal.getSimpleValueType();
2921   unsigned EltSizeBits = VT.getScalarSizeInBits();
2922   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2923          "Unexpected unaligned RVV store type");
2924   MVT NewVT =
2925       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2926   assert(NewVT.isValid() &&
2927          "Expecting equally-sized RVV vector types to be legal");
2928   StoredVal = DAG.getBitcast(NewVT, StoredVal);
2929   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
2930                       Store->getPointerInfo(), Store->getOriginalAlign(),
2931                       Store->getMemOperand()->getFlags());
2932 }
2933 
2934 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
2935                                             SelectionDAG &DAG) const {
2936   switch (Op.getOpcode()) {
2937   default:
2938     report_fatal_error("unimplemented operand");
2939   case ISD::GlobalAddress:
2940     return lowerGlobalAddress(Op, DAG);
2941   case ISD::BlockAddress:
2942     return lowerBlockAddress(Op, DAG);
2943   case ISD::ConstantPool:
2944     return lowerConstantPool(Op, DAG);
2945   case ISD::JumpTable:
2946     return lowerJumpTable(Op, DAG);
2947   case ISD::GlobalTLSAddress:
2948     return lowerGlobalTLSAddress(Op, DAG);
2949   case ISD::SELECT:
2950     return lowerSELECT(Op, DAG);
2951   case ISD::BRCOND:
2952     return lowerBRCOND(Op, DAG);
2953   case ISD::VASTART:
2954     return lowerVASTART(Op, DAG);
2955   case ISD::FRAMEADDR:
2956     return lowerFRAMEADDR(Op, DAG);
2957   case ISD::RETURNADDR:
2958     return lowerRETURNADDR(Op, DAG);
2959   case ISD::SHL_PARTS:
2960     return lowerShiftLeftParts(Op, DAG);
2961   case ISD::SRA_PARTS:
2962     return lowerShiftRightParts(Op, DAG, true);
2963   case ISD::SRL_PARTS:
2964     return lowerShiftRightParts(Op, DAG, false);
2965   case ISD::BITCAST: {
2966     SDLoc DL(Op);
2967     EVT VT = Op.getValueType();
2968     SDValue Op0 = Op.getOperand(0);
2969     EVT Op0VT = Op0.getValueType();
2970     MVT XLenVT = Subtarget.getXLenVT();
2971     if (VT.isFixedLengthVector()) {
2972       // We can handle fixed length vector bitcasts with a simple replacement
2973       // in isel.
2974       if (Op0VT.isFixedLengthVector())
2975         return Op;
2976       // When bitcasting from scalar to fixed-length vector, insert the scalar
2977       // into a one-element vector of the result type, and perform a vector
2978       // bitcast.
2979       if (!Op0VT.isVector()) {
2980         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
2981         if (!isTypeLegal(BVT))
2982           return SDValue();
2983         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
2984                                               DAG.getUNDEF(BVT), Op0,
2985                                               DAG.getConstant(0, DL, XLenVT)));
2986       }
2987       return SDValue();
2988     }
2989     // Custom-legalize bitcasts from fixed-length vector types to scalar types
2990     // thus: bitcast the vector to a one-element vector type whose element type
2991     // is the same as the result type, and extract the first element.
2992     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
2993       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
2994       if (!isTypeLegal(BVT))
2995         return SDValue();
2996       SDValue BVec = DAG.getBitcast(BVT, Op0);
2997       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
2998                          DAG.getConstant(0, DL, XLenVT));
2999     }
3000     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
3001       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
3002       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
3003       return FPConv;
3004     }
3005     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
3006         Subtarget.hasStdExtF()) {
3007       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
3008       SDValue FPConv =
3009           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
3010       return FPConv;
3011     }
3012     return SDValue();
3013   }
3014   case ISD::INTRINSIC_WO_CHAIN:
3015     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3016   case ISD::INTRINSIC_W_CHAIN:
3017     return LowerINTRINSIC_W_CHAIN(Op, DAG);
3018   case ISD::INTRINSIC_VOID:
3019     return LowerINTRINSIC_VOID(Op, DAG);
3020   case ISD::BSWAP:
3021   case ISD::BITREVERSE: {
3022     MVT VT = Op.getSimpleValueType();
3023     SDLoc DL(Op);
3024     if (Subtarget.hasStdExtZbp()) {
3025       // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
3026       // Start with the maximum immediate value which is the bitwidth - 1.
3027       unsigned Imm = VT.getSizeInBits() - 1;
3028       // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
3029       if (Op.getOpcode() == ISD::BSWAP)
3030         Imm &= ~0x7U;
3031       return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
3032                          DAG.getConstant(Imm, DL, VT));
3033     }
3034     assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
3035     assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
3036     // Expand bitreverse to a bswap(rev8) followed by brev8.
3037     SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
3038     // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized
3039     // as brev8 by an isel pattern.
3040     return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap,
3041                        DAG.getConstant(7, DL, VT));
3042   }
3043   case ISD::FSHL:
3044   case ISD::FSHR: {
3045     MVT VT = Op.getSimpleValueType();
3046     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
3047     SDLoc DL(Op);
3048     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
3049     // use log(XLen) bits. Mask the shift amount accordingly to prevent
3050     // accidentally setting the extra bit.
3051     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
3052     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
3053                                 DAG.getConstant(ShAmtWidth, DL, VT));
3054     // fshl and fshr concatenate their operands in the same order. fsr and fsl
3055     // instruction use different orders. fshl will return its first operand for
3056     // shift of zero, fshr will return its second operand. fsl and fsr both
3057     // return rs1 so the ISD nodes need to have different operand orders.
3058     // Shift amount is in rs2.
3059     SDValue Op0 = Op.getOperand(0);
3060     SDValue Op1 = Op.getOperand(1);
3061     unsigned Opc = RISCVISD::FSL;
3062     if (Op.getOpcode() == ISD::FSHR) {
3063       std::swap(Op0, Op1);
3064       Opc = RISCVISD::FSR;
3065     }
3066     return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt);
3067   }
3068   case ISD::TRUNCATE:
3069     // Only custom-lower vector truncates
3070     if (!Op.getSimpleValueType().isVector())
3071       return Op;
3072     return lowerVectorTruncLike(Op, DAG);
3073   case ISD::ANY_EXTEND:
3074   case ISD::ZERO_EXTEND:
3075     if (Op.getOperand(0).getValueType().isVector() &&
3076         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3077       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
3078     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
3079   case ISD::SIGN_EXTEND:
3080     if (Op.getOperand(0).getValueType().isVector() &&
3081         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3082       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
3083     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
3084   case ISD::SPLAT_VECTOR_PARTS:
3085     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
3086   case ISD::INSERT_VECTOR_ELT:
3087     return lowerINSERT_VECTOR_ELT(Op, DAG);
3088   case ISD::EXTRACT_VECTOR_ELT:
3089     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3090   case ISD::VSCALE: {
3091     MVT VT = Op.getSimpleValueType();
3092     SDLoc DL(Op);
3093     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
3094     // We define our scalable vector types for lmul=1 to use a 64 bit known
3095     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
3096     // vscale as VLENB / 8.
3097     static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
3098     if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock)
3099       report_fatal_error("Support for VLEN==32 is incomplete.");
3100     // We assume VLENB is a multiple of 8. We manually choose the best shift
3101     // here because SimplifyDemandedBits isn't always able to simplify it.
3102     uint64_t Val = Op.getConstantOperandVal(0);
3103     if (isPowerOf2_64(Val)) {
3104       uint64_t Log2 = Log2_64(Val);
3105       if (Log2 < 3)
3106         return DAG.getNode(ISD::SRL, DL, VT, VLENB,
3107                            DAG.getConstant(3 - Log2, DL, VT));
3108       if (Log2 > 3)
3109         return DAG.getNode(ISD::SHL, DL, VT, VLENB,
3110                            DAG.getConstant(Log2 - 3, DL, VT));
3111       return VLENB;
3112     }
3113     // If the multiplier is a multiple of 8, scale it down to avoid needing
3114     // to shift the VLENB value.
3115     if ((Val % 8) == 0)
3116       return DAG.getNode(ISD::MUL, DL, VT, VLENB,
3117                          DAG.getConstant(Val / 8, DL, VT));
3118 
3119     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
3120                                  DAG.getConstant(3, DL, VT));
3121     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
3122   }
3123   case ISD::FPOWI: {
3124     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
3125     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
3126     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
3127         Op.getOperand(1).getValueType() == MVT::i32) {
3128       SDLoc DL(Op);
3129       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
3130       SDValue Powi =
3131           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
3132       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
3133                          DAG.getIntPtrConstant(0, DL));
3134     }
3135     return SDValue();
3136   }
3137   case ISD::FP_EXTEND:
3138   case ISD::FP_ROUND:
3139     if (!Op.getValueType().isVector())
3140       return Op;
3141     return lowerVectorFPExtendOrRoundLike(Op, DAG);
3142   case ISD::FP_TO_SINT:
3143   case ISD::FP_TO_UINT:
3144   case ISD::SINT_TO_FP:
3145   case ISD::UINT_TO_FP: {
3146     // RVV can only do fp<->int conversions to types half/double the size as
3147     // the source. We custom-lower any conversions that do two hops into
3148     // sequences.
3149     MVT VT = Op.getSimpleValueType();
3150     if (!VT.isVector())
3151       return Op;
3152     SDLoc DL(Op);
3153     SDValue Src = Op.getOperand(0);
3154     MVT EltVT = VT.getVectorElementType();
3155     MVT SrcVT = Src.getSimpleValueType();
3156     MVT SrcEltVT = SrcVT.getVectorElementType();
3157     unsigned EltSize = EltVT.getSizeInBits();
3158     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
3159     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
3160            "Unexpected vector element types");
3161 
3162     bool IsInt2FP = SrcEltVT.isInteger();
3163     // Widening conversions
3164     if (EltSize > (2 * SrcEltSize)) {
3165       if (IsInt2FP) {
3166         // Do a regular integer sign/zero extension then convert to float.
3167         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize),
3168                                       VT.getVectorElementCount());
3169         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
3170                                  ? ISD::ZERO_EXTEND
3171                                  : ISD::SIGN_EXTEND;
3172         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
3173         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
3174       }
3175       // FP2Int
3176       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
3177       // Do one doubling fp_extend then complete the operation by converting
3178       // to int.
3179       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3180       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
3181       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
3182     }
3183 
3184     // Narrowing conversions
3185     if (SrcEltSize > (2 * EltSize)) {
3186       if (IsInt2FP) {
3187         // One narrowing int_to_fp, then an fp_round.
3188         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
3189         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3190         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
3191         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
3192       }
3193       // FP2Int
3194       // One narrowing fp_to_int, then truncate the integer. If the float isn't
3195       // representable by the integer, the result is poison.
3196       MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
3197                                     VT.getVectorElementCount());
3198       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
3199       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
3200     }
3201 
3202     // Scalable vectors can exit here. Patterns will handle equally-sized
3203     // conversions halving/doubling ones.
3204     if (!VT.isFixedLengthVector())
3205       return Op;
3206 
3207     // For fixed-length vectors we lower to a custom "VL" node.
3208     unsigned RVVOpc = 0;
3209     switch (Op.getOpcode()) {
3210     default:
3211       llvm_unreachable("Impossible opcode");
3212     case ISD::FP_TO_SINT:
3213       RVVOpc = RISCVISD::FP_TO_SINT_VL;
3214       break;
3215     case ISD::FP_TO_UINT:
3216       RVVOpc = RISCVISD::FP_TO_UINT_VL;
3217       break;
3218     case ISD::SINT_TO_FP:
3219       RVVOpc = RISCVISD::SINT_TO_FP_VL;
3220       break;
3221     case ISD::UINT_TO_FP:
3222       RVVOpc = RISCVISD::UINT_TO_FP_VL;
3223       break;
3224     }
3225 
3226     MVT ContainerVT, SrcContainerVT;
3227     // Derive the reference container type from the larger vector type.
3228     if (SrcEltSize > EltSize) {
3229       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3230       ContainerVT =
3231           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3232     } else {
3233       ContainerVT = getContainerForFixedLengthVector(VT);
3234       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
3235     }
3236 
3237     SDValue Mask, VL;
3238     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3239 
3240     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3241     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3242     return convertFromScalableVector(VT, Src, DAG, Subtarget);
3243   }
3244   case ISD::FP_TO_SINT_SAT:
3245   case ISD::FP_TO_UINT_SAT:
3246     return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
3247   case ISD::FTRUNC:
3248   case ISD::FCEIL:
3249   case ISD::FFLOOR:
3250     return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3251   case ISD::FROUND:
3252     return lowerFROUND(Op, DAG);
3253   case ISD::VECREDUCE_ADD:
3254   case ISD::VECREDUCE_UMAX:
3255   case ISD::VECREDUCE_SMAX:
3256   case ISD::VECREDUCE_UMIN:
3257   case ISD::VECREDUCE_SMIN:
3258     return lowerVECREDUCE(Op, DAG);
3259   case ISD::VECREDUCE_AND:
3260   case ISD::VECREDUCE_OR:
3261   case ISD::VECREDUCE_XOR:
3262     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3263       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3264     return lowerVECREDUCE(Op, DAG);
3265   case ISD::VECREDUCE_FADD:
3266   case ISD::VECREDUCE_SEQ_FADD:
3267   case ISD::VECREDUCE_FMIN:
3268   case ISD::VECREDUCE_FMAX:
3269     return lowerFPVECREDUCE(Op, DAG);
3270   case ISD::VP_REDUCE_ADD:
3271   case ISD::VP_REDUCE_UMAX:
3272   case ISD::VP_REDUCE_SMAX:
3273   case ISD::VP_REDUCE_UMIN:
3274   case ISD::VP_REDUCE_SMIN:
3275   case ISD::VP_REDUCE_FADD:
3276   case ISD::VP_REDUCE_SEQ_FADD:
3277   case ISD::VP_REDUCE_FMIN:
3278   case ISD::VP_REDUCE_FMAX:
3279     return lowerVPREDUCE(Op, DAG);
3280   case ISD::VP_REDUCE_AND:
3281   case ISD::VP_REDUCE_OR:
3282   case ISD::VP_REDUCE_XOR:
3283     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3284       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3285     return lowerVPREDUCE(Op, DAG);
3286   case ISD::INSERT_SUBVECTOR:
3287     return lowerINSERT_SUBVECTOR(Op, DAG);
3288   case ISD::EXTRACT_SUBVECTOR:
3289     return lowerEXTRACT_SUBVECTOR(Op, DAG);
3290   case ISD::STEP_VECTOR:
3291     return lowerSTEP_VECTOR(Op, DAG);
3292   case ISD::VECTOR_REVERSE:
3293     return lowerVECTOR_REVERSE(Op, DAG);
3294   case ISD::VECTOR_SPLICE:
3295     return lowerVECTOR_SPLICE(Op, DAG);
3296   case ISD::BUILD_VECTOR:
3297     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3298   case ISD::SPLAT_VECTOR:
3299     if (Op.getValueType().getVectorElementType() == MVT::i1)
3300       return lowerVectorMaskSplat(Op, DAG);
3301     return SDValue();
3302   case ISD::VECTOR_SHUFFLE:
3303     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3304   case ISD::CONCAT_VECTORS: {
3305     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3306     // better than going through the stack, as the default expansion does.
3307     SDLoc DL(Op);
3308     MVT VT = Op.getSimpleValueType();
3309     unsigned NumOpElts =
3310         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3311     SDValue Vec = DAG.getUNDEF(VT);
3312     for (const auto &OpIdx : enumerate(Op->ops())) {
3313       SDValue SubVec = OpIdx.value();
3314       // Don't insert undef subvectors.
3315       if (SubVec.isUndef())
3316         continue;
3317       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
3318                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3319     }
3320     return Vec;
3321   }
3322   case ISD::LOAD:
3323     if (auto V = expandUnalignedRVVLoad(Op, DAG))
3324       return V;
3325     if (Op.getValueType().isFixedLengthVector())
3326       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3327     return Op;
3328   case ISD::STORE:
3329     if (auto V = expandUnalignedRVVStore(Op, DAG))
3330       return V;
3331     if (Op.getOperand(1).getValueType().isFixedLengthVector())
3332       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3333     return Op;
3334   case ISD::MLOAD:
3335   case ISD::VP_LOAD:
3336     return lowerMaskedLoad(Op, DAG);
3337   case ISD::MSTORE:
3338   case ISD::VP_STORE:
3339     return lowerMaskedStore(Op, DAG);
3340   case ISD::SETCC:
3341     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3342   case ISD::ADD:
3343     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3344   case ISD::SUB:
3345     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3346   case ISD::MUL:
3347     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3348   case ISD::MULHS:
3349     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3350   case ISD::MULHU:
3351     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3352   case ISD::AND:
3353     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3354                                               RISCVISD::AND_VL);
3355   case ISD::OR:
3356     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3357                                               RISCVISD::OR_VL);
3358   case ISD::XOR:
3359     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3360                                               RISCVISD::XOR_VL);
3361   case ISD::SDIV:
3362     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3363   case ISD::SREM:
3364     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3365   case ISD::UDIV:
3366     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3367   case ISD::UREM:
3368     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3369   case ISD::SHL:
3370   case ISD::SRA:
3371   case ISD::SRL:
3372     if (Op.getSimpleValueType().isFixedLengthVector())
3373       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3374     // This can be called for an i32 shift amount that needs to be promoted.
3375     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3376            "Unexpected custom legalisation");
3377     return SDValue();
3378   case ISD::SADDSAT:
3379     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3380   case ISD::UADDSAT:
3381     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3382   case ISD::SSUBSAT:
3383     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3384   case ISD::USUBSAT:
3385     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3386   case ISD::FADD:
3387     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3388   case ISD::FSUB:
3389     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3390   case ISD::FMUL:
3391     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3392   case ISD::FDIV:
3393     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3394   case ISD::FNEG:
3395     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3396   case ISD::FABS:
3397     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3398   case ISD::FSQRT:
3399     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3400   case ISD::FMA:
3401     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
3402   case ISD::SMIN:
3403     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3404   case ISD::SMAX:
3405     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3406   case ISD::UMIN:
3407     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3408   case ISD::UMAX:
3409     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3410   case ISD::FMINNUM:
3411     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3412   case ISD::FMAXNUM:
3413     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3414   case ISD::ABS:
3415     return lowerABS(Op, DAG);
3416   case ISD::CTLZ_ZERO_UNDEF:
3417   case ISD::CTTZ_ZERO_UNDEF:
3418     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3419   case ISD::VSELECT:
3420     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3421   case ISD::FCOPYSIGN:
3422     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3423   case ISD::MGATHER:
3424   case ISD::VP_GATHER:
3425     return lowerMaskedGather(Op, DAG);
3426   case ISD::MSCATTER:
3427   case ISD::VP_SCATTER:
3428     return lowerMaskedScatter(Op, DAG);
3429   case ISD::FLT_ROUNDS_:
3430     return lowerGET_ROUNDING(Op, DAG);
3431   case ISD::SET_ROUNDING:
3432     return lowerSET_ROUNDING(Op, DAG);
3433   case ISD::VP_SELECT:
3434     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3435   case ISD::VP_MERGE:
3436     return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL);
3437   case ISD::VP_ADD:
3438     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3439   case ISD::VP_SUB:
3440     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3441   case ISD::VP_MUL:
3442     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3443   case ISD::VP_SDIV:
3444     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3445   case ISD::VP_UDIV:
3446     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3447   case ISD::VP_SREM:
3448     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3449   case ISD::VP_UREM:
3450     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3451   case ISD::VP_AND:
3452     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3453   case ISD::VP_OR:
3454     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3455   case ISD::VP_XOR:
3456     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3457   case ISD::VP_ASHR:
3458     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3459   case ISD::VP_LSHR:
3460     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3461   case ISD::VP_SHL:
3462     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3463   case ISD::VP_FADD:
3464     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3465   case ISD::VP_FSUB:
3466     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3467   case ISD::VP_FMUL:
3468     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3469   case ISD::VP_FDIV:
3470     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3471   case ISD::VP_FNEG:
3472     return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL);
3473   case ISD::VP_FMA:
3474     return lowerVPOp(Op, DAG, RISCVISD::FMA_VL);
3475   case ISD::VP_SIGN_EXTEND:
3476   case ISD::VP_ZERO_EXTEND:
3477     if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
3478       return lowerVPExtMaskOp(Op, DAG);
3479     return lowerVPOp(Op, DAG,
3480                      Op.getOpcode() == ISD::VP_SIGN_EXTEND
3481                          ? RISCVISD::VSEXT_VL
3482                          : RISCVISD::VZEXT_VL);
3483   case ISD::VP_TRUNCATE:
3484     return lowerVectorTruncLike(Op, DAG);
3485   case ISD::VP_FP_EXTEND:
3486   case ISD::VP_FP_ROUND:
3487     return lowerVectorFPExtendOrRoundLike(Op, DAG);
3488   case ISD::VP_FPTOSI:
3489     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_SINT_VL);
3490   case ISD::VP_FPTOUI:
3491     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_UINT_VL);
3492   case ISD::VP_SITOFP:
3493     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::SINT_TO_FP_VL);
3494   case ISD::VP_UITOFP:
3495     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::UINT_TO_FP_VL);
3496   case ISD::VP_SETCC:
3497     if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
3498       return lowerVPSetCCMaskOp(Op, DAG);
3499     return lowerVPOp(Op, DAG, RISCVISD::SETCC_VL);
3500   }
3501 }
3502 
3503 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3504                              SelectionDAG &DAG, unsigned Flags) {
3505   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3506 }
3507 
3508 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3509                              SelectionDAG &DAG, unsigned Flags) {
3510   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3511                                    Flags);
3512 }
3513 
3514 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3515                              SelectionDAG &DAG, unsigned Flags) {
3516   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3517                                    N->getOffset(), Flags);
3518 }
3519 
3520 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3521                              SelectionDAG &DAG, unsigned Flags) {
3522   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3523 }
3524 
3525 template <class NodeTy>
3526 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3527                                      bool IsLocal) const {
3528   SDLoc DL(N);
3529   EVT Ty = getPointerTy(DAG.getDataLayout());
3530 
3531   if (isPositionIndependent()) {
3532     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3533     if (IsLocal)
3534       // Use PC-relative addressing to access the symbol. This generates the
3535       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3536       // %pcrel_lo(auipc)).
3537       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3538 
3539     // Use PC-relative addressing to access the GOT for this symbol, then load
3540     // the address from the GOT. This generates the pattern (PseudoLA sym),
3541     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3542     SDValue Load =
3543         SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
3544     MachineFunction &MF = DAG.getMachineFunction();
3545     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3546         MachinePointerInfo::getGOT(MF),
3547         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3548             MachineMemOperand::MOInvariant,
3549         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3550     DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
3551     return Load;
3552   }
3553 
3554   switch (getTargetMachine().getCodeModel()) {
3555   default:
3556     report_fatal_error("Unsupported code model for lowering");
3557   case CodeModel::Small: {
3558     // Generate a sequence for accessing addresses within the first 2 GiB of
3559     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3560     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3561     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3562     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3563     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
3564   }
3565   case CodeModel::Medium: {
3566     // Generate a sequence for accessing addresses within any 2GiB range within
3567     // the address space. This generates the pattern (PseudoLLA sym), which
3568     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3569     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3570     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3571   }
3572   }
3573 }
3574 
3575 template SDValue RISCVTargetLowering::getAddr<GlobalAddressSDNode>(
3576     GlobalAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3577 template SDValue RISCVTargetLowering::getAddr<BlockAddressSDNode>(
3578     BlockAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3579 template SDValue RISCVTargetLowering::getAddr<ConstantPoolSDNode>(
3580     ConstantPoolSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3581 template SDValue RISCVTargetLowering::getAddr<JumpTableSDNode>(
3582     JumpTableSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3583 
3584 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3585                                                 SelectionDAG &DAG) const {
3586   SDLoc DL(Op);
3587   EVT Ty = Op.getValueType();
3588   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3589   int64_t Offset = N->getOffset();
3590   MVT XLenVT = Subtarget.getXLenVT();
3591 
3592   const GlobalValue *GV = N->getGlobal();
3593   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3594   SDValue Addr = getAddr(N, DAG, IsLocal);
3595 
3596   // In order to maximise the opportunity for common subexpression elimination,
3597   // emit a separate ADD node for the global address offset instead of folding
3598   // it in the global address node. Later peephole optimisations may choose to
3599   // fold it back in when profitable.
3600   if (Offset != 0)
3601     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3602                        DAG.getConstant(Offset, DL, XLenVT));
3603   return Addr;
3604 }
3605 
3606 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3607                                                SelectionDAG &DAG) const {
3608   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3609 
3610   return getAddr(N, DAG);
3611 }
3612 
3613 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3614                                                SelectionDAG &DAG) const {
3615   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3616 
3617   return getAddr(N, DAG);
3618 }
3619 
3620 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3621                                             SelectionDAG &DAG) const {
3622   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3623 
3624   return getAddr(N, DAG);
3625 }
3626 
3627 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3628                                               SelectionDAG &DAG,
3629                                               bool UseGOT) const {
3630   SDLoc DL(N);
3631   EVT Ty = getPointerTy(DAG.getDataLayout());
3632   const GlobalValue *GV = N->getGlobal();
3633   MVT XLenVT = Subtarget.getXLenVT();
3634 
3635   if (UseGOT) {
3636     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3637     // load the address from the GOT and add the thread pointer. This generates
3638     // the pattern (PseudoLA_TLS_IE sym), which expands to
3639     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3640     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3641     SDValue Load =
3642         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
3643     MachineFunction &MF = DAG.getMachineFunction();
3644     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3645         MachinePointerInfo::getGOT(MF),
3646         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3647             MachineMemOperand::MOInvariant,
3648         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3649     DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
3650 
3651     // Add the thread pointer.
3652     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3653     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3654   }
3655 
3656   // Generate a sequence for accessing the address relative to the thread
3657   // pointer, with the appropriate adjustment for the thread pointer offset.
3658   // This generates the pattern
3659   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3660   SDValue AddrHi =
3661       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3662   SDValue AddrAdd =
3663       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3664   SDValue AddrLo =
3665       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3666 
3667   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3668   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3669   SDValue MNAdd = SDValue(
3670       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
3671       0);
3672   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
3673 }
3674 
3675 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3676                                                SelectionDAG &DAG) const {
3677   SDLoc DL(N);
3678   EVT Ty = getPointerTy(DAG.getDataLayout());
3679   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3680   const GlobalValue *GV = N->getGlobal();
3681 
3682   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3683   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3684   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3685   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3686   SDValue Load =
3687       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
3688 
3689   // Prepare argument list to generate call.
3690   ArgListTy Args;
3691   ArgListEntry Entry;
3692   Entry.Node = Load;
3693   Entry.Ty = CallTy;
3694   Args.push_back(Entry);
3695 
3696   // Setup call to __tls_get_addr.
3697   TargetLowering::CallLoweringInfo CLI(DAG);
3698   CLI.setDebugLoc(DL)
3699       .setChain(DAG.getEntryNode())
3700       .setLibCallee(CallingConv::C, CallTy,
3701                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3702                     std::move(Args));
3703 
3704   return LowerCallTo(CLI).first;
3705 }
3706 
3707 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3708                                                    SelectionDAG &DAG) const {
3709   SDLoc DL(Op);
3710   EVT Ty = Op.getValueType();
3711   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3712   int64_t Offset = N->getOffset();
3713   MVT XLenVT = Subtarget.getXLenVT();
3714 
3715   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3716 
3717   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3718       CallingConv::GHC)
3719     report_fatal_error("In GHC calling convention TLS is not supported");
3720 
3721   SDValue Addr;
3722   switch (Model) {
3723   case TLSModel::LocalExec:
3724     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3725     break;
3726   case TLSModel::InitialExec:
3727     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3728     break;
3729   case TLSModel::LocalDynamic:
3730   case TLSModel::GeneralDynamic:
3731     Addr = getDynamicTLSAddr(N, DAG);
3732     break;
3733   }
3734 
3735   // In order to maximise the opportunity for common subexpression elimination,
3736   // emit a separate ADD node for the global address offset instead of folding
3737   // it in the global address node. Later peephole optimisations may choose to
3738   // fold it back in when profitable.
3739   if (Offset != 0)
3740     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3741                        DAG.getConstant(Offset, DL, XLenVT));
3742   return Addr;
3743 }
3744 
3745 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3746   SDValue CondV = Op.getOperand(0);
3747   SDValue TrueV = Op.getOperand(1);
3748   SDValue FalseV = Op.getOperand(2);
3749   SDLoc DL(Op);
3750   MVT VT = Op.getSimpleValueType();
3751   MVT XLenVT = Subtarget.getXLenVT();
3752 
3753   // Lower vector SELECTs to VSELECTs by splatting the condition.
3754   if (VT.isVector()) {
3755     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3756     SDValue CondSplat = VT.isScalableVector()
3757                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3758                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3759     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3760   }
3761 
3762   // If the result type is XLenVT and CondV is the output of a SETCC node
3763   // which also operated on XLenVT inputs, then merge the SETCC node into the
3764   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3765   // compare+branch instructions. i.e.:
3766   // (select (setcc lhs, rhs, cc), truev, falsev)
3767   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3768   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3769       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3770     SDValue LHS = CondV.getOperand(0);
3771     SDValue RHS = CondV.getOperand(1);
3772     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3773     ISD::CondCode CCVal = CC->get();
3774 
3775     // Special case for a select of 2 constants that have a diffence of 1.
3776     // Normally this is done by DAGCombine, but if the select is introduced by
3777     // type legalization or op legalization, we miss it. Restricting to SETLT
3778     // case for now because that is what signed saturating add/sub need.
3779     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3780     // but we would probably want to swap the true/false values if the condition
3781     // is SETGE/SETLE to avoid an XORI.
3782     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3783         CCVal == ISD::SETLT) {
3784       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3785       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3786       if (TrueVal - 1 == FalseVal)
3787         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3788       if (TrueVal + 1 == FalseVal)
3789         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3790     }
3791 
3792     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3793 
3794     SDValue TargetCC = DAG.getCondCode(CCVal);
3795     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3796     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3797   }
3798 
3799   // Otherwise:
3800   // (select condv, truev, falsev)
3801   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3802   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3803   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3804 
3805   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3806 
3807   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3808 }
3809 
3810 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3811   SDValue CondV = Op.getOperand(1);
3812   SDLoc DL(Op);
3813   MVT XLenVT = Subtarget.getXLenVT();
3814 
3815   if (CondV.getOpcode() == ISD::SETCC &&
3816       CondV.getOperand(0).getValueType() == XLenVT) {
3817     SDValue LHS = CondV.getOperand(0);
3818     SDValue RHS = CondV.getOperand(1);
3819     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3820 
3821     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3822 
3823     SDValue TargetCC = DAG.getCondCode(CCVal);
3824     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3825                        LHS, RHS, TargetCC, Op.getOperand(2));
3826   }
3827 
3828   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3829                      CondV, DAG.getConstant(0, DL, XLenVT),
3830                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
3831 }
3832 
3833 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3834   MachineFunction &MF = DAG.getMachineFunction();
3835   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
3836 
3837   SDLoc DL(Op);
3838   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3839                                  getPointerTy(MF.getDataLayout()));
3840 
3841   // vastart just stores the address of the VarArgsFrameIndex slot into the
3842   // memory location argument.
3843   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3844   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
3845                       MachinePointerInfo(SV));
3846 }
3847 
3848 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
3849                                             SelectionDAG &DAG) const {
3850   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3851   MachineFunction &MF = DAG.getMachineFunction();
3852   MachineFrameInfo &MFI = MF.getFrameInfo();
3853   MFI.setFrameAddressIsTaken(true);
3854   Register FrameReg = RI.getFrameRegister(MF);
3855   int XLenInBytes = Subtarget.getXLen() / 8;
3856 
3857   EVT VT = Op.getValueType();
3858   SDLoc DL(Op);
3859   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
3860   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3861   while (Depth--) {
3862     int Offset = -(XLenInBytes * 2);
3863     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
3864                               DAG.getIntPtrConstant(Offset, DL));
3865     FrameAddr =
3866         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
3867   }
3868   return FrameAddr;
3869 }
3870 
3871 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
3872                                              SelectionDAG &DAG) const {
3873   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3874   MachineFunction &MF = DAG.getMachineFunction();
3875   MachineFrameInfo &MFI = MF.getFrameInfo();
3876   MFI.setReturnAddressIsTaken(true);
3877   MVT XLenVT = Subtarget.getXLenVT();
3878   int XLenInBytes = Subtarget.getXLen() / 8;
3879 
3880   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3881     return SDValue();
3882 
3883   EVT VT = Op.getValueType();
3884   SDLoc DL(Op);
3885   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3886   if (Depth) {
3887     int Off = -XLenInBytes;
3888     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3889     SDValue Offset = DAG.getConstant(Off, DL, VT);
3890     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
3891                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
3892                        MachinePointerInfo());
3893   }
3894 
3895   // Return the value of the return address register, marking it an implicit
3896   // live-in.
3897   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
3898   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
3899 }
3900 
3901 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
3902                                                  SelectionDAG &DAG) const {
3903   SDLoc DL(Op);
3904   SDValue Lo = Op.getOperand(0);
3905   SDValue Hi = Op.getOperand(1);
3906   SDValue Shamt = Op.getOperand(2);
3907   EVT VT = Lo.getValueType();
3908 
3909   // if Shamt-XLEN < 0: // Shamt < XLEN
3910   //   Lo = Lo << Shamt
3911   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt))
3912   // else:
3913   //   Lo = 0
3914   //   Hi = Lo << (Shamt-XLEN)
3915 
3916   SDValue Zero = DAG.getConstant(0, DL, VT);
3917   SDValue One = DAG.getConstant(1, DL, VT);
3918   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3919   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3920   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3921   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
3922 
3923   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
3924   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
3925   SDValue ShiftRightLo =
3926       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
3927   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
3928   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
3929   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
3930 
3931   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3932 
3933   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
3934   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3935 
3936   SDValue Parts[2] = {Lo, Hi};
3937   return DAG.getMergeValues(Parts, DL);
3938 }
3939 
3940 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
3941                                                   bool IsSRA) const {
3942   SDLoc DL(Op);
3943   SDValue Lo = Op.getOperand(0);
3944   SDValue Hi = Op.getOperand(1);
3945   SDValue Shamt = Op.getOperand(2);
3946   EVT VT = Lo.getValueType();
3947 
3948   // SRA expansion:
3949   //   if Shamt-XLEN < 0: // Shamt < XLEN
3950   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
3951   //     Hi = Hi >>s Shamt
3952   //   else:
3953   //     Lo = Hi >>s (Shamt-XLEN);
3954   //     Hi = Hi >>s (XLEN-1)
3955   //
3956   // SRL expansion:
3957   //   if Shamt-XLEN < 0: // Shamt < XLEN
3958   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
3959   //     Hi = Hi >>u Shamt
3960   //   else:
3961   //     Lo = Hi >>u (Shamt-XLEN);
3962   //     Hi = 0;
3963 
3964   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
3965 
3966   SDValue Zero = DAG.getConstant(0, DL, VT);
3967   SDValue One = DAG.getConstant(1, DL, VT);
3968   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3969   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3970   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3971   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
3972 
3973   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
3974   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
3975   SDValue ShiftLeftHi =
3976       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
3977   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
3978   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
3979   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
3980   SDValue HiFalse =
3981       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
3982 
3983   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3984 
3985   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
3986   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3987 
3988   SDValue Parts[2] = {Lo, Hi};
3989   return DAG.getMergeValues(Parts, DL);
3990 }
3991 
3992 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
3993 // legal equivalently-sized i8 type, so we can use that as a go-between.
3994 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
3995                                                   SelectionDAG &DAG) const {
3996   SDLoc DL(Op);
3997   MVT VT = Op.getSimpleValueType();
3998   SDValue SplatVal = Op.getOperand(0);
3999   // All-zeros or all-ones splats are handled specially.
4000   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
4001     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4002     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
4003   }
4004   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
4005     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4006     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
4007   }
4008   MVT XLenVT = Subtarget.getXLenVT();
4009   assert(SplatVal.getValueType() == XLenVT &&
4010          "Unexpected type for i1 splat value");
4011   MVT InterVT = VT.changeVectorElementType(MVT::i8);
4012   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
4013                          DAG.getConstant(1, DL, XLenVT));
4014   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
4015   SDValue Zero = DAG.getConstant(0, DL, InterVT);
4016   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
4017 }
4018 
4019 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
4020 // illegal (currently only vXi64 RV32).
4021 // FIXME: We could also catch non-constant sign-extended i32 values and lower
4022 // them to VMV_V_X_VL.
4023 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
4024                                                      SelectionDAG &DAG) const {
4025   SDLoc DL(Op);
4026   MVT VecVT = Op.getSimpleValueType();
4027   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
4028          "Unexpected SPLAT_VECTOR_PARTS lowering");
4029 
4030   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
4031   SDValue Lo = Op.getOperand(0);
4032   SDValue Hi = Op.getOperand(1);
4033 
4034   if (VecVT.isFixedLengthVector()) {
4035     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4036     SDLoc DL(Op);
4037     SDValue Mask, VL;
4038     std::tie(Mask, VL) =
4039         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4040 
4041     SDValue Res =
4042         splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG);
4043     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
4044   }
4045 
4046   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
4047     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
4048     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
4049     // If Hi constant is all the same sign bit as Lo, lower this as a custom
4050     // node in order to try and match RVV vector/scalar instructions.
4051     if ((LoC >> 31) == HiC)
4052       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4053                          Lo, DAG.getRegister(RISCV::X0, MVT::i32));
4054   }
4055 
4056   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
4057   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
4058       isa<ConstantSDNode>(Hi.getOperand(1)) &&
4059       Hi.getConstantOperandVal(1) == 31)
4060     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo,
4061                        DAG.getRegister(RISCV::X0, MVT::i32));
4062 
4063   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
4064   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT,
4065                      DAG.getUNDEF(VecVT), Lo, Hi,
4066                      DAG.getRegister(RISCV::X0, MVT::i32));
4067 }
4068 
4069 // Custom-lower extensions from mask vectors by using a vselect either with 1
4070 // for zero/any-extension or -1 for sign-extension:
4071 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
4072 // Note that any-extension is lowered identically to zero-extension.
