1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/CodeGen/ValueTypes.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/IntrinsicsRISCV.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/raw_ostream.h"
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "riscv-lower"
44 
45 STATISTIC(NumTailCalls, "Number of tail calls");
46 
47 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
48                                          const RISCVSubtarget &STI)
49     : TargetLowering(TM), Subtarget(STI) {
50 
51   if (Subtarget.isRV32E())
52     report_fatal_error("Codegen not yet implemented for RV32E");
53 
54   RISCVABI::ABI ABI = Subtarget.getTargetABI();
55   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
56 
57   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
58       !Subtarget.hasStdExtF()) {
59     errs() << "Hard-float 'f' ABI can't be used for a target that "
60                 "doesn't support the F instruction set extension (ignoring "
61                           "target-abi)\n";
62     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
63   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
64              !Subtarget.hasStdExtD()) {
65     errs() << "Hard-float 'd' ABI can't be used for a target that "
66               "doesn't support the D instruction set extension (ignoring "
67               "target-abi)\n";
68     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
69   }
70 
71   switch (ABI) {
72   default:
73     report_fatal_error("Don't know how to lower this ABI");
74   case RISCVABI::ABI_ILP32:
75   case RISCVABI::ABI_ILP32F:
76   case RISCVABI::ABI_ILP32D:
77   case RISCVABI::ABI_LP64:
78   case RISCVABI::ABI_LP64F:
79   case RISCVABI::ABI_LP64D:
80     break;
81   }
82 
83   MVT XLenVT = Subtarget.getXLenVT();
84 
85   // Set up the register classes.
86   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
87 
88   if (Subtarget.hasStdExtZfh())
89     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
90   if (Subtarget.hasStdExtF())
91     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
92   if (Subtarget.hasStdExtD())
93     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
94 
95   static const MVT::SimpleValueType BoolVecVTs[] = {
96       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
97       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
98   static const MVT::SimpleValueType IntVecVTs[] = {
99       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
100       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
101       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
102       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
103       MVT::nxv4i64, MVT::nxv8i64};
104   static const MVT::SimpleValueType F16VecVTs[] = {
105       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
106       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
107   static const MVT::SimpleValueType F32VecVTs[] = {
108       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
109   static const MVT::SimpleValueType F64VecVTs[] = {
110       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
111 
112   if (Subtarget.hasVInstructions()) {
113     auto addRegClassForRVV = [this](MVT VT) {
114       unsigned Size = VT.getSizeInBits().getKnownMinValue();
115       assert(Size <= 512 && isPowerOf2_32(Size));
116       const TargetRegisterClass *RC;
117       if (Size <= 64)
118         RC = &RISCV::VRRegClass;
119       else if (Size == 128)
120         RC = &RISCV::VRM2RegClass;
121       else if (Size == 256)
122         RC = &RISCV::VRM4RegClass;
123       else
124         RC = &RISCV::VRM8RegClass;
125 
126       addRegisterClass(VT, RC);
127     };
128 
129     for (MVT VT : BoolVecVTs)
130       addRegClassForRVV(VT);
131     for (MVT VT : IntVecVTs) {
132       if (VT.getVectorElementType() == MVT::i64 &&
133           !Subtarget.hasVInstructionsI64())
134         continue;
135       addRegClassForRVV(VT);
136     }
137 
138     if (Subtarget.hasVInstructionsF16())
139       for (MVT VT : F16VecVTs)
140         addRegClassForRVV(VT);
141 
142     if (Subtarget.hasVInstructionsF32())
143       for (MVT VT : F32VecVTs)
144         addRegClassForRVV(VT);
145 
146     if (Subtarget.hasVInstructionsF64())
147       for (MVT VT : F64VecVTs)
148         addRegClassForRVV(VT);
149 
150     if (Subtarget.useRVVForFixedLengthVectors()) {
151       auto addRegClassForFixedVectors = [this](MVT VT) {
152         MVT ContainerVT = getContainerForFixedLengthVector(VT);
153         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
154         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
155         addRegisterClass(VT, TRI.getRegClass(RCID));
156       };
157       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
158         if (useRVVForFixedLengthVectorVT(VT))
159           addRegClassForFixedVectors(VT);
160 
161       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
162         if (useRVVForFixedLengthVectorVT(VT))
163           addRegClassForFixedVectors(VT);
164     }
165   }
166 
167   // Compute derived properties from the register classes.
168   computeRegisterProperties(STI.getRegisterInfo());
169 
170   setStackPointerRegisterToSaveRestore(RISCV::X2);
171 
172   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
173     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
174 
175   // TODO: add all necessary setOperationAction calls.
176   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
177 
178   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
179   setOperationAction(ISD::BR_CC, XLenVT, Expand);
180   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
181   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
182 
183   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
184   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
185 
186   setOperationAction(ISD::VASTART, MVT::Other, Custom);
187   setOperationAction(ISD::VAARG, MVT::Other, Expand);
188   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
189   setOperationAction(ISD::VAEND, MVT::Other, Expand);
190 
191   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
192   if (!Subtarget.hasStdExtZbb()) {
193     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
194     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
195   }
196 
197   if (Subtarget.is64Bit()) {
198     setOperationAction(ISD::ADD, MVT::i32, Custom);
199     setOperationAction(ISD::SUB, MVT::i32, Custom);
200     setOperationAction(ISD::SHL, MVT::i32, Custom);
201     setOperationAction(ISD::SRA, MVT::i32, Custom);
202     setOperationAction(ISD::SRL, MVT::i32, Custom);
203 
204     setOperationAction(ISD::UADDO, MVT::i32, Custom);
205     setOperationAction(ISD::USUBO, MVT::i32, Custom);
206     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
207     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
208   } else {
209     setLibcallName(RTLIB::SHL_I128, nullptr);
210     setLibcallName(RTLIB::SRL_I128, nullptr);
211     setLibcallName(RTLIB::SRA_I128, nullptr);
212     setLibcallName(RTLIB::MUL_I128, nullptr);
213     setLibcallName(RTLIB::MULO_I64, nullptr);
214   }
215 
216   if (!Subtarget.hasStdExtM()) {
217     setOperationAction(ISD::MUL, XLenVT, Expand);
218     setOperationAction(ISD::MULHS, XLenVT, Expand);
219     setOperationAction(ISD::MULHU, XLenVT, Expand);
220     setOperationAction(ISD::SDIV, XLenVT, Expand);
221     setOperationAction(ISD::UDIV, XLenVT, Expand);
222     setOperationAction(ISD::SREM, XLenVT, Expand);
223     setOperationAction(ISD::UREM, XLenVT, Expand);
224   } else {
225     if (Subtarget.is64Bit()) {
226       setOperationAction(ISD::MUL, MVT::i32, Custom);
227       setOperationAction(ISD::MUL, MVT::i128, Custom);
228 
229       setOperationAction(ISD::SDIV, MVT::i8, Custom);
230       setOperationAction(ISD::UDIV, MVT::i8, Custom);
231       setOperationAction(ISD::UREM, MVT::i8, Custom);
232       setOperationAction(ISD::SDIV, MVT::i16, Custom);
233       setOperationAction(ISD::UDIV, MVT::i16, Custom);
234       setOperationAction(ISD::UREM, MVT::i16, Custom);
235       setOperationAction(ISD::SDIV, MVT::i32, Custom);
236       setOperationAction(ISD::UDIV, MVT::i32, Custom);
237       setOperationAction(ISD::UREM, MVT::i32, Custom);
238     } else {
239       setOperationAction(ISD::MUL, MVT::i64, Custom);
240     }
241   }
242 
243   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
244   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
245   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
246   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
247 
248   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
249   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
250   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
251 
252   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
253     if (Subtarget.is64Bit()) {
254       setOperationAction(ISD::ROTL, MVT::i32, Custom);
255       setOperationAction(ISD::ROTR, MVT::i32, Custom);
256     }
257   } else {
258     setOperationAction(ISD::ROTL, XLenVT, Expand);
259     setOperationAction(ISD::ROTR, XLenVT, Expand);
260   }
261 
262   if (Subtarget.hasStdExtZbp()) {
263     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
264     // more combining.
265     setOperationAction(ISD::BITREVERSE, XLenVT,   Custom);
266     setOperationAction(ISD::BSWAP,      XLenVT,   Custom);
267     setOperationAction(ISD::BITREVERSE, MVT::i8,  Custom);
268     // BSWAP i8 doesn't exist.
269     setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
270     setOperationAction(ISD::BSWAP,      MVT::i16, Custom);
271 
272     if (Subtarget.is64Bit()) {
273       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
274       setOperationAction(ISD::BSWAP,      MVT::i32, Custom);
275     }
276   } else {
277     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
278     // pattern match it directly in isel.
279     setOperationAction(ISD::BSWAP, XLenVT,
280                        Subtarget.hasStdExtZbb() ? Legal : Expand);
281   }
282 
283   if (Subtarget.hasStdExtZbb()) {
284     setOperationAction(ISD::SMIN, XLenVT, Legal);
285     setOperationAction(ISD::SMAX, XLenVT, Legal);
286     setOperationAction(ISD::UMIN, XLenVT, Legal);
287     setOperationAction(ISD::UMAX, XLenVT, Legal);
288 
289     if (Subtarget.is64Bit()) {
290       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
291       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
292       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
293       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
294     }
295   } else {
296     setOperationAction(ISD::CTTZ, XLenVT, Expand);
297     setOperationAction(ISD::CTLZ, XLenVT, Expand);
298     setOperationAction(ISD::CTPOP, XLenVT, Expand);
299   }
300 
301   if (Subtarget.hasStdExtZbt()) {
302     setOperationAction(ISD::FSHL, XLenVT, Custom);
303     setOperationAction(ISD::FSHR, XLenVT, Custom);
304     setOperationAction(ISD::SELECT, XLenVT, Legal);
305 
306     if (Subtarget.is64Bit()) {
307       setOperationAction(ISD::FSHL, MVT::i32, Custom);
308       setOperationAction(ISD::FSHR, MVT::i32, Custom);
309     }
310   } else {
311     setOperationAction(ISD::SELECT, XLenVT, Custom);
312   }
313 
314   static const ISD::CondCode FPCCToExpand[] = {
315       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
316       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
317       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
318 
319   static const ISD::NodeType FPOpToExpand[] = {
320       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
321       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
322 
323   if (Subtarget.hasStdExtZfh())
324     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
325 
326   if (Subtarget.hasStdExtZfh()) {
327     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
328     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
329     setOperationAction(ISD::LRINT, MVT::f16, Legal);
330     setOperationAction(ISD::LLRINT, MVT::f16, Legal);
331     setOperationAction(ISD::LROUND, MVT::f16, Legal);
332     setOperationAction(ISD::LLROUND, MVT::f16, Legal);
333     for (auto CC : FPCCToExpand)
334       setCondCodeAction(CC, MVT::f16, Expand);
335     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
336     setOperationAction(ISD::SELECT, MVT::f16, Custom);
337     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
338     for (auto Op : FPOpToExpand)
339       setOperationAction(Op, MVT::f16, Expand);
340 
341     setOperationAction(ISD::FREM,       MVT::f16, Promote);
342     setOperationAction(ISD::FCEIL,      MVT::f16,  Promote);
343     setOperationAction(ISD::FFLOOR,     MVT::f16,  Promote);
344     setOperationAction(ISD::FNEARBYINT, MVT::f16,  Promote);
345     setOperationAction(ISD::FRINT,      MVT::f16,  Promote);
346     setOperationAction(ISD::FROUND,     MVT::f16,  Promote);
347     setOperationAction(ISD::FROUNDEVEN, MVT::f16,  Promote);
348     setOperationAction(ISD::FTRUNC,     MVT::f16,  Promote);
349   }
350 
351   if (Subtarget.hasStdExtF()) {
352     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
353     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
354     setOperationAction(ISD::LRINT, MVT::f32, Legal);
355     setOperationAction(ISD::LLRINT, MVT::f32, Legal);
356     setOperationAction(ISD::LROUND, MVT::f32, Legal);
357     setOperationAction(ISD::LLROUND, MVT::f32, Legal);
358     for (auto CC : FPCCToExpand)
359       setCondCodeAction(CC, MVT::f32, Expand);
360     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
361     setOperationAction(ISD::SELECT, MVT::f32, Custom);
362     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
363     for (auto Op : FPOpToExpand)
364       setOperationAction(Op, MVT::f32, Expand);
365     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
366     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
367   }
368 
369   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
370     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
371 
372   if (Subtarget.hasStdExtD()) {
373     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
374     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
375     setOperationAction(ISD::LRINT, MVT::f64, Legal);
376     setOperationAction(ISD::LLRINT, MVT::f64, Legal);
377     setOperationAction(ISD::LROUND, MVT::f64, Legal);
378     setOperationAction(ISD::LLROUND, MVT::f64, Legal);
379     for (auto CC : FPCCToExpand)
380       setCondCodeAction(CC, MVT::f64, Expand);
381     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
382     setOperationAction(ISD::SELECT, MVT::f64, Custom);
383     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
384     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
385     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
386     for (auto Op : FPOpToExpand)
387       setOperationAction(Op, MVT::f64, Expand);
388     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
389     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
390   }
391 
392   if (Subtarget.is64Bit()) {
393     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
394     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
395     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
396     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
397   }
398 
399   if (Subtarget.hasStdExtF()) {
400     setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom);
401     setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom);
402 
403     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
404     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
405   }
406 
407   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
408   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
409   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
410   setOperationAction(ISD::JumpTable, XLenVT, Custom);
411 
412   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
413 
414   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
415   // Unfortunately this can't be determined just from the ISA naming string.
416   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
417                      Subtarget.is64Bit() ? Legal : Custom);
418 
419   setOperationAction(ISD::TRAP, MVT::Other, Legal);
420   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
421   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
422   if (Subtarget.is64Bit())
423     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
424 
425   if (Subtarget.hasStdExtA()) {
426     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
427     setMinCmpXchgSizeInBits(32);
428   } else {
429     setMaxAtomicSizeInBitsSupported(0);
430   }
431 
432   setBooleanContents(ZeroOrOneBooleanContent);
433 
434   if (Subtarget.hasVInstructions()) {
435     setBooleanVectorContents(ZeroOrOneBooleanContent);
436 
437     setOperationAction(ISD::VSCALE, XLenVT, Custom);
438 
439     // RVV intrinsics may have illegal operands.
440     // We also need to custom legalize vmv.x.s.
441     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
442     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
443     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
444     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
445     if (Subtarget.is64Bit()) {
446       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
447     } else {
448       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
449       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
450     }
451 
452     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
453     setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
454 
455     static const unsigned IntegerVPOps[] = {
456         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
457         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
458         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
459         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
460         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
461         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
462         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN};
463 
464     static const unsigned FloatingPointVPOps[] = {
465         ISD::VP_FADD,        ISD::VP_FSUB,        ISD::VP_FMUL,
466         ISD::VP_FDIV,        ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD,
467         ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX};
468 
469     if (!Subtarget.is64Bit()) {
470       // We must custom-lower certain vXi64 operations on RV32 due to the vector
471       // element type being illegal.
472       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
473       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
474 
475       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
476       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
477       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
478       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
479       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
480       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
481       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
482       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
483 
484       setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom);
485       setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom);
486       setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom);
487       setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom);
488       setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom);
489       setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom);
490       setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom);
491       setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom);
492     }
493 
494     for (MVT VT : BoolVecVTs) {
495       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
496 
497       // Mask VTs are custom-expanded into a series of standard nodes
498       setOperationAction(ISD::TRUNCATE, VT, Custom);
499       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
500       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
501       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
502 
503       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
504       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
505 
506       setOperationAction(ISD::SELECT, VT, Custom);
507       setOperationAction(ISD::SELECT_CC, VT, Expand);
508       setOperationAction(ISD::VSELECT, VT, Expand);
509 
510       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
511       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
512       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
513 
514       setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
515       setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
516       setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
517 
518       // RVV has native int->float & float->int conversions where the
519       // element type sizes are within one power-of-two of each other. Any
520       // wider distances between type sizes have to be lowered as sequences
521       // which progressively narrow the gap in stages.
522       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
523       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
524       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
525       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
526 
527       // Expand all extending loads to types larger than this, and truncating
528       // stores from types larger than this.
529       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
530         setTruncStoreAction(OtherVT, VT, Expand);
531         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
532         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
533         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
534       }
535     }
536 
537     for (MVT VT : IntVecVTs) {
538       if (VT.getVectorElementType() == MVT::i64 &&
539           !Subtarget.hasVInstructionsI64())
540         continue;
541 
542       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
543       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
544 
545       // Vectors implement MULHS/MULHU.
546       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
547       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
548 
549       setOperationAction(ISD::SMIN, VT, Legal);
550       setOperationAction(ISD::SMAX, VT, Legal);
551       setOperationAction(ISD::UMIN, VT, Legal);
552       setOperationAction(ISD::UMAX, VT, Legal);
553 
554       setOperationAction(ISD::ROTL, VT, Expand);
555       setOperationAction(ISD::ROTR, VT, Expand);
556 
557       setOperationAction(ISD::CTTZ, VT, Expand);
558       setOperationAction(ISD::CTLZ, VT, Expand);
559       setOperationAction(ISD::CTPOP, VT, Expand);
560 
561       setOperationAction(ISD::BSWAP, VT, Expand);
562 
563       // Custom-lower extensions and truncations from/to mask types.
564       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
565       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
566       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
567 
568       // RVV has native int->float & float->int conversions where the
569       // element type sizes are within one power-of-two of each other. Any
570       // wider distances between type sizes have to be lowered as sequences
571       // which progressively narrow the gap in stages.
572       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
573       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
574       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
575       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
576 
577       setOperationAction(ISD::SADDSAT, VT, Legal);
578       setOperationAction(ISD::UADDSAT, VT, Legal);
579       setOperationAction(ISD::SSUBSAT, VT, Legal);
580       setOperationAction(ISD::USUBSAT, VT, Legal);
581 
582       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
583       // nodes which truncate by one power of two at a time.
584       setOperationAction(ISD::TRUNCATE, VT, Custom);
585 
586       // Custom-lower insert/extract operations to simplify patterns.
587       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
588       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
589 
590       // Custom-lower reduction operations to set up the corresponding custom
591       // nodes' operands.
592       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
593       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
594       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
595       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
596       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
597       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
598       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
599       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
600 
601       for (unsigned VPOpc : IntegerVPOps)
602         setOperationAction(VPOpc, VT, Custom);
603 
604       setOperationAction(ISD::LOAD, VT, Custom);
605       setOperationAction(ISD::STORE, VT, Custom);
606 
607       setOperationAction(ISD::MLOAD, VT, Custom);
608       setOperationAction(ISD::MSTORE, VT, Custom);
609       setOperationAction(ISD::MGATHER, VT, Custom);
610       setOperationAction(ISD::MSCATTER, VT, Custom);
611 
612       setOperationAction(ISD::VP_LOAD, VT, Custom);
613       setOperationAction(ISD::VP_STORE, VT, Custom);
614       setOperationAction(ISD::VP_GATHER, VT, Custom);
615       setOperationAction(ISD::VP_SCATTER, VT, Custom);
616 
617       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
618       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
619       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
620 
621       setOperationAction(ISD::SELECT, VT, Custom);
622       setOperationAction(ISD::SELECT_CC, VT, Expand);
623 
624       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
625       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
626 
627       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
628         setTruncStoreAction(VT, OtherVT, Expand);
629         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
630         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
631         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
632       }
633     }
634 
635     // Expand various CCs to best match the RVV ISA, which natively supports UNE
636     // but no other unordered comparisons, and supports all ordered comparisons
637     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
638     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
639     // and we pattern-match those back to the "original", swapping operands once
640     // more. This way we catch both operations and both "vf" and "fv" forms with
641     // fewer patterns.
642     static const ISD::CondCode VFPCCToExpand[] = {
643         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
644         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
645         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
646     };
647 
648     // Sets common operation actions on RVV floating-point vector types.
649     const auto SetCommonVFPActions = [&](MVT VT) {
650       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
651       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
652       // sizes are within one power-of-two of each other. Therefore conversions
653       // between vXf16 and vXf64 must be lowered as sequences which convert via
654       // vXf32.
655       setOperationAction(ISD::FP_ROUND, VT, Custom);
656       setOperationAction(ISD::FP_EXTEND, VT, Custom);
657       // Custom-lower insert/extract operations to simplify patterns.
658       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
659       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
660       // Expand various condition codes (explained above).
661       for (auto CC : VFPCCToExpand)
662         setCondCodeAction(CC, VT, Expand);
663 
664       setOperationAction(ISD::FMINNUM, VT, Legal);
665       setOperationAction(ISD::FMAXNUM, VT, Legal);
666 
667       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
668       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
669       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
670       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
671 
672       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
673 
674       setOperationAction(ISD::LOAD, VT, Custom);
675       setOperationAction(ISD::STORE, VT, Custom);
676 
677       setOperationAction(ISD::MLOAD, VT, Custom);
678       setOperationAction(ISD::MSTORE, VT, Custom);
679       setOperationAction(ISD::MGATHER, VT, Custom);
680       setOperationAction(ISD::MSCATTER, VT, Custom);
681 
682       setOperationAction(ISD::VP_LOAD, VT, Custom);
683       setOperationAction(ISD::VP_STORE, VT, Custom);
684       setOperationAction(ISD::VP_GATHER, VT, Custom);
685       setOperationAction(ISD::VP_SCATTER, VT, Custom);
686 
687       setOperationAction(ISD::SELECT, VT, Custom);
688       setOperationAction(ISD::SELECT_CC, VT, Expand);
689 
690       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
691       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
692       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
693 
694       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
695 
696       for (unsigned VPOpc : FloatingPointVPOps)
697         setOperationAction(VPOpc, VT, Custom);
698     };
699 
700     // Sets common extload/truncstore actions on RVV floating-point vector
701     // types.
702     const auto SetCommonVFPExtLoadTruncStoreActions =
703         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
704           for (auto SmallVT : SmallerVTs) {
705             setTruncStoreAction(VT, SmallVT, Expand);
706             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
707           }
708         };
709 
710     if (Subtarget.hasVInstructionsF16())
711       for (MVT VT : F16VecVTs)
712         SetCommonVFPActions(VT);
713 
714     for (MVT VT : F32VecVTs) {
715       if (Subtarget.hasVInstructionsF32())
716         SetCommonVFPActions(VT);
717       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
718     }
719 
720     for (MVT VT : F64VecVTs) {
721       if (Subtarget.hasVInstructionsF64())
722         SetCommonVFPActions(VT);
723       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
724       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
725     }
726 
727     if (Subtarget.useRVVForFixedLengthVectors()) {
728       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
729         if (!useRVVForFixedLengthVectorVT(VT))
730           continue;
731 
732         // By default everything must be expanded.
733         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
734           setOperationAction(Op, VT, Expand);
735         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
736           setTruncStoreAction(VT, OtherVT, Expand);
737           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
738           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
739           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
740         }
741 
742         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
743         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
744         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
745 
746         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
747         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
748 
749         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
750         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
751 
752         setOperationAction(ISD::LOAD, VT, Custom);
753         setOperationAction(ISD::STORE, VT, Custom);
754 
755         setOperationAction(ISD::SETCC, VT, Custom);
756 
757         setOperationAction(ISD::SELECT, VT, Custom);
758 
759         setOperationAction(ISD::TRUNCATE, VT, Custom);
760 
761         setOperationAction(ISD::BITCAST, VT, Custom);
762 
763         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
764         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
765         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
766 
767         setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
768         setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
769         setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
770 
771         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
772         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
773         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
774         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
775 
776         // Operations below are different for between masks and other vectors.
777         if (VT.getVectorElementType() == MVT::i1) {
778           setOperationAction(ISD::AND, VT, Custom);
779           setOperationAction(ISD::OR, VT, Custom);
780           setOperationAction(ISD::XOR, VT, Custom);
781           continue;
782         }
783 
784         // Use SPLAT_VECTOR to prevent type legalization from destroying the
785         // splats when type legalizing i64 scalar on RV32.
786         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
787         // improvements first.
