1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/CodeGen/ValueTypes.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
32 #include "llvm/IR/IntrinsicsRISCV.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "riscv-lower"
42 
43 STATISTIC(NumTailCalls, "Number of tail calls");
44 
45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
46                                          const RISCVSubtarget &STI)
47     : TargetLowering(TM), Subtarget(STI) {
48 
49   if (Subtarget.isRV32E())
50     report_fatal_error("Codegen not yet implemented for RV32E");
51 
52   RISCVABI::ABI ABI = Subtarget.getTargetABI();
53   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
54 
55   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
56       !Subtarget.hasStdExtF()) {
57     errs() << "Hard-float 'f' ABI can't be used for a target that "
58                 "doesn't support the F instruction set extension (ignoring "
59                           "target-abi)\n";
60     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
61   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
62              !Subtarget.hasStdExtD()) {
63     errs() << "Hard-float 'd' ABI can't be used for a target that "
64               "doesn't support the D instruction set extension (ignoring "
65               "target-abi)\n";
66     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
67   }
68 
69   switch (ABI) {
70   default:
71     report_fatal_error("Don't know how to lower this ABI");
72   case RISCVABI::ABI_ILP32:
73   case RISCVABI::ABI_ILP32F:
74   case RISCVABI::ABI_ILP32D:
75   case RISCVABI::ABI_LP64:
76   case RISCVABI::ABI_LP64F:
77   case RISCVABI::ABI_LP64D:
78     break;
79   }
80 
81   MVT XLenVT = Subtarget.getXLenVT();
82 
83   // Set up the register classes.
84   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
85 
86   if (Subtarget.hasStdExtZfh())
87     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
88   if (Subtarget.hasStdExtF())
89     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
90   if (Subtarget.hasStdExtD())
91     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
92 
93   static const MVT::SimpleValueType BoolVecVTs[] = {
94       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
95       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
96   static const MVT::SimpleValueType IntVecVTs[] = {
97       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
98       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
99       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
100       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
101       MVT::nxv4i64, MVT::nxv8i64};
102   static const MVT::SimpleValueType F16VecVTs[] = {
103       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
104       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
105   static const MVT::SimpleValueType F32VecVTs[] = {
106       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
107   static const MVT::SimpleValueType F64VecVTs[] = {
108       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
109 
110   if (Subtarget.hasStdExtV()) {
111     auto addRegClassForRVV = [this](MVT VT) {
112       unsigned Size = VT.getSizeInBits().getKnownMinValue();
113       assert(Size <= 512 && isPowerOf2_32(Size));
114       const TargetRegisterClass *RC;
115       if (Size <= 64)
116         RC = &RISCV::VRRegClass;
117       else if (Size == 128)
118         RC = &RISCV::VRM2RegClass;
119       else if (Size == 256)
120         RC = &RISCV::VRM4RegClass;
121       else
122         RC = &RISCV::VRM8RegClass;
123 
124       addRegisterClass(VT, RC);
125     };
126 
127     for (MVT VT : BoolVecVTs)
128       addRegClassForRVV(VT);
129     for (MVT VT : IntVecVTs)
130       addRegClassForRVV(VT);
131 
132     if (Subtarget.hasStdExtZfh())
133       for (MVT VT : F16VecVTs)
134         addRegClassForRVV(VT);
135 
136     if (Subtarget.hasStdExtF())
137       for (MVT VT : F32VecVTs)
138         addRegClassForRVV(VT);
139 
140     if (Subtarget.hasStdExtD())
141       for (MVT VT : F64VecVTs)
142         addRegClassForRVV(VT);
143 
144     if (Subtarget.useRVVForFixedLengthVectors()) {
145       auto addRegClassForFixedVectors = [this](MVT VT) {
146         unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT);
147         const TargetRegisterClass *RC;
148         if (LMul == 1)
149           RC = &RISCV::VRRegClass;
150         else if (LMul == 2)
151           RC = &RISCV::VRM2RegClass;
152         else if (LMul == 4)
153           RC = &RISCV::VRM4RegClass;
154         else if (LMul == 8)
155           RC = &RISCV::VRM8RegClass;
156         else
157           llvm_unreachable("Unexpected LMul!");
158 
159         addRegisterClass(VT, RC);
160       };
161       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
162         if (useRVVForFixedLengthVectorVT(VT))
163           addRegClassForFixedVectors(VT);
164 
165       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
166         if (useRVVForFixedLengthVectorVT(VT))
167           addRegClassForFixedVectors(VT);
168     }
169   }
170 
171   // Compute derived properties from the register classes.
172   computeRegisterProperties(STI.getRegisterInfo());
173 
174   setStackPointerRegisterToSaveRestore(RISCV::X2);
175 
176   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
177     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
178 
179   // TODO: add all necessary setOperationAction calls.
180   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
181 
182   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
183   setOperationAction(ISD::BR_CC, XLenVT, Expand);
184   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
185 
186   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
187   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
188 
189   setOperationAction(ISD::VASTART, MVT::Other, Custom);
190   setOperationAction(ISD::VAARG, MVT::Other, Expand);
191   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
192   setOperationAction(ISD::VAEND, MVT::Other, Expand);
193 
194   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
195   if (!Subtarget.hasStdExtZbb()) {
196     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
197     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
198   }
199 
200   if (Subtarget.is64Bit()) {
201     setOperationAction(ISD::ADD, MVT::i32, Custom);
202     setOperationAction(ISD::SUB, MVT::i32, Custom);
203     setOperationAction(ISD::SHL, MVT::i32, Custom);
204     setOperationAction(ISD::SRA, MVT::i32, Custom);
205     setOperationAction(ISD::SRL, MVT::i32, Custom);
206   }
207 
208   if (!Subtarget.hasStdExtM()) {
209     setOperationAction(ISD::MUL, XLenVT, Expand);
210     setOperationAction(ISD::MULHS, XLenVT, Expand);
211     setOperationAction(ISD::MULHU, XLenVT, Expand);
212     setOperationAction(ISD::SDIV, XLenVT, Expand);
213     setOperationAction(ISD::UDIV, XLenVT, Expand);
214     setOperationAction(ISD::SREM, XLenVT, Expand);
215     setOperationAction(ISD::UREM, XLenVT, Expand);
216   }
217 
218   if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) {
219     setOperationAction(ISD::MUL, MVT::i32, Custom);
220 
221     setOperationAction(ISD::SDIV, MVT::i8, Custom);
222     setOperationAction(ISD::UDIV, MVT::i8, Custom);
223     setOperationAction(ISD::UREM, MVT::i8, Custom);
224     setOperationAction(ISD::SDIV, MVT::i16, Custom);
225     setOperationAction(ISD::UDIV, MVT::i16, Custom);
226     setOperationAction(ISD::UREM, MVT::i16, Custom);
227     setOperationAction(ISD::SDIV, MVT::i32, Custom);
228     setOperationAction(ISD::UDIV, MVT::i32, Custom);
229     setOperationAction(ISD::UREM, MVT::i32, Custom);
230   }
231 
232   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
233   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
234   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
235   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
236 
237   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
238   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
239   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
240 
241   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
242     if (Subtarget.is64Bit()) {
243       setOperationAction(ISD::ROTL, MVT::i32, Custom);
244       setOperationAction(ISD::ROTR, MVT::i32, Custom);
245     }
246   } else {
247     setOperationAction(ISD::ROTL, XLenVT, Expand);
248     setOperationAction(ISD::ROTR, XLenVT, Expand);
249   }
250 
251   if (Subtarget.hasStdExtZbp()) {
252     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
253     // more combining.
254     setOperationAction(ISD::BITREVERSE, XLenVT, Custom);
255     setOperationAction(ISD::BSWAP, XLenVT, Custom);
256 
257     if (Subtarget.is64Bit()) {
258       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
259       setOperationAction(ISD::BSWAP, MVT::i32, Custom);
260     }
261   } else {
262     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
263     // pattern match it directly in isel.
264     setOperationAction(ISD::BSWAP, XLenVT,
265                        Subtarget.hasStdExtZbb() ? Legal : Expand);
266   }
267 
268   if (Subtarget.hasStdExtZbb()) {
269     setOperationAction(ISD::SMIN, XLenVT, Legal);
270     setOperationAction(ISD::SMAX, XLenVT, Legal);
271     setOperationAction(ISD::UMIN, XLenVT, Legal);
272     setOperationAction(ISD::UMAX, XLenVT, Legal);
273   } else {
274     setOperationAction(ISD::CTTZ, XLenVT, Expand);
275     setOperationAction(ISD::CTLZ, XLenVT, Expand);
276     setOperationAction(ISD::CTPOP, XLenVT, Expand);
277   }
278 
279   if (Subtarget.hasStdExtZbt()) {
280     setOperationAction(ISD::FSHL, XLenVT, Custom);
281     setOperationAction(ISD::FSHR, XLenVT, Custom);
282     setOperationAction(ISD::SELECT, XLenVT, Legal);
283 
284     if (Subtarget.is64Bit()) {
285       setOperationAction(ISD::FSHL, MVT::i32, Custom);
286       setOperationAction(ISD::FSHR, MVT::i32, Custom);
287     }
288   } else {
289     setOperationAction(ISD::SELECT, XLenVT, Custom);
290   }
291 
292   ISD::CondCode FPCCToExpand[] = {
293       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
294       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
295       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
296 
297   ISD::NodeType FPOpToExpand[] = {
298       ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP,
299       ISD::FP_TO_FP16};
300 
301   if (Subtarget.hasStdExtZfh())
302     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
303 
304   if (Subtarget.hasStdExtZfh()) {
305     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
306     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
307     for (auto CC : FPCCToExpand)
308       setCondCodeAction(CC, MVT::f16, Expand);
309     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
310     setOperationAction(ISD::SELECT, MVT::f16, Custom);
311     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
312     for (auto Op : FPOpToExpand)
313       setOperationAction(Op, MVT::f16, Expand);
314   }
315 
316   if (Subtarget.hasStdExtF()) {
317     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
318     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
319     for (auto CC : FPCCToExpand)
320       setCondCodeAction(CC, MVT::f32, Expand);
321     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
322     setOperationAction(ISD::SELECT, MVT::f32, Custom);
323     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
324     for (auto Op : FPOpToExpand)
325       setOperationAction(Op, MVT::f32, Expand);
326     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
327     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
328   }
329 
330   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
331     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
332 
333   if (Subtarget.hasStdExtD()) {
334     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
335     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
336     for (auto CC : FPCCToExpand)
337       setCondCodeAction(CC, MVT::f64, Expand);
338     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
339     setOperationAction(ISD::SELECT, MVT::f64, Custom);
340     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
341     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
342     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
343     for (auto Op : FPOpToExpand)
344       setOperationAction(Op, MVT::f64, Expand);
345     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
346     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
347   }
348 
349   if (Subtarget.is64Bit()) {
350     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
351     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
352     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
353     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
354   }
355 
356   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
357   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
358   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
359   setOperationAction(ISD::JumpTable, XLenVT, Custom);
360 
361   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
362 
363   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
364   // Unfortunately this can't be determined just from the ISA naming string.
365   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
366                      Subtarget.is64Bit() ? Legal : Custom);
367 
368   setOperationAction(ISD::TRAP, MVT::Other, Legal);
369   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
370   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
371 
372   if (Subtarget.hasStdExtA()) {
373     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
374     setMinCmpXchgSizeInBits(32);
375   } else {
376     setMaxAtomicSizeInBitsSupported(0);
377   }
378 
379   setBooleanContents(ZeroOrOneBooleanContent);
380 
381   if (Subtarget.hasStdExtV()) {
382     setBooleanVectorContents(ZeroOrOneBooleanContent);
383 
384     setOperationAction(ISD::VSCALE, XLenVT, Custom);
385 
386     // RVV intrinsics may have illegal operands.
387     // We also need to custom legalize vmv.x.s.
388     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
389     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
390     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
391     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
392     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
393     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
394     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
395     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
396 
397     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
398 
399     if (!Subtarget.is64Bit()) {
400       // We must custom-lower certain vXi64 operations on RV32 due to the vector
401       // element type being illegal.
402       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
403       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
404 
405       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
406       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
407       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
408       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
409       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
410       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
411       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
412       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
413     }
414 
415     for (MVT VT : BoolVecVTs) {
416       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
417 
418       // Mask VTs are custom-expanded into a series of standard nodes
419       setOperationAction(ISD::TRUNCATE, VT, Custom);
420       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
421       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
422 
423       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
424     }
425 
426     for (MVT VT : IntVecVTs) {
427       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
428       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
429 
430       setOperationAction(ISD::SMIN, VT, Legal);
431       setOperationAction(ISD::SMAX, VT, Legal);
432       setOperationAction(ISD::UMIN, VT, Legal);
433       setOperationAction(ISD::UMAX, VT, Legal);
434 
435       setOperationAction(ISD::ROTL, VT, Expand);
436       setOperationAction(ISD::ROTR, VT, Expand);
437 
438       // Custom-lower extensions and truncations from/to mask types.
439       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
440       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
441       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
442 
443       // RVV has native int->float & float->int conversions where the
444       // element type sizes are within one power-of-two of each other. Any
445       // wider distances between type sizes have to be lowered as sequences
446       // which progressively narrow the gap in stages.
447       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
448       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
449       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
450       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
451 
452       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
453       // nodes which truncate by one power of two at a time.
454       setOperationAction(ISD::TRUNCATE, VT, Custom);
455 
456       // Custom-lower insert/extract operations to simplify patterns.
457       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
458       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
459 
460       // Custom-lower reduction operations to set up the corresponding custom
461       // nodes' operands.
462       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
463       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
464       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
465       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
466       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
467       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
468       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
469       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
470 
471       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
472       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
473 
474       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
475     }
476 
477     // Expand various CCs to best match the RVV ISA, which natively supports UNE
478     // but no other unordered comparisons, and supports all ordered comparisons
479     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
480     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
481     // and we pattern-match those back to the "original", swapping operands once
482     // more. This way we catch both operations and both "vf" and "fv" forms with
483     // fewer patterns.
484     ISD::CondCode VFPCCToExpand[] = {
485         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
486         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
487         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
488     };
489 
490     // Sets common operation actions on RVV floating-point vector types.
491     const auto SetCommonVFPActions = [&](MVT VT) {
492       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
493       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
494       // sizes are within one power-of-two of each other. Therefore conversions
495       // between vXf16 and vXf64 must be lowered as sequences which convert via
496       // vXf32.
497       setOperationAction(ISD::FP_ROUND, VT, Custom);
498       setOperationAction(ISD::FP_EXTEND, VT, Custom);
499       // Custom-lower insert/extract operations to simplify patterns.
500       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
501       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
502       // Expand various condition codes (explained above).
503       for (auto CC : VFPCCToExpand)
504         setCondCodeAction(CC, VT, Expand);
505 
506       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
507       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
508       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
509 
510       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
511       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
512 
513       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
514     };
515 
516     if (Subtarget.hasStdExtZfh())
517       for (MVT VT : F16VecVTs)
518         SetCommonVFPActions(VT);
519 
520     if (Subtarget.hasStdExtF())
521       for (MVT VT : F32VecVTs)
522         SetCommonVFPActions(VT);
523 
524     if (Subtarget.hasStdExtD())
525       for (MVT VT : F64VecVTs)
526         SetCommonVFPActions(VT);
527 
528     if (Subtarget.useRVVForFixedLengthVectors()) {
529       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
530         if (!useRVVForFixedLengthVectorVT(VT))
531           continue;
532 
533         // By default everything must be expanded.
534         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
535           setOperationAction(Op, VT, Expand);
536         for (MVT OtherVT : MVT::fixedlen_vector_valuetypes())
537           setTruncStoreAction(VT, OtherVT, Expand);
538 
539         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
540         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
541         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
542 
543         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
544         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
545 
546         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
547 
548         setOperationAction(ISD::LOAD, VT, Custom);
549         setOperationAction(ISD::STORE, VT, Custom);
550 
551         setOperationAction(ISD::SETCC, VT, Custom);
552 
553         setOperationAction(ISD::TRUNCATE, VT, Custom);
554 
555         // Operations below are different for between masks and other vectors.
556         if (VT.getVectorElementType() == MVT::i1) {
557           setOperationAction(ISD::AND, VT, Custom);
558           setOperationAction(ISD::OR, VT, Custom);
559           setOperationAction(ISD::XOR, VT, Custom);
560           continue;
561         }
562 
563         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
564         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
565 
566         setOperationAction(ISD::ADD, VT, Custom);
567         setOperationAction(ISD::MUL, VT, Custom);
568         setOperationAction(ISD::SUB, VT, Custom);
569         setOperationAction(ISD::AND, VT, Custom);
570         setOperationAction(ISD::OR, VT, Custom);
571         setOperationAction(ISD::XOR, VT, Custom);
572         setOperationAction(ISD::SDIV, VT, Custom);
573         setOperationAction(ISD::SREM, VT, Custom);
574         setOperationAction(ISD::UDIV, VT, Custom);
575         setOperationAction(ISD::UREM, VT, Custom);
576         setOperationAction(ISD::SHL, VT, Custom);
577         setOperationAction(ISD::SRA, VT, Custom);
578         setOperationAction(ISD::SRL, VT, Custom);
579 
580         setOperationAction(ISD::SMIN, VT, Custom);
581         setOperationAction(ISD::SMAX, VT, Custom);
582         setOperationAction(ISD::UMIN, VT, Custom);
583         setOperationAction(ISD::UMAX, VT, Custom);
584         setOperationAction(ISD::ABS,  VT, Custom);
585 
586         setOperationAction(ISD::MULHS, VT, Custom);
587         setOperationAction(ISD::MULHU, VT, Custom);
588 
589         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
590         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
591         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
592         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
593 
594         setOperationAction(ISD::VSELECT, VT, Custom);
595 
596         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
597         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
598         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
599 
600         setOperationAction(ISD::BITCAST, VT, Custom);
601 
602         // Custom-lower reduction operations to set up the corresponding custom
603         // nodes' operands.
604         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
605         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
606         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
607         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
608         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
609         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
610         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
611         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
612       }
613 
614       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
615         if (!useRVVForFixedLengthVectorVT(VT))
616           continue;
617 
618         // By default everything must be expanded.
619         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
620           setOperationAction(Op, VT, Expand);
621         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
622           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
623           setTruncStoreAction(VT, OtherVT, Expand);
624         }
625 
626         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
627         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
628         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
629 
630         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
631         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
632         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
633         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
634 
635         setOperationAction(ISD::LOAD, VT, Custom);
636         setOperationAction(ISD::STORE, VT, Custom);
637         setOperationAction(ISD::FADD, VT, Custom);
638         setOperationAction(ISD::FSUB, VT, Custom);
639         setOperationAction(ISD::FMUL, VT, Custom);
640         setOperationAction(ISD::FDIV, VT, Custom);
641         setOperationAction(ISD::FNEG, VT, Custom);
642         setOperationAction(ISD::FABS, VT, Custom);
643         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
644         setOperationAction(ISD::FSQRT, VT, Custom);
645         setOperationAction(ISD::FMA, VT, Custom);
646 
647         setOperationAction(ISD::FP_ROUND, VT, Custom);
648         setOperationAction(ISD::FP_EXTEND, VT, Custom);
649 
650         for (auto CC : VFPCCToExpand)
651           setCondCodeAction(CC, VT, Expand);
652 
653         setOperationAction(ISD::VSELECT, VT, Custom);
654 
655         setOperationAction(ISD::BITCAST, VT, Custom);
656 
657         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
658         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
659       }
660     }
661   }
662 
663   // Function alignments.
664   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
665   setMinFunctionAlignment(FunctionAlignment);
666   setPrefFunctionAlignment(FunctionAlignment);
667 
668   setMinimumJumpTableEntries(5);
669 
670   // Jumps are expensive, compared to logic
671   setJumpIsExpensive();
672 
673   // We can use any register for comparisons
674   setHasMultipleConditionRegisters();
675 
676   setTargetDAGCombine(ISD::SETCC);
677   if (Subtarget.hasStdExtZbp()) {
678     setTargetDAGCombine(ISD::OR);
679   }
680   if (Subtarget.hasStdExtV())
681     setTargetDAGCombine(ISD::FCOPYSIGN);
682 }
683 
684 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
685                                             LLVMContext &Context,
686                                             EVT VT) const {
687   if (!VT.isVector())
688     return getPointerTy(DL);
689   if (Subtarget.hasStdExtV() &&
690       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
691     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
692   return VT.changeVectorElementTypeToInteger();
693 }
694 
695 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
696                                              const CallInst &I,
697                                              MachineFunction &MF,
698                                              unsigned Intrinsic) const {
699   switch (Intrinsic) {
700   default:
701     return false;
702   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
703   case Intrinsic::riscv_masked_atomicrmw_add_i32:
704   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
705   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
706   case Intrinsic::riscv_masked_atomicrmw_max_i32:
707   case Intrinsic::riscv_masked_atomicrmw_min_i32:
708   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
709   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
710   case Intrinsic::riscv_masked_cmpxchg_i32:
711     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
712     Info.opc = ISD::INTRINSIC_W_CHAIN;
713     Info.memVT = MVT::getVT(PtrTy->getElementType());
714     Info.ptrVal = I.getArgOperand(0);
715     Info.offset = 0;
716     Info.align = Align(4);
717     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
718                  MachineMemOperand::MOVolatile;
719     return true;
720   }
721 }
722 
723 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
724                                                 const AddrMode &AM, Type *Ty,
725                                                 unsigned AS,
726                                                 Instruction *I) const {
727   // No global is ever allowed as a base.
728   if (AM.BaseGV)
729     return false;
730 
731   // Require a 12-bit signed offset.
732   if (!isInt<12>(AM.BaseOffs))
733     return false;
734 
735   switch (AM.Scale) {
736   case 0: // "r+i" or just "i", depending on HasBaseReg.
737     break;
738   case 1:
739     if (!AM.HasBaseReg) // allow "r+i".
740       break;
741     return false; // disallow "r+r" or "r+r+i".
742   default:
743     return false;
744   }
745 
746   return true;
747 }
748 
749 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
750   return isInt<12>(Imm);
751 }
752 
753 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
754   return isInt<12>(Imm);
755 }
756 
757 // On RV32, 64-bit integers are split into their high and low parts and held
758 // in two different registers, so the trunc is free since the low register can
759 // just be used.
760 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
761   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
762     return false;
763   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
764   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
765   return (SrcBits == 64 && DestBits == 32);
766 }
767 
768 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
769   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
770       !SrcVT.isInteger() || !DstVT.isInteger())
771     return false;
772   unsigned SrcBits = SrcVT.getSizeInBits();
773   unsigned DestBits = DstVT.getSizeInBits();
774   return (SrcBits == 64 && DestBits == 32);
775 }
776 
777 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
778   // Zexts are free if they can be combined with a load.
779   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
780     EVT MemVT = LD->getMemoryVT();
781     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
782          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
783         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
784          LD->getExtensionType() == ISD::ZEXTLOAD))
785       return true;
786   }
787 
788   return TargetLowering::isZExtFree(Val, VT2);
789 }
790 
791 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
792   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
793 }
794 
795 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
796   return Subtarget.hasStdExtZbb();
797 }
798 
799 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
800   return Subtarget.hasStdExtZbb();
801 }
802 
803 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
804                                        bool ForCodeSize) const {
805   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
806     return false;
807   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
808     return false;
809   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
810     return false;
811   if (Imm.isNegZero())
812     return false;
813   return Imm.isZero();
814 }
815 
816 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
817   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
818          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
819          (VT == MVT::f64 && Subtarget.hasStdExtD());
820 }
821 
822 // Changes the condition code and swaps operands if necessary, so the SetCC
823 // operation matches one of the comparisons supported directly by branches
824 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
825 // with 1/-1.
826 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
827                                     ISD::CondCode &CC, SelectionDAG &DAG) {
828   // Convert X > -1 to X >= 0.
829   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
830     RHS = DAG.getConstant(0, DL, RHS.getValueType());
831     CC = ISD::SETGE;
832     return;
833   }
834   // Convert X < 1 to 0 >= X.
835   if (CC == ISD::SETLT && isOneConstant(RHS)) {
836     RHS = LHS;
837     LHS = DAG.getConstant(0, DL, RHS.getValueType());
838     CC = ISD::SETGE;
839     return;
840   }
841 
842   switch (CC) {
843   default:
844     break;
845   case ISD::SETGT:
846   case ISD::SETLE:
847   case ISD::SETUGT:
848   case ISD::SETULE:
849     CC = ISD::getSetCCSwappedOperands(CC);
850     std::swap(LHS, RHS);
851     break;
852   }
853 }
854 
855 // Return the RISC-V branch opcode that matches the given DAG integer
856 // condition code. The CondCode must be one of those supported by the RISC-V
857 // ISA (see translateSetCCForBranch).
858 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
859   switch (CC) {
860   default:
861     llvm_unreachable("Unsupported CondCode");
862   case ISD::SETEQ:
863     return RISCV::BEQ;
864   case ISD::SETNE:
865     return RISCV::BNE;
866   case ISD::SETLT:
867     return RISCV::BLT;
868   case ISD::SETGE:
869     return RISCV::BGE;
870   case ISD::SETULT:
871     return RISCV::BLTU;
872   case ISD::SETUGE:
873     return RISCV::BGEU;
874   }
875 }
876 
877 RISCVVLMUL RISCVTargetLowering::getLMUL(MVT VT) {
878   assert(VT.isScalableVector() && "Expecting a scalable vector type");
879   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
880   if (VT.getVectorElementType() == MVT::i1)
881     KnownSize *= 8;
882 
883   switch (KnownSize) {
884   default:
885     llvm_unreachable("Invalid LMUL.");
886   case 8:
887     return RISCVVLMUL::LMUL_F8;
888   case 16:
889     return RISCVVLMUL::LMUL_F4;
890   case 32:
891     return RISCVVLMUL::LMUL_F2;
892   case 64:
893     return RISCVVLMUL::LMUL_1;
894   case 128:
895     return RISCVVLMUL::LMUL_2;
896   case 256:
897     return RISCVVLMUL::LMUL_4;
898   case 512:
899     return RISCVVLMUL::LMUL_8;
900   }
901 }
902 
903 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVVLMUL LMul) {
904   switch (LMul) {
905   default:
906     llvm_unreachable("Invalid LMUL.");
907   case RISCVVLMUL::LMUL_F8:
908   case RISCVVLMUL::LMUL_F4:
909   case RISCVVLMUL::LMUL_F2:
910   case RISCVVLMUL::LMUL_1:
911     return RISCV::VRRegClassID;
912   case RISCVVLMUL::LMUL_2:
913     return RISCV::VRM2RegClassID;
914   case RISCVVLMUL::LMUL_4:
915     return RISCV::VRM4RegClassID;
916   case RISCVVLMUL::LMUL_8:
917     return RISCV::VRM8RegClassID;
918   }
919 }
920 
921 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
922   RISCVVLMUL LMUL = getLMUL(VT);
923   if (LMUL == RISCVVLMUL::LMUL_F8 || LMUL == RISCVVLMUL::LMUL_F4 ||
924       LMUL == RISCVVLMUL::LMUL_F2 || LMUL == RISCVVLMUL::LMUL_1) {
925     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
926                   "Unexpected subreg numbering");
927     return RISCV::sub_vrm1_0 + Index;
928   }
929   if (LMUL == RISCVVLMUL::LMUL_2) {
930     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
931                   "Unexpected subreg numbering");
932     return RISCV::sub_vrm2_0 + Index;
933   }
934   if (LMUL == RISCVVLMUL::LMUL_4) {
935     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
936                   "Unexpected subreg numbering");
937     return RISCV::sub_vrm4_0 + Index;
938   }
939   llvm_unreachable("Invalid vector type.");
940 }
941 
942 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
943   if (VT.getVectorElementType() == MVT::i1)
944     return RISCV::VRRegClassID;
945   return getRegClassIDForLMUL(getLMUL(VT));
946 }
947 
948 // Attempt to decompose a subvector insert/extract between VecVT and
949 // SubVecVT via subregister indices. Returns the subregister index that
950 // can perform the subvector insert/extract with the given element index, as
951 // well as the index corresponding to any leftover subvectors that must be
952 // further inserted/extracted within the register class for SubVecVT.