4073 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
4074                                                 int64_t ExtTrueVal) const {
4075   SDLoc DL(Op);
4076   MVT VecVT = Op.getSimpleValueType();
4077   SDValue Src = Op.getOperand(0);
4078   // Only custom-lower extensions from mask types
4079   assert(Src.getValueType().isVector() &&
4080          Src.getValueType().getVectorElementType() == MVT::i1);
4081 
4082   if (VecVT.isScalableVector()) {
4083     SDValue SplatZero = DAG.getConstant(0, DL, VecVT);
4084     SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT);
4085     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
4086   }
4087 
4088   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4089   MVT I1ContainerVT =
4090       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4091 
4092   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
4093 
4094   SDValue Mask, VL;
4095   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4096 
4097   MVT XLenVT = Subtarget.getXLenVT();
4098   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
4099   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
4100 
4101   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4102                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4103   SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4104                              DAG.getUNDEF(ContainerVT), SplatTrueVal, VL);
4105   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
4106                                SplatTrueVal, SplatZero, VL);
4107 
4108   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
4109 }
4110 
4111 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
4112     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
4113   MVT ExtVT = Op.getSimpleValueType();
4114   // Only custom-lower extensions from fixed-length vector types.
4115   if (!ExtVT.isFixedLengthVector())
4116     return Op;
4117   MVT VT = Op.getOperand(0).getSimpleValueType();
4118   // Grab the canonical container type for the extended type. Infer the smaller
4119   // type from that to ensure the same number of vector elements, as we know
4120   // the LMUL will be sufficient to hold the smaller type.
4121   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
4122   // Get the extended container type manually to ensure the same number of
4123   // vector elements between source and dest.
4124   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4125                                      ContainerExtVT.getVectorElementCount());
4126 
4127   SDValue Op1 =
4128       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4129 
4130   SDLoc DL(Op);
4131   SDValue Mask, VL;
4132   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4133 
4134   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
4135 
4136   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
4137 }
4138 
4139 // Custom-lower truncations from vectors to mask vectors by using a mask and a
4140 // setcc operation:
4141 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
4142 SDValue RISCVTargetLowering::lowerVectorMaskTruncLike(SDValue Op,
4143                                                       SelectionDAG &DAG) const {
4144   bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE;
4145   SDLoc DL(Op);
4146   EVT MaskVT = Op.getValueType();
4147   // Only expect to custom-lower truncations to mask types
4148   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
4149          "Unexpected type for vector mask lowering");
4150   SDValue Src = Op.getOperand(0);
4151   MVT VecVT = Src.getSimpleValueType();
4152   SDValue Mask, VL;
4153   if (IsVPTrunc) {
4154     Mask = Op.getOperand(1);
4155     VL = Op.getOperand(2);
4156   }
4157   // If this is a fixed vector, we need to convert it to a scalable vector.
4158   MVT ContainerVT = VecVT;
4159 
4160   if (VecVT.isFixedLengthVector()) {
4161     ContainerVT = getContainerForFixedLengthVector(VecVT);
4162     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4163     if (IsVPTrunc) {
4164       MVT MaskContainerVT =
4165           getContainerForFixedLengthVector(Mask.getSimpleValueType());
4166       Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget);
4167     }
4168   }
4169 
4170   if (!IsVPTrunc) {
4171     std::tie(Mask, VL) =
4172         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4173   }
4174 
4175   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
4176   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
4177 
4178   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4179                          DAG.getUNDEF(ContainerVT), SplatOne, VL);
4180   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4181                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4182 
4183   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
4184   SDValue Trunc =
4185       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
4186   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
4187                       DAG.getCondCode(ISD::SETNE), Mask, VL);
4188   if (MaskVT.isFixedLengthVector())
4189     Trunc = convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
4190   return Trunc;
4191 }
4192 
4193 SDValue RISCVTargetLowering::lowerVectorTruncLike(SDValue Op,
4194                                                   SelectionDAG &DAG) const {
4195   bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE;
4196   SDLoc DL(Op);
4197 
4198   MVT VT = Op.getSimpleValueType();
4199   // Only custom-lower vector truncates
4200   assert(VT.isVector() && "Unexpected type for vector truncate lowering");
4201 
4202   // Truncates to mask types are handled differently
4203   if (VT.getVectorElementType() == MVT::i1)
4204     return lowerVectorMaskTruncLike(Op, DAG);
4205 
4206   // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
4207   // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
4208   // truncate by one power of two at a time.
4209   MVT DstEltVT = VT.getVectorElementType();
4210 
4211   SDValue Src = Op.getOperand(0);
4212   MVT SrcVT = Src.getSimpleValueType();
4213   MVT SrcEltVT = SrcVT.getVectorElementType();
4214 
4215   assert(DstEltVT.bitsLT(SrcEltVT) && isPowerOf2_64(DstEltVT.getSizeInBits()) &&
4216          isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
4217          "Unexpected vector truncate lowering");
4218 
4219   MVT ContainerVT = SrcVT;
4220   SDValue Mask, VL;
4221   if (IsVPTrunc) {
4222     Mask = Op.getOperand(1);
4223     VL = Op.getOperand(2);
4224   }
4225   if (SrcVT.isFixedLengthVector()) {
4226     ContainerVT = getContainerForFixedLengthVector(SrcVT);
4227     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4228     if (IsVPTrunc) {
4229       MVT MaskVT = getMaskTypeFor(ContainerVT);
4230       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4231     }
4232   }
4233 
4234   SDValue Result = Src;
4235   if (!IsVPTrunc) {
4236     std::tie(Mask, VL) =
4237         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
4238   }
4239 
4240   LLVMContext &Context = *DAG.getContext();
4241   const ElementCount Count = ContainerVT.getVectorElementCount();
4242   do {
4243     SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
4244     EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
4245     Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
4246                          Mask, VL);
4247   } while (SrcEltVT != DstEltVT);
4248 
4249   if (SrcVT.isFixedLengthVector())
4250     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4251 
4252   return Result;
4253 }
4254 
4255 SDValue
4256 RISCVTargetLowering::lowerVectorFPExtendOrRoundLike(SDValue Op,
4257                                                     SelectionDAG &DAG) const {
4258   bool IsVP =
4259       Op.getOpcode() == ISD::VP_FP_ROUND || Op.getOpcode() == ISD::VP_FP_EXTEND;
4260   bool IsExtend =
4261       Op.getOpcode() == ISD::VP_FP_EXTEND || Op.getOpcode() == ISD::FP_EXTEND;
4262   // RVV can only do truncate fp to types half the size as the source. We
4263   // custom-lower f64->f16 rounds via RVV's round-to-odd float
4264   // conversion instruction.
4265   SDLoc DL(Op);
4266   MVT VT = Op.getSimpleValueType();
4267 
4268   assert(VT.isVector() && "Unexpected type for vector truncate lowering");
4269 
4270   SDValue Src = Op.getOperand(0);
4271   MVT SrcVT = Src.getSimpleValueType();
4272 
4273   bool IsDirectExtend = IsExtend && (VT.getVectorElementType() != MVT::f64 ||
4274                                      SrcVT.getVectorElementType() != MVT::f16);
4275   bool IsDirectTrunc = !IsExtend && (VT.getVectorElementType() != MVT::f16 ||
4276                                      SrcVT.getVectorElementType() != MVT::f64);
4277 
4278   bool IsDirectConv = IsDirectExtend || IsDirectTrunc;
4279 
4280   // For FP_ROUND/FP_EXTEND of scalable vectors, leave it to the pattern.
4281   if (!VT.isFixedLengthVector() && !IsVP && IsDirectConv)
4282     return Op;
4283 
4284   // Prepare any fixed-length vector operands.
4285   MVT ContainerVT = VT;
4286   SDValue Mask, VL;
4287   if (IsVP) {
4288     Mask = Op.getOperand(1);
4289     VL = Op.getOperand(2);
4290   }
4291   if (VT.isFixedLengthVector()) {
4292     MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
4293     ContainerVT =
4294         SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
4295     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
4296     if (IsVP) {
4297       MVT MaskVT = getMaskTypeFor(ContainerVT);
4298       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4299     }
4300   }
4301 
4302   if (!IsVP)
4303     std::tie(Mask, VL) =
4304         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
4305 
4306   unsigned ConvOpc = IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::FP_ROUND_VL;
4307 
4308   if (IsDirectConv) {
4309     Src = DAG.getNode(ConvOpc, DL, ContainerVT, Src, Mask, VL);
4310     if (VT.isFixedLengthVector())
4311       Src = convertFromScalableVector(VT, Src, DAG, Subtarget);
4312     return Src;
4313   }
4314 
4315   unsigned InterConvOpc =
4316       IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::VFNCVT_ROD_VL;
4317 
4318   MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
4319   SDValue IntermediateConv =
4320       DAG.getNode(InterConvOpc, DL, InterVT, Src, Mask, VL);
4321   SDValue Result =
4322       DAG.getNode(ConvOpc, DL, ContainerVT, IntermediateConv, Mask, VL);
4323   if (VT.isFixedLengthVector())
4324     return convertFromScalableVector(VT, Result, DAG, Subtarget);
4325   return Result;
4326 }
4327 
4328 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
4329 // first position of a vector, and that vector is slid up to the insert index.
4330 // By limiting the active vector length to index+1 and merging with the
4331 // original vector (with an undisturbed tail policy for elements >= VL), we
4332 // achieve the desired result of leaving all elements untouched except the one
4333 // at VL-1, which is replaced with the desired value.
4334 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4335                                                     SelectionDAG &DAG) const {
4336   SDLoc DL(Op);
4337   MVT VecVT = Op.getSimpleValueType();
4338   SDValue Vec = Op.getOperand(0);
4339   SDValue Val = Op.getOperand(1);
4340   SDValue Idx = Op.getOperand(2);
4341 
4342   if (VecVT.getVectorElementType() == MVT::i1) {
4343     // FIXME: For now we just promote to an i8 vector and insert into that,
4344     // but this is probably not optimal.
4345     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4346     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4347     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
4348     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
4349   }
4350 
4351   MVT ContainerVT = VecVT;
4352   // If the operand is a fixed-length vector, convert to a scalable one.
4353   if (VecVT.isFixedLengthVector()) {
4354     ContainerVT = getContainerForFixedLengthVector(VecVT);
4355     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4356   }
4357 
4358   MVT XLenVT = Subtarget.getXLenVT();
4359 
4360   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4361   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
4362   // Even i64-element vectors on RV32 can be lowered without scalar
4363   // legalization if the most-significant 32 bits of the value are not affected
4364   // by the sign-extension of the lower 32 bits.
4365   // TODO: We could also catch sign extensions of a 32-bit value.
4366   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
4367     const auto *CVal = cast<ConstantSDNode>(Val);
4368     if (isInt<32>(CVal->getSExtValue())) {
4369       IsLegalInsert = true;
4370       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4371     }
4372   }
4373 
4374   SDValue Mask, VL;
4375   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4376 
4377   SDValue ValInVec;
4378 
4379   if (IsLegalInsert) {
4380     unsigned Opc =
4381         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
4382     if (isNullConstant(Idx)) {
4383       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
4384       if (!VecVT.isFixedLengthVector())
4385         return Vec;
4386       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
4387     }
4388     ValInVec =
4389         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
4390   } else {
4391     // On RV32, i64-element vectors must be specially handled to place the
4392     // value at element 0, by using two vslide1up instructions in sequence on
4393     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
4394     // this.
4395     SDValue One = DAG.getConstant(1, DL, XLenVT);
4396     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
4397     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
4398     MVT I32ContainerVT =
4399         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
4400     SDValue I32Mask =
4401         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
4402     // Limit the active VL to two.
4403     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
4404     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
4405     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
4406     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT,
4407                            DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL);
4408     // First slide in the hi value, then the lo in underneath it.
4409     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4410                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi,
4411                            I32Mask, InsertI64VL);
4412     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4413                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo,
4414                            I32Mask, InsertI64VL);
4415     // Bitcast back to the right container type.
4416     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
4417   }
4418 
4419   // Now that the value is in a vector, slide it into position.
4420   SDValue InsertVL =
4421       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
4422   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4423                                 ValInVec, Idx, Mask, InsertVL);
4424   if (!VecVT.isFixedLengthVector())
4425     return Slideup;
4426   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4427 }
4428 
4429 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
4430 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
4431 // types this is done using VMV_X_S to allow us to glean information about the
4432 // sign bits of the result.
4433 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4434                                                      SelectionDAG &DAG) const {
4435   SDLoc DL(Op);
4436   SDValue Idx = Op.getOperand(1);
4437   SDValue Vec = Op.getOperand(0);
4438   EVT EltVT = Op.getValueType();
4439   MVT VecVT = Vec.getSimpleValueType();
4440   MVT XLenVT = Subtarget.getXLenVT();
4441 
4442   if (VecVT.getVectorElementType() == MVT::i1) {
4443     if (VecVT.isFixedLengthVector()) {
4444       unsigned NumElts = VecVT.getVectorNumElements();
4445       if (NumElts >= 8) {
4446         MVT WideEltVT;
4447         unsigned WidenVecLen;
4448         SDValue ExtractElementIdx;
4449         SDValue ExtractBitIdx;
4450         unsigned MaxEEW = Subtarget.getELEN();
4451         MVT LargestEltVT = MVT::getIntegerVT(
4452             std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
4453         if (NumElts <= LargestEltVT.getSizeInBits()) {
4454           assert(isPowerOf2_32(NumElts) &&
4455                  "the number of elements should be power of 2");
4456           WideEltVT = MVT::getIntegerVT(NumElts);
4457           WidenVecLen = 1;
4458           ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
4459           ExtractBitIdx = Idx;
4460         } else {
4461           WideEltVT = LargestEltVT;
4462           WidenVecLen = NumElts / WideEltVT.getSizeInBits();
4463           // extract element index = index / element width
4464           ExtractElementIdx = DAG.getNode(
4465               ISD::SRL, DL, XLenVT, Idx,
4466               DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
4467           // mask bit index = index % element width
4468           ExtractBitIdx = DAG.getNode(
4469               ISD::AND, DL, XLenVT, Idx,
4470               DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
4471         }
4472         MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
4473         Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
4474         SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
4475                                          Vec, ExtractElementIdx);
4476         // Extract the bit from GPR.
4477         SDValue ShiftRight =
4478             DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
4479         return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
4480                            DAG.getConstant(1, DL, XLenVT));
4481       }
4482     }
4483     // Otherwise, promote to an i8 vector and extract from that.
4484     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4485     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4486     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4487   }
4488 
4489   // If this is a fixed vector, we need to convert it to a scalable vector.
4490   MVT ContainerVT = VecVT;
4491   if (VecVT.isFixedLengthVector()) {
4492     ContainerVT = getContainerForFixedLengthVector(VecVT);
4493     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4494   }
4495 
4496   // If the index is 0, the vector is already in the right position.
4497   if (!isNullConstant(Idx)) {
4498     // Use a VL of 1 to avoid processing more elements than we need.
4499     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4500     SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
4501     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4502                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4503   }
4504 
4505   if (!EltVT.isInteger()) {
4506     // Floating-point extracts are handled in TableGen.
4507     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4508                        DAG.getConstant(0, DL, XLenVT));
4509   }
4510 
4511   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4512   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4513 }
4514 
4515 // Some RVV intrinsics may claim that they want an integer operand to be
4516 // promoted or expanded.
4517 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG,
4518                                            const RISCVSubtarget &Subtarget) {
4519   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4520           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4521          "Unexpected opcode");
4522 
4523   if (!Subtarget.hasVInstructions())
4524     return SDValue();
4525 
4526   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4527   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4528   SDLoc DL(Op);
4529 
4530   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4531       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4532   if (!II || !II->hasScalarOperand())
4533     return SDValue();
4534 
4535   unsigned SplatOp = II->ScalarOperand + 1 + HasChain;
4536   assert(SplatOp < Op.getNumOperands());
4537 
4538   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4539   SDValue &ScalarOp = Operands[SplatOp];
4540   MVT OpVT = ScalarOp.getSimpleValueType();
4541   MVT XLenVT = Subtarget.getXLenVT();
4542 
4543   // If this isn't a scalar, or its type is XLenVT we're done.
4544   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4545     return SDValue();
4546 
4547   // Simplest case is that the operand needs to be promoted to XLenVT.
4548   if (OpVT.bitsLT(XLenVT)) {
4549     // If the operand is a constant, sign extend to increase our chances
4550     // of being able to use a .vi instruction. ANY_EXTEND would become a
4551     // a zero extend and the simm5 check in isel would fail.
4552     // FIXME: Should we ignore the upper bits in isel instead?
4553     unsigned ExtOpc =
4554         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4555     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4556     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4557   }
4558 
4559   // Use the previous operand to get the vXi64 VT. The result might be a mask
4560   // VT for compares. Using the previous operand assumes that the previous
4561   // operand will never have a smaller element size than a scalar operand and
4562   // that a widening operation never uses SEW=64.
4563   // NOTE: If this fails the below assert, we can probably just find the
4564   // element count from any operand or result and use it to construct the VT.
4565   assert(II->ScalarOperand > 0 && "Unexpected splat operand!");
4566   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4567 
4568   // The more complex case is when the scalar is larger than XLenVT.
4569   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4570          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4571 
4572   // If this is a sign-extended 32-bit value, we can truncate it and rely on the
4573   // instruction to sign-extend since SEW>XLEN.
4574   if (DAG.ComputeNumSignBits(ScalarOp) > 32) {
4575     ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp);
4576     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4577   }
4578 
4579   switch (IntNo) {
4580   case Intrinsic::riscv_vslide1up:
4581   case Intrinsic::riscv_vslide1down:
4582   case Intrinsic::riscv_vslide1up_mask:
4583   case Intrinsic::riscv_vslide1down_mask: {
4584     // We need to special case these when the scalar is larger than XLen.
4585     unsigned NumOps = Op.getNumOperands();
4586     bool IsMasked = NumOps == 7;
4587 
4588     // Convert the vector source to the equivalent nxvXi32 vector.
4589     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4590     SDValue Vec = DAG.getBitcast(I32VT, Operands[2]);
4591 
4592     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4593                                    DAG.getConstant(0, DL, XLenVT));
4594     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4595                                    DAG.getConstant(1, DL, XLenVT));
4596 
4597     // Double the VL since we halved SEW.
4598     SDValue AVL = getVLOperand(Op);
4599     SDValue I32VL;
4600 
4601     // Optimize for constant AVL
4602     if (isa<ConstantSDNode>(AVL)) {
4603       unsigned EltSize = VT.getScalarSizeInBits();
4604       unsigned MinSize = VT.getSizeInBits().getKnownMinValue();
4605 
4606       unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
4607       unsigned MaxVLMAX =
4608           RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
4609 
4610       unsigned VectorBitsMin = Subtarget.getRealMinVLen();
4611       unsigned MinVLMAX =
4612           RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize);
4613 
4614       uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue();
4615       if (AVLInt <= MinVLMAX) {
4616         I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT);
4617       } else if (AVLInt >= 2 * MaxVLMAX) {
4618         // Just set vl to VLMAX in this situation
4619         RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT);
4620         SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4621         unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits());
4622         SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4623         SDValue SETVLMAX = DAG.getTargetConstant(
4624             Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32);
4625         I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW,
4626                             LMUL);
4627       } else {
4628         // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl
4629         // is related to the hardware implementation.
4630         // So let the following code handle
4631       }
4632     }
4633     if (!I32VL) {
4634       RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT);
4635       SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4636       unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits());
4637       SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4638       SDValue SETVL =
4639           DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32);
4640       // Using vsetvli instruction to get actually used length which related to
4641       // the hardware implementation
4642       SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL,
4643                                SEW, LMUL);
4644       I32VL =
4645           DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4646     }
4647 
4648     SDValue I32Mask = getAllOnesMask(I32VT, I32VL, DL, DAG);
4649 
4650     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4651     // instructions.
4652     SDValue Passthru;
4653     if (IsMasked)
4654       Passthru = DAG.getUNDEF(I32VT);
4655     else
4656       Passthru = DAG.getBitcast(I32VT, Operands[1]);
4657 
4658     if (IntNo == Intrinsic::riscv_vslide1up ||
4659         IntNo == Intrinsic::riscv_vslide1up_mask) {
4660       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4661                         ScalarHi, I32Mask, I32VL);
4662       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4663                         ScalarLo, I32Mask, I32VL);
4664     } else {
4665       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4666                         ScalarLo, I32Mask, I32VL);
4667       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4668                         ScalarHi, I32Mask, I32VL);
4669     }
4670 
4671     // Convert back to nxvXi64.
4672     Vec = DAG.getBitcast(VT, Vec);
4673 
4674     if (!IsMasked)
4675       return Vec;
4676     // Apply mask after the operation.
4677     SDValue Mask = Operands[NumOps - 3];
4678     SDValue MaskedOff = Operands[1];
4679     // Assume Policy operand is the last operand.
4680     uint64_t Policy =
4681         cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue();
4682     // We don't need to select maskedoff if it's undef.
4683     if (MaskedOff.isUndef())
4684       return Vec;
4685     // TAMU
4686     if (Policy == RISCVII::TAIL_AGNOSTIC)
4687       return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff,
4688                          AVL);
4689     // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma.
4690     // It's fine because vmerge does not care mask policy.
4691     return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff,
4692                        AVL);
4693   }
4694   }
4695 
4696   // We need to convert the scalar to a splat vector.
4697   SDValue VL = getVLOperand(Op);
4698   assert(VL.getValueType() == XLenVT);
4699   ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG);
4700   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4701 }
4702 
4703 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4704                                                      SelectionDAG &DAG) const {
4705   unsigned IntNo = Op.getConstantOperandVal(0);
4706   SDLoc DL(Op);
4707   MVT XLenVT = Subtarget.getXLenVT();
4708 
4709   switch (IntNo) {
4710   default:
4711     break; // Don't custom lower most intrinsics.
4712   case Intrinsic::thread_pointer: {
4713     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4714     return DAG.getRegister(RISCV::X4, PtrVT);
4715   }
4716   case Intrinsic::riscv_orc_b:
4717   case Intrinsic::riscv_brev8: {
4718     // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8.
4719     unsigned Opc =
4720         IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC;
4721     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4722                        DAG.getConstant(7, DL, XLenVT));
4723   }
4724   case Intrinsic::riscv_grev:
4725   case Intrinsic::riscv_gorc: {
4726     unsigned Opc =
4727         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4728     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4729   }
4730   case Intrinsic::riscv_zip:
4731   case Intrinsic::riscv_unzip: {
4732     // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip.
4733     // For i32 the immediate is 15. For i64 the immediate is 31.
4734     unsigned Opc =
4735         IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4736     unsigned BitWidth = Op.getValueSizeInBits();
4737     assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width");
4738     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4739                        DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT));
4740   }
4741   case Intrinsic::riscv_shfl:
4742   case Intrinsic::riscv_unshfl: {
4743     unsigned Opc =
4744         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4745     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4746   }
4747   case Intrinsic::riscv_bcompress:
4748   case Intrinsic::riscv_bdecompress: {
4749     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4750                                                        : RISCVISD::BDECOMPRESS;
4751     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4752   }
4753   case Intrinsic::riscv_bfp:
4754     return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1),
4755                        Op.getOperand(2));
4756   case Intrinsic::riscv_fsl:
4757     return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1),
4758                        Op.getOperand(2), Op.getOperand(3));
4759   case Intrinsic::riscv_fsr:
4760     return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1),
4761                        Op.getOperand(2), Op.getOperand(3));
4762   case Intrinsic::riscv_vmv_x_s:
4763     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4764     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4765                        Op.getOperand(1));
4766   case Intrinsic::riscv_vmv_v_x:
4767     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4768                             Op.getOperand(3), Op.getSimpleValueType(), DL, DAG,
4769                             Subtarget);
4770   case Intrinsic::riscv_vfmv_v_f:
4771     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4772                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4773   case Intrinsic::riscv_vmv_s_x: {
4774     SDValue Scalar = Op.getOperand(2);
4775 
4776     if (Scalar.getValueType().bitsLE(XLenVT)) {
4777       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4778       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4779                          Op.getOperand(1), Scalar, Op.getOperand(3));
4780     }
4781 
4782     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4783 
4784     // This is an i64 value that lives in two scalar registers. We have to
4785     // insert this in a convoluted way. First we build vXi64 splat containing
4786     // the two values that we assemble using some bit math. Next we'll use
4787     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4788     // to merge element 0 from our splat into the source vector.
4789     // FIXME: This is probably not the best way to do this, but it is
4790     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4791     // point.
4792     //   sw lo, (a0)
4793     //   sw hi, 4(a0)
4794     //   vlse vX, (a0)
4795     //
4796     //   vid.v      vVid
4797     //   vmseq.vx   mMask, vVid, 0
4798     //   vmerge.vvm vDest, vSrc, vVal, mMask
4799     MVT VT = Op.getSimpleValueType();
4800     SDValue Vec = Op.getOperand(1);
4801     SDValue VL = getVLOperand(Op);
4802 
4803     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG);
4804     if (Op.getOperand(1).isUndef())
4805       return SplattedVal;
4806     SDValue SplattedIdx =
4807         DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
4808                     DAG.getConstant(0, DL, MVT::i32), VL);
4809 
4810     MVT MaskVT = getMaskTypeFor(VT);
4811     SDValue Mask = getAllOnesMask(VT, VL, DL, DAG);
4812     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4813     SDValue SelectCond =
4814         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4815                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4816     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4817                        Vec, VL);
4818   }
4819   }
4820 
4821   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4822 }
4823 
4824 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4825                                                     SelectionDAG &DAG) const {
4826   unsigned IntNo = Op.getConstantOperandVal(1);
4827   switch (IntNo) {
4828   default:
4829     break;
4830   case Intrinsic::riscv_masked_strided_load: {
4831     SDLoc DL(Op);
4832     MVT XLenVT = Subtarget.getXLenVT();
4833 
4834     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4835     // the selection of the masked intrinsics doesn't do this for us.
4836     SDValue Mask = Op.getOperand(5);
4837     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4838 
4839     MVT VT = Op->getSimpleValueType(0);
4840     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4841 
4842     SDValue PassThru = Op.getOperand(2);
4843     if (!IsUnmasked) {
4844       MVT MaskVT = getMaskTypeFor(ContainerVT);
4845       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4846       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4847     }
4848 
4849     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4850 
4851     SDValue IntID = DAG.getTargetConstant(
4852         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4853         XLenVT);
4854 
4855     auto *Load = cast<MemIntrinsicSDNode>(Op);
4856     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4857     if (IsUnmasked)
4858       Ops.push_back(DAG.getUNDEF(ContainerVT));
4859     else
4860       Ops.push_back(PassThru);
4861     Ops.push_back(Op.getOperand(3)); // Ptr
4862     Ops.push_back(Op.getOperand(4)); // Stride
4863     if (!IsUnmasked)
4864       Ops.push_back(Mask);
4865     Ops.push_back(VL);
4866     if (!IsUnmasked) {
4867       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4868       Ops.push_back(Policy);
4869     }
4870 
4871     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4872     SDValue Result =
4873         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4874                                 Load->getMemoryVT(), Load->getMemOperand());
4875     SDValue Chain = Result.getValue(1);
4876     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4877     return DAG.getMergeValues({Result, Chain}, DL);
4878   }
4879   case Intrinsic::riscv_seg2_load:
4880   case Intrinsic::riscv_seg3_load:
4881   case Intrinsic::riscv_seg4_load:
4882   case Intrinsic::riscv_seg5_load:
4883   case Intrinsic::riscv_seg6_load:
4884   case Intrinsic::riscv_seg7_load:
4885   case Intrinsic::riscv_seg8_load: {
4886     SDLoc DL(Op);
4887     static const Intrinsic::ID VlsegInts[7] = {
4888         Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3,
4889         Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5,
4890         Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7,
4891         Intrinsic::riscv_vlseg8};
4892     unsigned NF = Op->getNumValues() - 1;
4893     assert(NF >= 2 && NF <= 8 && "Unexpected seg number");
4894     MVT XLenVT = Subtarget.getXLenVT();
4895     MVT VT = Op->getSimpleValueType(0);
4896     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4897 
4898     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4899     SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT);
4900     auto *Load = cast<MemIntrinsicSDNode>(Op);
4901     SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT);
4902     ContainerVTs.push_back(MVT::Other);
4903     SDVTList VTs = DAG.getVTList(ContainerVTs);
4904     SmallVector<SDValue, 12> Ops = {Load->getChain(), IntID};
4905     Ops.insert(Ops.end(), NF, DAG.getUNDEF(ContainerVT));
4906     Ops.push_back(Op.getOperand(2));
4907     Ops.push_back(VL);
4908     SDValue Result =
4909         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4910                                 Load->getMemoryVT(), Load->getMemOperand());
4911     SmallVector<SDValue, 9> Results;
4912     for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++)
4913       Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx),
4914                                                   DAG, Subtarget));
4915     Results.push_back(Result.getValue(NF));
4916     return DAG.getMergeValues(Results, DL);
4917   }
4918   }
4919 
4920   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4921 }
4922 
4923 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4924                                                  SelectionDAG &DAG) const {
4925   unsigned IntNo = Op.getConstantOperandVal(1);
4926   switch (IntNo) {
4927   default:
4928     break;
4929   case Intrinsic::riscv_masked_strided_store: {
4930     SDLoc DL(Op);
4931     MVT XLenVT = Subtarget.getXLenVT();
4932 
4933     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4934     // the selection of the masked intrinsics doesn't do this for us.
4935     SDValue Mask = Op.getOperand(5);
4936     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4937 
4938     SDValue Val = Op.getOperand(2);
4939     MVT VT = Val.getSimpleValueType();
4940     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4941 
4942     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4943     if (!IsUnmasked) {
4944       MVT MaskVT = getMaskTypeFor(ContainerVT);
4945       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4946     }
4947 
4948     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4949 
4950     SDValue IntID = DAG.getTargetConstant(
4951         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
4952         XLenVT);
4953 
4954     auto *Store = cast<MemIntrinsicSDNode>(Op);
4955     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
4956     Ops.push_back(Val);
4957     Ops.push_back(Op.getOperand(3)); // Ptr
4958     Ops.push_back(Op.getOperand(4)); // Stride
4959     if (!IsUnmasked)
4960       Ops.push_back(Mask);
4961     Ops.push_back(VL);
4962 
4963     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
4964                                    Ops, Store->getMemoryVT(),
4965                                    Store->getMemOperand());
4966   }
4967   }
4968 
4969   return SDValue();
4970 }
4971 
4972 static MVT getLMUL1VT(MVT VT) {
4973   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
4974          "Unexpected vector MVT");
4975   return MVT::getScalableVectorVT(
4976       VT.getVectorElementType(),
4977       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
4978 }
4979 
4980 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
4981   switch (ISDOpcode) {
4982   default:
4983     llvm_unreachable("Unhandled reduction");
4984   case ISD::VECREDUCE_ADD:
4985     return RISCVISD::VECREDUCE_ADD_VL;
4986   case ISD::VECREDUCE_UMAX:
4987     return RISCVISD::VECREDUCE_UMAX_VL;
4988   case ISD::VECREDUCE_SMAX:
4989     return RISCVISD::VECREDUCE_SMAX_VL;
4990   case ISD::VECREDUCE_UMIN:
4991     return RISCVISD::VECREDUCE_UMIN_VL;
4992   case ISD::VECREDUCE_SMIN:
4993     return RISCVISD::VECREDUCE_SMIN_VL;
4994   case ISD::VECREDUCE_AND:
4995     return RISCVISD::VECREDUCE_AND_VL;
4996   case ISD::VECREDUCE_OR:
4997     return RISCVISD::VECREDUCE_OR_VL;
4998   case ISD::VECREDUCE_XOR:
4999     return RISCVISD::VECREDUCE_XOR_VL;
5000   }
5001 }
5002 
5003 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
5004                                                          SelectionDAG &DAG,
5005                                                          bool IsVP) const {
5006   SDLoc DL(Op);
5007   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
5008   MVT VecVT = Vec.getSimpleValueType();
5009   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
5010           Op.getOpcode() == ISD::VECREDUCE_OR ||
5011           Op.getOpcode() == ISD::VECREDUCE_XOR ||
5012           Op.getOpcode() == ISD::VP_REDUCE_AND ||
5013           Op.getOpcode() == ISD::VP_REDUCE_OR ||
5014           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
5015          "Unexpected reduction lowering");
5016 
5017   MVT XLenVT = Subtarget.getXLenVT();
5018   assert(Op.getValueType() == XLenVT &&
5019          "Expected reduction output to be legalized to XLenVT");
5020 
5021   MVT ContainerVT = VecVT;
5022   if (VecVT.isFixedLengthVector()) {
5023     ContainerVT = getContainerForFixedLengthVector(VecVT);
5024     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5025   }
5026 
5027   SDValue Mask, VL;
5028   if (IsVP) {
5029     Mask = Op.getOperand(2);
5030     VL = Op.getOperand(3);
5031   } else {
5032     std::tie(Mask, VL) =
5033         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5034   }
5035 
5036   unsigned BaseOpc;
5037   ISD::CondCode CC;
5038   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
5039 
5040   switch (Op.getOpcode()) {
5041   default:
5042     llvm_unreachable("Unhandled reduction");
5043   case ISD::VECREDUCE_AND:
5044   case ISD::VP_REDUCE_AND: {
5045     // vcpop ~x == 0
5046     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
5047     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
5048     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5049     CC = ISD::SETEQ;
5050     BaseOpc = ISD::AND;
5051     break;
5052   }
5053   case ISD::VECREDUCE_OR:
5054   case ISD::VP_REDUCE_OR:
5055     // vcpop x != 0
5056     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5057     CC = ISD::SETNE;
5058     BaseOpc = ISD::OR;
5059     break;
5060   case ISD::VECREDUCE_XOR:
5061   case ISD::VP_REDUCE_XOR: {
5062     // ((vcpop x) & 1) != 0
5063     SDValue One = DAG.getConstant(1, DL, XLenVT);
5064     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5065     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
5066     CC = ISD::SETNE;
5067     BaseOpc = ISD::XOR;
5068     break;
5069   }
5070   }
5071 
5072   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
5073 
5074   if (!IsVP)
5075     return SetCC;
5076 
5077   // Now include the start value in the operation.
5078   // Note that we must return the start value when no elements are operated
5079   // upon. The vcpop instructions we've emitted in each case above will return
5080   // 0 for an inactive vector, and so we've already received the neutral value:
5081   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
5082   // can simply include the start value.
5083   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
5084 }
5085 
5086 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
5087                                             SelectionDAG &DAG) const {
5088   SDLoc DL(Op);
5089   SDValue Vec = Op.getOperand(0);
5090   EVT VecEVT = Vec.getValueType();
5091 
5092   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
5093 
5094   // Due to ordering in legalize types we may have a vector type that needs to
5095   // be split. Do that manually so we can get down to a legal type.
5096   while (getTypeAction(*DAG.getContext(), VecEVT) ==
5097          TargetLowering::TypeSplitVector) {
5098     SDValue Lo, Hi;
5099     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
5100     VecEVT = Lo.getValueType();
5101     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
5102   }
5103 
5104   // TODO: The type may need to be widened rather than split. Or widened before
5105   // it can be split.
5106   if (!isTypeLegal(VecEVT))
5107     return SDValue();
5108 
5109   MVT VecVT = VecEVT.getSimpleVT();
5110   MVT VecEltVT = VecVT.getVectorElementType();
5111   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
5112 
5113   MVT ContainerVT = VecVT;
5114   if (VecVT.isFixedLengthVector()) {
5115     ContainerVT = getContainerForFixedLengthVector(VecVT);
5116     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5117   }
5118 
5119   MVT M1VT = getLMUL1VT(ContainerVT);
5120   MVT XLenVT = Subtarget.getXLenVT();
5121 
5122   SDValue Mask, VL;
5123   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5124 
5125   SDValue NeutralElem =
5126       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
5127   SDValue IdentitySplat =
5128       lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT),
5129                        M1VT, DL, DAG, Subtarget);
5130   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
5131                                   IdentitySplat, Mask, VL);
5132   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5133                              DAG.getConstant(0, DL, XLenVT));
5134   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5135 }
5136 
5137 // Given a reduction op, this function returns the matching reduction opcode,
5138 // the vector SDValue and the scalar SDValue required to lower this to a
5139 // RISCVISD node.
5140 static std::tuple<unsigned, SDValue, SDValue>
5141 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
5142   SDLoc DL(Op);
5143   auto Flags = Op->getFlags();
5144   unsigned Opcode = Op.getOpcode();
5145   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
5146   switch (Opcode) {
5147   default:
5148     llvm_unreachable("Unhandled reduction");
5149   case ISD::VECREDUCE_FADD: {
5150     // Use positive zero if we can. It is cheaper to materialize.