788         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
789           setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
790           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
791         }
792 
793         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
794         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
795 
796         setOperationAction(ISD::MLOAD, VT, Custom);
797         setOperationAction(ISD::MSTORE, VT, Custom);
798         setOperationAction(ISD::MGATHER, VT, Custom);
799         setOperationAction(ISD::MSCATTER, VT, Custom);
800 
801         setOperationAction(ISD::VP_LOAD, VT, Custom);
802         setOperationAction(ISD::VP_STORE, VT, Custom);
803         setOperationAction(ISD::VP_GATHER, VT, Custom);
804         setOperationAction(ISD::VP_SCATTER, VT, Custom);
805 
806         setOperationAction(ISD::ADD, VT, Custom);
807         setOperationAction(ISD::MUL, VT, Custom);
808         setOperationAction(ISD::SUB, VT, Custom);
809         setOperationAction(ISD::AND, VT, Custom);
810         setOperationAction(ISD::OR, VT, Custom);
811         setOperationAction(ISD::XOR, VT, Custom);
812         setOperationAction(ISD::SDIV, VT, Custom);
813         setOperationAction(ISD::SREM, VT, Custom);
814         setOperationAction(ISD::UDIV, VT, Custom);
815         setOperationAction(ISD::UREM, VT, Custom);
816         setOperationAction(ISD::SHL, VT, Custom);
817         setOperationAction(ISD::SRA, VT, Custom);
818         setOperationAction(ISD::SRL, VT, Custom);
819 
820         setOperationAction(ISD::SMIN, VT, Custom);
821         setOperationAction(ISD::SMAX, VT, Custom);
822         setOperationAction(ISD::UMIN, VT, Custom);
823         setOperationAction(ISD::UMAX, VT, Custom);
824         setOperationAction(ISD::ABS,  VT, Custom);
825 
826         setOperationAction(ISD::MULHS, VT, Custom);
827         setOperationAction(ISD::MULHU, VT, Custom);
828 
829         setOperationAction(ISD::SADDSAT, VT, Custom);
830         setOperationAction(ISD::UADDSAT, VT, Custom);
831         setOperationAction(ISD::SSUBSAT, VT, Custom);
832         setOperationAction(ISD::USUBSAT, VT, Custom);
833 
834         setOperationAction(ISD::VSELECT, VT, Custom);
835         setOperationAction(ISD::SELECT_CC, VT, Expand);
836 
837         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
838         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
839         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
840 
841         // Custom-lower reduction operations to set up the corresponding custom
842         // nodes' operands.
843         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
844         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
845         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
846         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
847         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
848 
849         for (unsigned VPOpc : IntegerVPOps)
850           setOperationAction(VPOpc, VT, Custom);
851       }
852 
853       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
854         if (!useRVVForFixedLengthVectorVT(VT))
855           continue;
856 
857         // By default everything must be expanded.
858         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
859           setOperationAction(Op, VT, Expand);
860         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
861           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
862           setTruncStoreAction(VT, OtherVT, Expand);
863         }
864 
865         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
866         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
867         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
868 
869         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
870         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
871         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
872         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
873         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
874 
875         setOperationAction(ISD::LOAD, VT, Custom);
876         setOperationAction(ISD::STORE, VT, Custom);
877         setOperationAction(ISD::MLOAD, VT, Custom);
878         setOperationAction(ISD::MSTORE, VT, Custom);
879         setOperationAction(ISD::MGATHER, VT, Custom);
880         setOperationAction(ISD::MSCATTER, VT, Custom);
881 
882         setOperationAction(ISD::VP_LOAD, VT, Custom);
883         setOperationAction(ISD::VP_STORE, VT, Custom);
884         setOperationAction(ISD::VP_GATHER, VT, Custom);
885         setOperationAction(ISD::VP_SCATTER, VT, Custom);
886 
887         setOperationAction(ISD::FADD, VT, Custom);
888         setOperationAction(ISD::FSUB, VT, Custom);
889         setOperationAction(ISD::FMUL, VT, Custom);
890         setOperationAction(ISD::FDIV, VT, Custom);
891         setOperationAction(ISD::FNEG, VT, Custom);
892         setOperationAction(ISD::FABS, VT, Custom);
893         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
894         setOperationAction(ISD::FSQRT, VT, Custom);
895         setOperationAction(ISD::FMA, VT, Custom);
896         setOperationAction(ISD::FMINNUM, VT, Custom);
897         setOperationAction(ISD::FMAXNUM, VT, Custom);
898 
899         setOperationAction(ISD::FP_ROUND, VT, Custom);
900         setOperationAction(ISD::FP_EXTEND, VT, Custom);
901 
902         for (auto CC : VFPCCToExpand)
903           setCondCodeAction(CC, VT, Expand);
904 
905         setOperationAction(ISD::VSELECT, VT, Custom);
906         setOperationAction(ISD::SELECT, VT, Custom);
907         setOperationAction(ISD::SELECT_CC, VT, Expand);
908 
909         setOperationAction(ISD::BITCAST, VT, Custom);
910 
911         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
912         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
913         setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
914         setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
915 
916         for (unsigned VPOpc : FloatingPointVPOps)
917           setOperationAction(VPOpc, VT, Custom);
918       }
919 
920       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
921       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
922       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
923       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
924       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
925       setOperationAction(ISD::BITCAST, MVT::f16, Custom);
926       setOperationAction(ISD::BITCAST, MVT::f32, Custom);
927       setOperationAction(ISD::BITCAST, MVT::f64, Custom);
928     }
929   }
930 
931   // Function alignments.
932   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
933   setMinFunctionAlignment(FunctionAlignment);
934   setPrefFunctionAlignment(FunctionAlignment);
935 
936   setMinimumJumpTableEntries(5);
937 
938   // Jumps are expensive, compared to logic
939   setJumpIsExpensive();
940 
941   // We can use any register for comparisons
942   setHasMultipleConditionRegisters();
943 
944   setTargetDAGCombine(ISD::ADD);
945   setTargetDAGCombine(ISD::SUB);
946   setTargetDAGCombine(ISD::AND);
947   setTargetDAGCombine(ISD::OR);
948   setTargetDAGCombine(ISD::XOR);
949   setTargetDAGCombine(ISD::ANY_EXTEND);
950   setTargetDAGCombine(ISD::ZERO_EXTEND);
951   if (Subtarget.hasVInstructions()) {
952     setTargetDAGCombine(ISD::FCOPYSIGN);
953     setTargetDAGCombine(ISD::MGATHER);
954     setTargetDAGCombine(ISD::MSCATTER);
955     setTargetDAGCombine(ISD::VP_GATHER);
956     setTargetDAGCombine(ISD::VP_SCATTER);
957     setTargetDAGCombine(ISD::SRA);
958     setTargetDAGCombine(ISD::SRL);
959     setTargetDAGCombine(ISD::SHL);
960     setTargetDAGCombine(ISD::STORE);
961   }
962 }
963 
964 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
965                                             LLVMContext &Context,
966                                             EVT VT) const {
967   if (!VT.isVector())
968     return getPointerTy(DL);
969   if (Subtarget.hasVInstructions() &&
970       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
971     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
972   return VT.changeVectorElementTypeToInteger();
973 }
974 
975 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
976   return Subtarget.getXLenVT();
977 }
978 
979 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
980                                              const CallInst &I,
981                                              MachineFunction &MF,
982                                              unsigned Intrinsic) const {
983   auto &DL = I.getModule()->getDataLayout();
984   switch (Intrinsic) {
985   default:
986     return false;
987   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
988   case Intrinsic::riscv_masked_atomicrmw_add_i32:
989   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
990   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
991   case Intrinsic::riscv_masked_atomicrmw_max_i32:
992   case Intrinsic::riscv_masked_atomicrmw_min_i32:
993   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
994   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
995   case Intrinsic::riscv_masked_cmpxchg_i32: {
996     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
997     Info.opc = ISD::INTRINSIC_W_CHAIN;
998     Info.memVT = MVT::getVT(PtrTy->getElementType());
999     Info.ptrVal = I.getArgOperand(0);
1000     Info.offset = 0;
1001     Info.align = Align(4);
1002     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1003                  MachineMemOperand::MOVolatile;
1004     return true;
1005   }
1006   case Intrinsic::riscv_masked_strided_load:
1007     Info.opc = ISD::INTRINSIC_W_CHAIN;
1008     Info.ptrVal = I.getArgOperand(1);
1009     Info.memVT = getValueType(DL, I.getType()->getScalarType());
1010     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
1011     Info.size = MemoryLocation::UnknownSize;
1012     Info.flags |= MachineMemOperand::MOLoad;
1013     return true;
1014   case Intrinsic::riscv_masked_strided_store:
1015     Info.opc = ISD::INTRINSIC_VOID;
1016     Info.ptrVal = I.getArgOperand(1);
1017     Info.memVT =
1018         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
1019     Info.align = Align(
1020         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
1021         8);
1022     Info.size = MemoryLocation::UnknownSize;
1023     Info.flags |= MachineMemOperand::MOStore;
1024     return true;
1025   }
1026 }
1027 
1028 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1029                                                 const AddrMode &AM, Type *Ty,
1030                                                 unsigned AS,
1031                                                 Instruction *I) const {
1032   // No global is ever allowed as a base.
1033   if (AM.BaseGV)
1034     return false;
1035 
1036   // Require a 12-bit signed offset.
1037   if (!isInt<12>(AM.BaseOffs))
1038     return false;
1039 
1040   switch (AM.Scale) {
1041   case 0: // "r+i" or just "i", depending on HasBaseReg.
1042     break;
1043   case 1:
1044     if (!AM.HasBaseReg) // allow "r+i".
1045       break;
1046     return false; // disallow "r+r" or "r+r+i".
1047   default:
1048     return false;
1049   }
1050 
1051   return true;
1052 }
1053 
1054 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1055   return isInt<12>(Imm);
1056 }
1057 
1058 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1059   return isInt<12>(Imm);
1060 }
1061 
1062 // On RV32, 64-bit integers are split into their high and low parts and held
1063 // in two different registers, so the trunc is free since the low register can
1064 // just be used.
1065 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1066   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1067     return false;
1068   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1069   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1070   return (SrcBits == 64 && DestBits == 32);
1071 }
1072 
1073 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1074   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1075       !SrcVT.isInteger() || !DstVT.isInteger())
1076     return false;
1077   unsigned SrcBits = SrcVT.getSizeInBits();
1078   unsigned DestBits = DstVT.getSizeInBits();
1079   return (SrcBits == 64 && DestBits == 32);
1080 }
1081 
1082 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1083   // Zexts are free if they can be combined with a load.
1084   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1085     EVT MemVT = LD->getMemoryVT();
1086     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
1087          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
1088         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1089          LD->getExtensionType() == ISD::ZEXTLOAD))
1090       return true;
1091   }
1092 
1093   return TargetLowering::isZExtFree(Val, VT2);
1094 }
1095 
1096 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1097   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1098 }
1099 
1100 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1101   return Subtarget.hasStdExtZbb();
1102 }
1103 
1104 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1105   return Subtarget.hasStdExtZbb();
1106 }
1107 
1108 /// Check if sinking \p I's operands to I's basic block is profitable, because
1109 /// the operands can be folded into a target instruction, e.g.
1110 /// splats of scalars can fold into vector instructions.
1111 bool RISCVTargetLowering::shouldSinkOperands(
1112     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1113   using namespace llvm::PatternMatch;
1114 
1115   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1116     return false;
1117 
1118   auto IsSinker = [&](Instruction *I, int Operand) {
1119     switch (I->getOpcode()) {
1120     case Instruction::Add:
1121     case Instruction::Sub:
1122     case Instruction::Mul:
1123     case Instruction::And:
1124     case Instruction::Or:
1125     case Instruction::Xor:
1126     case Instruction::FAdd:
1127     case Instruction::FSub:
1128     case Instruction::FMul:
1129     case Instruction::FDiv:
1130     case Instruction::ICmp:
1131     case Instruction::FCmp:
1132       return true;
1133     case Instruction::Shl:
1134     case Instruction::LShr:
1135     case Instruction::AShr:
1136       return Operand == 1;
1137     case Instruction::Call:
1138       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1139         switch (II->getIntrinsicID()) {
1140         case Intrinsic::fma:
1141           return Operand == 0 || Operand == 1;
1142         default:
1143           return false;
1144         }
1145       }
1146       return false;
1147     default:
1148       return false;
1149     }
1150   };
1151 
1152   for (auto OpIdx : enumerate(I->operands())) {
1153     if (!IsSinker(I, OpIdx.index()))
1154       continue;
1155 
1156     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1157     // Make sure we are not already sinking this operand
1158     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1159       continue;
1160 
1161     // We are looking for a splat that can be sunk.
1162     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1163                              m_Undef(), m_ZeroMask())))
1164       continue;
1165 
1166     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1167     // and vector registers
1168     for (Use &U : Op->uses()) {
1169       Instruction *Insn = cast<Instruction>(U.getUser());
1170       if (!IsSinker(Insn, U.getOperandNo()))
1171         return false;
1172     }
1173 
1174     Ops.push_back(&Op->getOperandUse(0));
1175     Ops.push_back(&OpIdx.value());
1176   }
1177   return true;
1178 }
1179 
1180 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1181                                        bool ForCodeSize) const {
1182   if (VT == MVT::f16 && !Subtarget.hasStdExtZfhmin())
1183     return false;
1184   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1185     return false;
1186   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1187     return false;
1188   if (Imm.isNegZero())
1189     return false;
1190   return Imm.isZero();
1191 }
1192 
1193 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1194   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1195          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1196          (VT == MVT::f64 && Subtarget.hasStdExtD());
1197 }
1198 
1199 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1200                                                       CallingConv::ID CC,
1201                                                       EVT VT) const {
1202   // Use f32 to pass f16 if it is legal and Zfhmin/Zfh is not enabled.
1203   // We might still end up using a GPR but that will be decided based on ABI.
1204   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfhmin())
1205     return MVT::f32;
1206 
1207   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1208 }
1209 
1210 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1211                                                            CallingConv::ID CC,
1212                                                            EVT VT) const {
1213   // Use f32 to pass f16 if it is legal and Zfhmin/Zfh is not enabled.
1214   // We might still end up using a GPR but that will be decided based on ABI.
1215   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfhmin())
1216     return 1;
1217 
1218   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1219 }
1220 
1221 // Changes the condition code and swaps operands if necessary, so the SetCC
1222 // operation matches one of the comparisons supported directly by branches
1223 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1224 // with 1/-1.
1225 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1226                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1227   // Convert X > -1 to X >= 0.
1228   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1229     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1230     CC = ISD::SETGE;
1231     return;
1232   }
1233   // Convert X < 1 to 0 >= X.
1234   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1235     RHS = LHS;
1236     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1237     CC = ISD::SETGE;
1238     return;
1239   }
1240 
1241   switch (CC) {
1242   default:
1243     break;
1244   case ISD::SETGT:
1245   case ISD::SETLE:
1246   case ISD::SETUGT:
1247   case ISD::SETULE:
1248     CC = ISD::getSetCCSwappedOperands(CC);
1249     std::swap(LHS, RHS);
1250     break;
1251   }
1252 }
1253 
1254 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1255   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1256   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1257   if (VT.getVectorElementType() == MVT::i1)
1258     KnownSize *= 8;
1259 
1260   switch (KnownSize) {
1261   default:
1262     llvm_unreachable("Invalid LMUL.");
1263   case 8:
1264     return RISCVII::VLMUL::LMUL_F8;
1265   case 16:
1266     return RISCVII::VLMUL::LMUL_F4;
1267   case 32:
1268     return RISCVII::VLMUL::LMUL_F2;
1269   case 64:
1270     return RISCVII::VLMUL::LMUL_1;
1271   case 128:
1272     return RISCVII::VLMUL::LMUL_2;
1273   case 256:
1274     return RISCVII::VLMUL::LMUL_4;
1275   case 512:
1276     return RISCVII::VLMUL::LMUL_8;
1277   }
1278 }
1279 
1280 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1281   switch (LMul) {
1282   default:
1283     llvm_unreachable("Invalid LMUL.");
1284   case RISCVII::VLMUL::LMUL_F8:
1285   case RISCVII::VLMUL::LMUL_F4:
1286   case RISCVII::VLMUL::LMUL_F2:
1287   case RISCVII::VLMUL::LMUL_1:
1288     return RISCV::VRRegClassID;
1289   case RISCVII::VLMUL::LMUL_2:
1290     return RISCV::VRM2RegClassID;
1291   case RISCVII::VLMUL::LMUL_4:
1292     return RISCV::VRM4RegClassID;
1293   case RISCVII::VLMUL::LMUL_8:
1294     return RISCV::VRM8RegClassID;
1295   }
1296 }
1297 
1298 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1299   RISCVII::VLMUL LMUL = getLMUL(VT);
1300   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1301       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1302       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1303       LMUL == RISCVII::VLMUL::LMUL_1) {
1304     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1305                   "Unexpected subreg numbering");
1306     return RISCV::sub_vrm1_0 + Index;
1307   }
1308   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1309     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1310                   "Unexpected subreg numbering");
1311     return RISCV::sub_vrm2_0 + Index;
1312   }
1313   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1314     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1315                   "Unexpected subreg numbering");
1316     return RISCV::sub_vrm4_0 + Index;
1317   }
1318   llvm_unreachable("Invalid vector type.");
1319 }
1320 
1321 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1322   if (VT.getVectorElementType() == MVT::i1)
1323     return RISCV::VRRegClassID;
1324   return getRegClassIDForLMUL(getLMUL(VT));
1325 }
1326 
1327 // Attempt to decompose a subvector insert/extract between VecVT and
1328 // SubVecVT via subregister indices. Returns the subregister index that
1329 // can perform the subvector insert/extract with the given element index, as
1330 // well as the index corresponding to any leftover subvectors that must be
1331 // further inserted/extracted within the register class for SubVecVT.
1332 std::pair<unsigned, unsigned>
1333 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1334     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1335     const RISCVRegisterInfo *TRI) {
1336   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1337                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1338                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1339                 "Register classes not ordered");
1340   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1341   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1342   // Try to compose a subregister index that takes us from the incoming
1343   // LMUL>1 register class down to the outgoing one. At each step we half
1344   // the LMUL:
1345   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1346   // Note that this is not guaranteed to find a subregister index, such as
1347   // when we are extracting from one VR type to another.
1348   unsigned SubRegIdx = RISCV::NoSubRegister;
1349   for (const unsigned RCID :
1350        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1351     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1352       VecVT = VecVT.getHalfNumVectorElementsVT();
1353       bool IsHi =
1354           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1355       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1356                                             getSubregIndexByMVT(VecVT, IsHi));
1357       if (IsHi)
1358         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1359     }
1360   return {SubRegIdx, InsertExtractIdx};
1361 }
1362 
1363 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1364 // stores for those types.
1365 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1366   return !Subtarget.useRVVForFixedLengthVectors() ||
1367          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1368 }
1369 
1370 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1371   if (ScalarTy->isPointerTy())
1372     return true;
1373 
1374   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1375       ScalarTy->isIntegerTy(32))
1376     return true;
1377 
1378   if (ScalarTy->isIntegerTy(64))
1379     return Subtarget.hasVInstructionsI64();
1380 
1381   if (ScalarTy->isHalfTy())
1382     return Subtarget.hasVInstructionsF16();
1383   if (ScalarTy->isFloatTy())
1384     return Subtarget.hasVInstructionsF32();
1385   if (ScalarTy->isDoubleTy())
1386     return Subtarget.hasVInstructionsF64();
1387 
1388   return false;
1389 }
1390 
1391 static bool useRVVForFixedLengthVectorVT(MVT VT,
1392                                          const RISCVSubtarget &Subtarget) {
1393   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1394   if (!Subtarget.useRVVForFixedLengthVectors())
1395     return false;
1396 
1397   // We only support a set of vector types with a consistent maximum fixed size
1398   // across all supported vector element types to avoid legalization issues.
1399   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1400   // fixed-length vector type we support is 1024 bytes.
1401   if (VT.getFixedSizeInBits() > 1024 * 8)
1402     return false;
1403 
1404   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1405 
1406   MVT EltVT = VT.getVectorElementType();
1407 
1408   // Don't use RVV for vectors we cannot scalarize if required.
1409   switch (EltVT.SimpleTy) {
1410   // i1 is supported but has different rules.
1411   default:
1412     return false;
1413   case MVT::i1:
1414     // Masks can only use a single register.
1415     if (VT.getVectorNumElements() > MinVLen)
1416       return false;
1417     MinVLen /= 8;
1418     break;
1419   case MVT::i8:
1420   case MVT::i16:
1421   case MVT::i32:
1422     break;
1423   case MVT::i64:
1424     if (!Subtarget.hasVInstructionsI64())
1425       return false;
1426     break;
1427   case MVT::f16:
1428     if (!Subtarget.hasVInstructionsF16())
1429       return false;
1430     break;
1431   case MVT::f32:
1432     if (!Subtarget.hasVInstructionsF32())
1433       return false;
1434     break;
1435   case MVT::f64:
1436     if (!Subtarget.hasVInstructionsF64())
1437       return false;
1438     break;
1439   }
1440 
1441   // Reject elements larger than ELEN.
1442   if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors())
1443     return false;
1444 
1445   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1446   // Don't use RVV for types that don't fit.
1447   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1448     return false;
1449 
1450   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1451   // the base fixed length RVV support in place.
1452   if (!VT.isPow2VectorType())
1453     return false;
1454 
1455   return true;
1456 }
1457 
1458 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1459   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1460 }
1461 
1462 // Return the largest legal scalable vector type that matches VT's element type.
1463 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1464                                             const RISCVSubtarget &Subtarget) {
1465   // This may be called before legal types are setup.
1466   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1467           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1468          "Expected legal fixed length vector!");
1469 
1470   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1471   unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors();
1472 
1473   MVT EltVT = VT.getVectorElementType();
1474   switch (EltVT.SimpleTy) {
1475   default:
1476     llvm_unreachable("unexpected element type for RVV container");
1477   case MVT::i1:
1478   case MVT::i8:
1479   case MVT::i16:
1480   case MVT::i32:
1481   case MVT::i64:
1482   case MVT::f16:
1483   case MVT::f32:
1484   case MVT::f64: {
1485     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1486     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1487     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1488     unsigned NumElts =
1489         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1490     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1491     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1492     return MVT::getScalableVectorVT(EltVT, NumElts);
1493   }
1494   }
1495 }
1496 
1497 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1498                                             const RISCVSubtarget &Subtarget) {
1499   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1500                                           Subtarget);
1501 }
1502 
1503 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1504   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1505 }
1506 
1507 // Grow V to consume an entire RVV register.
1508 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1509                                        const RISCVSubtarget &Subtarget) {
1510   assert(VT.isScalableVector() &&
1511          "Expected to convert into a scalable vector!");
1512   assert(V.getValueType().isFixedLengthVector() &&
1513          "Expected a fixed length vector operand!");
1514   SDLoc DL(V);
1515   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1516   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1517 }
1518 
1519 // Shrink V so it's just big enough to maintain a VT's worth of data.
1520 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1521                                          const RISCVSubtarget &Subtarget) {
1522   assert(VT.isFixedLengthVector() &&
1523          "Expected to convert into a fixed length vector!");
1524   assert(V.getValueType().isScalableVector() &&
1525          "Expected a scalable vector operand!");
1526   SDLoc DL(V);
1527   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1528   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1529 }
1530 
1531 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1532 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1533 // the vector type that it is contained in.
1534 static std::pair<SDValue, SDValue>
1535 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1536                 const RISCVSubtarget &Subtarget) {
1537   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1538   MVT XLenVT = Subtarget.getXLenVT();
1539   SDValue VL = VecVT.isFixedLengthVector()
1540                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1541                    : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT);
1542   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1543   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1544   return {Mask, VL};
1545 }
1546 
1547 // As above but assuming the given type is a scalable vector type.
1548 static std::pair<SDValue, SDValue>
1549 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1550                         const RISCVSubtarget &Subtarget) {
1551   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1552   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1553 }
1554 
1555 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1556 // of either is (currently) supported. This can get us into an infinite loop
1557 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1558 // as a ..., etc.
1559 // Until either (or both) of these can reliably lower any node, reporting that
1560 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1561 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1562 // which is not desirable.
1563 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1564     EVT VT, unsigned DefinedValues) const {
1565   return false;
1566 }
1567 
1568 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
1569   // Only splats are currently supported.
1570   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
1571     return true;
1572 
1573   return false;
1574 }
1575 
1576 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) {
1577   // RISCV FP-to-int conversions saturate to the destination register size, but
1578   // don't produce 0 for nan. We can use a conversion instruction and fix the
1579   // nan case with a compare and a select.
1580   SDValue Src = Op.getOperand(0);
1581 
1582   EVT DstVT = Op.getValueType();
1583   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1584 
1585   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1586   unsigned Opc;
1587   if (SatVT == DstVT)
1588     Opc = IsSigned ? RISCVISD::FCVT_X_RTZ : RISCVISD::FCVT_XU_RTZ;
1589   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1590     Opc = IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64;
1591   else
1592     return SDValue();
1593   // FIXME: Support other SatVTs by clamping before or after the conversion.
1594 
1595   SDLoc DL(Op);
1596   SDValue FpToInt = DAG.getNode(Opc, DL, DstVT, Src);
1597 
1598   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1599   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1600 }
1601 
1602 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG,
1603                                  const RISCVSubtarget &Subtarget) {
1604   MVT VT = Op.getSimpleValueType();
1605   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1606 
1607   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1608 
1609   SDLoc DL(Op);
1610   SDValue Mask, VL;
1611   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1612 
1613   unsigned Opc =
1614       VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1615   SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL);
1616   return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1617 }
1618 
1619 struct VIDSequence {
1620   int64_t StepNumerator;
1621   unsigned StepDenominator;
1622   int64_t Addend;
1623 };
1624 
1625 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1626 // to the (non-zero) step S and start value X. This can be then lowered as the
1627 // RVV sequence (VID * S) + X, for example.
1628 // The step S is represented as an integer numerator divided by a positive
1629 // denominator. Note that the implementation currently only identifies
1630 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1631 // cannot detect 2/3, for example.
1632 // Note that this method will also match potentially unappealing index
1633 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1634 // determine whether this is worth generating code for.