953 std::pair<unsigned, unsigned>
954 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
955     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
956     const RISCVRegisterInfo *TRI) {
957   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
958                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
959                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
960                 "Register classes not ordered");
961   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
962   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
963   // Try to compose a subregister index that takes us from the incoming
964   // LMUL>1 register class down to the outgoing one. At each step we half
965   // the LMUL:
966   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
967   // Note that this is not guaranteed to find a subregister index, such as
968   // when we are extracting from one VR type to another.
969   unsigned SubRegIdx = RISCV::NoSubRegister;
970   for (const unsigned RCID :
971        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
972     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
973       VecVT = VecVT.getHalfNumVectorElementsVT();
974       bool IsHi =
975           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
976       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
977                                             getSubregIndexByMVT(VecVT, IsHi));
978       if (IsHi)
979         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
980     }
981   return {SubRegIdx, InsertExtractIdx};
982 }
983 
984 // Return the largest legal scalable vector type that matches VT's element type.
985 MVT RISCVTargetLowering::getContainerForFixedLengthVector(
986     const TargetLowering &TLI, MVT VT, const RISCVSubtarget &Subtarget) {
987   assert(VT.isFixedLengthVector() && TLI.isTypeLegal(VT) &&
988          "Expected legal fixed length vector!");
989 
990   unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT);
991   assert(LMul <= 8 && isPowerOf2_32(LMul) && "Unexpected LMUL!");
992 
993   MVT EltVT = VT.getVectorElementType();
994   switch (EltVT.SimpleTy) {
995   default:
996     llvm_unreachable("unexpected element type for RVV container");
997   case MVT::i1: {
998     // Masks are calculated assuming 8-bit elements since that's when we need
999     // the most elements.
1000     unsigned EltsPerBlock = RISCV::RVVBitsPerBlock / 8;
1001     return MVT::getScalableVectorVT(MVT::i1, LMul * EltsPerBlock);
1002   }
1003   case MVT::i8:
1004   case MVT::i16:
1005   case MVT::i32:
1006   case MVT::i64:
1007   case MVT::f16:
1008   case MVT::f32:
1009   case MVT::f64: {
1010     unsigned EltsPerBlock = RISCV::RVVBitsPerBlock / EltVT.getSizeInBits();
1011     return MVT::getScalableVectorVT(EltVT, LMul * EltsPerBlock);
1012   }
1013   }
1014 }
1015 
1016 MVT RISCVTargetLowering::getContainerForFixedLengthVector(
1017     SelectionDAG &DAG, MVT VT, const RISCVSubtarget &Subtarget) {
1018   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1019                                           Subtarget);
1020 }
1021 
1022 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1023   return getContainerForFixedLengthVector(*this, VT, getSubtarget());
1024 }
1025 
1026 // Grow V to consume an entire RVV register.
1027 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1028                                        const RISCVSubtarget &Subtarget) {
1029   assert(VT.isScalableVector() &&
1030          "Expected to convert into a scalable vector!");
1031   assert(V.getValueType().isFixedLengthVector() &&
1032          "Expected a fixed length vector operand!");
1033   SDLoc DL(V);
1034   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1035   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1036 }
1037 
1038 // Shrink V so it's just big enough to maintain a VT's worth of data.
1039 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1040                                          const RISCVSubtarget &Subtarget) {
1041   assert(VT.isFixedLengthVector() &&
1042          "Expected to convert into a fixed length vector!");
1043   assert(V.getValueType().isScalableVector() &&
1044          "Expected a scalable vector operand!");
1045   SDLoc DL(V);
1046   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1047   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1048 }
1049 
1050 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1051 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1052 // the vector type that it is contained in.
1053 static std::pair<SDValue, SDValue>
1054 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1055                 const RISCVSubtarget &Subtarget) {
1056   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1057   MVT XLenVT = Subtarget.getXLenVT();
1058   SDValue VL = VecVT.isFixedLengthVector()
1059                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1060                    : DAG.getRegister(RISCV::X0, XLenVT);
1061   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1062   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1063   return {Mask, VL};
1064 }
1065 
1066 // As above but assuming the given type is a scalable vector type.
1067 static std::pair<SDValue, SDValue>
1068 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1069                         const RISCVSubtarget &Subtarget) {
1070   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1071   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1072 }
1073 
1074 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1075 // of either is (currently) supported. This can get us into an infinite loop
1076 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1077 // as a ..., etc.
1078 // Until either (or both) of these can reliably lower any node, reporting that
1079 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1080 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1081 // which is not desirable.
1082 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1083     EVT VT, unsigned DefinedValues) const {
1084   return false;
1085 }
1086 
1087 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
1088   // Only splats are currently supported.
1089   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
1090     return true;
1091 
1092   return false;
1093 }
1094 
1095 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1096                                  const RISCVSubtarget &Subtarget) {
1097   MVT VT = Op.getSimpleValueType();
1098   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1099 
1100   MVT ContainerVT =
1101       RISCVTargetLowering::getContainerForFixedLengthVector(DAG, VT, Subtarget);
1102 
1103   SDLoc DL(Op);
1104   SDValue Mask, VL;
1105   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1106 
1107   if (VT.getVectorElementType() == MVT::i1) {
1108     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1109       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1110       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1111     }
1112 
1113     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1114       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1115       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1116     }
1117 
1118     return SDValue();
1119   }
1120 
1121   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1122     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
1123                                         : RISCVISD::VMV_V_X_VL;
1124     Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL);
1125     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1126   }
1127 
1128   // Try and match an index sequence, which we can lower directly to the vid
1129   // instruction. An all-undef vector is matched by getSplatValue, above.
1130   if (VT.isInteger()) {
1131     bool IsVID = true;
1132     for (unsigned i = 0, e = Op.getNumOperands(); i < e && IsVID; i++)
1133       IsVID &= Op.getOperand(i).isUndef() ||
1134                (isa<ConstantSDNode>(Op.getOperand(i)) &&
1135                 Op.getConstantOperandVal(i) == i);
1136 
1137     if (IsVID) {
1138       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
1139       return convertFromScalableVector(VT, VID, DAG, Subtarget);
1140     }
1141   }
1142 
1143   return SDValue();
1144 }
1145 
1146 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
1147                                    const RISCVSubtarget &Subtarget) {
1148   SDValue V1 = Op.getOperand(0);
1149   SDLoc DL(Op);
1150   MVT VT = Op.getSimpleValueType();
1151   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
1152 
1153   if (SVN->isSplat()) {
1154     int Lane = SVN->getSplatIndex();
1155     if (Lane >= 0) {
1156       MVT ContainerVT = RISCVTargetLowering::getContainerForFixedLengthVector(
1157           DAG, VT, Subtarget);
1158 
1159       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
1160       assert(Lane < (int)VT.getVectorNumElements() && "Unexpected lane!");
1161 
1162       SDValue Mask, VL;
1163       std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1164       MVT XLenVT = Subtarget.getXLenVT();
1165       SDValue Gather =
1166           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
1167                       DAG.getConstant(Lane, DL, XLenVT), Mask, VL);
1168       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
1169     }
1170   }
1171 
1172   return SDValue();
1173 }
1174 
1175 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
1176                                      SDLoc DL, SelectionDAG &DAG,
1177                                      const RISCVSubtarget &Subtarget) {
1178   if (VT.isScalableVector())
1179     return DAG.getFPExtendOrRound(Op, DL, VT);
1180   assert(VT.isFixedLengthVector() &&
1181          "Unexpected value type for RVV FP extend/round lowering");
1182   SDValue Mask, VL;
1183   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1184   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
1185                         ? RISCVISD::FP_EXTEND_VL
1186                         : RISCVISD::FP_ROUND_VL;
1187   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
1188 }
1189 
1190 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
1191                                             SelectionDAG &DAG) const {
1192   switch (Op.getOpcode()) {
1193   default:
1194     report_fatal_error("unimplemented operand");
1195   case ISD::GlobalAddress:
1196     return lowerGlobalAddress(Op, DAG);
1197   case ISD::BlockAddress:
1198     return lowerBlockAddress(Op, DAG);
1199   case ISD::ConstantPool:
1200     return lowerConstantPool(Op, DAG);
1201   case ISD::JumpTable:
1202     return lowerJumpTable(Op, DAG);
1203   case ISD::GlobalTLSAddress:
1204     return lowerGlobalTLSAddress(Op, DAG);
1205   case ISD::SELECT:
1206     return lowerSELECT(Op, DAG);
1207   case ISD::VASTART:
1208     return lowerVASTART(Op, DAG);
1209   case ISD::FRAMEADDR:
1210     return lowerFRAMEADDR(Op, DAG);
1211   case ISD::RETURNADDR:
1212     return lowerRETURNADDR(Op, DAG);
1213   case ISD::SHL_PARTS:
1214     return lowerShiftLeftParts(Op, DAG);
1215   case ISD::SRA_PARTS:
1216     return lowerShiftRightParts(Op, DAG, true);
1217   case ISD::SRL_PARTS:
1218     return lowerShiftRightParts(Op, DAG, false);
1219   case ISD::BITCAST: {
1220     SDValue Op0 = Op.getOperand(0);
1221     // We can handle fixed length vector bitcasts with a simple replacement
1222     // in isel.
1223     if (Op.getValueType().isFixedLengthVector()) {
1224       if (Op0.getValueType().isFixedLengthVector())
1225         return Op;
1226       return SDValue();
1227     }
1228     assert(((Subtarget.is64Bit() && Subtarget.hasStdExtF()) ||
1229             Subtarget.hasStdExtZfh()) &&
1230            "Unexpected custom legalisation");
1231     SDLoc DL(Op);
1232     if (Op.getValueType() == MVT::f16 && Subtarget.hasStdExtZfh()) {
1233       if (Op0.getValueType() != MVT::i16)
1234         return SDValue();
1235       SDValue NewOp0 =
1236           DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), Op0);
1237       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
1238       return FPConv;
1239     } else if (Op.getValueType() == MVT::f32 && Subtarget.is64Bit() &&
1240                Subtarget.hasStdExtF()) {
1241       if (Op0.getValueType() != MVT::i32)
1242         return SDValue();
1243       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
1244       SDValue FPConv =
1245           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
1246       return FPConv;
1247     }
1248     return SDValue();
1249   }
1250   case ISD::INTRINSIC_WO_CHAIN:
1251     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1252   case ISD::INTRINSIC_W_CHAIN:
1253     return LowerINTRINSIC_W_CHAIN(Op, DAG);
1254   case ISD::BSWAP:
1255   case ISD::BITREVERSE: {
1256     // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
1257     assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
1258     MVT VT = Op.getSimpleValueType();
1259     SDLoc DL(Op);
1260     // Start with the maximum immediate value which is the bitwidth - 1.
1261     unsigned Imm = VT.getSizeInBits() - 1;
1262     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
1263     if (Op.getOpcode() == ISD::BSWAP)
1264       Imm &= ~0x7U;
1265     return DAG.getNode(RISCVISD::GREVI, DL, VT, Op.getOperand(0),
1266                        DAG.getTargetConstant(Imm, DL, Subtarget.getXLenVT()));
1267   }
1268   case ISD::FSHL:
1269   case ISD::FSHR: {
1270     MVT VT = Op.getSimpleValueType();
1271     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
1272     SDLoc DL(Op);
1273     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
1274     // use log(XLen) bits. Mask the shift amount accordingly.
1275     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
1276     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
1277                                 DAG.getConstant(ShAmtWidth, DL, VT));
1278     unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR;
1279     return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt);
1280   }
1281   case ISD::TRUNCATE: {
1282     SDLoc DL(Op);
1283     MVT VT = Op.getSimpleValueType();
1284     // Only custom-lower vector truncates
1285     if (!VT.isVector())
1286       return Op;
1287 
1288     // Truncates to mask types are handled differently
1289     if (VT.getVectorElementType() == MVT::i1)
1290       return lowerVectorMaskTrunc(Op, DAG);
1291 
1292     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
1293     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
1294     // truncate by one power of two at a time.
1295     MVT DstEltVT = VT.getVectorElementType();
1296 
1297     SDValue Src = Op.getOperand(0);
1298     MVT SrcVT = Src.getSimpleValueType();
1299     MVT SrcEltVT = SrcVT.getVectorElementType();
1300 
1301     assert(DstEltVT.bitsLT(SrcEltVT) &&
1302            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
1303            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
1304            "Unexpected vector truncate lowering");
1305 
1306     MVT ContainerVT = SrcVT;
1307     if (SrcVT.isFixedLengthVector()) {
1308       ContainerVT = getContainerForFixedLengthVector(SrcVT);
1309       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
1310     }
1311 
1312     SDValue Result = Src;
1313     SDValue Mask, VL;
1314     std::tie(Mask, VL) =
1315         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
1316     LLVMContext &Context = *DAG.getContext();
1317     const ElementCount Count = ContainerVT.getVectorElementCount();
1318     do {
1319       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
1320       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
1321       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
1322                            Mask, VL);
1323     } while (SrcEltVT != DstEltVT);
1324 
1325     if (SrcVT.isFixedLengthVector())
1326       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
1327 
1328     return Result;
1329   }
1330   case ISD::ANY_EXTEND:
1331   case ISD::ZERO_EXTEND:
1332     if (Op.getOperand(0).getValueType().isVector() &&
1333         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
1334       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
1335     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
1336   case ISD::SIGN_EXTEND:
1337     if (Op.getOperand(0).getValueType().isVector() &&
1338         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
1339       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
1340     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
1341   case ISD::SPLAT_VECTOR_PARTS:
1342     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
1343   case ISD::INSERT_VECTOR_ELT:
1344     return lowerINSERT_VECTOR_ELT(Op, DAG);
1345   case ISD::EXTRACT_VECTOR_ELT:
1346     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
1347   case ISD::VSCALE: {
1348     MVT VT = Op.getSimpleValueType();
1349     SDLoc DL(Op);
1350     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
1351     // We define our scalable vector types for lmul=1 to use a 64 bit known
1352     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
1353     // vscale as VLENB / 8.
1354     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
1355                                  DAG.getConstant(3, DL, VT));
1356     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
1357   }
1358   case ISD::FP_EXTEND: {
1359     // RVV can only do fp_extend to types double the size as the source. We
1360     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
1361     // via f32.
1362     SDLoc DL(Op);
1363     MVT VT = Op.getSimpleValueType();
1364     SDValue Src = Op.getOperand(0);
1365     MVT SrcVT = Src.getSimpleValueType();
1366 
1367     // Prepare any fixed-length vector operands.
1368     MVT ContainerVT = VT;
1369     if (SrcVT.isFixedLengthVector()) {
1370       ContainerVT = getContainerForFixedLengthVector(VT);
1371       MVT SrcContainerVT =
1372           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
1373       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
1374     }
1375 
1376     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
1377         SrcVT.getVectorElementType() != MVT::f16) {
1378       // For scalable vectors, we only need to close the gap between
1379       // vXf16->vXf64.
1380       if (!VT.isFixedLengthVector())
1381         return Op;
1382       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
1383       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
1384       return convertFromScalableVector(VT, Src, DAG, Subtarget);
1385     }
1386 
1387     MVT InterVT = VT.changeVectorElementType(MVT::f32);
1388     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
1389     SDValue IntermediateExtend = getRVVFPExtendOrRound(
1390         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
1391 
1392     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
1393                                            DL, DAG, Subtarget);
1394     if (VT.isFixedLengthVector())
1395       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
1396     return Extend;
1397   }
1398   case ISD::FP_ROUND: {
1399     // RVV can only do fp_round to types half the size as the source. We
1400     // custom-lower f64->f16 rounds via RVV's round-to-odd float
1401     // conversion instruction.
1402     SDLoc DL(Op);
1403     MVT VT = Op.getSimpleValueType();
1404     SDValue Src = Op.getOperand(0);
1405     MVT SrcVT = Src.getSimpleValueType();
1406 
1407     // Prepare any fixed-length vector operands.
1408     MVT ContainerVT = VT;
1409     if (VT.isFixedLengthVector()) {
1410       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
1411       ContainerVT =
1412           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
1413       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
1414     }
1415 
1416     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
1417         SrcVT.getVectorElementType() != MVT::f64) {
1418       // For scalable vectors, we only need to close the gap between
1419       // vXf64<->vXf16.
1420       if (!VT.isFixedLengthVector())
1421         return Op;
1422       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
1423       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
1424       return convertFromScalableVector(VT, Src, DAG, Subtarget);
1425     }
1426 
1427     SDValue Mask, VL;
1428     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1429 
1430     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
1431     SDValue IntermediateRound =
1432         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
1433     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
1434                                           DL, DAG, Subtarget);
1435 
1436     if (VT.isFixedLengthVector())
1437       return convertFromScalableVector(VT, Round, DAG, Subtarget);
1438     return Round;
1439   }
1440   case ISD::FP_TO_SINT:
1441   case ISD::FP_TO_UINT:
1442   case ISD::SINT_TO_FP:
1443   case ISD::UINT_TO_FP: {
1444     // RVV can only do fp<->int conversions to types half/double the size as
1445     // the source. We custom-lower any conversions that do two hops into
1446     // sequences.
1447     MVT VT = Op.getSimpleValueType();
1448     if (!VT.isVector())
1449       return Op;
1450     SDLoc DL(Op);
1451     SDValue Src = Op.getOperand(0);
1452     MVT EltVT = VT.getVectorElementType();
1453     MVT SrcVT = Src.getSimpleValueType();
1454     MVT SrcEltVT = SrcVT.getVectorElementType();
1455     unsigned EltSize = EltVT.getSizeInBits();
1456     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
1457     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
1458            "Unexpected vector element types");
1459 
1460     bool IsInt2FP = SrcEltVT.isInteger();
1461     // Widening conversions
1462     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
1463       if (IsInt2FP) {
1464         // Do a regular integer sign/zero extension then convert to float.
1465         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
1466                                       VT.getVectorElementCount());
1467         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
1468                                  ? ISD::ZERO_EXTEND
1469                                  : ISD::SIGN_EXTEND;
1470         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
1471         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
1472       }
1473       // FP2Int
1474       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
1475       // Do one doubling fp_extend then complete the operation by converting
1476       // to int.
1477       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
1478       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
1479       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
1480     }
1481 
1482     // Narrowing conversions
1483     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
1484       if (IsInt2FP) {
1485         // One narrowing int_to_fp, then an fp_round.
1486         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
1487         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
1488         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
1489         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
1490       }
1491       // FP2Int
1492       // One narrowing fp_to_int, then truncate the integer. If the float isn't
1493       // representable by the integer, the result is poison.
1494       MVT IVecVT =
1495           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
1496                            VT.getVectorElementCount());
1497       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
1498       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
1499     }
1500 
1501     // Scalable vectors can exit here. Patterns will handle equally-sized
1502     // conversions halving/doubling ones.
1503     if (!VT.isFixedLengthVector())
1504       return Op;
1505 
1506     // For fixed-length vectors we lower to a custom "VL" node.
1507     unsigned RVVOpc = 0;
1508     switch (Op.getOpcode()) {
1509     default:
1510       llvm_unreachable("Impossible opcode");
1511     case ISD::FP_TO_SINT:
1512       RVVOpc = RISCVISD::FP_TO_SINT_VL;
1513       break;
1514     case ISD::FP_TO_UINT:
1515       RVVOpc = RISCVISD::FP_TO_UINT_VL;
1516       break;
1517     case ISD::SINT_TO_FP:
1518       RVVOpc = RISCVISD::SINT_TO_FP_VL;
1519       break;
1520     case ISD::UINT_TO_FP:
1521       RVVOpc = RISCVISD::UINT_TO_FP_VL;
1522       break;
1523     }
1524 
1525     MVT ContainerVT, SrcContainerVT;
1526     // Derive the reference container type from the larger vector type.
1527     if (SrcEltSize > EltSize) {
1528       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
1529       ContainerVT =
1530           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
1531     } else {
1532       ContainerVT = getContainerForFixedLengthVector(VT);
1533       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
1534     }
1535 
1536     SDValue Mask, VL;
1537     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1538 
1539     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
1540     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
1541     return convertFromScalableVector(VT, Src, DAG, Subtarget);
1542   }
1543   case ISD::VECREDUCE_ADD:
1544   case ISD::VECREDUCE_UMAX:
1545   case ISD::VECREDUCE_SMAX:
1546   case ISD::VECREDUCE_UMIN:
1547   case ISD::VECREDUCE_SMIN:
1548   case ISD::VECREDUCE_AND:
1549   case ISD::VECREDUCE_OR:
1550   case ISD::VECREDUCE_XOR:
1551     return lowerVECREDUCE(Op, DAG);
1552   case ISD::VECREDUCE_FADD:
1553   case ISD::VECREDUCE_SEQ_FADD:
1554     return lowerFPVECREDUCE(Op, DAG);
1555   case ISD::INSERT_SUBVECTOR:
1556     return lowerINSERT_SUBVECTOR(Op, DAG);
1557   case ISD::EXTRACT_SUBVECTOR:
1558     return lowerEXTRACT_SUBVECTOR(Op, DAG);
1559   case ISD::VECTOR_REVERSE:
1560     return lowerVECTOR_REVERSE(Op, DAG);
1561   case ISD::BUILD_VECTOR:
1562     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
1563   case ISD::VECTOR_SHUFFLE:
1564     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
1565   case ISD::CONCAT_VECTORS: {
1566     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
1567     // better than going through the stack, as the default expansion does.
1568     SDLoc DL(Op);
1569     MVT VT = Op.getSimpleValueType();
1570     assert(VT.isFixedLengthVector() && "Unexpected CONCAT_VECTORS lowering");
1571     unsigned NumOpElts =
1572         Op.getOperand(0).getSimpleValueType().getVectorNumElements();
1573     SDValue Vec = DAG.getUNDEF(VT);
1574     for (const auto &OpIdx : enumerate(Op->ops()))
1575       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(),
1576                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
1577     return Vec;
1578   }
1579   case ISD::LOAD:
1580     return lowerFixedLengthVectorLoadToRVV(Op, DAG);
1581   case ISD::STORE:
1582     return lowerFixedLengthVectorStoreToRVV(Op, DAG);
1583   case ISD::SETCC:
1584     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
1585   case ISD::ADD:
1586     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
1587   case ISD::SUB:
1588     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
1589   case ISD::MUL:
1590     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
1591   case ISD::MULHS:
1592     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
1593   case ISD::MULHU:
1594     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
1595   case ISD::AND:
1596     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
1597                                               RISCVISD::AND_VL);
1598   case ISD::OR:
1599     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
1600                                               RISCVISD::OR_VL);
1601   case ISD::XOR:
1602     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
1603                                               RISCVISD::XOR_VL);
1604   case ISD::SDIV:
1605     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
1606   case ISD::SREM:
1607     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
1608   case ISD::UDIV:
1609     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
1610   case ISD::UREM:
1611     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
1612   case ISD::SHL:
1613     return lowerToScalableOp(Op, DAG, RISCVISD::SHL_VL);
1614   case ISD::SRA:
1615     return lowerToScalableOp(Op, DAG, RISCVISD::SRA_VL);
1616   case ISD::SRL:
1617     return lowerToScalableOp(Op, DAG, RISCVISD::SRL_VL);
1618   case ISD::FADD:
1619     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
1620   case ISD::FSUB:
1621     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
1622   case ISD::FMUL:
1623     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
1624   case ISD::FDIV:
1625     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
1626   case ISD::FNEG:
1627     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
1628   case ISD::FABS:
1629     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
1630   case ISD::FSQRT:
1631     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
1632   case ISD::FMA:
1633     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
1634   case ISD::SMIN:
1635     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
1636   case ISD::SMAX:
1637     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
1638   case ISD::UMIN:
1639     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
1640   case ISD::UMAX:
1641     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
1642   case ISD::ABS:
1643     return lowerABS(Op, DAG);
1644   case ISD::VSELECT:
1645     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
1646   case ISD::FCOPYSIGN:
1647     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
1648   }
1649 }
1650 
1651 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
1652                              SelectionDAG &DAG, unsigned Flags) {
1653   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
1654 }
1655 
1656 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
1657                              SelectionDAG &DAG, unsigned Flags) {
1658   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
1659                                    Flags);
1660 }
1661 
1662 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
1663                              SelectionDAG &DAG, unsigned Flags) {
1664   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
1665                                    N->getOffset(), Flags);
1666 }
1667 
1668 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
1669                              SelectionDAG &DAG, unsigned Flags) {
1670   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
1671 }
1672 
1673 template <class NodeTy>
1674 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
1675                                      bool IsLocal) const {
1676   SDLoc DL(N);
1677   EVT Ty = getPointerTy(DAG.getDataLayout());
1678 
1679   if (isPositionIndependent()) {
1680     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
1681     if (IsLocal)
1682       // Use PC-relative addressing to access the symbol. This generates the
1683       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
1684       // %pcrel_lo(auipc)).
1685       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
1686 
1687     // Use PC-relative addressing to access the GOT for this symbol, then load
1688     // the address from the GOT. This generates the pattern (PseudoLA sym),
1689     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
1690     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
1691   }
1692 
1693   switch (getTargetMachine().getCodeModel()) {
1694   default:
1695     report_fatal_error("Unsupported code model for lowering");
1696   case CodeModel::Small: {
1697     // Generate a sequence for accessing addresses within the first 2 GiB of
1698     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
1699     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
1700     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
1701     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
1702     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
1703   }
1704   case CodeModel::Medium: {
1705     // Generate a sequence for accessing addresses within any 2GiB range within
1706     // the address space. This generates the pattern (PseudoLLA sym), which
1707     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
1708     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
1709     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
1710   }
1711   }
1712 }
1713 
1714 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
1715                                                 SelectionDAG &DAG) const {
1716   SDLoc DL(Op);
1717   EVT Ty = Op.getValueType();
1718   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
1719   int64_t Offset = N->getOffset();
1720   MVT XLenVT = Subtarget.getXLenVT();
1721 
1722   const GlobalValue *GV = N->getGlobal();
1723   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
1724   SDValue Addr = getAddr(N, DAG, IsLocal);
1725 
1726   // In order to maximise the opportunity for common subexpression elimination,
1727   // emit a separate ADD node for the global address offset instead of folding
1728   // it in the global address node. Later peephole optimisations may choose to
1729   // fold it back in when profitable.
1730   if (Offset != 0)
1731     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
1732                        DAG.getConstant(Offset, DL, XLenVT));
1733   return Addr;
1734 }
1735 
1736 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
1737                                                SelectionDAG &DAG) const {
1738   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
1739 
1740   return getAddr(N, DAG);
1741 }
1742 
1743 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
1744                                                SelectionDAG &DAG) const {
1745   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1746 
1747   return getAddr(N, DAG);
1748 }
1749 
1750 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
1751                                             SelectionDAG &DAG) const {
1752   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
1753 
1754   return getAddr(N, DAG);
1755 }
1756 
1757 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
1758                                               SelectionDAG &DAG,
1759                                               bool UseGOT) const {
1760   SDLoc DL(N);
1761   EVT Ty = getPointerTy(DAG.getDataLayout());
1762   const GlobalValue *GV = N->getGlobal();
1763   MVT XLenVT = Subtarget.getXLenVT();
1764 
1765   if (UseGOT) {
1766     // Use PC-relative addressing to access the GOT for this TLS symbol, then
1767     // load the address from the GOT and add the thread pointer. This generates
1768     // the pattern (PseudoLA_TLS_IE sym), which expands to
1769     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
1770     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
1771     SDValue Load =
1772         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
1773 
1774     // Add the thread pointer.
1775     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
1776     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
1777   }
1778 
1779   // Generate a sequence for accessing the address relative to the thread
1780   // pointer, with the appropriate adjustment for the thread pointer offset.