5151     SDValue Zero =
5152         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
5153     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
5154   }
5155   case ISD::VECREDUCE_SEQ_FADD:
5156     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
5157                            Op.getOperand(0));
5158   case ISD::VECREDUCE_FMIN:
5159     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
5160                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5161   case ISD::VECREDUCE_FMAX:
5162     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
5163                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5164   }
5165 }
5166 
5167 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
5168                                               SelectionDAG &DAG) const {
5169   SDLoc DL(Op);
5170   MVT VecEltVT = Op.getSimpleValueType();
5171 
5172   unsigned RVVOpcode;
5173   SDValue VectorVal, ScalarVal;
5174   std::tie(RVVOpcode, VectorVal, ScalarVal) =
5175       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
5176   MVT VecVT = VectorVal.getSimpleValueType();
5177 
5178   MVT ContainerVT = VecVT;
5179   if (VecVT.isFixedLengthVector()) {
5180     ContainerVT = getContainerForFixedLengthVector(VecVT);
5181     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
5182   }
5183 
5184   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
5185   MVT XLenVT = Subtarget.getXLenVT();
5186 
5187   SDValue Mask, VL;
5188   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5189 
5190   SDValue ScalarSplat =
5191       lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT),
5192                        M1VT, DL, DAG, Subtarget);
5193   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
5194                                   VectorVal, ScalarSplat, Mask, VL);
5195   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5196                      DAG.getConstant(0, DL, XLenVT));
5197 }
5198 
5199 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
5200   switch (ISDOpcode) {
5201   default:
5202     llvm_unreachable("Unhandled reduction");
5203   case ISD::VP_REDUCE_ADD:
5204     return RISCVISD::VECREDUCE_ADD_VL;
5205   case ISD::VP_REDUCE_UMAX:
5206     return RISCVISD::VECREDUCE_UMAX_VL;
5207   case ISD::VP_REDUCE_SMAX:
5208     return RISCVISD::VECREDUCE_SMAX_VL;
5209   case ISD::VP_REDUCE_UMIN:
5210     return RISCVISD::VECREDUCE_UMIN_VL;
5211   case ISD::VP_REDUCE_SMIN:
5212     return RISCVISD::VECREDUCE_SMIN_VL;
5213   case ISD::VP_REDUCE_AND:
5214     return RISCVISD::VECREDUCE_AND_VL;
5215   case ISD::VP_REDUCE_OR:
5216     return RISCVISD::VECREDUCE_OR_VL;
5217   case ISD::VP_REDUCE_XOR:
5218     return RISCVISD::VECREDUCE_XOR_VL;
5219   case ISD::VP_REDUCE_FADD:
5220     return RISCVISD::VECREDUCE_FADD_VL;
5221   case ISD::VP_REDUCE_SEQ_FADD:
5222     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
5223   case ISD::VP_REDUCE_FMAX:
5224     return RISCVISD::VECREDUCE_FMAX_VL;
5225   case ISD::VP_REDUCE_FMIN:
5226     return RISCVISD::VECREDUCE_FMIN_VL;
5227   }
5228 }
5229 
5230 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
5231                                            SelectionDAG &DAG) const {
5232   SDLoc DL(Op);
5233   SDValue Vec = Op.getOperand(1);
5234   EVT VecEVT = Vec.getValueType();
5235 
5236   // TODO: The type may need to be widened rather than split. Or widened before
5237   // it can be split.
5238   if (!isTypeLegal(VecEVT))
5239     return SDValue();
5240 
5241   MVT VecVT = VecEVT.getSimpleVT();
5242   MVT VecEltVT = VecVT.getVectorElementType();
5243   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
5244 
5245   MVT ContainerVT = VecVT;
5246   if (VecVT.isFixedLengthVector()) {
5247     ContainerVT = getContainerForFixedLengthVector(VecVT);
5248     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5249   }
5250 
5251   SDValue VL = Op.getOperand(3);
5252   SDValue Mask = Op.getOperand(2);
5253 
5254   MVT M1VT = getLMUL1VT(ContainerVT);
5255   MVT XLenVT = Subtarget.getXLenVT();
5256   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
5257 
5258   SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0),
5259                                         DAG.getConstant(1, DL, XLenVT), M1VT,
5260                                         DL, DAG, Subtarget);
5261   SDValue Reduction =
5262       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
5263   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
5264                              DAG.getConstant(0, DL, XLenVT));
5265   if (!VecVT.isInteger())
5266     return Elt0;
5267   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5268 }
5269 
5270 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5271                                                    SelectionDAG &DAG) const {
5272   SDValue Vec = Op.getOperand(0);
5273   SDValue SubVec = Op.getOperand(1);
5274   MVT VecVT = Vec.getSimpleValueType();
5275   MVT SubVecVT = SubVec.getSimpleValueType();
5276 
5277   SDLoc DL(Op);
5278   MVT XLenVT = Subtarget.getXLenVT();
5279   unsigned OrigIdx = Op.getConstantOperandVal(2);
5280   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5281 
5282   // We don't have the ability to slide mask vectors up indexed by their i1
5283   // elements; the smallest we can do is i8. Often we are able to bitcast to
5284   // equivalent i8 vectors. Note that when inserting a fixed-length vector
5285   // into a scalable one, we might not necessarily have enough scalable
5286   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
5287   if (SubVecVT.getVectorElementType() == MVT::i1 &&
5288       (OrigIdx != 0 || !Vec.isUndef())) {
5289     if (VecVT.getVectorMinNumElements() >= 8 &&
5290         SubVecVT.getVectorMinNumElements() >= 8) {
5291       assert(OrigIdx % 8 == 0 && "Invalid index");
5292       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5293              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5294              "Unexpected mask vector lowering");
5295       OrigIdx /= 8;
5296       SubVecVT =
5297           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5298                            SubVecVT.isScalableVector());
5299       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5300                                VecVT.isScalableVector());
5301       Vec = DAG.getBitcast(VecVT, Vec);
5302       SubVec = DAG.getBitcast(SubVecVT, SubVec);
5303     } else {
5304       // We can't slide this mask vector up indexed by its i1 elements.
5305       // This poses a problem when we wish to insert a scalable vector which
5306       // can't be re-expressed as a larger type. Just choose the slow path and
5307       // extend to a larger type, then truncate back down.
5308       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5309       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5310       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5311       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
5312       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
5313                         Op.getOperand(2));
5314       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
5315       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
5316     }
5317   }
5318 
5319   // If the subvector vector is a fixed-length type, we cannot use subregister
5320   // manipulation to simplify the codegen; we don't know which register of a
5321   // LMUL group contains the specific subvector as we only know the minimum
5322   // register size. Therefore we must slide the vector group up the full
5323   // amount.
5324   if (SubVecVT.isFixedLengthVector()) {
5325     if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
5326       return Op;
5327     MVT ContainerVT = VecVT;
5328     if (VecVT.isFixedLengthVector()) {
5329       ContainerVT = getContainerForFixedLengthVector(VecVT);
5330       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5331     }
5332     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
5333                          DAG.getUNDEF(ContainerVT), SubVec,
5334                          DAG.getConstant(0, DL, XLenVT));
5335     if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
5336       SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
5337       return DAG.getBitcast(Op.getValueType(), SubVec);
5338     }
5339     SDValue Mask =
5340         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5341     // Set the vector length to only the number of elements we care about. Note
5342     // that for slideup this includes the offset.
5343     SDValue VL =
5344         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
5345     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5346     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
5347                                   SubVec, SlideupAmt, Mask, VL);
5348     if (VecVT.isFixedLengthVector())
5349       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
5350     return DAG.getBitcast(Op.getValueType(), Slideup);
5351   }
5352 
5353   unsigned SubRegIdx, RemIdx;
5354   std::tie(SubRegIdx, RemIdx) =
5355       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5356           VecVT, SubVecVT, OrigIdx, TRI);
5357 
5358   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
5359   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
5360                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
5361                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
5362 
5363   // 1. If the Idx has been completely eliminated and this subvector's size is
5364   // a vector register or a multiple thereof, or the surrounding elements are
5365   // undef, then this is a subvector insert which naturally aligns to a vector
5366   // register. These can easily be handled using subregister manipulation.
5367   // 2. If the subvector is smaller than a vector register, then the insertion
5368   // must preserve the undisturbed elements of the register. We do this by
5369   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
5370   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
5371   // subvector within the vector register, and an INSERT_SUBVECTOR of that
5372   // LMUL=1 type back into the larger vector (resolving to another subregister
5373   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
5374   // to avoid allocating a large register group to hold our subvector.
5375   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
5376     return Op;
5377 
5378   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
5379   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
5380   // (in our case undisturbed). This means we can set up a subvector insertion
5381   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
5382   // size of the subvector.
5383   MVT InterSubVT = VecVT;
5384   SDValue AlignedExtract = Vec;
5385   unsigned AlignedIdx = OrigIdx - RemIdx;
5386   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5387     InterSubVT = getLMUL1VT(VecVT);
5388     // Extract a subvector equal to the nearest full vector register type. This
5389     // should resolve to a EXTRACT_SUBREG instruction.
5390     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5391                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
5392   }
5393 
5394   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5395   // For scalable vectors this must be further multiplied by vscale.
5396   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
5397 
5398   SDValue Mask, VL;
5399   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5400 
5401   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
5402   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
5403   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
5404   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
5405 
5406   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
5407                        DAG.getUNDEF(InterSubVT), SubVec,
5408                        DAG.getConstant(0, DL, XLenVT));
5409 
5410   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
5411                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
5412 
5413   // If required, insert this subvector back into the correct vector register.
5414   // This should resolve to an INSERT_SUBREG instruction.
5415   if (VecVT.bitsGT(InterSubVT))
5416     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
5417                           DAG.getConstant(AlignedIdx, DL, XLenVT));
5418 
5419   // We might have bitcast from a mask type: cast back to the original type if
5420   // required.
5421   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
5422 }
5423 
5424 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
5425                                                     SelectionDAG &DAG) const {
5426   SDValue Vec = Op.getOperand(0);
5427   MVT SubVecVT = Op.getSimpleValueType();
5428   MVT VecVT = Vec.getSimpleValueType();
5429 
5430   SDLoc DL(Op);
5431   MVT XLenVT = Subtarget.getXLenVT();
5432   unsigned OrigIdx = Op.getConstantOperandVal(1);
5433   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5434 
5435   // We don't have the ability to slide mask vectors down indexed by their i1
5436   // elements; the smallest we can do is i8. Often we are able to bitcast to
5437   // equivalent i8 vectors. Note that when extracting a fixed-length vector
5438   // from a scalable one, we might not necessarily have enough scalable
5439   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
5440   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
5441     if (VecVT.getVectorMinNumElements() >= 8 &&
5442         SubVecVT.getVectorMinNumElements() >= 8) {
5443       assert(OrigIdx % 8 == 0 && "Invalid index");
5444       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5445              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5446              "Unexpected mask vector lowering");
5447       OrigIdx /= 8;
5448       SubVecVT =
5449           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5450                            SubVecVT.isScalableVector());
5451       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5452                                VecVT.isScalableVector());
5453       Vec = DAG.getBitcast(VecVT, Vec);
5454     } else {
5455       // We can't slide this mask vector down, indexed by its i1 elements.
5456       // This poses a problem when we wish to extract a scalable vector which
5457       // can't be re-expressed as a larger type. Just choose the slow path and
5458       // extend to a larger type, then truncate back down.
5459       // TODO: We could probably improve this when extracting certain fixed
5460       // from fixed, where we can extract as i8 and shift the correct element
5461       // right to reach the desired subvector?
5462       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5463       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5464       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5465       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
5466                         Op.getOperand(1));
5467       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
5468       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
5469     }
5470   }
5471 
5472   // If the subvector vector is a fixed-length type, we cannot use subregister
5473   // manipulation to simplify the codegen; we don't know which register of a
5474   // LMUL group contains the specific subvector as we only know the minimum
5475   // register size. Therefore we must slide the vector group down the full
5476   // amount.
5477   if (SubVecVT.isFixedLengthVector()) {
5478     // With an index of 0 this is a cast-like subvector, which can be performed
5479     // with subregister operations.
5480     if (OrigIdx == 0)
5481       return Op;
5482     MVT ContainerVT = VecVT;
5483     if (VecVT.isFixedLengthVector()) {
5484       ContainerVT = getContainerForFixedLengthVector(VecVT);
5485       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5486     }
5487     SDValue Mask =
5488         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5489     // Set the vector length to only the number of elements we care about. This
5490     // avoids sliding down elements we're going to discard straight away.
5491     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
5492     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5493     SDValue Slidedown =
5494         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5495                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
5496     // Now we can use a cast-like subvector extract to get the result.
5497     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5498                             DAG.getConstant(0, DL, XLenVT));
5499     return DAG.getBitcast(Op.getValueType(), Slidedown);
5500   }
5501 
5502   unsigned SubRegIdx, RemIdx;
5503   std::tie(SubRegIdx, RemIdx) =
5504       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5505           VecVT, SubVecVT, OrigIdx, TRI);
5506 
5507   // If the Idx has been completely eliminated then this is a subvector extract
5508   // which naturally aligns to a vector register. These can easily be handled
5509   // using subregister manipulation.
5510   if (RemIdx == 0)
5511     return Op;
5512 
5513   // Else we must shift our vector register directly to extract the subvector.
5514   // Do this using VSLIDEDOWN.
5515 
5516   // If the vector type is an LMUL-group type, extract a subvector equal to the
5517   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
5518   // instruction.
5519   MVT InterSubVT = VecVT;
5520   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5521     InterSubVT = getLMUL1VT(VecVT);
5522     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5523                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
5524   }
5525 
5526   // Slide this vector register down by the desired number of elements in order
5527   // to place the desired subvector starting at element 0.
5528   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5529   // For scalable vectors this must be further multiplied by vscale.
5530   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
5531 
5532   SDValue Mask, VL;
5533   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
5534   SDValue Slidedown =
5535       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
5536                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
5537 
5538   // Now the vector is in the right position, extract our final subvector. This
5539   // should resolve to a COPY.
5540   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5541                           DAG.getConstant(0, DL, XLenVT));
5542 
5543   // We might have bitcast from a mask type: cast back to the original type if
5544   // required.
5545   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
5546 }
5547 
5548 // Lower step_vector to the vid instruction. Any non-identity step value must
5549 // be accounted for my manual expansion.
5550 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
5551                                               SelectionDAG &DAG) const {
5552   SDLoc DL(Op);
5553   MVT VT = Op.getSimpleValueType();
5554   MVT XLenVT = Subtarget.getXLenVT();
5555   SDValue Mask, VL;
5556   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
5557   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
5558   uint64_t StepValImm = Op.getConstantOperandVal(0);
5559   if (StepValImm != 1) {
5560     if (isPowerOf2_64(StepValImm)) {
5561       SDValue StepVal =
5562           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
5563                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
5564       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
5565     } else {
5566       SDValue StepVal = lowerScalarSplat(
5567           SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()),
5568           VL, VT, DL, DAG, Subtarget);
5569       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
5570     }
5571   }
5572   return StepVec;
5573 }
5574 
5575 // Implement vector_reverse using vrgather.vv with indices determined by
5576 // subtracting the id of each element from (VLMAX-1). This will convert
5577 // the indices like so:
5578 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
5579 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
5580 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
5581                                                  SelectionDAG &DAG) const {
5582   SDLoc DL(Op);
5583   MVT VecVT = Op.getSimpleValueType();
5584   unsigned EltSize = VecVT.getScalarSizeInBits();
5585   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
5586 
5587   unsigned MaxVLMAX = 0;
5588   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
5589   if (VectorBitsMax != 0)
5590     MaxVLMAX =
5591         RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
5592 
5593   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
5594   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
5595 
5596   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
5597   // to use vrgatherei16.vv.
5598   // TODO: It's also possible to use vrgatherei16.vv for other types to
5599   // decrease register width for the index calculation.
5600   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
5601     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
5602     // Reverse each half, then reassemble them in reverse order.
5603     // NOTE: It's also possible that after splitting that VLMAX no longer
5604     // requires vrgatherei16.vv.
5605     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
5606       SDValue Lo, Hi;
5607       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5608       EVT LoVT, HiVT;
5609       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5610       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5611       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5612       // Reassemble the low and high pieces reversed.
5613       // FIXME: This is a CONCAT_VECTORS.
5614       SDValue Res =
5615           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5616                       DAG.getIntPtrConstant(0, DL));
5617       return DAG.getNode(
5618           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5619           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5620     }
5621 
5622     // Just promote the int type to i16 which will double the LMUL.
5623     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5624     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5625   }
5626 
5627   MVT XLenVT = Subtarget.getXLenVT();
5628   SDValue Mask, VL;
5629   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5630 
5631   // Calculate VLMAX-1 for the desired SEW.
5632   unsigned MinElts = VecVT.getVectorMinNumElements();
5633   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5634                               DAG.getConstant(MinElts, DL, XLenVT));
5635   SDValue VLMinus1 =
5636       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5637 
5638   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5639   bool IsRV32E64 =
5640       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5641   SDValue SplatVL;
5642   if (!IsRV32E64)
5643     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5644   else
5645     SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT),
5646                           VLMinus1, DAG.getRegister(RISCV::X0, XLenVT));
5647 
5648   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5649   SDValue Indices =
5650       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5651 
5652   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
5653 }
5654 
5655 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op,
5656                                                 SelectionDAG &DAG) const {
5657   SDLoc DL(Op);
5658   SDValue V1 = Op.getOperand(0);
5659   SDValue V2 = Op.getOperand(1);
5660   MVT XLenVT = Subtarget.getXLenVT();
5661   MVT VecVT = Op.getSimpleValueType();
5662 
5663   unsigned MinElts = VecVT.getVectorMinNumElements();
5664   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5665                               DAG.getConstant(MinElts, DL, XLenVT));
5666 
5667   int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue();
5668   SDValue DownOffset, UpOffset;
5669   if (ImmValue >= 0) {
5670     // The operand is a TargetConstant, we need to rebuild it as a regular
5671     // constant.
5672     DownOffset = DAG.getConstant(ImmValue, DL, XLenVT);
5673     UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset);
5674   } else {
5675     // The operand is a TargetConstant, we need to rebuild it as a regular
5676     // constant rather than negating the original operand.
5677     UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT);
5678     DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset);
5679   }
5680 
5681   SDValue TrueMask = getAllOnesMask(VecVT, VLMax, DL, DAG);
5682 
5683   SDValue SlideDown =
5684       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1,
5685                   DownOffset, TrueMask, UpOffset);
5686   return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset,
5687                      TrueMask,
5688                      DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT));
5689 }
5690 
5691 SDValue
5692 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5693                                                      SelectionDAG &DAG) const {
5694   SDLoc DL(Op);
5695   auto *Load = cast<LoadSDNode>(Op);
5696 
5697   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5698                                         Load->getMemoryVT(),
5699                                         *Load->getMemOperand()) &&
5700          "Expecting a correctly-aligned load");
5701 
5702   MVT VT = Op.getSimpleValueType();
5703   MVT XLenVT = Subtarget.getXLenVT();
5704   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5705 
5706   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5707 
5708   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5709   SDValue IntID = DAG.getTargetConstant(
5710       IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT);
5711   SmallVector<SDValue, 4> Ops{Load->getChain(), IntID};
5712   if (!IsMaskOp)
5713     Ops.push_back(DAG.getUNDEF(ContainerVT));
5714   Ops.push_back(Load->getBasePtr());
5715   Ops.push_back(VL);
5716   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5717   SDValue NewLoad =
5718       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
5719                               Load->getMemoryVT(), Load->getMemOperand());
5720 
5721   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5722   return DAG.getMergeValues({Result, NewLoad.getValue(1)}, DL);
5723 }
5724 
5725 SDValue
5726 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5727                                                       SelectionDAG &DAG) const {
5728   SDLoc DL(Op);
5729   auto *Store = cast<StoreSDNode>(Op);
5730 
5731   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5732                                         Store->getMemoryVT(),
5733                                         *Store->getMemOperand()) &&
5734          "Expecting a correctly-aligned store");
5735 
5736   SDValue StoreVal = Store->getValue();
5737   MVT VT = StoreVal.getSimpleValueType();
5738   MVT XLenVT = Subtarget.getXLenVT();
5739 
5740   // If the size less than a byte, we need to pad with zeros to make a byte.
5741   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5742     VT = MVT::v8i1;
5743     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5744                            DAG.getConstant(0, DL, VT), StoreVal,
5745                            DAG.getIntPtrConstant(0, DL));
5746   }
5747 
5748   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5749 
5750   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5751 
5752   SDValue NewValue =
5753       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5754 
5755   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5756   SDValue IntID = DAG.getTargetConstant(
5757       IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT);
5758   return DAG.getMemIntrinsicNode(
5759       ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
5760       {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL},
5761       Store->getMemoryVT(), Store->getMemOperand());
5762 }
5763 
5764 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5765                                              SelectionDAG &DAG) const {
5766   SDLoc DL(Op);
5767   MVT VT = Op.getSimpleValueType();
5768 
5769   const auto *MemSD = cast<MemSDNode>(Op);
5770   EVT MemVT = MemSD->getMemoryVT();
5771   MachineMemOperand *MMO = MemSD->getMemOperand();
5772   SDValue Chain = MemSD->getChain();
5773   SDValue BasePtr = MemSD->getBasePtr();
5774 
5775   SDValue Mask, PassThru, VL;
5776   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5777     Mask = VPLoad->getMask();
5778     PassThru = DAG.getUNDEF(VT);
5779     VL = VPLoad->getVectorLength();
5780   } else {
5781     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5782     Mask = MLoad->getMask();
5783     PassThru = MLoad->getPassThru();
5784   }
5785 
5786   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5787 
5788   MVT XLenVT = Subtarget.getXLenVT();
5789 
5790   MVT ContainerVT = VT;
5791   if (VT.isFixedLengthVector()) {
5792     ContainerVT = getContainerForFixedLengthVector(VT);
5793     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5794     if (!IsUnmasked) {
5795       MVT MaskVT = getMaskTypeFor(ContainerVT);
5796       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5797     }
5798   }
5799 
5800   if (!VL)
5801     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5802 
5803   unsigned IntID =
5804       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5805   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5806   if (IsUnmasked)
5807     Ops.push_back(DAG.getUNDEF(ContainerVT));
5808   else
5809     Ops.push_back(PassThru);
5810   Ops.push_back(BasePtr);
5811   if (!IsUnmasked)
5812     Ops.push_back(Mask);
5813   Ops.push_back(VL);
5814   if (!IsUnmasked)
5815     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5816 
5817   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5818 
5819   SDValue Result =
5820       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5821   Chain = Result.getValue(1);
5822 
5823   if (VT.isFixedLengthVector())
5824     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5825 
5826   return DAG.getMergeValues({Result, Chain}, DL);
5827 }
5828 
5829 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5830                                               SelectionDAG &DAG) const {
5831   SDLoc DL(Op);
5832 
5833   const auto *MemSD = cast<MemSDNode>(Op);
5834   EVT MemVT = MemSD->getMemoryVT();
5835   MachineMemOperand *MMO = MemSD->getMemOperand();
5836   SDValue Chain = MemSD->getChain();
5837   SDValue BasePtr = MemSD->getBasePtr();
5838   SDValue Val, Mask, VL;
5839 
5840   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5841     Val = VPStore->getValue();
5842     Mask = VPStore->getMask();
5843     VL = VPStore->getVectorLength();
5844   } else {
5845     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5846     Val = MStore->getValue();
5847     Mask = MStore->getMask();
5848   }
5849 
5850   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5851 
5852   MVT VT = Val.getSimpleValueType();
5853   MVT XLenVT = Subtarget.getXLenVT();
5854 
5855   MVT ContainerVT = VT;
5856   if (VT.isFixedLengthVector()) {
5857     ContainerVT = getContainerForFixedLengthVector(VT);
5858 
5859     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5860     if (!IsUnmasked) {
5861       MVT MaskVT = getMaskTypeFor(ContainerVT);
5862       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5863     }
5864   }
5865 
5866   if (!VL)
5867     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5868 
5869   unsigned IntID =
5870       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5871   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5872   Ops.push_back(Val);
5873   Ops.push_back(BasePtr);
5874   if (!IsUnmasked)
5875     Ops.push_back(Mask);
5876   Ops.push_back(VL);
5877 
5878   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5879                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5880 }
5881 
5882 SDValue
5883 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
5884                                                       SelectionDAG &DAG) const {
5885   MVT InVT = Op.getOperand(0).getSimpleValueType();
5886   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
5887 
5888   MVT VT = Op.getSimpleValueType();
5889 
5890   SDValue Op1 =
5891       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
5892   SDValue Op2 =
5893       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5894 
5895   SDLoc DL(Op);
5896   SDValue VL =
5897       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5898 
5899   MVT MaskVT = getMaskTypeFor(ContainerVT);
5900   SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
5901 
5902   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
5903                             Op.getOperand(2), Mask, VL);
5904 
5905   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
5906 }
5907 
5908 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
5909     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
5910   MVT VT = Op.getSimpleValueType();
5911 
5912   if (VT.getVectorElementType() == MVT::i1)
5913     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
5914 
5915   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
5916 }
5917 
5918 SDValue
5919 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
5920                                                       SelectionDAG &DAG) const {
5921   unsigned Opc;
5922   switch (Op.getOpcode()) {
5923   default: llvm_unreachable("Unexpected opcode!");
5924   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
5925   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
5926   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
5927   }
5928 
5929   return lowerToScalableOp(Op, DAG, Opc);
5930 }
5931 
5932 // Lower vector ABS to smax(X, sub(0, X)).
5933 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
5934   SDLoc DL(Op);
5935   MVT VT = Op.getSimpleValueType();
5936   SDValue X = Op.getOperand(0);
5937 
5938   assert(VT.isFixedLengthVector() && "Unexpected type");
5939 
5940   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5941   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
5942 
5943   SDValue Mask, VL;
5944   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5945 
5946   SDValue SplatZero = DAG.getNode(
5947       RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
5948       DAG.getConstant(0, DL, Subtarget.getXLenVT()));
5949   SDValue NegX =
5950       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
5951   SDValue Max =
5952       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
5953 
5954   return convertFromScalableVector(VT, Max, DAG, Subtarget);
5955 }
5956 
5957 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
5958     SDValue Op, SelectionDAG &DAG) const {
5959   SDLoc DL(Op);
5960   MVT VT = Op.getSimpleValueType();
5961   SDValue Mag = Op.getOperand(0);
5962   SDValue Sign = Op.getOperand(1);
5963   assert(Mag.getValueType() == Sign.getValueType() &&
5964          "Can only handle COPYSIGN with matching types.");
5965 
5966   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5967   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
5968   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
5969 
5970   SDValue Mask, VL;
5971   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5972 
5973   SDValue CopySign =
5974       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
5975 
5976   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
5977 }
5978 
5979 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
5980     SDValue Op, SelectionDAG &DAG) const {
5981   MVT VT = Op.getSimpleValueType();
5982   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5983 
5984   MVT I1ContainerVT =
5985       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5986 
5987   SDValue CC =
5988       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
5989   SDValue Op1 =
5990       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5991   SDValue Op2 =
5992       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
5993 
5994   SDLoc DL(Op);
5995   SDValue Mask, VL;
5996   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5997 
5998   SDValue Select =
5999       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
6000 
6001   return convertFromScalableVector(VT, Select, DAG, Subtarget);
6002 }
6003 
6004 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
6005                                                unsigned NewOpc,
6006                                                bool HasMask) const {
6007   MVT VT = Op.getSimpleValueType();
6008   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6009 
6010   // Create list of operands by converting existing ones to scalable types.
6011   SmallVector<SDValue, 6> Ops;
6012   for (const SDValue &V : Op->op_values()) {
6013     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6014 
6015     // Pass through non-vector operands.
6016     if (!V.getValueType().isVector()) {
6017       Ops.push_back(V);
6018       continue;
6019     }
6020 
6021     // "cast" fixed length vector to a scalable vector.
6022     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
6023            "Only fixed length vectors are supported!");
6024     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6025   }
6026 
6027   SDLoc DL(Op);
6028   SDValue Mask, VL;
6029   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6030   if (HasMask)
6031     Ops.push_back(Mask);
6032   Ops.push_back(VL);
6033 
6034   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
6035   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
6036 }
6037 
6038 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
6039 // * Operands of each node are assumed to be in the same order.
6040 // * The EVL operand is promoted from i32 to i64 on RV64.
6041 // * Fixed-length vectors are converted to their scalable-vector container
6042 //   types.
6043 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
6044                                        unsigned RISCVISDOpc) const {
6045   SDLoc DL(Op);
6046   MVT VT = Op.getSimpleValueType();
6047   SmallVector<SDValue, 4> Ops;
6048 
6049   for (const auto &OpIdx : enumerate(Op->ops())) {
6050     SDValue V = OpIdx.value();
6051     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6052     // Pass through operands which aren't fixed-length vectors.
6053     if (!V.getValueType().isFixedLengthVector()) {
6054       Ops.push_back(V);
6055       continue;
6056     }
6057     // "cast" fixed length vector to a scalable vector.
6058     MVT OpVT = V.getSimpleValueType();
6059     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
6060     assert(useRVVForFixedLengthVectorVT(OpVT) &&
6061            "Only fixed length vectors are supported!");
6062     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6063   }
6064 
6065   if (!VT.isFixedLengthVector())
6066     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
6067 
6068   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6069 
6070   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
6071 
6072   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
6073 }
6074 
6075 SDValue RISCVTargetLowering::lowerVPExtMaskOp(SDValue Op,
6076                                               SelectionDAG &DAG) const {
6077   SDLoc DL(Op);
6078   MVT VT = Op.getSimpleValueType();
6079 
6080   SDValue Src = Op.getOperand(0);
6081   // NOTE: Mask is dropped.
6082   SDValue VL = Op.getOperand(2);
6083 
6084   MVT ContainerVT = VT;
6085   if (VT.isFixedLengthVector()) {
6086     ContainerVT = getContainerForFixedLengthVector(VT);
6087     MVT SrcVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6088     Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
6089   }
6090 
6091   MVT XLenVT = Subtarget.getXLenVT();
6092   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
6093   SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6094                                   DAG.getUNDEF(ContainerVT), Zero, VL);
6095 
6096   SDValue SplatValue = DAG.getConstant(
6097       Op.getOpcode() == ISD::VP_ZERO_EXTEND ? 1 : -1, DL, XLenVT);
6098   SDValue Splat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6099                               DAG.getUNDEF(ContainerVT), SplatValue, VL);
6100 
6101   SDValue Result = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, Src,
6102                                Splat, ZeroSplat, VL);
6103   if (!VT.isFixedLengthVector())
6104     return Result;
6105   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6106 }
6107 
6108 SDValue RISCVTargetLowering::lowerVPSetCCMaskOp(SDValue Op,
6109                                                 SelectionDAG &DAG) const {
6110   SDLoc DL(Op);
6111   MVT VT = Op.getSimpleValueType();
6112 
6113   SDValue Op1 = Op.getOperand(0);
6114   SDValue Op2 = Op.getOperand(1);
6115   ISD::CondCode Condition = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6116   // NOTE: Mask is dropped.
6117   SDValue VL = Op.getOperand(4);
6118 
6119   MVT ContainerVT = VT;
6120   if (VT.isFixedLengthVector()) {
6121     ContainerVT = getContainerForFixedLengthVector(VT);
6122     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6123     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6124   }
6125 
6126   SDValue Result;
6127   SDValue AllOneMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
6128 
6129   switch (Condition) {
6130   default:
6131     break;
6132   // X != Y  --> (X^Y)
6133   case ISD::SETNE:
6134     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
6135     break;
6136   // X == Y  --> ~(X^Y)
6137   case ISD::SETEQ: {
6138     SDValue Temp =
6139         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
6140     Result =
6141         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, AllOneMask, VL);
6142     break;
6143   }
6144   // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
6145   // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
6146   case ISD::SETGT:
6147   case ISD::SETULT: {
6148     SDValue Temp =
6149         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
6150     Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Temp, Op2, VL);
6151     break;
6152   }
6153   // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
6154   // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
6155   case ISD::SETLT:
6156   case ISD::SETUGT: {
6157     SDValue Temp =
6158         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
6159     Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Op1, Temp, VL);
6160     break;
6161   }
6162   // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
6163   // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
6164   case ISD::SETGE:
6165   case ISD::SETULE: {
6166     SDValue Temp =
6167         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
6168     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op2, VL);
6169     break;
6170   }
6171   // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
6172   // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
6173   case ISD::SETLE:
6174   case ISD::SETUGE: {
6175     SDValue Temp =
6176         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
6177     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op1, VL);
6178     break;
6179   }
6180   }
6181 
6182   if (!VT.isFixedLengthVector())
6183     return Result;
6184   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6185 }
6186 
6187 // Lower Floating-Point/Integer Type-Convert VP SDNodes
6188 SDValue RISCVTargetLowering::lowerVPFPIntConvOp(SDValue Op, SelectionDAG &DAG,
6189                                                 unsigned RISCVISDOpc) const {
6190   SDLoc DL(Op);
6191 
6192   SDValue Src = Op.getOperand(0);
6193   SDValue Mask = Op.getOperand(1);
6194   SDValue VL = Op.getOperand(2);
6195 
6196   MVT DstVT = Op.getSimpleValueType();
6197   MVT SrcVT = Src.getSimpleValueType();
6198   if (DstVT.isFixedLengthVector()) {
6199     DstVT = getContainerForFixedLengthVector(DstVT);
6200     SrcVT = getContainerForFixedLengthVector(SrcVT);
6201     Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
6202     MVT MaskVT = getMaskTypeFor(DstVT);
6203     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6204   }
6205 
6206   unsigned RISCVISDExtOpc = (RISCVISDOpc == RISCVISD::SINT_TO_FP_VL ||
6207                              RISCVISDOpc == RISCVISD::FP_TO_SINT_VL)
6208                                 ? RISCVISD::VSEXT_VL
6209                                 : RISCVISD::VZEXT_VL;
6210 
6211   unsigned DstEltSize = DstVT.getScalarSizeInBits();
6212   unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
6213 
6214   SDValue Result;
6215   if (DstEltSize >= SrcEltSize) { // Single-width and widening conversion.
6216     if (SrcVT.isInteger()) {
6217       assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
6218 
6219       // Do we need to do any pre-widening before converting?
6220       if (SrcEltSize == 1) {
6221         MVT IntVT = DstVT.changeVectorElementTypeToInteger();
6222         MVT XLenVT = Subtarget.getXLenVT();
6223         SDValue Zero = DAG.getConstant(0, DL, XLenVT);
6224         SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
6225                                         DAG.getUNDEF(IntVT), Zero, VL);
6226         SDValue One = DAG.getConstant(
6227             RISCVISDExtOpc == RISCVISD::VZEXT_VL ? 1 : -1, DL, XLenVT);
6228         SDValue OneSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
6229                                        DAG.getUNDEF(IntVT), One, VL);
6230         Src = DAG.getNode(RISCVISD::VSELECT_VL, DL, IntVT, Src, OneSplat,
6231                           ZeroSplat, VL);
6232       } else if (DstEltSize > (2 * SrcEltSize)) {
6233         // Widen before converting.
6234         MVT IntVT = MVT::getVectorVT(MVT::getIntegerVT(DstEltSize / 2),
6235                                      DstVT.getVectorElementCount());
6236         Src = DAG.getNode(RISCVISDExtOpc, DL, IntVT, Src, Mask, VL);
6237       }
6238 
6239       Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
6240     } else {
6241       assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
6242              "Wrong input/output vector types");
6243 
6244       // Convert f16 to f32 then convert f32 to i64.
6245       if (DstEltSize > (2 * SrcEltSize)) {
6246         assert(SrcVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
6247         MVT InterimFVT =
6248             MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
6249         Src =
6250             DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterimFVT, Src, Mask, VL);
6251       }
6252 
6253       Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
6254     }
6255   } else { // Narrowing + Conversion
6256     if (SrcVT.isInteger()) {
6257       assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
6258       // First do a narrowing convert to an FP type half the size, then round
6259       // the FP type to a small FP type if needed.
6260 
6261       MVT InterimFVT = DstVT;
6262       if (SrcEltSize > (2 * DstEltSize)) {
6263         assert(SrcEltSize == (4 * DstEltSize) && "Unexpected types!");
6264         assert(DstVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
6265         InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
6266       }
6267 
6268       Result = DAG.getNode(RISCVISDOpc, DL, InterimFVT, Src, Mask, VL);
6269 
6270       if (InterimFVT != DstVT) {
6271         Src = Result;
6272         Result = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, DstVT, Src, Mask, VL);
6273       }
6274     } else {
6275       assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
6276              "Wrong input/output vector types");
6277       // First do a narrowing conversion to an integer half the size, then
6278       // truncate if needed.
6279 
6280       if (DstEltSize == 1) {
6281         // First convert to the same size integer, then convert to mask using
6282         // setcc.
6283         assert(SrcEltSize >= 16 && "Unexpected FP type!");
6284         MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize),
6285                                           DstVT.getVectorElementCount());
6286         Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
6287 
6288         // Compare the integer result to 0. The integer should be 0 or 1/-1,
6289         // otherwise the conversion was undefined.
6290         MVT XLenVT = Subtarget.getXLenVT();
6291         SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
6292         SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterimIVT,
6293                                 DAG.getUNDEF(InterimIVT), SplatZero);
6294         Result = DAG.getNode(RISCVISD::SETCC_VL, DL, DstVT, Result, SplatZero,
6295                              DAG.getCondCode(ISD::SETNE), Mask, VL);
6296       } else {
6297         MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
6298                                           DstVT.getVectorElementCount());
6299 
6300         Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
6301 
6302         while (InterimIVT != DstVT) {
6303           SrcEltSize /= 2;
6304           Src = Result;
6305           InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
6306                                         DstVT.getVectorElementCount());
6307           Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, InterimIVT,
6308                                Src, Mask, VL);
6309         }
6310       }
6311     }
6312   }
6313 
6314   MVT VT = Op.getSimpleValueType();
6315   if (!VT.isFixedLengthVector())
6316     return Result;
6317   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6318 }
6319 
6320 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
6321                                             unsigned MaskOpc,
6322                                             unsigned VecOpc) const {
6323   MVT VT = Op.getSimpleValueType();
6324   if (VT.getVectorElementType() != MVT::i1)
6325     return lowerVPOp(Op, DAG, VecOpc);
6326 
6327   // It is safe to drop mask parameter as masked-off elements are undef.