1635 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1636   unsigned NumElts = Op.getNumOperands();
1637   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1638   if (!Op.getValueType().isInteger())
1639     return None;
1640 
1641   Optional<unsigned> SeqStepDenom;
1642   Optional<int64_t> SeqStepNum, SeqAddend;
1643   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1644   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1645   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1646     // Assume undef elements match the sequence; we just have to be careful
1647     // when interpolating across them.
1648     if (Op.getOperand(Idx).isUndef())
1649       continue;
1650     // The BUILD_VECTOR must be all constants.
1651     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1652       return None;
1653 
1654     uint64_t Val = Op.getConstantOperandVal(Idx) &
1655                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1656 
1657     if (PrevElt) {
1658       // Calculate the step since the last non-undef element, and ensure
1659       // it's consistent across the entire sequence.
1660       unsigned IdxDiff = Idx - PrevElt->second;
1661       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1662 
1663       // A zero-value value difference means that we're somewhere in the middle
1664       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1665       // step change before evaluating the sequence.
1666       if (ValDiff != 0) {
1667         int64_t Remainder = ValDiff % IdxDiff;
1668         // Normalize the step if it's greater than 1.
1669         if (Remainder != ValDiff) {
1670           // The difference must cleanly divide the element span.
1671           if (Remainder != 0)
1672             return None;
1673           ValDiff /= IdxDiff;
1674           IdxDiff = 1;
1675         }
1676 
1677         if (!SeqStepNum)
1678           SeqStepNum = ValDiff;
1679         else if (ValDiff != SeqStepNum)
1680           return None;
1681 
1682         if (!SeqStepDenom)
1683           SeqStepDenom = IdxDiff;
1684         else if (IdxDiff != *SeqStepDenom)
1685           return None;
1686       }
1687     }
1688 
1689     // Record and/or check any addend.
1690     if (SeqStepNum && SeqStepDenom) {
1691       uint64_t ExpectedVal =
1692           (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1693       int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1694       if (!SeqAddend)
1695         SeqAddend = Addend;
1696       else if (SeqAddend != Addend)
1697         return None;
1698     }
1699 
1700     // Record this non-undef element for later.
1701     if (!PrevElt || PrevElt->first != Val)
1702       PrevElt = std::make_pair(Val, Idx);
1703   }
1704   // We need to have logged both a step and an addend for this to count as
1705   // a legal index sequence.
1706   if (!SeqStepNum || !SeqStepDenom || !SeqAddend)
1707     return None;
1708 
1709   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1710 }
1711 
1712 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1713                                  const RISCVSubtarget &Subtarget) {
1714   MVT VT = Op.getSimpleValueType();
1715   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1716 
1717   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1718 
1719   SDLoc DL(Op);
1720   SDValue Mask, VL;
1721   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1722 
1723   MVT XLenVT = Subtarget.getXLenVT();
1724   unsigned NumElts = Op.getNumOperands();
1725 
1726   if (VT.getVectorElementType() == MVT::i1) {
1727     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1728       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1729       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1730     }
1731 
1732     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1733       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1734       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1735     }
1736 
1737     // Lower constant mask BUILD_VECTORs via an integer vector type, in
1738     // scalar integer chunks whose bit-width depends on the number of mask
1739     // bits and XLEN.
1740     // First, determine the most appropriate scalar integer type to use. This
1741     // is at most XLenVT, but may be shrunk to a smaller vector element type
1742     // according to the size of the final vector - use i8 chunks rather than
1743     // XLenVT if we're producing a v8i1. This results in more consistent
1744     // codegen across RV32 and RV64.
1745     unsigned NumViaIntegerBits =
1746         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
1747     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
1748       // If we have to use more than one INSERT_VECTOR_ELT then this
1749       // optimization is likely to increase code size; avoid peforming it in
1750       // such a case. We can use a load from a constant pool in this case.
1751       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
1752         return SDValue();
1753       // Now we can create our integer vector type. Note that it may be larger
1754       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
1755       MVT IntegerViaVecVT =
1756           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
1757                            divideCeil(NumElts, NumViaIntegerBits));
1758 
1759       uint64_t Bits = 0;
1760       unsigned BitPos = 0, IntegerEltIdx = 0;
1761       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
1762 
1763       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
1764         // Once we accumulate enough bits to fill our scalar type, insert into
1765         // our vector and clear our accumulated data.
1766         if (I != 0 && I % NumViaIntegerBits == 0) {
1767           if (NumViaIntegerBits <= 32)
1768             Bits = SignExtend64(Bits, 32);
1769           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1770           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
1771                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1772           Bits = 0;
1773           BitPos = 0;
1774           IntegerEltIdx++;
1775         }
1776         SDValue V = Op.getOperand(I);
1777         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
1778         Bits |= ((uint64_t)BitValue << BitPos);
1779       }
1780 
1781       // Insert the (remaining) scalar value into position in our integer
1782       // vector type.
1783       if (NumViaIntegerBits <= 32)
1784         Bits = SignExtend64(Bits, 32);
1785       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1786       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
1787                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1788 
1789       if (NumElts < NumViaIntegerBits) {
1790         // If we're producing a smaller vector than our minimum legal integer
1791         // type, bitcast to the equivalent (known-legal) mask type, and extract
1792         // our final mask.
1793         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
1794         Vec = DAG.getBitcast(MVT::v8i1, Vec);
1795         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
1796                           DAG.getConstant(0, DL, XLenVT));
1797       } else {
1798         // Else we must have produced an integer type with the same size as the
1799         // mask type; bitcast for the final result.
1800         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
1801         Vec = DAG.getBitcast(VT, Vec);
1802       }
1803 
1804       return Vec;
1805     }
1806 
1807     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
1808     // vector type, we have a legal equivalently-sized i8 type, so we can use
1809     // that.
1810     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
1811     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
1812 
1813     SDValue WideVec;
1814     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1815       // For a splat, perform a scalar truncate before creating the wider
1816       // vector.
1817       assert(Splat.getValueType() == XLenVT &&
1818              "Unexpected type for i1 splat value");
1819       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
1820                           DAG.getConstant(1, DL, XLenVT));
1821       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
1822     } else {
1823       SmallVector<SDValue, 8> Ops(Op->op_values());
1824       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
1825       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
1826       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
1827     }
1828 
1829     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
1830   }
1831 
1832   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1833     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
1834                                         : RISCVISD::VMV_V_X_VL;
1835     Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL);
1836     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1837   }
1838 
1839   // Try and match index sequences, which we can lower to the vid instruction
1840   // with optional modifications. An all-undef vector is matched by
1841   // getSplatValue, above.
1842   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
1843     int64_t StepNumerator = SimpleVID->StepNumerator;
1844     unsigned StepDenominator = SimpleVID->StepDenominator;
1845     int64_t Addend = SimpleVID->Addend;
1846     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
1847     // threshold since it's the immediate value many RVV instructions accept.
1848     if (isInt<5>(StepNumerator) && isPowerOf2_32(StepDenominator) &&
1849         isInt<5>(Addend)) {
1850       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
1851       // Convert right out of the scalable type so we can use standard ISD
1852       // nodes for the rest of the computation. If we used scalable types with
1853       // these, we'd lose the fixed-length vector info and generate worse
1854       // vsetvli code.
1855       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
1856       assert(StepNumerator != 0 && "Invalid step");
1857       bool Negate = false;
1858       if (StepNumerator != 1) {
1859         int64_t SplatStepVal = StepNumerator;
1860         unsigned Opcode = ISD::MUL;
1861         if (isPowerOf2_64(std::abs(StepNumerator))) {
1862           Negate = StepNumerator < 0;
1863           Opcode = ISD::SHL;
1864           SplatStepVal = Log2_64(std::abs(StepNumerator));
1865         }
1866         SDValue SplatStep = DAG.getSplatVector(
1867             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
1868         VID = DAG.getNode(Opcode, DL, VT, VID, SplatStep);
1869       }
1870       if (StepDenominator != 1) {
1871         SDValue SplatStep = DAG.getSplatVector(
1872             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
1873         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
1874       }
1875       if (Addend != 0 || Negate) {
1876         SDValue SplatAddend =
1877             DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT));
1878         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
1879       }
1880       return VID;
1881     }
1882   }
1883 
1884   // Attempt to detect "hidden" splats, which only reveal themselves as splats
1885   // when re-interpreted as a vector with a larger element type. For example,
1886   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
1887   // could be instead splat as
1888   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
1889   // TODO: This optimization could also work on non-constant splats, but it
1890   // would require bit-manipulation instructions to construct the splat value.
1891   SmallVector<SDValue> Sequence;
1892   unsigned EltBitSize = VT.getScalarSizeInBits();
1893   const auto *BV = cast<BuildVectorSDNode>(Op);
1894   if (VT.isInteger() && EltBitSize < 64 &&
1895       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
1896       BV->getRepeatedSequence(Sequence) &&
1897       (Sequence.size() * EltBitSize) <= 64) {
1898     unsigned SeqLen = Sequence.size();
1899     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
1900     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
1901     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
1902             ViaIntVT == MVT::i64) &&
1903            "Unexpected sequence type");
1904 
1905     unsigned EltIdx = 0;
1906     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
1907     uint64_t SplatValue = 0;
1908     // Construct the amalgamated value which can be splatted as this larger
1909     // vector type.
1910     for (const auto &SeqV : Sequence) {
1911       if (!SeqV.isUndef())
1912         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
1913                        << (EltIdx * EltBitSize));
1914       EltIdx++;
1915     }
1916 
1917     // On RV64, sign-extend from 32 to 64 bits where possible in order to
1918     // achieve better constant materializion.
1919     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
1920       SplatValue = SignExtend64(SplatValue, 32);
1921 
1922     // Since we can't introduce illegal i64 types at this stage, we can only
1923     // perform an i64 splat on RV32 if it is its own sign-extended value. That
1924     // way we can use RVV instructions to splat.
1925     assert((ViaIntVT.bitsLE(XLenVT) ||
1926             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
1927            "Unexpected bitcast sequence");
1928     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
1929       SDValue ViaVL =
1930           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
1931       MVT ViaContainerVT =
1932           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
1933       SDValue Splat =
1934           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
1935                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
1936       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
1937       return DAG.getBitcast(VT, Splat);
1938     }
1939   }
1940 
1941   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
1942   // which constitute a large proportion of the elements. In such cases we can
1943   // splat a vector with the dominant element and make up the shortfall with
1944   // INSERT_VECTOR_ELTs.
1945   // Note that this includes vectors of 2 elements by association. The
1946   // upper-most element is the "dominant" one, allowing us to use a splat to
1947   // "insert" the upper element, and an insert of the lower element at position
1948   // 0, which improves codegen.
1949   SDValue DominantValue;
1950   unsigned MostCommonCount = 0;
1951   DenseMap<SDValue, unsigned> ValueCounts;
1952   unsigned NumUndefElts =
1953       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
1954 
1955   // Track the number of scalar loads we know we'd be inserting, estimated as
1956   // any non-zero floating-point constant. Other kinds of element are either
1957   // already in registers or are materialized on demand. The threshold at which
1958   // a vector load is more desirable than several scalar materializion and
1959   // vector-insertion instructions is not known.
1960   unsigned NumScalarLoads = 0;
1961 
1962   for (SDValue V : Op->op_values()) {
1963     if (V.isUndef())
1964       continue;
1965 
1966     ValueCounts.insert(std::make_pair(V, 0));
1967     unsigned &Count = ValueCounts[V];
1968 
1969     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
1970       NumScalarLoads += !CFP->isExactlyValue(+0.0);
1971 
1972     // Is this value dominant? In case of a tie, prefer the highest element as
1973     // it's cheaper to insert near the beginning of a vector than it is at the
1974     // end.
1975     if (++Count >= MostCommonCount) {
1976       DominantValue = V;
1977       MostCommonCount = Count;
1978     }
1979   }
1980 
1981   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
1982   unsigned NumDefElts = NumElts - NumUndefElts;
1983   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
1984 
1985   // Don't perform this optimization when optimizing for size, since
1986   // materializing elements and inserting them tends to cause code bloat.
1987   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
1988       ((MostCommonCount > DominantValueCountThreshold) ||
1989        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
1990     // Start by splatting the most common element.
1991     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
1992 
1993     DenseSet<SDValue> Processed{DominantValue};
1994     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
1995     for (const auto &OpIdx : enumerate(Op->ops())) {
1996       const SDValue &V = OpIdx.value();
1997       if (V.isUndef() || !Processed.insert(V).second)
1998         continue;
1999       if (ValueCounts[V] == 1) {
2000         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2001                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2002       } else {
2003         // Blend in all instances of this value using a VSELECT, using a
2004         // mask where each bit signals whether that element is the one
2005         // we're after.
2006         SmallVector<SDValue> Ops;
2007         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2008           return DAG.getConstant(V == V1, DL, XLenVT);
2009         });
2010         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2011                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2012                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2013       }
2014     }
2015 
2016     return Vec;
2017   }
2018 
2019   return SDValue();
2020 }
2021 
2022 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo,
2023                                    SDValue Hi, SDValue VL, SelectionDAG &DAG) {
2024   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2025     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2026     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2027     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2028     // node in order to try and match RVV vector/scalar instructions.
2029     if ((LoC >> 31) == HiC)
2030       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL);
2031   }
2032 
2033   // Fall back to a stack store and stride x0 vector load.
2034   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL);
2035 }
2036 
2037 // Called by type legalization to handle splat of i64 on RV32.
2038 // FIXME: We can optimize this when the type has sign or zero bits in one
2039 // of the halves.
2040 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar,
2041                                    SDValue VL, SelectionDAG &DAG) {
2042   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2043   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2044                            DAG.getConstant(0, DL, MVT::i32));
2045   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2046                            DAG.getConstant(1, DL, MVT::i32));
2047   return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG);
2048 }
2049 
2050 // This function lowers a splat of a scalar operand Splat with the vector
2051 // length VL. It ensures the final sequence is type legal, which is useful when
2052 // lowering a splat after type legalization.
2053 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL,
2054                                 SelectionDAG &DAG,
2055                                 const RISCVSubtarget &Subtarget) {
2056   if (VT.isFloatingPoint())
2057     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL);
2058 
2059   MVT XLenVT = Subtarget.getXLenVT();
2060 
2061   // Simplest case is that the operand needs to be promoted to XLenVT.
2062   if (Scalar.getValueType().bitsLE(XLenVT)) {
2063     // If the operand is a constant, sign extend to increase our chances
2064     // of being able to use a .vi instruction. ANY_EXTEND would become a
2065     // a zero extend and the simm5 check in isel would fail.
2066     // FIXME: Should we ignore the upper bits in isel instead?
2067     unsigned ExtOpc =
2068         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2069     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2070     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL);
2071   }
2072 
2073   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2074          "Unexpected scalar for splat lowering!");
2075 
2076   // Otherwise use the more complicated splatting algorithm.
2077   return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
2078 }
2079 
2080 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2081                                    const RISCVSubtarget &Subtarget) {
2082   SDValue V1 = Op.getOperand(0);
2083   SDValue V2 = Op.getOperand(1);
2084   SDLoc DL(Op);
2085   MVT XLenVT = Subtarget.getXLenVT();
2086   MVT VT = Op.getSimpleValueType();
2087   unsigned NumElts = VT.getVectorNumElements();
2088   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2089 
2090   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2091 
2092   SDValue TrueMask, VL;
2093   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2094 
2095   if (SVN->isSplat()) {
2096     const int Lane = SVN->getSplatIndex();
2097     if (Lane >= 0) {
2098       MVT SVT = VT.getVectorElementType();
2099 
2100       // Turn splatted vector load into a strided load with an X0 stride.
2101       SDValue V = V1;
2102       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2103       // with undef.
2104       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2105       int Offset = Lane;
2106       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2107         int OpElements =
2108             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2109         V = V.getOperand(Offset / OpElements);
2110         Offset %= OpElements;
2111       }
2112 
2113       // We need to ensure the load isn't atomic or volatile.
2114       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2115         auto *Ld = cast<LoadSDNode>(V);
2116         Offset *= SVT.getStoreSize();
2117         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2118                                                    TypeSize::Fixed(Offset), DL);
2119 
2120         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2121         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2122           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2123           SDValue IntID =
2124               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2125           SDValue Ops[] = {Ld->getChain(), IntID, NewAddr,
2126                            DAG.getRegister(RISCV::X0, XLenVT), VL};
2127           SDValue NewLoad = DAG.getMemIntrinsicNode(
2128               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2129               DAG.getMachineFunction().getMachineMemOperand(
2130                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2131           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2132           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2133         }
2134 
2135         // Otherwise use a scalar load and splat. This will give the best
2136         // opportunity to fold a splat into the operation. ISel can turn it into
2137         // the x0 strided load if we aren't able to fold away the select.
2138         if (SVT.isFloatingPoint())
2139           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2140                           Ld->getPointerInfo().getWithOffset(Offset),
2141                           Ld->getOriginalAlign(),
2142                           Ld->getMemOperand()->getFlags());
2143         else
2144           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2145                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2146                              Ld->getOriginalAlign(),
2147                              Ld->getMemOperand()->getFlags());
2148         DAG.makeEquivalentMemoryOrdering(Ld, V);
2149 
2150         unsigned Opc =
2151             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2152         SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL);
2153         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2154       }
2155 
2156       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2157       assert(Lane < (int)NumElts && "Unexpected lane!");
2158       SDValue Gather =
2159           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
2160                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
2161       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2162     }
2163   }
2164 
2165   // Detect shuffles which can be re-expressed as vector selects; these are
2166   // shuffles in which each element in the destination is taken from an element
2167   // at the corresponding index in either source vectors.
2168   bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) {
2169     int MaskIndex = MaskIdx.value();
2170     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2171   });
2172 
2173   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2174 
2175   SmallVector<SDValue> MaskVals;
2176   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2177   // merged with a second vrgather.
2178   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2179 
2180   // By default we preserve the original operand order, and use a mask to
2181   // select LHS as true and RHS as false. However, since RVV vector selects may
2182   // feature splats but only on the LHS, we may choose to invert our mask and
2183   // instead select between RHS and LHS.
2184   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2185   bool InvertMask = IsSelect == SwapOps;
2186 
2187   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2188   // half.
2189   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2190 
2191   // Now construct the mask that will be used by the vselect or blended
2192   // vrgather operation. For vrgathers, construct the appropriate indices into
2193   // each vector.
2194   for (int MaskIndex : SVN->getMask()) {
2195     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2196     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2197     if (!IsSelect) {
2198       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2199       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2200                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2201                                      : DAG.getUNDEF(XLenVT));
2202       GatherIndicesRHS.push_back(
2203           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2204                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2205       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2206         ++LHSIndexCounts[MaskIndex];
2207       if (!IsLHSOrUndefIndex)
2208         ++RHSIndexCounts[MaskIndex - NumElts];
2209     }
2210   }
2211 
2212   if (SwapOps) {
2213     std::swap(V1, V2);
2214     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2215   }
2216 
2217   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2218   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2219   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2220 
2221   if (IsSelect)
2222     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2223 
2224   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2225     // On such a large vector we're unable to use i8 as the index type.
2226     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2227     // may involve vector splitting if we're already at LMUL=8, or our
2228     // user-supplied maximum fixed-length LMUL.
2229     return SDValue();
2230   }
2231 
2232   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2233   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2234   MVT IndexVT = VT.changeTypeToInteger();
2235   // Since we can't introduce illegal index types at this stage, use i16 and
2236   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2237   // than XLenVT.
2238   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2239     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2240     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2241   }
2242 
2243   MVT IndexContainerVT =
2244       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2245 
2246   SDValue Gather;
2247   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2248   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2249   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2250     Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget);
2251   } else {
2252     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2253     // If only one index is used, we can use a "splat" vrgather.
2254     // TODO: We can splat the most-common index and fix-up any stragglers, if
2255     // that's beneficial.
2256     if (LHSIndexCounts.size() == 1) {
2257       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2258       Gather =
2259           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2260                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2261     } else {
2262       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2263       LHSIndices =
2264           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2265 
2266       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2267                            TrueMask, VL);
2268     }
2269   }
2270 
2271   // If a second vector operand is used by this shuffle, blend it in with an
2272   // additional vrgather.
2273   if (!V2.isUndef()) {
2274     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2275     // If only one index is used, we can use a "splat" vrgather.
2276     // TODO: We can splat the most-common index and fix-up any stragglers, if
2277     // that's beneficial.
2278     if (RHSIndexCounts.size() == 1) {
2279       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2280       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2281                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2282     } else {
2283       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2284       RHSIndices =
2285           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2286       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2287                        VL);
2288     }
2289 
2290     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2291     SelectMask =
2292         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2293 
2294     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2295                          Gather, VL);
2296   }
2297 
2298   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2299 }
2300 
2301 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
2302                                      SDLoc DL, SelectionDAG &DAG,
2303                                      const RISCVSubtarget &Subtarget) {
2304   if (VT.isScalableVector())
2305     return DAG.getFPExtendOrRound(Op, DL, VT);
2306   assert(VT.isFixedLengthVector() &&
2307          "Unexpected value type for RVV FP extend/round lowering");
2308   SDValue Mask, VL;
2309   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2310   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
2311                         ? RISCVISD::FP_EXTEND_VL
2312                         : RISCVISD::FP_ROUND_VL;
2313   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
2314 }
2315 
2316 // While RVV has alignment restrictions, we should always be able to load as a
2317 // legal equivalently-sized byte-typed vector instead. This method is
2318 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2319 // the load is already correctly-aligned, it returns SDValue().
2320 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2321                                                     SelectionDAG &DAG) const {
2322   auto *Load = cast<LoadSDNode>(Op);
2323   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2324 
2325   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2326                                      Load->getMemoryVT(),
2327                                      *Load->getMemOperand()))
2328     return SDValue();
2329 
2330   SDLoc DL(Op);
2331   MVT VT = Op.getSimpleValueType();
2332   unsigned EltSizeBits = VT.getScalarSizeInBits();
2333   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2334          "Unexpected unaligned RVV load type");
2335   MVT NewVT =
2336       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2337   assert(NewVT.isValid() &&
2338          "Expecting equally-sized RVV vector types to be legal");
2339   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2340                           Load->getPointerInfo(), Load->getOriginalAlign(),
2341                           Load->getMemOperand()->getFlags());
2342   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2343 }
2344 
2345 // While RVV has alignment restrictions, we should always be able to store as a
2346 // legal equivalently-sized byte-typed vector instead. This method is
2347 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
2348 // returns SDValue() if the store is already correctly aligned.
2349 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
2350                                                      SelectionDAG &DAG) const {
2351   auto *Store = cast<StoreSDNode>(Op);
2352   assert(Store && Store->getValue().getValueType().isVector() &&
2353          "Expected vector store");
2354 
2355   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2356                                      Store->getMemoryVT(),
2357                                      *Store->getMemOperand()))
2358     return SDValue();
2359 
2360   SDLoc DL(Op);
2361   SDValue StoredVal = Store->getValue();
2362   MVT VT = StoredVal.getSimpleValueType();
2363   unsigned EltSizeBits = VT.getScalarSizeInBits();
2364   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2365          "Unexpected unaligned RVV store type");
2366   MVT NewVT =
2367       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2368   assert(NewVT.isValid() &&
2369          "Expecting equally-sized RVV vector types to be legal");
2370   StoredVal = DAG.getBitcast(NewVT, StoredVal);
2371   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
2372                       Store->getPointerInfo(), Store->getOriginalAlign(),
2373                       Store->getMemOperand()->getFlags());
2374 }
2375 
2376 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
2377                                             SelectionDAG &DAG) const {
2378   switch (Op.getOpcode()) {
2379   default:
2380     report_fatal_error("unimplemented operand");
2381   case ISD::GlobalAddress:
2382     return lowerGlobalAddress(Op, DAG);
2383   case ISD::BlockAddress:
2384     return lowerBlockAddress(Op, DAG);
2385   case ISD::ConstantPool:
2386     return lowerConstantPool(Op, DAG);
2387   case ISD::JumpTable:
2388     return lowerJumpTable(Op, DAG);
2389   case ISD::GlobalTLSAddress:
2390     return lowerGlobalTLSAddress(Op, DAG);
2391   case ISD::SELECT:
2392     return lowerSELECT(Op, DAG);
2393   case ISD::BRCOND:
2394     return lowerBRCOND(Op, DAG);
2395   case ISD::VASTART:
2396     return lowerVASTART(Op, DAG);
2397   case ISD::FRAMEADDR:
2398     return lowerFRAMEADDR(Op, DAG);
2399   case ISD::RETURNADDR:
2400     return lowerRETURNADDR(Op, DAG);
2401   case ISD::SHL_PARTS:
2402     return lowerShiftLeftParts(Op, DAG);
2403   case ISD::SRA_PARTS:
2404     return lowerShiftRightParts(Op, DAG, true);
2405   case ISD::SRL_PARTS:
2406     return lowerShiftRightParts(Op, DAG, false);
2407   case ISD::BITCAST: {
2408     SDLoc DL(Op);
2409     EVT VT = Op.getValueType();
2410     SDValue Op0 = Op.getOperand(0);
2411     EVT Op0VT = Op0.getValueType();
2412     MVT XLenVT = Subtarget.getXLenVT();
2413     if (VT.isFixedLengthVector()) {
2414       // We can handle fixed length vector bitcasts with a simple replacement
2415       // in isel.