1781   // This generates the pattern
1782   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
1783   SDValue AddrHi =
1784       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
1785   SDValue AddrAdd =
1786       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
1787   SDValue AddrLo =
1788       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
1789 
1790   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
1791   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
1792   SDValue MNAdd = SDValue(
1793       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
1794       0);
1795   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
1796 }
1797 
1798 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
1799                                                SelectionDAG &DAG) const {
1800   SDLoc DL(N);
1801   EVT Ty = getPointerTy(DAG.getDataLayout());
1802   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
1803   const GlobalValue *GV = N->getGlobal();
1804 
1805   // Use a PC-relative addressing mode to access the global dynamic GOT address.
1806   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
1807   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
1808   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
1809   SDValue Load =
1810       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
1811 
1812   // Prepare argument list to generate call.
1813   ArgListTy Args;
1814   ArgListEntry Entry;
1815   Entry.Node = Load;
1816   Entry.Ty = CallTy;
1817   Args.push_back(Entry);
1818 
1819   // Setup call to __tls_get_addr.
1820   TargetLowering::CallLoweringInfo CLI(DAG);
1821   CLI.setDebugLoc(DL)
1822       .setChain(DAG.getEntryNode())
1823       .setLibCallee(CallingConv::C, CallTy,
1824                     DAG.getExternalSymbol("__tls_get_addr", Ty),
1825                     std::move(Args));
1826 
1827   return LowerCallTo(CLI).first;
1828 }
1829 
1830 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
1831                                                    SelectionDAG &DAG) const {
1832   SDLoc DL(Op);
1833   EVT Ty = Op.getValueType();
1834   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
1835   int64_t Offset = N->getOffset();
1836   MVT XLenVT = Subtarget.getXLenVT();
1837 
1838   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
1839 
1840   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
1841       CallingConv::GHC)
1842     report_fatal_error("In GHC calling convention TLS is not supported");
1843 
1844   SDValue Addr;
1845   switch (Model) {
1846   case TLSModel::LocalExec:
1847     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
1848     break;
1849   case TLSModel::InitialExec:
1850     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
1851     break;
1852   case TLSModel::LocalDynamic:
1853   case TLSModel::GeneralDynamic:
1854     Addr = getDynamicTLSAddr(N, DAG);
1855     break;
1856   }
1857 
1858   // In order to maximise the opportunity for common subexpression elimination,
1859   // emit a separate ADD node for the global address offset instead of folding
1860   // it in the global address node. Later peephole optimisations may choose to
1861   // fold it back in when profitable.
1862   if (Offset != 0)
1863     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
1864                        DAG.getConstant(Offset, DL, XLenVT));
1865   return Addr;
1866 }
1867 
1868 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
1869   SDValue CondV = Op.getOperand(0);
1870   SDValue TrueV = Op.getOperand(1);
1871   SDValue FalseV = Op.getOperand(2);
1872   SDLoc DL(Op);
1873   MVT XLenVT = Subtarget.getXLenVT();
1874 
1875   // If the result type is XLenVT and CondV is the output of a SETCC node
1876   // which also operated on XLenVT inputs, then merge the SETCC node into the
1877   // lowered RISCVISD::SELECT_CC to take advantage of the integer
1878   // compare+branch instructions. i.e.:
1879   // (select (setcc lhs, rhs, cc), truev, falsev)
1880   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
1881   if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
1882       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
1883     SDValue LHS = CondV.getOperand(0);
1884     SDValue RHS = CondV.getOperand(1);
1885     auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
1886     ISD::CondCode CCVal = CC->get();
1887 
1888     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
1889 
1890     SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT);
1891     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
1892     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
1893   }
1894 
1895   // Otherwise:
1896   // (select condv, truev, falsev)
1897   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
1898   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
1899   SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT);
1900 
1901   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
1902 
1903   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
1904 }
1905 
1906 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1907   MachineFunction &MF = DAG.getMachineFunction();
1908   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
1909 
1910   SDLoc DL(Op);
1911   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1912                                  getPointerTy(MF.getDataLayout()));
1913 
1914   // vastart just stores the address of the VarArgsFrameIndex slot into the
1915   // memory location argument.
1916   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1917   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1918                       MachinePointerInfo(SV));
1919 }
1920 
1921 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
1922                                             SelectionDAG &DAG) const {
1923   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
1924   MachineFunction &MF = DAG.getMachineFunction();
1925   MachineFrameInfo &MFI = MF.getFrameInfo();
1926   MFI.setFrameAddressIsTaken(true);
1927   Register FrameReg = RI.getFrameRegister(MF);
1928   int XLenInBytes = Subtarget.getXLen() / 8;
1929 
1930   EVT VT = Op.getValueType();
1931   SDLoc DL(Op);
1932   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
1933   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1934   while (Depth--) {
1935     int Offset = -(XLenInBytes * 2);
1936     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
1937                               DAG.getIntPtrConstant(Offset, DL));
1938     FrameAddr =
1939         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
1940   }
1941   return FrameAddr;
1942 }
1943 
1944 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
1945                                              SelectionDAG &DAG) const {
1946   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
1947   MachineFunction &MF = DAG.getMachineFunction();
1948   MachineFrameInfo &MFI = MF.getFrameInfo();
1949   MFI.setReturnAddressIsTaken(true);
1950   MVT XLenVT = Subtarget.getXLenVT();
1951   int XLenInBytes = Subtarget.getXLen() / 8;
1952 
1953   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1954     return SDValue();
1955 
1956   EVT VT = Op.getValueType();
1957   SDLoc DL(Op);
1958   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1959   if (Depth) {
1960     int Off = -XLenInBytes;
1961     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
1962     SDValue Offset = DAG.getConstant(Off, DL, VT);
1963     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
1964                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
1965                        MachinePointerInfo());
1966   }
1967 
1968   // Return the value of the return address register, marking it an implicit
1969   // live-in.
1970   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
1971   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
1972 }
1973 
1974 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
1975                                                  SelectionDAG &DAG) const {
1976   SDLoc DL(Op);
1977   SDValue Lo = Op.getOperand(0);
1978   SDValue Hi = Op.getOperand(1);
1979   SDValue Shamt = Op.getOperand(2);
1980   EVT VT = Lo.getValueType();
1981 
1982   // if Shamt-XLEN < 0: // Shamt < XLEN
1983   //   Lo = Lo << Shamt
1984   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
1985   // else:
1986   //   Lo = 0
1987   //   Hi = Lo << (Shamt-XLEN)
1988 
1989   SDValue Zero = DAG.getConstant(0, DL, VT);
1990   SDValue One = DAG.getConstant(1, DL, VT);
1991   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
1992   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
1993   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
1994   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
1995 
1996   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
1997   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
1998   SDValue ShiftRightLo =
1999       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
2000   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
2001   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2002   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
2003 
2004   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
2005 
2006   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
2007   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
2008 
2009   SDValue Parts[2] = {Lo, Hi};
2010   return DAG.getMergeValues(Parts, DL);
2011 }
2012 
2013 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2014                                                   bool IsSRA) const {
2015   SDLoc DL(Op);
2016   SDValue Lo = Op.getOperand(0);
2017   SDValue Hi = Op.getOperand(1);
2018   SDValue Shamt = Op.getOperand(2);
2019   EVT VT = Lo.getValueType();
2020 
2021   // SRA expansion:
2022   //   if Shamt-XLEN < 0: // Shamt < XLEN
2023   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
2024   //     Hi = Hi >>s Shamt
2025   //   else:
2026   //     Lo = Hi >>s (Shamt-XLEN);
2027   //     Hi = Hi >>s (XLEN-1)
2028   //
2029   // SRL expansion:
2030   //   if Shamt-XLEN < 0: // Shamt < XLEN
2031   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
2032   //     Hi = Hi >>u Shamt
2033   //   else:
2034   //     Lo = Hi >>u (Shamt-XLEN);
2035   //     Hi = 0;
2036 
2037   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
2038 
2039   SDValue Zero = DAG.getConstant(0, DL, VT);
2040   SDValue One = DAG.getConstant(1, DL, VT);
2041   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
2042   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
2043   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
2044   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
2045 
2046   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
2047   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
2048   SDValue ShiftLeftHi =
2049       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
2050   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
2051   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
2052   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
2053   SDValue HiFalse =
2054       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
2055 
2056   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
2057 
2058   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
2059   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
2060 
2061   SDValue Parts[2] = {Lo, Hi};
2062   return DAG.getMergeValues(Parts, DL);
2063 }
2064 
2065 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
2066 // illegal (currently only vXi64 RV32).
2067 // FIXME: We could also catch non-constant sign-extended i32 values and lower
2068 // them to SPLAT_VECTOR_I64
2069 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
2070                                                      SelectionDAG &DAG) const {
2071   SDLoc DL(Op);
2072   EVT VecVT = Op.getValueType();
2073   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
2074          "Unexpected SPLAT_VECTOR_PARTS lowering");
2075 
2076   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
2077   SDValue Lo = Op.getOperand(0);
2078   SDValue Hi = Op.getOperand(1);
2079 
2080   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2081     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2082     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2083     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2084     // node in order to try and match RVV vector/scalar instructions.
2085     if ((LoC >> 31) == HiC)
2086       return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
2087   }
2088 
2089   // Else, on RV32 we lower an i64-element SPLAT_VECTOR thus, being careful not
2090   // to accidentally sign-extend the 32-bit halves to the e64 SEW:
2091   // vmv.v.x vX, hi
2092   // vsll.vx vX, vX, /*32*/
2093   // vmv.v.x vY, lo
2094   // vsll.vx vY, vY, /*32*/
2095   // vsrl.vx vY, vY, /*32*/
2096   // vor.vv vX, vX, vY
2097   SDValue ThirtyTwoV = DAG.getConstant(32, DL, VecVT);
2098 
2099   Lo = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
2100   Lo = DAG.getNode(ISD::SHL, DL, VecVT, Lo, ThirtyTwoV);
2101   Lo = DAG.getNode(ISD::SRL, DL, VecVT, Lo, ThirtyTwoV);
2102 
2103   if (isNullConstant(Hi))
2104     return Lo;
2105 
2106   Hi = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Hi);
2107   Hi = DAG.getNode(ISD::SHL, DL, VecVT, Hi, ThirtyTwoV);
2108 
2109   return DAG.getNode(ISD::OR, DL, VecVT, Lo, Hi);
2110 }
2111 
2112 // Custom-lower extensions from mask vectors by using a vselect either with 1
2113 // for zero/any-extension or -1 for sign-extension:
2114 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
2115 // Note that any-extension is lowered identically to zero-extension.
2116 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
2117                                                 int64_t ExtTrueVal) const {
2118   SDLoc DL(Op);
2119   MVT VecVT = Op.getSimpleValueType();
2120   SDValue Src = Op.getOperand(0);
2121   // Only custom-lower extensions from mask types
2122   assert(Src.getValueType().isVector() &&
2123          Src.getValueType().getVectorElementType() == MVT::i1);
2124 
2125   MVT XLenVT = Subtarget.getXLenVT();
2126   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
2127   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
2128 
2129   if (VecVT.isScalableVector()) {
2130     // Be careful not to introduce illegal scalar types at this stage, and be
2131     // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
2132     // illegal and must be expanded. Since we know that the constants are
2133     // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly.
2134     bool IsRV32E64 =
2135         !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
2136 
2137     if (!IsRV32E64) {
2138       SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
2139       SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
2140     } else {
2141       SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero);
2142       SplatTrueVal =
2143           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal);
2144     }
2145 
2146     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
2147   }
2148 
2149   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
2150   MVT I1ContainerVT =
2151       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
2152 
2153   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
2154 
2155   SDValue Mask, VL;
2156   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
2157 
2158   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL);
2159   SplatTrueVal =
2160       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL);
2161   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
2162                                SplatTrueVal, SplatZero, VL);
2163 
2164   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
2165 }
2166 
2167 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
2168     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
2169   MVT ExtVT = Op.getSimpleValueType();
2170   // Only custom-lower extensions from fixed-length vector types.
2171   if (!ExtVT.isFixedLengthVector())
2172     return Op;
2173   MVT VT = Op.getOperand(0).getSimpleValueType();
2174   // Grab the canonical container type for the extended type. Infer the smaller
2175   // type from that to ensure the same number of vector elements, as we know
2176   // the LMUL will be sufficient to hold the smaller type.
2177   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
2178   // Get the extended container type manually to ensure the same number of
2179   // vector elements between source and dest.
2180   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
2181                                      ContainerExtVT.getVectorElementCount());
2182 
2183   SDValue Op1 =
2184       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
2185 
2186   SDLoc DL(Op);
2187   SDValue Mask, VL;
2188   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2189 
2190   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
2191 
2192   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
2193 }
2194 
2195 // Custom-lower truncations from vectors to mask vectors by using a mask and a
2196 // setcc operation:
2197 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
2198 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
2199                                                   SelectionDAG &DAG) const {
2200   SDLoc DL(Op);
2201   EVT MaskVT = Op.getValueType();
2202   // Only expect to custom-lower truncations to mask types
2203   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
2204          "Unexpected type for vector mask lowering");
2205   SDValue Src = Op.getOperand(0);
2206   MVT VecVT = Src.getSimpleValueType();
2207 
2208   // If this is a fixed vector, we need to convert it to a scalable vector.
2209   MVT ContainerVT = VecVT;
2210   if (VecVT.isFixedLengthVector()) {
2211     ContainerVT = getContainerForFixedLengthVector(VecVT);
2212     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
2213   }
2214 
2215   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
2216   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
2217 
2218   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne);
2219   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero);
2220 
2221   if (VecVT.isScalableVector()) {
2222     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
2223     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
2224   }
2225 
2226   SDValue Mask, VL;
2227   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
2228 
2229   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2230   SDValue Trunc =
2231       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
2232   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
2233                       DAG.getCondCode(ISD::SETNE), Mask, VL);
2234   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
2235 }
2236 
2237 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
2238 // first position of a vector, and that vector is slid up to the insert index.
2239 // By limiting the active vector length to index+1 and merging with the
2240 // original vector (with an undisturbed tail policy for elements >= VL), we
2241 // achieve the desired result of leaving all elements untouched except the one
2242 // at VL-1, which is replaced with the desired value.
2243 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
2244                                                     SelectionDAG &DAG) const {
2245   SDLoc DL(Op);
2246   MVT VecVT = Op.getSimpleValueType();
2247   SDValue Vec = Op.getOperand(0);
2248   SDValue Val = Op.getOperand(1);
2249   SDValue Idx = Op.getOperand(2);
2250 
2251   MVT ContainerVT = VecVT;
2252   // If the operand is a fixed-length vector, convert to a scalable one.
2253   if (VecVT.isFixedLengthVector()) {
2254     ContainerVT = getContainerForFixedLengthVector(VecVT);
2255     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2256   }
2257 
2258   MVT XLenVT = Subtarget.getXLenVT();
2259 
2260   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
2261   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
2262   // Even i64-element vectors on RV32 can be lowered without scalar
2263   // legalization if the most-significant 32 bits of the value are not affected
2264   // by the sign-extension of the lower 32 bits.
2265   // TODO: We could also catch sign extensions of a 32-bit value.
2266   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
2267     const auto *CVal = cast<ConstantSDNode>(Val);
2268     if (isInt<32>(CVal->getSExtValue())) {
2269       IsLegalInsert = true;
2270       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
2271     }
2272   }
2273 
2274   SDValue Mask, VL;
2275   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
2276 
2277   SDValue ValInVec;
2278 
2279   if (IsLegalInsert) {
2280     if (isNullConstant(Idx))
2281       return DAG.getNode(RISCVISD::VMV_S_XF_VL, DL, ContainerVT, Vec, Val, VL);
2282     ValInVec = DAG.getNode(RISCVISD::VMV_S_XF_VL, DL, ContainerVT,
2283                            DAG.getUNDEF(ContainerVT), Val, VL);
2284   } else {
2285     // On RV32, i64-element vectors must be specially handled to place the
2286     // value at element 0, by using two vslide1up instructions in sequence on
2287     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
2288     // this.
2289     SDValue One = DAG.getConstant(1, DL, XLenVT);
2290     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
2291     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
2292     MVT I32ContainerVT =
2293         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
2294     SDValue I32Mask =
2295         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
2296     // Limit the active VL to two.
2297     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
2298     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
2299     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
2300     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero,
2301                            InsertI64VL);
2302     // First slide in the hi value, then the lo in underneath it.
2303     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
2304                            ValHi, I32Mask, InsertI64VL);
2305     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
2306                            ValLo, I32Mask, InsertI64VL);
2307     // Bitcast back to the right container type.
2308     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
2309   }
2310 
2311   // Now that the value is in a vector, slide it into position.
2312   SDValue InsertVL =
2313       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
2314   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
2315                                 ValInVec, Idx, Mask, InsertVL);
2316   if (!VecVT.isFixedLengthVector())
2317     return Slideup;
2318   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
2319 }
2320 
2321 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
2322 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
2323 // types this is done using VMV_X_S to allow us to glean information about the
2324 // sign bits of the result.
2325 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
2326                                                      SelectionDAG &DAG) const {
2327   SDLoc DL(Op);
2328   SDValue Idx = Op.getOperand(1);
2329   SDValue Vec = Op.getOperand(0);
2330   EVT EltVT = Op.getValueType();
2331   MVT VecVT = Vec.getSimpleValueType();
2332   MVT XLenVT = Subtarget.getXLenVT();
2333 
2334   if (VecVT.getVectorElementType() == MVT::i1) {
2335     // FIXME: For now we just promote to an i8 vector and extract from that,
2336     // but this is probably not optimal.
2337     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
2338     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
2339     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
2340   }
2341 
2342   // If this is a fixed vector, we need to convert it to a scalable vector.
2343   MVT ContainerVT = VecVT;
2344   if (VecVT.isFixedLengthVector()) {
2345     ContainerVT = getContainerForFixedLengthVector(VecVT);
2346     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2347   }
2348 
2349   // If the index is 0, the vector is already in the right position.
2350   if (!isNullConstant(Idx)) {
2351     // Use a VL of 1 to avoid processing more elements than we need.
2352     SDValue VL = DAG.getConstant(1, DL, XLenVT);
2353     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
2354     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
2355     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
2356                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
2357   }
2358 
2359   if (!EltVT.isInteger()) {
2360     // Floating-point extracts are handled in TableGen.
2361     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
2362                        DAG.getConstant(0, DL, XLenVT));
2363   }
2364 
2365   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
2366   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
2367 }
2368 
2369 // Called by type legalization to handle splat of i64 on RV32.
2370 // FIXME: We can optimize this when the type has sign or zero bits in one
2371 // of the halves.
2372 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar,
2373                                    SDValue VL, SelectionDAG &DAG) {
2374   SDValue ThirtyTwoV = DAG.getConstant(32, DL, VT);
2375   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2376                            DAG.getConstant(0, DL, MVT::i32));
2377   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2378                            DAG.getConstant(1, DL, MVT::i32));
2379 
2380   // vmv.v.x vX, hi
2381   // vsll.vx vX, vX, /*32*/
2382   // vmv.v.x vY, lo
2383   // vsll.vx vY, vY, /*32*/
2384   // vsrl.vx vY, vY, /*32*/
2385   // vor.vv vX, vX, vY
2386   MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
2387   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
2388   Lo = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL);
2389   Lo = DAG.getNode(RISCVISD::SHL_VL, DL, VT, Lo, ThirtyTwoV, Mask, VL);
2390   Lo = DAG.getNode(RISCVISD::SRL_VL, DL, VT, Lo, ThirtyTwoV, Mask, VL);
2391 
2392   Hi = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Hi, VL);
2393   Hi = DAG.getNode(RISCVISD::SHL_VL, DL, VT, Hi, ThirtyTwoV, Mask, VL);
2394 
2395   return DAG.getNode(RISCVISD::OR_VL, DL, VT, Lo, Hi, Mask, VL);
2396 }
2397 
2398 // Some RVV intrinsics may claim that they want an integer operand to be
2399 // promoted or expanded.
2400 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG,
2401                                           const RISCVSubtarget &Subtarget) {
2402   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2403           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
2404          "Unexpected opcode");
2405 
2406   if (!Subtarget.hasStdExtV())
2407     return SDValue();
2408 
2409   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
2410   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
2411   SDLoc DL(Op);
2412 
2413   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
2414       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
2415   if (!II || !II->SplatOperand)
2416     return SDValue();
2417 
2418   unsigned SplatOp = II->SplatOperand + HasChain;
2419   assert(SplatOp < Op.getNumOperands());
2420 
2421   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
2422   SDValue &ScalarOp = Operands[SplatOp];
2423   MVT OpVT = ScalarOp.getSimpleValueType();
2424   MVT VT = Op.getSimpleValueType();
2425   MVT XLenVT = Subtarget.getXLenVT();
2426 
2427   // If this isn't a scalar, or its type is XLenVT we're done.
2428   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
2429     return SDValue();
2430 
2431   // Simplest case is that the operand needs to be promoted to XLenVT.
2432   if (OpVT.bitsLT(XLenVT)) {
2433     // If the operand is a constant, sign extend to increase our chances
2434     // of being able to use a .vi instruction. ANY_EXTEND would become a
2435     // a zero extend and the simm5 check in isel would fail.
2436     // FIXME: Should we ignore the upper bits in isel instead?
2437     unsigned ExtOpc =
2438         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2439     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
2440     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
2441   }
2442 
2443   // The more complex case is when the scalar is larger than XLenVT.
2444   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
2445          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
2446 
2447   // If this is a sign-extended 32-bit constant, we can truncate it and rely
2448   // on the instruction to sign-extend since SEW>XLEN.
2449   if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
2450     if (isInt<32>(CVal->getSExtValue())) {
2451       ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
2452       return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
2453     }
2454   }
2455 
2456   // We need to convert the scalar to a splat vector.
2457   // FIXME: Can we implicitly truncate the scalar if it is known to
2458   // be sign extended?
2459   // VL should be the last operand.
2460   SDValue VL = Op.getOperand(Op.getNumOperands() - 1);
2461   assert(VL.getValueType() == XLenVT);
2462   ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG);
2463   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
2464 }
2465 
2466 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2467                                                      SelectionDAG &DAG) const {
2468   unsigned IntNo = Op.getConstantOperandVal(0);
2469   SDLoc DL(Op);
2470   MVT XLenVT = Subtarget.getXLenVT();
2471 
2472   switch (IntNo) {
2473   default:
2474     break; // Don't custom lower most intrinsics.
2475   case Intrinsic::thread_pointer: {
2476     EVT PtrVT = getPointerTy(DAG.getDataLayout());
2477     return DAG.getRegister(RISCV::X4, PtrVT);
2478   }
2479   case Intrinsic::riscv_vmv_x_s:
2480     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
2481     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
2482                        Op.getOperand(1));
2483   case Intrinsic::riscv_vmv_v_x: {
2484     SDValue Scalar = Op.getOperand(1);
2485     if (Scalar.getValueType().bitsLE(XLenVT)) {
2486       unsigned ExtOpc =
2487           isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2488       Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2489       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, Op.getValueType(), Scalar,
2490                          Op.getOperand(2));
2491     }
2492 
2493     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
2494 
2495     // If this is a sign-extended 32-bit constant, we can truncate it and rely
2496     // on the instruction to sign-extend since SEW>XLEN.
2497     if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) {
2498       if (isInt<32>(CVal->getSExtValue()))
2499         return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, Op.getValueType(),
2500                            DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32),
2501                            Op.getOperand(2));
2502     }
2503 
2504     // Otherwise use the more complicated splatting algorithm.
2505     return splatSplitI64WithVL(DL, Op.getSimpleValueType(), Scalar,
2506                                Op.getOperand(2), DAG);
2507   }
2508   case Intrinsic::riscv_vfmv_v_f:
2509     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
2510                        Op.getOperand(1), Op.getOperand(2));
2511   case Intrinsic::riscv_vmv_s_x: {
2512     SDValue Scalar = Op.getOperand(2);
2513 
2514     if (Scalar.getValueType().bitsLE(XLenVT)) {
2515       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
2516       return DAG.getNode(RISCVISD::VMV_S_XF_VL, DL, Op.getValueType(),
2517                          Op.getOperand(1), Scalar, Op.getOperand(3));
2518     }
2519 
2520     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
2521 
2522     // This is an i64 value that lives in two scalar registers. We have to
2523     // insert this in a convoluted way. First we build vXi64 splat containing
2524     // the/ two values that we assemble using some bit math. Next we'll use
2525     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
2526     // to merge element 0 from our splat into the source vector.
2527     // FIXME: This is probably not the best way to do this, but it is
2528     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
2529     // point.
2530     //   vmv.v.x vX, hi
2531     //   vsll.vx vX, vX, /*32*/
2532     //   vmv.v.x vY, lo
2533     //   vsll.vx vY, vY, /*32*/
2534     //   vsrl.vx vY, vY, /*32*/
2535     //   vor.vv vX, vX, vY
2536     //
2537     //   vid.v      vVid
2538     //   vmseq.vx   mMask, vVid, 0
2539     //   vmerge.vvm vDest, vSrc, vVal, mMask
2540     MVT VT = Op.getSimpleValueType();
2541     SDValue Vec = Op.getOperand(1);
2542     SDValue VL = Op.getOperand(3);
2543 
2544     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
2545     SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
2546                                       DAG.getConstant(0, DL, MVT::i32), VL);
2547 
2548     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
2549     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
2550     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
2551     SDValue SelectCond =
2552         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
2553                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
2554     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
2555                        Vec, VL);
2556   }
2557   }
2558 
2559   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
2560 }
2561 
2562 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
2563                                                     SelectionDAG &DAG) const {
2564   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
2565 }
2566 
2567 static MVT getLMUL1VT(MVT VT) {
2568   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
2569          "Unexpected vector MVT");
2570   return MVT::getScalableVectorVT(
2571       VT.getVectorElementType(),
2572       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
2573 }
2574 
2575 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
2576   switch (ISDOpcode) {
2577   default:
2578     llvm_unreachable("Unhandled reduction");
2579   case ISD::VECREDUCE_ADD:
2580     return RISCVISD::VECREDUCE_ADD_VL;
2581   case ISD::VECREDUCE_UMAX:
2582     return RISCVISD::VECREDUCE_UMAX_VL;
2583   case ISD::VECREDUCE_SMAX:
2584     return RISCVISD::VECREDUCE_SMAX_VL;
2585   case ISD::VECREDUCE_UMIN:
2586     return RISCVISD::VECREDUCE_UMIN_VL;
2587   case ISD::VECREDUCE_SMIN:
2588     return RISCVISD::VECREDUCE_SMIN_VL;
2589   case ISD::VECREDUCE_AND:
2590     return RISCVISD::VECREDUCE_AND_VL;
2591   case ISD::VECREDUCE_OR:
2592     return RISCVISD::VECREDUCE_OR_VL;
2593   case ISD::VECREDUCE_XOR:
2594     return RISCVISD::VECREDUCE_XOR_VL;
2595   }
2596 }
2597 
2598 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
2599                                             SelectionDAG &DAG) const {
2600   SDLoc DL(Op);
2601   SDValue Vec = Op.getOperand(0);
2602   EVT VecEVT = Vec.getValueType();
2603 
2604   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
2605 
2606   // Due to ordering in legalize types we may have a vector type that needs to
2607   // be split. Do that manually so we can get down to a legal type.
2608   while (getTypeAction(*DAG.getContext(), VecEVT) ==
2609          TargetLowering::TypeSplitVector) {
2610     SDValue Lo, Hi;
2611     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
2612     VecEVT = Lo.getValueType();
2613     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
2614   }
2615 
2616   // TODO: The type may need to be widened rather than split. Or widened before
2617   // it can be split.
2618   if (!isTypeLegal(VecEVT))
2619     return SDValue();
2620 
2621   MVT VecVT = VecEVT.getSimpleVT();
2622   MVT VecEltVT = VecVT.getVectorElementType();
2623   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
2624 
2625   MVT ContainerVT = VecVT;
2626   if (VecVT.isFixedLengthVector()) {
2627     ContainerVT = getContainerForFixedLengthVector(VecVT);
2628     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2629   }
2630 
2631   MVT M1VT = getLMUL1VT(ContainerVT);
2632 
2633   SDValue Mask, VL;
2634   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
2635 
2636   // FIXME: This is a VLMAX splat which might be too large and can prevent
2637   // vsetvli removal.