6328   SDValue Op1 = Op->getOperand(0);
6329   SDValue Op2 = Op->getOperand(1);
6330   SDValue VL = Op->getOperand(3);
6331 
6332   MVT ContainerVT = VT;
6333   const bool IsFixed = VT.isFixedLengthVector();
6334   if (IsFixed) {
6335     ContainerVT = getContainerForFixedLengthVector(VT);
6336     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6337     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6338   }
6339 
6340   SDLoc DL(Op);
6341   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
6342   if (!IsFixed)
6343     return Val;
6344   return convertFromScalableVector(VT, Val, DAG, Subtarget);
6345 }
6346 
6347 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
6348 // matched to a RVV indexed load. The RVV indexed load instructions only
6349 // support the "unsigned unscaled" addressing mode; indices are implicitly
6350 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6351 // signed or scaled indexing is extended to the XLEN value type and scaled
6352 // accordingly.
6353 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
6354                                                SelectionDAG &DAG) const {
6355   SDLoc DL(Op);
6356   MVT VT = Op.getSimpleValueType();
6357 
6358   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6359   EVT MemVT = MemSD->getMemoryVT();
6360   MachineMemOperand *MMO = MemSD->getMemOperand();
6361   SDValue Chain = MemSD->getChain();
6362   SDValue BasePtr = MemSD->getBasePtr();
6363 
6364   ISD::LoadExtType LoadExtType;
6365   SDValue Index, Mask, PassThru, VL;
6366 
6367   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
6368     Index = VPGN->getIndex();
6369     Mask = VPGN->getMask();
6370     PassThru = DAG.getUNDEF(VT);
6371     VL = VPGN->getVectorLength();
6372     // VP doesn't support extending loads.
6373     LoadExtType = ISD::NON_EXTLOAD;
6374   } else {
6375     // Else it must be a MGATHER.
6376     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
6377     Index = MGN->getIndex();
6378     Mask = MGN->getMask();
6379     PassThru = MGN->getPassThru();
6380     LoadExtType = MGN->getExtensionType();
6381   }
6382 
6383   MVT IndexVT = Index.getSimpleValueType();
6384   MVT XLenVT = Subtarget.getXLenVT();
6385 
6386   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6387          "Unexpected VTs!");
6388   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6389   // Targets have to explicitly opt-in for extending vector loads.
6390   assert(LoadExtType == ISD::NON_EXTLOAD &&
6391          "Unexpected extending MGATHER/VP_GATHER");
6392   (void)LoadExtType;
6393 
6394   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6395   // the selection of the masked intrinsics doesn't do this for us.
6396   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6397 
6398   MVT ContainerVT = VT;
6399   if (VT.isFixedLengthVector()) {
6400     // We need to use the larger of the result and index type to determine the
6401     // scalable type to use so we don't increase LMUL for any operand/result.
6402     if (VT.bitsGE(IndexVT)) {
6403       ContainerVT = getContainerForFixedLengthVector(VT);
6404       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6405                                  ContainerVT.getVectorElementCount());
6406     } else {
6407       IndexVT = getContainerForFixedLengthVector(IndexVT);
6408       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
6409                                      IndexVT.getVectorElementCount());
6410     }
6411 
6412     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6413 
6414     if (!IsUnmasked) {
6415       MVT MaskVT = getMaskTypeFor(ContainerVT);
6416       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6417       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
6418     }
6419   }
6420 
6421   if (!VL)
6422     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6423 
6424   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6425     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6426     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6427                                    VL);
6428     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6429                         TrueMask, VL);
6430   }
6431 
6432   unsigned IntID =
6433       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
6434   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6435   if (IsUnmasked)
6436     Ops.push_back(DAG.getUNDEF(ContainerVT));
6437   else
6438     Ops.push_back(PassThru);
6439   Ops.push_back(BasePtr);
6440   Ops.push_back(Index);
6441   if (!IsUnmasked)
6442     Ops.push_back(Mask);
6443   Ops.push_back(VL);
6444   if (!IsUnmasked)
6445     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
6446 
6447   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
6448   SDValue Result =
6449       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
6450   Chain = Result.getValue(1);
6451 
6452   if (VT.isFixedLengthVector())
6453     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
6454 
6455   return DAG.getMergeValues({Result, Chain}, DL);
6456 }
6457 
6458 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
6459 // matched to a RVV indexed store. The RVV indexed store instructions only
6460 // support the "unsigned unscaled" addressing mode; indices are implicitly
6461 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6462 // signed or scaled indexing is extended to the XLEN value type and scaled
6463 // accordingly.
6464 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
6465                                                 SelectionDAG &DAG) const {
6466   SDLoc DL(Op);
6467   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6468   EVT MemVT = MemSD->getMemoryVT();
6469   MachineMemOperand *MMO = MemSD->getMemOperand();
6470   SDValue Chain = MemSD->getChain();
6471   SDValue BasePtr = MemSD->getBasePtr();
6472 
6473   bool IsTruncatingStore = false;
6474   SDValue Index, Mask, Val, VL;
6475 
6476   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
6477     Index = VPSN->getIndex();
6478     Mask = VPSN->getMask();
6479     Val = VPSN->getValue();
6480     VL = VPSN->getVectorLength();
6481     // VP doesn't support truncating stores.
6482     IsTruncatingStore = false;
6483   } else {
6484     // Else it must be a MSCATTER.
6485     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
6486     Index = MSN->getIndex();
6487     Mask = MSN->getMask();
6488     Val = MSN->getValue();
6489     IsTruncatingStore = MSN->isTruncatingStore();
6490   }
6491 
6492   MVT VT = Val.getSimpleValueType();
6493   MVT IndexVT = Index.getSimpleValueType();
6494   MVT XLenVT = Subtarget.getXLenVT();
6495 
6496   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6497          "Unexpected VTs!");
6498   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6499   // Targets have to explicitly opt-in for extending vector loads and
6500   // truncating vector stores.
6501   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
6502   (void)IsTruncatingStore;
6503 
6504   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6505   // the selection of the masked intrinsics doesn't do this for us.
6506   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6507 
6508   MVT ContainerVT = VT;
6509   if (VT.isFixedLengthVector()) {
6510     // We need to use the larger of the value and index type to determine the
6511     // scalable type to use so we don't increase LMUL for any operand/result.
6512     if (VT.bitsGE(IndexVT)) {
6513       ContainerVT = getContainerForFixedLengthVector(VT);
6514       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6515                                  ContainerVT.getVectorElementCount());
6516     } else {
6517       IndexVT = getContainerForFixedLengthVector(IndexVT);
6518       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
6519                                      IndexVT.getVectorElementCount());
6520     }
6521 
6522     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6523     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
6524 
6525     if (!IsUnmasked) {
6526       MVT MaskVT = getMaskTypeFor(ContainerVT);
6527       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6528     }
6529   }
6530 
6531   if (!VL)
6532     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6533 
6534   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6535     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6536     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6537                                    VL);
6538     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6539                         TrueMask, VL);
6540   }
6541 
6542   unsigned IntID =
6543       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
6544   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6545   Ops.push_back(Val);
6546   Ops.push_back(BasePtr);
6547   Ops.push_back(Index);
6548   if (!IsUnmasked)
6549     Ops.push_back(Mask);
6550   Ops.push_back(VL);
6551 
6552   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
6553                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
6554 }
6555 
6556 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
6557                                                SelectionDAG &DAG) const {
6558   const MVT XLenVT = Subtarget.getXLenVT();
6559   SDLoc DL(Op);
6560   SDValue Chain = Op->getOperand(0);
6561   SDValue SysRegNo = DAG.getTargetConstant(
6562       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6563   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
6564   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
6565 
6566   // Encoding used for rounding mode in RISCV differs from that used in
6567   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
6568   // table, which consists of a sequence of 4-bit fields, each representing
6569   // corresponding FLT_ROUNDS mode.
6570   static const int Table =
6571       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
6572       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
6573       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
6574       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
6575       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
6576 
6577   SDValue Shift =
6578       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
6579   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6580                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6581   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6582                                DAG.getConstant(7, DL, XLenVT));
6583 
6584   return DAG.getMergeValues({Masked, Chain}, DL);
6585 }
6586 
6587 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
6588                                                SelectionDAG &DAG) const {
6589   const MVT XLenVT = Subtarget.getXLenVT();
6590   SDLoc DL(Op);
6591   SDValue Chain = Op->getOperand(0);
6592   SDValue RMValue = Op->getOperand(1);
6593   SDValue SysRegNo = DAG.getTargetConstant(
6594       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6595 
6596   // Encoding used for rounding mode in RISCV differs from that used in
6597   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
6598   // a table, which consists of a sequence of 4-bit fields, each representing
6599   // corresponding RISCV mode.
6600   static const unsigned Table =
6601       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
6602       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
6603       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
6604       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
6605       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
6606 
6607   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
6608                               DAG.getConstant(2, DL, XLenVT));
6609   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6610                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6611   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6612                         DAG.getConstant(0x7, DL, XLenVT));
6613   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
6614                      RMValue);
6615 }
6616 
6617 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) {
6618   switch (IntNo) {
6619   default:
6620     llvm_unreachable("Unexpected Intrinsic");
6621   case Intrinsic::riscv_bcompress:
6622     return RISCVISD::BCOMPRESSW;
6623   case Intrinsic::riscv_bdecompress:
6624     return RISCVISD::BDECOMPRESSW;
6625   case Intrinsic::riscv_bfp:
6626     return RISCVISD::BFPW;
6627   case Intrinsic::riscv_fsl:
6628     return RISCVISD::FSLW;
6629   case Intrinsic::riscv_fsr:
6630     return RISCVISD::FSRW;
6631   }
6632 }
6633 
6634 // Converts the given intrinsic to a i64 operation with any extension.
6635 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG,
6636                                          unsigned IntNo) {
6637   SDLoc DL(N);
6638   RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo);
6639   // Deal with the Instruction Operands
6640   SmallVector<SDValue, 3> NewOps;
6641   for (SDValue Op : drop_begin(N->ops()))
6642     // Promote the operand to i64 type
6643     NewOps.push_back(DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op));
6644   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOps);
6645   // ReplaceNodeResults requires we maintain the same type for the return value.
6646   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6647 }
6648 
6649 // Returns the opcode of the target-specific SDNode that implements the 32-bit
6650 // form of the given Opcode.
6651 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
6652   switch (Opcode) {
6653   default:
6654     llvm_unreachable("Unexpected opcode");
6655   case ISD::SHL:
6656     return RISCVISD::SLLW;
6657   case ISD::SRA:
6658     return RISCVISD::SRAW;
6659   case ISD::SRL:
6660     return RISCVISD::SRLW;
6661   case ISD::SDIV:
6662     return RISCVISD::DIVW;
6663   case ISD::UDIV:
6664     return RISCVISD::DIVUW;
6665   case ISD::UREM:
6666     return RISCVISD::REMUW;
6667   case ISD::ROTL:
6668     return RISCVISD::ROLW;
6669   case ISD::ROTR:
6670     return RISCVISD::RORW;
6671   }
6672 }
6673 
6674 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
6675 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
6676 // otherwise be promoted to i64, making it difficult to select the
6677 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
6678 // type i8/i16/i32 is lost.
6679 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
6680                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
6681   SDLoc DL(N);
6682   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6683   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
6684   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
6685   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6686   // ReplaceNodeResults requires we maintain the same type for the return value.
6687   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6688 }
6689 
6690 // Converts the given 32-bit operation to a i64 operation with signed extension
6691 // semantic to reduce the signed extension instructions.
6692 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
6693   SDLoc DL(N);
6694   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6695   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6696   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
6697   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6698                                DAG.getValueType(MVT::i32));
6699   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
6700 }
6701 
6702 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
6703                                              SmallVectorImpl<SDValue> &Results,
6704                                              SelectionDAG &DAG) const {
6705   SDLoc DL(N);
6706   switch (N->getOpcode()) {
6707   default:
6708     llvm_unreachable("Don't know how to custom type legalize this operation!");
6709   case ISD::STRICT_FP_TO_SINT:
6710   case ISD::STRICT_FP_TO_UINT:
6711   case ISD::FP_TO_SINT:
6712   case ISD::FP_TO_UINT: {
6713     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6714            "Unexpected custom legalisation");
6715     bool IsStrict = N->isStrictFPOpcode();
6716     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
6717                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
6718     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
6719     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
6720         TargetLowering::TypeSoftenFloat) {
6721       if (!isTypeLegal(Op0.getValueType()))
6722         return;
6723       if (IsStrict) {
6724         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
6725                                 : RISCVISD::STRICT_FCVT_WU_RV64;
6726         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
6727         SDValue Res = DAG.getNode(
6728             Opc, DL, VTs, N->getOperand(0), Op0,
6729             DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6730         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6731         Results.push_back(Res.getValue(1));
6732         return;
6733       }
6734       unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
6735       SDValue Res =
6736           DAG.getNode(Opc, DL, MVT::i64, Op0,
6737                       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6738       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6739       return;
6740     }
6741     // If the FP type needs to be softened, emit a library call using the 'si'
6742     // version. If we left it to default legalization we'd end up with 'di'. If
6743     // the FP type doesn't need to be softened just let generic type
6744     // legalization promote the result type.
6745     RTLIB::Libcall LC;
6746     if (IsSigned)
6747       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
6748     else
6749       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
6750     MakeLibCallOptions CallOptions;
6751     EVT OpVT = Op0.getValueType();
6752     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
6753     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
6754     SDValue Result;
6755     std::tie(Result, Chain) =
6756         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
6757     Results.push_back(Result);
6758     if (IsStrict)
6759       Results.push_back(Chain);
6760     break;
6761   }
6762   case ISD::READCYCLECOUNTER: {
6763     assert(!Subtarget.is64Bit() &&
6764            "READCYCLECOUNTER only has custom type legalization on riscv32");
6765 
6766     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6767     SDValue RCW =
6768         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
6769 
6770     Results.push_back(
6771         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
6772     Results.push_back(RCW.getValue(2));
6773     break;
6774   }
6775   case ISD::MUL: {
6776     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
6777     unsigned XLen = Subtarget.getXLen();
6778     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
6779     if (Size > XLen) {
6780       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
6781       SDValue LHS = N->getOperand(0);
6782       SDValue RHS = N->getOperand(1);
6783       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
6784 
6785       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
6786       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
6787       // We need exactly one side to be unsigned.
6788       if (LHSIsU == RHSIsU)
6789         return;
6790 
6791       auto MakeMULPair = [&](SDValue S, SDValue U) {
6792         MVT XLenVT = Subtarget.getXLenVT();
6793         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
6794         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
6795         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
6796         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
6797         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
6798       };
6799 
6800       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
6801       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
6802 
6803       // The other operand should be signed, but still prefer MULH when
6804       // possible.
6805       if (RHSIsU && LHSIsS && !RHSIsS)
6806         Results.push_back(MakeMULPair(LHS, RHS));
6807       else if (LHSIsU && RHSIsS && !LHSIsS)
6808         Results.push_back(MakeMULPair(RHS, LHS));
6809 
6810       return;
6811     }
6812     LLVM_FALLTHROUGH;
6813   }
6814   case ISD::ADD:
6815   case ISD::SUB:
6816     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6817            "Unexpected custom legalisation");
6818     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
6819     break;
6820   case ISD::SHL:
6821   case ISD::SRA:
6822   case ISD::SRL:
6823     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6824            "Unexpected custom legalisation");
6825     if (N->getOperand(1).getOpcode() != ISD::Constant) {
6826       // If we can use a BSET instruction, allow default promotion to apply.
6827       if (N->getOpcode() == ISD::SHL && Subtarget.hasStdExtZbs() &&
6828           isOneConstant(N->getOperand(0)))
6829         break;
6830       Results.push_back(customLegalizeToWOp(N, DAG));
6831       break;
6832     }
6833 
6834     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
6835     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
6836     // shift amount.
6837     if (N->getOpcode() == ISD::SHL) {
6838       SDLoc DL(N);
6839       SDValue NewOp0 =
6840           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6841       SDValue NewOp1 =
6842           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
6843       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
6844       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6845                                    DAG.getValueType(MVT::i32));
6846       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6847     }
6848 
6849     break;
6850   case ISD::ROTL:
6851   case ISD::ROTR:
6852     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6853            "Unexpected custom legalisation");
6854     Results.push_back(customLegalizeToWOp(N, DAG));
6855     break;
6856   case ISD::CTTZ:
6857   case ISD::CTTZ_ZERO_UNDEF:
6858   case ISD::CTLZ:
6859   case ISD::CTLZ_ZERO_UNDEF: {
6860     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6861            "Unexpected custom legalisation");
6862 
6863     SDValue NewOp0 =
6864         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6865     bool IsCTZ =
6866         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
6867     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
6868     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
6869     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6870     return;
6871   }
6872   case ISD::SDIV:
6873   case ISD::UDIV:
6874   case ISD::UREM: {
6875     MVT VT = N->getSimpleValueType(0);
6876     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
6877            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
6878            "Unexpected custom legalisation");
6879     // Don't promote division/remainder by constant since we should expand those
6880     // to multiply by magic constant.
6881     // FIXME: What if the expansion is disabled for minsize.
6882     if (N->getOperand(1).getOpcode() == ISD::Constant)
6883       return;
6884 
6885     // If the input is i32, use ANY_EXTEND since the W instructions don't read
6886     // the upper 32 bits. For other types we need to sign or zero extend
6887     // based on the opcode.
6888     unsigned ExtOpc = ISD::ANY_EXTEND;
6889     if (VT != MVT::i32)
6890       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
6891                                            : ISD::ZERO_EXTEND;
6892 
6893     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
6894     break;
6895   }
6896   case ISD::UADDO:
6897   case ISD::USUBO: {
6898     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6899            "Unexpected custom legalisation");
6900     bool IsAdd = N->getOpcode() == ISD::UADDO;
6901     // Create an ADDW or SUBW.
6902     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6903     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6904     SDValue Res =
6905         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
6906     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
6907                       DAG.getValueType(MVT::i32));
6908 
6909     SDValue Overflow;
6910     if (IsAdd && isOneConstant(RHS)) {
6911       // Special case uaddo X, 1 overflowed if the addition result is 0.
6912       // The general case (X + C) < C is not necessarily beneficial. Although we
6913       // reduce the live range of X, we may introduce the materialization of
6914       // constant C, especially when the setcc result is used by branch. We have
6915       // no compare with constant and branch instructions.
6916       Overflow = DAG.getSetCC(DL, N->getValueType(1), Res,
6917                               DAG.getConstant(0, DL, MVT::i64), ISD::SETEQ);
6918     } else {
6919       // Sign extend the LHS and perform an unsigned compare with the ADDW
6920       // result. Since the inputs are sign extended from i32, this is equivalent
6921       // to comparing the lower 32 bits.
6922       LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6923       Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
6924                               IsAdd ? ISD::SETULT : ISD::SETUGT);
6925     }
6926 
6927     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6928     Results.push_back(Overflow);
6929     return;
6930   }
6931   case ISD::UADDSAT:
6932   case ISD::USUBSAT: {
6933     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6934            "Unexpected custom legalisation");
6935     if (Subtarget.hasStdExtZbb()) {
6936       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
6937       // sign extend allows overflow of the lower 32 bits to be detected on
6938       // the promoted size.
6939       SDValue LHS =
6940           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6941       SDValue RHS =
6942           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
6943       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
6944       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6945       return;
6946     }
6947 
6948     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
6949     // promotion for UADDO/USUBO.
6950     Results.push_back(expandAddSubSat(N, DAG));
6951     return;
6952   }
6953   case ISD::ABS: {
6954     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6955            "Unexpected custom legalisation");
6956           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6957 
6958     // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y)
6959 
6960     SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6961 
6962     // Freeze the source so we can increase it's use count.
6963     Src = DAG.getFreeze(Src);
6964 
6965     // Copy sign bit to all bits using the sraiw pattern.
6966     SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src,
6967                                    DAG.getValueType(MVT::i32));
6968     SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill,
6969                            DAG.getConstant(31, DL, MVT::i64));
6970 
6971     SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill);
6972     NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill);
6973 
6974     // NOTE: The result is only required to be anyextended, but sext is
6975     // consistent with type legalization of sub.
6976     NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes,
6977                          DAG.getValueType(MVT::i32));
6978     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6979     return;
6980   }
6981   case ISD::BITCAST: {
6982     EVT VT = N->getValueType(0);
6983     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
6984     SDValue Op0 = N->getOperand(0);
6985     EVT Op0VT = Op0.getValueType();
6986     MVT XLenVT = Subtarget.getXLenVT();
6987     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
6988       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
6989       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
6990     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
6991                Subtarget.hasStdExtF()) {
6992       SDValue FPConv =
6993           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
6994       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
6995     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
6996                isTypeLegal(Op0VT)) {
6997       // Custom-legalize bitcasts from fixed-length vector types to illegal
6998       // scalar types in order to improve codegen. Bitcast the vector to a
6999       // one-element vector type whose element type is the same as the result
7000       // type, and extract the first element.
7001       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
7002       if (isTypeLegal(BVT)) {
7003         SDValue BVec = DAG.getBitcast(BVT, Op0);
7004         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
7005                                       DAG.getConstant(0, DL, XLenVT)));
7006       }
7007     }
7008     break;
7009   }
7010   case RISCVISD::GREV:
7011   case RISCVISD::GORC:
7012   case RISCVISD::SHFL: {
7013     MVT VT = N->getSimpleValueType(0);
7014     MVT XLenVT = Subtarget.getXLenVT();
7015     assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
7016            "Unexpected custom legalisation");
7017     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
7018     assert((Subtarget.hasStdExtZbp() ||
7019             (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV &&
7020              N->getConstantOperandVal(1) == 7)) &&
7021            "Unexpected extension");
7022     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
7023     SDValue NewOp1 =
7024         DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1));
7025     SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1);
7026     // ReplaceNodeResults requires we maintain the same type for the return
7027     // value.
7028     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes));
7029     break;
7030   }
7031   case ISD::BSWAP:
7032   case ISD::BITREVERSE: {
7033     MVT VT = N->getSimpleValueType(0);
7034     MVT XLenVT = Subtarget.getXLenVT();
7035     assert((VT == MVT::i8 || VT == MVT::i16 ||
7036             (VT == MVT::i32 && Subtarget.is64Bit())) &&
7037            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
7038     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
7039     unsigned Imm = VT.getSizeInBits() - 1;
7040     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
7041     if (N->getOpcode() == ISD::BSWAP)
7042       Imm &= ~0x7U;
7043     SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0,
7044                                 DAG.getConstant(Imm, DL, XLenVT));
7045     // ReplaceNodeResults requires we maintain the same type for the return
7046     // value.
7047     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
7048     break;
7049   }
7050   case ISD::FSHL:
7051   case ISD::FSHR: {
7052     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7053            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
7054     SDValue NewOp0 =
7055         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
7056     SDValue NewOp1 =
7057         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7058     SDValue NewShAmt =
7059         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7060     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
7061     // Mask the shift amount to 5 bits to prevent accidentally setting bit 5.
7062     NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt,
7063                            DAG.getConstant(0x1f, DL, MVT::i64));
7064     // fshl and fshr concatenate their operands in the same order. fsrw and fslw
7065     // instruction use different orders. fshl will return its first operand for
7066     // shift of zero, fshr will return its second operand. fsl and fsr both
7067     // return rs1 so the ISD nodes need to have different operand orders.
7068     // Shift amount is in rs2.
7069     unsigned Opc = RISCVISD::FSLW;
7070     if (N->getOpcode() == ISD::FSHR) {
7071       std::swap(NewOp0, NewOp1);
7072       Opc = RISCVISD::FSRW;
7073     }
7074     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt);
7075     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
7076     break;
7077   }
7078   case ISD::EXTRACT_VECTOR_ELT: {
7079     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
7080     // type is illegal (currently only vXi64 RV32).
7081     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
7082     // transferred to the destination register. We issue two of these from the
7083     // upper- and lower- halves of the SEW-bit vector element, slid down to the
7084     // first element.
7085     SDValue Vec = N->getOperand(0);
7086     SDValue Idx = N->getOperand(1);
7087 
7088     // The vector type hasn't been legalized yet so we can't issue target
7089     // specific nodes if it needs legalization.
7090     // FIXME: We would manually legalize if it's important.
7091     if (!isTypeLegal(Vec.getValueType()))
7092       return;
7093 
7094     MVT VecVT = Vec.getSimpleValueType();
7095 
7096     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
7097            VecVT.getVectorElementType() == MVT::i64 &&
7098            "Unexpected EXTRACT_VECTOR_ELT legalization");
7099 
7100     // If this is a fixed vector, we need to convert it to a scalable vector.
7101     MVT ContainerVT = VecVT;
7102     if (VecVT.isFixedLengthVector()) {
7103       ContainerVT = getContainerForFixedLengthVector(VecVT);
7104       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
7105     }
7106 
7107     MVT XLenVT = Subtarget.getXLenVT();
7108 
7109     // Use a VL of 1 to avoid processing more elements than we need.
7110     SDValue VL = DAG.getConstant(1, DL, XLenVT);
7111     SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
7112 
7113     // Unless the index is known to be 0, we must slide the vector down to get
7114     // the desired element into index 0.
7115     if (!isNullConstant(Idx)) {
7116       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
7117                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
7118     }
7119 
7120     // Extract the lower XLEN bits of the correct vector element.
7121     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7122 
7123     // To extract the upper XLEN bits of the vector element, shift the first
7124     // element right by 32 bits and re-extract the lower XLEN bits.
7125     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
7126                                      DAG.getUNDEF(ContainerVT),
7127                                      DAG.getConstant(32, DL, XLenVT), VL);
7128     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
7129                                  ThirtyTwoV, Mask, VL);
7130 
7131     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7132 
7133     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7134     break;
7135   }
7136   case ISD::INTRINSIC_WO_CHAIN: {
7137     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
7138     switch (IntNo) {
7139     default:
7140       llvm_unreachable(
7141           "Don't know how to custom type legalize this intrinsic!");
7142     case Intrinsic::riscv_grev:
7143     case Intrinsic::riscv_gorc: {
7144       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7145              "Unexpected custom legalisation");
7146       SDValue NewOp1 =
7147           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7148       SDValue NewOp2 =
7149           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7150       unsigned Opc =
7151           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
7152       // If the control is a constant, promote the node by clearing any extra
7153       // bits bits in the control. isel will form greviw/gorciw if the result is
7154       // sign extended.
7155       if (isa<ConstantSDNode>(NewOp2)) {
7156         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7157                              DAG.getConstant(0x1f, DL, MVT::i64));
7158         Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
7159       }
7160       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7161       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7162       break;
7163     }
7164     case Intrinsic::riscv_bcompress:
7165     case Intrinsic::riscv_bdecompress:
7166     case Intrinsic::riscv_bfp:
7167     case Intrinsic::riscv_fsl:
7168     case Intrinsic::riscv_fsr: {
7169       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7170              "Unexpected custom legalisation");
7171       Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo));
7172       break;
7173     }
7174     case Intrinsic::riscv_orc_b: {
7175       // Lower to the GORCI encoding for orc.b with the operand extended.
7176       SDValue NewOp =
7177           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7178       SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp,
7179                                 DAG.getConstant(7, DL, MVT::i64));
7180       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7181       return;
7182     }
7183     case Intrinsic::riscv_shfl:
7184     case Intrinsic::riscv_unshfl: {
7185       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7186              "Unexpected custom legalisation");
7187       SDValue NewOp1 =
7188           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7189       SDValue NewOp2 =
7190           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7191       unsigned Opc =
7192           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
7193       // There is no (UN)SHFLIW. If the control word is a constant, we can use
7194       // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half
7195       // will be shuffled the same way as the lower 32 bit half, but the two
7196       // halves won't cross.
7197       if (isa<ConstantSDNode>(NewOp2)) {
7198         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7199                              DAG.getConstant(0xf, DL, MVT::i64));
7200         Opc =
7201             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
7202       }
7203       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7204       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7205       break;
7206     }
7207     case Intrinsic::riscv_vmv_x_s: {
7208       EVT VT = N->getValueType(0);
7209       MVT XLenVT = Subtarget.getXLenVT();
7210       if (VT.bitsLT(XLenVT)) {
7211         // Simple case just extract using vmv.x.s and truncate.
7212         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
7213                                       Subtarget.getXLenVT(), N->getOperand(1));
7214         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
7215         return;
7216       }
7217 
7218       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
7219              "Unexpected custom legalization");
7220 
7221       // We need to do the move in two steps.
7222       SDValue Vec = N->getOperand(1);
7223       MVT VecVT = Vec.getSimpleValueType();
7224 
7225       // First extract the lower XLEN bits of the element.
7226       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7227 
7228       // To extract the upper XLEN bits of the vector element, shift the first
7229       // element right by 32 bits and re-extract the lower XLEN bits.
7230       SDValue VL = DAG.getConstant(1, DL, XLenVT);
7231       SDValue Mask = getAllOnesMask(VecVT, VL, DL, DAG);
7232 
7233       SDValue ThirtyTwoV =
7234           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
7235                       DAG.getConstant(32, DL, XLenVT), VL);
7236       SDValue LShr32 =
7237           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
7238       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7239 
7240       Results.push_back(
7241           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7242       break;
7243     }
7244     }
7245     break;
7246   }
7247   case ISD::VECREDUCE_ADD:
7248   case ISD::VECREDUCE_AND:
7249   case ISD::VECREDUCE_OR:
7250   case ISD::VECREDUCE_XOR:
7251   case ISD::VECREDUCE_SMAX:
7252   case ISD::VECREDUCE_UMAX:
7253   case ISD::VECREDUCE_SMIN:
7254   case ISD::VECREDUCE_UMIN:
7255     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
7256       Results.push_back(V);
7257     break;
7258   case ISD::VP_REDUCE_ADD:
7259   case ISD::VP_REDUCE_AND:
7260   case ISD::VP_REDUCE_OR:
7261   case ISD::VP_REDUCE_XOR:
7262   case ISD::VP_REDUCE_SMAX:
7263   case ISD::VP_REDUCE_UMAX:
7264   case ISD::VP_REDUCE_SMIN:
7265   case ISD::VP_REDUCE_UMIN:
7266     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
7267       Results.push_back(V);
7268     break;
7269   case ISD::FLT_ROUNDS_: {
7270     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
7271     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
7272     Results.push_back(Res.getValue(0));
7273     Results.push_back(Res.getValue(1));
7274     break;
7275   }
7276   }
7277 }
7278 
7279 // A structure to hold one of the bit-manipulation patterns below. Together, a
7280 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
7281 //   (or (and (shl x, 1), 0xAAAAAAAA),
7282 //       (and (srl x, 1), 0x55555555))
7283 struct RISCVBitmanipPat {
7284   SDValue Op;
7285   unsigned ShAmt;
7286   bool IsSHL;
7287 
7288   bool formsPairWith(const RISCVBitmanipPat &Other) const {
7289     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
7290   }
7291 };
7292 
7293 // Matches patterns of the form
7294 //   (and (shl x, C2), (C1 << C2))
7295 //   (and (srl x, C2), C1)
7296 //   (shl (and x, C1), C2)
7297 //   (srl (and x, (C1 << C2)), C2)
7298 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
7299 // The expected masks for each shift amount are specified in BitmanipMasks where
7300 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
7301 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
7302 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
7303 // XLen is 64.
7304 static Optional<RISCVBitmanipPat>
7305 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
7306   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
7307          "Unexpected number of masks");
7308   Optional<uint64_t> Mask;
7309   // Optionally consume a mask around the shift operation.
7310   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
7311     Mask = Op.getConstantOperandVal(1);
7312     Op = Op.getOperand(0);
7313   }
7314   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
7315     return None;
7316   bool IsSHL = Op.getOpcode() == ISD::SHL;
7317 
7318   if (!isa<ConstantSDNode>(Op.getOperand(1)))
7319     return None;
7320   uint64_t ShAmt = Op.getConstantOperandVal(1);
7321 
7322   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7323   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
7324     return None;
7325   // If we don't have enough masks for 64 bit, then we must be trying to
7326   // match SHFL so we're only allowed to shift 1/4 of the width.
7327   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
7328     return None;
7329 
7330   SDValue Src = Op.getOperand(0);
7331 
7332   // The expected mask is shifted left when the AND is found around SHL
7333   // patterns.
7334   //   ((x >> 1) & 0x55555555)
7335   //   ((x << 1) & 0xAAAAAAAA)
7336   bool SHLExpMask = IsSHL;
7337 
7338   if (!Mask) {
7339     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
7340     // the mask is all ones: consume that now.
7341     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
7342       Mask = Src.getConstantOperandVal(1);
7343       Src = Src.getOperand(0);
7344       // The expected mask is now in fact shifted left for SRL, so reverse the
7345       // decision.
7346       //   ((x & 0xAAAAAAAA) >> 1)
7347       //   ((x & 0x55555555) << 1)
7348       SHLExpMask = !SHLExpMask;
7349     } else {
7350       // Use a default shifted mask of all-ones if there's no AND, truncated
7351       // down to the expected width. This simplifies the logic later on.
7352       Mask = maskTrailingOnes<uint64_t>(Width);
7353       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
7354     }
7355   }
7356 
7357   unsigned MaskIdx = Log2_32(ShAmt);
7358   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7359 
7360   if (SHLExpMask)
7361     ExpMask <<= ShAmt;
7362 
7363   if (Mask != ExpMask)
7364     return None;
7365 
7366   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
7367 }
7368 
7369 // Matches any of the following bit-manipulation patterns:
7370 //   (and (shl x, 1), (0x55555555 << 1))
7371 //   (and (srl x, 1), 0x55555555)
7372 //   (shl (and x, 0x55555555), 1)
7373 //   (srl (and x, (0x55555555 << 1)), 1)
7374 // where the shift amount and mask may vary thus:
7375 //   [1]  = 0x55555555 / 0xAAAAAAAA
7376 //   [2]  = 0x33333333 / 0xCCCCCCCC
7377 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
7378 //   [8]  = 0x00FF00FF / 0xFF00FF00
7379 //   [16] = 0x0000FFFF / 0xFFFFFFFF
7380 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
7381 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
7382   // These are the unshifted masks which we use to match bit-manipulation
7383   // patterns. They may be shifted left in certain circumstances.
7384   static const uint64_t BitmanipMasks[] = {
7385       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
7386       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
7387 
7388   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7389 }
7390 
7391 // Try to fold (<bop> x, (reduction.<bop> vec, start))
7392 static SDValue combineBinOpToReduce(SDNode *N, SelectionDAG &DAG) {
7393   auto BinOpToRVVReduce = [](unsigned Opc) {
7394     switch (Opc) {
7395     default:
7396       llvm_unreachable("Unhandled binary to transfrom reduction");
7397     case ISD::ADD:
7398       return RISCVISD::VECREDUCE_ADD_VL;
7399     case ISD::UMAX:
7400       return RISCVISD::VECREDUCE_UMAX_VL;
7401     case ISD::SMAX:
7402       return RISCVISD::VECREDUCE_SMAX_VL;
7403     case ISD::UMIN:
7404       return RISCVISD::VECREDUCE_UMIN_VL;
7405     case ISD::SMIN:
7406       return RISCVISD::VECREDUCE_SMIN_VL;
7407     case ISD::AND:
7408       return RISCVISD::VECREDUCE_AND_VL;
7409     case ISD::OR:
7410       return RISCVISD::VECREDUCE_OR_VL;
7411     case ISD::XOR:
7412       return RISCVISD::VECREDUCE_XOR_VL;
7413     case ISD::FADD:
7414       return RISCVISD::VECREDUCE_FADD_VL;
7415     case ISD::FMAXNUM:
7416       return RISCVISD::VECREDUCE_FMAX_VL;
7417     case ISD::FMINNUM:
7418       return RISCVISD::VECREDUCE_FMIN_VL;
7419     }
7420   };
7421 
7422   auto IsReduction = [&BinOpToRVVReduce](SDValue V, unsigned Opc) {
7423     return V.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7424            isNullConstant(V.getOperand(1)) &&
7425            V.getOperand(0).getOpcode() == BinOpToRVVReduce(Opc);
7426   };
7427 
7428   unsigned Opc = N->getOpcode();
7429   unsigned ReduceIdx;
7430   if (IsReduction(N->getOperand(0), Opc))
7431     ReduceIdx = 0;
7432   else if (IsReduction(N->getOperand(1), Opc))
7433     ReduceIdx = 1;
7434   else
7435     return SDValue();
7436 
7437   // Skip if FADD disallows reassociation but the combiner needs.
7438   if (Opc == ISD::FADD && !N->getFlags().hasAllowReassociation())
7439     return SDValue();
7440 
7441   SDValue Extract = N->getOperand(ReduceIdx);
7442   SDValue Reduce = Extract.getOperand(0);
7443   if (!Reduce.hasOneUse())
7444     return SDValue();
7445 
7446   SDValue ScalarV = Reduce.getOperand(2);
7447 
7448   // Make sure that ScalarV is a splat with VL=1.
7449   if (ScalarV.getOpcode() != RISCVISD::VFMV_S_F_VL &&
7450       ScalarV.getOpcode() != RISCVISD::VMV_S_X_VL &&
7451       ScalarV.getOpcode() != RISCVISD::VMV_V_X_VL)
7452     return SDValue();
7453 
7454   if (!isOneConstant(ScalarV.getOperand(2)))
7455     return SDValue();
7456 
7457   // TODO: Deal with value other than neutral element.