2416       if (Op0VT.isFixedLengthVector())
2417         return Op;
2418       // When bitcasting from scalar to fixed-length vector, insert the scalar
2419       // into a one-element vector of the result type, and perform a vector
2420       // bitcast.
2421       if (!Op0VT.isVector()) {
2422         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
2423         if (!isTypeLegal(BVT))
2424           return SDValue();
2425         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
2426                                               DAG.getUNDEF(BVT), Op0,
2427                                               DAG.getConstant(0, DL, XLenVT)));
2428       }
2429       return SDValue();
2430     }
2431     // Custom-legalize bitcasts from fixed-length vector types to scalar types
2432     // thus: bitcast the vector to a one-element vector type whose element type
2433     // is the same as the result type, and extract the first element.
2434     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
2435       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
2436       if (!isTypeLegal(BVT))
2437         return SDValue();
2438       SDValue BVec = DAG.getBitcast(BVT, Op0);
2439       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
2440                          DAG.getConstant(0, DL, XLenVT));
2441     }
2442     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
2443       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
2444       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
2445       return FPConv;
2446     }
2447     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
2448         Subtarget.hasStdExtF()) {
2449       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
2450       SDValue FPConv =
2451           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
2452       return FPConv;
2453     }
2454     return SDValue();
2455   }
2456   case ISD::INTRINSIC_WO_CHAIN:
2457     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2458   case ISD::INTRINSIC_W_CHAIN:
2459     return LowerINTRINSIC_W_CHAIN(Op, DAG);
2460   case ISD::INTRINSIC_VOID:
2461     return LowerINTRINSIC_VOID(Op, DAG);
2462   case ISD::BSWAP:
2463   case ISD::BITREVERSE: {
2464     // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
2465     assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
2466     MVT VT = Op.getSimpleValueType();
2467     SDLoc DL(Op);
2468     // Start with the maximum immediate value which is the bitwidth - 1.
2469     unsigned Imm = VT.getSizeInBits() - 1;
2470     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
2471     if (Op.getOpcode() == ISD::BSWAP)
2472       Imm &= ~0x7U;
2473     return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
2474                        DAG.getConstant(Imm, DL, VT));
2475   }
2476   case ISD::FSHL:
2477   case ISD::FSHR: {
2478     MVT VT = Op.getSimpleValueType();
2479     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
2480     SDLoc DL(Op);
2481     if (Op.getOperand(2).getOpcode() == ISD::Constant)
2482       return Op;
2483     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
2484     // use log(XLen) bits. Mask the shift amount accordingly.
2485     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
2486     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
2487                                 DAG.getConstant(ShAmtWidth, DL, VT));
2488     unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR;
2489     return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt);
2490   }
2491   case ISD::TRUNCATE: {
2492     SDLoc DL(Op);
2493     MVT VT = Op.getSimpleValueType();
2494     // Only custom-lower vector truncates
2495     if (!VT.isVector())
2496       return Op;
2497 
2498     // Truncates to mask types are handled differently
2499     if (VT.getVectorElementType() == MVT::i1)
2500       return lowerVectorMaskTrunc(Op, DAG);
2501 
2502     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
2503     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
2504     // truncate by one power of two at a time.
2505     MVT DstEltVT = VT.getVectorElementType();
2506 
2507     SDValue Src = Op.getOperand(0);
2508     MVT SrcVT = Src.getSimpleValueType();
2509     MVT SrcEltVT = SrcVT.getVectorElementType();
2510 
2511     assert(DstEltVT.bitsLT(SrcEltVT) &&
2512            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
2513            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
2514            "Unexpected vector truncate lowering");
2515 
2516     MVT ContainerVT = SrcVT;
2517     if (SrcVT.isFixedLengthVector()) {
2518       ContainerVT = getContainerForFixedLengthVector(SrcVT);
2519       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
2520     }
2521 
2522     SDValue Result = Src;
2523     SDValue Mask, VL;
2524     std::tie(Mask, VL) =
2525         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
2526     LLVMContext &Context = *DAG.getContext();
2527     const ElementCount Count = ContainerVT.getVectorElementCount();
2528     do {
2529       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
2530       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
2531       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
2532                            Mask, VL);
2533     } while (SrcEltVT != DstEltVT);
2534 
2535     if (SrcVT.isFixedLengthVector())
2536       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
2537 
2538     return Result;
2539   }
2540   case ISD::ANY_EXTEND:
2541   case ISD::ZERO_EXTEND:
2542     if (Op.getOperand(0).getValueType().isVector() &&
2543         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2544       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
2545     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
2546   case ISD::SIGN_EXTEND:
2547     if (Op.getOperand(0).getValueType().isVector() &&
2548         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2549       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
2550     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
2551   case ISD::SPLAT_VECTOR_PARTS:
2552     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
2553   case ISD::INSERT_VECTOR_ELT:
2554     return lowerINSERT_VECTOR_ELT(Op, DAG);
2555   case ISD::EXTRACT_VECTOR_ELT:
2556     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
2557   case ISD::VSCALE: {
2558     MVT VT = Op.getSimpleValueType();
2559     SDLoc DL(Op);
2560     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
2561     // We define our scalable vector types for lmul=1 to use a 64 bit known
2562     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
2563     // vscale as VLENB / 8.
2564     assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!");
2565     if (isa<ConstantSDNode>(Op.getOperand(0))) {
2566       // We assume VLENB is a multiple of 8. We manually choose the best shift
2567       // here because SimplifyDemandedBits isn't always able to simplify it.
2568       uint64_t Val = Op.getConstantOperandVal(0);
2569       if (isPowerOf2_64(Val)) {
2570         uint64_t Log2 = Log2_64(Val);
2571         if (Log2 < 3)
2572           return DAG.getNode(ISD::SRL, DL, VT, VLENB,
2573                              DAG.getConstant(3 - Log2, DL, VT));
2574         if (Log2 > 3)
2575           return DAG.getNode(ISD::SHL, DL, VT, VLENB,
2576                              DAG.getConstant(Log2 - 3, DL, VT));
2577         return VLENB;
2578       }
2579       // If the multiplier is a multiple of 8, scale it down to avoid needing
2580       // to shift the VLENB value.
2581       if ((Val % 8) == 0)
2582         return DAG.getNode(ISD::MUL, DL, VT, VLENB,
2583                            DAG.getConstant(Val / 8, DL, VT));
2584     }
2585 
2586     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
2587                                  DAG.getConstant(3, DL, VT));
2588     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
2589   }
2590   case ISD::FP_EXTEND: {
2591     // RVV can only do fp_extend to types double the size as the source. We
2592     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
2593     // via f32.
2594     SDLoc DL(Op);
2595     MVT VT = Op.getSimpleValueType();
2596     SDValue Src = Op.getOperand(0);
2597     MVT SrcVT = Src.getSimpleValueType();
2598 
2599     // Prepare any fixed-length vector operands.
2600     MVT ContainerVT = VT;
2601     if (SrcVT.isFixedLengthVector()) {
2602       ContainerVT = getContainerForFixedLengthVector(VT);
2603       MVT SrcContainerVT =
2604           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
2605       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2606     }
2607 
2608     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
2609         SrcVT.getVectorElementType() != MVT::f16) {
2610       // For scalable vectors, we only need to close the gap between
2611       // vXf16->vXf64.
2612       if (!VT.isFixedLengthVector())
2613         return Op;
2614       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
2615       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2616       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2617     }
2618 
2619     MVT InterVT = VT.changeVectorElementType(MVT::f32);
2620     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
2621     SDValue IntermediateExtend = getRVVFPExtendOrRound(
2622         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
2623 
2624     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
2625                                            DL, DAG, Subtarget);
2626     if (VT.isFixedLengthVector())
2627       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
2628     return Extend;
2629   }
2630   case ISD::FP_ROUND: {
2631     // RVV can only do fp_round to types half the size as the source. We
2632     // custom-lower f64->f16 rounds via RVV's round-to-odd float
2633     // conversion instruction.
2634     SDLoc DL(Op);
2635     MVT VT = Op.getSimpleValueType();
2636     SDValue Src = Op.getOperand(0);
2637     MVT SrcVT = Src.getSimpleValueType();
2638 
2639     // Prepare any fixed-length vector operands.
2640     MVT ContainerVT = VT;
2641     if (VT.isFixedLengthVector()) {
2642       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2643       ContainerVT =
2644           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2645       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2646     }
2647 
2648     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
2649         SrcVT.getVectorElementType() != MVT::f64) {
2650       // For scalable vectors, we only need to close the gap between
2651       // vXf64<->vXf16.
2652       if (!VT.isFixedLengthVector())
2653         return Op;
2654       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
2655       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2656       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2657     }
2658 
2659     SDValue Mask, VL;
2660     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2661 
2662     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
2663     SDValue IntermediateRound =
2664         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
2665     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
2666                                           DL, DAG, Subtarget);
2667 
2668     if (VT.isFixedLengthVector())
2669       return convertFromScalableVector(VT, Round, DAG, Subtarget);
2670     return Round;
2671   }
2672   case ISD::FP_TO_SINT:
2673   case ISD::FP_TO_UINT:
2674   case ISD::SINT_TO_FP:
2675   case ISD::UINT_TO_FP: {
2676     // RVV can only do fp<->int conversions to types half/double the size as
2677     // the source. We custom-lower any conversions that do two hops into
2678     // sequences.
2679     MVT VT = Op.getSimpleValueType();
2680     if (!VT.isVector())
2681       return Op;
2682     SDLoc DL(Op);
2683     SDValue Src = Op.getOperand(0);
2684     MVT EltVT = VT.getVectorElementType();
2685     MVT SrcVT = Src.getSimpleValueType();
2686     MVT SrcEltVT = SrcVT.getVectorElementType();
2687     unsigned EltSize = EltVT.getSizeInBits();
2688     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
2689     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
2690            "Unexpected vector element types");
2691 
2692     bool IsInt2FP = SrcEltVT.isInteger();
2693     // Widening conversions
2694     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
2695       if (IsInt2FP) {
2696         // Do a regular integer sign/zero extension then convert to float.
2697         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
2698                                       VT.getVectorElementCount());
2699         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
2700                                  ? ISD::ZERO_EXTEND
2701                                  : ISD::SIGN_EXTEND;
2702         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
2703         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
2704       }
2705       // FP2Int
2706       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
2707       // Do one doubling fp_extend then complete the operation by converting
2708       // to int.
2709       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2710       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
2711       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
2712     }
2713 
2714     // Narrowing conversions
2715     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
2716       if (IsInt2FP) {
2717         // One narrowing int_to_fp, then an fp_round.
2718         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
2719         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2720         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
2721         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
2722       }
2723       // FP2Int
2724       // One narrowing fp_to_int, then truncate the integer. If the float isn't
2725       // representable by the integer, the result is poison.
2726       MVT IVecVT =
2727           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
2728                            VT.getVectorElementCount());
2729       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
2730       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
2731     }
2732 
2733     // Scalable vectors can exit here. Patterns will handle equally-sized
2734     // conversions halving/doubling ones.
2735     if (!VT.isFixedLengthVector())
2736       return Op;
2737 
2738     // For fixed-length vectors we lower to a custom "VL" node.
2739     unsigned RVVOpc = 0;
2740     switch (Op.getOpcode()) {
2741     default:
2742       llvm_unreachable("Impossible opcode");
2743     case ISD::FP_TO_SINT:
2744       RVVOpc = RISCVISD::FP_TO_SINT_VL;
2745       break;
2746     case ISD::FP_TO_UINT:
2747       RVVOpc = RISCVISD::FP_TO_UINT_VL;
2748       break;
2749     case ISD::SINT_TO_FP:
2750       RVVOpc = RISCVISD::SINT_TO_FP_VL;
2751       break;
2752     case ISD::UINT_TO_FP:
2753       RVVOpc = RISCVISD::UINT_TO_FP_VL;
2754       break;
2755     }
2756 
2757     MVT ContainerVT, SrcContainerVT;
2758     // Derive the reference container type from the larger vector type.
2759     if (SrcEltSize > EltSize) {
2760       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2761       ContainerVT =
2762           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2763     } else {
2764       ContainerVT = getContainerForFixedLengthVector(VT);
2765       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
2766     }
2767 
2768     SDValue Mask, VL;
2769     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2770 
2771     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2772     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
2773     return convertFromScalableVector(VT, Src, DAG, Subtarget);
2774   }
2775   case ISD::FP_TO_SINT_SAT:
2776   case ISD::FP_TO_UINT_SAT:
2777     return lowerFP_TO_INT_SAT(Op, DAG);
2778   case ISD::VECREDUCE_ADD:
2779   case ISD::VECREDUCE_UMAX:
2780   case ISD::VECREDUCE_SMAX:
2781   case ISD::VECREDUCE_UMIN:
2782   case ISD::VECREDUCE_SMIN:
2783     return lowerVECREDUCE(Op, DAG);
2784   case ISD::VECREDUCE_AND:
2785   case ISD::VECREDUCE_OR:
2786   case ISD::VECREDUCE_XOR:
2787     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2788       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
2789     return lowerVECREDUCE(Op, DAG);
2790   case ISD::VECREDUCE_FADD:
2791   case ISD::VECREDUCE_SEQ_FADD:
2792   case ISD::VECREDUCE_FMIN:
2793   case ISD::VECREDUCE_FMAX:
2794     return lowerFPVECREDUCE(Op, DAG);
2795   case ISD::VP_REDUCE_ADD:
2796   case ISD::VP_REDUCE_UMAX:
2797   case ISD::VP_REDUCE_SMAX:
2798   case ISD::VP_REDUCE_UMIN:
2799   case ISD::VP_REDUCE_SMIN:
2800   case ISD::VP_REDUCE_FADD:
2801   case ISD::VP_REDUCE_SEQ_FADD:
2802   case ISD::VP_REDUCE_FMIN:
2803   case ISD::VP_REDUCE_FMAX:
2804     return lowerVPREDUCE(Op, DAG);
2805   case ISD::VP_REDUCE_AND:
2806   case ISD::VP_REDUCE_OR:
2807   case ISD::VP_REDUCE_XOR:
2808     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
2809       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
2810     return lowerVPREDUCE(Op, DAG);
2811   case ISD::INSERT_SUBVECTOR:
2812     return lowerINSERT_SUBVECTOR(Op, DAG);
2813   case ISD::EXTRACT_SUBVECTOR:
2814     return lowerEXTRACT_SUBVECTOR(Op, DAG);
2815   case ISD::STEP_VECTOR:
2816     return lowerSTEP_VECTOR(Op, DAG);
2817   case ISD::VECTOR_REVERSE:
2818     return lowerVECTOR_REVERSE(Op, DAG);
2819   case ISD::BUILD_VECTOR:
2820     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
2821   case ISD::SPLAT_VECTOR:
2822     if (Op.getValueType().getVectorElementType() == MVT::i1)
2823       return lowerVectorMaskSplat(Op, DAG);
2824     return lowerSPLAT_VECTOR(Op, DAG, Subtarget);
2825   case ISD::VECTOR_SHUFFLE:
2826     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
2827   case ISD::CONCAT_VECTORS: {
2828     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
2829     // better than going through the stack, as the default expansion does.
2830     SDLoc DL(Op);
2831     MVT VT = Op.getSimpleValueType();
2832     unsigned NumOpElts =
2833         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
2834     SDValue Vec = DAG.getUNDEF(VT);
2835     for (const auto &OpIdx : enumerate(Op->ops()))
2836       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(),
2837                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
2838     return Vec;
2839   }
2840   case ISD::LOAD:
2841     if (auto V = expandUnalignedRVVLoad(Op, DAG))
2842       return V;
2843     if (Op.getValueType().isFixedLengthVector())
2844       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
2845     return Op;
2846   case ISD::STORE:
2847     if (auto V = expandUnalignedRVVStore(Op, DAG))
2848       return V;
2849     if (Op.getOperand(1).getValueType().isFixedLengthVector())
2850       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
2851     return Op;
2852   case ISD::MLOAD:
2853   case ISD::VP_LOAD:
2854     return lowerMaskedLoad(Op, DAG);
2855   case ISD::MSTORE:
2856   case ISD::VP_STORE:
2857     return lowerMaskedStore(Op, DAG);
2858   case ISD::SETCC:
2859     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
2860   case ISD::ADD:
2861     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
2862   case ISD::SUB:
2863     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
2864   case ISD::MUL:
2865     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
2866   case ISD::MULHS:
2867     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
2868   case ISD::MULHU:
2869     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
2870   case ISD::AND:
2871     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
2872                                               RISCVISD::AND_VL);
2873   case ISD::OR:
2874     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
2875                                               RISCVISD::OR_VL);
2876   case ISD::XOR:
2877     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
2878                                               RISCVISD::XOR_VL);
2879   case ISD::SDIV:
2880     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
2881   case ISD::SREM:
2882     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
2883   case ISD::UDIV:
2884     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
2885   case ISD::UREM:
2886     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
2887   case ISD::SHL:
2888   case ISD::SRA:
2889   case ISD::SRL:
2890     if (Op.getSimpleValueType().isFixedLengthVector())
2891       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
2892     // This can be called for an i32 shift amount that needs to be promoted.
2893     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
2894            "Unexpected custom legalisation");
2895     return SDValue();
2896   case ISD::SADDSAT:
2897     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
2898   case ISD::UADDSAT:
2899     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
2900   case ISD::SSUBSAT:
2901     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
2902   case ISD::USUBSAT:
2903     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
2904   case ISD::FADD:
2905     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
2906   case ISD::FSUB:
2907     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
2908   case ISD::FMUL:
2909     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
2910   case ISD::FDIV:
2911     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
2912   case ISD::FNEG:
2913     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
2914   case ISD::FABS:
2915     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
2916   case ISD::FSQRT:
2917     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
2918   case ISD::FMA:
2919     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
2920   case ISD::SMIN:
2921     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
2922   case ISD::SMAX:
2923     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
2924   case ISD::UMIN:
2925     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
2926   case ISD::UMAX:
2927     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
2928   case ISD::FMINNUM:
2929     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
2930   case ISD::FMAXNUM:
2931     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
2932   case ISD::ABS:
2933     return lowerABS(Op, DAG);
2934   case ISD::VSELECT:
2935     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
2936   case ISD::FCOPYSIGN:
2937     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
2938   case ISD::MGATHER:
2939   case ISD::VP_GATHER:
2940     return lowerMaskedGather(Op, DAG);
2941   case ISD::MSCATTER:
2942   case ISD::VP_SCATTER:
2943     return lowerMaskedScatter(Op, DAG);
2944   case ISD::FLT_ROUNDS_:
2945     return lowerGET_ROUNDING(Op, DAG);
2946   case ISD::SET_ROUNDING:
2947     return lowerSET_ROUNDING(Op, DAG);
2948   case ISD::VP_ADD:
2949     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
2950   case ISD::VP_SUB:
2951     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
2952   case ISD::VP_MUL:
2953     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
2954   case ISD::VP_SDIV:
2955     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
2956   case ISD::VP_UDIV:
2957     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
2958   case ISD::VP_SREM:
2959     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
2960   case ISD::VP_UREM:
2961     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
2962   case ISD::VP_AND:
2963     return lowerVPOp(Op, DAG, RISCVISD::AND_VL);
2964   case ISD::VP_OR:
2965     return lowerVPOp(Op, DAG, RISCVISD::OR_VL);
2966   case ISD::VP_XOR:
2967     return lowerVPOp(Op, DAG, RISCVISD::XOR_VL);
2968   case ISD::VP_ASHR:
2969     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
2970   case ISD::VP_LSHR:
2971     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
2972   case ISD::VP_SHL:
2973     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
2974   case ISD::VP_FADD:
2975     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
2976   case ISD::VP_FSUB:
2977     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
2978   case ISD::VP_FMUL:
2979     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
2980   case ISD::VP_FDIV:
2981     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
2982   }
2983 }
2984 
2985 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
2986                              SelectionDAG &DAG, unsigned Flags) {
2987   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
2988 }
2989 
2990 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
2991                              SelectionDAG &DAG, unsigned Flags) {
2992   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
2993                                    Flags);
2994 }
2995 
2996 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
2997                              SelectionDAG &DAG, unsigned Flags) {
2998   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
2999                                    N->getOffset(), Flags);
3000 }
3001 
3002 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3003                              SelectionDAG &DAG, unsigned Flags) {
3004   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3005 }
3006 
3007 template <class NodeTy>
3008 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3009                                      bool IsLocal) const {
3010   SDLoc DL(N);
3011   EVT Ty = getPointerTy(DAG.getDataLayout());
3012 
3013   if (isPositionIndependent()) {
3014     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3015     if (IsLocal)
3016       // Use PC-relative addressing to access the symbol. This generates the
3017       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3018       // %pcrel_lo(auipc)).
3019       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3020 
3021     // Use PC-relative addressing to access the GOT for this symbol, then load
3022     // the address from the GOT. This generates the pattern (PseudoLA sym),
3023     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3024     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
3025   }
3026 
3027   switch (getTargetMachine().getCodeModel()) {
3028   default:
3029     report_fatal_error("Unsupported code model for lowering");
3030   case CodeModel::Small: {
3031     // Generate a sequence for accessing addresses within the first 2 GiB of
3032     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3033     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3034     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3035     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3036     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
3037   }
3038   case CodeModel::Medium: {
3039     // Generate a sequence for accessing addresses within any 2GiB range within
3040     // the address space. This generates the pattern (PseudoLLA sym), which
3041     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3042     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3043     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3044   }
3045   }
3046 }
3047 
3048 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3049                                                 SelectionDAG &DAG) const {
3050   SDLoc DL(Op);
3051   EVT Ty = Op.getValueType();
3052   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3053   int64_t Offset = N->getOffset();
3054   MVT XLenVT = Subtarget.getXLenVT();
3055 
3056   const GlobalValue *GV = N->getGlobal();
3057   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3058   SDValue Addr = getAddr(N, DAG, IsLocal);
3059 
3060   // In order to maximise the opportunity for common subexpression elimination,
3061   // emit a separate ADD node for the global address offset instead of folding
3062   // it in the global address node. Later peephole optimisations may choose to
3063   // fold it back in when profitable.
3064   if (Offset != 0)
3065     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3066                        DAG.getConstant(Offset, DL, XLenVT));
3067   return Addr;
3068 }
3069 
3070 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3071                                                SelectionDAG &DAG) const {
3072   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3073 
3074   return getAddr(N, DAG);
3075 }
3076 
3077 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3078                                                SelectionDAG &DAG) const {
3079   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3080 
3081   return getAddr(N, DAG);
3082 }
3083 
3084 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3085                                             SelectionDAG &DAG) const {
3086   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3087 
3088   return getAddr(N, DAG);
3089 }
3090 
3091 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3092                                               SelectionDAG &DAG,
3093                                               bool UseGOT) const {
3094   SDLoc DL(N);
3095   EVT Ty = getPointerTy(DAG.getDataLayout());
3096   const GlobalValue *GV = N->getGlobal();
3097   MVT XLenVT = Subtarget.getXLenVT();
3098 
3099   if (UseGOT) {
3100     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3101     // load the address from the GOT and add the thread pointer. This generates
3102     // the pattern (PseudoLA_TLS_IE sym), which expands to
3103     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3104     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3105     SDValue Load =
3106         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
3107 
3108     // Add the thread pointer.
3109     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3110     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3111   }
3112 
3113   // Generate a sequence for accessing the address relative to the thread
3114   // pointer, with the appropriate adjustment for the thread pointer offset.
3115   // This generates the pattern
3116   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3117   SDValue AddrHi =
3118       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3119   SDValue AddrAdd =
3120       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3121   SDValue AddrLo =
3122       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3123 
3124   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3125   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3126   SDValue MNAdd = SDValue(
3127       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
3128       0);
3129   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
3130 }
3131 
3132 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3133                                                SelectionDAG &DAG) const {
3134   SDLoc DL(N);
3135   EVT Ty = getPointerTy(DAG.getDataLayout());
3136   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3137   const GlobalValue *GV = N->getGlobal();
3138 
3139   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3140   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3141   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3142   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3143   SDValue Load =
3144       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
3145 
3146   // Prepare argument list to generate call.
3147   ArgListTy Args;
3148   ArgListEntry Entry;
3149   Entry.Node = Load;
3150   Entry.Ty = CallTy;
3151   Args.push_back(Entry);
3152 
3153   // Setup call to __tls_get_addr.
3154   TargetLowering::CallLoweringInfo CLI(DAG);
3155   CLI.setDebugLoc(DL)
3156       .setChain(DAG.getEntryNode())
3157       .setLibCallee(CallingConv::C, CallTy,
3158                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3159                     std::move(Args));
3160 
3161   return LowerCallTo(CLI).first;
3162 }
3163 
3164 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3165                                                    SelectionDAG &DAG) const {
3166   SDLoc DL(Op);
3167   EVT Ty = Op.getValueType();
3168   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3169   int64_t Offset = N->getOffset();
3170   MVT XLenVT = Subtarget.getXLenVT();
3171 
3172   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3173 
3174   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3175       CallingConv::GHC)
3176     report_fatal_error("In GHC calling convention TLS is not supported");
3177 
3178   SDValue Addr;
3179   switch (Model) {
3180   case TLSModel::LocalExec:
3181     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3182     break;
3183   case TLSModel::InitialExec:
3184     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3185     break;
3186   case TLSModel::LocalDynamic:
3187   case TLSModel::GeneralDynamic:
3188     Addr = getDynamicTLSAddr(N, DAG);
3189     break;
3190   }
3191 
3192   // In order to maximise the opportunity for common subexpression elimination,
3193   // emit a separate ADD node for the global address offset instead of folding
3194   // it in the global address node. Later peephole optimisations may choose to
3195   // fold it back in when profitable.