2638   SDValue NeutralElem =
2639       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
2640   SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem);
2641   SDValue Reduction =
2642       DAG.getNode(RVVOpcode, DL, M1VT, Vec, IdentitySplat, Mask, VL);
2643   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
2644                              DAG.getConstant(0, DL, Subtarget.getXLenVT()));
2645   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
2646 }
2647 
2648 // Given a reduction op, this function returns the matching reduction opcode,
2649 // the vector SDValue and the scalar SDValue required to lower this to a
2650 // RISCVISD node.
2651 static std::tuple<unsigned, SDValue, SDValue>
2652 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
2653   SDLoc DL(Op);
2654   switch (Op.getOpcode()) {
2655   default:
2656     llvm_unreachable("Unhandled reduction");
2657   case ISD::VECREDUCE_FADD:
2658     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0),
2659                            DAG.getConstantFP(0.0, DL, EltVT));
2660   case ISD::VECREDUCE_SEQ_FADD:
2661     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
2662                            Op.getOperand(0));
2663   }
2664 }
2665 
2666 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
2667                                               SelectionDAG &DAG) const {
2668   SDLoc DL(Op);
2669   MVT VecEltVT = Op.getSimpleValueType();
2670 
2671   unsigned RVVOpcode;
2672   SDValue VectorVal, ScalarVal;
2673   std::tie(RVVOpcode, VectorVal, ScalarVal) =
2674       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
2675   MVT VecVT = VectorVal.getSimpleValueType();
2676 
2677   MVT ContainerVT = VecVT;
2678   if (VecVT.isFixedLengthVector()) {
2679     ContainerVT = getContainerForFixedLengthVector(VecVT);
2680     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
2681   }
2682 
2683   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
2684 
2685   SDValue Mask, VL;
2686   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
2687 
2688   // FIXME: This is a VLMAX splat which might be too large and can prevent
2689   // vsetvli removal.
2690   SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal);
2691   SDValue Reduction =
2692       DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat, Mask, VL);
2693   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
2694                      DAG.getConstant(0, DL, Subtarget.getXLenVT()));
2695 }
2696 
2697 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
2698                                                    SelectionDAG &DAG) const {
2699   SDValue Vec = Op.getOperand(0);
2700   SDValue SubVec = Op.getOperand(1);
2701   MVT VecVT = Vec.getSimpleValueType();
2702   MVT SubVecVT = SubVec.getSimpleValueType();
2703 
2704   SDLoc DL(Op);
2705   MVT XLenVT = Subtarget.getXLenVT();
2706   unsigned OrigIdx = Op.getConstantOperandVal(2);
2707   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
2708 
2709   // We don't have the ability to slide mask vectors up indexed by their i1
2710   // elements; the smallest we can do is i8. Often we are able to bitcast to
2711   // equivalent i8 vectors. Note that when inserting a fixed-length vector
2712   // into a scalable one, we might not necessarily have enough scalable
2713   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
2714   if (SubVecVT.getVectorElementType() == MVT::i1 &&
2715       (OrigIdx != 0 || !Vec.isUndef())) {
2716     if (VecVT.getVectorMinNumElements() >= 8 &&
2717         SubVecVT.getVectorMinNumElements() >= 8) {
2718       assert(OrigIdx % 8 == 0 && "Invalid index");
2719       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
2720              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
2721              "Unexpected mask vector lowering");
2722       OrigIdx /= 8;
2723       SubVecVT =
2724           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
2725                            SubVecVT.isScalableVector());
2726       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
2727                                VecVT.isScalableVector());
2728       Vec = DAG.getBitcast(VecVT, Vec);
2729       SubVec = DAG.getBitcast(SubVecVT, SubVec);
2730     } else {
2731       // We can't slide this mask vector up indexed by its i1 elements.
2732       // This poses a problem when we wish to insert a scalable vector which
2733       // can't be re-expressed as a larger type. Just choose the slow path and
2734       // extend to a larger type, then truncate back down.
2735       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
2736       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
2737       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
2738       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
2739       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
2740                         Op.getOperand(2));
2741       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
2742       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
2743     }
2744   }
2745 
2746   // If the subvector vector is a fixed-length type, we cannot use subregister
2747   // manipulation to simplify the codegen; we don't know which register of a
2748   // LMUL group contains the specific subvector as we only know the minimum
2749   // register size. Therefore we must slide the vector group up the full
2750   // amount.
2751   if (SubVecVT.isFixedLengthVector()) {
2752     if (OrigIdx == 0 && Vec.isUndef())
2753       return Op;
2754     MVT ContainerVT = VecVT;
2755     if (VecVT.isFixedLengthVector()) {
2756       ContainerVT = getContainerForFixedLengthVector(VecVT);
2757       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2758     }
2759     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
2760                          DAG.getUNDEF(ContainerVT), SubVec,
2761                          DAG.getConstant(0, DL, XLenVT));
2762     SDValue Mask =
2763         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
2764     // Set the vector length to only the number of elements we care about. Note
2765     // that for slideup this includes the offset.
2766     SDValue VL =
2767         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
2768     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
2769     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
2770                                   SubVec, SlideupAmt, Mask, VL);
2771     if (!VecVT.isFixedLengthVector())
2772       return Slideup;
2773     return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
2774   }
2775 
2776   unsigned SubRegIdx, RemIdx;
2777   std::tie(SubRegIdx, RemIdx) =
2778       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
2779           VecVT, SubVecVT, OrigIdx, TRI);
2780 
2781   RISCVVLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
2782   bool IsSubVecPartReg = SubVecLMUL == RISCVVLMUL::LMUL_F2 ||
2783                          SubVecLMUL == RISCVVLMUL::LMUL_F4 ||
2784                          SubVecLMUL == RISCVVLMUL::LMUL_F8;
2785 
2786   // 1. If the Idx has been completely eliminated and this subvector's size is
2787   // a vector register or a multiple thereof, or the surrounding elements are
2788   // undef, then this is a subvector insert which naturally aligns to a vector
2789   // register. These can easily be handled using subregister manipulation.
2790   // 2. If the subvector is smaller than a vector register, then the insertion
2791   // must preserve the undisturbed elements of the register. We do this by
2792   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
2793   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
2794   // subvector within the vector register, and an INSERT_SUBVECTOR of that
2795   // LMUL=1 type back into the larger vector (resolving to another subregister
2796   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
2797   // to avoid allocating a large register group to hold our subvector.
2798   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
2799     return Op;
2800 
2801   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
2802   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
2803   // (in our case undisturbed). This means we can set up a subvector insertion
2804   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
2805   // size of the subvector.
2806   MVT InterSubVT = VecVT;
2807   SDValue AlignedExtract = Vec;
2808   unsigned AlignedIdx = OrigIdx - RemIdx;
2809   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
2810     InterSubVT = getLMUL1VT(VecVT);
2811     // Extract a subvector equal to the nearest full vector register type. This
2812     // should resolve to a EXTRACT_SUBREG instruction.
2813     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
2814                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
2815   }
2816 
2817   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
2818   // For scalable vectors this must be further multiplied by vscale.
2819   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
2820 
2821   SDValue Mask, VL;
2822   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
2823 
2824   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
2825   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
2826   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
2827   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
2828 
2829   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
2830                        DAG.getUNDEF(InterSubVT), SubVec,
2831                        DAG.getConstant(0, DL, XLenVT));
2832 
2833   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
2834                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
2835 
2836   // If required, insert this subvector back into the correct vector register.
2837   // This should resolve to an INSERT_SUBREG instruction.
2838   if (VecVT.bitsGT(InterSubVT))
2839     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
2840                           DAG.getConstant(AlignedIdx, DL, XLenVT));
2841 
2842   // We might have bitcast from a mask type: cast back to the original type if
2843   // required.
2844   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
2845 }
2846 
2847 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
2848                                                     SelectionDAG &DAG) const {
2849   SDValue Vec = Op.getOperand(0);
2850   MVT SubVecVT = Op.getSimpleValueType();
2851   MVT VecVT = Vec.getSimpleValueType();
2852 
2853   SDLoc DL(Op);
2854   MVT XLenVT = Subtarget.getXLenVT();
2855   unsigned OrigIdx = Op.getConstantOperandVal(1);
2856   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
2857 
2858   // We don't have the ability to slide mask vectors down indexed by their i1
2859   // elements; the smallest we can do is i8. Often we are able to bitcast to
2860   // equivalent i8 vectors. Note that when extracting a fixed-length vector
2861   // from a scalable one, we might not necessarily have enough scalable
2862   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
2863   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
2864     if (VecVT.getVectorMinNumElements() >= 8 &&
2865         SubVecVT.getVectorMinNumElements() >= 8) {
2866       assert(OrigIdx % 8 == 0 && "Invalid index");
2867       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
2868              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
2869              "Unexpected mask vector lowering");
2870       OrigIdx /= 8;
2871       SubVecVT =
2872           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
2873                            SubVecVT.isScalableVector());
2874       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
2875                                VecVT.isScalableVector());
2876       Vec = DAG.getBitcast(VecVT, Vec);
2877     } else {
2878       // We can't slide this mask vector down, indexed by its i1 elements.
2879       // This poses a problem when we wish to extract a scalable vector which
2880       // can't be re-expressed as a larger type. Just choose the slow path and
2881       // extend to a larger type, then truncate back down.
2882       // TODO: We could probably improve this when extracting certain fixed
2883       // from fixed, where we can extract as i8 and shift the correct element
2884       // right to reach the desired subvector?
2885       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
2886       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
2887       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
2888       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
2889                         Op.getOperand(1));
2890       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
2891       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
2892     }
2893   }
2894 
2895   // If the subvector vector is a fixed-length type, we cannot use subregister
2896   // manipulation to simplify the codegen; we don't know which register of a
2897   // LMUL group contains the specific subvector as we only know the minimum
2898   // register size. Therefore we must slide the vector group down the full
2899   // amount.
2900   if (SubVecVT.isFixedLengthVector()) {
2901     // With an index of 0 this is a cast-like subvector, which can be performed
2902     // with subregister operations.
2903     if (OrigIdx == 0)
2904       return Op;
2905     MVT ContainerVT = VecVT;
2906     if (VecVT.isFixedLengthVector()) {
2907       ContainerVT = getContainerForFixedLengthVector(VecVT);
2908       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2909     }
2910     SDValue Mask =
2911         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
2912     // Set the vector length to only the number of elements we care about. This
2913     // avoids sliding down elements we're going to discard straight away.
2914     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
2915     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
2916     SDValue Slidedown =
2917         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
2918                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
2919     // Now we can use a cast-like subvector extract to get the result.
2920     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
2921                        DAG.getConstant(0, DL, XLenVT));
2922   }
2923 
2924   unsigned SubRegIdx, RemIdx;
2925   std::tie(SubRegIdx, RemIdx) =
2926       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
2927           VecVT, SubVecVT, OrigIdx, TRI);
2928 
2929   // If the Idx has been completely eliminated then this is a subvector extract
2930   // which naturally aligns to a vector register. These can easily be handled
2931   // using subregister manipulation.
2932   if (RemIdx == 0)
2933     return Op;
2934 
2935   // Else we must shift our vector register directly to extract the subvector.
2936   // Do this using VSLIDEDOWN.
2937 
2938   // If the vector type is an LMUL-group type, extract a subvector equal to the
2939   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
2940   // instruction.
2941   MVT InterSubVT = VecVT;
2942   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
2943     InterSubVT = getLMUL1VT(VecVT);
2944     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
2945                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
2946   }
2947 
2948   // Slide this vector register down by the desired number of elements in order
2949   // to place the desired subvector starting at element 0.
2950   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
2951   // For scalable vectors this must be further multiplied by vscale.
2952   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
2953 
2954   SDValue Mask, VL;
2955   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
2956   SDValue Slidedown =
2957       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
2958                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
2959 
2960   // Now the vector is in the right position, extract our final subvector. This
2961   // should resolve to a COPY.
2962   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
2963                           DAG.getConstant(0, DL, XLenVT));
2964 
2965   // We might have bitcast from a mask type: cast back to the original type if
2966   // required.
2967   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
2968 }
2969 
2970 // Implement vector_reverse using vrgather.vv with indices determined by
2971 // subtracting the id of each element from (VLMAX-1). This will convert
2972 // the indices like so:
2973 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
2974 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
2975 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
2976                                                  SelectionDAG &DAG) const {
2977   SDLoc DL(Op);
2978   MVT VecVT = Op.getSimpleValueType();
2979   unsigned EltSize = VecVT.getScalarSizeInBits();
2980   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
2981 
2982   unsigned MaxVLMAX = 0;
2983   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
2984   if (VectorBitsMax != 0)
2985     MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock;
2986 
2987   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
2988   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
2989 
2990   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
2991   // to use vrgatherei16.vv.
2992   // TODO: It's also possible to use vrgatherei16.vv for other types to
2993   // decrease register width for the index calculation.
2994   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
2995     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
2996     // Reverse each half, then reassemble them in reverse order.
2997     // NOTE: It's also possible that after splitting that VLMAX no longer
2998     // requires vrgatherei16.vv.
2999     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
3000       SDValue Lo, Hi;
3001       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
3002       EVT LoVT, HiVT;
3003       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
3004       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
3005       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
3006       // Reassemble the low and high pieces reversed.
3007       // FIXME: This is a CONCAT_VECTORS.
3008       SDValue Res =
3009           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
3010                       DAG.getIntPtrConstant(0, DL));
3011       return DAG.getNode(
3012           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
3013           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
3014     }
3015 
3016     // Just promote the int type to i16 which will double the LMUL.
3017     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
3018     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
3019   }
3020 
3021   MVT XLenVT = Subtarget.getXLenVT();
3022   SDValue Mask, VL;
3023   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
3024 
3025   // Calculate VLMAX-1 for the desired SEW.
3026   unsigned MinElts = VecVT.getVectorMinNumElements();
3027   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
3028                               DAG.getConstant(MinElts, DL, XLenVT));
3029   SDValue VLMinus1 =
3030       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
3031 
3032   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
3033   bool IsRV32E64 =
3034       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
3035   SDValue SplatVL;
3036   if (!IsRV32E64)
3037     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
3038   else
3039     SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1);
3040 
3041   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
3042   SDValue Indices =
3043       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
3044 
3045   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
3046 }
3047 
3048 SDValue
3049 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
3050                                                      SelectionDAG &DAG) const {
3051   auto *Load = cast<LoadSDNode>(Op);
3052 
3053   SDLoc DL(Op);
3054   MVT VT = Op.getSimpleValueType();
3055   MVT ContainerVT = getContainerForFixedLengthVector(VT);
3056 
3057   SDValue VL =
3058       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
3059 
3060   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
3061   SDValue NewLoad = DAG.getMemIntrinsicNode(
3062       RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
3063       Load->getMemoryVT(), Load->getMemOperand());
3064 
3065   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
3066   return DAG.getMergeValues({Result, Load->getChain()}, DL);
3067 }
3068 
3069 SDValue
3070 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
3071                                                       SelectionDAG &DAG) const {
3072   auto *Store = cast<StoreSDNode>(Op);
3073 
3074   SDLoc DL(Op);
3075   MVT VT = Store->getValue().getSimpleValueType();
3076 
3077   // FIXME: We probably need to zero any extra bits in a byte for mask stores.
3078   // This is tricky to do.
3079 
3080   MVT ContainerVT = getContainerForFixedLengthVector(VT);
3081 
3082   SDValue VL =
3083       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
3084 
3085   SDValue NewValue =
3086       convertToScalableVector(ContainerVT, Store->getValue(), DAG, Subtarget);
3087   return DAG.getMemIntrinsicNode(
3088       RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
3089       {Store->getChain(), NewValue, Store->getBasePtr(), VL},
3090       Store->getMemoryVT(), Store->getMemOperand());
3091 }
3092 
3093 SDValue
3094 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
3095                                                       SelectionDAG &DAG) const {
3096   MVT InVT = Op.getOperand(0).getSimpleValueType();
3097   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
3098 
3099   MVT VT = Op.getSimpleValueType();
3100 
3101   SDValue Op1 =
3102       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
3103   SDValue Op2 =
3104       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
3105 
3106   SDLoc DL(Op);
3107   SDValue VL =
3108       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
3109 
3110   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3111 
3112   bool Invert = false;
3113   Optional<unsigned> LogicOpc;
3114   if (ContainerVT.isFloatingPoint()) {
3115     bool Swap = false;
3116     switch (CC) {
3117     default:
3118       break;
3119     case ISD::SETULE:
3120     case ISD::SETULT:
3121       Swap = true;
3122       LLVM_FALLTHROUGH;
3123     case ISD::SETUGE:
3124     case ISD::SETUGT:
3125       CC = getSetCCInverse(CC, ContainerVT);
3126       Invert = true;
3127       break;
3128     case ISD::SETOGE:
3129     case ISD::SETOGT:
3130     case ISD::SETGE:
3131     case ISD::SETGT:
3132       Swap = true;
3133       break;
3134     case ISD::SETUEQ:
3135       // Use !((OLT Op1, Op2) || (OLT Op2, Op1))
3136       Invert = true;
3137       LogicOpc = RISCVISD::VMOR_VL;
3138       CC = ISD::SETOLT;
3139       break;
3140     case ISD::SETONE:
3141       // Use ((OLT Op1, Op2) || (OLT Op2, Op1))
3142       LogicOpc = RISCVISD::VMOR_VL;
3143       CC = ISD::SETOLT;
3144       break;
3145     case ISD::SETO:
3146       // Use (OEQ Op1, Op1) && (OEQ Op2, Op2)
3147       LogicOpc = RISCVISD::VMAND_VL;
3148       CC = ISD::SETOEQ;
3149       break;
3150     case ISD::SETUO:
3151       // Use (UNE Op1, Op1) || (UNE Op2, Op2)
3152       LogicOpc = RISCVISD::VMOR_VL;
3153       CC = ISD::SETUNE;
3154       break;
3155     }
3156 
3157     if (Swap) {
3158       CC = getSetCCSwappedOperands(CC);
3159       std::swap(Op1, Op2);
3160     }
3161   }
3162 
3163   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3164   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3165 
3166   // There are 3 cases we need to emit.
3167   // 1. For (OEQ Op1, Op1) && (OEQ Op2, Op2) or (UNE Op1, Op1) || (UNE Op2, Op2)
3168   //    we need to compare each operand with itself.
3169   // 2. For (OLT Op1, Op2) || (OLT Op2, Op1) we need to compare Op1 and Op2 in
3170   //    both orders.
3171   // 3. For any other case we just need one compare with Op1 and Op2.
3172   SDValue Cmp;
3173   if (LogicOpc && (CC == ISD::SETOEQ || CC == ISD::SETUNE)) {
3174     Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op1,
3175                       DAG.getCondCode(CC), Mask, VL);
3176     SDValue Cmp2 = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op2, Op2,
3177                                DAG.getCondCode(CC), Mask, VL);
3178     Cmp = DAG.getNode(*LogicOpc, DL, MaskVT, Cmp, Cmp2, VL);
3179   } else {
3180     Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
3181                       DAG.getCondCode(CC), Mask, VL);
3182     if (LogicOpc) {
3183       SDValue Cmp2 = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op2, Op1,
3184                                  DAG.getCondCode(CC), Mask, VL);
3185       Cmp = DAG.getNode(*LogicOpc, DL, MaskVT, Cmp, Cmp2, VL);
3186     }
3187   }
3188 
3189   if (Invert) {
3190     SDValue AllOnes = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3191     Cmp = DAG.getNode(RISCVISD::VMXOR_VL, DL, MaskVT, Cmp, AllOnes, VL);
3192   }
3193 
3194   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
3195 }
3196 
3197 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
3198     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
3199   MVT VT = Op.getSimpleValueType();
3200 
3201   if (VT.getVectorElementType() == MVT::i1)
3202     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
3203 
3204   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
3205 }
3206 
3207 // Lower vector ABS to smax(X, sub(0, X)).
3208 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
3209   SDLoc DL(Op);
3210   MVT VT = Op.getSimpleValueType();
3211   SDValue X = Op.getOperand(0);
3212 
3213   assert(VT.isFixedLengthVector() && "Unexpected type");
3214 
3215   MVT ContainerVT = getContainerForFixedLengthVector(VT);
3216   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
3217 
3218   SDValue Mask, VL;
3219   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3220 
3221   SDValue SplatZero =
3222       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
3223                   DAG.getConstant(0, DL, Subtarget.getXLenVT()));
3224   SDValue NegX =
3225       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
3226   SDValue Max =
3227       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
3228 
3229   return convertFromScalableVector(VT, Max, DAG, Subtarget);
3230 }
3231 
3232 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
3233     SDValue Op, SelectionDAG &DAG) const {
3234   SDLoc DL(Op);
3235   MVT VT = Op.getSimpleValueType();
3236   SDValue Mag = Op.getOperand(0);
3237   SDValue Sign = Op.getOperand(1);
3238   assert(Mag.getValueType() == Sign.getValueType() &&
3239          "Can only handle COPYSIGN with matching types.");
3240 
3241   MVT ContainerVT = getContainerForFixedLengthVector(VT);
3242   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
3243   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
3244 
3245   SDValue Mask, VL;
3246   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3247 
3248   SDValue CopySign =
3249       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
3250 
3251   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
3252 }
3253 
3254 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
3255     SDValue Op, SelectionDAG &DAG) const {
3256   MVT VT = Op.getSimpleValueType();
3257   MVT ContainerVT = getContainerForFixedLengthVector(VT);
3258 
3259   MVT I1ContainerVT =
3260       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3261 
3262   SDValue CC =
3263       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
3264   SDValue Op1 =
3265       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
3266   SDValue Op2 =
3267       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
3268 
3269   SDLoc DL(Op);
3270   SDValue Mask, VL;
3271   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3272 
3273   SDValue Select =
3274       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
3275 
3276   return convertFromScalableVector(VT, Select, DAG, Subtarget);
3277 }
3278 
3279 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
3280                                                unsigned NewOpc,
3281                                                bool HasMask) const {
3282   MVT VT = Op.getSimpleValueType();
3283   assert(useRVVForFixedLengthVectorVT(VT) &&
3284          "Only expected to lower fixed length vector operation!");
3285   MVT ContainerVT = getContainerForFixedLengthVector(VT);
3286 
3287   // Create list of operands by converting existing ones to scalable types.
3288   SmallVector<SDValue, 6> Ops;
3289   for (const SDValue &V : Op->op_values()) {
3290     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
3291 
3292     // Pass through non-vector operands.
3293     if (!V.getValueType().isVector()) {
3294       Ops.push_back(V);
3295       continue;
3296     }
3297 
3298     // "cast" fixed length vector to a scalable vector.
3299     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
3300            "Only fixed length vectors are supported!");
3301     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
3302   }
3303 
3304   SDLoc DL(Op);
3305   SDValue Mask, VL;
3306   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3307   if (HasMask)
3308     Ops.push_back(Mask);
3309   Ops.push_back(VL);
3310 
3311   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
3312   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
3313 }
3314 
3315 // Returns the opcode of the target-specific SDNode that implements the 32-bit
3316 // form of the given Opcode.
3317 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
3318   switch (Opcode) {
3319   default:
3320     llvm_unreachable("Unexpected opcode");
3321   case ISD::SHL:
3322     return RISCVISD::SLLW;
3323   case ISD::SRA:
3324     return RISCVISD::SRAW;
3325   case ISD::SRL:
3326     return RISCVISD::SRLW;
3327   case ISD::SDIV:
3328     return RISCVISD::DIVW;
3329   case ISD::UDIV:
3330     return RISCVISD::DIVUW;
3331   case ISD::UREM:
3332     return RISCVISD::REMUW;
3333   case ISD::ROTL:
3334     return RISCVISD::ROLW;
3335   case ISD::ROTR:
3336     return RISCVISD::RORW;
3337   case RISCVISD::GREVI:
3338     return RISCVISD::GREVIW;
3339   case RISCVISD::GORCI:
3340     return RISCVISD::GORCIW;
3341   }
3342 }
3343 
3344 // Converts the given 32-bit operation to a target-specific SelectionDAG node.
3345 // Because i32 isn't a legal type for RV64, these operations would otherwise
3346 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W
3347 // later one because the fact the operation was originally of type i32 is
3348 // lost.
3349 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
3350                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
3351   SDLoc DL(N);
3352   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
3353   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
3354   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
3355   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
3356   // ReplaceNodeResults requires we maintain the same type for the return value.
3357   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
3358 }
3359 
3360 // Converts the given 32-bit operation to a i64 operation with signed extension
3361 // semantic to reduce the signed extension instructions.
3362 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
3363   SDLoc DL(N);
3364   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
3365   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
3366   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
3367   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
3368                                DAG.getValueType(MVT::i32));
3369   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
3370 }
3371 
3372 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
3373                                              SmallVectorImpl<SDValue> &Results,
3374                                              SelectionDAG &DAG) const {
3375   SDLoc DL(N);
3376   switch (N->getOpcode()) {
3377   default:
3378     llvm_unreachable("Don't know how to custom type legalize this operation!");
3379   case ISD::STRICT_FP_TO_SINT:
3380   case ISD::STRICT_FP_TO_UINT:
3381   case ISD::FP_TO_SINT:
3382   case ISD::FP_TO_UINT: {
3383     bool IsStrict = N->isStrictFPOpcode();
3384     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3385            "Unexpected custom legalisation");
3386     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
3387     // If the FP type needs to be softened, emit a library call using the 'si'
3388     // version. If we left it to default legalization we'd end up with 'di'. If
3389     // the FP type doesn't need to be softened just let generic type
3390     // legalization promote the result type.
3391     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
3392         TargetLowering::TypeSoftenFloat)
3393       return;
3394     RTLIB::Libcall LC;
3395     if (N->getOpcode() == ISD::FP_TO_SINT ||
3396         N->getOpcode() == ISD::STRICT_FP_TO_SINT)
3397       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
3398     else
3399       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
3400     MakeLibCallOptions CallOptions;
3401     EVT OpVT = Op0.getValueType();
3402     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
3403     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
3404     SDValue Result;
3405     std::tie(Result, Chain) =
3406         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
3407     Results.push_back(Result);
3408     if (IsStrict)
3409       Results.push_back(Chain);
3410     break;
3411   }
3412   case ISD::READCYCLECOUNTER: {
3413     assert(!Subtarget.is64Bit() &&
3414            "READCYCLECOUNTER only has custom type legalization on riscv32");
3415 
3416     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
3417     SDValue RCW =
3418         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
3419 
3420     Results.push_back(
3421         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
3422     Results.push_back(RCW.getValue(2));
3423     break;
3424   }
3425   case ISD::ADD:
3426   case ISD::SUB:
3427   case ISD::MUL:
3428     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3429            "Unexpected custom legalisation");
3430     if (N->getOperand(1).getOpcode() == ISD::Constant)
3431       return;
3432     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
3433     break;
3434   case ISD::SHL:
3435   case ISD::SRA:
3436   case ISD::SRL:
3437     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3438            "Unexpected custom legalisation");
3439     if (N->getOperand(1).getOpcode() == ISD::Constant)
3440       return;
3441     Results.push_back(customLegalizeToWOp(N, DAG));
3442     break;
3443   case ISD::ROTL:
3444   case ISD::ROTR:
3445     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3446            "Unexpected custom legalisation");
3447     Results.push_back(customLegalizeToWOp(N, DAG));
3448     break;
3449   case ISD::SDIV:
3450   case ISD::UDIV:
3451   case ISD::UREM: {
3452     MVT VT = N->getSimpleValueType(0);
3453     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
3454            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
3455            "Unexpected custom legalisation");
3456     if (N->getOperand(0).getOpcode() == ISD::Constant ||
3457         N->getOperand(1).getOpcode() == ISD::Constant)
3458       return;
3459 
3460     // If the input is i32, use ANY_EXTEND since the W instructions don't read
3461     // the upper 32 bits. For other types we need to sign or zero extend
3462     // based on the opcode.