7458   auto IsRVVNeutralElement = [Opc, &DAG](SDNode *N, SDValue V) {
7459     if (Opc == ISD::FADD && N->getFlags().hasNoSignedZeros() &&
7460         isNullFPConstant(V))
7461       return true;
7462     return DAG.getNeutralElement(Opc, SDLoc(V), V.getSimpleValueType(),
7463                                  N->getFlags()) == V;
7464   };
7465 
7466   // Check the scalar of ScalarV is neutral element
7467   if (!IsRVVNeutralElement(N, ScalarV.getOperand(1)))
7468     return SDValue();
7469 
7470   if (!ScalarV.hasOneUse())
7471     return SDValue();
7472 
7473   EVT SplatVT = ScalarV.getValueType();
7474   SDValue NewStart = N->getOperand(1 - ReduceIdx);
7475   unsigned SplatOpc = RISCVISD::VFMV_S_F_VL;
7476   if (SplatVT.isInteger()) {
7477     auto *C = dyn_cast<ConstantSDNode>(NewStart.getNode());
7478     if (!C || C->isZero() || !isInt<5>(C->getSExtValue()))
7479       SplatOpc = RISCVISD::VMV_S_X_VL;
7480     else
7481       SplatOpc = RISCVISD::VMV_V_X_VL;
7482   }
7483 
7484   SDValue NewScalarV =
7485       DAG.getNode(SplatOpc, SDLoc(N), SplatVT, ScalarV.getOperand(0), NewStart,
7486                   ScalarV.getOperand(2));
7487   SDValue NewReduce =
7488       DAG.getNode(Reduce.getOpcode(), SDLoc(Reduce), Reduce.getValueType(),
7489                   Reduce.getOperand(0), Reduce.getOperand(1), NewScalarV,
7490                   Reduce.getOperand(3), Reduce.getOperand(4));
7491   return DAG.getNode(Extract.getOpcode(), SDLoc(Extract),
7492                      Extract.getValueType(), NewReduce, Extract.getOperand(1));
7493 }
7494 
7495 // Match the following pattern as a GREVI(W) operation
7496 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
7497 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
7498                                const RISCVSubtarget &Subtarget) {
7499   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7500   EVT VT = Op.getValueType();
7501 
7502   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7503     auto LHS = matchGREVIPat(Op.getOperand(0));
7504     auto RHS = matchGREVIPat(Op.getOperand(1));
7505     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
7506       SDLoc DL(Op);
7507       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
7508                          DAG.getConstant(LHS->ShAmt, DL, VT));
7509     }
7510   }
7511   return SDValue();
7512 }
7513 
7514 // Matches any the following pattern as a GORCI(W) operation
7515 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
7516 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
7517 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
7518 // Note that with the variant of 3.,
7519 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
7520 // the inner pattern will first be matched as GREVI and then the outer
7521 // pattern will be matched to GORC via the first rule above.
7522 // 4.  (or (rotl/rotr x, bitwidth/2), x)
7523 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
7524                                const RISCVSubtarget &Subtarget) {
7525   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7526   EVT VT = Op.getValueType();
7527 
7528   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7529     SDLoc DL(Op);
7530     SDValue Op0 = Op.getOperand(0);
7531     SDValue Op1 = Op.getOperand(1);
7532 
7533     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
7534       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
7535           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
7536           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
7537         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
7538       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
7539       if ((Reverse.getOpcode() == ISD::ROTL ||
7540            Reverse.getOpcode() == ISD::ROTR) &&
7541           Reverse.getOperand(0) == X &&
7542           isa<ConstantSDNode>(Reverse.getOperand(1))) {
7543         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
7544         if (RotAmt == (VT.getSizeInBits() / 2))
7545           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
7546                              DAG.getConstant(RotAmt, DL, VT));
7547       }
7548       return SDValue();
7549     };
7550 
7551     // Check for either commutable permutation of (or (GREVI x, shamt), x)
7552     if (SDValue V = MatchOROfReverse(Op0, Op1))
7553       return V;
7554     if (SDValue V = MatchOROfReverse(Op1, Op0))
7555       return V;
7556 
7557     // OR is commutable so canonicalize its OR operand to the left
7558     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
7559       std::swap(Op0, Op1);
7560     if (Op0.getOpcode() != ISD::OR)
7561       return SDValue();
7562     SDValue OrOp0 = Op0.getOperand(0);
7563     SDValue OrOp1 = Op0.getOperand(1);
7564     auto LHS = matchGREVIPat(OrOp0);
7565     // OR is commutable so swap the operands and try again: x might have been
7566     // on the left
7567     if (!LHS) {
7568       std::swap(OrOp0, OrOp1);
7569       LHS = matchGREVIPat(OrOp0);
7570     }
7571     auto RHS = matchGREVIPat(Op1);
7572     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
7573       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
7574                          DAG.getConstant(LHS->ShAmt, DL, VT));
7575     }
7576   }
7577   return SDValue();
7578 }
7579 
7580 // Matches any of the following bit-manipulation patterns:
7581 //   (and (shl x, 1), (0x22222222 << 1))
7582 //   (and (srl x, 1), 0x22222222)
7583 //   (shl (and x, 0x22222222), 1)
7584 //   (srl (and x, (0x22222222 << 1)), 1)
7585 // where the shift amount and mask may vary thus:
7586 //   [1]  = 0x22222222 / 0x44444444
7587 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
7588 //   [4]  = 0x00F000F0 / 0x0F000F00
7589 //   [8]  = 0x0000FF00 / 0x00FF0000
7590 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
7591 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
7592   // These are the unshifted masks which we use to match bit-manipulation
7593   // patterns. They may be shifted left in certain circumstances.
7594   static const uint64_t BitmanipMasks[] = {
7595       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
7596       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
7597 
7598   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7599 }
7600 
7601 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
7602 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
7603                                const RISCVSubtarget &Subtarget) {
7604   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7605   EVT VT = Op.getValueType();
7606 
7607   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
7608     return SDValue();
7609 
7610   SDValue Op0 = Op.getOperand(0);
7611   SDValue Op1 = Op.getOperand(1);
7612 
7613   // Or is commutable so canonicalize the second OR to the LHS.
7614   if (Op0.getOpcode() != ISD::OR)
7615     std::swap(Op0, Op1);
7616   if (Op0.getOpcode() != ISD::OR)
7617     return SDValue();
7618 
7619   // We found an inner OR, so our operands are the operands of the inner OR
7620   // and the other operand of the outer OR.
7621   SDValue A = Op0.getOperand(0);
7622   SDValue B = Op0.getOperand(1);
7623   SDValue C = Op1;
7624 
7625   auto Match1 = matchSHFLPat(A);
7626   auto Match2 = matchSHFLPat(B);
7627 
7628   // If neither matched, we failed.
7629   if (!Match1 && !Match2)
7630     return SDValue();
7631 
7632   // We had at least one match. if one failed, try the remaining C operand.
7633   if (!Match1) {
7634     std::swap(A, C);
7635     Match1 = matchSHFLPat(A);
7636     if (!Match1)
7637       return SDValue();
7638   } else if (!Match2) {
7639     std::swap(B, C);
7640     Match2 = matchSHFLPat(B);
7641     if (!Match2)
7642       return SDValue();
7643   }
7644   assert(Match1 && Match2);
7645 
7646   // Make sure our matches pair up.
7647   if (!Match1->formsPairWith(*Match2))
7648     return SDValue();
7649 
7650   // All the remains is to make sure C is an AND with the same input, that masks
7651   // out the bits that are being shuffled.
7652   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
7653       C.getOperand(0) != Match1->Op)
7654     return SDValue();
7655 
7656   uint64_t Mask = C.getConstantOperandVal(1);
7657 
7658   static const uint64_t BitmanipMasks[] = {
7659       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
7660       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
7661   };
7662 
7663   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7664   unsigned MaskIdx = Log2_32(Match1->ShAmt);
7665   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7666 
7667   if (Mask != ExpMask)
7668     return SDValue();
7669 
7670   SDLoc DL(Op);
7671   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
7672                      DAG.getConstant(Match1->ShAmt, DL, VT));
7673 }
7674 
7675 // Optimize (add (shl x, c0), (shl y, c1)) ->
7676 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
7677 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
7678                                   const RISCVSubtarget &Subtarget) {
7679   // Perform this optimization only in the zba extension.
7680   if (!Subtarget.hasStdExtZba())
7681     return SDValue();
7682 
7683   // Skip for vector types and larger types.
7684   EVT VT = N->getValueType(0);
7685   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7686     return SDValue();
7687 
7688   // The two operand nodes must be SHL and have no other use.
7689   SDValue N0 = N->getOperand(0);
7690   SDValue N1 = N->getOperand(1);
7691   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
7692       !N0->hasOneUse() || !N1->hasOneUse())
7693     return SDValue();
7694 
7695   // Check c0 and c1.
7696   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7697   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
7698   if (!N0C || !N1C)
7699     return SDValue();
7700   int64_t C0 = N0C->getSExtValue();
7701   int64_t C1 = N1C->getSExtValue();
7702   if (C0 <= 0 || C1 <= 0)
7703     return SDValue();
7704 
7705   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
7706   int64_t Bits = std::min(C0, C1);
7707   int64_t Diff = std::abs(C0 - C1);
7708   if (Diff != 1 && Diff != 2 && Diff != 3)
7709     return SDValue();
7710 
7711   // Build nodes.
7712   SDLoc DL(N);
7713   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
7714   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
7715   SDValue NA0 =
7716       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
7717   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
7718   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
7719 }
7720 
7721 // Combine
7722 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7723 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7724 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7725 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7726 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7727 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7728 // The grev patterns represents BSWAP.
7729 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB
7730 // off the grev.
7731 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG,
7732                                           const RISCVSubtarget &Subtarget) {
7733   bool IsWInstruction =
7734       N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW;
7735   assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL ||
7736           IsWInstruction) &&
7737          "Unexpected opcode!");
7738   SDValue Src = N->getOperand(0);
7739   EVT VT = N->getValueType(0);
7740   SDLoc DL(N);
7741 
7742   if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV)
7743     return SDValue();
7744 
7745   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7746       !isa<ConstantSDNode>(Src.getOperand(1)))
7747     return SDValue();
7748 
7749   unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits();
7750   assert(isPowerOf2_32(BitWidth) && "Expected a power of 2");
7751 
7752   // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for
7753   // RORW/ROLW. And the grev should be the encoding for bswap for this width.
7754   unsigned ShAmt1 = N->getConstantOperandVal(1);
7755   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7756   if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8))
7757     return SDValue();
7758 
7759   Src = Src.getOperand(0);
7760 
7761   // Toggle bit the MSB of the shift.
7762   unsigned CombinedShAmt = ShAmt1 ^ ShAmt2;
7763   if (CombinedShAmt == 0)
7764     return Src;
7765 
7766   SDValue Res = DAG.getNode(
7767       RISCVISD::GREV, DL, VT, Src,
7768       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7769   if (!IsWInstruction)
7770     return Res;
7771 
7772   // Sign extend the result to match the behavior of the rotate. This will be
7773   // selected to GREVIW in isel.
7774   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res,
7775                      DAG.getValueType(MVT::i32));
7776 }
7777 
7778 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
7779 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
7780 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
7781 // not undo itself, but they are redundant.
7782 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
7783   bool IsGORC = N->getOpcode() == RISCVISD::GORC;
7784   assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode");
7785   SDValue Src = N->getOperand(0);
7786 
7787   if (Src.getOpcode() != N->getOpcode())
7788     return SDValue();
7789 
7790   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7791       !isa<ConstantSDNode>(Src.getOperand(1)))
7792     return SDValue();
7793 
7794   unsigned ShAmt1 = N->getConstantOperandVal(1);
7795   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7796   Src = Src.getOperand(0);
7797 
7798   unsigned CombinedShAmt;
7799   if (IsGORC)
7800     CombinedShAmt = ShAmt1 | ShAmt2;
7801   else
7802     CombinedShAmt = ShAmt1 ^ ShAmt2;
7803 
7804   if (CombinedShAmt == 0)
7805     return Src;
7806 
7807   SDLoc DL(N);
7808   return DAG.getNode(
7809       N->getOpcode(), DL, N->getValueType(0), Src,
7810       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7811 }
7812 
7813 // Combine a constant select operand into its use:
7814 //
7815 // (and (select cond, -1, c), x)
7816 //   -> (select cond, x, (and x, c))  [AllOnes=1]
7817 // (or  (select cond, 0, c), x)
7818 //   -> (select cond, x, (or x, c))  [AllOnes=0]
7819 // (xor (select cond, 0, c), x)
7820 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
7821 // (add (select cond, 0, c), x)
7822 //   -> (select cond, x, (add x, c))  [AllOnes=0]
7823 // (sub x, (select cond, 0, c))
7824 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
7825 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7826                                    SelectionDAG &DAG, bool AllOnes) {
7827   EVT VT = N->getValueType(0);
7828 
7829   // Skip vectors.
7830   if (VT.isVector())
7831     return SDValue();
7832 
7833   if ((Slct.getOpcode() != ISD::SELECT &&
7834        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
7835       !Slct.hasOneUse())
7836     return SDValue();
7837 
7838   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
7839     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
7840   };
7841 
7842   bool SwapSelectOps;
7843   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
7844   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
7845   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
7846   SDValue NonConstantVal;
7847   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
7848     SwapSelectOps = false;
7849     NonConstantVal = FalseVal;
7850   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
7851     SwapSelectOps = true;
7852     NonConstantVal = TrueVal;
7853   } else
7854     return SDValue();
7855 
7856   // Slct is now know to be the desired identity constant when CC is true.
7857   TrueVal = OtherOp;
7858   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
7859   // Unless SwapSelectOps says the condition should be false.
7860   if (SwapSelectOps)
7861     std::swap(TrueVal, FalseVal);
7862 
7863   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
7864     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
7865                        {Slct.getOperand(0), Slct.getOperand(1),
7866                         Slct.getOperand(2), TrueVal, FalseVal});
7867 
7868   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
7869                      {Slct.getOperand(0), TrueVal, FalseVal});
7870 }
7871 
7872 // Attempt combineSelectAndUse on each operand of a commutative operator N.
7873 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
7874                                               bool AllOnes) {
7875   SDValue N0 = N->getOperand(0);
7876   SDValue N1 = N->getOperand(1);
7877   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
7878     return Result;
7879   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
7880     return Result;
7881   return SDValue();
7882 }
7883 
7884 // Transform (add (mul x, c0), c1) ->
7885 //           (add (mul (add x, c1/c0), c0), c1%c0).
7886 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
7887 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
7888 // to an infinite loop in DAGCombine if transformed.
7889 // Or transform (add (mul x, c0), c1) ->
7890 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
7891 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
7892 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
7893 // lead to an infinite loop in DAGCombine if transformed.
7894 // Or transform (add (mul x, c0), c1) ->
7895 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
7896 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
7897 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
7898 // lead to an infinite loop in DAGCombine if transformed.
7899 // Or transform (add (mul x, c0), c1) ->
7900 //              (mul (add x, c1/c0), c0).
7901 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
7902 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
7903                                      const RISCVSubtarget &Subtarget) {
7904   // Skip for vector types and larger types.
7905   EVT VT = N->getValueType(0);
7906   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7907     return SDValue();
7908   // The first operand node must be a MUL and has no other use.
7909   SDValue N0 = N->getOperand(0);
7910   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
7911     return SDValue();
7912   // Check if c0 and c1 match above conditions.
7913   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7914   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
7915   if (!N0C || !N1C)
7916     return SDValue();
7917   // If N0C has multiple uses it's possible one of the cases in
7918   // DAGCombiner::isMulAddWithConstProfitable will be true, which would result
7919   // in an infinite loop.
7920   if (!N0C->hasOneUse())
7921     return SDValue();
7922   int64_t C0 = N0C->getSExtValue();
7923   int64_t C1 = N1C->getSExtValue();
7924   int64_t CA, CB;
7925   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
7926     return SDValue();
7927   // Search for proper CA (non-zero) and CB that both are simm12.
7928   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
7929       !isInt<12>(C0 * (C1 / C0))) {
7930     CA = C1 / C0;
7931     CB = C1 % C0;
7932   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
7933              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
7934     CA = C1 / C0 + 1;
7935     CB = C1 % C0 - C0;
7936   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
7937              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
7938     CA = C1 / C0 - 1;
7939     CB = C1 % C0 + C0;
7940   } else
7941     return SDValue();
7942   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
7943   SDLoc DL(N);
7944   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
7945                              DAG.getConstant(CA, DL, VT));
7946   SDValue New1 =
7947       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
7948   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
7949 }
7950 
7951 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
7952                                  const RISCVSubtarget &Subtarget) {
7953   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
7954     return V;
7955   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
7956     return V;
7957   if (SDValue V = combineBinOpToReduce(N, DAG))
7958     return V;
7959   // fold (add (select lhs, rhs, cc, 0, y), x) ->
7960   //      (select lhs, rhs, cc, x, (add x, y))
7961   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7962 }
7963 
7964 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
7965   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
7966   //      (select lhs, rhs, cc, x, (sub x, y))
7967   SDValue N0 = N->getOperand(0);
7968   SDValue N1 = N->getOperand(1);
7969   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
7970 }
7971 
7972 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
7973                                  const RISCVSubtarget &Subtarget) {
7974   SDValue N0 = N->getOperand(0);
7975   // Pre-promote (i32 (and (srl X, Y), 1)) on RV64 with Zbs without zero
7976   // extending X. This is safe since we only need the LSB after the shift and
7977   // shift amounts larger than 31 would produce poison. If we wait until
7978   // type legalization, we'll create RISCVISD::SRLW and we can't recover it
7979   // to use a BEXT instruction.
7980   if (Subtarget.is64Bit() && Subtarget.hasStdExtZbs() &&
7981       N->getValueType(0) == MVT::i32 && isOneConstant(N->getOperand(1)) &&
7982       N0.getOpcode() == ISD::SRL && !isa<ConstantSDNode>(N0.getOperand(1)) &&
7983       N0.hasOneUse()) {
7984     SDLoc DL(N);
7985     SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0));
7986     SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1));
7987     SDValue Srl = DAG.getNode(ISD::SRL, DL, MVT::i64, Op0, Op1);
7988     SDValue And = DAG.getNode(ISD::AND, DL, MVT::i64, Srl,
7989                               DAG.getConstant(1, DL, MVT::i64));
7990     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, And);
7991   }
7992 
7993   if (SDValue V = combineBinOpToReduce(N, DAG))
7994     return V;
7995 
7996   // fold (and (select lhs, rhs, cc, -1, y), x) ->
7997   //      (select lhs, rhs, cc, x, (and x, y))
7998   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
7999 }
8000 
8001 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
8002                                 const RISCVSubtarget &Subtarget) {
8003   if (Subtarget.hasStdExtZbp()) {
8004     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
8005       return GREV;
8006     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
8007       return GORC;
8008     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
8009       return SHFL;
8010   }
8011 
8012   if (SDValue V = combineBinOpToReduce(N, DAG))
8013     return V;
8014   // fold (or (select cond, 0, y), x) ->
8015   //      (select cond, x, (or x, y))
8016   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
8017 }
8018 
8019 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
8020   SDValue N0 = N->getOperand(0);
8021   SDValue N1 = N->getOperand(1);
8022 
8023   // fold (xor (sllw 1, x), -1) -> (rolw ~1, x)
8024   // NOTE: Assumes ROL being legal means ROLW is legal.
8025   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8026   if (N0.getOpcode() == RISCVISD::SLLW &&
8027       isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0)) &&
8028       TLI.isOperationLegal(ISD::ROTL, MVT::i64)) {
8029     SDLoc DL(N);
8030     return DAG.getNode(RISCVISD::ROLW, DL, MVT::i64,
8031                        DAG.getConstant(~1, DL, MVT::i64), N0.getOperand(1));
8032   }
8033 
8034   if (SDValue V = combineBinOpToReduce(N, DAG))
8035     return V;
8036   // fold (xor (select cond, 0, y), x) ->
8037   //      (select cond, x, (xor x, y))
8038   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
8039 }
8040 
8041 static SDValue
8042 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
8043                                 const RISCVSubtarget &Subtarget) {
8044   SDValue Src = N->getOperand(0);
8045   EVT VT = N->getValueType(0);
8046 
8047   // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X)
8048   if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8049       cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16))
8050     return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT,
8051                        Src.getOperand(0));
8052 
8053   // Fold (i64 (sext_inreg (abs X), i32)) ->
8054   // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits.
8055   // The (sext_inreg (neg X), i32) will be selected to negw by isel. This
8056   // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user
8057   // of the (i32 (abs X)) is a sext or setcc or something else that causes type
8058   // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have
8059   // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg
8060   // may get combined into an earlier operation so we need to use
8061   // ComputeNumSignBits.
8062   // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for
8063   // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so
8064   // we can't assume that X has 33 sign bits. We must check.
8065   if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() &&
8066       Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 &&
8067       cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 &&
8068       DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) {
8069     SDLoc DL(N);
8070     SDValue Freeze = DAG.getFreeze(Src.getOperand(0));
8071     SDValue Neg =
8072         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze);
8073     Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg,
8074                       DAG.getValueType(MVT::i32));
8075     return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg);
8076   }
8077 
8078   return SDValue();
8079 }
8080 
8081 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to
8082 // vwadd(u).vv/vx or vwsub(u).vv/vx.
8083 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG,
8084                                              bool Commute = false) {
8085   assert((N->getOpcode() == RISCVISD::ADD_VL ||
8086           N->getOpcode() == RISCVISD::SUB_VL) &&
8087          "Unexpected opcode");
8088   bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL;
8089   SDValue Op0 = N->getOperand(0);
8090   SDValue Op1 = N->getOperand(1);
8091   if (Commute)
8092     std::swap(Op0, Op1);
8093 
8094   MVT VT = N->getSimpleValueType(0);
8095 
8096   // Determine the narrow size for a widening add/sub.
8097   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
8098   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
8099                                   VT.getVectorElementCount());
8100 
8101   SDValue Mask = N->getOperand(2);
8102   SDValue VL = N->getOperand(3);
8103 
8104   SDLoc DL(N);
8105 
8106   // If the RHS is a sext or zext, we can form a widening op.
8107   if ((Op1.getOpcode() == RISCVISD::VZEXT_VL ||
8108        Op1.getOpcode() == RISCVISD::VSEXT_VL) &&
8109       Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) {
8110     unsigned ExtOpc = Op1.getOpcode();
8111     Op1 = Op1.getOperand(0);
8112     // Re-introduce narrower extends if needed.
8113     if (Op1.getValueType() != NarrowVT)
8114       Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
8115 
8116     unsigned WOpc;
8117     if (ExtOpc == RISCVISD::VSEXT_VL)
8118       WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL;
8119     else
8120       WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL;
8121 
8122     return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL);
8123   }
8124 
8125   // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar
8126   // sext/zext?
8127 
8128   return SDValue();
8129 }
8130 
8131 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or
8132 // vwsub(u).vv/vx.
8133 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) {
8134   SDValue Op0 = N->getOperand(0);
8135   SDValue Op1 = N->getOperand(1);
8136   SDValue Mask = N->getOperand(2);
8137   SDValue VL = N->getOperand(3);
8138 
8139   MVT VT = N->getSimpleValueType(0);
8140   MVT NarrowVT = Op1.getSimpleValueType();
8141   unsigned NarrowSize = NarrowVT.getScalarSizeInBits();
8142 
8143   unsigned VOpc;
8144   switch (N->getOpcode()) {
8145   default: llvm_unreachable("Unexpected opcode");
8146   case RISCVISD::VWADD_W_VL:  VOpc = RISCVISD::VWADD_VL;  break;
8147   case RISCVISD::VWSUB_W_VL:  VOpc = RISCVISD::VWSUB_VL;  break;
8148   case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break;
8149   case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break;
8150   }
8151 
8152   bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL ||
8153                   N->getOpcode() == RISCVISD::VWSUB_W_VL;
8154 
8155   SDLoc DL(N);
8156 
8157   // If the LHS is a sext or zext, we can narrow this op to the same size as
8158   // the RHS.
8159   if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) ||
8160        (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) &&
8161       Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) {
8162     unsigned ExtOpc = Op0.getOpcode();
8163     Op0 = Op0.getOperand(0);
8164     // Re-introduce narrower extends if needed.
8165     if (Op0.getValueType() != NarrowVT)
8166       Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
8167     return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL);
8168   }
8169 
8170   bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL ||
8171                N->getOpcode() == RISCVISD::VWADDU_W_VL;
8172 
8173   // Look for splats on the left hand side of a vwadd(u).wv. We might be able
8174   // to commute and use a vwadd(u).vx instead.
8175   if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL &&
8176       Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) {
8177     Op0 = Op0.getOperand(1);
8178 
8179     // See if have enough sign bits or zero bits in the scalar to use a
8180     // widening add/sub by splatting to smaller element size.
8181     unsigned EltBits = VT.getScalarSizeInBits();
8182     unsigned ScalarBits = Op0.getValueSizeInBits();
8183     // Make sure we're getting all element bits from the scalar register.
8184     // FIXME: Support implicit sign extension of vmv.v.x?
8185     if (ScalarBits < EltBits)
8186       return SDValue();
8187 
8188     if (IsSigned) {
8189       if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize))
8190         return SDValue();
8191     } else {
8192       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
8193       if (!DAG.MaskedValueIsZero(Op0, Mask))
8194         return SDValue();
8195     }
8196 
8197     Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
8198                       DAG.getUNDEF(NarrowVT), Op0, VL);
8199     return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL);
8200   }
8201 
8202   return SDValue();
8203 }
8204 
8205 // Try to form VWMUL, VWMULU or VWMULSU.
8206 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op.
8207 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG,
8208                                        bool Commute) {
8209   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
8210   SDValue Op0 = N->getOperand(0);
8211   SDValue Op1 = N->getOperand(1);
8212   if (Commute)
8213     std::swap(Op0, Op1);
8214 
8215   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
8216   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
8217   bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL;
8218   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
8219     return SDValue();
8220 
8221   SDValue Mask = N->getOperand(2);
8222   SDValue VL = N->getOperand(3);
8223 
8224   // Make sure the mask and VL match.
8225   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
8226     return SDValue();
8227 
8228   MVT VT = N->getSimpleValueType(0);
8229 
8230   // Determine the narrow size for a widening multiply.
8231   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
8232   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
8233                                   VT.getVectorElementCount());
8234 
8235   SDLoc DL(N);
8236 
8237   // See if the other operand is the same opcode.
8238   if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) {
8239     if (!Op1.hasOneUse())
8240       return SDValue();
8241 
8242     // Make sure the mask and VL match.
8243     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
8244       return SDValue();
8245 
8246     Op1 = Op1.getOperand(0);
8247   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
8248     // The operand is a splat of a scalar.
8249 
8250     // The pasthru must be undef for tail agnostic
8251     if (!Op1.getOperand(0).isUndef())
8252       return SDValue();
8253     // The VL must be the same.
8254     if (Op1.getOperand(2) != VL)
8255       return SDValue();
8256 
8257     // Get the scalar value.
8258     Op1 = Op1.getOperand(1);
8259 
8260     // See if have enough sign bits or zero bits in the scalar to use a
8261     // widening multiply by splatting to smaller element size.
8262     unsigned EltBits = VT.getScalarSizeInBits();
8263     unsigned ScalarBits = Op1.getValueSizeInBits();
8264     // Make sure we're getting all element bits from the scalar register.
8265     // FIXME: Support implicit sign extension of vmv.v.x?
8266     if (ScalarBits < EltBits)
8267       return SDValue();
8268 
8269     // If the LHS is a sign extend, try to use vwmul.
8270     if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) {
8271       // Can use vwmul.
8272     } else {
8273       // Otherwise try to use vwmulu or vwmulsu.
8274       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
8275       if (DAG.MaskedValueIsZero(Op1, Mask))
8276         IsVWMULSU = IsSignExt;
8277       else
8278         return SDValue();
8279     }
8280 
8281     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
8282                       DAG.getUNDEF(NarrowVT), Op1, VL);
8283   } else
8284     return SDValue();
8285 
8286   Op0 = Op0.getOperand(0);
8287 
8288   // Re-introduce narrower extends if needed.
8289   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
8290   if (Op0.getValueType() != NarrowVT)
8291     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
8292   // vwmulsu requires second operand to be zero extended.
8293   ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc;
8294   if (Op1.getValueType() != NarrowVT)
8295     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
8296 
8297   unsigned WMulOpc = RISCVISD::VWMULSU_VL;
8298   if (!IsVWMULSU)
8299     WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
8300   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
8301 }
8302 
8303 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) {
8304   switch (Op.getOpcode()) {
8305   case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE;
8306   case ISD::FTRUNC:     return RISCVFPRndMode::RTZ;
8307   case ISD::FFLOOR:     return RISCVFPRndMode::RDN;
8308   case ISD::FCEIL:      return RISCVFPRndMode::RUP;
8309   case ISD::FROUND:     return RISCVFPRndMode::RMM;
8310   }
8311 
8312   return RISCVFPRndMode::Invalid;
8313 }
8314 
8315 // Fold
8316 //   (fp_to_int (froundeven X)) -> fcvt X, rne
8317 //   (fp_to_int (ftrunc X))     -> fcvt X, rtz
8318 //   (fp_to_int (ffloor X))     -> fcvt X, rdn
8319 //   (fp_to_int (fceil X))      -> fcvt X, rup
8320 //   (fp_to_int (fround X))     -> fcvt X, rmm
8321 static SDValue performFP_TO_INTCombine(SDNode *N,
8322                                        TargetLowering::DAGCombinerInfo &DCI,
8323                                        const RISCVSubtarget &Subtarget) {
8324   SelectionDAG &DAG = DCI.DAG;
8325   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8326   MVT XLenVT = Subtarget.getXLenVT();
8327 
8328   // Only handle XLen or i32 types. Other types narrower than XLen will
8329   // eventually be legalized to XLenVT.
8330   EVT VT = N->getValueType(0);
8331   if (VT != MVT::i32 && VT != XLenVT)
8332     return SDValue();
8333 
8334   SDValue Src = N->getOperand(0);
8335 
8336   // Ensure the FP type is also legal.
8337   if (!TLI.isTypeLegal(Src.getValueType()))
8338     return SDValue();
8339 
8340   // Don't do this for f16 with Zfhmin and not Zfh.
8341   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8342     return SDValue();
8343 
8344   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8345   if (FRM == RISCVFPRndMode::Invalid)
8346     return SDValue();
8347 
8348   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
8349 
8350   unsigned Opc;
8351   if (VT == XLenVT)
8352     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8353   else
8354     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8355 
8356   SDLoc DL(N);
8357   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
8358                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8359   return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
8360 }
8361 
8362 // Fold
8363 //   (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
8364 //   (fp_to_int_sat (ftrunc X))     -> (select X == nan, 0, (fcvt X, rtz))
8365 //   (fp_to_int_sat (ffloor X))     -> (select X == nan, 0, (fcvt X, rdn))
8366 //   (fp_to_int_sat (fceil X))      -> (select X == nan, 0, (fcvt X, rup))
8367 //   (fp_to_int_sat (fround X))     -> (select X == nan, 0, (fcvt X, rmm))
8368 static SDValue performFP_TO_INT_SATCombine(SDNode *N,
8369                                        TargetLowering::DAGCombinerInfo &DCI,
8370                                        const RISCVSubtarget &Subtarget) {
8371   SelectionDAG &DAG = DCI.DAG;
8372   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8373   MVT XLenVT = Subtarget.getXLenVT();
8374 
8375   // Only handle XLen types. Other types narrower than XLen will eventually be
8376   // legalized to XLenVT.
8377   EVT DstVT = N->getValueType(0);
8378   if (DstVT != XLenVT)
8379     return SDValue();
8380 
8381   SDValue Src = N->getOperand(0);
8382 
8383   // Ensure the FP type is also legal.
8384   if (!TLI.isTypeLegal(Src.getValueType()))
8385     return SDValue();
8386 
8387   // Don't do this for f16 with Zfhmin and not Zfh.
8388   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8389     return SDValue();
8390 
8391   EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
8392 
8393   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8394   if (FRM == RISCVFPRndMode::Invalid)
8395     return SDValue();
8396 
8397   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
8398 
8399   unsigned Opc;
8400   if (SatVT == DstVT)
8401     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8402   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
8403     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8404   else
8405     return SDValue();
8406   // FIXME: Support other SatVTs by clamping before or after the conversion.
8407 
8408   Src = Src.getOperand(0);
8409 
8410   SDLoc DL(N);
8411   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
8412                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8413 
8414   // RISCV FP-to-int conversions saturate to the destination register size, but
8415   // don't produce 0 for nan.
8416   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
8417   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
8418 }
8419 
8420 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is
8421 // smaller than XLenVT.
8422 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG,
8423                                         const RISCVSubtarget &Subtarget) {
8424   assert(Subtarget.hasStdExtZbkb() && "Unexpected extension");
8425 
8426   SDValue Src = N->getOperand(0);
8427   if (Src.getOpcode() != ISD::BSWAP)
8428     return SDValue();
8429 
8430   EVT VT = N->getValueType(0);
8431   if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() ||
8432       !isPowerOf2_32(VT.getSizeInBits()))
8433     return SDValue();
8434 
8435   SDLoc DL(N);
8436   return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0),
8437                      DAG.getConstant(7, DL, VT));
8438 }
8439 
8440 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
8441                                                DAGCombinerInfo &DCI) const {
8442   SelectionDAG &DAG = DCI.DAG;
8443 
8444   // Helper to call SimplifyDemandedBits on an operand of N where only some low
8445   // bits are demanded. N will be added to the Worklist if it was not deleted.
8446   // Caller should return SDValue(N, 0) if this returns true.
8447   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
8448     SDValue Op = N->getOperand(OpNo);
8449     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
8450     if (!SimplifyDemandedBits(Op, Mask, DCI))
8451       return false;
8452 
8453     if (N->getOpcode() != ISD::DELETED_NODE)
8454       DCI.AddToWorklist(N);
8455     return true;
8456   };
8457 
8458   switch (N->getOpcode()) {
8459   default:
8460     break;
8461   case RISCVISD::SplitF64: {
8462     SDValue Op0 = N->getOperand(0);
8463     // If the input to SplitF64 is just BuildPairF64 then the operation is
8464     // redundant. Instead, use BuildPairF64's operands directly.
8465     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
8466       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
8467 
8468     if (Op0->isUndef()) {
8469       SDValue Lo = DAG.getUNDEF(MVT::i32);
8470       SDValue Hi = DAG.getUNDEF(MVT::i32);
8471       return DCI.CombineTo(N, Lo, Hi);
8472     }
8473 
8474     SDLoc DL(N);
8475 
8476     // It's cheaper to materialise two 32-bit integers than to load a double
8477     // from the constant pool and transfer it to integer registers through the
8478     // stack.
8479     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
8480       APInt V = C->getValueAPF().bitcastToAPInt();
8481       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
8482       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
8483       return DCI.CombineTo(N, Lo, Hi);
8484     }
8485 
8486     // This is a target-specific version of a DAGCombine performed in
8487     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8488     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8489     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8490     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8491         !Op0.getNode()->hasOneUse())
8492       break;
8493     SDValue NewSplitF64 =
8494         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
8495                     Op0.getOperand(0));
8496     SDValue Lo = NewSplitF64.getValue(0);
8497     SDValue Hi = NewSplitF64.getValue(1);
8498     APInt SignBit = APInt::getSignMask(32);
8499     if (Op0.getOpcode() == ISD::FNEG) {
8500       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
8501                                   DAG.getConstant(SignBit, DL, MVT::i32));
8502       return DCI.CombineTo(N, Lo, NewHi);
8503     }
8504     assert(Op0.getOpcode() == ISD::FABS);
8505     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
8506                                 DAG.getConstant(~SignBit, DL, MVT::i32));
8507     return DCI.CombineTo(N, Lo, NewHi);
8508   }
8509   case RISCVISD::SLLW:
8510   case RISCVISD::SRAW:
8511   case RISCVISD::SRLW: {
8512     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8513     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8514         SimplifyDemandedLowBitsHelper(1, 5))
8515       return SDValue(N, 0);
8516 
8517     break;
8518   }
8519   case ISD::ROTR:
8520   case ISD::ROTL:
8521   case RISCVISD::RORW:
8522   case RISCVISD::ROLW: {
8523     if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) {
8524       // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8525       if (SimplifyDemandedLowBitsHelper(0, 32) ||
8526           SimplifyDemandedLowBitsHelper(1, 5))
8527         return SDValue(N, 0);
8528     }
8529 
8530     return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget);
8531   }
8532   case RISCVISD::CLZW:
8533   case RISCVISD::CTZW: {
8534     // Only the lower 32 bits of the first operand are read
8535     if (SimplifyDemandedLowBitsHelper(0, 32))
8536       return SDValue(N, 0);
8537     break;
8538   }
8539   case RISCVISD::GREV:
8540   case RISCVISD::GORC: {
8541     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
8542     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8543     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8544     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
8545       return SDValue(N, 0);
8546 
8547     return combineGREVI_GORCI(N, DAG);
8548   }
8549   case RISCVISD::GREVW:
8550   case RISCVISD::GORCW: {
8551     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8552     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8553         SimplifyDemandedLowBitsHelper(1, 5))
8554       return SDValue(N, 0);
8555 
8556     break;
8557   }
8558   case RISCVISD::SHFL:
8559   case RISCVISD::UNSHFL: {
8560     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
8561     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8562     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8563     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
8564       return SDValue(N, 0);
8565 
8566     break;
8567   }
8568   case RISCVISD::SHFLW:
8569   case RISCVISD::UNSHFLW: {
8570     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
8571     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8572         SimplifyDemandedLowBitsHelper(1, 4))
8573       return SDValue(N, 0);
8574 
8575     break;
8576   }
8577   case RISCVISD::BCOMPRESSW:
8578   case RISCVISD::BDECOMPRESSW: {
8579     // Only the lower 32 bits of LHS and RHS are read.