3196   if (Offset != 0)
3197     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3198                        DAG.getConstant(Offset, DL, XLenVT));
3199   return Addr;
3200 }
3201 
3202 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3203   SDValue CondV = Op.getOperand(0);
3204   SDValue TrueV = Op.getOperand(1);
3205   SDValue FalseV = Op.getOperand(2);
3206   SDLoc DL(Op);
3207   MVT VT = Op.getSimpleValueType();
3208   MVT XLenVT = Subtarget.getXLenVT();
3209 
3210   // Lower vector SELECTs to VSELECTs by splatting the condition.
3211   if (VT.isVector()) {
3212     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3213     SDValue CondSplat = VT.isScalableVector()
3214                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3215                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3216     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3217   }
3218 
3219   // If the result type is XLenVT and CondV is the output of a SETCC node
3220   // which also operated on XLenVT inputs, then merge the SETCC node into the
3221   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3222   // compare+branch instructions. i.e.:
3223   // (select (setcc lhs, rhs, cc), truev, falsev)
3224   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3225   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3226       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3227     SDValue LHS = CondV.getOperand(0);
3228     SDValue RHS = CondV.getOperand(1);
3229     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3230     ISD::CondCode CCVal = CC->get();
3231 
3232     // Special case for a select of 2 constants that have a diffence of 1.
3233     // Normally this is done by DAGCombine, but if the select is introduced by
3234     // type legalization or op legalization, we miss it. Restricting to SETLT
3235     // case for now because that is what signed saturating add/sub need.
3236     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3237     // but we would probably want to swap the true/false values if the condition
3238     // is SETGE/SETLE to avoid an XORI.
3239     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3240         CCVal == ISD::SETLT) {
3241       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3242       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3243       if (TrueVal - 1 == FalseVal)
3244         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3245       if (TrueVal + 1 == FalseVal)
3246         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3247     }
3248 
3249     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3250 
3251     SDValue TargetCC = DAG.getCondCode(CCVal);
3252     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3253     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3254   }
3255 
3256   // Otherwise:
3257   // (select condv, truev, falsev)
3258   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3259   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3260   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3261 
3262   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3263 
3264   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3265 }
3266 
3267 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3268   SDValue CondV = Op.getOperand(1);
3269   SDLoc DL(Op);
3270   MVT XLenVT = Subtarget.getXLenVT();
3271 
3272   if (CondV.getOpcode() == ISD::SETCC &&
3273       CondV.getOperand(0).getValueType() == XLenVT) {
3274     SDValue LHS = CondV.getOperand(0);
3275     SDValue RHS = CondV.getOperand(1);
3276     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3277 
3278     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3279 
3280     SDValue TargetCC = DAG.getCondCode(CCVal);
3281     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3282                        LHS, RHS, TargetCC, Op.getOperand(2));
3283   }
3284 
3285   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3286                      CondV, DAG.getConstant(0, DL, XLenVT),
3287                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
3288 }
3289 
3290 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3291   MachineFunction &MF = DAG.getMachineFunction();
3292   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
3293 
3294   SDLoc DL(Op);
3295   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3296                                  getPointerTy(MF.getDataLayout()));
3297 
3298   // vastart just stores the address of the VarArgsFrameIndex slot into the
3299   // memory location argument.
3300   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3301   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
3302                       MachinePointerInfo(SV));
3303 }
3304 
3305 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
3306                                             SelectionDAG &DAG) const {
3307   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3308   MachineFunction &MF = DAG.getMachineFunction();
3309   MachineFrameInfo &MFI = MF.getFrameInfo();
3310   MFI.setFrameAddressIsTaken(true);
3311   Register FrameReg = RI.getFrameRegister(MF);
3312   int XLenInBytes = Subtarget.getXLen() / 8;
3313 
3314   EVT VT = Op.getValueType();
3315   SDLoc DL(Op);
3316   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
3317   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3318   while (Depth--) {
3319     int Offset = -(XLenInBytes * 2);
3320     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
3321                               DAG.getIntPtrConstant(Offset, DL));
3322     FrameAddr =
3323         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
3324   }
3325   return FrameAddr;
3326 }
3327 
3328 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
3329                                              SelectionDAG &DAG) const {
3330   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3331   MachineFunction &MF = DAG.getMachineFunction();
3332   MachineFrameInfo &MFI = MF.getFrameInfo();
3333   MFI.setReturnAddressIsTaken(true);
3334   MVT XLenVT = Subtarget.getXLenVT();
3335   int XLenInBytes = Subtarget.getXLen() / 8;
3336 
3337   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3338     return SDValue();
3339 
3340   EVT VT = Op.getValueType();
3341   SDLoc DL(Op);
3342   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3343   if (Depth) {
3344     int Off = -XLenInBytes;
3345     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3346     SDValue Offset = DAG.getConstant(Off, DL, VT);
3347     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
3348                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
3349                        MachinePointerInfo());
3350   }
3351 
3352   // Return the value of the return address register, marking it an implicit
3353   // live-in.
3354   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
3355   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
3356 }
3357 
3358 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
3359                                                  SelectionDAG &DAG) const {
3360   SDLoc DL(Op);
3361   SDValue Lo = Op.getOperand(0);
3362   SDValue Hi = Op.getOperand(1);
3363   SDValue Shamt = Op.getOperand(2);
3364   EVT VT = Lo.getValueType();
3365 
3366   // if Shamt-XLEN < 0: // Shamt < XLEN
3367   //   Lo = Lo << Shamt
3368   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
3369   // else:
3370   //   Lo = 0
3371   //   Hi = Lo << (Shamt-XLEN)
3372 
3373   SDValue Zero = DAG.getConstant(0, DL, VT);
3374   SDValue One = DAG.getConstant(1, DL, VT);
3375   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3376   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3377   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3378   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3379 
3380   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
3381   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
3382   SDValue ShiftRightLo =
3383       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
3384   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
3385   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
3386   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
3387 
3388   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3389 
3390   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
3391   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3392 
3393   SDValue Parts[2] = {Lo, Hi};
3394   return DAG.getMergeValues(Parts, DL);
3395 }
3396 
3397 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
3398                                                   bool IsSRA) const {
3399   SDLoc DL(Op);
3400   SDValue Lo = Op.getOperand(0);
3401   SDValue Hi = Op.getOperand(1);
3402   SDValue Shamt = Op.getOperand(2);
3403   EVT VT = Lo.getValueType();
3404 
3405   // SRA expansion:
3406   //   if Shamt-XLEN < 0: // Shamt < XLEN
3407   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3408   //     Hi = Hi >>s Shamt
3409   //   else:
3410   //     Lo = Hi >>s (Shamt-XLEN);
3411   //     Hi = Hi >>s (XLEN-1)
3412   //
3413   // SRL expansion:
3414   //   if Shamt-XLEN < 0: // Shamt < XLEN
3415   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3416   //     Hi = Hi >>u Shamt
3417   //   else:
3418   //     Lo = Hi >>u (Shamt-XLEN);
3419   //     Hi = 0;
3420 
3421   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
3422 
3423   SDValue Zero = DAG.getConstant(0, DL, VT);
3424   SDValue One = DAG.getConstant(1, DL, VT);
3425   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3426   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3427   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3428   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3429 
3430   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
3431   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
3432   SDValue ShiftLeftHi =
3433       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
3434   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
3435   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
3436   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
3437   SDValue HiFalse =
3438       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
3439 
3440   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3441 
3442   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
3443   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3444 
3445   SDValue Parts[2] = {Lo, Hi};
3446   return DAG.getMergeValues(Parts, DL);
3447 }
3448 
3449 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
3450 // legal equivalently-sized i8 type, so we can use that as a go-between.
3451 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
3452                                                   SelectionDAG &DAG) const {
3453   SDLoc DL(Op);
3454   MVT VT = Op.getSimpleValueType();
3455   SDValue SplatVal = Op.getOperand(0);
3456   // All-zeros or all-ones splats are handled specially.
3457   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
3458     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
3459     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
3460   }
3461   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
3462     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
3463     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
3464   }
3465   MVT XLenVT = Subtarget.getXLenVT();
3466   assert(SplatVal.getValueType() == XLenVT &&
3467          "Unexpected type for i1 splat value");
3468   MVT InterVT = VT.changeVectorElementType(MVT::i8);
3469   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
3470                          DAG.getConstant(1, DL, XLenVT));
3471   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
3472   SDValue Zero = DAG.getConstant(0, DL, InterVT);
3473   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
3474 }
3475 
3476 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
3477 // illegal (currently only vXi64 RV32).
3478 // FIXME: We could also catch non-constant sign-extended i32 values and lower
3479 // them to SPLAT_VECTOR_I64
3480 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
3481                                                      SelectionDAG &DAG) const {
3482   SDLoc DL(Op);
3483   MVT VecVT = Op.getSimpleValueType();
3484   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
3485          "Unexpected SPLAT_VECTOR_PARTS lowering");
3486 
3487   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
3488   SDValue Lo = Op.getOperand(0);
3489   SDValue Hi = Op.getOperand(1);
3490 
3491   if (VecVT.isFixedLengthVector()) {
3492     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
3493     SDLoc DL(Op);
3494     SDValue Mask, VL;
3495     std::tie(Mask, VL) =
3496         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3497 
3498     SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG);
3499     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
3500   }
3501 
3502   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
3503     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
3504     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
3505     // If Hi constant is all the same sign bit as Lo, lower this as a custom
3506     // node in order to try and match RVV vector/scalar instructions.
3507     if ((LoC >> 31) == HiC)
3508       return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
3509   }
3510 
3511   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
3512   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
3513       isa<ConstantSDNode>(Hi.getOperand(1)) &&
3514       Hi.getConstantOperandVal(1) == 31)
3515     return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
3516 
3517   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
3518   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi,
3519                      DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64));
3520 }
3521 
3522 // Custom-lower extensions from mask vectors by using a vselect either with 1
3523 // for zero/any-extension or -1 for sign-extension:
3524 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
3525 // Note that any-extension is lowered identically to zero-extension.
3526 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
3527                                                 int64_t ExtTrueVal) const {
3528   SDLoc DL(Op);
3529   MVT VecVT = Op.getSimpleValueType();
3530   SDValue Src = Op.getOperand(0);
3531   // Only custom-lower extensions from mask types
3532   assert(Src.getValueType().isVector() &&
3533          Src.getValueType().getVectorElementType() == MVT::i1);
3534 
3535   MVT XLenVT = Subtarget.getXLenVT();
3536   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
3537   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
3538 
3539   if (VecVT.isScalableVector()) {
3540     // Be careful not to introduce illegal scalar types at this stage, and be
3541     // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
3542     // illegal and must be expanded. Since we know that the constants are
3543     // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly.
3544     bool IsRV32E64 =
3545         !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
3546 
3547     if (!IsRV32E64) {
3548       SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
3549       SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
3550     } else {
3551       SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero);
3552       SplatTrueVal =
3553           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal);
3554     }
3555 
3556     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
3557   }
3558 
3559   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
3560   MVT I1ContainerVT =
3561       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3562 
3563   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
3564 
3565   SDValue Mask, VL;
3566   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3567 
3568   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL);
3569   SplatTrueVal =
3570       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL);
3571   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
3572                                SplatTrueVal, SplatZero, VL);
3573 
3574   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
3575 }
3576 
3577 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
3578     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
3579   MVT ExtVT = Op.getSimpleValueType();
3580   // Only custom-lower extensions from fixed-length vector types.
3581   if (!ExtVT.isFixedLengthVector())
3582     return Op;
3583   MVT VT = Op.getOperand(0).getSimpleValueType();
3584   // Grab the canonical container type for the extended type. Infer the smaller
3585   // type from that to ensure the same number of vector elements, as we know
3586   // the LMUL will be sufficient to hold the smaller type.
3587   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
3588   // Get the extended container type manually to ensure the same number of
3589   // vector elements between source and dest.
3590   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
3591                                      ContainerExtVT.getVectorElementCount());
3592 
3593   SDValue Op1 =
3594       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
3595 
3596   SDLoc DL(Op);
3597   SDValue Mask, VL;
3598   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3599 
3600   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
3601 
3602   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
3603 }
3604 
3605 // Custom-lower truncations from vectors to mask vectors by using a mask and a
3606 // setcc operation:
3607 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
3608 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
3609                                                   SelectionDAG &DAG) const {
3610   SDLoc DL(Op);
3611   EVT MaskVT = Op.getValueType();
3612   // Only expect to custom-lower truncations to mask types
3613   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
3614          "Unexpected type for vector mask lowering");
3615   SDValue Src = Op.getOperand(0);
3616   MVT VecVT = Src.getSimpleValueType();
3617 
3618   // If this is a fixed vector, we need to convert it to a scalable vector.
3619   MVT ContainerVT = VecVT;
3620   if (VecVT.isFixedLengthVector()) {
3621     ContainerVT = getContainerForFixedLengthVector(VecVT);
3622     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3623   }
3624 
3625   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
3626   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
3627 
3628   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne);
3629   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero);
3630 
3631   if (VecVT.isScalableVector()) {
3632     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
3633     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
3634   }
3635 
3636   SDValue Mask, VL;
3637   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3638 
3639   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
3640   SDValue Trunc =
3641       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
3642   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
3643                       DAG.getCondCode(ISD::SETNE), Mask, VL);
3644   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
3645 }
3646 
3647 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
3648 // first position of a vector, and that vector is slid up to the insert index.
3649 // By limiting the active vector length to index+1 and merging with the
3650 // original vector (with an undisturbed tail policy for elements >= VL), we
3651 // achieve the desired result of leaving all elements untouched except the one
3652 // at VL-1, which is replaced with the desired value.
3653 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
3654                                                     SelectionDAG &DAG) const {
3655   SDLoc DL(Op);
3656   MVT VecVT = Op.getSimpleValueType();
3657   SDValue Vec = Op.getOperand(0);
3658   SDValue Val = Op.getOperand(1);
3659   SDValue Idx = Op.getOperand(2);
3660 
3661   if (VecVT.getVectorElementType() == MVT::i1) {
3662     // FIXME: For now we just promote to an i8 vector and insert into that,
3663     // but this is probably not optimal.
3664     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
3665     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
3666     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
3667     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
3668   }
3669 
3670   MVT ContainerVT = VecVT;
3671   // If the operand is a fixed-length vector, convert to a scalable one.
3672   if (VecVT.isFixedLengthVector()) {
3673     ContainerVT = getContainerForFixedLengthVector(VecVT);
3674     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3675   }
3676 
3677   MVT XLenVT = Subtarget.getXLenVT();
3678 
3679   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3680   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
3681   // Even i64-element vectors on RV32 can be lowered without scalar
3682   // legalization if the most-significant 32 bits of the value are not affected
3683   // by the sign-extension of the lower 32 bits.
3684   // TODO: We could also catch sign extensions of a 32-bit value.
3685   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
3686     const auto *CVal = cast<ConstantSDNode>(Val);
3687     if (isInt<32>(CVal->getSExtValue())) {
3688       IsLegalInsert = true;
3689       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
3690     }
3691   }
3692 
3693   SDValue Mask, VL;
3694   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3695 
3696   SDValue ValInVec;
3697 
3698   if (IsLegalInsert) {
3699     unsigned Opc =
3700         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
3701     if (isNullConstant(Idx)) {
3702       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
3703       if (!VecVT.isFixedLengthVector())
3704         return Vec;
3705       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
3706     }
3707     ValInVec =
3708         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
3709   } else {
3710     // On RV32, i64-element vectors must be specially handled to place the
3711     // value at element 0, by using two vslide1up instructions in sequence on
3712     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
3713     // this.
3714     SDValue One = DAG.getConstant(1, DL, XLenVT);
3715     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
3716     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
3717     MVT I32ContainerVT =
3718         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
3719     SDValue I32Mask =
3720         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
3721     // Limit the active VL to two.
3722     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
3723     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
3724     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
3725     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero,
3726                            InsertI64VL);
3727     // First slide in the hi value, then the lo in underneath it.
3728     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3729                            ValHi, I32Mask, InsertI64VL);
3730     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3731                            ValLo, I32Mask, InsertI64VL);
3732     // Bitcast back to the right container type.
3733     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
3734   }
3735 
3736   // Now that the value is in a vector, slide it into position.
3737   SDValue InsertVL =
3738       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
3739   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
3740                                 ValInVec, Idx, Mask, InsertVL);
3741   if (!VecVT.isFixedLengthVector())
3742     return Slideup;
3743   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
3744 }
3745 
3746 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
3747 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
3748 // types this is done using VMV_X_S to allow us to glean information about the
3749 // sign bits of the result.
3750 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
3751                                                      SelectionDAG &DAG) const {
3752   SDLoc DL(Op);
3753   SDValue Idx = Op.getOperand(1);
3754   SDValue Vec = Op.getOperand(0);
3755   EVT EltVT = Op.getValueType();
3756   MVT VecVT = Vec.getSimpleValueType();
3757   MVT XLenVT = Subtarget.getXLenVT();
3758 
3759   if (VecVT.getVectorElementType() == MVT::i1) {
3760     // FIXME: For now we just promote to an i8 vector and extract from that,
3761     // but this is probably not optimal.
3762     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
3763     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
3764     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
3765   }
3766 
3767   // If this is a fixed vector, we need to convert it to a scalable vector.
3768   MVT ContainerVT = VecVT;
3769   if (VecVT.isFixedLengthVector()) {
3770     ContainerVT = getContainerForFixedLengthVector(VecVT);
3771     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3772   }
3773 
3774   // If the index is 0, the vector is already in the right position.
3775   if (!isNullConstant(Idx)) {
3776     // Use a VL of 1 to avoid processing more elements than we need.
3777     SDValue VL = DAG.getConstant(1, DL, XLenVT);
3778     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3779     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3780     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
3781                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
3782   }
3783 
3784   if (!EltVT.isInteger()) {
3785     // Floating-point extracts are handled in TableGen.
3786     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
3787                        DAG.getConstant(0, DL, XLenVT));
3788   }
3789 
3790   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
3791   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
3792 }
3793 
3794 // Some RVV intrinsics may claim that they want an integer operand to be
3795 // promoted or expanded.
3796 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG,
3797                                           const RISCVSubtarget &Subtarget) {
3798   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3799           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
3800          "Unexpected opcode");
3801 
3802   if (!Subtarget.hasVInstructions())
3803     return SDValue();
3804 
3805   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
3806   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
3807   SDLoc DL(Op);
3808 
3809   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
3810       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
3811   if (!II || !II->SplatOperand)
3812     return SDValue();
3813 
3814   unsigned SplatOp = II->SplatOperand + HasChain;
3815   assert(SplatOp < Op.getNumOperands());
3816 
3817   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
3818   SDValue &ScalarOp = Operands[SplatOp];
3819   MVT OpVT = ScalarOp.getSimpleValueType();
3820   MVT XLenVT = Subtarget.getXLenVT();
3821 
3822   // If this isn't a scalar, or its type is XLenVT we're done.
3823   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
3824     return SDValue();
3825 
3826   // Simplest case is that the operand needs to be promoted to XLenVT.
3827   if (OpVT.bitsLT(XLenVT)) {
3828     // If the operand is a constant, sign extend to increase our chances
3829     // of being able to use a .vi instruction. ANY_EXTEND would become a
3830     // a zero extend and the simm5 check in isel would fail.
3831     // FIXME: Should we ignore the upper bits in isel instead?
3832     unsigned ExtOpc =
3833         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
3834     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
3835     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3836   }
3837 
3838   // Use the previous operand to get the vXi64 VT. The result might be a mask
3839   // VT for compares. Using the previous operand assumes that the previous
3840   // operand will never have a smaller element size than a scalar operand and
3841   // that a widening operation never uses SEW=64.
3842   // NOTE: If this fails the below assert, we can probably just find the
3843   // element count from any operand or result and use it to construct the VT.
3844   assert(II->SplatOperand > 1 && "Unexpected splat operand!");
3845   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
3846 
3847   // The more complex case is when the scalar is larger than XLenVT.
3848   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
3849          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
3850 
3851   // If this is a sign-extended 32-bit constant, we can truncate it and rely
3852   // on the instruction to sign-extend since SEW>XLEN.
3853   if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
3854     if (isInt<32>(CVal->getSExtValue())) {
3855       ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
3856       return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3857     }
3858   }
3859 
3860   // We need to convert the scalar to a splat vector.
3861   // FIXME: Can we implicitly truncate the scalar if it is known to
3862   // be sign extended?
3863   // VL should be the last operand.
3864   SDValue VL = Op.getOperand(Op.getNumOperands() - 1);
3865   assert(VL.getValueType() == XLenVT);
3866   ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG);
3867   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3868 }
3869 
3870 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3871                                                      SelectionDAG &DAG) const {
3872   unsigned IntNo = Op.getConstantOperandVal(0);
3873   SDLoc DL(Op);
3874   MVT XLenVT = Subtarget.getXLenVT();
3875 
3876   switch (IntNo) {
3877   default:
3878     break; // Don't custom lower most intrinsics.
3879   case Intrinsic::thread_pointer: {
3880     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3881     return DAG.getRegister(RISCV::X4, PtrVT);
3882   }
3883   case Intrinsic::riscv_orc_b:
3884     // Lower to the GORCI encoding for orc.b.
3885     return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1),
3886                        DAG.getConstant(7, DL, XLenVT));
3887   case Intrinsic::riscv_grev:
3888   case Intrinsic::riscv_gorc: {
3889     unsigned Opc =
3890         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
3891     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3892   }
3893   case Intrinsic::riscv_shfl:
3894   case Intrinsic::riscv_unshfl: {
3895     unsigned Opc =
3896         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
3897     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3898   }
3899   case Intrinsic::riscv_bcompress:
3900   case Intrinsic::riscv_bdecompress: {
3901     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
3902                                                        : RISCVISD::BDECOMPRESS;
3903     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3904   }
3905   case Intrinsic::riscv_vmv_x_s:
3906     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
3907     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
3908                        Op.getOperand(1));
3909   case Intrinsic::riscv_vmv_v_x:
3910     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
3911                             Op.getSimpleValueType(), DL, DAG, Subtarget);
3912   case Intrinsic::riscv_vfmv_v_f:
3913     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
3914                        Op.getOperand(1), Op.getOperand(2));
3915   case Intrinsic::riscv_vmv_s_x: {
3916     SDValue Scalar = Op.getOperand(2);
3917 
3918     if (Scalar.getValueType().bitsLE(XLenVT)) {
3919       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
3920       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
3921                          Op.getOperand(1), Scalar, Op.getOperand(3));
3922     }
3923 
3924     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
3925 
3926     // This is an i64 value that lives in two scalar registers. We have to
3927     // insert this in a convoluted way. First we build vXi64 splat containing
3928     // the/ two values that we assemble using some bit math. Next we'll use
3929     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
3930     // to merge element 0 from our splat into the source vector.
3931     // FIXME: This is probably not the best way to do this, but it is
3932     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
3933     // point.
3934     //   sw lo, (a0)
3935     //   sw hi, 4(a0)
3936     //   vlse vX, (a0)
3937     //
3938     //   vid.v      vVid
3939     //   vmseq.vx   mMask, vVid, 0
3940     //   vmerge.vvm vDest, vSrc, vVal, mMask
3941     MVT VT = Op.getSimpleValueType();
3942     SDValue Vec = Op.getOperand(1);
3943     SDValue VL = Op.getOperand(3);
3944 
3945     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
3946     SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
3947                                       DAG.getConstant(0, DL, MVT::i32), VL);
3948 
3949     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
3950     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3951     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
3952     SDValue SelectCond =
3953         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
3954                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
3955     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
3956                        Vec, VL);
3957   }
3958   case Intrinsic::riscv_vslide1up:
3959   case Intrinsic::riscv_vslide1down:
3960   case Intrinsic::riscv_vslide1up_mask:
3961   case Intrinsic::riscv_vslide1down_mask: {
3962     // We need to special case these when the scalar is larger than XLen.
3963     unsigned NumOps = Op.getNumOperands();
3964     bool IsMasked = NumOps == 7;
3965     unsigned OpOffset = IsMasked ? 1 : 0;
3966     SDValue Scalar = Op.getOperand(2 + OpOffset);
3967     if (Scalar.getValueType().bitsLE(XLenVT))
3968       break;
3969 
3970     // Splatting a sign extended constant is fine.
3971     if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar))
3972       if (isInt<32>(CVal->getSExtValue()))
3973         break;
3974 
3975     MVT VT = Op.getSimpleValueType();
3976     assert(VT.getVectorElementType() == MVT::i64 &&
3977            Scalar.getValueType() == MVT::i64 && "Unexpected VTs");
3978 
3979     // Convert the vector source to the equivalent nxvXi32 vector.