3463     unsigned ExtOpc = ISD::ANY_EXTEND;
3464     if (VT != MVT::i32)
3465       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
3466                                            : ISD::ZERO_EXTEND;
3467 
3468     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
3469     break;
3470   }
3471   case ISD::BITCAST: {
3472     assert(((N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3473              Subtarget.hasStdExtF()) ||
3474             (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh())) &&
3475            "Unexpected custom legalisation");
3476     SDValue Op0 = N->getOperand(0);
3477     if (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh()) {
3478       if (Op0.getValueType() != MVT::f16)
3479         return;
3480       SDValue FPConv =
3481           DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, Subtarget.getXLenVT(), Op0);
3482       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
3483     } else if (N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3484                Subtarget.hasStdExtF()) {
3485       if (Op0.getValueType() != MVT::f32)
3486         return;
3487       SDValue FPConv =
3488           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
3489       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
3490     }
3491     break;
3492   }
3493   case RISCVISD::GREVI:
3494   case RISCVISD::GORCI: {
3495     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3496            "Unexpected custom legalisation");
3497     // This is similar to customLegalizeToWOp, except that we pass the second
3498     // operand (a TargetConstant) straight through: it is already of type
3499     // XLenVT.
3500     SDLoc DL(N);
3501     RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
3502     SDValue NewOp0 =
3503         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
3504     SDValue NewRes =
3505         DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, N->getOperand(1));
3506     // ReplaceNodeResults requires we maintain the same type for the return
3507     // value.
3508     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
3509     break;
3510   }
3511   case RISCVISD::SHFLI: {
3512     // There is no SHFLIW instruction, but we can just promote the operation.
3513     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3514            "Unexpected custom legalisation");
3515     SDLoc DL(N);
3516     SDValue NewOp0 =
3517         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
3518     SDValue NewRes =
3519         DAG.getNode(RISCVISD::SHFLI, DL, MVT::i64, NewOp0, N->getOperand(1));
3520     // ReplaceNodeResults requires we maintain the same type for the return
3521     // value.
3522     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
3523     break;
3524   }
3525   case ISD::BSWAP:
3526   case ISD::BITREVERSE: {
3527     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3528            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
3529     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
3530                                  N->getOperand(0));
3531     unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24;
3532     SDValue GREVIW = DAG.getNode(RISCVISD::GREVIW, DL, MVT::i64, NewOp0,
3533                                  DAG.getTargetConstant(Imm, DL,
3534                                                        Subtarget.getXLenVT()));
3535     // ReplaceNodeResults requires we maintain the same type for the return
3536     // value.
3537     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW));
3538     break;
3539   }
3540   case ISD::FSHL:
3541   case ISD::FSHR: {
3542     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3543            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
3544     SDValue NewOp0 =
3545         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
3546     SDValue NewOp1 =
3547         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
3548     SDValue NewOp2 =
3549         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
3550     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
3551     // Mask the shift amount to 5 bits.
3552     NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
3553                          DAG.getConstant(0x1f, DL, MVT::i64));
3554     unsigned Opc =
3555         N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW;
3556     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2);
3557     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
3558     break;
3559   }
3560   case ISD::EXTRACT_VECTOR_ELT: {
3561     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
3562     // type is illegal (currently only vXi64 RV32).
3563     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
3564     // transferred to the destination register. We issue two of these from the
3565     // upper- and lower- halves of the SEW-bit vector element, slid down to the
3566     // first element.
3567     SDLoc DL(N);
3568     SDValue Vec = N->getOperand(0);
3569     SDValue Idx = N->getOperand(1);
3570 
3571     // The vector type hasn't been legalized yet so we can't issue target
3572     // specific nodes if it needs legalization.
3573     // FIXME: We would manually legalize if it's important.
3574     if (!isTypeLegal(Vec.getValueType()))
3575       return;
3576 
3577     MVT VecVT = Vec.getSimpleValueType();
3578 
3579     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
3580            VecVT.getVectorElementType() == MVT::i64 &&
3581            "Unexpected EXTRACT_VECTOR_ELT legalization");
3582 
3583     // If this is a fixed vector, we need to convert it to a scalable vector.
3584     MVT ContainerVT = VecVT;
3585     if (VecVT.isFixedLengthVector()) {
3586       ContainerVT = getContainerForFixedLengthVector(VecVT);
3587       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3588     }
3589 
3590     MVT XLenVT = Subtarget.getXLenVT();
3591 
3592     // Use a VL of 1 to avoid processing more elements than we need.
3593     MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
3594     SDValue VL = DAG.getConstant(1, DL, XLenVT);
3595     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3596 
3597     // Unless the index is known to be 0, we must slide the vector down to get
3598     // the desired element into index 0.
3599     if (!isNullConstant(Idx)) {
3600       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
3601                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
3602     }
3603 
3604     // Extract the lower XLEN bits of the correct vector element.
3605     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
3606 
3607     // To extract the upper XLEN bits of the vector element, shift the first
3608     // element right by 32 bits and re-extract the lower XLEN bits.
3609     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
3610                                      DAG.getConstant(32, DL, XLenVT), VL);
3611     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
3612                                  ThirtyTwoV, Mask, VL);
3613 
3614     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
3615 
3616     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
3617     break;
3618   }
3619   case ISD::INTRINSIC_WO_CHAIN: {
3620     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3621     switch (IntNo) {
3622     default:
3623       llvm_unreachable(
3624           "Don't know how to custom type legalize this intrinsic!");
3625     case Intrinsic::riscv_vmv_x_s: {
3626       EVT VT = N->getValueType(0);
3627       MVT XLenVT = Subtarget.getXLenVT();
3628       if (VT.bitsLT(XLenVT)) {
3629         // Simple case just extract using vmv.x.s and truncate.
3630         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
3631                                       Subtarget.getXLenVT(), N->getOperand(1));
3632         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
3633         return;
3634       }
3635 
3636       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
3637              "Unexpected custom legalization");
3638 
3639       // We need to do the move in two steps.
3640       SDValue Vec = N->getOperand(1);
3641       MVT VecVT = Vec.getSimpleValueType();
3642 
3643       // First extract the lower XLEN bits of the element.
3644       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
3645 
3646       // To extract the upper XLEN bits of the vector element, shift the first
3647       // element right by 32 bits and re-extract the lower XLEN bits.
3648       SDValue VL = DAG.getConstant(1, DL, XLenVT);
3649       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
3650       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3651       SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT,
3652                                        DAG.getConstant(32, DL, XLenVT), VL);
3653       SDValue LShr32 =
3654           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
3655       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
3656 
3657       Results.push_back(
3658           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
3659       break;
3660     }
3661     }
3662     break;
3663   }
3664   case ISD::VECREDUCE_ADD:
3665   case ISD::VECREDUCE_AND:
3666   case ISD::VECREDUCE_OR:
3667   case ISD::VECREDUCE_XOR:
3668   case ISD::VECREDUCE_SMAX:
3669   case ISD::VECREDUCE_UMAX:
3670   case ISD::VECREDUCE_SMIN:
3671   case ISD::VECREDUCE_UMIN:
3672     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
3673       Results.push_back(V);
3674     break;
3675   }
3676 }
3677 
3678 // A structure to hold one of the bit-manipulation patterns below. Together, a
3679 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
3680 //   (or (and (shl x, 1), 0xAAAAAAAA),
3681 //       (and (srl x, 1), 0x55555555))
3682 struct RISCVBitmanipPat {
3683   SDValue Op;
3684   unsigned ShAmt;
3685   bool IsSHL;
3686 
3687   bool formsPairWith(const RISCVBitmanipPat &Other) const {
3688     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
3689   }
3690 };
3691 
3692 // Matches patterns of the form
3693 //   (and (shl x, C2), (C1 << C2))
3694 //   (and (srl x, C2), C1)
3695 //   (shl (and x, C1), C2)
3696 //   (srl (and x, (C1 << C2)), C2)
3697 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
3698 // The expected masks for each shift amount are specified in BitmanipMasks where
3699 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
3700 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
3701 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
3702 // XLen is 64.
3703 static Optional<RISCVBitmanipPat>
3704 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
3705   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
3706          "Unexpected number of masks");
3707   Optional<uint64_t> Mask;
3708   // Optionally consume a mask around the shift operation.
3709   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
3710     Mask = Op.getConstantOperandVal(1);
3711     Op = Op.getOperand(0);
3712   }
3713   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
3714     return None;
3715   bool IsSHL = Op.getOpcode() == ISD::SHL;
3716 
3717   if (!isa<ConstantSDNode>(Op.getOperand(1)))
3718     return None;
3719   uint64_t ShAmt = Op.getConstantOperandVal(1);
3720 
3721   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
3722   if (ShAmt >= Width && !isPowerOf2_64(ShAmt))
3723     return None;
3724   // If we don't have enough masks for 64 bit, then we must be trying to
3725   // match SHFL so we're only allowed to shift 1/4 of the width.
3726   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
3727     return None;
3728 
3729   SDValue Src = Op.getOperand(0);
3730 
3731   // The expected mask is shifted left when the AND is found around SHL
3732   // patterns.
3733   //   ((x >> 1) & 0x55555555)
3734   //   ((x << 1) & 0xAAAAAAAA)
3735   bool SHLExpMask = IsSHL;
3736 
3737   if (!Mask) {
3738     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
3739     // the mask is all ones: consume that now.
3740     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
3741       Mask = Src.getConstantOperandVal(1);
3742       Src = Src.getOperand(0);
3743       // The expected mask is now in fact shifted left for SRL, so reverse the
3744       // decision.
3745       //   ((x & 0xAAAAAAAA) >> 1)
3746       //   ((x & 0x55555555) << 1)
3747       SHLExpMask = !SHLExpMask;
3748     } else {
3749       // Use a default shifted mask of all-ones if there's no AND, truncated
3750       // down to the expected width. This simplifies the logic later on.
3751       Mask = maskTrailingOnes<uint64_t>(Width);
3752       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
3753     }
3754   }
3755 
3756   unsigned MaskIdx = Log2_32(ShAmt);
3757   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
3758 
3759   if (SHLExpMask)
3760     ExpMask <<= ShAmt;
3761 
3762   if (Mask != ExpMask)
3763     return None;
3764 
3765   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
3766 }
3767 
3768 // Matches any of the following bit-manipulation patterns:
3769 //   (and (shl x, 1), (0x55555555 << 1))
3770 //   (and (srl x, 1), 0x55555555)
3771 //   (shl (and x, 0x55555555), 1)
3772 //   (srl (and x, (0x55555555 << 1)), 1)
3773 // where the shift amount and mask may vary thus:
3774 //   [1]  = 0x55555555 / 0xAAAAAAAA
3775 //   [2]  = 0x33333333 / 0xCCCCCCCC
3776 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
3777 //   [8]  = 0x00FF00FF / 0xFF00FF00
3778 //   [16] = 0x0000FFFF / 0xFFFFFFFF
3779 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
3780 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
3781   // These are the unshifted masks which we use to match bit-manipulation
3782   // patterns. They may be shifted left in certain circumstances.
3783   static const uint64_t BitmanipMasks[] = {
3784       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
3785       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
3786 
3787   return matchRISCVBitmanipPat(Op, BitmanipMasks);
3788 }
3789 
3790 // Match the following pattern as a GREVI(W) operation
3791 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
3792 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
3793                                const RISCVSubtarget &Subtarget) {
3794   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
3795   EVT VT = Op.getValueType();
3796 
3797   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
3798     auto LHS = matchGREVIPat(Op.getOperand(0));
3799     auto RHS = matchGREVIPat(Op.getOperand(1));
3800     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
3801       SDLoc DL(Op);
3802       return DAG.getNode(
3803           RISCVISD::GREVI, DL, VT, LHS->Op,
3804           DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT()));
3805     }
3806   }
3807   return SDValue();
3808 }
3809 
3810 // Matches any the following pattern as a GORCI(W) operation
3811 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
3812 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
3813 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
3814 // Note that with the variant of 3.,
3815 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
3816 // the inner pattern will first be matched as GREVI and then the outer
3817 // pattern will be matched to GORC via the first rule above.
3818 // 4.  (or (rotl/rotr x, bitwidth/2), x)
3819 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
3820                                const RISCVSubtarget &Subtarget) {
3821   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
3822   EVT VT = Op.getValueType();
3823 
3824   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
3825     SDLoc DL(Op);
3826     SDValue Op0 = Op.getOperand(0);
3827     SDValue Op1 = Op.getOperand(1);
3828 
3829     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
3830       if (Reverse.getOpcode() == RISCVISD::GREVI && Reverse.getOperand(0) == X &&
3831           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
3832         return DAG.getNode(RISCVISD::GORCI, DL, VT, X, Reverse.getOperand(1));
3833       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
3834       if ((Reverse.getOpcode() == ISD::ROTL ||
3835            Reverse.getOpcode() == ISD::ROTR) &&
3836           Reverse.getOperand(0) == X &&
3837           isa<ConstantSDNode>(Reverse.getOperand(1))) {
3838         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
3839         if (RotAmt == (VT.getSizeInBits() / 2))
3840           return DAG.getNode(
3841               RISCVISD::GORCI, DL, VT, X,
3842               DAG.getTargetConstant(RotAmt, DL, Subtarget.getXLenVT()));
3843       }
3844       return SDValue();
3845     };
3846 
3847     // Check for either commutable permutation of (or (GREVI x, shamt), x)
3848     if (SDValue V = MatchOROfReverse(Op0, Op1))
3849       return V;
3850     if (SDValue V = MatchOROfReverse(Op1, Op0))
3851       return V;
3852 
3853     // OR is commutable so canonicalize its OR operand to the left
3854     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
3855       std::swap(Op0, Op1);
3856     if (Op0.getOpcode() != ISD::OR)
3857       return SDValue();
3858     SDValue OrOp0 = Op0.getOperand(0);
3859     SDValue OrOp1 = Op0.getOperand(1);
3860     auto LHS = matchGREVIPat(OrOp0);
3861     // OR is commutable so swap the operands and try again: x might have been
3862     // on the left
3863     if (!LHS) {
3864       std::swap(OrOp0, OrOp1);
3865       LHS = matchGREVIPat(OrOp0);
3866     }
3867     auto RHS = matchGREVIPat(Op1);
3868     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
3869       return DAG.getNode(
3870           RISCVISD::GORCI, DL, VT, LHS->Op,
3871           DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT()));
3872     }
3873   }
3874   return SDValue();
3875 }
3876 
3877 // Matches any of the following bit-manipulation patterns:
3878 //   (and (shl x, 1), (0x22222222 << 1))
3879 //   (and (srl x, 1), 0x22222222)
3880 //   (shl (and x, 0x22222222), 1)
3881 //   (srl (and x, (0x22222222 << 1)), 1)
3882 // where the shift amount and mask may vary thus:
3883 //   [1]  = 0x22222222 / 0x44444444
3884 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
3885 //   [4]  = 0x00F000F0 / 0x0F000F00
3886 //   [8]  = 0x0000FF00 / 0x00FF0000
3887 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
3888 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
3889   // These are the unshifted masks which we use to match bit-manipulation
3890   // patterns. They may be shifted left in certain circumstances.
3891   static const uint64_t BitmanipMasks[] = {
3892       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
3893       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
3894 
3895   return matchRISCVBitmanipPat(Op, BitmanipMasks);
3896 }
3897 
3898 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
3899 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
3900                                const RISCVSubtarget &Subtarget) {
3901   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
3902   EVT VT = Op.getValueType();
3903 
3904   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
3905     return SDValue();
3906 
3907   SDValue Op0 = Op.getOperand(0);
3908   SDValue Op1 = Op.getOperand(1);
3909 
3910   // Or is commutable so canonicalize the second OR to the LHS.
3911   if (Op0.getOpcode() != ISD::OR)
3912     std::swap(Op0, Op1);
3913   if (Op0.getOpcode() != ISD::OR)
3914     return SDValue();
3915 
3916   // We found an inner OR, so our operands are the operands of the inner OR
3917   // and the other operand of the outer OR.
3918   SDValue A = Op0.getOperand(0);
3919   SDValue B = Op0.getOperand(1);
3920   SDValue C = Op1;
3921 
3922   auto Match1 = matchSHFLPat(A);
3923   auto Match2 = matchSHFLPat(B);
3924 
3925   // If neither matched, we failed.
3926   if (!Match1 && !Match2)
3927     return SDValue();
3928 
3929   // We had at least one match. if one failed, try the remaining C operand.
3930   if (!Match1) {
3931     std::swap(A, C);
3932     Match1 = matchSHFLPat(A);
3933     if (!Match1)
3934       return SDValue();
3935   } else if (!Match2) {
3936     std::swap(B, C);
3937     Match2 = matchSHFLPat(B);
3938     if (!Match2)
3939       return SDValue();
3940   }
3941   assert(Match1 && Match2);
3942 
3943   // Make sure our matches pair up.
3944   if (!Match1->formsPairWith(*Match2))
3945     return SDValue();
3946 
3947   // All the remains is to make sure C is an AND with the same input, that masks
3948   // out the bits that are being shuffled.
3949   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
3950       C.getOperand(0) != Match1->Op)
3951     return SDValue();
3952 
3953   uint64_t Mask = C.getConstantOperandVal(1);
3954 
3955   static const uint64_t BitmanipMasks[] = {
3956       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
3957       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
3958   };
3959 
3960   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
3961   unsigned MaskIdx = Log2_32(Match1->ShAmt);
3962   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
3963 
3964   if (Mask != ExpMask)
3965     return SDValue();
3966 
3967   SDLoc DL(Op);
3968   return DAG.getNode(
3969       RISCVISD::SHFLI, DL, VT, Match1->Op,
3970       DAG.getTargetConstant(Match1->ShAmt, DL, Subtarget.getXLenVT()));
3971 }
3972 
3973 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
3974 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
3975 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
3976 // not undo itself, but they are redundant.
3977 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
3978   unsigned ShAmt1 = N->getConstantOperandVal(1);
3979   SDValue Src = N->getOperand(0);
3980 
3981   if (Src.getOpcode() != N->getOpcode())
3982     return SDValue();
3983 
3984   unsigned ShAmt2 = Src.getConstantOperandVal(1);
3985   Src = Src.getOperand(0);
3986 
3987   unsigned CombinedShAmt;
3988   if (N->getOpcode() == RISCVISD::GORCI || N->getOpcode() == RISCVISD::GORCIW)
3989     CombinedShAmt = ShAmt1 | ShAmt2;
3990   else
3991     CombinedShAmt = ShAmt1 ^ ShAmt2;
3992 
3993   if (CombinedShAmt == 0)
3994     return Src;
3995 
3996   SDLoc DL(N);
3997   return DAG.getNode(N->getOpcode(), DL, N->getValueType(0), Src,
3998                      DAG.getTargetConstant(CombinedShAmt, DL,
3999                                            N->getOperand(1).getValueType()));
4000 }
4001 
4002 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
4003                                                DAGCombinerInfo &DCI) const {
4004   SelectionDAG &DAG = DCI.DAG;
4005 
4006   switch (N->getOpcode()) {
4007   default:
4008     break;
4009   case RISCVISD::SplitF64: {
4010     SDValue Op0 = N->getOperand(0);
4011     // If the input to SplitF64 is just BuildPairF64 then the operation is
4012     // redundant. Instead, use BuildPairF64's operands directly.
4013     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
4014       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
4015 
4016     SDLoc DL(N);
4017 
4018     // It's cheaper to materialise two 32-bit integers than to load a double
4019     // from the constant pool and transfer it to integer registers through the
4020     // stack.
4021     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
4022       APInt V = C->getValueAPF().bitcastToAPInt();
4023       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
4024       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
4025       return DCI.CombineTo(N, Lo, Hi);
4026     }
4027 
4028     // This is a target-specific version of a DAGCombine performed in
4029     // DAGCombiner::visitBITCAST. It performs the equivalent of:
4030     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
4031     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
4032     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
4033         !Op0.getNode()->hasOneUse())
4034       break;
4035     SDValue NewSplitF64 =
4036         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
4037                     Op0.getOperand(0));
4038     SDValue Lo = NewSplitF64.getValue(0);
4039     SDValue Hi = NewSplitF64.getValue(1);
4040     APInt SignBit = APInt::getSignMask(32);
4041     if (Op0.getOpcode() == ISD::FNEG) {
4042       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
4043                                   DAG.getConstant(SignBit, DL, MVT::i32));
4044       return DCI.CombineTo(N, Lo, NewHi);
4045     }
4046     assert(Op0.getOpcode() == ISD::FABS);
4047     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
4048                                 DAG.getConstant(~SignBit, DL, MVT::i32));
4049     return DCI.CombineTo(N, Lo, NewHi);
4050   }
4051   case RISCVISD::SLLW:
4052   case RISCVISD::SRAW:
4053   case RISCVISD::SRLW:
4054   case RISCVISD::ROLW:
4055   case RISCVISD::RORW: {
4056     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
4057     SDValue LHS = N->getOperand(0);
4058     SDValue RHS = N->getOperand(1);
4059     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
4060     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
4061     if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) ||
4062         SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) {
4063       if (N->getOpcode() != ISD::DELETED_NODE)
4064         DCI.AddToWorklist(N);
4065       return SDValue(N, 0);
4066     }
4067     break;
4068   }
4069   case RISCVISD::FSL:
4070   case RISCVISD::FSR: {
4071     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
4072     SDValue ShAmt = N->getOperand(2);
4073     unsigned BitWidth = ShAmt.getValueSizeInBits();
4074     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
4075     APInt ShAmtMask(BitWidth, (BitWidth * 2) - 1);
4076     if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
4077       if (N->getOpcode() != ISD::DELETED_NODE)
4078         DCI.AddToWorklist(N);
4079       return SDValue(N, 0);
4080     }
4081     break;
4082   }
4083   case RISCVISD::FSLW:
4084   case RISCVISD::FSRW: {
4085     // Only the lower 32 bits of Values and lower 6 bits of shift amount are
4086     // read.
4087     SDValue Op0 = N->getOperand(0);
4088     SDValue Op1 = N->getOperand(1);
4089     SDValue ShAmt = N->getOperand(2);
4090     APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32);
4091     APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6);
4092     if (SimplifyDemandedBits(Op0, OpMask, DCI) ||
4093         SimplifyDemandedBits(Op1, OpMask, DCI) ||
4094         SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
4095       if (N->getOpcode() != ISD::DELETED_NODE)
4096         DCI.AddToWorklist(N);
4097       return SDValue(N, 0);
4098     }
4099     break;
4100   }
4101   case RISCVISD::GREVIW:
4102   case RISCVISD::GORCIW: {
4103     // Only the lower 32 bits of the first operand are read
4104     SDValue Op0 = N->getOperand(0);
4105     APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32);
4106     if (SimplifyDemandedBits(Op0, Mask, DCI)) {
4107       if (N->getOpcode() != ISD::DELETED_NODE)
4108         DCI.AddToWorklist(N);
4109       return SDValue(N, 0);
4110     }
4111 
4112     return combineGREVI_GORCI(N, DCI.DAG);
4113   }
4114   case RISCVISD::FMV_X_ANYEXTW_RV64: {
4115     SDLoc DL(N);
4116     SDValue Op0 = N->getOperand(0);
4117     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
4118     // conversion is unnecessary and can be replaced with an ANY_EXTEND
4119     // of the FMV_W_X_RV64 operand.
4120     if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) {
4121       assert(Op0.getOperand(0).getValueType() == MVT::i64 &&
4122              "Unexpected value type!");
4123       return Op0.getOperand(0);
4124     }
4125 
4126     // This is a target-specific version of a DAGCombine performed in
4127     // DAGCombiner::visitBITCAST. It performs the equivalent of:
4128     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
4129     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
4130     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
4131         !Op0.getNode()->hasOneUse())
4132       break;
4133     SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64,
4134                                  Op0.getOperand(0));
4135     APInt SignBit = APInt::getSignMask(32).sext(64);
4136     if (Op0.getOpcode() == ISD::FNEG)
4137       return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV,
4138                          DAG.getConstant(SignBit, DL, MVT::i64));
4139 
4140     assert(Op0.getOpcode() == ISD::FABS);
4141     return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV,
4142                        DAG.getConstant(~SignBit, DL, MVT::i64));
4143   }
4144   case RISCVISD::GREVI:
4145   case RISCVISD::GORCI:
4146     return combineGREVI_GORCI(N, DCI.DAG);
4147   case ISD::OR:
4148     if (auto GREV = combineORToGREV(SDValue(N, 0), DCI.DAG, Subtarget))
4149       return GREV;
4150     if (auto GORC = combineORToGORC(SDValue(N, 0), DCI.DAG, Subtarget))
4151       return GORC;
4152     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DCI.DAG, Subtarget))
4153       return SHFL;
4154     break;
4155   case RISCVISD::SELECT_CC: {
4156     // Transform
4157     SDValue LHS = N->getOperand(0);
4158     SDValue RHS = N->getOperand(1);
4159     auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2));
4160     if (!ISD::isIntEqualitySetCC(CCVal))
4161       break;
4162 
4163     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
4164     //      (select_cc X, Y, lt, trueV, falseV)
4165     // Sometimes the setcc is introduced after select_cc has been formed.
4166     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
4167         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
4168       // If we're looking for eq 0 instead of ne 0, we need to invert the
4169       // condition.
4170       bool Invert = CCVal == ISD::SETEQ;
4171       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
4172       if (Invert)
4173         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
4174 
4175       SDLoc DL(N);
4176       RHS = LHS.getOperand(1);
4177       LHS = LHS.getOperand(0);
4178       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
4179 
4180       SDValue TargetCC = DAG.getConstant(CCVal, DL, Subtarget.getXLenVT());
4181       return DAG.getNode(
4182           RISCVISD::SELECT_CC, DL, N->getValueType(0),
4183           {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)});
4184     }
4185 
4186     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
4187     //      (select_cc X, Y, eq/ne, trueV, falseV)
4188     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
4189       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
4190                          {LHS.getOperand(0), LHS.getOperand(1),
4191                           N->getOperand(2), N->getOperand(3),
4192                           N->getOperand(4)});
4193     // (select_cc X, 1, setne, trueV, falseV) ->
4194     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
4195     // This can occur when legalizing some floating point comparisons.
4196     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
4197     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
4198       SDLoc DL(N);
4199       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
4200       SDValue TargetCC = DAG.getConstant(CCVal, DL, Subtarget.getXLenVT());
4201       RHS = DAG.getConstant(0, DL, LHS.getValueType());
4202       return DAG.getNode(
4203           RISCVISD::SELECT_CC, DL, N->getValueType(0),
4204           {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)});
4205     }
4206 
4207     break;
4208   }
4209   case ISD::SETCC: {
4210     // (setcc X, 1, setne) -> (setcc X, 0, seteq) if we can prove X is 0/1.
4211     // Comparing with 0 may allow us to fold into bnez/beqz.
4212     SDValue LHS = N->getOperand(0);
4213     SDValue RHS = N->getOperand(1);
4214     if (LHS.getValueType().isScalableVector())
4215       break;
4216     auto CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
4217     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
4218     if (isOneConstant(RHS) && ISD::isIntEqualitySetCC(CC) &&
4219         DAG.MaskedValueIsZero(LHS, Mask)) {
4220       SDLoc DL(N);
4221       SDValue Zero = DAG.getConstant(0, DL, LHS.getValueType());
4222       CC = ISD::getSetCCInverse(CC, LHS.getValueType());
4223       return DAG.getSetCC(DL, N->getValueType(0), LHS, Zero, CC);
4224     }
4225     break;
4226   }
4227   case ISD::FCOPYSIGN: {
4228     EVT VT = N->getValueType(0);
4229     if (!VT.isVector())
4230       break;
4231     // There is a form of VFSGNJ which injects the negated sign of its second
4232     // operand. Try and bubble any FNEG up after the extend/round to produce
4233     // this optimized pattern. Avoid modifying cases where FP_ROUND and
4234     // TRUNC=1.
4235     SDValue In2 = N->getOperand(1);
4236     // Avoid cases where the extend/round has multiple uses, as duplicating
4237     // those is typically more expensive than removing a fneg.