8580     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8581         SimplifyDemandedLowBitsHelper(1, 32))
8582       return SDValue(N, 0);
8583 
8584     break;
8585   }
8586   case RISCVISD::FSR:
8587   case RISCVISD::FSL:
8588   case RISCVISD::FSRW:
8589   case RISCVISD::FSLW: {
8590     bool IsWInstruction =
8591         N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW;
8592     unsigned BitWidth =
8593         IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits();
8594     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8595     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
8596     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1))
8597       return SDValue(N, 0);
8598 
8599     break;
8600   }
8601   case RISCVISD::FMV_X_ANYEXTH:
8602   case RISCVISD::FMV_X_ANYEXTW_RV64: {
8603     SDLoc DL(N);
8604     SDValue Op0 = N->getOperand(0);
8605     MVT VT = N->getSimpleValueType(0);
8606     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
8607     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
8608     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
8609     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
8610          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
8611         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8612          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
8613       assert(Op0.getOperand(0).getValueType() == VT &&
8614              "Unexpected value type!");
8615       return Op0.getOperand(0);
8616     }
8617 
8618     // This is a target-specific version of a DAGCombine performed in
8619     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8620     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8621     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8622     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8623         !Op0.getNode()->hasOneUse())
8624       break;
8625     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
8626     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
8627     APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits());
8628     if (Op0.getOpcode() == ISD::FNEG)
8629       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
8630                          DAG.getConstant(SignBit, DL, VT));
8631 
8632     assert(Op0.getOpcode() == ISD::FABS);
8633     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
8634                        DAG.getConstant(~SignBit, DL, VT));
8635   }
8636   case ISD::ADD:
8637     return performADDCombine(N, DAG, Subtarget);
8638   case ISD::SUB:
8639     return performSUBCombine(N, DAG);
8640   case ISD::AND:
8641     return performANDCombine(N, DAG, Subtarget);
8642   case ISD::OR:
8643     return performORCombine(N, DAG, Subtarget);
8644   case ISD::XOR:
8645     return performXORCombine(N, DAG);
8646   case ISD::FADD:
8647   case ISD::UMAX:
8648   case ISD::UMIN:
8649   case ISD::SMAX:
8650   case ISD::SMIN:
8651   case ISD::FMAXNUM:
8652   case ISD::FMINNUM:
8653     return combineBinOpToReduce(N, DAG);
8654   case ISD::SIGN_EXTEND_INREG:
8655     return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
8656   case ISD::ZERO_EXTEND:
8657     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
8658     // type legalization. This is safe because fp_to_uint produces poison if
8659     // it overflows.
8660     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
8661       SDValue Src = N->getOperand(0);
8662       if (Src.getOpcode() == ISD::FP_TO_UINT &&
8663           isTypeLegal(Src.getOperand(0).getValueType()))
8664         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
8665                            Src.getOperand(0));
8666       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
8667           isTypeLegal(Src.getOperand(1).getValueType())) {
8668         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
8669         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
8670                                   Src.getOperand(0), Src.getOperand(1));
8671         DCI.CombineTo(N, Res);
8672         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
8673         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
8674         return SDValue(N, 0); // Return N so it doesn't get rechecked.
8675       }
8676     }
8677     return SDValue();
8678   case RISCVISD::SELECT_CC: {
8679     // Transform
8680     SDValue LHS = N->getOperand(0);
8681     SDValue RHS = N->getOperand(1);
8682     SDValue TrueV = N->getOperand(3);
8683     SDValue FalseV = N->getOperand(4);
8684 
8685     // If the True and False values are the same, we don't need a select_cc.
8686     if (TrueV == FalseV)
8687       return TrueV;
8688 
8689     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
8690     if (!ISD::isIntEqualitySetCC(CCVal))
8691       break;
8692 
8693     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
8694     //      (select_cc X, Y, lt, trueV, falseV)
8695     // Sometimes the setcc is introduced after select_cc has been formed.
8696     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8697         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8698       // If we're looking for eq 0 instead of ne 0, we need to invert the
8699       // condition.
8700       bool Invert = CCVal == ISD::SETEQ;
8701       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8702       if (Invert)
8703         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8704 
8705       SDLoc DL(N);
8706       RHS = LHS.getOperand(1);
8707       LHS = LHS.getOperand(0);
8708       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8709 
8710       SDValue TargetCC = DAG.getCondCode(CCVal);
8711       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8712                          {LHS, RHS, TargetCC, TrueV, FalseV});
8713     }
8714 
8715     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
8716     //      (select_cc X, Y, eq/ne, trueV, falseV)
8717     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8718       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
8719                          {LHS.getOperand(0), LHS.getOperand(1),
8720                           N->getOperand(2), TrueV, FalseV});
8721     // (select_cc X, 1, setne, trueV, falseV) ->
8722     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
8723     // This can occur when legalizing some floating point comparisons.
8724     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8725     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8726       SDLoc DL(N);
8727       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8728       SDValue TargetCC = DAG.getCondCode(CCVal);
8729       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8730       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8731                          {LHS, RHS, TargetCC, TrueV, FalseV});
8732     }
8733 
8734     break;
8735   }
8736   case RISCVISD::BR_CC: {
8737     SDValue LHS = N->getOperand(1);
8738     SDValue RHS = N->getOperand(2);
8739     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
8740     if (!ISD::isIntEqualitySetCC(CCVal))
8741       break;
8742 
8743     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
8744     //      (br_cc X, Y, lt, dest)
8745     // Sometimes the setcc is introduced after br_cc has been formed.
8746     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8747         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8748       // If we're looking for eq 0 instead of ne 0, we need to invert the
8749       // condition.
8750       bool Invert = CCVal == ISD::SETEQ;
8751       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8752       if (Invert)
8753         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8754 
8755       SDLoc DL(N);
8756       RHS = LHS.getOperand(1);
8757       LHS = LHS.getOperand(0);
8758       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8759 
8760       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8761                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
8762                          N->getOperand(4));
8763     }
8764 
8765     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
8766     //      (br_cc X, Y, eq/ne, trueV, falseV)
8767     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8768       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
8769                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
8770                          N->getOperand(3), N->getOperand(4));
8771 
8772     // (br_cc X, 1, setne, br_cc) ->
8773     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
8774     // This can occur when legalizing some floating point comparisons.
8775     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8776     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8777       SDLoc DL(N);
8778       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8779       SDValue TargetCC = DAG.getCondCode(CCVal);
8780       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8781       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8782                          N->getOperand(0), LHS, RHS, TargetCC,
8783                          N->getOperand(4));
8784     }
8785     break;
8786   }
8787   case ISD::BITREVERSE:
8788     return performBITREVERSECombine(N, DAG, Subtarget);
8789   case ISD::FP_TO_SINT:
8790   case ISD::FP_TO_UINT:
8791     return performFP_TO_INTCombine(N, DCI, Subtarget);
8792   case ISD::FP_TO_SINT_SAT:
8793   case ISD::FP_TO_UINT_SAT:
8794     return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
8795   case ISD::FCOPYSIGN: {
8796     EVT VT = N->getValueType(0);
8797     if (!VT.isVector())
8798       break;
8799     // There is a form of VFSGNJ which injects the negated sign of its second
8800     // operand. Try and bubble any FNEG up after the extend/round to produce
8801     // this optimized pattern. Avoid modifying cases where FP_ROUND and
8802     // TRUNC=1.
8803     SDValue In2 = N->getOperand(1);
8804     // Avoid cases where the extend/round has multiple uses, as duplicating
8805     // those is typically more expensive than removing a fneg.
8806     if (!In2.hasOneUse())
8807       break;
8808     if (In2.getOpcode() != ISD::FP_EXTEND &&
8809         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
8810       break;
8811     In2 = In2.getOperand(0);
8812     if (In2.getOpcode() != ISD::FNEG)
8813       break;
8814     SDLoc DL(N);
8815     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
8816     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
8817                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
8818   }
8819   case ISD::MGATHER:
8820   case ISD::MSCATTER:
8821   case ISD::VP_GATHER:
8822   case ISD::VP_SCATTER: {
8823     if (!DCI.isBeforeLegalize())
8824       break;
8825     SDValue Index, ScaleOp;
8826     bool IsIndexScaled = false;
8827     bool IsIndexSigned = false;
8828     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
8829       Index = VPGSN->getIndex();
8830       ScaleOp = VPGSN->getScale();
8831       IsIndexScaled = VPGSN->isIndexScaled();
8832       IsIndexSigned = VPGSN->isIndexSigned();
8833     } else {
8834       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
8835       Index = MGSN->getIndex();
8836       ScaleOp = MGSN->getScale();
8837       IsIndexScaled = MGSN->isIndexScaled();
8838       IsIndexSigned = MGSN->isIndexSigned();
8839     }
8840     EVT IndexVT = Index.getValueType();
8841     MVT XLenVT = Subtarget.getXLenVT();
8842     // RISCV indexed loads only support the "unsigned unscaled" addressing
8843     // mode, so anything else must be manually legalized.
8844     bool NeedsIdxLegalization =
8845         IsIndexScaled ||
8846         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
8847     if (!NeedsIdxLegalization)
8848       break;
8849 
8850     SDLoc DL(N);
8851 
8852     // Any index legalization should first promote to XLenVT, so we don't lose
8853     // bits when scaling. This may create an illegal index type so we let
8854     // LLVM's legalization take care of the splitting.
8855     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
8856     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
8857       IndexVT = IndexVT.changeVectorElementType(XLenVT);
8858       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
8859                           DL, IndexVT, Index);
8860     }
8861 
8862     unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
8863     if (IsIndexScaled && Scale != 1) {
8864       // Manually scale the indices by the element size.
8865       // TODO: Sanitize the scale operand here?
8866       // TODO: For VP nodes, should we use VP_SHL here?
8867       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
8868       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
8869       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
8870     }
8871 
8872     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
8873     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
8874       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
8875                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
8876                               VPGN->getScale(), VPGN->getMask(),
8877                               VPGN->getVectorLength()},
8878                              VPGN->getMemOperand(), NewIndexTy);
8879     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
8880       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
8881                               {VPSN->getChain(), VPSN->getValue(),
8882                                VPSN->getBasePtr(), Index, VPSN->getScale(),
8883                                VPSN->getMask(), VPSN->getVectorLength()},
8884                               VPSN->getMemOperand(), NewIndexTy);
8885     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
8886       return DAG.getMaskedGather(
8887           N->getVTList(), MGN->getMemoryVT(), DL,
8888           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
8889            MGN->getBasePtr(), Index, MGN->getScale()},
8890           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
8891     const auto *MSN = cast<MaskedScatterSDNode>(N);
8892     return DAG.getMaskedScatter(
8893         N->getVTList(), MSN->getMemoryVT(), DL,
8894         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
8895          Index, MSN->getScale()},
8896         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
8897   }
8898   case RISCVISD::SRA_VL:
8899   case RISCVISD::SRL_VL:
8900   case RISCVISD::SHL_VL: {
8901     SDValue ShAmt = N->getOperand(1);
8902     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8903       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8904       SDLoc DL(N);
8905       SDValue VL = N->getOperand(3);
8906       EVT VT = N->getValueType(0);
8907       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8908                           ShAmt.getOperand(1), VL);
8909       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
8910                          N->getOperand(2), N->getOperand(3));
8911     }
8912     break;
8913   }
8914   case ISD::SRA:
8915   case ISD::SRL:
8916   case ISD::SHL: {
8917     SDValue ShAmt = N->getOperand(1);
8918     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8919       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8920       SDLoc DL(N);
8921       EVT VT = N->getValueType(0);
8922       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8923                           ShAmt.getOperand(1),
8924                           DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()));
8925       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
8926     }
8927     break;
8928   }
8929   case RISCVISD::ADD_VL:
8930     if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false))
8931       return V;
8932     return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true);
8933   case RISCVISD::SUB_VL:
8934     return combineADDSUB_VLToVWADDSUB_VL(N, DAG);
8935   case RISCVISD::VWADD_W_VL:
8936   case RISCVISD::VWADDU_W_VL:
8937   case RISCVISD::VWSUB_W_VL:
8938   case RISCVISD::VWSUBU_W_VL:
8939     return combineVWADD_W_VL_VWSUB_W_VL(N, DAG);
8940   case RISCVISD::MUL_VL:
8941     if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false))
8942       return V;
8943     // Mul is commutative.
8944     return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true);
8945   case ISD::STORE: {
8946     auto *Store = cast<StoreSDNode>(N);
8947     SDValue Val = Store->getValue();
8948     // Combine store of vmv.x.s to vse with VL of 1.
8949     // FIXME: Support FP.
8950     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
8951       SDValue Src = Val.getOperand(0);
8952       EVT VecVT = Src.getValueType();
8953       EVT MemVT = Store->getMemoryVT();
8954       // The memory VT and the element type must match.
8955       if (VecVT.getVectorElementType() == MemVT) {
8956         SDLoc DL(N);
8957         MVT MaskVT = getMaskTypeFor(VecVT);
8958         return DAG.getStoreVP(
8959             Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
8960             DAG.getConstant(1, DL, MaskVT),
8961             DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
8962             Store->getMemOperand(), Store->getAddressingMode(),
8963             Store->isTruncatingStore(), /*IsCompress*/ false);
8964       }
8965     }
8966 
8967     break;
8968   }
8969   case ISD::SPLAT_VECTOR: {
8970     EVT VT = N->getValueType(0);
8971     // Only perform this combine on legal MVT types.
8972     if (!isTypeLegal(VT))
8973       break;
8974     if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N,
8975                                          DAG, Subtarget))
8976       return Gather;
8977     break;
8978   }
8979   case RISCVISD::VMV_V_X_VL: {
8980     // Tail agnostic VMV.V.X only demands the vector element bitwidth from the
8981     // scalar input.
8982     unsigned ScalarSize = N->getOperand(1).getValueSizeInBits();
8983     unsigned EltWidth = N->getValueType(0).getScalarSizeInBits();
8984     if (ScalarSize > EltWidth && N->getOperand(0).isUndef())
8985       if (SimplifyDemandedLowBitsHelper(1, EltWidth))
8986         return SDValue(N, 0);
8987 
8988     break;
8989   }
8990   case ISD::INTRINSIC_WO_CHAIN: {
8991     unsigned IntNo = N->getConstantOperandVal(0);
8992     switch (IntNo) {
8993       // By default we do not combine any intrinsic.
8994     default:
8995       return SDValue();
8996     case Intrinsic::riscv_vcpop:
8997     case Intrinsic::riscv_vcpop_mask:
8998     case Intrinsic::riscv_vfirst:
8999     case Intrinsic::riscv_vfirst_mask: {
9000       SDValue VL = N->getOperand(2);
9001       if (IntNo == Intrinsic::riscv_vcpop_mask ||
9002           IntNo == Intrinsic::riscv_vfirst_mask)
9003         VL = N->getOperand(3);
9004       if (!isNullConstant(VL))
9005         return SDValue();
9006       // If VL is 0, vcpop -> li 0, vfirst -> li -1.
9007       SDLoc DL(N);
9008       EVT VT = N->getValueType(0);
9009       if (IntNo == Intrinsic::riscv_vfirst ||
9010           IntNo == Intrinsic::riscv_vfirst_mask)
9011         return DAG.getConstant(-1, DL, VT);
9012       return DAG.getConstant(0, DL, VT);
9013     }
9014     }
9015   }
9016   }
9017 
9018   return SDValue();
9019 }
9020 
9021 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
9022     const SDNode *N, CombineLevel Level) const {
9023   // The following folds are only desirable if `(OP _, c1 << c2)` can be
9024   // materialised in fewer instructions than `(OP _, c1)`:
9025   //
9026   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
9027   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
9028   SDValue N0 = N->getOperand(0);
9029   EVT Ty = N0.getValueType();
9030   if (Ty.isScalarInteger() &&
9031       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
9032     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
9033     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
9034     if (C1 && C2) {
9035       const APInt &C1Int = C1->getAPIntValue();
9036       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
9037 
9038       // We can materialise `c1 << c2` into an add immediate, so it's "free",
9039       // and the combine should happen, to potentially allow further combines
9040       // later.
9041       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
9042           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
9043         return true;
9044 
9045       // We can materialise `c1` in an add immediate, so it's "free", and the
9046       // combine should be prevented.
9047       if (C1Int.getMinSignedBits() <= 64 &&
9048           isLegalAddImmediate(C1Int.getSExtValue()))
9049         return false;
9050 
9051       // Neither constant will fit into an immediate, so find materialisation
9052       // costs.
9053       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
9054                                               Subtarget.getFeatureBits(),
9055                                               /*CompressionCost*/true);
9056       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
9057           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
9058           /*CompressionCost*/true);
9059 
9060       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
9061       // combine should be prevented.
9062       if (C1Cost < ShiftedC1Cost)
9063         return false;
9064     }
9065   }
9066   return true;
9067 }
9068 
9069 bool RISCVTargetLowering::targetShrinkDemandedConstant(
9070     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
9071     TargetLoweringOpt &TLO) const {
9072   // Delay this optimization as late as possible.
9073   if (!TLO.LegalOps)
9074     return false;
9075 
9076   EVT VT = Op.getValueType();
9077   if (VT.isVector())
9078     return false;
9079 
9080   // Only handle AND for now.
9081   if (Op.getOpcode() != ISD::AND)
9082     return false;
9083 
9084   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9085   if (!C)
9086     return false;
9087 
9088   const APInt &Mask = C->getAPIntValue();
9089 
9090   // Clear all non-demanded bits initially.
9091   APInt ShrunkMask = Mask & DemandedBits;
9092 
9093   // Try to make a smaller immediate by setting undemanded bits.
9094 
9095   APInt ExpandedMask = Mask | ~DemandedBits;
9096 
9097   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
9098     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
9099   };
9100   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
9101     if (NewMask == Mask)
9102       return true;
9103     SDLoc DL(Op);
9104     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
9105     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
9106     return TLO.CombineTo(Op, NewOp);
9107   };
9108 
9109   // If the shrunk mask fits in sign extended 12 bits, let the target
9110   // independent code apply it.
9111   if (ShrunkMask.isSignedIntN(12))
9112     return false;
9113 
9114   // Preserve (and X, 0xffff) when zext.h is supported.
9115   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
9116     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
9117     if (IsLegalMask(NewMask))
9118       return UseMask(NewMask);
9119   }
9120 
9121   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
9122   if (VT == MVT::i64) {
9123     APInt NewMask = APInt(64, 0xffffffff);
9124     if (IsLegalMask(NewMask))
9125       return UseMask(NewMask);
9126   }
9127 
9128   // For the remaining optimizations, we need to be able to make a negative
9129   // number through a combination of mask and undemanded bits.
9130   if (!ExpandedMask.isNegative())
9131     return false;
9132 
9133   // What is the fewest number of bits we need to represent the negative number.
9134   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
9135 
9136   // Try to make a 12 bit negative immediate. If that fails try to make a 32
9137   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
9138   APInt NewMask = ShrunkMask;
9139   if (MinSignedBits <= 12)
9140     NewMask.setBitsFrom(11);
9141   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
9142     NewMask.setBitsFrom(31);
9143   else
9144     return false;
9145 
9146   // Check that our new mask is a subset of the demanded mask.
9147   assert(IsLegalMask(NewMask));
9148   return UseMask(NewMask);
9149 }
9150 
9151 static uint64_t computeGREVOrGORC(uint64_t x, unsigned ShAmt, bool IsGORC) {
9152   static const uint64_t GREVMasks[] = {
9153       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
9154       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
9155 
9156   for (unsigned Stage = 0; Stage != 6; ++Stage) {
9157     unsigned Shift = 1 << Stage;
9158     if (ShAmt & Shift) {
9159       uint64_t Mask = GREVMasks[Stage];
9160       uint64_t Res = ((x & Mask) << Shift) | ((x >> Shift) & Mask);
9161       if (IsGORC)
9162         Res |= x;
9163       x = Res;
9164     }
9165   }
9166 
9167   return x;
9168 }
9169 
9170 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
9171                                                         KnownBits &Known,
9172                                                         const APInt &DemandedElts,
9173                                                         const SelectionDAG &DAG,
9174                                                         unsigned Depth) const {
9175   unsigned BitWidth = Known.getBitWidth();
9176   unsigned Opc = Op.getOpcode();
9177   assert((Opc >= ISD::BUILTIN_OP_END ||
9178           Opc == ISD::INTRINSIC_WO_CHAIN ||
9179           Opc == ISD::INTRINSIC_W_CHAIN ||
9180           Opc == ISD::INTRINSIC_VOID) &&
9181          "Should use MaskedValueIsZero if you don't know whether Op"
9182          " is a target node!");
9183 
9184   Known.resetAll();
9185   switch (Opc) {
9186   default: break;
9187   case RISCVISD::SELECT_CC: {
9188     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
9189     // If we don't know any bits, early out.
9190     if (Known.isUnknown())
9191       break;
9192     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
9193 
9194     // Only known if known in both the LHS and RHS.
9195     Known = KnownBits::commonBits(Known, Known2);
9196     break;
9197   }
9198   case RISCVISD::REMUW: {
9199     KnownBits Known2;
9200     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
9201     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
9202     // We only care about the lower 32 bits.
9203     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
9204     // Restore the original width by sign extending.
9205     Known = Known.sext(BitWidth);
9206     break;
9207   }
9208   case RISCVISD::DIVUW: {
9209     KnownBits Known2;
9210     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
9211     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
9212     // We only care about the lower 32 bits.
9213     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
9214     // Restore the original width by sign extending.
9215     Known = Known.sext(BitWidth);
9216     break;
9217   }
9218   case RISCVISD::CTZW: {
9219     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9220     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
9221     unsigned LowBits = Log2_32(PossibleTZ) + 1;
9222     Known.Zero.setBitsFrom(LowBits);
9223     break;
9224   }
9225   case RISCVISD::CLZW: {
9226     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9227     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
9228     unsigned LowBits = Log2_32(PossibleLZ) + 1;
9229     Known.Zero.setBitsFrom(LowBits);
9230     break;
9231   }
9232   case RISCVISD::GREV:
9233   case RISCVISD::GORC: {
9234     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9235       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9236       unsigned ShAmt = C->getZExtValue() & (Known.getBitWidth() - 1);
9237       bool IsGORC = Op.getOpcode() == RISCVISD::GORC;
9238       // To compute zeros, we need to invert the value and invert it back after.
9239       Known.Zero =
9240           ~computeGREVOrGORC(~Known.Zero.getZExtValue(), ShAmt, IsGORC);
9241       Known.One = computeGREVOrGORC(Known.One.getZExtValue(), ShAmt, IsGORC);
9242     }
9243     break;
9244   }
9245   case RISCVISD::READ_VLENB: {
9246     // If we know the minimum VLen from Zvl extensions, we can use that to
9247     // determine the trailing zeros of VLENB.
9248     // FIXME: Limit to 128 bit vectors until we have more testing.
9249     unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8;
9250     if (MinVLenB > 0)
9251       Known.Zero.setLowBits(Log2_32(MinVLenB));
9252     // We assume VLENB is no more than 65536 / 8 bytes.
9253     Known.Zero.setBitsFrom(14);
9254     break;
9255   }
9256   case ISD::INTRINSIC_W_CHAIN:
9257   case ISD::INTRINSIC_WO_CHAIN: {
9258     unsigned IntNo =
9259         Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
9260     switch (IntNo) {
9261     default:
9262       // We can't do anything for most intrinsics.
9263       break;
9264     case Intrinsic::riscv_vsetvli:
9265     case Intrinsic::riscv_vsetvlimax:
9266     case Intrinsic::riscv_vsetvli_opt:
9267     case Intrinsic::riscv_vsetvlimax_opt:
9268       // Assume that VL output is positive and would fit in an int32_t.
9269       // TODO: VLEN might be capped at 16 bits in a future V spec update.
9270       if (BitWidth >= 32)
9271         Known.Zero.setBitsFrom(31);
9272       break;
9273     }
9274     break;
9275   }
9276   }
9277 }
9278 
9279 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
9280     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
9281     unsigned Depth) const {
9282   switch (Op.getOpcode()) {
9283   default:
9284     break;
9285   case RISCVISD::SELECT_CC: {
9286     unsigned Tmp =
9287         DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
9288     if (Tmp == 1) return 1;  // Early out.
9289     unsigned Tmp2 =
9290         DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
9291     return std::min(Tmp, Tmp2);
9292   }
9293   case RISCVISD::SLLW:
9294   case RISCVISD::SRAW:
9295   case RISCVISD::SRLW:
9296   case RISCVISD::DIVW:
9297   case RISCVISD::DIVUW:
9298   case RISCVISD::REMUW:
9299   case RISCVISD::ROLW:
9300   case RISCVISD::RORW:
9301   case RISCVISD::GREVW:
9302   case RISCVISD::GORCW:
9303   case RISCVISD::FSLW:
9304   case RISCVISD::FSRW:
9305   case RISCVISD::SHFLW:
9306   case RISCVISD::UNSHFLW:
9307   case RISCVISD::BCOMPRESSW:
9308   case RISCVISD::BDECOMPRESSW:
9309   case RISCVISD::BFPW:
9310   case RISCVISD::FCVT_W_RV64:
9311   case RISCVISD::FCVT_WU_RV64:
9312   case RISCVISD::STRICT_FCVT_W_RV64:
9313   case RISCVISD::STRICT_FCVT_WU_RV64:
9314     // TODO: As the result is sign-extended, this is conservatively correct. A
9315     // more precise answer could be calculated for SRAW depending on known
9316     // bits in the shift amount.
9317     return 33;
9318   case RISCVISD::SHFL:
9319   case RISCVISD::UNSHFL: {
9320     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
9321     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
9322     // will stay within the upper 32 bits. If there were more than 32 sign bits
9323     // before there will be at least 33 sign bits after.
9324     if (Op.getValueType() == MVT::i64 &&
9325         isa<ConstantSDNode>(Op.getOperand(1)) &&
9326         (Op.getConstantOperandVal(1) & 0x10) == 0) {
9327       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
9328       if (Tmp > 32)
9329         return 33;
9330     }
9331     break;
9332   }
9333   case RISCVISD::VMV_X_S: {
9334     // The number of sign bits of the scalar result is computed by obtaining the
9335     // element type of the input vector operand, subtracting its width from the
9336     // XLEN, and then adding one (sign bit within the element type). If the
9337     // element type is wider than XLen, the least-significant XLEN bits are
9338     // taken.
9339     unsigned XLen = Subtarget.getXLen();
9340     unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits();
9341     if (EltBits <= XLen)
9342       return XLen - EltBits + 1;
9343     break;
9344   }
9345   }
9346 
9347   return 1;
9348 }
9349 
9350 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
9351                                                   MachineBasicBlock *BB) {
9352   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
9353 
9354   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
9355   // Should the count have wrapped while it was being read, we need to try
9356   // again.
9357   // ...
9358   // read:
9359   // rdcycleh x3 # load high word of cycle
9360   // rdcycle  x2 # load low word of cycle
9361   // rdcycleh x4 # load high word of cycle
9362   // bne x3, x4, read # check if high word reads match, otherwise try again
9363   // ...
9364 
9365   MachineFunction &MF = *BB->getParent();
9366   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9367   MachineFunction::iterator It = ++BB->getIterator();
9368 
9369   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9370   MF.insert(It, LoopMBB);
9371 
9372   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9373   MF.insert(It, DoneMBB);
9374 
9375   // Transfer the remainder of BB and its successor edges to DoneMBB.
9376   DoneMBB->splice(DoneMBB->begin(), BB,
9377                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9378   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
9379 
9380   BB->addSuccessor(LoopMBB);
9381 
9382   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9383   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9384   Register LoReg = MI.getOperand(0).getReg();
9385   Register HiReg = MI.getOperand(1).getReg();
9386   DebugLoc DL = MI.getDebugLoc();
9387 
9388   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
9389   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
9390       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9391       .addReg(RISCV::X0);
9392   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
9393       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
9394       .addReg(RISCV::X0);
9395   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
9396       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9397       .addReg(RISCV::X0);
9398 
9399   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
9400       .addReg(HiReg)
9401       .addReg(ReadAgainReg)
9402       .addMBB(LoopMBB);
9403 
9404   LoopMBB->addSuccessor(LoopMBB);
9405   LoopMBB->addSuccessor(DoneMBB);
9406 
9407   MI.eraseFromParent();
9408 
9409   return DoneMBB;
9410 }
9411 
9412 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
9413                                              MachineBasicBlock *BB) {
9414   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
9415 
9416   MachineFunction &MF = *BB->getParent();
9417   DebugLoc DL = MI.getDebugLoc();
9418   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9419   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9420   Register LoReg = MI.getOperand(0).getReg();
9421   Register HiReg = MI.getOperand(1).getReg();
9422   Register SrcReg = MI.getOperand(2).getReg();
9423   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
9424   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9425 
9426   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
9427                           RI);
9428   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9429   MachineMemOperand *MMOLo =
9430       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
9431   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9432       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
9433   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
9434       .addFrameIndex(FI)
9435       .addImm(0)
9436       .addMemOperand(MMOLo);
9437   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
9438       .addFrameIndex(FI)
9439       .addImm(4)
9440       .addMemOperand(MMOHi);
9441   MI.eraseFromParent(); // The pseudo instruction is gone now.
9442   return BB;
9443 }
9444 
9445 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
9446                                                  MachineBasicBlock *BB) {
9447   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
9448          "Unexpected instruction");
9449 
9450   MachineFunction &MF = *BB->getParent();
9451   DebugLoc DL = MI.getDebugLoc();
9452   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9453   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9454   Register DstReg = MI.getOperand(0).getReg();
9455   Register LoReg = MI.getOperand(1).getReg();
9456   Register HiReg = MI.getOperand(2).getReg();
9457   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
9458   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9459 
9460   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9461   MachineMemOperand *MMOLo =
9462       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
9463   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9464       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
9465   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9466       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
9467       .addFrameIndex(FI)
9468       .addImm(0)
9469       .addMemOperand(MMOLo);
9470   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9471       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
9472       .addFrameIndex(FI)
9473       .addImm(4)
9474       .addMemOperand(MMOHi);
9475   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
9476   MI.eraseFromParent(); // The pseudo instruction is gone now.
9477   return BB;
9478 }
9479 
9480 static bool isSelectPseudo(MachineInstr &MI) {
9481   switch (MI.getOpcode()) {
9482   default:
9483     return false;
9484   case RISCV::Select_GPR_Using_CC_GPR:
9485   case RISCV::Select_FPR16_Using_CC_GPR:
9486   case RISCV::Select_FPR32_Using_CC_GPR:
9487   case RISCV::Select_FPR64_Using_CC_GPR:
9488     return true;
9489   }
9490 }
9491 
9492 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
9493                                         unsigned RelOpcode, unsigned EqOpcode,
9494                                         const RISCVSubtarget &Subtarget) {
9495   DebugLoc DL = MI.getDebugLoc();
9496   Register DstReg = MI.getOperand(0).getReg();
9497   Register Src1Reg = MI.getOperand(1).getReg();
9498   Register Src2Reg = MI.getOperand(2).getReg();
9499   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
9500   Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
9501   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
9502 
9503   // Save the current FFLAGS.
9504   BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
9505 
9506   auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
9507                  .addReg(Src1Reg)
9508                  .addReg(Src2Reg);
9509   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9510     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
9511 
9512   // Restore the FFLAGS.
9513   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
9514       .addReg(SavedFFlags, RegState::Kill);
9515 
9516   // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
9517   auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
9518                   .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
9519                   .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
9520   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9521     MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
9522 
9523   // Erase the pseudoinstruction.
9524   MI.eraseFromParent();
9525   return BB;
9526 }
9527 
9528 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
9529                                            MachineBasicBlock *BB,
9530                                            const RISCVSubtarget &Subtarget) {
9531   // To "insert" Select_* instructions, we actually have to insert the triangle
9532   // control-flow pattern.  The incoming instructions know the destination vreg
9533   // to set, the condition code register to branch on, the true/false values to
9534   // select between, and the condcode to use to select the appropriate branch.
9535   //
9536   // We produce the following control flow:
9537   //     HeadMBB
9538   //     |  \
9539   //     |  IfFalseMBB
9540   //     | /
9541   //    TailMBB
9542   //
9543   // When we find a sequence of selects we attempt to optimize their emission
9544   // by sharing the control flow. Currently we only handle cases where we have
9545   // multiple selects with the exact same condition (same LHS, RHS and CC).
9546   // The selects may be interleaved with other instructions if the other
9547   // instructions meet some requirements we deem safe:
9548   // - They are debug instructions. Otherwise,
9549   // - They do not have side-effects, do not access memory and their inputs do
9550   //   not depend on the results of the select pseudo-instructions.
9551   // The TrueV/FalseV operands of the selects cannot depend on the result of
9552   // previous selects in the sequence.
9553   // These conditions could be further relaxed. See the X86 target for a
9554   // related approach and more information.
9555   Register LHS = MI.getOperand(1).getReg();
9556   Register RHS = MI.getOperand(2).getReg();
9557   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
9558 
9559   SmallVector<MachineInstr *, 4> SelectDebugValues;
9560   SmallSet<Register, 4> SelectDests;
9561   SelectDests.insert(MI.getOperand(0).getReg());
9562 
9563   MachineInstr *LastSelectPseudo = &MI;
9564 
9565   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
9566        SequenceMBBI != E; ++SequenceMBBI) {
9567     if (SequenceMBBI->isDebugInstr())
9568       continue;
9569     if (isSelectPseudo(*SequenceMBBI)) {
9570       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
9571           SequenceMBBI->getOperand(2).getReg() != RHS ||
9572           SequenceMBBI->getOperand(3).getImm() != CC ||
9573           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
9574           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
9575         break;
9576       LastSelectPseudo = &*SequenceMBBI;
9577       SequenceMBBI->collectDebugValues(SelectDebugValues);
9578       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
9579     } else {
9580       if (SequenceMBBI->hasUnmodeledSideEffects() ||
9581           SequenceMBBI->mayLoadOrStore())
9582         break;
9583       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
9584             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
9585           }))
9586         break;
9587     }
9588   }
9589 
9590   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
9591   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9592   DebugLoc DL = MI.getDebugLoc();
9593   MachineFunction::iterator I = ++BB->getIterator();
9594 
9595   MachineBasicBlock *HeadMBB = BB;
9596   MachineFunction *F = BB->getParent();
9597   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
9598   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
9599 
9600   F->insert(I, IfFalseMBB);
9601   F->insert(I, TailMBB);
9602 
9603   // Transfer debug instructions associated with the selects to TailMBB.
9604   for (MachineInstr *DebugInstr : SelectDebugValues) {
9605     TailMBB->push_back(DebugInstr->removeFromParent());
9606   }
9607 
9608   // Move all instructions after the sequence to TailMBB.
9609   TailMBB->splice(TailMBB->end(), HeadMBB,
9610                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
9611   // Update machine-CFG edges by transferring all successors of the current
9612   // block to the new block which will contain the Phi nodes for the selects.
9613   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
9614   // Set the successors for HeadMBB.
9615   HeadMBB->addSuccessor(IfFalseMBB);
9616   HeadMBB->addSuccessor(TailMBB);
9617 
9618   // Insert appropriate branch.
9619   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
9620     .addReg(LHS)
9621     .addReg(RHS)
9622     .addMBB(TailMBB);
9623 
9624   // IfFalseMBB just falls through to TailMBB.
9625   IfFalseMBB->addSuccessor(TailMBB);
9626 
9627   // Create PHIs for all of the select pseudo-instructions.
9628   auto SelectMBBI = MI.getIterator();
9629   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
9630   auto InsertionPoint = TailMBB->begin();
9631   while (SelectMBBI != SelectEnd) {
9632     auto Next = std::next(SelectMBBI);
9633     if (isSelectPseudo(*SelectMBBI)) {
9634       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
9635       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
9636               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
9637           .addReg(SelectMBBI->getOperand(4).getReg())
9638           .addMBB(HeadMBB)
9639           .addReg(SelectMBBI->getOperand(5).getReg())
9640           .addMBB(IfFalseMBB);
9641       SelectMBBI->eraseFromParent();
9642     }
9643     SelectMBBI = Next;
9644   }
9645 
9646   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
9647   return TailMBB;
9648 }
9649 
9650 MachineBasicBlock *
9651 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9652                                                  MachineBasicBlock *BB) const {
9653   switch (MI.getOpcode()) {
9654   default:
9655     llvm_unreachable("Unexpected instr type to insert");
9656   case RISCV::ReadCycleWide:
9657     assert(!Subtarget.is64Bit() &&
9658            "ReadCycleWrite is only to be used on riscv32");
9659     return emitReadCycleWidePseudo(MI, BB);
9660   case RISCV::Select_GPR_Using_CC_GPR:
9661   case RISCV::Select_FPR16_Using_CC_GPR:
9662   case RISCV::Select_FPR32_Using_CC_GPR:
9663   case RISCV::Select_FPR64_Using_CC_GPR:
9664     return emitSelectPseudo(MI, BB, Subtarget);
9665   case RISCV::BuildPairF64Pseudo:
9666     return emitBuildPairF64Pseudo(MI, BB);
9667   case RISCV::SplitF64Pseudo:
9668     return emitSplitF64Pseudo(MI, BB);
9669   case RISCV::PseudoQuietFLE_H:
9670     return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
9671   case RISCV::PseudoQuietFLT_H:
9672     return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
9673   case RISCV::PseudoQuietFLE_S:
9674     return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
9675   case RISCV::PseudoQuietFLT_S:
9676     return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
9677   case RISCV::PseudoQuietFLE_D:
9678     return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
9679   case RISCV::PseudoQuietFLT_D:
9680     return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
9681   }
9682 }
9683 
9684 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
9685                                                         SDNode *Node) const {
9686   // Add FRM dependency to any instructions with dynamic rounding mode.
9687   unsigned Opc = MI.getOpcode();
9688   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
9689   if (Idx < 0)
9690     return;
9691   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
9692     return;
9693   // If the instruction already reads FRM, don't add another read.
9694   if (MI.readsRegister(RISCV::FRM))
9695     return;
9696   MI.addOperand(
9697       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
9698 }
9699 
9700 // Calling Convention Implementation.
9701 // The expectations for frontend ABI lowering vary from target to target.
9702 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
9703 // details, but this is a longer term goal. For now, we simply try to keep the
9704 // role of the frontend as simple and well-defined as possible. The rules can
9705 // be summarised as:
9706 // * Never split up large scalar arguments. We handle them here.
9707 // * If a hardfloat calling convention is being used, and the struct may be
9708 // passed in a pair of registers (fp+fp, int+fp), and both registers are
9709 // available, then pass as two separate arguments. If either the GPRs or FPRs
9710 // are exhausted, then pass according to the rule below.
9711 // * If a struct could never be passed in registers or directly in a stack
9712 // slot (as it is larger than 2*XLEN and the floating point rules don't
9713 // apply), then pass it using a pointer with the byval attribute.