3980     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
3981     SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset));
3982 
3983     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
3984                                    DAG.getConstant(0, DL, XLenVT));
3985     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
3986                                    DAG.getConstant(1, DL, XLenVT));
3987 
3988     // Double the VL since we halved SEW.
3989     SDValue VL = Op.getOperand(NumOps - (1 + OpOffset));
3990     SDValue I32VL =
3991         DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
3992 
3993     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
3994     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL);
3995 
3996     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
3997     // instructions.
3998     if (IntNo == Intrinsic::riscv_vslide1up ||
3999         IntNo == Intrinsic::riscv_vslide1up_mask) {
4000       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi,
4001                         I32Mask, I32VL);
4002       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo,
4003                         I32Mask, I32VL);
4004     } else {
4005       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo,
4006                         I32Mask, I32VL);
4007       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi,
4008                         I32Mask, I32VL);
4009     }
4010 
4011     // Convert back to nxvXi64.
4012     Vec = DAG.getBitcast(VT, Vec);
4013 
4014     if (!IsMasked)
4015       return Vec;
4016 
4017     // Apply mask after the operation.
4018     SDValue Mask = Op.getOperand(NumOps - 3);
4019     SDValue MaskedOff = Op.getOperand(1);
4020     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL);
4021   }
4022   }
4023 
4024   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
4025 }
4026 
4027 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4028                                                     SelectionDAG &DAG) const {
4029   unsigned IntNo = Op.getConstantOperandVal(1);
4030   switch (IntNo) {
4031   default:
4032     break;
4033   case Intrinsic::riscv_masked_strided_load: {
4034     SDLoc DL(Op);
4035     MVT XLenVT = Subtarget.getXLenVT();
4036 
4037     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4038     // the selection of the masked intrinsics doesn't do this for us.
4039     SDValue Mask = Op.getOperand(5);
4040     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4041 
4042     MVT VT = Op->getSimpleValueType(0);
4043     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4044 
4045     SDValue PassThru = Op.getOperand(2);
4046     if (!IsUnmasked) {
4047       MVT MaskVT =
4048           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4049       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4050       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4051     }
4052 
4053     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4054 
4055     SDValue IntID = DAG.getTargetConstant(
4056         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4057         XLenVT);
4058 
4059     auto *Load = cast<MemIntrinsicSDNode>(Op);
4060     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4061     if (!IsUnmasked)
4062       Ops.push_back(PassThru);
4063     Ops.push_back(Op.getOperand(3)); // Ptr
4064     Ops.push_back(Op.getOperand(4)); // Stride
4065     if (!IsUnmasked)
4066       Ops.push_back(Mask);
4067     Ops.push_back(VL);
4068     if (!IsUnmasked) {
4069       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4070       Ops.push_back(Policy);
4071     }
4072 
4073     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4074     SDValue Result =
4075         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4076                                 Load->getMemoryVT(), Load->getMemOperand());
4077     SDValue Chain = Result.getValue(1);
4078     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4079     return DAG.getMergeValues({Result, Chain}, DL);
4080   }
4081   }
4082 
4083   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
4084 }
4085 
4086 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4087                                                  SelectionDAG &DAG) const {
4088   unsigned IntNo = Op.getConstantOperandVal(1);
4089   switch (IntNo) {
4090   default:
4091     break;
4092   case Intrinsic::riscv_masked_strided_store: {
4093     SDLoc DL(Op);
4094     MVT XLenVT = Subtarget.getXLenVT();
4095 
4096     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4097     // the selection of the masked intrinsics doesn't do this for us.
4098     SDValue Mask = Op.getOperand(5);
4099     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4100 
4101     SDValue Val = Op.getOperand(2);
4102     MVT VT = Val.getSimpleValueType();
4103     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4104 
4105     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4106     if (!IsUnmasked) {
4107       MVT MaskVT =
4108           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4109       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4110     }
4111 
4112     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4113 
4114     SDValue IntID = DAG.getTargetConstant(
4115         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
4116         XLenVT);
4117 
4118     auto *Store = cast<MemIntrinsicSDNode>(Op);
4119     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
4120     Ops.push_back(Val);
4121     Ops.push_back(Op.getOperand(3)); // Ptr
4122     Ops.push_back(Op.getOperand(4)); // Stride
4123     if (!IsUnmasked)
4124       Ops.push_back(Mask);
4125     Ops.push_back(VL);
4126 
4127     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
4128                                    Ops, Store->getMemoryVT(),
4129                                    Store->getMemOperand());
4130   }
4131   }
4132 
4133   return SDValue();
4134 }
4135 
4136 static MVT getLMUL1VT(MVT VT) {
4137   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
4138          "Unexpected vector MVT");
4139   return MVT::getScalableVectorVT(
4140       VT.getVectorElementType(),
4141       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
4142 }
4143 
4144 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
4145   switch (ISDOpcode) {
4146   default:
4147     llvm_unreachable("Unhandled reduction");
4148   case ISD::VECREDUCE_ADD:
4149     return RISCVISD::VECREDUCE_ADD_VL;
4150   case ISD::VECREDUCE_UMAX:
4151     return RISCVISD::VECREDUCE_UMAX_VL;
4152   case ISD::VECREDUCE_SMAX:
4153     return RISCVISD::VECREDUCE_SMAX_VL;
4154   case ISD::VECREDUCE_UMIN:
4155     return RISCVISD::VECREDUCE_UMIN_VL;
4156   case ISD::VECREDUCE_SMIN:
4157     return RISCVISD::VECREDUCE_SMIN_VL;
4158   case ISD::VECREDUCE_AND:
4159     return RISCVISD::VECREDUCE_AND_VL;
4160   case ISD::VECREDUCE_OR:
4161     return RISCVISD::VECREDUCE_OR_VL;
4162   case ISD::VECREDUCE_XOR:
4163     return RISCVISD::VECREDUCE_XOR_VL;
4164   }
4165 }
4166 
4167 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
4168                                                          SelectionDAG &DAG,
4169                                                          bool IsVP) const {
4170   SDLoc DL(Op);
4171   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
4172   MVT VecVT = Vec.getSimpleValueType();
4173   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
4174           Op.getOpcode() == ISD::VECREDUCE_OR ||
4175           Op.getOpcode() == ISD::VECREDUCE_XOR ||
4176           Op.getOpcode() == ISD::VP_REDUCE_AND ||
4177           Op.getOpcode() == ISD::VP_REDUCE_OR ||
4178           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
4179          "Unexpected reduction lowering");
4180 
4181   MVT XLenVT = Subtarget.getXLenVT();
4182   assert(Op.getValueType() == XLenVT &&
4183          "Expected reduction output to be legalized to XLenVT");
4184 
4185   MVT ContainerVT = VecVT;
4186   if (VecVT.isFixedLengthVector()) {
4187     ContainerVT = getContainerForFixedLengthVector(VecVT);
4188     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4189   }
4190 
4191   SDValue Mask, VL;
4192   if (IsVP) {
4193     Mask = Op.getOperand(2);
4194     VL = Op.getOperand(3);
4195   } else {
4196     std::tie(Mask, VL) =
4197         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4198   }
4199 
4200   unsigned BaseOpc;
4201   ISD::CondCode CC;
4202   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4203 
4204   switch (Op.getOpcode()) {
4205   default:
4206     llvm_unreachable("Unhandled reduction");
4207   case ISD::VECREDUCE_AND:
4208   case ISD::VP_REDUCE_AND: {
4209     // vcpop ~x == 0
4210     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
4211     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
4212     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
4213     CC = ISD::SETEQ;
4214     BaseOpc = ISD::AND;
4215     break;
4216   }
4217   case ISD::VECREDUCE_OR:
4218   case ISD::VP_REDUCE_OR:
4219     // vcpop x != 0
4220     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
4221     CC = ISD::SETNE;
4222     BaseOpc = ISD::OR;
4223     break;
4224   case ISD::VECREDUCE_XOR:
4225   case ISD::VP_REDUCE_XOR: {
4226     // ((vcpop x) & 1) != 0
4227     SDValue One = DAG.getConstant(1, DL, XLenVT);
4228     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
4229     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
4230     CC = ISD::SETNE;
4231     BaseOpc = ISD::XOR;
4232     break;
4233   }
4234   }
4235 
4236   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
4237 
4238   if (!IsVP)
4239     return SetCC;
4240 
4241   // Now include the start value in the operation.
4242   // Note that we must return the start value when no elements are operated
4243   // upon. The vcpop instructions we've emitted in each case above will return
4244   // 0 for an inactive vector, and so we've already received the neutral value:
4245   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
4246   // can simply include the start value.
4247   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
4248 }
4249 
4250 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
4251                                             SelectionDAG &DAG) const {
4252   SDLoc DL(Op);
4253   SDValue Vec = Op.getOperand(0);
4254   EVT VecEVT = Vec.getValueType();
4255 
4256   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
4257 
4258   // Due to ordering in legalize types we may have a vector type that needs to
4259   // be split. Do that manually so we can get down to a legal type.
4260   while (getTypeAction(*DAG.getContext(), VecEVT) ==
4261          TargetLowering::TypeSplitVector) {
4262     SDValue Lo, Hi;
4263     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
4264     VecEVT = Lo.getValueType();
4265     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
4266   }
4267 
4268   // TODO: The type may need to be widened rather than split. Or widened before
4269   // it can be split.
4270   if (!isTypeLegal(VecEVT))
4271     return SDValue();
4272 
4273   MVT VecVT = VecEVT.getSimpleVT();
4274   MVT VecEltVT = VecVT.getVectorElementType();
4275   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
4276 
4277   MVT ContainerVT = VecVT;
4278   if (VecVT.isFixedLengthVector()) {
4279     ContainerVT = getContainerForFixedLengthVector(VecVT);
4280     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4281   }
4282 
4283   MVT M1VT = getLMUL1VT(ContainerVT);
4284 
4285   SDValue Mask, VL;
4286   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4287 
4288   // FIXME: This is a VLMAX splat which might be too large and can prevent
4289   // vsetvli removal.
4290   SDValue NeutralElem =
4291       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
4292   SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem);
4293   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
4294                                   IdentitySplat, Mask, VL);
4295   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
4296                              DAG.getConstant(0, DL, Subtarget.getXLenVT()));
4297   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
4298 }
4299 
4300 // Given a reduction op, this function returns the matching reduction opcode,
4301 // the vector SDValue and the scalar SDValue required to lower this to a
4302 // RISCVISD node.
4303 static std::tuple<unsigned, SDValue, SDValue>
4304 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
4305   SDLoc DL(Op);
4306   auto Flags = Op->getFlags();
4307   unsigned Opcode = Op.getOpcode();
4308   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
4309   switch (Opcode) {
4310   default:
4311     llvm_unreachable("Unhandled reduction");
4312   case ISD::VECREDUCE_FADD:
4313     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0),
4314                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
4315   case ISD::VECREDUCE_SEQ_FADD:
4316     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
4317                            Op.getOperand(0));
4318   case ISD::VECREDUCE_FMIN:
4319     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
4320                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
4321   case ISD::VECREDUCE_FMAX:
4322     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
4323                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
4324   }
4325 }
4326 
4327 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
4328                                               SelectionDAG &DAG) const {
4329   SDLoc DL(Op);
4330   MVT VecEltVT = Op.getSimpleValueType();
4331 
4332   unsigned RVVOpcode;
4333   SDValue VectorVal, ScalarVal;
4334   std::tie(RVVOpcode, VectorVal, ScalarVal) =
4335       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
4336   MVT VecVT = VectorVal.getSimpleValueType();
4337 
4338   MVT ContainerVT = VecVT;
4339   if (VecVT.isFixedLengthVector()) {
4340     ContainerVT = getContainerForFixedLengthVector(VecVT);
4341     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
4342   }
4343 
4344   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
4345 
4346   SDValue Mask, VL;
4347   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4348 
4349   // FIXME: This is a VLMAX splat which might be too large and can prevent
4350   // vsetvli removal.
4351   SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal);
4352   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
4353                                   VectorVal, ScalarSplat, Mask, VL);
4354   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
4355                      DAG.getConstant(0, DL, Subtarget.getXLenVT()));
4356 }
4357 
4358 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
4359   switch (ISDOpcode) {
4360   default:
4361     llvm_unreachable("Unhandled reduction");
4362   case ISD::VP_REDUCE_ADD:
4363     return RISCVISD::VECREDUCE_ADD_VL;
4364   case ISD::VP_REDUCE_UMAX:
4365     return RISCVISD::VECREDUCE_UMAX_VL;
4366   case ISD::VP_REDUCE_SMAX:
4367     return RISCVISD::VECREDUCE_SMAX_VL;
4368   case ISD::VP_REDUCE_UMIN:
4369     return RISCVISD::VECREDUCE_UMIN_VL;
4370   case ISD::VP_REDUCE_SMIN:
4371     return RISCVISD::VECREDUCE_SMIN_VL;
4372   case ISD::VP_REDUCE_AND:
4373     return RISCVISD::VECREDUCE_AND_VL;
4374   case ISD::VP_REDUCE_OR:
4375     return RISCVISD::VECREDUCE_OR_VL;
4376   case ISD::VP_REDUCE_XOR:
4377     return RISCVISD::VECREDUCE_XOR_VL;
4378   case ISD::VP_REDUCE_FADD:
4379     return RISCVISD::VECREDUCE_FADD_VL;
4380   case ISD::VP_REDUCE_SEQ_FADD:
4381     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
4382   case ISD::VP_REDUCE_FMAX:
4383     return RISCVISD::VECREDUCE_FMAX_VL;
4384   case ISD::VP_REDUCE_FMIN:
4385     return RISCVISD::VECREDUCE_FMIN_VL;
4386   }
4387 }
4388 
4389 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
4390                                            SelectionDAG &DAG) const {
4391   SDLoc DL(Op);
4392   SDValue Vec = Op.getOperand(1);
4393   EVT VecEVT = Vec.getValueType();
4394 
4395   // TODO: The type may need to be widened rather than split. Or widened before
4396   // it can be split.
4397   if (!isTypeLegal(VecEVT))
4398     return SDValue();
4399 
4400   MVT VecVT = VecEVT.getSimpleVT();
4401   MVT VecEltVT = VecVT.getVectorElementType();
4402   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
4403 
4404   MVT ContainerVT = VecVT;
4405   if (VecVT.isFixedLengthVector()) {
4406     ContainerVT = getContainerForFixedLengthVector(VecVT);
4407     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4408   }
4409 
4410   SDValue VL = Op.getOperand(3);
4411   SDValue Mask = Op.getOperand(2);
4412 
4413   MVT M1VT = getLMUL1VT(ContainerVT);
4414   MVT XLenVT = Subtarget.getXLenVT();
4415   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
4416 
4417   // FIXME: This is a VLMAX splat which might be too large and can prevent
4418   // vsetvli removal.
4419   SDValue StartSplat = DAG.getSplatVector(M1VT, DL, Op.getOperand(0));
4420   SDValue Reduction =
4421       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
4422   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
4423                              DAG.getConstant(0, DL, Subtarget.getXLenVT()));
4424   if (!VecVT.isInteger())
4425     return Elt0;
4426   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
4427 }
4428 
4429 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
4430                                                    SelectionDAG &DAG) const {
4431   SDValue Vec = Op.getOperand(0);
4432   SDValue SubVec = Op.getOperand(1);
4433   MVT VecVT = Vec.getSimpleValueType();
4434   MVT SubVecVT = SubVec.getSimpleValueType();
4435 
4436   SDLoc DL(Op);
4437   MVT XLenVT = Subtarget.getXLenVT();
4438   unsigned OrigIdx = Op.getConstantOperandVal(2);
4439   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
4440 
4441   // We don't have the ability to slide mask vectors up indexed by their i1
4442   // elements; the smallest we can do is i8. Often we are able to bitcast to
4443   // equivalent i8 vectors. Note that when inserting a fixed-length vector
4444   // into a scalable one, we might not necessarily have enough scalable
4445   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
4446   if (SubVecVT.getVectorElementType() == MVT::i1 &&
4447       (OrigIdx != 0 || !Vec.isUndef())) {
4448     if (VecVT.getVectorMinNumElements() >= 8 &&
4449         SubVecVT.getVectorMinNumElements() >= 8) {
4450       assert(OrigIdx % 8 == 0 && "Invalid index");
4451       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
4452              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
4453              "Unexpected mask vector lowering");
4454       OrigIdx /= 8;
4455       SubVecVT =
4456           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
4457                            SubVecVT.isScalableVector());
4458       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
4459                                VecVT.isScalableVector());
4460       Vec = DAG.getBitcast(VecVT, Vec);
4461       SubVec = DAG.getBitcast(SubVecVT, SubVec);
4462     } else {
4463       // We can't slide this mask vector up indexed by its i1 elements.
4464       // This poses a problem when we wish to insert a scalable vector which
4465       // can't be re-expressed as a larger type. Just choose the slow path and
4466       // extend to a larger type, then truncate back down.
4467       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
4468       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
4469       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
4470       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
4471       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
4472                         Op.getOperand(2));
4473       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
4474       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
4475     }
4476   }
4477 
4478   // If the subvector vector is a fixed-length type, we cannot use subregister
4479   // manipulation to simplify the codegen; we don't know which register of a
4480   // LMUL group contains the specific subvector as we only know the minimum
4481   // register size. Therefore we must slide the vector group up the full
4482   // amount.
4483   if (SubVecVT.isFixedLengthVector()) {
4484     if (OrigIdx == 0 && Vec.isUndef())
4485       return Op;
4486     MVT ContainerVT = VecVT;
4487     if (VecVT.isFixedLengthVector()) {
4488       ContainerVT = getContainerForFixedLengthVector(VecVT);
4489       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4490     }
4491     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
4492                          DAG.getUNDEF(ContainerVT), SubVec,
4493                          DAG.getConstant(0, DL, XLenVT));
4494     SDValue Mask =
4495         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
4496     // Set the vector length to only the number of elements we care about. Note
4497     // that for slideup this includes the offset.
4498     SDValue VL =
4499         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
4500     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
4501     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4502                                   SubVec, SlideupAmt, Mask, VL);
4503     if (VecVT.isFixedLengthVector())
4504       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4505     return DAG.getBitcast(Op.getValueType(), Slideup);
4506   }
4507 
4508   unsigned SubRegIdx, RemIdx;
4509   std::tie(SubRegIdx, RemIdx) =
4510       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
4511           VecVT, SubVecVT, OrigIdx, TRI);
4512 
4513   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
4514   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
4515                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
4516                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
4517 
4518   // 1. If the Idx has been completely eliminated and this subvector's size is
4519   // a vector register or a multiple thereof, or the surrounding elements are
4520   // undef, then this is a subvector insert which naturally aligns to a vector
4521   // register. These can easily be handled using subregister manipulation.
4522   // 2. If the subvector is smaller than a vector register, then the insertion
4523   // must preserve the undisturbed elements of the register. We do this by
4524   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
4525   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
4526   // subvector within the vector register, and an INSERT_SUBVECTOR of that
4527   // LMUL=1 type back into the larger vector (resolving to another subregister
4528   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
4529   // to avoid allocating a large register group to hold our subvector.
4530   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
4531     return Op;
4532 
4533   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
4534   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
4535   // (in our case undisturbed). This means we can set up a subvector insertion
4536   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
4537   // size of the subvector.
4538   MVT InterSubVT = VecVT;
4539   SDValue AlignedExtract = Vec;
4540   unsigned AlignedIdx = OrigIdx - RemIdx;
4541   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
4542     InterSubVT = getLMUL1VT(VecVT);
4543     // Extract a subvector equal to the nearest full vector register type. This
4544     // should resolve to a EXTRACT_SUBREG instruction.
4545     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
4546                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
4547   }
4548 
4549   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
4550   // For scalable vectors this must be further multiplied by vscale.
4551   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
4552 
4553   SDValue Mask, VL;
4554   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
4555 
4556   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
4557   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
4558   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
4559   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
4560 
4561   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
4562                        DAG.getUNDEF(InterSubVT), SubVec,
4563                        DAG.getConstant(0, DL, XLenVT));
4564 
4565   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
4566                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
4567 
4568   // If required, insert this subvector back into the correct vector register.
4569   // This should resolve to an INSERT_SUBREG instruction.
4570   if (VecVT.bitsGT(InterSubVT))
4571     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
4572                           DAG.getConstant(AlignedIdx, DL, XLenVT));
4573 
4574   // We might have bitcast from a mask type: cast back to the original type if
4575   // required.
4576   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
4577 }
4578 
4579 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
4580                                                     SelectionDAG &DAG) const {
4581   SDValue Vec = Op.getOperand(0);
4582   MVT SubVecVT = Op.getSimpleValueType();
4583   MVT VecVT = Vec.getSimpleValueType();
4584 
4585   SDLoc DL(Op);
4586   MVT XLenVT = Subtarget.getXLenVT();
4587   unsigned OrigIdx = Op.getConstantOperandVal(1);
4588   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
4589 
4590   // We don't have the ability to slide mask vectors down indexed by their i1
4591   // elements; the smallest we can do is i8. Often we are able to bitcast to
4592   // equivalent i8 vectors. Note that when extracting a fixed-length vector
4593   // from a scalable one, we might not necessarily have enough scalable
4594   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
4595   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
4596     if (VecVT.getVectorMinNumElements() >= 8 &&
4597         SubVecVT.getVectorMinNumElements() >= 8) {
4598       assert(OrigIdx % 8 == 0 && "Invalid index");
4599       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
4600              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
4601              "Unexpected mask vector lowering");
4602       OrigIdx /= 8;
4603       SubVecVT =
4604           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
4605                            SubVecVT.isScalableVector());
4606       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
4607                                VecVT.isScalableVector());
4608       Vec = DAG.getBitcast(VecVT, Vec);
4609     } else {
4610       // We can't slide this mask vector down, indexed by its i1 elements.
4611       // This poses a problem when we wish to extract a scalable vector which
4612       // can't be re-expressed as a larger type. Just choose the slow path and
4613       // extend to a larger type, then truncate back down.
4614       // TODO: We could probably improve this when extracting certain fixed
4615       // from fixed, where we can extract as i8 and shift the correct element
4616       // right to reach the desired subvector?
4617       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
4618       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
4619       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
4620       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
4621                         Op.getOperand(1));
4622       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
4623       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
4624     }
4625   }
4626 
4627   // If the subvector vector is a fixed-length type, we cannot use subregister
4628   // manipulation to simplify the codegen; we don't know which register of a
4629   // LMUL group contains the specific subvector as we only know the minimum
4630   // register size. Therefore we must slide the vector group down the full
4631   // amount.
4632   if (SubVecVT.isFixedLengthVector()) {
4633     // With an index of 0 this is a cast-like subvector, which can be performed
4634     // with subregister operations.
4635     if (OrigIdx == 0)
4636       return Op;
4637     MVT ContainerVT = VecVT;
4638     if (VecVT.isFixedLengthVector()) {
4639       ContainerVT = getContainerForFixedLengthVector(VecVT);
4640       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4641     }
4642     SDValue Mask =
4643         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
4644     // Set the vector length to only the number of elements we care about. This
4645     // avoids sliding down elements we're going to discard straight away.
4646     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
4647     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
4648     SDValue Slidedown =
4649         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4650                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
4651     // Now we can use a cast-like subvector extract to get the result.
4652     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
4653                             DAG.getConstant(0, DL, XLenVT));
4654     return DAG.getBitcast(Op.getValueType(), Slidedown);
4655   }
4656 
4657   unsigned SubRegIdx, RemIdx;
4658   std::tie(SubRegIdx, RemIdx) =
4659       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
4660           VecVT, SubVecVT, OrigIdx, TRI);
4661 
4662   // If the Idx has been completely eliminated then this is a subvector extract
4663   // which naturally aligns to a vector register. These can easily be handled
4664   // using subregister manipulation.
4665   if (RemIdx == 0)
4666     return Op;
4667 
4668   // Else we must shift our vector register directly to extract the subvector.
4669   // Do this using VSLIDEDOWN.
4670 
4671   // If the vector type is an LMUL-group type, extract a subvector equal to the
4672   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
4673   // instruction.
4674   MVT InterSubVT = VecVT;
4675   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
4676     InterSubVT = getLMUL1VT(VecVT);
4677     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
4678                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
4679   }
4680 
4681   // Slide this vector register down by the desired number of elements in order
4682   // to place the desired subvector starting at element 0.
4683   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
4684   // For scalable vectors this must be further multiplied by vscale.
4685   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
4686 
4687   SDValue Mask, VL;
4688   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
4689   SDValue Slidedown =
4690       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
4691                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
4692 
4693   // Now the vector is in the right position, extract our final subvector. This
4694   // should resolve to a COPY.
4695   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
4696                           DAG.getConstant(0, DL, XLenVT));
4697 
4698   // We might have bitcast from a mask type: cast back to the original type if
4699   // required.
4700   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
4701 }
4702 
4703 // Lower step_vector to the vid instruction. Any non-identity step value must
4704 // be accounted for my manual expansion.