4238     if (!In2.hasOneUse())
4239       break;
4240     if (In2.getOpcode() != ISD::FP_EXTEND &&
4241         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
4242       break;
4243     In2 = In2.getOperand(0);
4244     if (In2.getOpcode() != ISD::FNEG)
4245       break;
4246     SDLoc DL(N);
4247     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
4248     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
4249                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
4250   }
4251   }
4252 
4253   return SDValue();
4254 }
4255 
4256 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
4257     const SDNode *N, CombineLevel Level) const {
4258   // The following folds are only desirable if `(OP _, c1 << c2)` can be
4259   // materialised in fewer instructions than `(OP _, c1)`:
4260   //
4261   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
4262   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
4263   SDValue N0 = N->getOperand(0);
4264   EVT Ty = N0.getValueType();
4265   if (Ty.isScalarInteger() &&
4266       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
4267     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
4268     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
4269     if (C1 && C2) {
4270       const APInt &C1Int = C1->getAPIntValue();
4271       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
4272 
4273       // We can materialise `c1 << c2` into an add immediate, so it's "free",
4274       // and the combine should happen, to potentially allow further combines
4275       // later.
4276       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
4277           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
4278         return true;
4279 
4280       // We can materialise `c1` in an add immediate, so it's "free", and the
4281       // combine should be prevented.
4282       if (C1Int.getMinSignedBits() <= 64 &&
4283           isLegalAddImmediate(C1Int.getSExtValue()))
4284         return false;
4285 
4286       // Neither constant will fit into an immediate, so find materialisation
4287       // costs.
4288       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
4289                                               Subtarget.is64Bit());
4290       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
4291           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit());
4292 
4293       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
4294       // combine should be prevented.
4295       if (C1Cost < ShiftedC1Cost)
4296         return false;
4297     }
4298   }
4299   return true;
4300 }
4301 
4302 bool RISCVTargetLowering::targetShrinkDemandedConstant(
4303     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
4304     TargetLoweringOpt &TLO) const {
4305   // Delay this optimization as late as possible.
4306   if (!TLO.LegalOps)
4307     return false;
4308 
4309   EVT VT = Op.getValueType();
4310   if (VT.isVector())
4311     return false;
4312 
4313   // Only handle AND for now.
4314   if (Op.getOpcode() != ISD::AND)
4315     return false;
4316 
4317   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
4318   if (!C)
4319     return false;
4320 
4321   const APInt &Mask = C->getAPIntValue();
4322 
4323   // Clear all non-demanded bits initially.
4324   APInt ShrunkMask = Mask & DemandedBits;
4325 
4326   // If the shrunk mask fits in sign extended 12 bits, let the target
4327   // independent code apply it.
4328   if (ShrunkMask.isSignedIntN(12))
4329     return false;
4330 
4331   // Try to make a smaller immediate by setting undemanded bits.
4332 
4333   // We need to be able to make a negative number through a combination of mask
4334   // and undemanded bits.
4335   APInt ExpandedMask = Mask | ~DemandedBits;
4336   if (!ExpandedMask.isNegative())
4337     return false;
4338 
4339   // What is the fewest number of bits we need to represent the negative number.
4340   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
4341 
4342   // Try to make a 12 bit negative immediate. If that fails try to make a 32
4343   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
4344   APInt NewMask = ShrunkMask;
4345   if (MinSignedBits <= 12)
4346     NewMask.setBitsFrom(11);
4347   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
4348     NewMask.setBitsFrom(31);
4349   else
4350     return false;
4351 
4352   // Sanity check that our new mask is a subset of the demanded mask.
4353   assert(NewMask.isSubsetOf(ExpandedMask));
4354 
4355   // If we aren't changing the mask, just return true to keep it and prevent
4356   // the caller from optimizing.
4357   if (NewMask == Mask)
4358     return true;
4359 
4360   // Replace the constant with the new mask.
4361   SDLoc DL(Op);
4362   SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
4363   SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
4364   return TLO.CombineTo(Op, NewOp);
4365 }
4366 
4367 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
4368                                                         KnownBits &Known,
4369                                                         const APInt &DemandedElts,
4370                                                         const SelectionDAG &DAG,
4371                                                         unsigned Depth) const {
4372   unsigned BitWidth = Known.getBitWidth();
4373   unsigned Opc = Op.getOpcode();
4374   assert((Opc >= ISD::BUILTIN_OP_END ||
4375           Opc == ISD::INTRINSIC_WO_CHAIN ||
4376           Opc == ISD::INTRINSIC_W_CHAIN ||
4377           Opc == ISD::INTRINSIC_VOID) &&
4378          "Should use MaskedValueIsZero if you don't know whether Op"
4379          " is a target node!");
4380 
4381   Known.resetAll();
4382   switch (Opc) {
4383   default: break;
4384   case RISCVISD::REMUW: {
4385     KnownBits Known2;
4386     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4387     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4388     // We only care about the lower 32 bits.
4389     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
4390     // Restore the original width by sign extending.
4391     Known = Known.sext(BitWidth);
4392     break;
4393   }
4394   case RISCVISD::DIVUW: {
4395     KnownBits Known2;
4396     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4397     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4398     // We only care about the lower 32 bits.
4399     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
4400     // Restore the original width by sign extending.
4401     Known = Known.sext(BitWidth);
4402     break;
4403   }
4404   case RISCVISD::READ_VLENB:
4405     // We assume VLENB is at least 8 bytes.
4406     // FIXME: The 1.0 draft spec defines minimum VLEN as 128 bits.
4407     Known.Zero.setLowBits(3);
4408     break;
4409   }
4410 }
4411 
4412 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
4413     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4414     unsigned Depth) const {
4415   switch (Op.getOpcode()) {
4416   default:
4417     break;
4418   case RISCVISD::SLLW:
4419   case RISCVISD::SRAW:
4420   case RISCVISD::SRLW:
4421   case RISCVISD::DIVW:
4422   case RISCVISD::DIVUW:
4423   case RISCVISD::REMUW:
4424   case RISCVISD::ROLW:
4425   case RISCVISD::RORW:
4426   case RISCVISD::GREVIW:
4427   case RISCVISD::GORCIW:
4428   case RISCVISD::FSLW:
4429   case RISCVISD::FSRW:
4430     // TODO: As the result is sign-extended, this is conservatively correct. A
4431     // more precise answer could be calculated for SRAW depending on known
4432     // bits in the shift amount.
4433     return 33;
4434   case RISCVISD::SHFLI: {
4435     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
4436     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
4437     // will stay within the upper 32 bits. If there were more than 32 sign bits
4438     // before there will be at least 33 sign bits after.
4439     if (Op.getValueType() == MVT::i64 &&
4440         (Op.getConstantOperandVal(1) & 0x10) == 0) {
4441       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4442       if (Tmp > 32)
4443         return 33;
4444     }
4445     break;
4446   }
4447   case RISCVISD::VMV_X_S:
4448     // The number of sign bits of the scalar result is computed by obtaining the
4449     // element type of the input vector operand, subtracting its width from the
4450     // XLEN, and then adding one (sign bit within the element type). If the
4451     // element type is wider than XLen, the least-significant XLEN bits are
4452     // taken.
4453     if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen())
4454       return 1;
4455     return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1;
4456   }
4457 
4458   return 1;
4459 }
4460 
4461 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
4462                                                   MachineBasicBlock *BB) {
4463   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
4464 
4465   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
4466   // Should the count have wrapped while it was being read, we need to try
4467   // again.
4468   // ...
4469   // read:
4470   // rdcycleh x3 # load high word of cycle
4471   // rdcycle  x2 # load low word of cycle
4472   // rdcycleh x4 # load high word of cycle
4473   // bne x3, x4, read # check if high word reads match, otherwise try again
4474   // ...
4475 
4476   MachineFunction &MF = *BB->getParent();
4477   const BasicBlock *LLVM_BB = BB->getBasicBlock();
4478   MachineFunction::iterator It = ++BB->getIterator();
4479 
4480   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
4481   MF.insert(It, LoopMBB);
4482 
4483   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
4484   MF.insert(It, DoneMBB);
4485 
4486   // Transfer the remainder of BB and its successor edges to DoneMBB.
4487   DoneMBB->splice(DoneMBB->begin(), BB,
4488                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
4489   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
4490 
4491   BB->addSuccessor(LoopMBB);
4492 
4493   MachineRegisterInfo &RegInfo = MF.getRegInfo();
4494   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
4495   Register LoReg = MI.getOperand(0).getReg();
4496   Register HiReg = MI.getOperand(1).getReg();
4497   DebugLoc DL = MI.getDebugLoc();
4498 
4499   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
4500   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
4501       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
4502       .addReg(RISCV::X0);
4503   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
4504       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
4505       .addReg(RISCV::X0);
4506   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
4507       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
4508       .addReg(RISCV::X0);
4509 
4510   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
4511       .addReg(HiReg)
4512       .addReg(ReadAgainReg)
4513       .addMBB(LoopMBB);
4514 
4515   LoopMBB->addSuccessor(LoopMBB);
4516   LoopMBB->addSuccessor(DoneMBB);
4517 
4518   MI.eraseFromParent();
4519 
4520   return DoneMBB;
4521 }
4522 
4523 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
4524                                              MachineBasicBlock *BB) {
4525   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
4526 
4527   MachineFunction &MF = *BB->getParent();
4528   DebugLoc DL = MI.getDebugLoc();
4529   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
4530   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
4531   Register LoReg = MI.getOperand(0).getReg();
4532   Register HiReg = MI.getOperand(1).getReg();
4533   Register SrcReg = MI.getOperand(2).getReg();
4534   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
4535   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
4536 
4537   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
4538                           RI);
4539   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
4540   MachineMemOperand *MMOLo =
4541       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
4542   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
4543       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
4544   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
4545       .addFrameIndex(FI)
4546       .addImm(0)
4547       .addMemOperand(MMOLo);
4548   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
4549       .addFrameIndex(FI)
4550       .addImm(4)
4551       .addMemOperand(MMOHi);
4552   MI.eraseFromParent(); // The pseudo instruction is gone now.
4553   return BB;
4554 }
4555 
4556 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
4557                                                  MachineBasicBlock *BB) {
4558   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
4559          "Unexpected instruction");
4560 
4561   MachineFunction &MF = *BB->getParent();
4562   DebugLoc DL = MI.getDebugLoc();
4563   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
4564   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
4565   Register DstReg = MI.getOperand(0).getReg();
4566   Register LoReg = MI.getOperand(1).getReg();
4567   Register HiReg = MI.getOperand(2).getReg();
4568   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
4569   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
4570 
4571   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
4572   MachineMemOperand *MMOLo =
4573       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
4574   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
4575       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
4576   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
4577       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
4578       .addFrameIndex(FI)
4579       .addImm(0)
4580       .addMemOperand(MMOLo);
4581   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
4582       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
4583       .addFrameIndex(FI)
4584       .addImm(4)
4585       .addMemOperand(MMOHi);
4586   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
4587   MI.eraseFromParent(); // The pseudo instruction is gone now.
4588   return BB;
4589 }
4590 
4591 static bool isSelectPseudo(MachineInstr &MI) {
4592   switch (MI.getOpcode()) {
4593   default:
4594     return false;
4595   case RISCV::Select_GPR_Using_CC_GPR:
4596   case RISCV::Select_FPR16_Using_CC_GPR:
4597   case RISCV::Select_FPR32_Using_CC_GPR:
4598   case RISCV::Select_FPR64_Using_CC_GPR:
4599     return true;
4600   }
4601 }
4602 
4603 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
4604                                            MachineBasicBlock *BB) {
4605   // To "insert" Select_* instructions, we actually have to insert the triangle
4606   // control-flow pattern.  The incoming instructions know the destination vreg
4607   // to set, the condition code register to branch on, the true/false values to
4608   // select between, and the condcode to use to select the appropriate branch.
4609   //
4610   // We produce the following control flow:
4611   //     HeadMBB
4612   //     |  \
4613   //     |  IfFalseMBB
4614   //     | /
4615   //    TailMBB
4616   //
4617   // When we find a sequence of selects we attempt to optimize their emission
4618   // by sharing the control flow. Currently we only handle cases where we have
4619   // multiple selects with the exact same condition (same LHS, RHS and CC).
4620   // The selects may be interleaved with other instructions if the other
4621   // instructions meet some requirements we deem safe:
4622   // - They are debug instructions. Otherwise,
4623   // - They do not have side-effects, do not access memory and their inputs do
4624   //   not depend on the results of the select pseudo-instructions.
4625   // The TrueV/FalseV operands of the selects cannot depend on the result of
4626   // previous selects in the sequence.
4627   // These conditions could be further relaxed. See the X86 target for a
4628   // related approach and more information.
4629   Register LHS = MI.getOperand(1).getReg();
4630   Register RHS = MI.getOperand(2).getReg();
4631   auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
4632 
4633   SmallVector<MachineInstr *, 4> SelectDebugValues;
4634   SmallSet<Register, 4> SelectDests;
4635   SelectDests.insert(MI.getOperand(0).getReg());
4636 
4637   MachineInstr *LastSelectPseudo = &MI;
4638 
4639   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
4640        SequenceMBBI != E; ++SequenceMBBI) {
4641     if (SequenceMBBI->isDebugInstr())
4642       continue;
4643     else if (isSelectPseudo(*SequenceMBBI)) {
4644       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
4645           SequenceMBBI->getOperand(2).getReg() != RHS ||
4646           SequenceMBBI->getOperand(3).getImm() != CC ||
4647           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
4648           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
4649         break;
4650       LastSelectPseudo = &*SequenceMBBI;
4651       SequenceMBBI->collectDebugValues(SelectDebugValues);
4652       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
4653     } else {
4654       if (SequenceMBBI->hasUnmodeledSideEffects() ||
4655           SequenceMBBI->mayLoadOrStore())
4656         break;
4657       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
4658             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
4659           }))
4660         break;
4661     }
4662   }
4663 
4664   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
4665   const BasicBlock *LLVM_BB = BB->getBasicBlock();
4666   DebugLoc DL = MI.getDebugLoc();
4667   MachineFunction::iterator I = ++BB->getIterator();
4668 
4669   MachineBasicBlock *HeadMBB = BB;
4670   MachineFunction *F = BB->getParent();
4671   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
4672   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
4673 
4674   F->insert(I, IfFalseMBB);
4675   F->insert(I, TailMBB);
4676 
4677   // Transfer debug instructions associated with the selects to TailMBB.
4678   for (MachineInstr *DebugInstr : SelectDebugValues) {
4679     TailMBB->push_back(DebugInstr->removeFromParent());
4680   }
4681 
4682   // Move all instructions after the sequence to TailMBB.
4683   TailMBB->splice(TailMBB->end(), HeadMBB,
4684                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
4685   // Update machine-CFG edges by transferring all successors of the current
4686   // block to the new block which will contain the Phi nodes for the selects.
4687   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
4688   // Set the successors for HeadMBB.
4689   HeadMBB->addSuccessor(IfFalseMBB);
4690   HeadMBB->addSuccessor(TailMBB);
4691 
4692   // Insert appropriate branch.
4693   unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
4694 
4695   BuildMI(HeadMBB, DL, TII.get(Opcode))
4696     .addReg(LHS)
4697     .addReg(RHS)
4698     .addMBB(TailMBB);
4699 
4700   // IfFalseMBB just falls through to TailMBB.
4701   IfFalseMBB->addSuccessor(TailMBB);
4702 
4703   // Create PHIs for all of the select pseudo-instructions.
4704   auto SelectMBBI = MI.getIterator();
4705   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
4706   auto InsertionPoint = TailMBB->begin();
4707   while (SelectMBBI != SelectEnd) {
4708     auto Next = std::next(SelectMBBI);
4709     if (isSelectPseudo(*SelectMBBI)) {
4710       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
4711       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
4712               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
4713           .addReg(SelectMBBI->getOperand(4).getReg())
4714           .addMBB(HeadMBB)
4715           .addReg(SelectMBBI->getOperand(5).getReg())
4716           .addMBB(IfFalseMBB);
4717       SelectMBBI->eraseFromParent();
4718     }
4719     SelectMBBI = Next;
4720   }
4721 
4722   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
4723   return TailMBB;
4724 }
4725 
4726 static MachineBasicBlock *addVSetVL(MachineInstr &MI, MachineBasicBlock *BB,
4727                                     int VLIndex, unsigned SEWIndex,
4728                                     RISCVVLMUL VLMul, bool ForceTailAgnostic) {
4729   MachineFunction &MF = *BB->getParent();
4730   DebugLoc DL = MI.getDebugLoc();
4731   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
4732 
4733   unsigned SEW = MI.getOperand(SEWIndex).getImm();
4734   assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW");
4735   RISCVVSEW ElementWidth = static_cast<RISCVVSEW>(Log2_32(SEW / 8));
4736 
4737   MachineRegisterInfo &MRI = MF.getRegInfo();
4738 
4739   auto BuildVSETVLI = [&]() {
4740     if (VLIndex >= 0) {
4741       Register DestReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
4742       Register VLReg = MI.getOperand(VLIndex).getReg();
4743 
4744       // VL might be a compile time constant, but isel would have to put it
4745       // in a register. See if VL comes from an ADDI X0, imm.
4746       if (VLReg.isVirtual()) {
4747         MachineInstr *Def = MRI.getVRegDef(VLReg);
4748         if (Def && Def->getOpcode() == RISCV::ADDI &&
4749             Def->getOperand(1).getReg() == RISCV::X0 &&
4750             Def->getOperand(2).isImm()) {
4751           uint64_t Imm = Def->getOperand(2).getImm();
4752           // VSETIVLI allows a 5-bit zero extended immediate.
4753           if (isUInt<5>(Imm))
4754             return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETIVLI))
4755                 .addReg(DestReg, RegState::Define | RegState::Dead)
4756                 .addImm(Imm);
4757         }
4758       }
4759 
4760       return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI))
4761           .addReg(DestReg, RegState::Define | RegState::Dead)
4762           .addReg(VLReg);
4763     }
4764 
4765     // With no VL operator in the pseudo, do not modify VL (rd = X0, rs1 = X0).
4766     return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI))
4767         .addReg(RISCV::X0, RegState::Define | RegState::Dead)
4768         .addReg(RISCV::X0, RegState::Kill);
4769   };
4770 
4771   MachineInstrBuilder MIB = BuildVSETVLI();
4772 
4773   // Default to tail agnostic unless the destination is tied to a source. In
4774   // that case the user would have some control over the tail values. The tail
4775   // policy is also ignored on instructions that only update element 0 like
4776   // vmv.s.x or reductions so use agnostic there to match the common case.
4777   // FIXME: This is conservatively correct, but we might want to detect that
4778   // the input is undefined.
4779   bool TailAgnostic = true;
4780   unsigned UseOpIdx;
4781   if (!ForceTailAgnostic && MI.isRegTiedToUseOperand(0, &UseOpIdx)) {
4782     TailAgnostic = false;
4783     // If the tied operand is an IMPLICIT_DEF we can keep TailAgnostic.
4784     const MachineOperand &UseMO = MI.getOperand(UseOpIdx);
4785     MachineInstr *UseMI = MRI.getVRegDef(UseMO.getReg());
4786     if (UseMI && UseMI->isImplicitDef())
4787       TailAgnostic = true;
4788   }
4789 
4790   // For simplicity we reuse the vtype representation here.
4791   MIB.addImm(RISCVVType::encodeVTYPE(VLMul, ElementWidth,
4792                                      /*TailAgnostic*/ TailAgnostic,
4793                                      /*MaskAgnostic*/ false));
4794 
4795   // Remove (now) redundant operands from pseudo
4796   if (VLIndex >= 0) {
4797     MI.getOperand(VLIndex).setReg(RISCV::NoRegister);
4798     MI.getOperand(VLIndex).setIsKill(false);
4799   }
4800 
4801   return BB;
4802 }
4803 
4804 MachineBasicBlock *
4805 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
4806                                                  MachineBasicBlock *BB) const {
4807   uint64_t TSFlags = MI.getDesc().TSFlags;
4808 
4809   if (TSFlags & RISCVII::HasSEWOpMask) {
4810     unsigned NumOperands = MI.getNumExplicitOperands();
4811     int VLIndex = (TSFlags & RISCVII::HasVLOpMask) ? NumOperands - 2 : -1;
4812     unsigned SEWIndex = NumOperands - 1;
4813     bool ForceTailAgnostic = TSFlags & RISCVII::ForceTailAgnosticMask;
4814 
4815     RISCVVLMUL VLMul = static_cast<RISCVVLMUL>((TSFlags & RISCVII::VLMulMask) >>
4816                                                RISCVII::VLMulShift);
4817     return addVSetVL(MI, BB, VLIndex, SEWIndex, VLMul, ForceTailAgnostic);
4818   }
4819 
4820   switch (MI.getOpcode()) {
4821   default:
4822     llvm_unreachable("Unexpected instr type to insert");
4823   case RISCV::ReadCycleWide:
4824     assert(!Subtarget.is64Bit() &&
4825            "ReadCycleWrite is only to be used on riscv32");
4826     return emitReadCycleWidePseudo(MI, BB);
4827   case RISCV::Select_GPR_Using_CC_GPR:
4828   case RISCV::Select_FPR16_Using_CC_GPR:
4829   case RISCV::Select_FPR32_Using_CC_GPR:
4830   case RISCV::Select_FPR64_Using_CC_GPR:
4831     return emitSelectPseudo(MI, BB);
4832   case RISCV::BuildPairF64Pseudo:
4833     return emitBuildPairF64Pseudo(MI, BB);
4834   case RISCV::SplitF64Pseudo:
4835     return emitSplitF64Pseudo(MI, BB);
4836   }
4837 }
4838 
4839 // Calling Convention Implementation.
4840 // The expectations for frontend ABI lowering vary from target to target.
4841 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
4842 // details, but this is a longer term goal. For now, we simply try to keep the
4843 // role of the frontend as simple and well-defined as possible. The rules can
4844 // be summarised as:
4845 // * Never split up large scalar arguments. We handle them here.
4846 // * If a hardfloat calling convention is being used, and the struct may be
4847 // passed in a pair of registers (fp+fp, int+fp), and both registers are
4848 // available, then pass as two separate arguments. If either the GPRs or FPRs
4849 // are exhausted, then pass according to the rule below.
4850 // * If a struct could never be passed in registers or directly in a stack
4851 // slot (as it is larger than 2*XLEN and the floating point rules don't
4852 // apply), then pass it using a pointer with the byval attribute.
4853 // * If a struct is less than 2*XLEN, then coerce to either a two-element
4854 // word-sized array or a 2*XLEN scalar (depending on alignment).
4855 // * The frontend can determine whether a struct is returned by reference or
4856 // not based on its size and fields. If it will be returned by reference, the
4857 // frontend must modify the prototype so a pointer with the sret annotation is
4858 // passed as the first argument. This is not necessary for large scalar
4859 // returns.
4860 // * Struct return values and varargs should be coerced to structs containing
4861 // register-size fields in the same situations they would be for fixed
4862 // arguments.
4863 
4864 static const MCPhysReg ArgGPRs[] = {
4865   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
4866   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
4867 };
4868 static const MCPhysReg ArgFPR16s[] = {
4869   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
4870   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
4871 };
4872 static const MCPhysReg ArgFPR32s[] = {
4873   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
4874   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
4875 };
4876 static const MCPhysReg ArgFPR64s[] = {
4877   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
4878   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
4879 };
4880 // This is an interim calling convention and it may be changed in the future.
4881 static const MCPhysReg ArgVRs[] = {
4882     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
4883     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
4884     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
4885 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
4886                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
4887                                      RISCV::V20M2, RISCV::V22M2};
4888 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
4889                                      RISCV::V20M4};
4890 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
4891 
4892 // Pass a 2*XLEN argument that has been split into two XLEN values through
4893 // registers or the stack as necessary.
4894 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
4895                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
4896                                 MVT ValVT2, MVT LocVT2,
4897                                 ISD::ArgFlagsTy ArgFlags2) {
4898   unsigned XLenInBytes = XLen / 8;
4899   if (Register Reg = State.AllocateReg(ArgGPRs)) {
4900     // At least one half can be passed via register.
4901     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
4902                                      VA1.getLocVT(), CCValAssign::Full));
4903   } else {
4904     // Both halves must be passed on the stack, with proper alignment.
4905     Align StackAlign =
4906         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
4907     State.addLoc(
4908         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
4909                             State.AllocateStack(XLenInBytes, StackAlign),
4910                             VA1.getLocVT(), CCValAssign::Full));
4911     State.addLoc(CCValAssign::getMem(
4912         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
4913         LocVT2, CCValAssign::Full));
4914     return false;
4915   }
4916 
4917   if (Register Reg = State.AllocateReg(ArgGPRs)) {
4918     // The second half can also be passed via register.
4919     State.addLoc(
4920         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
4921   } else {
4922     // The second half is passed via the stack, without additional alignment.
4923     State.addLoc(CCValAssign::getMem(
4924         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
4925         LocVT2, CCValAssign::Full));
4926   }
4927 
4928   return false;
4929 }
4930 
4931 // Implements the RISC-V calling convention. Returns true upon failure.
4932 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
4933                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
4934                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
4935                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
4936                      Optional<unsigned> FirstMaskArgument) {
4937   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
4938   assert(XLen == 32 || XLen == 64);
4939   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
4940 
4941   // Any return value split in to more than two values can't be returned
4942   // directly.
4943   if (IsRet && ValNo > 1)
4944     return true;
4945 
4946   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
4947   // variadic argument, or if no F16/F32 argument registers are available.
4948   bool UseGPRForF16_F32 = true;
4949   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
4950   // variadic argument, or if no F64 argument registers are available.
4951   bool UseGPRForF64 = true;
4952 
4953   switch (ABI) {
4954   default:
4955     llvm_unreachable("Unexpected ABI");
4956   case RISCVABI::ABI_ILP32:
4957   case RISCVABI::ABI_LP64:
4958     break;
4959   case RISCVABI::ABI_ILP32F:
4960   case RISCVABI::ABI_LP64F:
4961     UseGPRForF16_F32 = !IsFixed;
4962     break;
4963   case RISCVABI::ABI_ILP32D:
4964   case RISCVABI::ABI_LP64D:
4965     UseGPRForF16_F32 = !IsFixed;
4966     UseGPRForF64 = !IsFixed;
4967     break;
4968   }
4969 
4970   // FPR16, FPR32, and FPR64 alias each other.
4971   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
4972     UseGPRForF16_F32 = true;
4973     UseGPRForF64 = true;
4974   }
4975 
4976   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
4977   // similar local variables rather than directly checking against the target
4978   // ABI.
4979 
4980   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
4981     LocVT = XLenVT;
4982     LocInfo = CCValAssign::BCvt;
4983   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
4984     LocVT = MVT::i64;
4985     LocInfo = CCValAssign::BCvt;
4986   }
4987 
4988   // If this is a variadic argument, the RISC-V calling convention requires
4989   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
4990   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
4991   // be used regardless of whether the original argument was split during
4992   // legalisation or not. The argument will not be passed by registers if the
4993   // original type is larger than 2*XLEN, so the register alignment rule does
4994   // not apply.
4995   unsigned TwoXLenInBytes = (2 * XLen) / 8;
4996   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
4997       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
4998     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
4999     // Skip 'odd' register if necessary.
5000     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
5001       State.AllocateReg(ArgGPRs);
5002   }
5003 
5004   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
5005   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
5006       State.getPendingArgFlags();
5007 
5008   assert(PendingLocs.size() == PendingArgFlags.size() &&
5009          "PendingLocs and PendingArgFlags out of sync");
5010 
5011   // Handle passing f64 on RV32D with a soft float ABI or when floating point
5012   // registers are exhausted.
5013   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
5014     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
5015            "Can't lower f64 if it is split");
5016     // Depending on available argument GPRS, f64 may be passed in a pair of
5017     // GPRs, split between a GPR and the stack, or passed completely on the
5018     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
5019     // cases.
5020     Register Reg = State.AllocateReg(ArgGPRs);
5021     LocVT = MVT::i32;
5022     if (!Reg) {
5023       unsigned StackOffset = State.AllocateStack(8, Align(8));
5024       State.addLoc(
5025           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
5026       return false;
5027     }
5028     if (!State.AllocateReg(ArgGPRs))
5029       State.AllocateStack(4, Align(4));
5030     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
5031     return false;
5032   }
5033 
5034   // Split arguments might be passed indirectly, so keep track of the pending
5035   // values.