9714 // * If a struct is less than 2*XLEN, then coerce to either a two-element
9715 // word-sized array or a 2*XLEN scalar (depending on alignment).
9716 // * The frontend can determine whether a struct is returned by reference or
9717 // not based on its size and fields. If it will be returned by reference, the
9718 // frontend must modify the prototype so a pointer with the sret annotation is
9719 // passed as the first argument. This is not necessary for large scalar
9720 // returns.
9721 // * Struct return values and varargs should be coerced to structs containing
9722 // register-size fields in the same situations they would be for fixed
9723 // arguments.
9724 
9725 static const MCPhysReg ArgGPRs[] = {
9726   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
9727   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
9728 };
9729 static const MCPhysReg ArgFPR16s[] = {
9730   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
9731   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
9732 };
9733 static const MCPhysReg ArgFPR32s[] = {
9734   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
9735   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
9736 };
9737 static const MCPhysReg ArgFPR64s[] = {
9738   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
9739   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
9740 };
9741 // This is an interim calling convention and it may be changed in the future.
9742 static const MCPhysReg ArgVRs[] = {
9743     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
9744     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
9745     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
9746 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
9747                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
9748                                      RISCV::V20M2, RISCV::V22M2};
9749 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
9750                                      RISCV::V20M4};
9751 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
9752 
9753 // Pass a 2*XLEN argument that has been split into two XLEN values through
9754 // registers or the stack as necessary.
9755 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
9756                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
9757                                 MVT ValVT2, MVT LocVT2,
9758                                 ISD::ArgFlagsTy ArgFlags2) {
9759   unsigned XLenInBytes = XLen / 8;
9760   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9761     // At least one half can be passed via register.
9762     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
9763                                      VA1.getLocVT(), CCValAssign::Full));
9764   } else {
9765     // Both halves must be passed on the stack, with proper alignment.
9766     Align StackAlign =
9767         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
9768     State.addLoc(
9769         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
9770                             State.AllocateStack(XLenInBytes, StackAlign),
9771                             VA1.getLocVT(), CCValAssign::Full));
9772     State.addLoc(CCValAssign::getMem(
9773         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9774         LocVT2, CCValAssign::Full));
9775     return false;
9776   }
9777 
9778   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9779     // The second half can also be passed via register.
9780     State.addLoc(
9781         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
9782   } else {
9783     // The second half is passed via the stack, without additional alignment.
9784     State.addLoc(CCValAssign::getMem(
9785         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9786         LocVT2, CCValAssign::Full));
9787   }
9788 
9789   return false;
9790 }
9791 
9792 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
9793                                Optional<unsigned> FirstMaskArgument,
9794                                CCState &State, const RISCVTargetLowering &TLI) {
9795   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
9796   if (RC == &RISCV::VRRegClass) {
9797     // Assign the first mask argument to V0.
9798     // This is an interim calling convention and it may be changed in the
9799     // future.
9800     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
9801       return State.AllocateReg(RISCV::V0);
9802     return State.AllocateReg(ArgVRs);
9803   }
9804   if (RC == &RISCV::VRM2RegClass)
9805     return State.AllocateReg(ArgVRM2s);
9806   if (RC == &RISCV::VRM4RegClass)
9807     return State.AllocateReg(ArgVRM4s);
9808   if (RC == &RISCV::VRM8RegClass)
9809     return State.AllocateReg(ArgVRM8s);
9810   llvm_unreachable("Unhandled register class for ValueType");
9811 }
9812 
9813 // Implements the RISC-V calling convention. Returns true upon failure.
9814 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
9815                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
9816                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
9817                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
9818                      Optional<unsigned> FirstMaskArgument) {
9819   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
9820   assert(XLen == 32 || XLen == 64);
9821   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
9822 
9823   // Any return value split in to more than two values can't be returned
9824   // directly. Vectors are returned via the available vector registers.
9825   if (!LocVT.isVector() && IsRet && ValNo > 1)
9826     return true;
9827 
9828   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
9829   // variadic argument, or if no F16/F32 argument registers are available.
9830   bool UseGPRForF16_F32 = true;
9831   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
9832   // variadic argument, or if no F64 argument registers are available.
9833   bool UseGPRForF64 = true;
9834 
9835   switch (ABI) {
9836   default:
9837     llvm_unreachable("Unexpected ABI");
9838   case RISCVABI::ABI_ILP32:
9839   case RISCVABI::ABI_LP64:
9840     break;
9841   case RISCVABI::ABI_ILP32F:
9842   case RISCVABI::ABI_LP64F:
9843     UseGPRForF16_F32 = !IsFixed;
9844     break;
9845   case RISCVABI::ABI_ILP32D:
9846   case RISCVABI::ABI_LP64D:
9847     UseGPRForF16_F32 = !IsFixed;
9848     UseGPRForF64 = !IsFixed;
9849     break;
9850   }
9851 
9852   // FPR16, FPR32, and FPR64 alias each other.
9853   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
9854     UseGPRForF16_F32 = true;
9855     UseGPRForF64 = true;
9856   }
9857 
9858   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
9859   // similar local variables rather than directly checking against the target
9860   // ABI.
9861 
9862   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
9863     LocVT = XLenVT;
9864     LocInfo = CCValAssign::BCvt;
9865   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
9866     LocVT = MVT::i64;
9867     LocInfo = CCValAssign::BCvt;
9868   }
9869 
9870   // If this is a variadic argument, the RISC-V calling convention requires
9871   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
9872   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
9873   // be used regardless of whether the original argument was split during
9874   // legalisation or not. The argument will not be passed by registers if the
9875   // original type is larger than 2*XLEN, so the register alignment rule does
9876   // not apply.
9877   unsigned TwoXLenInBytes = (2 * XLen) / 8;
9878   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
9879       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
9880     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
9881     // Skip 'odd' register if necessary.
9882     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
9883       State.AllocateReg(ArgGPRs);
9884   }
9885 
9886   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
9887   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
9888       State.getPendingArgFlags();
9889 
9890   assert(PendingLocs.size() == PendingArgFlags.size() &&
9891          "PendingLocs and PendingArgFlags out of sync");
9892 
9893   // Handle passing f64 on RV32D with a soft float ABI or when floating point
9894   // registers are exhausted.
9895   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
9896     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
9897            "Can't lower f64 if it is split");
9898     // Depending on available argument GPRS, f64 may be passed in a pair of
9899     // GPRs, split between a GPR and the stack, or passed completely on the
9900     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
9901     // cases.
9902     Register Reg = State.AllocateReg(ArgGPRs);
9903     LocVT = MVT::i32;
9904     if (!Reg) {
9905       unsigned StackOffset = State.AllocateStack(8, Align(8));
9906       State.addLoc(
9907           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9908       return false;
9909     }
9910     if (!State.AllocateReg(ArgGPRs))
9911       State.AllocateStack(4, Align(4));
9912     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9913     return false;
9914   }
9915 
9916   // Fixed-length vectors are located in the corresponding scalable-vector
9917   // container types.
9918   if (ValVT.isFixedLengthVector())
9919     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9920 
9921   // Split arguments might be passed indirectly, so keep track of the pending
9922   // values. Split vectors are passed via a mix of registers and indirectly, so
9923   // treat them as we would any other argument.
9924   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
9925     LocVT = XLenVT;
9926     LocInfo = CCValAssign::Indirect;
9927     PendingLocs.push_back(
9928         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
9929     PendingArgFlags.push_back(ArgFlags);
9930     if (!ArgFlags.isSplitEnd()) {
9931       return false;
9932     }
9933   }
9934 
9935   // If the split argument only had two elements, it should be passed directly
9936   // in registers or on the stack.
9937   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
9938       PendingLocs.size() <= 2) {
9939     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
9940     // Apply the normal calling convention rules to the first half of the
9941     // split argument.
9942     CCValAssign VA = PendingLocs[0];
9943     ISD::ArgFlagsTy AF = PendingArgFlags[0];
9944     PendingLocs.clear();
9945     PendingArgFlags.clear();
9946     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
9947                                ArgFlags);
9948   }
9949 
9950   // Allocate to a register if possible, or else a stack slot.
9951   Register Reg;
9952   unsigned StoreSizeBytes = XLen / 8;
9953   Align StackAlign = Align(XLen / 8);
9954 
9955   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
9956     Reg = State.AllocateReg(ArgFPR16s);
9957   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
9958     Reg = State.AllocateReg(ArgFPR32s);
9959   else if (ValVT == MVT::f64 && !UseGPRForF64)
9960     Reg = State.AllocateReg(ArgFPR64s);
9961   else if (ValVT.isVector()) {
9962     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
9963     if (!Reg) {
9964       // For return values, the vector must be passed fully via registers or
9965       // via the stack.
9966       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
9967       // but we're using all of them.
9968       if (IsRet)
9969         return true;
9970       // Try using a GPR to pass the address
9971       if ((Reg = State.AllocateReg(ArgGPRs))) {
9972         LocVT = XLenVT;
9973         LocInfo = CCValAssign::Indirect;
9974       } else if (ValVT.isScalableVector()) {
9975         LocVT = XLenVT;
9976         LocInfo = CCValAssign::Indirect;
9977       } else {
9978         // Pass fixed-length vectors on the stack.
9979         LocVT = ValVT;
9980         StoreSizeBytes = ValVT.getStoreSize();
9981         // Align vectors to their element sizes, being careful for vXi1
9982         // vectors.
9983         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9984       }
9985     }
9986   } else {
9987     Reg = State.AllocateReg(ArgGPRs);
9988   }
9989 
9990   unsigned StackOffset =
9991       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
9992 
9993   // If we reach this point and PendingLocs is non-empty, we must be at the
9994   // end of a split argument that must be passed indirectly.
9995   if (!PendingLocs.empty()) {
9996     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
9997     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
9998 
9999     for (auto &It : PendingLocs) {
10000       if (Reg)
10001         It.convertToReg(Reg);
10002       else
10003         It.convertToMem(StackOffset);
10004       State.addLoc(It);
10005     }
10006     PendingLocs.clear();
10007     PendingArgFlags.clear();
10008     return false;
10009   }
10010 
10011   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
10012           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
10013          "Expected an XLenVT or vector types at this stage");
10014 
10015   if (Reg) {
10016     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10017     return false;
10018   }
10019 
10020   // When a floating-point value is passed on the stack, no bit-conversion is
10021   // needed.
10022   if (ValVT.isFloatingPoint()) {
10023     LocVT = ValVT;
10024     LocInfo = CCValAssign::Full;
10025   }
10026   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10027   return false;
10028 }
10029 
10030 template <typename ArgTy>
10031 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
10032   for (const auto &ArgIdx : enumerate(Args)) {
10033     MVT ArgVT = ArgIdx.value().VT;
10034     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
10035       return ArgIdx.index();
10036   }
10037   return None;
10038 }
10039 
10040 void RISCVTargetLowering::analyzeInputArgs(
10041     MachineFunction &MF, CCState &CCInfo,
10042     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
10043     RISCVCCAssignFn Fn) const {
10044   unsigned NumArgs = Ins.size();
10045   FunctionType *FType = MF.getFunction().getFunctionType();
10046 
10047   Optional<unsigned> FirstMaskArgument;
10048   if (Subtarget.hasVInstructions())
10049     FirstMaskArgument = preAssignMask(Ins);
10050 
10051   for (unsigned i = 0; i != NumArgs; ++i) {
10052     MVT ArgVT = Ins[i].VT;
10053     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
10054 
10055     Type *ArgTy = nullptr;
10056     if (IsRet)
10057       ArgTy = FType->getReturnType();
10058     else if (Ins[i].isOrigArg())
10059       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
10060 
10061     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10062     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
10063            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
10064            FirstMaskArgument)) {
10065       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
10066                         << EVT(ArgVT).getEVTString() << '\n');
10067       llvm_unreachable(nullptr);
10068     }
10069   }
10070 }
10071 
10072 void RISCVTargetLowering::analyzeOutputArgs(
10073     MachineFunction &MF, CCState &CCInfo,
10074     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
10075     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
10076   unsigned NumArgs = Outs.size();
10077 
10078   Optional<unsigned> FirstMaskArgument;
10079   if (Subtarget.hasVInstructions())
10080     FirstMaskArgument = preAssignMask(Outs);
10081 
10082   for (unsigned i = 0; i != NumArgs; i++) {
10083     MVT ArgVT = Outs[i].VT;
10084     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10085     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
10086 
10087     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10088     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
10089            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
10090            FirstMaskArgument)) {
10091       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
10092                         << EVT(ArgVT).getEVTString() << "\n");
10093       llvm_unreachable(nullptr);
10094     }
10095   }
10096 }
10097 
10098 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
10099 // values.
10100 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
10101                                    const CCValAssign &VA, const SDLoc &DL,
10102                                    const RISCVSubtarget &Subtarget) {
10103   switch (VA.getLocInfo()) {
10104   default:
10105     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10106   case CCValAssign::Full:
10107     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
10108       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
10109     break;
10110   case CCValAssign::BCvt:
10111     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
10112       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
10113     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
10114       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
10115     else
10116       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
10117     break;
10118   }
10119   return Val;
10120 }
10121 
10122 // The caller is responsible for loading the full value if the argument is
10123 // passed with CCValAssign::Indirect.
10124 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
10125                                 const CCValAssign &VA, const SDLoc &DL,
10126                                 const RISCVTargetLowering &TLI) {
10127   MachineFunction &MF = DAG.getMachineFunction();
10128   MachineRegisterInfo &RegInfo = MF.getRegInfo();
10129   EVT LocVT = VA.getLocVT();
10130   SDValue Val;
10131   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
10132   Register VReg = RegInfo.createVirtualRegister(RC);
10133   RegInfo.addLiveIn(VA.getLocReg(), VReg);
10134   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
10135 
10136   if (VA.getLocInfo() == CCValAssign::Indirect)
10137     return Val;
10138 
10139   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
10140 }
10141 
10142 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
10143                                    const CCValAssign &VA, const SDLoc &DL,
10144                                    const RISCVSubtarget &Subtarget) {
10145   EVT LocVT = VA.getLocVT();
10146 
10147   switch (VA.getLocInfo()) {
10148   default:
10149     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10150   case CCValAssign::Full:
10151     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
10152       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
10153     break;
10154   case CCValAssign::BCvt:
10155     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
10156       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
10157     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
10158       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
10159     else
10160       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
10161     break;
10162   }
10163   return Val;
10164 }
10165 
10166 // The caller is responsible for loading the full value if the argument is
10167 // passed with CCValAssign::Indirect.
10168 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
10169                                 const CCValAssign &VA, const SDLoc &DL) {
10170   MachineFunction &MF = DAG.getMachineFunction();
10171   MachineFrameInfo &MFI = MF.getFrameInfo();
10172   EVT LocVT = VA.getLocVT();
10173   EVT ValVT = VA.getValVT();
10174   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
10175   if (ValVT.isScalableVector()) {
10176     // When the value is a scalable vector, we save the pointer which points to
10177     // the scalable vector value in the stack. The ValVT will be the pointer
10178     // type, instead of the scalable vector type.
10179     ValVT = LocVT;
10180   }
10181   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
10182                                  /*IsImmutable=*/true);
10183   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
10184   SDValue Val;
10185 
10186   ISD::LoadExtType ExtType;
10187   switch (VA.getLocInfo()) {
10188   default:
10189     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10190   case CCValAssign::Full:
10191   case CCValAssign::Indirect:
10192   case CCValAssign::BCvt:
10193     ExtType = ISD::NON_EXTLOAD;
10194     break;
10195   }
10196   Val = DAG.getExtLoad(
10197       ExtType, DL, LocVT, Chain, FIN,
10198       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
10199   return Val;
10200 }
10201 
10202 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
10203                                        const CCValAssign &VA, const SDLoc &DL) {
10204   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
10205          "Unexpected VA");
10206   MachineFunction &MF = DAG.getMachineFunction();
10207   MachineFrameInfo &MFI = MF.getFrameInfo();
10208   MachineRegisterInfo &RegInfo = MF.getRegInfo();
10209 
10210   if (VA.isMemLoc()) {
10211     // f64 is passed on the stack.
10212     int FI =
10213         MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
10214     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
10215     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
10216                        MachinePointerInfo::getFixedStack(MF, FI));
10217   }
10218 
10219   assert(VA.isRegLoc() && "Expected register VA assignment");
10220 
10221   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
10222   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
10223   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
10224   SDValue Hi;
10225   if (VA.getLocReg() == RISCV::X17) {
10226     // Second half of f64 is passed on the stack.
10227     int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
10228     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
10229     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
10230                      MachinePointerInfo::getFixedStack(MF, FI));
10231   } else {
10232     // Second half of f64 is passed in another GPR.
10233     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
10234     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
10235     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
10236   }
10237   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
10238 }
10239 
10240 // FastCC has less than 1% performance improvement for some particular
10241 // benchmark. But theoretically, it may has benenfit for some cases.
10242 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
10243                             unsigned ValNo, MVT ValVT, MVT LocVT,
10244                             CCValAssign::LocInfo LocInfo,
10245                             ISD::ArgFlagsTy ArgFlags, CCState &State,
10246                             bool IsFixed, bool IsRet, Type *OrigTy,
10247                             const RISCVTargetLowering &TLI,
10248                             Optional<unsigned> FirstMaskArgument) {
10249 
10250   // X5 and X6 might be used for save-restore libcall.
10251   static const MCPhysReg GPRList[] = {
10252       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
10253       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
10254       RISCV::X29, RISCV::X30, RISCV::X31};
10255 
10256   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10257     if (unsigned Reg = State.AllocateReg(GPRList)) {
10258       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10259       return false;
10260     }
10261   }
10262 
10263   if (LocVT == MVT::f16) {
10264     static const MCPhysReg FPR16List[] = {
10265         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
10266         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
10267         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
10268         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
10269     if (unsigned Reg = State.AllocateReg(FPR16List)) {
10270       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10271       return false;
10272     }
10273   }
10274 
10275   if (LocVT == MVT::f32) {
10276     static const MCPhysReg FPR32List[] = {
10277         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
10278         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
10279         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
10280         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
10281     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10282       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10283       return false;
10284     }
10285   }
10286 
10287   if (LocVT == MVT::f64) {
10288     static const MCPhysReg FPR64List[] = {
10289         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
10290         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
10291         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
10292         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
10293     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10294       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10295       return false;
10296     }
10297   }
10298 
10299   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
10300     unsigned Offset4 = State.AllocateStack(4, Align(4));
10301     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
10302     return false;
10303   }
10304 
10305   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
10306     unsigned Offset5 = State.AllocateStack(8, Align(8));
10307     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
10308     return false;
10309   }
10310 
10311   if (LocVT.isVector()) {
10312     if (unsigned Reg =
10313             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
10314       // Fixed-length vectors are located in the corresponding scalable-vector
10315       // container types.
10316       if (ValVT.isFixedLengthVector())
10317         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
10318       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10319     } else {
10320       // Try and pass the address via a "fast" GPR.
10321       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
10322         LocInfo = CCValAssign::Indirect;
10323         LocVT = TLI.getSubtarget().getXLenVT();
10324         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
10325       } else if (ValVT.isFixedLengthVector()) {
10326         auto StackAlign =
10327             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
10328         unsigned StackOffset =
10329             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
10330         State.addLoc(
10331             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10332       } else {
10333         // Can't pass scalable vectors on the stack.
10334         return true;
10335       }
10336     }
10337 
10338     return false;
10339   }
10340 
10341   return true; // CC didn't match.
10342 }
10343 
10344 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
10345                          CCValAssign::LocInfo LocInfo,
10346                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
10347 
10348   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10349     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
10350     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
10351     static const MCPhysReg GPRList[] = {
10352         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
10353         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
10354     if (unsigned Reg = State.AllocateReg(GPRList)) {
10355       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10356       return false;
10357     }
10358   }
10359 
10360   if (LocVT == MVT::f32) {
10361     // Pass in STG registers: F1, ..., F6
10362     //                        fs0 ... fs5
10363     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
10364                                           RISCV::F18_F, RISCV::F19_F,
10365                                           RISCV::F20_F, RISCV::F21_F};
10366     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10367       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10368       return false;
10369     }
10370   }
10371 
10372   if (LocVT == MVT::f64) {
10373     // Pass in STG registers: D1, ..., D6
10374     //                        fs6 ... fs11
10375     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
10376                                           RISCV::F24_D, RISCV::F25_D,
10377                                           RISCV::F26_D, RISCV::F27_D};
10378     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10379       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10380       return false;
10381     }
10382   }
10383 
10384   report_fatal_error("No registers left in GHC calling convention");
10385   return true;
10386 }
10387 
10388 // Transform physical registers into virtual registers.
10389 SDValue RISCVTargetLowering::LowerFormalArguments(
10390     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
10391     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
10392     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
10393 
10394   MachineFunction &MF = DAG.getMachineFunction();
10395 
10396   switch (CallConv) {
10397   default:
10398     report_fatal_error("Unsupported calling convention");
10399   case CallingConv::C:
10400   case CallingConv::Fast:
10401     break;
10402   case CallingConv::GHC:
10403     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
10404         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
10405       report_fatal_error(
10406         "GHC calling convention requires the F and D instruction set extensions");
10407   }
10408 
10409   const Function &Func = MF.getFunction();
10410   if (Func.hasFnAttribute("interrupt")) {
10411     if (!Func.arg_empty())
10412       report_fatal_error(
10413         "Functions with the interrupt attribute cannot have arguments!");
10414 
10415     StringRef Kind =
10416       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10417 
10418     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
10419       report_fatal_error(
10420         "Function interrupt attribute argument not supported!");
10421   }
10422 
10423   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10424   MVT XLenVT = Subtarget.getXLenVT();
10425   unsigned XLenInBytes = Subtarget.getXLen() / 8;
10426   // Used with vargs to acumulate store chains.
10427   std::vector<SDValue> OutChains;
10428 
10429   // Assign locations to all of the incoming arguments.
10430   SmallVector<CCValAssign, 16> ArgLocs;
10431   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10432 
10433   if (CallConv == CallingConv::GHC)
10434     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
10435   else
10436     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
10437                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10438                                                    : CC_RISCV);
10439 
10440   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
10441     CCValAssign &VA = ArgLocs[i];
10442     SDValue ArgValue;
10443     // Passing f64 on RV32D with a soft float ABI must be handled as a special
10444     // case.
10445     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
10446       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
10447     else if (VA.isRegLoc())
10448       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
10449     else
10450       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
10451 
10452     if (VA.getLocInfo() == CCValAssign::Indirect) {
10453       // If the original argument was split and passed by reference (e.g. i128
10454       // on RV32), we need to load all parts of it here (using the same
10455       // address). Vectors may be partly split to registers and partly to the
10456       // stack, in which case the base address is partly offset and subsequent
10457       // stores are relative to that.
10458       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
10459                                    MachinePointerInfo()));
10460       unsigned ArgIndex = Ins[i].OrigArgIndex;
10461       unsigned ArgPartOffset = Ins[i].PartOffset;
10462       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10463       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
10464         CCValAssign &PartVA = ArgLocs[i + 1];
10465         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
10466         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10467         if (PartVA.getValVT().isScalableVector())
10468           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10469         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
10470         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
10471                                      MachinePointerInfo()));
10472         ++i;
10473       }
10474       continue;
10475     }
10476     InVals.push_back(ArgValue);
10477   }
10478 
10479   if (IsVarArg) {
10480     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
10481     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
10482     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
10483     MachineFrameInfo &MFI = MF.getFrameInfo();
10484     MachineRegisterInfo &RegInfo = MF.getRegInfo();
10485     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
10486 
10487     // Offset of the first variable argument from stack pointer, and size of
10488     // the vararg save area. For now, the varargs save area is either zero or
10489     // large enough to hold a0-a7.
10490     int VaArgOffset, VarArgsSaveSize;
10491 
10492     // If all registers are allocated, then all varargs must be passed on the
10493     // stack and we don't need to save any argregs.
10494     if (ArgRegs.size() == Idx) {
10495       VaArgOffset = CCInfo.getNextStackOffset();
10496       VarArgsSaveSize = 0;
10497     } else {
10498       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
10499       VaArgOffset = -VarArgsSaveSize;
10500     }
10501 
10502     // Record the frame index of the first variable argument
10503     // which is a value necessary to VASTART.
10504     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10505     RVFI->setVarArgsFrameIndex(FI);
10506 
10507     // If saving an odd number of registers then create an extra stack slot to
10508     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
10509     // offsets to even-numbered registered remain 2*XLEN-aligned.
10510     if (Idx % 2) {
10511       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
10512       VarArgsSaveSize += XLenInBytes;
10513     }
10514 
10515     // Copy the integer registers that may have been used for passing varargs
10516     // to the vararg save area.
10517     for (unsigned I = Idx; I < ArgRegs.size();
10518          ++I, VaArgOffset += XLenInBytes) {
10519       const Register Reg = RegInfo.createVirtualRegister(RC);
10520       RegInfo.addLiveIn(ArgRegs[I], Reg);
10521       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
10522       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10523       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10524       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
10525                                    MachinePointerInfo::getFixedStack(MF, FI));
10526       cast<StoreSDNode>(Store.getNode())
10527           ->getMemOperand()
10528           ->setValue((Value *)nullptr);
10529       OutChains.push_back(Store);
10530     }
10531     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
10532   }
10533 
10534   // All stores are grouped in one node to allow the matching between
10535   // the size of Ins and InVals. This only happens for vararg functions.
10536   if (!OutChains.empty()) {
10537     OutChains.push_back(Chain);
10538     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
10539   }
10540 
10541   return Chain;
10542 }
10543 
10544 /// isEligibleForTailCallOptimization - Check whether the call is eligible
10545 /// for tail call optimization.
10546 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
10547 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
10548     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
10549     const SmallVector<CCValAssign, 16> &ArgLocs) const {
10550 
10551   auto &Callee = CLI.Callee;
10552   auto CalleeCC = CLI.CallConv;
10553   auto &Outs = CLI.Outs;
10554   auto &Caller = MF.getFunction();
10555   auto CallerCC = Caller.getCallingConv();
10556 
10557   // Exception-handling functions need a special set of instructions to
10558   // indicate a return to the hardware. Tail-calling another function would
10559   // probably break this.
10560   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
10561   // should be expanded as new function attributes are introduced.
10562   if (Caller.hasFnAttribute("interrupt"))
10563     return false;
10564 
10565   // Do not tail call opt if the stack is used to pass parameters.
10566   if (CCInfo.getNextStackOffset() != 0)
10567     return false;
10568 
10569   // Do not tail call opt if any parameters need to be passed indirectly.
10570   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
10571   // passed indirectly. So the address of the value will be passed in a
10572   // register, or if not available, then the address is put on the stack. In
10573   // order to pass indirectly, space on the stack often needs to be allocated
10574   // in order to store the value. In this case the CCInfo.getNextStackOffset()
10575   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
10576   // are passed CCValAssign::Indirect.
10577   for (auto &VA : ArgLocs)
10578     if (VA.getLocInfo() == CCValAssign::Indirect)
10579       return false;
10580 
10581   // Do not tail call opt if either caller or callee uses struct return
10582   // semantics.
10583   auto IsCallerStructRet = Caller.hasStructRetAttr();
10584   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
10585   if (IsCallerStructRet || IsCalleeStructRet)
10586     return false;
10587 
10588   // Externally-defined functions with weak linkage should not be
10589   // tail-called. The behaviour of branch instructions in this situation (as
10590   // used for tail calls) is implementation-defined, so we cannot rely on the
10591   // linker replacing the tail call with a return.
10592   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
10593     const GlobalValue *GV = G->getGlobal();
10594     if (GV->hasExternalWeakLinkage())
10595       return false;
10596   }
10597 
10598   // The callee has to preserve all registers the caller needs to preserve.
10599   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
10600   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
10601   if (CalleeCC != CallerCC) {
10602     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
10603     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
10604       return false;
10605   }
10606 
10607   // Byval parameters hand the function a pointer directly into the stack area
10608   // we want to reuse during a tail call. Working around this *is* possible
10609   // but less efficient and uglier in LowerCall.
10610   for (auto &Arg : Outs)
10611     if (Arg.Flags.isByVal())
10612       return false;
10613 
10614   return true;
10615 }
10616 
10617 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
10618   return DAG.getDataLayout().getPrefTypeAlign(
10619       VT.getTypeForEVT(*DAG.getContext()));
10620 }
10621 
10622 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
10623 // and output parameter nodes.
10624 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
10625                                        SmallVectorImpl<SDValue> &InVals) const {
10626   SelectionDAG &DAG = CLI.DAG;
10627   SDLoc &DL = CLI.DL;
10628   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
10629   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
10630   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
10631   SDValue Chain = CLI.Chain;
10632   SDValue Callee = CLI.Callee;
10633   bool &IsTailCall = CLI.IsTailCall;
10634   CallingConv::ID CallConv = CLI.CallConv;
10635   bool IsVarArg = CLI.IsVarArg;
10636   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10637   MVT XLenVT = Subtarget.getXLenVT();
10638 
10639   MachineFunction &MF = DAG.getMachineFunction();
10640 
10641   // Analyze the operands of the call, assigning locations to each operand.
10642   SmallVector<CCValAssign, 16> ArgLocs;
10643   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10644 
10645   if (CallConv == CallingConv::GHC)
10646     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
10647   else
10648     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
10649                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10650                                                     : CC_RISCV);
10651 
10652   // Check if it's really possible to do a tail call.
10653   if (IsTailCall)
10654     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
10655 
10656   if (IsTailCall)
10657     ++NumTailCalls;
10658   else if (CLI.CB && CLI.CB->isMustTailCall())
10659     report_fatal_error("failed to perform tail call elimination on a call "
10660                        "site marked musttail");
10661 
10662   // Get a count of how many bytes are to be pushed on the stack.
10663   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
10664 
10665   // Create local copies for byval args
10666   SmallVector<SDValue, 8> ByValArgs;
10667   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10668     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10669     if (!Flags.isByVal())
10670       continue;
10671 
10672     SDValue Arg = OutVals[i];
10673     unsigned Size = Flags.getByValSize();
10674     Align Alignment = Flags.getNonZeroByValAlign();
10675 
10676     int FI =
10677         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
10678     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10679     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
10680 
10681     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
10682                           /*IsVolatile=*/false,
10683                           /*AlwaysInline=*/false, IsTailCall,
10684                           MachinePointerInfo(), MachinePointerInfo());
10685     ByValArgs.push_back(FIPtr);
10686   }
10687 
10688   if (!IsTailCall)
10689     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
10690 
10691   // Copy argument values to their designated locations.
10692   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
10693   SmallVector<SDValue, 8> MemOpChains;
10694   SDValue StackPtr;
10695   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
10696     CCValAssign &VA = ArgLocs[i];
10697     SDValue ArgValue = OutVals[i];
10698     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10699 
10700     // Handle passing f64 on RV32D with a soft float ABI as a special case.
10701     bool IsF64OnRV32DSoftABI =
10702         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
10703     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
10704       SDValue SplitF64 = DAG.getNode(
10705           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
10706       SDValue Lo = SplitF64.getValue(0);
10707       SDValue Hi = SplitF64.getValue(1);
10708 
10709       Register RegLo = VA.getLocReg();
10710       RegsToPass.push_back(std::make_pair(RegLo, Lo));
10711 
10712       if (RegLo == RISCV::X17) {
10713         // Second half of f64 is passed on the stack.
10714         // Work out the address of the stack slot.
10715         if (!StackPtr.getNode())
10716           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10717         // Emit the store.
10718         MemOpChains.push_back(
10719             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
10720       } else {
10721         // Second half of f64 is passed in another GPR.
10722         assert(RegLo < RISCV::X31 && "Invalid register pair");
10723         Register RegHigh = RegLo + 1;
10724         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
10725       }
10726       continue;
10727     }
10728 
10729     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
10730     // as any other MemLoc.
10731 
10732     // Promote the value if needed.
10733     // For now, only handle fully promoted and indirect arguments.
10734     if (VA.getLocInfo() == CCValAssign::Indirect) {
10735       // Store the argument in a stack slot and pass its address.
10736       Align StackAlign =
10737           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
10738                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
10739       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
10740       // If the original argument was split (e.g. i128), we need
10741       // to store the required parts of it here (and pass just one address).
10742       // Vectors may be partly split to registers and partly to the stack, in
10743       // which case the base address is partly offset and subsequent stores are
10744       // relative to that.
10745       unsigned ArgIndex = Outs[i].OrigArgIndex;
10746       unsigned ArgPartOffset = Outs[i].PartOffset;
10747       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10748       // Calculate the total size to store. We don't have access to what we're
10749       // actually storing other than performing the loop and collecting the
10750       // info.
10751       SmallVector<std::pair<SDValue, SDValue>> Parts;
10752       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
10753         SDValue PartValue = OutVals[i + 1];
10754         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
10755         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10756         EVT PartVT = PartValue.getValueType();
10757         if (PartVT.isScalableVector())
10758           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10759         StoredSize += PartVT.getStoreSize();
10760         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
10761         Parts.push_back(std::make_pair(PartValue, Offset));
10762         ++i;
10763       }
10764       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
10765       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
10766       MemOpChains.push_back(
10767           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
10768                        MachinePointerInfo::getFixedStack(MF, FI)));
10769       for (const auto &Part : Parts) {
10770         SDValue PartValue = Part.first;
10771         SDValue PartOffset = Part.second;
10772         SDValue Address =
10773             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
10774         MemOpChains.push_back(
10775             DAG.getStore(Chain, DL, PartValue, Address,
10776                          MachinePointerInfo::getFixedStack(MF, FI)));
10777       }
10778       ArgValue = SpillSlot;
10779     } else {
10780       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
10781     }
10782 
10783     // Use local copy if it is a byval arg.
10784     if (Flags.isByVal())
10785       ArgValue = ByValArgs[j++];
10786 
10787     if (VA.isRegLoc()) {
10788       // Queue up the argument copies and emit them at the end.
10789       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
10790     } else {
10791       assert(VA.isMemLoc() && "Argument not register or memory");
10792       assert(!IsTailCall && "Tail call not allowed if stack is used "
10793                             "for passing parameters");
10794 
10795       // Work out the address of the stack slot.
10796       if (!StackPtr.getNode())
10797         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10798       SDValue Address =
10799           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
10800                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
10801 
10802       // Emit the store.
10803       MemOpChains.push_back(
10804           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
10805     }
10806   }
10807 
10808   // Join the stores, which are independent of one another.
10809   if (!MemOpChains.empty())
10810     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
10811 
10812   SDValue Glue;
10813 
10814   // Build a sequence of copy-to-reg nodes, chained and glued together.
10815   for (auto &Reg : RegsToPass) {
10816     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
10817     Glue = Chain.getValue(1);
10818   }
10819 
10820   // Validate that none of the argument registers have been marked as
10821   // reserved, if so report an error. Do the same for the return address if this
10822   // is not a tailcall.
10823   validateCCReservedRegs(RegsToPass, MF);
10824   if (!IsTailCall &&
10825       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
10826     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10827         MF.getFunction(),
10828         "Return address register required, but has been reserved."});
10829 
10830   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
10831   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
10832   // split it and then direct call can be matched by PseudoCALL.
10833   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
10834     const GlobalValue *GV = S->getGlobal();
10835 
10836     unsigned OpFlags = RISCVII::MO_CALL;
10837     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
10838       OpFlags = RISCVII::MO_PLT;
10839 
10840     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
10841   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
10842     unsigned OpFlags = RISCVII::MO_CALL;
10843 
10844     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
10845                                                  nullptr))
10846       OpFlags = RISCVII::MO_PLT;
10847 
10848     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
10849   }
10850 
10851   // The first call operand is the chain and the second is the target address.
10852   SmallVector<SDValue, 8> Ops;
10853   Ops.push_back(Chain);
10854   Ops.push_back(Callee);
10855 
10856   // Add argument registers to the end of the list so that they are
10857   // known live into the call.
10858   for (auto &Reg : RegsToPass)
10859     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
10860 
10861   if (!IsTailCall) {
10862     // Add a register mask operand representing the call-preserved registers.
10863     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
10864     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
10865     assert(Mask && "Missing call preserved mask for calling convention");
10866     Ops.push_back(DAG.getRegisterMask(Mask));
10867   }
10868 
10869   // Glue the call to the argument copies, if any.
10870   if (Glue.getNode())
10871     Ops.push_back(Glue);
10872 
10873   // Emit the call.
10874   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10875 
10876   if (IsTailCall) {
10877     MF.getFrameInfo().setHasTailCall();
10878     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
10879   }
10880 
10881   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
10882   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
10883   Glue = Chain.getValue(1);
10884 
10885   // Mark the end of the call, which is glued to the call itself.
10886   Chain = DAG.getCALLSEQ_END(Chain,
10887                              DAG.getConstant(NumBytes, DL, PtrVT, true),
10888                              DAG.getConstant(0, DL, PtrVT, true),
10889                              Glue, DL);
10890   Glue = Chain.getValue(1);
10891 
10892   // Assign locations to each value returned by this call.
10893   SmallVector<CCValAssign, 16> RVLocs;
10894   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
10895   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
10896 
10897   // Copy all of the result registers out of their specified physreg.
10898   for (auto &VA : RVLocs) {
10899     // Copy the value out
10900     SDValue RetValue =
10901         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
10902     // Glue the RetValue to the end of the call sequence
10903     Chain = RetValue.getValue(1);
10904     Glue = RetValue.getValue(2);
10905 
10906     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10907       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
10908       SDValue RetValue2 =
10909           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
10910       Chain = RetValue2.getValue(1);
10911       Glue = RetValue2.getValue(2);
10912       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
10913                              RetValue2);
10914     }
10915 
10916     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
10917 
10918     InVals.push_back(RetValue);
10919   }
10920 
10921   return Chain;
10922 }
10923 
10924 bool RISCVTargetLowering::CanLowerReturn(
10925     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
10926     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
10927   SmallVector<CCValAssign, 16> RVLocs;
10928   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
10929 
10930   Optional<unsigned> FirstMaskArgument;
10931   if (Subtarget.hasVInstructions())
10932     FirstMaskArgument = preAssignMask(Outs);
10933 
10934   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10935     MVT VT = Outs[i].VT;
10936     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10937     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10938     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
10939                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
10940                  *this, FirstMaskArgument))
10941       return false;
10942   }
10943   return true;
10944 }
10945 
10946 SDValue
10947 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
10948                                  bool IsVarArg,
10949                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
10950                                  const SmallVectorImpl<SDValue> &OutVals,
10951                                  const SDLoc &DL, SelectionDAG &DAG) const {
10952   const MachineFunction &MF = DAG.getMachineFunction();
10953   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10954 
10955   // Stores the assignment of the return value to a location.