4705 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
4706                                               SelectionDAG &DAG) const {
4707   SDLoc DL(Op);
4708   MVT VT = Op.getSimpleValueType();
4709   MVT XLenVT = Subtarget.getXLenVT();
4710   SDValue Mask, VL;
4711   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
4712   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4713   uint64_t StepValImm = Op.getConstantOperandVal(0);
4714   if (StepValImm != 1) {
4715     if (isPowerOf2_64(StepValImm)) {
4716       SDValue StepVal =
4717           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
4718                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
4719       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
4720     } else {
4721       SDValue StepVal = lowerScalarSplat(
4722           DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT,
4723           DL, DAG, Subtarget);
4724       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
4725     }
4726   }
4727   return StepVec;
4728 }
4729 
4730 // Implement vector_reverse using vrgather.vv with indices determined by
4731 // subtracting the id of each element from (VLMAX-1). This will convert
4732 // the indices like so:
4733 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
4734 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
4735 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
4736                                                  SelectionDAG &DAG) const {
4737   SDLoc DL(Op);
4738   MVT VecVT = Op.getSimpleValueType();
4739   unsigned EltSize = VecVT.getScalarSizeInBits();
4740   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
4741 
4742   unsigned MaxVLMAX = 0;
4743   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
4744   if (VectorBitsMax != 0)
4745     MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock;
4746 
4747   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
4748   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
4749 
4750   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
4751   // to use vrgatherei16.vv.
4752   // TODO: It's also possible to use vrgatherei16.vv for other types to
4753   // decrease register width for the index calculation.
4754   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
4755     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
4756     // Reverse each half, then reassemble them in reverse order.
4757     // NOTE: It's also possible that after splitting that VLMAX no longer
4758     // requires vrgatherei16.vv.
4759     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
4760       SDValue Lo, Hi;
4761       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
4762       EVT LoVT, HiVT;
4763       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
4764       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
4765       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
4766       // Reassemble the low and high pieces reversed.
4767       // FIXME: This is a CONCAT_VECTORS.
4768       SDValue Res =
4769           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
4770                       DAG.getIntPtrConstant(0, DL));
4771       return DAG.getNode(
4772           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
4773           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
4774     }
4775 
4776     // Just promote the int type to i16 which will double the LMUL.
4777     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
4778     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
4779   }
4780 
4781   MVT XLenVT = Subtarget.getXLenVT();
4782   SDValue Mask, VL;
4783   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
4784 
4785   // Calculate VLMAX-1 for the desired SEW.
4786   unsigned MinElts = VecVT.getVectorMinNumElements();
4787   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
4788                               DAG.getConstant(MinElts, DL, XLenVT));
4789   SDValue VLMinus1 =
4790       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
4791 
4792   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
4793   bool IsRV32E64 =
4794       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
4795   SDValue SplatVL;
4796   if (!IsRV32E64)
4797     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
4798   else
4799     SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1);
4800 
4801   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
4802   SDValue Indices =
4803       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
4804 
4805   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
4806 }
4807 
4808 SDValue
4809 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
4810                                                      SelectionDAG &DAG) const {
4811   SDLoc DL(Op);
4812   auto *Load = cast<LoadSDNode>(Op);
4813 
4814   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
4815                                         Load->getMemoryVT(),
4816                                         *Load->getMemOperand()) &&
4817          "Expecting a correctly-aligned load");
4818 
4819   MVT VT = Op.getSimpleValueType();
4820   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4821 
4822   SDValue VL =
4823       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4824 
4825   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4826   SDValue NewLoad = DAG.getMemIntrinsicNode(
4827       RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
4828       Load->getMemoryVT(), Load->getMemOperand());
4829 
4830   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
4831   return DAG.getMergeValues({Result, Load->getChain()}, DL);
4832 }
4833 
4834 SDValue
4835 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
4836                                                       SelectionDAG &DAG) const {
4837   SDLoc DL(Op);
4838   auto *Store = cast<StoreSDNode>(Op);
4839 
4840   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
4841                                         Store->getMemoryVT(),
4842                                         *Store->getMemOperand()) &&
4843          "Expecting a correctly-aligned store");
4844 
4845   SDValue StoreVal = Store->getValue();
4846   MVT VT = StoreVal.getSimpleValueType();
4847 
4848   // If the size less than a byte, we need to pad with zeros to make a byte.
4849   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
4850     VT = MVT::v8i1;
4851     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
4852                            DAG.getConstant(0, DL, VT), StoreVal,
4853                            DAG.getIntPtrConstant(0, DL));
4854   }
4855 
4856   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4857 
4858   SDValue VL =
4859       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4860 
4861   SDValue NewValue =
4862       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
4863   return DAG.getMemIntrinsicNode(
4864       RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
4865       {Store->getChain(), NewValue, Store->getBasePtr(), VL},
4866       Store->getMemoryVT(), Store->getMemOperand());
4867 }
4868 
4869 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
4870                                              SelectionDAG &DAG) const {
4871   SDLoc DL(Op);
4872   MVT VT = Op.getSimpleValueType();
4873 
4874   const auto *MemSD = cast<MemSDNode>(Op);
4875   EVT MemVT = MemSD->getMemoryVT();
4876   MachineMemOperand *MMO = MemSD->getMemOperand();
4877   SDValue Chain = MemSD->getChain();
4878   SDValue BasePtr = MemSD->getBasePtr();
4879 
4880   SDValue Mask, PassThru, VL;
4881   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
4882     Mask = VPLoad->getMask();
4883     PassThru = DAG.getUNDEF(VT);
4884     VL = VPLoad->getVectorLength();
4885   } else {
4886     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
4887     Mask = MLoad->getMask();
4888     PassThru = MLoad->getPassThru();
4889   }
4890 
4891   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4892 
4893   MVT XLenVT = Subtarget.getXLenVT();
4894 
4895   MVT ContainerVT = VT;
4896   if (VT.isFixedLengthVector()) {
4897     ContainerVT = getContainerForFixedLengthVector(VT);
4898     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4899     if (!IsUnmasked) {
4900       MVT MaskVT =
4901           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4902       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4903     }
4904   }
4905 
4906   if (!VL)
4907     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
4908 
4909   unsigned IntID =
4910       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
4911   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
4912   if (!IsUnmasked)
4913     Ops.push_back(PassThru);
4914   Ops.push_back(BasePtr);
4915   if (!IsUnmasked)
4916     Ops.push_back(Mask);
4917   Ops.push_back(VL);
4918   if (!IsUnmasked)
4919     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
4920 
4921   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4922 
4923   SDValue Result =
4924       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
4925   Chain = Result.getValue(1);
4926 
4927   if (VT.isFixedLengthVector())
4928     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4929 
4930   return DAG.getMergeValues({Result, Chain}, DL);
4931 }
4932 
4933 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
4934                                               SelectionDAG &DAG) const {
4935   SDLoc DL(Op);
4936 
4937   const auto *MemSD = cast<MemSDNode>(Op);
4938   EVT MemVT = MemSD->getMemoryVT();
4939   MachineMemOperand *MMO = MemSD->getMemOperand();
4940   SDValue Chain = MemSD->getChain();
4941   SDValue BasePtr = MemSD->getBasePtr();
4942   SDValue Val, Mask, VL;
4943 
4944   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
4945     Val = VPStore->getValue();
4946     Mask = VPStore->getMask();
4947     VL = VPStore->getVectorLength();
4948   } else {
4949     const auto *MStore = cast<MaskedStoreSDNode>(Op);
4950     Val = MStore->getValue();
4951     Mask = MStore->getMask();
4952   }
4953 
4954   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4955 
4956   MVT VT = Val.getSimpleValueType();
4957   MVT XLenVT = Subtarget.getXLenVT();
4958 
4959   MVT ContainerVT = VT;
4960   if (VT.isFixedLengthVector()) {
4961     ContainerVT = getContainerForFixedLengthVector(VT);
4962 
4963     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4964     if (!IsUnmasked) {
4965       MVT MaskVT =
4966           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4967       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4968     }
4969   }
4970 
4971   if (!VL)
4972     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
4973 
4974   unsigned IntID =
4975       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
4976   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
4977   Ops.push_back(Val);
4978   Ops.push_back(BasePtr);
4979   if (!IsUnmasked)
4980     Ops.push_back(Mask);
4981   Ops.push_back(VL);
4982 
4983   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
4984                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
4985 }
4986 
4987 SDValue
4988 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
4989                                                       SelectionDAG &DAG) const {
4990   MVT InVT = Op.getOperand(0).getSimpleValueType();
4991   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
4992 
4993   MVT VT = Op.getSimpleValueType();
4994 
4995   SDValue Op1 =
4996       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4997   SDValue Op2 =
4998       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
4999 
5000   SDLoc DL(Op);
5001   SDValue VL =
5002       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5003 
5004   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5005   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5006 
5007   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
5008                             Op.getOperand(2), Mask, VL);
5009 
5010   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
5011 }
5012 
5013 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
5014     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
5015   MVT VT = Op.getSimpleValueType();
5016 
5017   if (VT.getVectorElementType() == MVT::i1)
5018     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
5019 
5020   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
5021 }
5022 
5023 SDValue
5024 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
5025                                                       SelectionDAG &DAG) const {
5026   unsigned Opc;
5027   switch (Op.getOpcode()) {
5028   default: llvm_unreachable("Unexpected opcode!");
5029   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
5030   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
5031   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
5032   }
5033 
5034   return lowerToScalableOp(Op, DAG, Opc);
5035 }
5036 
5037 // Lower vector ABS to smax(X, sub(0, X)).
5038 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
5039   SDLoc DL(Op);
5040   MVT VT = Op.getSimpleValueType();
5041   SDValue X = Op.getOperand(0);
5042 
5043   assert(VT.isFixedLengthVector() && "Unexpected type");
5044 
5045   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5046   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
5047 
5048   SDValue Mask, VL;
5049   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5050 
5051   SDValue SplatZero =
5052       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
5053                   DAG.getConstant(0, DL, Subtarget.getXLenVT()));
5054   SDValue NegX =
5055       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
5056   SDValue Max =
5057       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
5058 
5059   return convertFromScalableVector(VT, Max, DAG, Subtarget);
5060 }
5061 
5062 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
5063     SDValue Op, SelectionDAG &DAG) const {
5064   SDLoc DL(Op);
5065   MVT VT = Op.getSimpleValueType();
5066   SDValue Mag = Op.getOperand(0);
5067   SDValue Sign = Op.getOperand(1);
5068   assert(Mag.getValueType() == Sign.getValueType() &&
5069          "Can only handle COPYSIGN with matching types.");
5070 
5071   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5072   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
5073   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
5074 
5075   SDValue Mask, VL;
5076   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5077 
5078   SDValue CopySign =
5079       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
5080 
5081   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
5082 }
5083 
5084 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
5085     SDValue Op, SelectionDAG &DAG) const {
5086   MVT VT = Op.getSimpleValueType();
5087   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5088 
5089   MVT I1ContainerVT =
5090       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5091 
5092   SDValue CC =
5093       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
5094   SDValue Op1 =
5095       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5096   SDValue Op2 =
5097       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
5098 
5099   SDLoc DL(Op);
5100   SDValue Mask, VL;
5101   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5102 
5103   SDValue Select =
5104       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
5105 
5106   return convertFromScalableVector(VT, Select, DAG, Subtarget);
5107 }
5108 
5109 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
5110                                                unsigned NewOpc,
5111                                                bool HasMask) const {
5112   MVT VT = Op.getSimpleValueType();
5113   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5114 
5115   // Create list of operands by converting existing ones to scalable types.
5116   SmallVector<SDValue, 6> Ops;
5117   for (const SDValue &V : Op->op_values()) {
5118     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5119 
5120     // Pass through non-vector operands.
5121     if (!V.getValueType().isVector()) {
5122       Ops.push_back(V);
5123       continue;
5124     }
5125 
5126     // "cast" fixed length vector to a scalable vector.
5127     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
5128            "Only fixed length vectors are supported!");
5129     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5130   }
5131 
5132   SDLoc DL(Op);
5133   SDValue Mask, VL;
5134   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5135   if (HasMask)
5136     Ops.push_back(Mask);
5137   Ops.push_back(VL);
5138 
5139   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
5140   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
5141 }
5142 
5143 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
5144 // * Operands of each node are assumed to be in the same order.
5145 // * The EVL operand is promoted from i32 to i64 on RV64.
5146 // * Fixed-length vectors are converted to their scalable-vector container
5147 //   types.
5148 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
5149                                        unsigned RISCVISDOpc) const {
5150   SDLoc DL(Op);
5151   MVT VT = Op.getSimpleValueType();
5152   SmallVector<SDValue, 4> Ops;
5153 
5154   for (const auto &OpIdx : enumerate(Op->ops())) {
5155     SDValue V = OpIdx.value();
5156     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5157     // Pass through operands which aren't fixed-length vectors.
5158     if (!V.getValueType().isFixedLengthVector()) {
5159       Ops.push_back(V);
5160       continue;
5161     }
5162     // "cast" fixed length vector to a scalable vector.
5163     MVT OpVT = V.getSimpleValueType();
5164     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
5165     assert(useRVVForFixedLengthVectorVT(OpVT) &&
5166            "Only fixed length vectors are supported!");
5167     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5168   }
5169 
5170   if (!VT.isFixedLengthVector())
5171     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
5172 
5173   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5174 
5175   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
5176 
5177   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
5178 }
5179 
5180 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
5181 // matched to a RVV indexed load. The RVV indexed load instructions only
5182 // support the "unsigned unscaled" addressing mode; indices are implicitly
5183 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
5184 // signed or scaled indexing is extended to the XLEN value type and scaled
5185 // accordingly.
5186 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
5187                                                SelectionDAG &DAG) const {
5188   SDLoc DL(Op);
5189   MVT VT = Op.getSimpleValueType();
5190 
5191   const auto *MemSD = cast<MemSDNode>(Op.getNode());
5192   EVT MemVT = MemSD->getMemoryVT();
5193   MachineMemOperand *MMO = MemSD->getMemOperand();
5194   SDValue Chain = MemSD->getChain();
5195   SDValue BasePtr = MemSD->getBasePtr();
5196 
5197   ISD::LoadExtType LoadExtType;
5198   SDValue Index, Mask, PassThru, VL;
5199 
5200   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
5201     Index = VPGN->getIndex();
5202     Mask = VPGN->getMask();
5203     PassThru = DAG.getUNDEF(VT);
5204     VL = VPGN->getVectorLength();
5205     // VP doesn't support extending loads.
5206     LoadExtType = ISD::NON_EXTLOAD;
5207   } else {
5208     // Else it must be a MGATHER.
5209     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
5210     Index = MGN->getIndex();
5211     Mask = MGN->getMask();
5212     PassThru = MGN->getPassThru();
5213     LoadExtType = MGN->getExtensionType();
5214   }
5215 
5216   MVT IndexVT = Index.getSimpleValueType();
5217   MVT XLenVT = Subtarget.getXLenVT();
5218 
5219   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
5220          "Unexpected VTs!");
5221   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
5222   // Targets have to explicitly opt-in for extending vector loads.
5223   assert(LoadExtType == ISD::NON_EXTLOAD &&
5224          "Unexpected extending MGATHER/VP_GATHER");
5225   (void)LoadExtType;
5226 
5227   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5228   // the selection of the masked intrinsics doesn't do this for us.
5229   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5230 
5231   MVT ContainerVT = VT;
5232   if (VT.isFixedLengthVector()) {
5233     // We need to use the larger of the result and index type to determine the
5234     // scalable type to use so we don't increase LMUL for any operand/result.
5235     if (VT.bitsGE(IndexVT)) {
5236       ContainerVT = getContainerForFixedLengthVector(VT);
5237       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
5238                                  ContainerVT.getVectorElementCount());
5239     } else {
5240       IndexVT = getContainerForFixedLengthVector(IndexVT);
5241       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
5242                                      IndexVT.getVectorElementCount());
5243     }
5244 
5245     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
5246 
5247     if (!IsUnmasked) {
5248       MVT MaskVT =
5249           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5250       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5251       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5252     }
5253   }
5254 
5255   if (!VL)
5256     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5257 
5258   unsigned IntID =
5259       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
5260   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5261   if (!IsUnmasked)
5262     Ops.push_back(PassThru);
5263   Ops.push_back(BasePtr);
5264   Ops.push_back(Index);
5265   if (!IsUnmasked)
5266     Ops.push_back(Mask);
5267   Ops.push_back(VL);
5268   if (!IsUnmasked)
5269     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5270 
5271   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5272   SDValue Result =
5273       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5274   Chain = Result.getValue(1);
5275 
5276   if (VT.isFixedLengthVector())
5277     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5278 
5279   return DAG.getMergeValues({Result, Chain}, DL);
5280 }
5281 
5282 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
5283 // matched to a RVV indexed store. The RVV indexed store instructions only
5284 // support the "unsigned unscaled" addressing mode; indices are implicitly
5285 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
5286 // signed or scaled indexing is extended to the XLEN value type and scaled
5287 // accordingly.
5288 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
5289                                                 SelectionDAG &DAG) const {
5290   SDLoc DL(Op);
5291   const auto *MemSD = cast<MemSDNode>(Op.getNode());
5292   EVT MemVT = MemSD->getMemoryVT();
5293   MachineMemOperand *MMO = MemSD->getMemOperand();
5294   SDValue Chain = MemSD->getChain();
5295   SDValue BasePtr = MemSD->getBasePtr();
5296 
5297   bool IsTruncatingStore = false;
5298   SDValue Index, Mask, Val, VL;
5299 
5300   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
5301     Index = VPSN->getIndex();
5302     Mask = VPSN->getMask();
5303     Val = VPSN->getValue();
5304     VL = VPSN->getVectorLength();
5305     // VP doesn't support truncating stores.
5306     IsTruncatingStore = false;
5307   } else {
5308     // Else it must be a MSCATTER.
5309     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
5310     Index = MSN->getIndex();
5311     Mask = MSN->getMask();
5312     Val = MSN->getValue();
5313     IsTruncatingStore = MSN->isTruncatingStore();
5314   }
5315 
5316   MVT VT = Val.getSimpleValueType();
5317   MVT IndexVT = Index.getSimpleValueType();
5318   MVT XLenVT = Subtarget.getXLenVT();
5319 
5320   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
5321          "Unexpected VTs!");
5322   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
5323   // Targets have to explicitly opt-in for extending vector loads and
5324   // truncating vector stores.
5325   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
5326   (void)IsTruncatingStore;
5327 
5328   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5329   // the selection of the masked intrinsics doesn't do this for us.
5330   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5331 
5332   MVT ContainerVT = VT;
5333   if (VT.isFixedLengthVector()) {
5334     // We need to use the larger of the value and index type to determine the
5335     // scalable type to use so we don't increase LMUL for any operand/result.
5336     if (VT.bitsGE(IndexVT)) {
5337       ContainerVT = getContainerForFixedLengthVector(VT);
5338       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
5339                                  ContainerVT.getVectorElementCount());
5340     } else {
5341       IndexVT = getContainerForFixedLengthVector(IndexVT);
5342       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
5343                                      IndexVT.getVectorElementCount());
5344     }
5345 
5346     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
5347     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5348 
5349     if (!IsUnmasked) {
5350       MVT MaskVT =
5351           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5352       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5353     }
5354   }
5355 
5356   if (!VL)
5357     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5358 
5359   unsigned IntID =
5360       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
5361   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5362   Ops.push_back(Val);
5363   Ops.push_back(BasePtr);
5364   Ops.push_back(Index);
5365   if (!IsUnmasked)
5366     Ops.push_back(Mask);
5367   Ops.push_back(VL);
5368 
5369   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5370                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5371 }
5372 
5373 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
5374                                                SelectionDAG &DAG) const {
5375   const MVT XLenVT = Subtarget.getXLenVT();
5376   SDLoc DL(Op);
5377   SDValue Chain = Op->getOperand(0);
5378   SDValue SysRegNo = DAG.getTargetConstant(
5379       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
5380   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
5381   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
5382 
5383   // Encoding used for rounding mode in RISCV differs from that used in
5384   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
5385   // table, which consists of a sequence of 4-bit fields, each representing
5386   // corresponding FLT_ROUNDS mode.
5387   static const int Table =
5388       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
5389       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
5390       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
5391       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
5392       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
5393 
5394   SDValue Shift =
5395       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
5396   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
5397                                 DAG.getConstant(Table, DL, XLenVT), Shift);
5398   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
5399                                DAG.getConstant(7, DL, XLenVT));
5400 
5401   return DAG.getMergeValues({Masked, Chain}, DL);
5402 }
5403 
5404 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
5405                                                SelectionDAG &DAG) const {
5406   const MVT XLenVT = Subtarget.getXLenVT();
5407   SDLoc DL(Op);
5408   SDValue Chain = Op->getOperand(0);
5409   SDValue RMValue = Op->getOperand(1);
5410   SDValue SysRegNo = DAG.getTargetConstant(
5411       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
5412 
5413   // Encoding used for rounding mode in RISCV differs from that used in
5414   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
5415   // a table, which consists of a sequence of 4-bit fields, each representing
5416   // corresponding RISCV mode.
5417   static const unsigned Table =
5418       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
5419       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
5420       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
5421       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
5422       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
5423 
5424   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
5425                               DAG.getConstant(2, DL, XLenVT));
5426   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
5427                                 DAG.getConstant(Table, DL, XLenVT), Shift);
5428   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
5429                         DAG.getConstant(0x7, DL, XLenVT));
5430   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
5431                      RMValue);
5432 }
5433 
5434 // Returns the opcode of the target-specific SDNode that implements the 32-bit
5435 // form of the given Opcode.
5436 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
5437   switch (Opcode) {
5438   default:
5439     llvm_unreachable("Unexpected opcode");
5440   case ISD::SHL:
5441     return RISCVISD::SLLW;
5442   case ISD::SRA:
5443     return RISCVISD::SRAW;
5444   case ISD::SRL:
5445     return RISCVISD::SRLW;
5446   case ISD::SDIV:
5447     return RISCVISD::DIVW;
5448   case ISD::UDIV:
5449     return RISCVISD::DIVUW;
5450   case ISD::UREM:
5451     return RISCVISD::REMUW;
5452   case ISD::ROTL:
5453     return RISCVISD::ROLW;
5454   case ISD::ROTR:
5455     return RISCVISD::RORW;
5456   case RISCVISD::GREV:
5457     return RISCVISD::GREVW;
5458   case RISCVISD::GORC:
5459     return RISCVISD::GORCW;
5460   }
5461 }
5462 
5463 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
5464 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
5465 // otherwise be promoted to i64, making it difficult to select the
5466 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
5467 // type i8/i16/i32 is lost.
5468 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
5469                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
5470   SDLoc DL(N);
5471   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
5472   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
5473   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
5474   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
5475   // ReplaceNodeResults requires we maintain the same type for the return value.
5476   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
5477 }
5478 
5479 // Converts the given 32-bit operation to a i64 operation with signed extension
5480 // semantic to reduce the signed extension instructions.
5481 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
5482   SDLoc DL(N);
5483   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5484   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5485   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
5486   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
5487                                DAG.getValueType(MVT::i32));
5488   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
5489 }
5490 
5491 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
5492                                              SmallVectorImpl<SDValue> &Results,
5493                                              SelectionDAG &DAG) const {
5494   SDLoc DL(N);
5495   switch (N->getOpcode()) {
5496   default:
5497     llvm_unreachable("Don't know how to custom type legalize this operation!");
5498   case ISD::STRICT_FP_TO_SINT:
5499   case ISD::STRICT_FP_TO_UINT:
5500   case ISD::FP_TO_SINT:
5501   case ISD::FP_TO_UINT: {
5502     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5503            "Unexpected custom legalisation");
5504     bool IsStrict = N->isStrictFPOpcode();
5505     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
5506                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
5507     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
5508     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
5509         TargetLowering::TypeSoftenFloat) {
5510       // FIXME: Support strict FP.
5511       if (IsStrict)
5512         return;
5513       if (!isTypeLegal(Op0.getValueType()))
5514         return;
5515       unsigned Opc =
5516           IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64;
5517       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0);
5518       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5519       return;
5520     }
5521     // If the FP type needs to be softened, emit a library call using the 'si'
5522     // version. If we left it to default legalization we'd end up with 'di'. If
5523     // the FP type doesn't need to be softened just let generic type
5524     // legalization promote the result type.
5525     RTLIB::Libcall LC;
5526     if (IsSigned)
5527       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
5528     else
5529       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
5530     MakeLibCallOptions CallOptions;
5531     EVT OpVT = Op0.getValueType();
5532     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
5533     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
5534     SDValue Result;
5535     std::tie(Result, Chain) =
5536         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
5537     Results.push_back(Result);
5538     if (IsStrict)
5539       Results.push_back(Chain);
5540     break;
5541   }
5542   case ISD::READCYCLECOUNTER: {
5543     assert(!Subtarget.is64Bit() &&
5544            "READCYCLECOUNTER only has custom type legalization on riscv32");
5545 
5546     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
5547     SDValue RCW =
5548         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
5549 
5550     Results.push_back(
5551         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
5552     Results.push_back(RCW.getValue(2));
5553     break;
5554   }
5555   case ISD::MUL: {
5556     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
5557     unsigned XLen = Subtarget.getXLen();
5558     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
5559     if (Size > XLen) {
5560       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
5561       SDValue LHS = N->getOperand(0);
5562       SDValue RHS = N->getOperand(1);
5563       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
5564 
5565       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
5566       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
5567       // We need exactly one side to be unsigned.