5036   if (ArgFlags.isSplit() || !PendingLocs.empty()) {
5037     LocVT = XLenVT;
5038     LocInfo = CCValAssign::Indirect;
5039     PendingLocs.push_back(
5040         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
5041     PendingArgFlags.push_back(ArgFlags);
5042     if (!ArgFlags.isSplitEnd()) {
5043       return false;
5044     }
5045   }
5046 
5047   // If the split argument only had two elements, it should be passed directly
5048   // in registers or on the stack.
5049   if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
5050     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
5051     // Apply the normal calling convention rules to the first half of the
5052     // split argument.
5053     CCValAssign VA = PendingLocs[0];
5054     ISD::ArgFlagsTy AF = PendingArgFlags[0];
5055     PendingLocs.clear();
5056     PendingArgFlags.clear();
5057     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
5058                                ArgFlags);
5059   }
5060 
5061   // Allocate to a register if possible, or else a stack slot.
5062   Register Reg;
5063   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
5064     Reg = State.AllocateReg(ArgFPR16s);
5065   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
5066     Reg = State.AllocateReg(ArgFPR32s);
5067   else if (ValVT == MVT::f64 && !UseGPRForF64)
5068     Reg = State.AllocateReg(ArgFPR64s);
5069   else if (ValVT.isScalableVector()) {
5070     const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
5071     if (RC == &RISCV::VRRegClass) {
5072       // Assign the first mask argument to V0.
5073       // This is an interim calling convention and it may be changed in the
5074       // future.
5075       if (FirstMaskArgument.hasValue() &&
5076           ValNo == FirstMaskArgument.getValue()) {
5077         Reg = State.AllocateReg(RISCV::V0);
5078       } else {
5079         Reg = State.AllocateReg(ArgVRs);
5080       }
5081     } else if (RC == &RISCV::VRM2RegClass) {
5082       Reg = State.AllocateReg(ArgVRM2s);
5083     } else if (RC == &RISCV::VRM4RegClass) {
5084       Reg = State.AllocateReg(ArgVRM4s);
5085     } else if (RC == &RISCV::VRM8RegClass) {
5086       Reg = State.AllocateReg(ArgVRM8s);
5087     } else {
5088       llvm_unreachable("Unhandled class register for ValueType");
5089     }
5090     if (!Reg) {
5091       LocInfo = CCValAssign::Indirect;
5092       // Try using a GPR to pass the address
5093       Reg = State.AllocateReg(ArgGPRs);
5094       LocVT = XLenVT;
5095     }
5096   } else
5097     Reg = State.AllocateReg(ArgGPRs);
5098   unsigned StackOffset =
5099       Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8));
5100 
5101   // If we reach this point and PendingLocs is non-empty, we must be at the
5102   // end of a split argument that must be passed indirectly.
5103   if (!PendingLocs.empty()) {
5104     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
5105     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
5106 
5107     for (auto &It : PendingLocs) {
5108       if (Reg)
5109         It.convertToReg(Reg);
5110       else
5111         It.convertToMem(StackOffset);
5112       State.addLoc(It);
5113     }
5114     PendingLocs.clear();
5115     PendingArgFlags.clear();
5116     return false;
5117   }
5118 
5119   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
5120           (TLI.getSubtarget().hasStdExtV() && ValVT.isScalableVector())) &&
5121          "Expected an XLenVT or scalable vector types at this stage");
5122 
5123   if (Reg) {
5124     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
5125     return false;
5126   }
5127 
5128   // When a floating-point value is passed on the stack, no bit-conversion is
5129   // needed.
5130   if (ValVT.isFloatingPoint()) {
5131     LocVT = ValVT;
5132     LocInfo = CCValAssign::Full;
5133   }
5134   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
5135   return false;
5136 }
5137 
5138 template <typename ArgTy>
5139 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
5140   for (const auto &ArgIdx : enumerate(Args)) {
5141     MVT ArgVT = ArgIdx.value().VT;
5142     if (ArgVT.isScalableVector() &&
5143         ArgVT.getVectorElementType().SimpleTy == MVT::i1)
5144       return ArgIdx.index();
5145   }
5146   return None;
5147 }
5148 
5149 void RISCVTargetLowering::analyzeInputArgs(
5150     MachineFunction &MF, CCState &CCInfo,
5151     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const {
5152   unsigned NumArgs = Ins.size();
5153   FunctionType *FType = MF.getFunction().getFunctionType();
5154 
5155   Optional<unsigned> FirstMaskArgument;
5156   if (Subtarget.hasStdExtV())
5157     FirstMaskArgument = preAssignMask(Ins);
5158 
5159   for (unsigned i = 0; i != NumArgs; ++i) {
5160     MVT ArgVT = Ins[i].VT;
5161     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
5162 
5163     Type *ArgTy = nullptr;
5164     if (IsRet)
5165       ArgTy = FType->getReturnType();
5166     else if (Ins[i].isOrigArg())
5167       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
5168 
5169     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
5170     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
5171                  ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
5172                  FirstMaskArgument)) {
5173       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
5174                         << EVT(ArgVT).getEVTString() << '\n');
5175       llvm_unreachable(nullptr);
5176     }
5177   }
5178 }
5179 
5180 void RISCVTargetLowering::analyzeOutputArgs(
5181     MachineFunction &MF, CCState &CCInfo,
5182     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
5183     CallLoweringInfo *CLI) const {
5184   unsigned NumArgs = Outs.size();
5185 
5186   Optional<unsigned> FirstMaskArgument;
5187   if (Subtarget.hasStdExtV())
5188     FirstMaskArgument = preAssignMask(Outs);
5189 
5190   for (unsigned i = 0; i != NumArgs; i++) {
5191     MVT ArgVT = Outs[i].VT;
5192     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5193     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
5194 
5195     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
5196     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
5197                  ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
5198                  FirstMaskArgument)) {
5199       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
5200                         << EVT(ArgVT).getEVTString() << "\n");
5201       llvm_unreachable(nullptr);
5202     }
5203   }
5204 }
5205 
5206 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
5207 // values.
5208 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
5209                                    const CCValAssign &VA, const SDLoc &DL) {
5210   switch (VA.getLocInfo()) {
5211   default:
5212     llvm_unreachable("Unexpected CCValAssign::LocInfo");
5213   case CCValAssign::Full:
5214     break;
5215   case CCValAssign::BCvt:
5216     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
5217       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
5218     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
5219       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
5220     else
5221       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
5222     break;
5223   }
5224   return Val;
5225 }
5226 
5227 // The caller is responsible for loading the full value if the argument is
5228 // passed with CCValAssign::Indirect.
5229 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
5230                                 const CCValAssign &VA, const SDLoc &DL,
5231                                 const RISCVTargetLowering &TLI) {
5232   MachineFunction &MF = DAG.getMachineFunction();
5233   MachineRegisterInfo &RegInfo = MF.getRegInfo();
5234   EVT LocVT = VA.getLocVT();
5235   SDValue Val;
5236   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
5237   Register VReg = RegInfo.createVirtualRegister(RC);
5238   RegInfo.addLiveIn(VA.getLocReg(), VReg);
5239   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
5240 
5241   if (VA.getLocInfo() == CCValAssign::Indirect)
5242     return Val;
5243 
5244   return convertLocVTToValVT(DAG, Val, VA, DL);
5245 }
5246 
5247 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
5248                                    const CCValAssign &VA, const SDLoc &DL) {
5249   EVT LocVT = VA.getLocVT();
5250 
5251   switch (VA.getLocInfo()) {
5252   default:
5253     llvm_unreachable("Unexpected CCValAssign::LocInfo");
5254   case CCValAssign::Full:
5255     break;
5256   case CCValAssign::BCvt:
5257     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
5258       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
5259     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
5260       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
5261     else
5262       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
5263     break;
5264   }
5265   return Val;
5266 }
5267 
5268 // The caller is responsible for loading the full value if the argument is
5269 // passed with CCValAssign::Indirect.
5270 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
5271                                 const CCValAssign &VA, const SDLoc &DL) {
5272   MachineFunction &MF = DAG.getMachineFunction();
5273   MachineFrameInfo &MFI = MF.getFrameInfo();
5274   EVT LocVT = VA.getLocVT();
5275   EVT ValVT = VA.getValVT();
5276   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
5277   int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
5278                                  VA.getLocMemOffset(), /*Immutable=*/true);
5279   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
5280   SDValue Val;
5281 
5282   ISD::LoadExtType ExtType;
5283   switch (VA.getLocInfo()) {
5284   default:
5285     llvm_unreachable("Unexpected CCValAssign::LocInfo");
5286   case CCValAssign::Full:
5287   case CCValAssign::Indirect:
5288   case CCValAssign::BCvt:
5289     ExtType = ISD::NON_EXTLOAD;
5290     break;
5291   }
5292   Val = DAG.getExtLoad(
5293       ExtType, DL, LocVT, Chain, FIN,
5294       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
5295   return Val;
5296 }
5297 
5298 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
5299                                        const CCValAssign &VA, const SDLoc &DL) {
5300   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
5301          "Unexpected VA");
5302   MachineFunction &MF = DAG.getMachineFunction();
5303   MachineFrameInfo &MFI = MF.getFrameInfo();
5304   MachineRegisterInfo &RegInfo = MF.getRegInfo();
5305 
5306   if (VA.isMemLoc()) {
5307     // f64 is passed on the stack.
5308     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
5309     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
5310     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
5311                        MachinePointerInfo::getFixedStack(MF, FI));
5312   }
5313 
5314   assert(VA.isRegLoc() && "Expected register VA assignment");
5315 
5316   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
5317   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
5318   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
5319   SDValue Hi;
5320   if (VA.getLocReg() == RISCV::X17) {
5321     // Second half of f64 is passed on the stack.
5322     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
5323     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
5324     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
5325                      MachinePointerInfo::getFixedStack(MF, FI));
5326   } else {
5327     // Second half of f64 is passed in another GPR.
5328     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
5329     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
5330     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
5331   }
5332   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
5333 }
5334 
5335 // FastCC has less than 1% performance improvement for some particular
5336 // benchmark. But theoretically, it may has benenfit for some cases.
5337 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT,
5338                             CCValAssign::LocInfo LocInfo,
5339                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
5340 
5341   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
5342     // X5 and X6 might be used for save-restore libcall.
5343     static const MCPhysReg GPRList[] = {
5344         RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
5345         RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
5346         RISCV::X29, RISCV::X30, RISCV::X31};
5347     if (unsigned Reg = State.AllocateReg(GPRList)) {
5348       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
5349       return false;
5350     }
5351   }
5352 
5353   if (LocVT == MVT::f16) {
5354     static const MCPhysReg FPR16List[] = {
5355         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
5356         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
5357         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
5358         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
5359     if (unsigned Reg = State.AllocateReg(FPR16List)) {
5360       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
5361       return false;
5362     }
5363   }
5364 
5365   if (LocVT == MVT::f32) {
5366     static const MCPhysReg FPR32List[] = {
5367         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
5368         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
5369         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
5370         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
5371     if (unsigned Reg = State.AllocateReg(FPR32List)) {
5372       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
5373       return false;
5374     }
5375   }
5376 
5377   if (LocVT == MVT::f64) {
5378     static const MCPhysReg FPR64List[] = {
5379         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
5380         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
5381         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
5382         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
5383     if (unsigned Reg = State.AllocateReg(FPR64List)) {
5384       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
5385       return false;
5386     }
5387   }
5388 
5389   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
5390     unsigned Offset4 = State.AllocateStack(4, Align(4));
5391     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
5392     return false;
5393   }
5394 
5395   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
5396     unsigned Offset5 = State.AllocateStack(8, Align(8));
5397     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
5398     return false;
5399   }
5400 
5401   return true; // CC didn't match.
5402 }
5403 
5404 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
5405                          CCValAssign::LocInfo LocInfo,
5406                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
5407 
5408   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
5409     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
5410     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
5411     static const MCPhysReg GPRList[] = {
5412         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
5413         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
5414     if (unsigned Reg = State.AllocateReg(GPRList)) {
5415       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
5416       return false;
5417     }
5418   }
5419 
5420   if (LocVT == MVT::f32) {
5421     // Pass in STG registers: F1, ..., F6
5422     //                        fs0 ... fs5
5423     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
5424                                           RISCV::F18_F, RISCV::F19_F,
5425                                           RISCV::F20_F, RISCV::F21_F};
5426     if (unsigned Reg = State.AllocateReg(FPR32List)) {
5427       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
5428       return false;
5429     }
5430   }
5431 
5432   if (LocVT == MVT::f64) {
5433     // Pass in STG registers: D1, ..., D6
5434     //                        fs6 ... fs11
5435     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
5436                                           RISCV::F24_D, RISCV::F25_D,
5437                                           RISCV::F26_D, RISCV::F27_D};
5438     if (unsigned Reg = State.AllocateReg(FPR64List)) {
5439       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
5440       return false;
5441     }
5442   }
5443 
5444   report_fatal_error("No registers left in GHC calling convention");
5445   return true;
5446 }
5447 
5448 // Transform physical registers into virtual registers.
5449 SDValue RISCVTargetLowering::LowerFormalArguments(
5450     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
5451     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
5452     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5453 
5454   MachineFunction &MF = DAG.getMachineFunction();
5455 
5456   switch (CallConv) {
5457   default:
5458     report_fatal_error("Unsupported calling convention");
5459   case CallingConv::C:
5460   case CallingConv::Fast:
5461     break;
5462   case CallingConv::GHC:
5463     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
5464         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
5465       report_fatal_error(
5466         "GHC calling convention requires the F and D instruction set extensions");
5467   }
5468 
5469   const Function &Func = MF.getFunction();
5470   if (Func.hasFnAttribute("interrupt")) {
5471     if (!Func.arg_empty())
5472       report_fatal_error(
5473         "Functions with the interrupt attribute cannot have arguments!");
5474 
5475     StringRef Kind =
5476       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
5477 
5478     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
5479       report_fatal_error(
5480         "Function interrupt attribute argument not supported!");
5481   }
5482 
5483   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5484   MVT XLenVT = Subtarget.getXLenVT();
5485   unsigned XLenInBytes = Subtarget.getXLen() / 8;
5486   // Used with vargs to acumulate store chains.
5487   std::vector<SDValue> OutChains;
5488 
5489   // Assign locations to all of the incoming arguments.
5490   SmallVector<CCValAssign, 16> ArgLocs;
5491   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5492 
5493   if (CallConv == CallingConv::Fast)
5494     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC);
5495   else if (CallConv == CallingConv::GHC)
5496     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
5497   else
5498     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false);
5499 
5500   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
5501     CCValAssign &VA = ArgLocs[i];
5502     SDValue ArgValue;
5503     // Passing f64 on RV32D with a soft float ABI must be handled as a special
5504     // case.
5505     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
5506       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
5507     else if (VA.isRegLoc())
5508       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
5509     else
5510       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
5511 
5512     if (VA.getLocInfo() == CCValAssign::Indirect) {
5513       // If the original argument was split and passed by reference (e.g. i128
5514       // on RV32), we need to load all parts of it here (using the same
5515       // address).
5516       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
5517                                    MachinePointerInfo()));
5518       unsigned ArgIndex = Ins[i].OrigArgIndex;
5519       assert(Ins[i].PartOffset == 0);
5520       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
5521         CCValAssign &PartVA = ArgLocs[i + 1];
5522         unsigned PartOffset = Ins[i + 1].PartOffset;
5523         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
5524                                       DAG.getIntPtrConstant(PartOffset, DL));
5525         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
5526                                      MachinePointerInfo()));
5527         ++i;
5528       }
5529       continue;
5530     }
5531     InVals.push_back(ArgValue);
5532   }
5533 
5534   if (IsVarArg) {
5535     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
5536     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
5537     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
5538     MachineFrameInfo &MFI = MF.getFrameInfo();
5539     MachineRegisterInfo &RegInfo = MF.getRegInfo();
5540     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
5541 
5542     // Offset of the first variable argument from stack pointer, and size of
5543     // the vararg save area. For now, the varargs save area is either zero or
5544     // large enough to hold a0-a7.
5545     int VaArgOffset, VarArgsSaveSize;
5546 
5547     // If all registers are allocated, then all varargs must be passed on the
5548     // stack and we don't need to save any argregs.
5549     if (ArgRegs.size() == Idx) {
5550       VaArgOffset = CCInfo.getNextStackOffset();
5551       VarArgsSaveSize = 0;
5552     } else {
5553       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
5554       VaArgOffset = -VarArgsSaveSize;
5555     }
5556 
5557     // Record the frame index of the first variable argument
5558     // which is a value necessary to VASTART.
5559     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
5560     RVFI->setVarArgsFrameIndex(FI);
5561 
5562     // If saving an odd number of registers then create an extra stack slot to
5563     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
5564     // offsets to even-numbered registered remain 2*XLEN-aligned.
5565     if (Idx % 2) {
5566       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
5567       VarArgsSaveSize += XLenInBytes;
5568     }
5569 
5570     // Copy the integer registers that may have been used for passing varargs
5571     // to the vararg save area.
5572     for (unsigned I = Idx; I < ArgRegs.size();
5573          ++I, VaArgOffset += XLenInBytes) {
5574       const Register Reg = RegInfo.createVirtualRegister(RC);
5575       RegInfo.addLiveIn(ArgRegs[I], Reg);
5576       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
5577       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
5578       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
5579       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
5580                                    MachinePointerInfo::getFixedStack(MF, FI));
5581       cast<StoreSDNode>(Store.getNode())
5582           ->getMemOperand()
5583           ->setValue((Value *)nullptr);
5584       OutChains.push_back(Store);
5585     }
5586     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
5587   }
5588 
5589   // All stores are grouped in one node to allow the matching between
5590   // the size of Ins and InVals. This only happens for vararg functions.
5591   if (!OutChains.empty()) {
5592     OutChains.push_back(Chain);
5593     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
5594   }
5595 
5596   return Chain;
5597 }
5598 
5599 /// isEligibleForTailCallOptimization - Check whether the call is eligible
5600 /// for tail call optimization.
5601 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
5602 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
5603     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
5604     const SmallVector<CCValAssign, 16> &ArgLocs) const {
5605 
5606   auto &Callee = CLI.Callee;
5607   auto CalleeCC = CLI.CallConv;
5608   auto &Outs = CLI.Outs;
5609   auto &Caller = MF.getFunction();
5610   auto CallerCC = Caller.getCallingConv();
5611 
5612   // Exception-handling functions need a special set of instructions to
5613   // indicate a return to the hardware. Tail-calling another function would
5614   // probably break this.
5615   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
5616   // should be expanded as new function attributes are introduced.
5617   if (Caller.hasFnAttribute("interrupt"))
5618     return false;
5619 
5620   // Do not tail call opt if the stack is used to pass parameters.
5621   if (CCInfo.getNextStackOffset() != 0)
5622     return false;
5623 
5624   // Do not tail call opt if any parameters need to be passed indirectly.
5625   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
5626   // passed indirectly. So the address of the value will be passed in a
5627   // register, or if not available, then the address is put on the stack. In
5628   // order to pass indirectly, space on the stack often needs to be allocated
5629   // in order to store the value. In this case the CCInfo.getNextStackOffset()
5630   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
5631   // are passed CCValAssign::Indirect.
5632   for (auto &VA : ArgLocs)
5633     if (VA.getLocInfo() == CCValAssign::Indirect)
5634       return false;
5635 
5636   // Do not tail call opt if either caller or callee uses struct return
5637   // semantics.
5638   auto IsCallerStructRet = Caller.hasStructRetAttr();
5639   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
5640   if (IsCallerStructRet || IsCalleeStructRet)
5641     return false;
5642 
5643   // Externally-defined functions with weak linkage should not be
5644   // tail-called. The behaviour of branch instructions in this situation (as
5645   // used for tail calls) is implementation-defined, so we cannot rely on the
5646   // linker replacing the tail call with a return.
5647   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
5648     const GlobalValue *GV = G->getGlobal();
5649     if (GV->hasExternalWeakLinkage())
5650       return false;
5651   }
5652 
5653   // The callee has to preserve all registers the caller needs to preserve.
5654   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5655   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
5656   if (CalleeCC != CallerCC) {
5657     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
5658     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
5659       return false;
5660   }
5661 
5662   // Byval parameters hand the function a pointer directly into the stack area
5663   // we want to reuse during a tail call. Working around this *is* possible
5664   // but less efficient and uglier in LowerCall.
5665   for (auto &Arg : Outs)
5666     if (Arg.Flags.isByVal())
5667       return false;
5668 
5669   return true;
5670 }
5671 
5672 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
5673 // and output parameter nodes.
5674 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
5675                                        SmallVectorImpl<SDValue> &InVals) const {
5676   SelectionDAG &DAG = CLI.DAG;
5677   SDLoc &DL = CLI.DL;
5678   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5679   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
5680   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
5681   SDValue Chain = CLI.Chain;
5682   SDValue Callee = CLI.Callee;
5683   bool &IsTailCall = CLI.IsTailCall;
5684   CallingConv::ID CallConv = CLI.CallConv;
5685   bool IsVarArg = CLI.IsVarArg;
5686   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5687   MVT XLenVT = Subtarget.getXLenVT();
5688 
5689   MachineFunction &MF = DAG.getMachineFunction();
5690 
5691   // Analyze the operands of the call, assigning locations to each operand.
5692   SmallVector<CCValAssign, 16> ArgLocs;
5693   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5694 
5695   if (CallConv == CallingConv::Fast)
5696     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC);
5697   else if (CallConv == CallingConv::GHC)
5698     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
5699   else
5700     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI);
5701 
5702   // Check if it's really possible to do a tail call.
5703   if (IsTailCall)
5704     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
5705 
5706   if (IsTailCall)
5707     ++NumTailCalls;
5708   else if (CLI.CB && CLI.CB->isMustTailCall())
5709     report_fatal_error("failed to perform tail call elimination on a call "
5710                        "site marked musttail");
5711 
5712   // Get a count of how many bytes are to be pushed on the stack.
5713   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
5714 
5715   // Create local copies for byval args
5716   SmallVector<SDValue, 8> ByValArgs;
5717   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
5718     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5719     if (!Flags.isByVal())
5720       continue;
5721 
5722     SDValue Arg = OutVals[i];
5723     unsigned Size = Flags.getByValSize();
5724     Align Alignment = Flags.getNonZeroByValAlign();
5725 
5726     int FI =
5727         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
5728     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
5729     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
5730 
5731     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
5732                           /*IsVolatile=*/false,
5733                           /*AlwaysInline=*/false, IsTailCall,
5734                           MachinePointerInfo(), MachinePointerInfo());
5735     ByValArgs.push_back(FIPtr);
5736   }
5737 
5738   if (!IsTailCall)
5739     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
5740 
5741   // Copy argument values to their designated locations.
5742   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
5743   SmallVector<SDValue, 8> MemOpChains;
5744   SDValue StackPtr;
5745   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
5746     CCValAssign &VA = ArgLocs[i];
5747     SDValue ArgValue = OutVals[i];
5748     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5749 
5750     // Handle passing f64 on RV32D with a soft float ABI as a special case.
5751     bool IsF64OnRV32DSoftABI =
5752         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
5753     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
5754       SDValue SplitF64 = DAG.getNode(
5755           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
5756       SDValue Lo = SplitF64.getValue(0);
5757       SDValue Hi = SplitF64.getValue(1);
5758 
5759       Register RegLo = VA.getLocReg();
5760       RegsToPass.push_back(std::make_pair(RegLo, Lo));
5761 
5762       if (RegLo == RISCV::X17) {
5763         // Second half of f64 is passed on the stack.
5764         // Work out the address of the stack slot.
5765         if (!StackPtr.getNode())
5766           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
5767         // Emit the store.
5768         MemOpChains.push_back(
5769             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
5770       } else {
5771         // Second half of f64 is passed in another GPR.
5772         assert(RegLo < RISCV::X31 && "Invalid register pair");
5773         Register RegHigh = RegLo + 1;
5774         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
5775       }
5776       continue;
5777     }
5778 
5779     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
5780     // as any other MemLoc.
5781 
5782     // Promote the value if needed.
5783     // For now, only handle fully promoted and indirect arguments.
5784     if (VA.getLocInfo() == CCValAssign::Indirect) {
5785       // Store the argument in a stack slot and pass its address.
5786       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT);
5787       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
5788       MemOpChains.push_back(
5789           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
5790                        MachinePointerInfo::getFixedStack(MF, FI)));
5791       // If the original argument was split (e.g. i128), we need
5792       // to store all parts of it here (and pass just one address).
5793       unsigned ArgIndex = Outs[i].OrigArgIndex;
5794       assert(Outs[i].PartOffset == 0);
5795       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
5796         SDValue PartValue = OutVals[i + 1];
5797         unsigned PartOffset = Outs[i + 1].PartOffset;
5798         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
5799                                       DAG.getIntPtrConstant(PartOffset, DL));
5800         MemOpChains.push_back(
5801             DAG.getStore(Chain, DL, PartValue, Address,
5802                          MachinePointerInfo::getFixedStack(MF, FI)));
5803         ++i;
5804       }
5805       ArgValue = SpillSlot;
5806     } else {
5807       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL);
5808     }
5809 
5810     // Use local copy if it is a byval arg.
5811     if (Flags.isByVal())
5812       ArgValue = ByValArgs[j++];
5813 
5814     if (VA.isRegLoc()) {
5815       // Queue up the argument copies and emit them at the end.
5816       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
5817     } else {
5818       assert(VA.isMemLoc() && "Argument not register or memory");
5819       assert(!IsTailCall && "Tail call not allowed if stack is used "
5820                             "for passing parameters");
5821 
5822       // Work out the address of the stack slot.
5823       if (!StackPtr.getNode())
5824         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
5825       SDValue Address =
5826           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
5827                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
5828 
5829       // Emit the store.
5830       MemOpChains.push_back(
5831           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
5832     }
5833   }
5834 
5835   // Join the stores, which are independent of one another.
5836   if (!MemOpChains.empty())
5837     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
5838 
5839   SDValue Glue;
5840 
5841   // Build a sequence of copy-to-reg nodes, chained and glued together.
5842   for (auto &Reg : RegsToPass) {
5843     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
5844     Glue = Chain.getValue(1);
5845   }
5846 
5847   // Validate that none of the argument registers have been marked as
5848   // reserved, if so report an error. Do the same for the return address if this
5849   // is not a tailcall.
5850   validateCCReservedRegs(RegsToPass, MF);
5851   if (!IsTailCall &&
5852       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
5853     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
5854         MF.getFunction(),
5855         "Return address register required, but has been reserved."});
5856 
5857   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
5858   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
5859   // split it and then direct call can be matched by PseudoCALL.
5860   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
5861     const GlobalValue *GV = S->getGlobal();
5862 
5863     unsigned OpFlags = RISCVII::MO_CALL;
5864     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
5865       OpFlags = RISCVII::MO_PLT;
5866 
5867     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
5868   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5869     unsigned OpFlags = RISCVII::MO_CALL;
5870 
5871     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
5872                                                  nullptr))
5873       OpFlags = RISCVII::MO_PLT;
5874 
5875     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
5876   }
5877 
5878   // The first call operand is the chain and the second is the target address.
5879   SmallVector<SDValue, 8> Ops;
5880   Ops.push_back(Chain);
5881   Ops.push_back(Callee);
5882 
5883   // Add argument registers to the end of the list so that they are
5884   // known live into the call.
5885   for (auto &Reg : RegsToPass)
5886     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
5887 
5888   if (!IsTailCall) {
5889     // Add a register mask operand representing the call-preserved registers.
5890     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5891     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
5892     assert(Mask && "Missing call preserved mask for calling convention");
5893     Ops.push_back(DAG.getRegisterMask(Mask));
5894   }
5895 
5896   // Glue the call to the argument copies, if any.
5897   if (Glue.getNode())
5898     Ops.push_back(Glue);
5899 
5900   // Emit the call.