10956   SmallVector<CCValAssign, 16> RVLocs;
10957 
10958   // Info about the registers and stack slot.
10959   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
10960                  *DAG.getContext());
10961 
10962   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
10963                     nullptr, CC_RISCV);
10964 
10965   if (CallConv == CallingConv::GHC && !RVLocs.empty())
10966     report_fatal_error("GHC functions return void only");
10967 
10968   SDValue Glue;
10969   SmallVector<SDValue, 4> RetOps(1, Chain);
10970 
10971   // Copy the result values into the output registers.
10972   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
10973     SDValue Val = OutVals[i];
10974     CCValAssign &VA = RVLocs[i];
10975     assert(VA.isRegLoc() && "Can only return in registers!");
10976 
10977     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10978       // Handle returning f64 on RV32D with a soft float ABI.
10979       assert(VA.isRegLoc() && "Expected return via registers");
10980       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
10981                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
10982       SDValue Lo = SplitF64.getValue(0);
10983       SDValue Hi = SplitF64.getValue(1);
10984       Register RegLo = VA.getLocReg();
10985       assert(RegLo < RISCV::X31 && "Invalid register pair");
10986       Register RegHi = RegLo + 1;
10987 
10988       if (STI.isRegisterReservedByUser(RegLo) ||
10989           STI.isRegisterReservedByUser(RegHi))
10990         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10991             MF.getFunction(),
10992             "Return value register required, but has been reserved."});
10993 
10994       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
10995       Glue = Chain.getValue(1);
10996       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
10997       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
10998       Glue = Chain.getValue(1);
10999       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
11000     } else {
11001       // Handle a 'normal' return.
11002       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
11003       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
11004 
11005       if (STI.isRegisterReservedByUser(VA.getLocReg()))
11006         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
11007             MF.getFunction(),
11008             "Return value register required, but has been reserved."});
11009 
11010       // Guarantee that all emitted copies are stuck together.
11011       Glue = Chain.getValue(1);
11012       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
11013     }
11014   }
11015 
11016   RetOps[0] = Chain; // Update chain.
11017 
11018   // Add the glue node if we have it.
11019   if (Glue.getNode()) {
11020     RetOps.push_back(Glue);
11021   }
11022 
11023   unsigned RetOpc = RISCVISD::RET_FLAG;
11024   // Interrupt service routines use different return instructions.
11025   const Function &Func = DAG.getMachineFunction().getFunction();
11026   if (Func.hasFnAttribute("interrupt")) {
11027     if (!Func.getReturnType()->isVoidTy())
11028       report_fatal_error(
11029           "Functions with the interrupt attribute must have void return type!");
11030 
11031     MachineFunction &MF = DAG.getMachineFunction();
11032     StringRef Kind =
11033       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
11034 
11035     if (Kind == "user")
11036       RetOpc = RISCVISD::URET_FLAG;
11037     else if (Kind == "supervisor")
11038       RetOpc = RISCVISD::SRET_FLAG;
11039     else
11040       RetOpc = RISCVISD::MRET_FLAG;
11041   }
11042 
11043   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
11044 }
11045 
11046 void RISCVTargetLowering::validateCCReservedRegs(
11047     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
11048     MachineFunction &MF) const {
11049   const Function &F = MF.getFunction();
11050   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
11051 
11052   if (llvm::any_of(Regs, [&STI](auto Reg) {
11053         return STI.isRegisterReservedByUser(Reg.first);
11054       }))
11055     F.getContext().diagnose(DiagnosticInfoUnsupported{
11056         F, "Argument register required, but has been reserved."});
11057 }
11058 
11059 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
11060   return CI->isTailCall();
11061 }
11062 
11063 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
11064 #define NODE_NAME_CASE(NODE)                                                   \
11065   case RISCVISD::NODE:                                                         \
11066     return "RISCVISD::" #NODE;
11067   // clang-format off
11068   switch ((RISCVISD::NodeType)Opcode) {
11069   case RISCVISD::FIRST_NUMBER:
11070     break;
11071   NODE_NAME_CASE(RET_FLAG)
11072   NODE_NAME_CASE(URET_FLAG)
11073   NODE_NAME_CASE(SRET_FLAG)
11074   NODE_NAME_CASE(MRET_FLAG)
11075   NODE_NAME_CASE(CALL)
11076   NODE_NAME_CASE(SELECT_CC)
11077   NODE_NAME_CASE(BR_CC)
11078   NODE_NAME_CASE(BuildPairF64)
11079   NODE_NAME_CASE(SplitF64)
11080   NODE_NAME_CASE(TAIL)
11081   NODE_NAME_CASE(MULHSU)
11082   NODE_NAME_CASE(SLLW)
11083   NODE_NAME_CASE(SRAW)
11084   NODE_NAME_CASE(SRLW)
11085   NODE_NAME_CASE(DIVW)
11086   NODE_NAME_CASE(DIVUW)
11087   NODE_NAME_CASE(REMUW)
11088   NODE_NAME_CASE(ROLW)
11089   NODE_NAME_CASE(RORW)
11090   NODE_NAME_CASE(CLZW)
11091   NODE_NAME_CASE(CTZW)
11092   NODE_NAME_CASE(FSLW)
11093   NODE_NAME_CASE(FSRW)
11094   NODE_NAME_CASE(FSL)
11095   NODE_NAME_CASE(FSR)
11096   NODE_NAME_CASE(FMV_H_X)
11097   NODE_NAME_CASE(FMV_X_ANYEXTH)
11098   NODE_NAME_CASE(FMV_X_SIGNEXTH)
11099   NODE_NAME_CASE(FMV_W_X_RV64)
11100   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
11101   NODE_NAME_CASE(FCVT_X)
11102   NODE_NAME_CASE(FCVT_XU)
11103   NODE_NAME_CASE(FCVT_W_RV64)
11104   NODE_NAME_CASE(FCVT_WU_RV64)
11105   NODE_NAME_CASE(STRICT_FCVT_W_RV64)
11106   NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
11107   NODE_NAME_CASE(READ_CYCLE_WIDE)
11108   NODE_NAME_CASE(GREV)
11109   NODE_NAME_CASE(GREVW)
11110   NODE_NAME_CASE(GORC)
11111   NODE_NAME_CASE(GORCW)
11112   NODE_NAME_CASE(SHFL)
11113   NODE_NAME_CASE(SHFLW)
11114   NODE_NAME_CASE(UNSHFL)
11115   NODE_NAME_CASE(UNSHFLW)
11116   NODE_NAME_CASE(BFP)
11117   NODE_NAME_CASE(BFPW)
11118   NODE_NAME_CASE(BCOMPRESS)
11119   NODE_NAME_CASE(BCOMPRESSW)
11120   NODE_NAME_CASE(BDECOMPRESS)
11121   NODE_NAME_CASE(BDECOMPRESSW)
11122   NODE_NAME_CASE(VMV_V_X_VL)
11123   NODE_NAME_CASE(VFMV_V_F_VL)
11124   NODE_NAME_CASE(VMV_X_S)
11125   NODE_NAME_CASE(VMV_S_X_VL)
11126   NODE_NAME_CASE(VFMV_S_F_VL)
11127   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
11128   NODE_NAME_CASE(READ_VLENB)
11129   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
11130   NODE_NAME_CASE(VSLIDEUP_VL)
11131   NODE_NAME_CASE(VSLIDE1UP_VL)
11132   NODE_NAME_CASE(VSLIDEDOWN_VL)
11133   NODE_NAME_CASE(VSLIDE1DOWN_VL)
11134   NODE_NAME_CASE(VID_VL)
11135   NODE_NAME_CASE(VFNCVT_ROD_VL)
11136   NODE_NAME_CASE(VECREDUCE_ADD_VL)
11137   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
11138   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
11139   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
11140   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
11141   NODE_NAME_CASE(VECREDUCE_AND_VL)
11142   NODE_NAME_CASE(VECREDUCE_OR_VL)
11143   NODE_NAME_CASE(VECREDUCE_XOR_VL)
11144   NODE_NAME_CASE(VECREDUCE_FADD_VL)
11145   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
11146   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
11147   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
11148   NODE_NAME_CASE(ADD_VL)
11149   NODE_NAME_CASE(AND_VL)
11150   NODE_NAME_CASE(MUL_VL)
11151   NODE_NAME_CASE(OR_VL)
11152   NODE_NAME_CASE(SDIV_VL)
11153   NODE_NAME_CASE(SHL_VL)
11154   NODE_NAME_CASE(SREM_VL)
11155   NODE_NAME_CASE(SRA_VL)
11156   NODE_NAME_CASE(SRL_VL)
11157   NODE_NAME_CASE(SUB_VL)
11158   NODE_NAME_CASE(UDIV_VL)
11159   NODE_NAME_CASE(UREM_VL)
11160   NODE_NAME_CASE(XOR_VL)
11161   NODE_NAME_CASE(SADDSAT_VL)
11162   NODE_NAME_CASE(UADDSAT_VL)
11163   NODE_NAME_CASE(SSUBSAT_VL)
11164   NODE_NAME_CASE(USUBSAT_VL)
11165   NODE_NAME_CASE(FADD_VL)
11166   NODE_NAME_CASE(FSUB_VL)
11167   NODE_NAME_CASE(FMUL_VL)
11168   NODE_NAME_CASE(FDIV_VL)
11169   NODE_NAME_CASE(FNEG_VL)
11170   NODE_NAME_CASE(FABS_VL)
11171   NODE_NAME_CASE(FSQRT_VL)
11172   NODE_NAME_CASE(FMA_VL)
11173   NODE_NAME_CASE(FCOPYSIGN_VL)
11174   NODE_NAME_CASE(SMIN_VL)
11175   NODE_NAME_CASE(SMAX_VL)
11176   NODE_NAME_CASE(UMIN_VL)
11177   NODE_NAME_CASE(UMAX_VL)
11178   NODE_NAME_CASE(FMINNUM_VL)
11179   NODE_NAME_CASE(FMAXNUM_VL)
11180   NODE_NAME_CASE(MULHS_VL)
11181   NODE_NAME_CASE(MULHU_VL)
11182   NODE_NAME_CASE(FP_TO_SINT_VL)
11183   NODE_NAME_CASE(FP_TO_UINT_VL)
11184   NODE_NAME_CASE(SINT_TO_FP_VL)
11185   NODE_NAME_CASE(UINT_TO_FP_VL)
11186   NODE_NAME_CASE(FP_EXTEND_VL)
11187   NODE_NAME_CASE(FP_ROUND_VL)
11188   NODE_NAME_CASE(VWMUL_VL)
11189   NODE_NAME_CASE(VWMULU_VL)
11190   NODE_NAME_CASE(VWMULSU_VL)
11191   NODE_NAME_CASE(VWADD_VL)
11192   NODE_NAME_CASE(VWADDU_VL)
11193   NODE_NAME_CASE(VWSUB_VL)
11194   NODE_NAME_CASE(VWSUBU_VL)
11195   NODE_NAME_CASE(VWADD_W_VL)
11196   NODE_NAME_CASE(VWADDU_W_VL)
11197   NODE_NAME_CASE(VWSUB_W_VL)
11198   NODE_NAME_CASE(VWSUBU_W_VL)
11199   NODE_NAME_CASE(SETCC_VL)
11200   NODE_NAME_CASE(VSELECT_VL)
11201   NODE_NAME_CASE(VP_MERGE_VL)
11202   NODE_NAME_CASE(VMAND_VL)
11203   NODE_NAME_CASE(VMOR_VL)
11204   NODE_NAME_CASE(VMXOR_VL)
11205   NODE_NAME_CASE(VMCLR_VL)
11206   NODE_NAME_CASE(VMSET_VL)
11207   NODE_NAME_CASE(VRGATHER_VX_VL)
11208   NODE_NAME_CASE(VRGATHER_VV_VL)
11209   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
11210   NODE_NAME_CASE(VSEXT_VL)
11211   NODE_NAME_CASE(VZEXT_VL)
11212   NODE_NAME_CASE(VCPOP_VL)
11213   NODE_NAME_CASE(READ_CSR)
11214   NODE_NAME_CASE(WRITE_CSR)
11215   NODE_NAME_CASE(SWAP_CSR)
11216   }
11217   // clang-format on
11218   return nullptr;
11219 #undef NODE_NAME_CASE
11220 }
11221 
11222 /// getConstraintType - Given a constraint letter, return the type of
11223 /// constraint it is for this target.
11224 RISCVTargetLowering::ConstraintType
11225 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
11226   if (Constraint.size() == 1) {
11227     switch (Constraint[0]) {
11228     default:
11229       break;
11230     case 'f':
11231       return C_RegisterClass;
11232     case 'I':
11233     case 'J':
11234     case 'K':
11235       return C_Immediate;
11236     case 'A':
11237       return C_Memory;
11238     case 'S': // A symbolic address
11239       return C_Other;
11240     }
11241   } else {
11242     if (Constraint == "vr" || Constraint == "vm")
11243       return C_RegisterClass;
11244   }
11245   return TargetLowering::getConstraintType(Constraint);
11246 }
11247 
11248 std::pair<unsigned, const TargetRegisterClass *>
11249 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
11250                                                   StringRef Constraint,
11251                                                   MVT VT) const {
11252   // First, see if this is a constraint that directly corresponds to a
11253   // RISCV register class.
11254   if (Constraint.size() == 1) {
11255     switch (Constraint[0]) {
11256     case 'r':
11257       // TODO: Support fixed vectors up to XLen for P extension?
11258       if (VT.isVector())
11259         break;
11260       return std::make_pair(0U, &RISCV::GPRRegClass);
11261     case 'f':
11262       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
11263         return std::make_pair(0U, &RISCV::FPR16RegClass);
11264       if (Subtarget.hasStdExtF() && VT == MVT::f32)
11265         return std::make_pair(0U, &RISCV::FPR32RegClass);
11266       if (Subtarget.hasStdExtD() && VT == MVT::f64)
11267         return std::make_pair(0U, &RISCV::FPR64RegClass);
11268       break;
11269     default:
11270       break;
11271     }
11272   } else if (Constraint == "vr") {
11273     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
11274                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11275       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
11276         return std::make_pair(0U, RC);
11277     }
11278   } else if (Constraint == "vm") {
11279     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
11280       return std::make_pair(0U, &RISCV::VMV0RegClass);
11281   }
11282 
11283   // Clang will correctly decode the usage of register name aliases into their
11284   // official names. However, other frontends like `rustc` do not. This allows
11285   // users of these frontends to use the ABI names for registers in LLVM-style
11286   // register constraints.
11287   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
11288                                .Case("{zero}", RISCV::X0)
11289                                .Case("{ra}", RISCV::X1)
11290                                .Case("{sp}", RISCV::X2)
11291                                .Case("{gp}", RISCV::X3)
11292                                .Case("{tp}", RISCV::X4)
11293                                .Case("{t0}", RISCV::X5)
11294                                .Case("{t1}", RISCV::X6)
11295                                .Case("{t2}", RISCV::X7)
11296                                .Cases("{s0}", "{fp}", RISCV::X8)
11297                                .Case("{s1}", RISCV::X9)
11298                                .Case("{a0}", RISCV::X10)
11299                                .Case("{a1}", RISCV::X11)
11300                                .Case("{a2}", RISCV::X12)
11301                                .Case("{a3}", RISCV::X13)
11302                                .Case("{a4}", RISCV::X14)
11303                                .Case("{a5}", RISCV::X15)
11304                                .Case("{a6}", RISCV::X16)
11305                                .Case("{a7}", RISCV::X17)
11306                                .Case("{s2}", RISCV::X18)
11307                                .Case("{s3}", RISCV::X19)
11308                                .Case("{s4}", RISCV::X20)
11309                                .Case("{s5}", RISCV::X21)
11310                                .Case("{s6}", RISCV::X22)
11311                                .Case("{s7}", RISCV::X23)
11312                                .Case("{s8}", RISCV::X24)
11313                                .Case("{s9}", RISCV::X25)
11314                                .Case("{s10}", RISCV::X26)
11315                                .Case("{s11}", RISCV::X27)
11316                                .Case("{t3}", RISCV::X28)
11317                                .Case("{t4}", RISCV::X29)
11318                                .Case("{t5}", RISCV::X30)
11319                                .Case("{t6}", RISCV::X31)
11320                                .Default(RISCV::NoRegister);
11321   if (XRegFromAlias != RISCV::NoRegister)
11322     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
11323 
11324   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
11325   // TableGen record rather than the AsmName to choose registers for InlineAsm
11326   // constraints, plus we want to match those names to the widest floating point
11327   // register type available, manually select floating point registers here.
11328   //
11329   // The second case is the ABI name of the register, so that frontends can also
11330   // use the ABI names in register constraint lists.
11331   if (Subtarget.hasStdExtF()) {
11332     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
11333                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
11334                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
11335                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
11336                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
11337                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
11338                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
11339                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
11340                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
11341                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
11342                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
11343                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
11344                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
11345                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
11346                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
11347                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
11348                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
11349                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
11350                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
11351                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
11352                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
11353                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
11354                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
11355                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
11356                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
11357                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
11358                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
11359                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
11360                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
11361                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
11362                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
11363                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
11364                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
11365                         .Default(RISCV::NoRegister);
11366     if (FReg != RISCV::NoRegister) {
11367       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
11368       if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
11369         unsigned RegNo = FReg - RISCV::F0_F;
11370         unsigned DReg = RISCV::F0_D + RegNo;
11371         return std::make_pair(DReg, &RISCV::FPR64RegClass);
11372       }
11373       if (VT == MVT::f32 || VT == MVT::Other)
11374         return std::make_pair(FReg, &RISCV::FPR32RegClass);
11375       if (Subtarget.hasStdExtZfh() && VT == MVT::f16) {
11376         unsigned RegNo = FReg - RISCV::F0_F;
11377         unsigned HReg = RISCV::F0_H + RegNo;
11378         return std::make_pair(HReg, &RISCV::FPR16RegClass);
11379       }
11380     }
11381   }
11382 
11383   if (Subtarget.hasVInstructions()) {
11384     Register VReg = StringSwitch<Register>(Constraint.lower())
11385                         .Case("{v0}", RISCV::V0)
11386                         .Case("{v1}", RISCV::V1)
11387                         .Case("{v2}", RISCV::V2)
11388                         .Case("{v3}", RISCV::V3)
11389                         .Case("{v4}", RISCV::V4)
11390                         .Case("{v5}", RISCV::V5)
11391                         .Case("{v6}", RISCV::V6)
11392                         .Case("{v7}", RISCV::V7)
11393                         .Case("{v8}", RISCV::V8)
11394                         .Case("{v9}", RISCV::V9)
11395                         .Case("{v10}", RISCV::V10)
11396                         .Case("{v11}", RISCV::V11)
11397                         .Case("{v12}", RISCV::V12)
11398                         .Case("{v13}", RISCV::V13)
11399                         .Case("{v14}", RISCV::V14)
11400                         .Case("{v15}", RISCV::V15)
11401                         .Case("{v16}", RISCV::V16)
11402                         .Case("{v17}", RISCV::V17)
11403                         .Case("{v18}", RISCV::V18)
11404                         .Case("{v19}", RISCV::V19)
11405                         .Case("{v20}", RISCV::V20)
11406                         .Case("{v21}", RISCV::V21)
11407                         .Case("{v22}", RISCV::V22)
11408                         .Case("{v23}", RISCV::V23)
11409                         .Case("{v24}", RISCV::V24)
11410                         .Case("{v25}", RISCV::V25)
11411                         .Case("{v26}", RISCV::V26)
11412                         .Case("{v27}", RISCV::V27)
11413                         .Case("{v28}", RISCV::V28)
11414                         .Case("{v29}", RISCV::V29)
11415                         .Case("{v30}", RISCV::V30)
11416                         .Case("{v31}", RISCV::V31)
11417                         .Default(RISCV::NoRegister);
11418     if (VReg != RISCV::NoRegister) {
11419       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
11420         return std::make_pair(VReg, &RISCV::VMRegClass);
11421       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
11422         return std::make_pair(VReg, &RISCV::VRRegClass);
11423       for (const auto *RC :
11424            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11425         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
11426           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
11427           return std::make_pair(VReg, RC);
11428         }
11429       }
11430     }
11431   }
11432 
11433   std::pair<Register, const TargetRegisterClass *> Res =
11434       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11435 
11436   // If we picked one of the Zfinx register classes, remap it to the GPR class.
11437   // FIXME: When Zfinx is supported in CodeGen this will need to take the
11438   // Subtarget into account.
11439   if (Res.second == &RISCV::GPRF16RegClass ||
11440       Res.second == &RISCV::GPRF32RegClass ||
11441       Res.second == &RISCV::GPRF64RegClass)
11442     return std::make_pair(Res.first, &RISCV::GPRRegClass);
11443 
11444   return Res;
11445 }
11446 
11447 unsigned
11448 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
11449   // Currently only support length 1 constraints.
11450   if (ConstraintCode.size() == 1) {
11451     switch (ConstraintCode[0]) {
11452     case 'A':
11453       return InlineAsm::Constraint_A;
11454     default:
11455       break;
11456     }
11457   }
11458 
11459   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
11460 }
11461 
11462 void RISCVTargetLowering::LowerAsmOperandForConstraint(
11463     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
11464     SelectionDAG &DAG) const {
11465   // Currently only support length 1 constraints.
11466   if (Constraint.length() == 1) {
11467     switch (Constraint[0]) {
11468     case 'I':
11469       // Validate & create a 12-bit signed immediate operand.
11470       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11471         uint64_t CVal = C->getSExtValue();
11472         if (isInt<12>(CVal))
11473           Ops.push_back(
11474               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11475       }
11476       return;
11477     case 'J':
11478       // Validate & create an integer zero operand.
11479       if (auto *C = dyn_cast<ConstantSDNode>(Op))
11480         if (C->getZExtValue() == 0)
11481           Ops.push_back(
11482               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
11483       return;
11484     case 'K':
11485       // Validate & create a 5-bit unsigned immediate operand.
11486       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11487         uint64_t CVal = C->getZExtValue();
11488         if (isUInt<5>(CVal))
11489           Ops.push_back(
11490               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11491       }
11492       return;
11493     case 'S':
11494       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
11495         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
11496                                                  GA->getValueType(0)));
11497       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
11498         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
11499                                                 BA->getValueType(0)));
11500       }
11501       return;
11502     default:
11503       break;
11504     }
11505   }
11506   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11507 }
11508 
11509 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
11510                                                    Instruction *Inst,
11511                                                    AtomicOrdering Ord) const {
11512   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
11513     return Builder.CreateFence(Ord);
11514   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
11515     return Builder.CreateFence(AtomicOrdering::Release);
11516   return nullptr;
11517 }
11518 
11519 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
11520                                                     Instruction *Inst,
11521                                                     AtomicOrdering Ord) const {
11522   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
11523     return Builder.CreateFence(AtomicOrdering::Acquire);
11524   return nullptr;
11525 }
11526 
11527 TargetLowering::AtomicExpansionKind
11528 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
11529   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
11530   // point operations can't be used in an lr/sc sequence without breaking the
11531   // forward-progress guarantee.
11532   if (AI->isFloatingPointOperation())
11533     return AtomicExpansionKind::CmpXChg;
11534 
11535   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
11536   if (Size == 8 || Size == 16)
11537     return AtomicExpansionKind::MaskedIntrinsic;
11538   return AtomicExpansionKind::None;
11539 }
11540 
11541 static Intrinsic::ID
11542 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
11543   if (XLen == 32) {
11544     switch (BinOp) {
11545     default:
11546       llvm_unreachable("Unexpected AtomicRMW BinOp");
11547     case AtomicRMWInst::Xchg:
11548       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
11549     case AtomicRMWInst::Add:
11550       return Intrinsic::riscv_masked_atomicrmw_add_i32;
11551     case AtomicRMWInst::Sub:
11552       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
11553     case AtomicRMWInst::Nand:
11554       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
11555     case AtomicRMWInst::Max:
11556       return Intrinsic::riscv_masked_atomicrmw_max_i32;
11557     case AtomicRMWInst::Min:
11558       return Intrinsic::riscv_masked_atomicrmw_min_i32;
11559     case AtomicRMWInst::UMax:
11560       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
11561     case AtomicRMWInst::UMin:
11562       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
11563     }
11564   }
11565 
11566   if (XLen == 64) {
11567     switch (BinOp) {
11568     default:
11569       llvm_unreachable("Unexpected AtomicRMW BinOp");
11570     case AtomicRMWInst::Xchg:
11571       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
11572     case AtomicRMWInst::Add:
11573       return Intrinsic::riscv_masked_atomicrmw_add_i64;
11574     case AtomicRMWInst::Sub:
11575       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
11576     case AtomicRMWInst::Nand:
11577       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
11578     case AtomicRMWInst::Max:
11579       return Intrinsic::riscv_masked_atomicrmw_max_i64;
11580     case AtomicRMWInst::Min:
11581       return Intrinsic::riscv_masked_atomicrmw_min_i64;
11582     case AtomicRMWInst::UMax:
11583       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
11584     case AtomicRMWInst::UMin:
11585       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
11586     }
11587   }
11588 
11589   llvm_unreachable("Unexpected XLen\n");
11590 }
11591 
11592 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
11593     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
11594     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
11595   unsigned XLen = Subtarget.getXLen();
11596   Value *Ordering =
11597       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
11598   Type *Tys[] = {AlignedAddr->getType()};
11599   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
11600       AI->getModule(),
11601       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
11602 
11603   if (XLen == 64) {
11604     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
11605     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11606     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
11607   }
11608 
11609   Value *Result;
11610 
11611   // Must pass the shift amount needed to sign extend the loaded value prior
11612   // to performing a signed comparison for min/max. ShiftAmt is the number of
11613   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
11614   // is the number of bits to left+right shift the value in order to
11615   // sign-extend.
11616   if (AI->getOperation() == AtomicRMWInst::Min ||
11617       AI->getOperation() == AtomicRMWInst::Max) {
11618     const DataLayout &DL = AI->getModule()->getDataLayout();
11619     unsigned ValWidth =
11620         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
11621     Value *SextShamt =
11622         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
11623     Result = Builder.CreateCall(LrwOpScwLoop,
11624                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
11625   } else {
11626     Result =
11627         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
11628   }
11629 
11630   if (XLen == 64)
11631     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11632   return Result;
11633 }
11634 
11635 TargetLowering::AtomicExpansionKind
11636 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
11637     AtomicCmpXchgInst *CI) const {
11638   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
11639   if (Size == 8 || Size == 16)
11640     return AtomicExpansionKind::MaskedIntrinsic;
11641   return AtomicExpansionKind::None;
11642 }
11643 
11644 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
11645     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
11646     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
11647   unsigned XLen = Subtarget.getXLen();
11648   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
11649   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
11650   if (XLen == 64) {
11651     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
11652     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
11653     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11654     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
11655   }
11656   Type *Tys[] = {AlignedAddr->getType()};
11657   Function *MaskedCmpXchg =
11658       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
11659   Value *Result = Builder.CreateCall(
11660       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
11661   if (XLen == 64)
11662     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11663   return Result;
11664 }
11665 
11666 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
11667   return false;
11668 }
11669 
11670 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
11671                                                EVT VT) const {
11672   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
11673     return false;
11674 
11675   switch (FPVT.getSimpleVT().SimpleTy) {
11676   case MVT::f16:
11677     return Subtarget.hasStdExtZfh();
11678   case MVT::f32:
11679     return Subtarget.hasStdExtF();
11680   case MVT::f64:
11681     return Subtarget.hasStdExtD();
11682   default:
11683     return false;
11684   }
11685 }
11686 
11687 unsigned RISCVTargetLowering::getJumpTableEncoding() const {
11688   // If we are using the small code model, we can reduce size of jump table
11689   // entry to 4 bytes.
11690   if (Subtarget.is64Bit() && !isPositionIndependent() &&
11691       getTargetMachine().getCodeModel() == CodeModel::Small) {
11692     return MachineJumpTableInfo::EK_Custom32;
11693   }
11694   return TargetLowering::getJumpTableEncoding();
11695 }
11696 
11697 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
11698     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
11699     unsigned uid, MCContext &Ctx) const {
11700   assert(Subtarget.is64Bit() && !isPositionIndependent() &&
11701          getTargetMachine().getCodeModel() == CodeModel::Small);
11702   return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
11703 }
11704 
11705 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
11706                                                      EVT VT) const {
11707   VT = VT.getScalarType();
11708 
11709   if (!VT.isSimple())
11710     return false;
11711 
11712   switch (VT.getSimpleVT().SimpleTy) {
11713   case MVT::f16:
11714     return Subtarget.hasStdExtZfh();
11715   case MVT::f32:
11716     return Subtarget.hasStdExtF();
11717   case MVT::f64:
11718     return Subtarget.hasStdExtD();
11719   default:
11720     break;
11721   }
11722 
11723   return false;
11724 }
11725 
11726 Register RISCVTargetLowering::getExceptionPointerRegister(
11727     const Constant *PersonalityFn) const {
11728   return RISCV::X10;
11729 }
11730 
11731 Register RISCVTargetLowering::getExceptionSelectorRegister(
11732     const Constant *PersonalityFn) const {
11733   return RISCV::X11;
11734 }
11735 
11736 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
11737   // Return false to suppress the unnecessary extensions if the LibCall
11738   // arguments or return value is f32 type for LP64 ABI.
11739   RISCVABI::ABI ABI = Subtarget.getTargetABI();
11740   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
11741     return false;
11742 
11743   return true;
11744 }
11745 
11746 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
11747   if (Subtarget.is64Bit() && Type == MVT::i32)
11748     return true;
11749 
11750   return IsSigned;
11751 }
11752 
11753 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
11754                                                  SDValue C) const {
11755   // Check integral scalar types.
11756   if (VT.isScalarInteger()) {
11757     // Omit the optimization if the sub target has the M extension and the data
11758     // size exceeds XLen.
11759     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
11760       return false;
11761     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
11762       // Break the MUL to a SLLI and an ADD/SUB.
11763       const APInt &Imm = ConstNode->getAPIntValue();
11764       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
11765           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
11766         return true;
11767       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
11768       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
11769           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
11770            (Imm - 8).isPowerOf2()))
11771         return true;
11772       // Omit the following optimization if the sub target has the M extension
11773       // and the data size >= XLen.
11774       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
11775         return false;
11776       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
11777       // a pair of LUI/ADDI.
11778       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
11779         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
11780         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
11781             (1 - ImmS).isPowerOf2())
11782         return true;
11783       }
11784     }
11785   }
11786 
11787   return false;
11788 }
11789 
11790 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
11791                                                       SDValue ConstNode) const {
11792   // Let the DAGCombiner decide for vectors.
11793   EVT VT = AddNode.getValueType();
11794   if (VT.isVector())
11795     return true;
11796 
11797   // Let the DAGCombiner decide for larger types.
11798   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
11799     return true;
11800 
11801   // It is worse if c1 is simm12 while c1*c2 is not.
11802   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
11803   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
11804   const APInt &C1 = C1Node->getAPIntValue();
11805   const APInt &C2 = C2Node->getAPIntValue();
11806   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
11807     return false;
11808 
11809   // Default to true and let the DAGCombiner decide.
11810   return true;
11811 }
11812 
11813 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
11814     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
11815     bool *Fast) const {
11816   if (!VT.isVector())
11817     return false;
11818 
11819   EVT ElemVT = VT.getVectorElementType();
11820   if (Alignment >= ElemVT.getStoreSize()) {
11821     if (Fast)
11822       *Fast = true;
11823     return true;
11824   }
11825 
11826   return false;
11827 }
11828 
11829 bool RISCVTargetLowering::splitValueIntoRegisterParts(
11830     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
11831     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
11832   bool IsABIRegCopy = CC.hasValue();
11833   EVT ValueVT = Val.getValueType();
11834   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11835     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
11836     // and cast to f32.
11837     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
11838     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
11839     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
11840                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
11841     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
11842     Parts[0] = Val;
11843     return true;
11844   }
11845 
11846   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11847     LLVMContext &Context = *DAG.getContext();
11848     EVT ValueEltVT = ValueVT.getVectorElementType();
11849     EVT PartEltVT = PartVT.getVectorElementType();
11850     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11851     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11852     if (PartVTBitSize % ValueVTBitSize == 0) {
11853       assert(PartVTBitSize >= ValueVTBitSize);
11854       // If the element types are different, bitcast to the same element type of
11855       // PartVT first.
11856       // Give an example here, we want copy a <vscale x 1 x i8> value to
11857       // <vscale x 4 x i16>.
11858       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
11859       // subvector, then we can bitcast to <vscale x 4 x i16>.
11860       if (ValueEltVT != PartEltVT) {
11861         if (PartVTBitSize > ValueVTBitSize) {
11862           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11863           assert(Count != 0 && "The number of element should not be zero.");
11864           EVT SameEltTypeVT =
11865               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11866           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
11867                             DAG.getUNDEF(SameEltTypeVT), Val,
11868                             DAG.getVectorIdxConstant(0, DL));
11869         }
11870         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
11871       } else {
11872         Val =
11873             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
11874                         Val, DAG.getVectorIdxConstant(0, DL));
11875       }
11876       Parts[0] = Val;
11877       return true;
11878     }
11879   }
11880   return false;
11881 }
11882 
11883 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
11884     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
11885     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
11886   bool IsABIRegCopy = CC.hasValue();
11887   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11888     SDValue Val = Parts[0];
11889 
11890     // Cast the f32 to i32, truncate to i16, and cast back to f16.
11891     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
11892     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
11893     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
11894     return Val;
11895   }
11896 
11897   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11898     LLVMContext &Context = *DAG.getContext();
11899     SDValue Val = Parts[0];
11900     EVT ValueEltVT = ValueVT.getVectorElementType();
11901     EVT PartEltVT = PartVT.getVectorElementType();
11902     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11903     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11904     if (PartVTBitSize % ValueVTBitSize == 0) {
11905       assert(PartVTBitSize >= ValueVTBitSize);
11906       EVT SameEltTypeVT = ValueVT;
11907       // If the element types are different, convert it to the same element type
11908       // of PartVT.
11909       // Give an example here, we want copy a <vscale x 1 x i8> value from
11910       // <vscale x 4 x i16>.
11911       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
11912       // then we can extract <vscale x 1 x i8>.
11913       if (ValueEltVT != PartEltVT) {
11914         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11915         assert(Count != 0 && "The number of element should not be zero.");
11916         SameEltTypeVT =
11917             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11918         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
11919       }
11920       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
11921                         DAG.getVectorIdxConstant(0, DL));
11922       return Val;
11923     }
11924   }
11925   return SDValue();
11926 }
11927 
11928 SDValue
11929 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
11930                                    SelectionDAG &DAG,
11931                                    SmallVectorImpl<SDNode *> &Created) const {
11932   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
11933   if (isIntDivCheap(N->getValueType(0), Attr))
11934     return SDValue(N, 0); // Lower SDIV as SDIV
11935 
11936   assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) &&
11937          "Unexpected divisor!");
11938 
11939   // Conditional move is needed, so do the transformation iff Zbt is enabled.
11940   if (!Subtarget.hasStdExtZbt())
11941     return SDValue();
11942 
11943   // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation.
11944   // Besides, more critical path instructions will be generated when dividing
11945   // by 2. So we keep using the original DAGs for these cases.
11946   unsigned Lg2 = Divisor.countTrailingZeros();
11947   if (Lg2 == 1 || Lg2 >= 12)
11948     return SDValue();
11949 
11950   // fold (sdiv X, pow2)
11951   EVT VT = N->getValueType(0);
11952   if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64))
11953     return SDValue();
11954 
11955   SDLoc DL(N);
11956   SDValue N0 = N->getOperand(0);
11957   SDValue Zero = DAG.getConstant(0, DL, VT);
11958   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
11959 
11960   // Add (N0 < 0) ? Pow2 - 1 : 0;
11961   SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT);
11962   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
11963   SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
11964 
11965   Created.push_back(Cmp.getNode());
11966   Created.push_back(Add.getNode());
11967   Created.push_back(Sel.getNode());
11968 
11969   // Divide by pow2.
11970   SDValue SRA =
11971       DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT));
11972 
11973   // If we're dividing by a positive value, we're done.  Otherwise, we must
11974   // negate the result.
11975   if (Divisor.isNonNegative())
11976     return SRA;
11977 
11978   Created.push_back(SRA.getNode());
11979   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
11980 }
11981 
11982 #define GET_REGISTER_MATCHER
11983 #include "RISCVGenAsmMatcher.inc"
11984 
11985 Register
11986 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
11987                                        const MachineFunction &MF) const {
11988   Register Reg = MatchRegisterAltName(RegName);
11989   if (Reg == RISCV::NoRegister)
11990     Reg = MatchRegisterName(RegName);
11991   if (Reg == RISCV::NoRegister)
11992     report_fatal_error(
11993         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
11994   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
11995   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
11996     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
11997                              StringRef(RegName) + "\"."));
11998   return Reg;
11999 }
12000 
12001 namespace llvm {
12002 namespace RISCVVIntrinsicsTable {
12003 
12004 #define GET_RISCVVIntrinsicsTable_IMPL
12005 #include "RISCVGenSearchableTables.inc"
12006 
12007 } // namespace RISCVVIntrinsicsTable
12008 
12009 } // namespace llvm
12010