5901   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
5902 
5903   if (IsTailCall) {
5904     MF.getFrameInfo().setHasTailCall();
5905     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
5906   }
5907 
5908   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
5909   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
5910   Glue = Chain.getValue(1);
5911 
5912   // Mark the end of the call, which is glued to the call itself.
5913   Chain = DAG.getCALLSEQ_END(Chain,
5914                              DAG.getConstant(NumBytes, DL, PtrVT, true),
5915                              DAG.getConstant(0, DL, PtrVT, true),
5916                              Glue, DL);
5917   Glue = Chain.getValue(1);
5918 
5919   // Assign locations to each value returned by this call.
5920   SmallVector<CCValAssign, 16> RVLocs;
5921   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
5922   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true);
5923 
5924   // Copy all of the result registers out of their specified physreg.
5925   for (auto &VA : RVLocs) {
5926     // Copy the value out
5927     SDValue RetValue =
5928         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
5929     // Glue the RetValue to the end of the call sequence
5930     Chain = RetValue.getValue(1);
5931     Glue = RetValue.getValue(2);
5932 
5933     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
5934       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
5935       SDValue RetValue2 =
5936           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
5937       Chain = RetValue2.getValue(1);
5938       Glue = RetValue2.getValue(2);
5939       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
5940                              RetValue2);
5941     }
5942 
5943     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL);
5944 
5945     InVals.push_back(RetValue);
5946   }
5947 
5948   return Chain;
5949 }
5950 
5951 bool RISCVTargetLowering::CanLowerReturn(
5952     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
5953     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
5954   SmallVector<CCValAssign, 16> RVLocs;
5955   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
5956 
5957   Optional<unsigned> FirstMaskArgument;
5958   if (Subtarget.hasStdExtV())
5959     FirstMaskArgument = preAssignMask(Outs);
5960 
5961   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
5962     MVT VT = Outs[i].VT;
5963     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5964     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
5965     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
5966                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
5967                  *this, FirstMaskArgument))
5968       return false;
5969   }
5970   return true;
5971 }
5972 
5973 SDValue
5974 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
5975                                  bool IsVarArg,
5976                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
5977                                  const SmallVectorImpl<SDValue> &OutVals,
5978                                  const SDLoc &DL, SelectionDAG &DAG) const {
5979   const MachineFunction &MF = DAG.getMachineFunction();
5980   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
5981 
5982   // Stores the assignment of the return value to a location.
5983   SmallVector<CCValAssign, 16> RVLocs;
5984 
5985   // Info about the registers and stack slot.
5986   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
5987                  *DAG.getContext());
5988 
5989   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
5990                     nullptr);
5991 
5992   if (CallConv == CallingConv::GHC && !RVLocs.empty())
5993     report_fatal_error("GHC functions return void only");
5994 
5995   SDValue Glue;
5996   SmallVector<SDValue, 4> RetOps(1, Chain);
5997 
5998   // Copy the result values into the output registers.
5999   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
6000     SDValue Val = OutVals[i];
6001     CCValAssign &VA = RVLocs[i];
6002     assert(VA.isRegLoc() && "Can only return in registers!");
6003 
6004     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
6005       // Handle returning f64 on RV32D with a soft float ABI.
6006       assert(VA.isRegLoc() && "Expected return via registers");
6007       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
6008                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
6009       SDValue Lo = SplitF64.getValue(0);
6010       SDValue Hi = SplitF64.getValue(1);
6011       Register RegLo = VA.getLocReg();
6012       assert(RegLo < RISCV::X31 && "Invalid register pair");
6013       Register RegHi = RegLo + 1;
6014 
6015       if (STI.isRegisterReservedByUser(RegLo) ||
6016           STI.isRegisterReservedByUser(RegHi))
6017         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
6018             MF.getFunction(),
6019             "Return value register required, but has been reserved."});
6020 
6021       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
6022       Glue = Chain.getValue(1);
6023       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
6024       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
6025       Glue = Chain.getValue(1);
6026       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
6027     } else {
6028       // Handle a 'normal' return.
6029       Val = convertValVTToLocVT(DAG, Val, VA, DL);
6030       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
6031 
6032       if (STI.isRegisterReservedByUser(VA.getLocReg()))
6033         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
6034             MF.getFunction(),
6035             "Return value register required, but has been reserved."});
6036 
6037       // Guarantee that all emitted copies are stuck together.
6038       Glue = Chain.getValue(1);
6039       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
6040     }
6041   }
6042 
6043   RetOps[0] = Chain; // Update chain.
6044 
6045   // Add the glue node if we have it.
6046   if (Glue.getNode()) {
6047     RetOps.push_back(Glue);
6048   }
6049 
6050   // Interrupt service routines use different return instructions.
6051   const Function &Func = DAG.getMachineFunction().getFunction();
6052   if (Func.hasFnAttribute("interrupt")) {
6053     if (!Func.getReturnType()->isVoidTy())
6054       report_fatal_error(
6055           "Functions with the interrupt attribute must have void return type!");
6056 
6057     MachineFunction &MF = DAG.getMachineFunction();
6058     StringRef Kind =
6059       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
6060 
6061     unsigned RetOpc;
6062     if (Kind == "user")
6063       RetOpc = RISCVISD::URET_FLAG;
6064     else if (Kind == "supervisor")
6065       RetOpc = RISCVISD::SRET_FLAG;
6066     else
6067       RetOpc = RISCVISD::MRET_FLAG;
6068 
6069     return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
6070   }
6071 
6072   return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
6073 }
6074 
6075 void RISCVTargetLowering::validateCCReservedRegs(
6076     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
6077     MachineFunction &MF) const {
6078   const Function &F = MF.getFunction();
6079   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
6080 
6081   if (llvm::any_of(Regs, [&STI](auto Reg) {
6082         return STI.isRegisterReservedByUser(Reg.first);
6083       }))
6084     F.getContext().diagnose(DiagnosticInfoUnsupported{
6085         F, "Argument register required, but has been reserved."});
6086 }
6087 
6088 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
6089   return CI->isTailCall();
6090 }
6091 
6092 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
6093 #define NODE_NAME_CASE(NODE)                                                   \
6094   case RISCVISD::NODE:                                                         \
6095     return "RISCVISD::" #NODE;
6096   // clang-format off
6097   switch ((RISCVISD::NodeType)Opcode) {
6098   case RISCVISD::FIRST_NUMBER:
6099     break;
6100   NODE_NAME_CASE(RET_FLAG)
6101   NODE_NAME_CASE(URET_FLAG)
6102   NODE_NAME_CASE(SRET_FLAG)
6103   NODE_NAME_CASE(MRET_FLAG)
6104   NODE_NAME_CASE(CALL)
6105   NODE_NAME_CASE(SELECT_CC)
6106   NODE_NAME_CASE(BuildPairF64)
6107   NODE_NAME_CASE(SplitF64)
6108   NODE_NAME_CASE(TAIL)
6109   NODE_NAME_CASE(SLLW)
6110   NODE_NAME_CASE(SRAW)
6111   NODE_NAME_CASE(SRLW)
6112   NODE_NAME_CASE(DIVW)
6113   NODE_NAME_CASE(DIVUW)
6114   NODE_NAME_CASE(REMUW)
6115   NODE_NAME_CASE(ROLW)
6116   NODE_NAME_CASE(RORW)
6117   NODE_NAME_CASE(FSLW)
6118   NODE_NAME_CASE(FSRW)
6119   NODE_NAME_CASE(FSL)
6120   NODE_NAME_CASE(FSR)
6121   NODE_NAME_CASE(FMV_H_X)
6122   NODE_NAME_CASE(FMV_X_ANYEXTH)
6123   NODE_NAME_CASE(FMV_W_X_RV64)
6124   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
6125   NODE_NAME_CASE(READ_CYCLE_WIDE)
6126   NODE_NAME_CASE(GREVI)
6127   NODE_NAME_CASE(GREVIW)
6128   NODE_NAME_CASE(GORCI)
6129   NODE_NAME_CASE(GORCIW)
6130   NODE_NAME_CASE(SHFLI)
6131   NODE_NAME_CASE(VMV_V_X_VL)
6132   NODE_NAME_CASE(VFMV_V_F_VL)
6133   NODE_NAME_CASE(VMV_X_S)
6134   NODE_NAME_CASE(VMV_S_XF_VL)
6135   NODE_NAME_CASE(SPLAT_VECTOR_I64)
6136   NODE_NAME_CASE(READ_VLENB)
6137   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
6138   NODE_NAME_CASE(VLEFF)
6139   NODE_NAME_CASE(VLEFF_MASK)
6140   NODE_NAME_CASE(VSLIDEUP_VL)
6141   NODE_NAME_CASE(VSLIDE1UP_VL)
6142   NODE_NAME_CASE(VSLIDEDOWN_VL)
6143   NODE_NAME_CASE(VID_VL)
6144   NODE_NAME_CASE(VFNCVT_ROD_VL)
6145   NODE_NAME_CASE(VECREDUCE_ADD_VL)
6146   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
6147   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
6148   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
6149   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
6150   NODE_NAME_CASE(VECREDUCE_AND_VL)
6151   NODE_NAME_CASE(VECREDUCE_OR_VL)
6152   NODE_NAME_CASE(VECREDUCE_XOR_VL)
6153   NODE_NAME_CASE(VECREDUCE_FADD_VL)
6154   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
6155   NODE_NAME_CASE(ADD_VL)
6156   NODE_NAME_CASE(AND_VL)
6157   NODE_NAME_CASE(MUL_VL)
6158   NODE_NAME_CASE(OR_VL)
6159   NODE_NAME_CASE(SDIV_VL)
6160   NODE_NAME_CASE(SHL_VL)
6161   NODE_NAME_CASE(SREM_VL)
6162   NODE_NAME_CASE(SRA_VL)
6163   NODE_NAME_CASE(SRL_VL)
6164   NODE_NAME_CASE(SUB_VL)
6165   NODE_NAME_CASE(UDIV_VL)
6166   NODE_NAME_CASE(UREM_VL)
6167   NODE_NAME_CASE(XOR_VL)
6168   NODE_NAME_CASE(FADD_VL)
6169   NODE_NAME_CASE(FSUB_VL)
6170   NODE_NAME_CASE(FMUL_VL)
6171   NODE_NAME_CASE(FDIV_VL)
6172   NODE_NAME_CASE(FNEG_VL)
6173   NODE_NAME_CASE(FABS_VL)
6174   NODE_NAME_CASE(FSQRT_VL)
6175   NODE_NAME_CASE(FMA_VL)
6176   NODE_NAME_CASE(FCOPYSIGN_VL)
6177   NODE_NAME_CASE(SMIN_VL)
6178   NODE_NAME_CASE(SMAX_VL)
6179   NODE_NAME_CASE(UMIN_VL)
6180   NODE_NAME_CASE(UMAX_VL)
6181   NODE_NAME_CASE(MULHS_VL)
6182   NODE_NAME_CASE(MULHU_VL)
6183   NODE_NAME_CASE(FP_TO_SINT_VL)
6184   NODE_NAME_CASE(FP_TO_UINT_VL)
6185   NODE_NAME_CASE(SINT_TO_FP_VL)
6186   NODE_NAME_CASE(UINT_TO_FP_VL)
6187   NODE_NAME_CASE(FP_EXTEND_VL)
6188   NODE_NAME_CASE(FP_ROUND_VL)
6189   NODE_NAME_CASE(SETCC_VL)
6190   NODE_NAME_CASE(VSELECT_VL)
6191   NODE_NAME_CASE(VMAND_VL)
6192   NODE_NAME_CASE(VMOR_VL)
6193   NODE_NAME_CASE(VMXOR_VL)
6194   NODE_NAME_CASE(VMCLR_VL)
6195   NODE_NAME_CASE(VMSET_VL)
6196   NODE_NAME_CASE(VRGATHER_VX_VL)
6197   NODE_NAME_CASE(VRGATHER_VV_VL)
6198   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
6199   NODE_NAME_CASE(VSEXT_VL)
6200   NODE_NAME_CASE(VZEXT_VL)
6201   NODE_NAME_CASE(VLE_VL)
6202   NODE_NAME_CASE(VSE_VL)
6203   }
6204   // clang-format on
6205   return nullptr;
6206 #undef NODE_NAME_CASE
6207 }
6208 
6209 /// getConstraintType - Given a constraint letter, return the type of
6210 /// constraint it is for this target.
6211 RISCVTargetLowering::ConstraintType
6212 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
6213   if (Constraint.size() == 1) {
6214     switch (Constraint[0]) {
6215     default:
6216       break;
6217     case 'f':
6218       return C_RegisterClass;
6219     case 'I':
6220     case 'J':
6221     case 'K':
6222       return C_Immediate;
6223     case 'A':
6224       return C_Memory;
6225     }
6226   }
6227   return TargetLowering::getConstraintType(Constraint);
6228 }
6229 
6230 std::pair<unsigned, const TargetRegisterClass *>
6231 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
6232                                                   StringRef Constraint,
6233                                                   MVT VT) const {
6234   // First, see if this is a constraint that directly corresponds to a
6235   // RISCV register class.
6236   if (Constraint.size() == 1) {
6237     switch (Constraint[0]) {
6238     case 'r':
6239       return std::make_pair(0U, &RISCV::GPRRegClass);
6240     case 'f':
6241       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
6242         return std::make_pair(0U, &RISCV::FPR16RegClass);
6243       if (Subtarget.hasStdExtF() && VT == MVT::f32)
6244         return std::make_pair(0U, &RISCV::FPR32RegClass);
6245       if (Subtarget.hasStdExtD() && VT == MVT::f64)
6246         return std::make_pair(0U, &RISCV::FPR64RegClass);
6247       break;
6248     default:
6249       break;
6250     }
6251   }
6252 
6253   // Clang will correctly decode the usage of register name aliases into their
6254   // official names. However, other frontends like `rustc` do not. This allows
6255   // users of these frontends to use the ABI names for registers in LLVM-style
6256   // register constraints.
6257   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
6258                                .Case("{zero}", RISCV::X0)
6259                                .Case("{ra}", RISCV::X1)
6260                                .Case("{sp}", RISCV::X2)
6261                                .Case("{gp}", RISCV::X3)
6262                                .Case("{tp}", RISCV::X4)
6263                                .Case("{t0}", RISCV::X5)
6264                                .Case("{t1}", RISCV::X6)
6265                                .Case("{t2}", RISCV::X7)
6266                                .Cases("{s0}", "{fp}", RISCV::X8)
6267                                .Case("{s1}", RISCV::X9)
6268                                .Case("{a0}", RISCV::X10)
6269                                .Case("{a1}", RISCV::X11)
6270                                .Case("{a2}", RISCV::X12)
6271                                .Case("{a3}", RISCV::X13)
6272                                .Case("{a4}", RISCV::X14)
6273                                .Case("{a5}", RISCV::X15)
6274                                .Case("{a6}", RISCV::X16)
6275                                .Case("{a7}", RISCV::X17)
6276                                .Case("{s2}", RISCV::X18)
6277                                .Case("{s3}", RISCV::X19)
6278                                .Case("{s4}", RISCV::X20)
6279                                .Case("{s5}", RISCV::X21)
6280                                .Case("{s6}", RISCV::X22)
6281                                .Case("{s7}", RISCV::X23)
6282                                .Case("{s8}", RISCV::X24)
6283                                .Case("{s9}", RISCV::X25)
6284                                .Case("{s10}", RISCV::X26)
6285                                .Case("{s11}", RISCV::X27)
6286                                .Case("{t3}", RISCV::X28)
6287                                .Case("{t4}", RISCV::X29)
6288                                .Case("{t5}", RISCV::X30)
6289                                .Case("{t6}", RISCV::X31)
6290                                .Default(RISCV::NoRegister);
6291   if (XRegFromAlias != RISCV::NoRegister)
6292     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
6293 
6294   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
6295   // TableGen record rather than the AsmName to choose registers for InlineAsm
6296   // constraints, plus we want to match those names to the widest floating point
6297   // register type available, manually select floating point registers here.
6298   //
6299   // The second case is the ABI name of the register, so that frontends can also
6300   // use the ABI names in register constraint lists.
6301   if (Subtarget.hasStdExtF()) {
6302     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
6303                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
6304                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
6305                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
6306                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
6307                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
6308                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
6309                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
6310                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
6311                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
6312                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
6313                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
6314                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
6315                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
6316                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
6317                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
6318                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
6319                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
6320                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
6321                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
6322                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
6323                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
6324                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
6325                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
6326                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
6327                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
6328                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
6329                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
6330                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
6331                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
6332                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
6333                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
6334                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
6335                         .Default(RISCV::NoRegister);
6336     if (FReg != RISCV::NoRegister) {
6337       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
6338       if (Subtarget.hasStdExtD()) {
6339         unsigned RegNo = FReg - RISCV::F0_F;
6340         unsigned DReg = RISCV::F0_D + RegNo;
6341         return std::make_pair(DReg, &RISCV::FPR64RegClass);
6342       }
6343       return std::make_pair(FReg, &RISCV::FPR32RegClass);
6344     }
6345   }
6346 
6347   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
6348 }
6349 
6350 unsigned
6351 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
6352   // Currently only support length 1 constraints.
6353   if (ConstraintCode.size() == 1) {
6354     switch (ConstraintCode[0]) {
6355     case 'A':
6356       return InlineAsm::Constraint_A;
6357     default:
6358       break;
6359     }
6360   }
6361 
6362   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
6363 }
6364 
6365 void RISCVTargetLowering::LowerAsmOperandForConstraint(
6366     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
6367     SelectionDAG &DAG) const {
6368   // Currently only support length 1 constraints.
6369   if (Constraint.length() == 1) {
6370     switch (Constraint[0]) {
6371     case 'I':
6372       // Validate & create a 12-bit signed immediate operand.
6373       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
6374         uint64_t CVal = C->getSExtValue();
6375         if (isInt<12>(CVal))
6376           Ops.push_back(
6377               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
6378       }
6379       return;
6380     case 'J':
6381       // Validate & create an integer zero operand.
6382       if (auto *C = dyn_cast<ConstantSDNode>(Op))
6383         if (C->getZExtValue() == 0)
6384           Ops.push_back(
6385               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
6386       return;
6387     case 'K':
6388       // Validate & create a 5-bit unsigned immediate operand.
6389       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
6390         uint64_t CVal = C->getZExtValue();
6391         if (isUInt<5>(CVal))
6392           Ops.push_back(
6393               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
6394       }
6395       return;
6396     default:
6397       break;
6398     }
6399   }
6400   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
6401 }
6402 
6403 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
6404                                                    Instruction *Inst,
6405                                                    AtomicOrdering Ord) const {
6406   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
6407     return Builder.CreateFence(Ord);
6408   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
6409     return Builder.CreateFence(AtomicOrdering::Release);
6410   return nullptr;
6411 }
6412 
6413 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
6414                                                     Instruction *Inst,
6415                                                     AtomicOrdering Ord) const {
6416   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
6417     return Builder.CreateFence(AtomicOrdering::Acquire);
6418   return nullptr;
6419 }
6420 
6421 TargetLowering::AtomicExpansionKind
6422 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
6423   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
6424   // point operations can't be used in an lr/sc sequence without breaking the
6425   // forward-progress guarantee.
6426   if (AI->isFloatingPointOperation())
6427     return AtomicExpansionKind::CmpXChg;
6428 
6429   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
6430   if (Size == 8 || Size == 16)
6431     return AtomicExpansionKind::MaskedIntrinsic;
6432   return AtomicExpansionKind::None;
6433 }
6434 
6435 static Intrinsic::ID
6436 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
6437   if (XLen == 32) {
6438     switch (BinOp) {
6439     default:
6440       llvm_unreachable("Unexpected AtomicRMW BinOp");
6441     case AtomicRMWInst::Xchg:
6442       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
6443     case AtomicRMWInst::Add:
6444       return Intrinsic::riscv_masked_atomicrmw_add_i32;
6445     case AtomicRMWInst::Sub:
6446       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
6447     case AtomicRMWInst::Nand:
6448       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
6449     case AtomicRMWInst::Max:
6450       return Intrinsic::riscv_masked_atomicrmw_max_i32;
6451     case AtomicRMWInst::Min:
6452       return Intrinsic::riscv_masked_atomicrmw_min_i32;
6453     case AtomicRMWInst::UMax:
6454       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
6455     case AtomicRMWInst::UMin:
6456       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
6457     }
6458   }
6459 
6460   if (XLen == 64) {
6461     switch (BinOp) {
6462     default:
6463       llvm_unreachable("Unexpected AtomicRMW BinOp");
6464     case AtomicRMWInst::Xchg:
6465       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
6466     case AtomicRMWInst::Add:
6467       return Intrinsic::riscv_masked_atomicrmw_add_i64;
6468     case AtomicRMWInst::Sub:
6469       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
6470     case AtomicRMWInst::Nand:
6471       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
6472     case AtomicRMWInst::Max:
6473       return Intrinsic::riscv_masked_atomicrmw_max_i64;
6474     case AtomicRMWInst::Min:
6475       return Intrinsic::riscv_masked_atomicrmw_min_i64;
6476     case AtomicRMWInst::UMax:
6477       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
6478     case AtomicRMWInst::UMin:
6479       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
6480     }
6481   }
6482 
6483   llvm_unreachable("Unexpected XLen\n");
6484 }
6485 
6486 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
6487     IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
6488     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
6489   unsigned XLen = Subtarget.getXLen();
6490   Value *Ordering =
6491       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
6492   Type *Tys[] = {AlignedAddr->getType()};
6493   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
6494       AI->getModule(),
6495       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
6496 
6497   if (XLen == 64) {
6498     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
6499     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
6500     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
6501   }
6502 
6503   Value *Result;
6504 
6505   // Must pass the shift amount needed to sign extend the loaded value prior
6506   // to performing a signed comparison for min/max. ShiftAmt is the number of
6507   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
6508   // is the number of bits to left+right shift the value in order to
6509   // sign-extend.
6510   if (AI->getOperation() == AtomicRMWInst::Min ||
6511       AI->getOperation() == AtomicRMWInst::Max) {
6512     const DataLayout &DL = AI->getModule()->getDataLayout();
6513     unsigned ValWidth =
6514         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
6515     Value *SextShamt =
6516         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
6517     Result = Builder.CreateCall(LrwOpScwLoop,
6518                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
6519   } else {
6520     Result =
6521         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
6522   }
6523 
6524   if (XLen == 64)
6525     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
6526   return Result;
6527 }
6528 
6529 TargetLowering::AtomicExpansionKind
6530 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
6531     AtomicCmpXchgInst *CI) const {
6532   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
6533   if (Size == 8 || Size == 16)
6534     return AtomicExpansionKind::MaskedIntrinsic;
6535   return AtomicExpansionKind::None;
6536 }
6537 
6538 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
6539     IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
6540     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
6541   unsigned XLen = Subtarget.getXLen();
6542   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
6543   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
6544   if (XLen == 64) {
6545     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
6546     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
6547     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
6548     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
6549   }
6550   Type *Tys[] = {AlignedAddr->getType()};
6551   Function *MaskedCmpXchg =
6552       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
6553   Value *Result = Builder.CreateCall(
6554       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
6555   if (XLen == 64)
6556     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
6557   return Result;
6558 }
6559 
6560 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
6561                                                      EVT VT) const {
6562   VT = VT.getScalarType();
6563 
6564   if (!VT.isSimple())
6565     return false;
6566 
6567   switch (VT.getSimpleVT().SimpleTy) {
6568   case MVT::f16:
6569     return Subtarget.hasStdExtZfh();
6570   case MVT::f32:
6571     return Subtarget.hasStdExtF();
6572   case MVT::f64:
6573     return Subtarget.hasStdExtD();
6574   default:
6575     break;
6576   }
6577 
6578   return false;
6579 }
6580 
6581 Register RISCVTargetLowering::getExceptionPointerRegister(
6582     const Constant *PersonalityFn) const {
6583   return RISCV::X10;
6584 }
6585 
6586 Register RISCVTargetLowering::getExceptionSelectorRegister(
6587     const Constant *PersonalityFn) const {
6588   return RISCV::X11;
6589 }
6590 
6591 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
6592   // Return false to suppress the unnecessary extensions if the LibCall
6593   // arguments or return value is f32 type for LP64 ABI.
6594   RISCVABI::ABI ABI = Subtarget.getTargetABI();
6595   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
6596     return false;
6597 
6598   return true;
6599 }
6600 
6601 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
6602   if (Subtarget.is64Bit() && Type == MVT::i32)
6603     return true;
6604 
6605   return IsSigned;
6606 }
6607 
6608 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
6609                                                  SDValue C) const {
6610   // Check integral scalar types.
6611   if (VT.isScalarInteger()) {
6612     // Omit the optimization if the sub target has the M extension and the data
6613     // size exceeds XLen.
6614     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
6615       return false;
6616     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
6617       // Break the MUL to a SLLI and an ADD/SUB.
6618       const APInt &Imm = ConstNode->getAPIntValue();
6619       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
6620           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
6621         return true;
6622       // Omit the following optimization if the sub target has the M extension
6623       // and the data size >= XLen.
6624       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
6625         return false;
6626       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
6627       // a pair of LUI/ADDI.
6628       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
6629         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
6630         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
6631             (1 - ImmS).isPowerOf2())
6632         return true;
6633       }
6634     }
6635   }
6636 
6637   return false;
6638 }
6639 
6640 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
6641   if (!Subtarget.useRVVForFixedLengthVectors())
6642     return false;
6643 
6644   if (!VT.isFixedLengthVector())
6645     return false;
6646 
6647   // Don't use RVV for vectors we cannot scalarize if required.
6648   switch (VT.getVectorElementType().SimpleTy) {
6649   // i1 is supported but has different rules.
6650   default:
6651     return false;
6652   case MVT::i1:
6653     // Masks can only use a single register.
6654     if (VT.getVectorNumElements() > Subtarget.getMinRVVVectorSizeInBits())
6655       return false;
6656     break;
6657   case MVT::i8:
6658   case MVT::i16:
6659   case MVT::i32:
6660   case MVT::i64:
6661     break;
6662   case MVT::f16:
6663     if (!Subtarget.hasStdExtZfh())
6664       return false;
6665     break;
6666   case MVT::f32:
6667     if (!Subtarget.hasStdExtF())
6668       return false;
6669     break;
6670   case MVT::f64:
6671     if (!Subtarget.hasStdExtD())
6672       return false;
6673     break;
6674   }
6675 
6676   unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT);
6677   // Don't use RVV for types that don't fit.
6678   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
6679     return false;
6680 
6681   // TODO: Perhaps an artificial restriction, but worth having whilst getting
6682   // the base fixed length RVV support in place.
6683   if (!VT.isPow2VectorType())
6684     return false;
6685 
6686   return true;
6687 }
6688 
6689 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
6690     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
6691     bool *Fast) const {
6692   if (!VT.isScalableVector())
6693     return false;
6694 
6695   EVT ElemVT = VT.getVectorElementType();
6696   if (Alignment >= ElemVT.getStoreSize()) {
6697     if (Fast)
6698       *Fast = true;
6699     return true;
6700   }
6701 
6702   return false;
6703 }
6704 
6705 #define GET_REGISTER_MATCHER
6706 #include "RISCVGenAsmMatcher.inc"
6707 
6708 Register
6709 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
6710                                        const MachineFunction &MF) const {
6711   Register Reg = MatchRegisterAltName(RegName);
6712   if (Reg == RISCV::NoRegister)
6713     Reg = MatchRegisterName(RegName);
6714   if (Reg == RISCV::NoRegister)
6715     report_fatal_error(
6716         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
6717   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
6718   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
6719     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
6720                              StringRef(RegName) + "\"."));
6721   return Reg;
6722 }
6723 
6724 namespace llvm {
6725 namespace RISCVVIntrinsicsTable {
6726 
6727 #define GET_RISCVVIntrinsicsTable_IMPL
6728 #include "RISCVGenSearchableTables.inc"
6729 
6730 } // namespace RISCVVIntrinsicsTable
6731 
6732 } // namespace llvm
6733