5568       if (LHSIsU == RHSIsU)
5569         return;
5570 
5571       auto MakeMULPair = [&](SDValue S, SDValue U) {
5572         MVT XLenVT = Subtarget.getXLenVT();
5573         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
5574         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
5575         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
5576         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
5577         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
5578       };
5579 
5580       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
5581       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
5582 
5583       // The other operand should be signed, but still prefer MULH when
5584       // possible.
5585       if (RHSIsU && LHSIsS && !RHSIsS)
5586         Results.push_back(MakeMULPair(LHS, RHS));
5587       else if (LHSIsU && RHSIsS && !LHSIsS)
5588         Results.push_back(MakeMULPair(RHS, LHS));
5589 
5590       return;
5591     }
5592     LLVM_FALLTHROUGH;
5593   }
5594   case ISD::ADD:
5595   case ISD::SUB:
5596     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5597            "Unexpected custom legalisation");
5598     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
5599     break;
5600   case ISD::SHL:
5601   case ISD::SRA:
5602   case ISD::SRL:
5603     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5604            "Unexpected custom legalisation");
5605     if (N->getOperand(1).getOpcode() != ISD::Constant) {
5606       Results.push_back(customLegalizeToWOp(N, DAG));
5607       break;
5608     }
5609 
5610     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
5611     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
5612     // shift amount.
5613     if (N->getOpcode() == ISD::SHL) {
5614       SDLoc DL(N);
5615       SDValue NewOp0 =
5616           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5617       SDValue NewOp1 =
5618           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
5619       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
5620       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
5621                                    DAG.getValueType(MVT::i32));
5622       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
5623     }
5624 
5625     break;
5626   case ISD::ROTL:
5627   case ISD::ROTR:
5628     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5629            "Unexpected custom legalisation");
5630     Results.push_back(customLegalizeToWOp(N, DAG));
5631     break;
5632   case ISD::CTTZ:
5633   case ISD::CTTZ_ZERO_UNDEF:
5634   case ISD::CTLZ:
5635   case ISD::CTLZ_ZERO_UNDEF: {
5636     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5637            "Unexpected custom legalisation");
5638 
5639     SDValue NewOp0 =
5640         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5641     bool IsCTZ =
5642         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
5643     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
5644     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
5645     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5646     return;
5647   }
5648   case ISD::SDIV:
5649   case ISD::UDIV:
5650   case ISD::UREM: {
5651     MVT VT = N->getSimpleValueType(0);
5652     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
5653            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
5654            "Unexpected custom legalisation");
5655     // Don't promote division/remainder by constant since we should expand those
5656     // to multiply by magic constant.
5657     // FIXME: What if the expansion is disabled for minsize.
5658     if (N->getOperand(1).getOpcode() == ISD::Constant)
5659       return;
5660 
5661     // If the input is i32, use ANY_EXTEND since the W instructions don't read
5662     // the upper 32 bits. For other types we need to sign or zero extend
5663     // based on the opcode.
5664     unsigned ExtOpc = ISD::ANY_EXTEND;
5665     if (VT != MVT::i32)
5666       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
5667                                            : ISD::ZERO_EXTEND;
5668 
5669     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
5670     break;
5671   }
5672   case ISD::UADDO:
5673   case ISD::USUBO: {
5674     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5675            "Unexpected custom legalisation");
5676     bool IsAdd = N->getOpcode() == ISD::UADDO;
5677     // Create an ADDW or SUBW.
5678     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5679     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5680     SDValue Res =
5681         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
5682     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
5683                       DAG.getValueType(MVT::i32));
5684 
5685     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
5686     // Since the inputs are sign extended from i32, this is equivalent to
5687     // comparing the lower 32 bits.
5688     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
5689     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
5690                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
5691 
5692     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5693     Results.push_back(Overflow);
5694     return;
5695   }
5696   case ISD::UADDSAT:
5697   case ISD::USUBSAT: {
5698     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5699            "Unexpected custom legalisation");
5700     if (Subtarget.hasStdExtZbb()) {
5701       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
5702       // sign extend allows overflow of the lower 32 bits to be detected on
5703       // the promoted size.
5704       SDValue LHS =
5705           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
5706       SDValue RHS =
5707           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
5708       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
5709       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5710       return;
5711     }
5712 
5713     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
5714     // promotion for UADDO/USUBO.
5715     Results.push_back(expandAddSubSat(N, DAG));
5716     return;
5717   }
5718   case ISD::BITCAST: {
5719     EVT VT = N->getValueType(0);
5720     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
5721     SDValue Op0 = N->getOperand(0);
5722     EVT Op0VT = Op0.getValueType();
5723     MVT XLenVT = Subtarget.getXLenVT();
5724     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
5725       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
5726       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
5727     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
5728                Subtarget.hasStdExtF()) {
5729       SDValue FPConv =
5730           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
5731       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
5732     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
5733                isTypeLegal(Op0VT)) {
5734       // Custom-legalize bitcasts from fixed-length vector types to illegal
5735       // scalar types in order to improve codegen. Bitcast the vector to a
5736       // one-element vector type whose element type is the same as the result
5737       // type, and extract the first element.
5738       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
5739       if (isTypeLegal(BVT)) {
5740         SDValue BVec = DAG.getBitcast(BVT, Op0);
5741         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
5742                                       DAG.getConstant(0, DL, XLenVT)));
5743       }
5744     }
5745     break;
5746   }
5747   case RISCVISD::GREV:
5748   case RISCVISD::GORC: {
5749     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5750            "Unexpected custom legalisation");
5751     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
5752     // This is similar to customLegalizeToWOp, except that we pass the second
5753     // operand (a TargetConstant) straight through: it is already of type
5754     // XLenVT.
5755     RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
5756     SDValue NewOp0 =
5757         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5758     SDValue NewOp1 =
5759         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5760     SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
5761     // ReplaceNodeResults requires we maintain the same type for the return
5762     // value.
5763     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
5764     break;
5765   }
5766   case RISCVISD::SHFL: {
5767     // There is no SHFLIW instruction, but we can just promote the operation.
5768     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5769            "Unexpected custom legalisation");
5770     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
5771     SDValue NewOp0 =
5772         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5773     SDValue NewOp1 =
5774         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5775     SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1);
5776     // ReplaceNodeResults requires we maintain the same type for the return
5777     // value.
5778     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
5779     break;
5780   }
5781   case ISD::BSWAP:
5782   case ISD::BITREVERSE: {
5783     MVT VT = N->getSimpleValueType(0);
5784     MVT XLenVT = Subtarget.getXLenVT();
5785     assert((VT == MVT::i8 || VT == MVT::i16 ||
5786             (VT == MVT::i32 && Subtarget.is64Bit())) &&
5787            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
5788     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
5789     unsigned Imm = VT.getSizeInBits() - 1;
5790     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
5791     if (N->getOpcode() == ISD::BSWAP)
5792       Imm &= ~0x7U;
5793     unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV;
5794     SDValue GREVI =
5795         DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT));
5796     // ReplaceNodeResults requires we maintain the same type for the return
5797     // value.
5798     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
5799     break;
5800   }
5801   case ISD::FSHL:
5802   case ISD::FSHR: {
5803     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5804            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
5805     SDValue NewOp0 =
5806         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5807     SDValue NewOp1 =
5808         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5809     SDValue NewOp2 =
5810         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5811     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
5812     // Mask the shift amount to 5 bits.
5813     NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
5814                          DAG.getConstant(0x1f, DL, MVT::i64));
5815     unsigned Opc =
5816         N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW;
5817     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2);
5818     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
5819     break;
5820   }
5821   case ISD::EXTRACT_VECTOR_ELT: {
5822     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
5823     // type is illegal (currently only vXi64 RV32).
5824     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
5825     // transferred to the destination register. We issue two of these from the
5826     // upper- and lower- halves of the SEW-bit vector element, slid down to the
5827     // first element.
5828     SDValue Vec = N->getOperand(0);
5829     SDValue Idx = N->getOperand(1);
5830 
5831     // The vector type hasn't been legalized yet so we can't issue target
5832     // specific nodes if it needs legalization.
5833     // FIXME: We would manually legalize if it's important.
5834     if (!isTypeLegal(Vec.getValueType()))
5835       return;
5836 
5837     MVT VecVT = Vec.getSimpleValueType();
5838 
5839     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
5840            VecVT.getVectorElementType() == MVT::i64 &&
5841            "Unexpected EXTRACT_VECTOR_ELT legalization");
5842 
5843     // If this is a fixed vector, we need to convert it to a scalable vector.
5844     MVT ContainerVT = VecVT;
5845     if (VecVT.isFixedLengthVector()) {
5846       ContainerVT = getContainerForFixedLengthVector(VecVT);
5847       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5848     }
5849 
5850     MVT XLenVT = Subtarget.getXLenVT();
5851 
5852     // Use a VL of 1 to avoid processing more elements than we need.
5853     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5854     SDValue VL = DAG.getConstant(1, DL, XLenVT);
5855     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5856 
5857     // Unless the index is known to be 0, we must slide the vector down to get
5858     // the desired element into index 0.
5859     if (!isNullConstant(Idx)) {
5860       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5861                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
5862     }
5863 
5864     // Extract the lower XLEN bits of the correct vector element.
5865     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
5866 
5867     // To extract the upper XLEN bits of the vector element, shift the first
5868     // element right by 32 bits and re-extract the lower XLEN bits.
5869     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
5870                                      DAG.getConstant(32, DL, XLenVT), VL);
5871     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
5872                                  ThirtyTwoV, Mask, VL);
5873 
5874     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
5875 
5876     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
5877     break;
5878   }
5879   case ISD::INTRINSIC_WO_CHAIN: {
5880     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5881     switch (IntNo) {
5882     default:
5883       llvm_unreachable(
5884           "Don't know how to custom type legalize this intrinsic!");
5885     case Intrinsic::riscv_orc_b: {
5886       // Lower to the GORCI encoding for orc.b with the operand extended.
5887       SDValue NewOp =
5888           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5889       // If Zbp is enabled, use GORCIW which will sign extend the result.
5890       unsigned Opc =
5891           Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC;
5892       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp,
5893                                 DAG.getConstant(7, DL, MVT::i64));
5894       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5895       return;
5896     }
5897     case Intrinsic::riscv_grev:
5898     case Intrinsic::riscv_gorc: {
5899       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5900              "Unexpected custom legalisation");
5901       SDValue NewOp1 =
5902           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5903       SDValue NewOp2 =
5904           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5905       unsigned Opc =
5906           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
5907       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
5908       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5909       break;
5910     }
5911     case Intrinsic::riscv_shfl:
5912     case Intrinsic::riscv_unshfl: {
5913       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5914              "Unexpected custom legalisation");
5915       SDValue NewOp1 =
5916           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5917       SDValue NewOp2 =
5918           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5919       unsigned Opc =
5920           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
5921       if (isa<ConstantSDNode>(N->getOperand(2))) {
5922         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
5923                              DAG.getConstant(0xf, DL, MVT::i64));
5924         Opc =
5925             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
5926       }
5927       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
5928       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5929       break;
5930     }
5931     case Intrinsic::riscv_bcompress:
5932     case Intrinsic::riscv_bdecompress: {
5933       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5934              "Unexpected custom legalisation");
5935       SDValue NewOp1 =
5936           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5937       SDValue NewOp2 =
5938           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5939       unsigned Opc = IntNo == Intrinsic::riscv_bcompress
5940                          ? RISCVISD::BCOMPRESSW
5941                          : RISCVISD::BDECOMPRESSW;
5942       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
5943       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5944       break;
5945     }
5946     case Intrinsic::riscv_vmv_x_s: {
5947       EVT VT = N->getValueType(0);
5948       MVT XLenVT = Subtarget.getXLenVT();
5949       if (VT.bitsLT(XLenVT)) {
5950         // Simple case just extract using vmv.x.s and truncate.
5951         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
5952                                       Subtarget.getXLenVT(), N->getOperand(1));
5953         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
5954         return;
5955       }
5956 
5957       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
5958              "Unexpected custom legalization");
5959 
5960       // We need to do the move in two steps.
5961       SDValue Vec = N->getOperand(1);
5962       MVT VecVT = Vec.getSimpleValueType();
5963 
5964       // First extract the lower XLEN bits of the element.
5965       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
5966 
5967       // To extract the upper XLEN bits of the vector element, shift the first
5968       // element right by 32 bits and re-extract the lower XLEN bits.
5969       SDValue VL = DAG.getConstant(1, DL, XLenVT);
5970       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
5971       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5972       SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT,
5973                                        DAG.getConstant(32, DL, XLenVT), VL);
5974       SDValue LShr32 =
5975           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
5976       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
5977 
5978       Results.push_back(
5979           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
5980       break;
5981     }
5982     }
5983     break;
5984   }
5985   case ISD::VECREDUCE_ADD:
5986   case ISD::VECREDUCE_AND:
5987   case ISD::VECREDUCE_OR:
5988   case ISD::VECREDUCE_XOR:
5989   case ISD::VECREDUCE_SMAX:
5990   case ISD::VECREDUCE_UMAX:
5991   case ISD::VECREDUCE_SMIN:
5992   case ISD::VECREDUCE_UMIN:
5993     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
5994       Results.push_back(V);
5995     break;
5996   case ISD::VP_REDUCE_ADD:
5997   case ISD::VP_REDUCE_AND:
5998   case ISD::VP_REDUCE_OR:
5999   case ISD::VP_REDUCE_XOR:
6000   case ISD::VP_REDUCE_SMAX:
6001   case ISD::VP_REDUCE_UMAX:
6002   case ISD::VP_REDUCE_SMIN:
6003   case ISD::VP_REDUCE_UMIN:
6004     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
6005       Results.push_back(V);
6006     break;
6007   case ISD::FLT_ROUNDS_: {
6008     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
6009     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
6010     Results.push_back(Res.getValue(0));
6011     Results.push_back(Res.getValue(1));
6012     break;
6013   }
6014   }
6015 }
6016 
6017 // A structure to hold one of the bit-manipulation patterns below. Together, a
6018 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
6019 //   (or (and (shl x, 1), 0xAAAAAAAA),
6020 //       (and (srl x, 1), 0x55555555))
6021 struct RISCVBitmanipPat {
6022   SDValue Op;
6023   unsigned ShAmt;
6024   bool IsSHL;
6025 
6026   bool formsPairWith(const RISCVBitmanipPat &Other) const {
6027     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
6028   }
6029 };
6030 
6031 // Matches patterns of the form
6032 //   (and (shl x, C2), (C1 << C2))
6033 //   (and (srl x, C2), C1)
6034 //   (shl (and x, C1), C2)
6035 //   (srl (and x, (C1 << C2)), C2)
6036 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
6037 // The expected masks for each shift amount are specified in BitmanipMasks where
6038 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
6039 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
6040 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
6041 // XLen is 64.
6042 static Optional<RISCVBitmanipPat>
6043 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
6044   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
6045          "Unexpected number of masks");
6046   Optional<uint64_t> Mask;
6047   // Optionally consume a mask around the shift operation.
6048   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
6049     Mask = Op.getConstantOperandVal(1);
6050     Op = Op.getOperand(0);
6051   }
6052   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
6053     return None;
6054   bool IsSHL = Op.getOpcode() == ISD::SHL;
6055 
6056   if (!isa<ConstantSDNode>(Op.getOperand(1)))
6057     return None;
6058   uint64_t ShAmt = Op.getConstantOperandVal(1);
6059 
6060   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
6061   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
6062     return None;
6063   // If we don't have enough masks for 64 bit, then we must be trying to
6064   // match SHFL so we're only allowed to shift 1/4 of the width.
6065   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
6066     return None;
6067 
6068   SDValue Src = Op.getOperand(0);
6069 
6070   // The expected mask is shifted left when the AND is found around SHL
6071   // patterns.
6072   //   ((x >> 1) & 0x55555555)
6073   //   ((x << 1) & 0xAAAAAAAA)
6074   bool SHLExpMask = IsSHL;
6075 
6076   if (!Mask) {
6077     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
6078     // the mask is all ones: consume that now.
6079     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
6080       Mask = Src.getConstantOperandVal(1);
6081       Src = Src.getOperand(0);
6082       // The expected mask is now in fact shifted left for SRL, so reverse the
6083       // decision.
6084       //   ((x & 0xAAAAAAAA) >> 1)
6085       //   ((x & 0x55555555) << 1)
6086       SHLExpMask = !SHLExpMask;
6087     } else {
6088       // Use a default shifted mask of all-ones if there's no AND, truncated
6089       // down to the expected width. This simplifies the logic later on.
6090       Mask = maskTrailingOnes<uint64_t>(Width);
6091       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
6092     }
6093   }
6094 
6095   unsigned MaskIdx = Log2_32(ShAmt);
6096   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
6097 
6098   if (SHLExpMask)
6099     ExpMask <<= ShAmt;
6100 
6101   if (Mask != ExpMask)
6102     return None;
6103 
6104   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
6105 }
6106 
6107 // Matches any of the following bit-manipulation patterns:
6108 //   (and (shl x, 1), (0x55555555 << 1))
6109 //   (and (srl x, 1), 0x55555555)
6110 //   (shl (and x, 0x55555555), 1)
6111 //   (srl (and x, (0x55555555 << 1)), 1)
6112 // where the shift amount and mask may vary thus:
6113 //   [1]  = 0x55555555 / 0xAAAAAAAA
6114 //   [2]  = 0x33333333 / 0xCCCCCCCC
6115 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
6116 //   [8]  = 0x00FF00FF / 0xFF00FF00
6117 //   [16] = 0x0000FFFF / 0xFFFFFFFF
6118 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
6119 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
6120   // These are the unshifted masks which we use to match bit-manipulation
6121   // patterns. They may be shifted left in certain circumstances.
6122   static const uint64_t BitmanipMasks[] = {
6123       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
6124       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
6125 
6126   return matchRISCVBitmanipPat(Op, BitmanipMasks);
6127 }
6128 
6129 // Match the following pattern as a GREVI(W) operation
6130 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
6131 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
6132                                const RISCVSubtarget &Subtarget) {
6133   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6134   EVT VT = Op.getValueType();
6135 
6136   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
6137     auto LHS = matchGREVIPat(Op.getOperand(0));
6138     auto RHS = matchGREVIPat(Op.getOperand(1));
6139     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
6140       SDLoc DL(Op);
6141       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
6142                          DAG.getConstant(LHS->ShAmt, DL, VT));
6143     }
6144   }
6145   return SDValue();
6146 }
6147 
6148 // Matches any the following pattern as a GORCI(W) operation
6149 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
6150 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
6151 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
6152 // Note that with the variant of 3.,
6153 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
6154 // the inner pattern will first be matched as GREVI and then the outer
6155 // pattern will be matched to GORC via the first rule above.
6156 // 4.  (or (rotl/rotr x, bitwidth/2), x)
6157 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
6158                                const RISCVSubtarget &Subtarget) {
6159   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6160   EVT VT = Op.getValueType();
6161 
6162   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
6163     SDLoc DL(Op);
6164     SDValue Op0 = Op.getOperand(0);
6165     SDValue Op1 = Op.getOperand(1);
6166 
6167     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
6168       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
6169           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
6170           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
6171         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
6172       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
6173       if ((Reverse.getOpcode() == ISD::ROTL ||
6174            Reverse.getOpcode() == ISD::ROTR) &&
6175           Reverse.getOperand(0) == X &&
6176           isa<ConstantSDNode>(Reverse.getOperand(1))) {
6177         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
6178         if (RotAmt == (VT.getSizeInBits() / 2))
6179           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
6180                              DAG.getConstant(RotAmt, DL, VT));
6181       }
6182       return SDValue();
6183     };
6184 
6185     // Check for either commutable permutation of (or (GREVI x, shamt), x)
6186     if (SDValue V = MatchOROfReverse(Op0, Op1))
6187       return V;
6188     if (SDValue V = MatchOROfReverse(Op1, Op0))
6189       return V;
6190 
6191     // OR is commutable so canonicalize its OR operand to the left
6192     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
6193       std::swap(Op0, Op1);
6194     if (Op0.getOpcode() != ISD::OR)
6195       return SDValue();
6196     SDValue OrOp0 = Op0.getOperand(0);
6197     SDValue OrOp1 = Op0.getOperand(1);
6198     auto LHS = matchGREVIPat(OrOp0);
6199     // OR is commutable so swap the operands and try again: x might have been
6200     // on the left
6201     if (!LHS) {
6202       std::swap(OrOp0, OrOp1);
6203       LHS = matchGREVIPat(OrOp0);
6204     }
6205     auto RHS = matchGREVIPat(Op1);
6206     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
6207       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
6208                          DAG.getConstant(LHS->ShAmt, DL, VT));
6209     }
6210   }
6211   return SDValue();
6212 }
6213 
6214 // Matches any of the following bit-manipulation patterns:
6215 //   (and (shl x, 1), (0x22222222 << 1))
6216 //   (and (srl x, 1), 0x22222222)
6217 //   (shl (and x, 0x22222222), 1)
6218 //   (srl (and x, (0x22222222 << 1)), 1)
6219 // where the shift amount and mask may vary thus:
6220 //   [1]  = 0x22222222 / 0x44444444
6221 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
6222 //   [4]  = 0x00F000F0 / 0x0F000F00
6223 //   [8]  = 0x0000FF00 / 0x00FF0000
6224 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
6225 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
6226   // These are the unshifted masks which we use to match bit-manipulation
6227   // patterns. They may be shifted left in certain circumstances.
6228   static const uint64_t BitmanipMasks[] = {
6229       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
6230       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
6231 
6232   return matchRISCVBitmanipPat(Op, BitmanipMasks);
6233 }
6234 
6235 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
6236 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
6237                                const RISCVSubtarget &Subtarget) {
6238   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6239   EVT VT = Op.getValueType();
6240 
6241   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
6242     return SDValue();
6243 
6244   SDValue Op0 = Op.getOperand(0);
6245   SDValue Op1 = Op.getOperand(1);
6246 
6247   // Or is commutable so canonicalize the second OR to the LHS.
6248   if (Op0.getOpcode() != ISD::OR)
6249     std::swap(Op0, Op1);
6250   if (Op0.getOpcode() != ISD::OR)
6251     return SDValue();
6252 
6253   // We found an inner OR, so our operands are the operands of the inner OR
6254   // and the other operand of the outer OR.
6255   SDValue A = Op0.getOperand(0);
6256   SDValue B = Op0.getOperand(1);
6257   SDValue C = Op1;
6258 
6259   auto Match1 = matchSHFLPat(A);
6260   auto Match2 = matchSHFLPat(B);
6261 
6262   // If neither matched, we failed.
6263   if (!Match1 && !Match2)
6264     return SDValue();
6265 
6266   // We had at least one match. if one failed, try the remaining C operand.
6267   if (!Match1) {
6268     std::swap(A, C);
6269     Match1 = matchSHFLPat(A);
6270     if (!Match1)
6271       return SDValue();
6272   } else if (!Match2) {
6273     std::swap(B, C);
6274     Match2 = matchSHFLPat(B);
6275     if (!Match2)
6276       return SDValue();
6277   }
6278   assert(Match1 && Match2);
6279 
6280   // Make sure our matches pair up.
6281   if (!Match1->formsPairWith(*Match2))
6282     return SDValue();
6283 
6284   // All the remains is to make sure C is an AND with the same input, that masks
6285   // out the bits that are being shuffled.
6286   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
6287       C.getOperand(0) != Match1->Op)
6288     return SDValue();
6289 
6290   uint64_t Mask = C.getConstantOperandVal(1);
6291 
6292   static const uint64_t BitmanipMasks[] = {
6293       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
6294       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
6295   };
6296 
6297   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
6298   unsigned MaskIdx = Log2_32(Match1->ShAmt);
6299   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
6300 
6301   if (Mask != ExpMask)
6302     return SDValue();
6303 
6304   SDLoc DL(Op);
6305   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
6306                      DAG.getConstant(Match1->ShAmt, DL, VT));
6307 }
6308 
6309 // Optimize (add (shl x, c0), (shl y, c1)) ->
6310 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
6311 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
6312                                   const RISCVSubtarget &Subtarget) {
6313   // Perform this optimization only in the zba extension.
6314   if (!Subtarget.hasStdExtZba())
6315     return SDValue();
6316 
6317   // Skip for vector types and larger types.
6318   EVT VT = N->getValueType(0);
6319   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
6320     return SDValue();
6321 
6322   // The two operand nodes must be SHL and have no other use.
6323   SDValue N0 = N->getOperand(0);
6324   SDValue N1 = N->getOperand(1);
6325   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
6326       !N0->hasOneUse() || !N1->hasOneUse())
6327     return SDValue();
6328 
6329   // Check c0 and c1.
6330   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
6331   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
6332   if (!N0C || !N1C)
6333     return SDValue();
6334   int64_t C0 = N0C->getSExtValue();
6335   int64_t C1 = N1C->getSExtValue();
6336   if (C0 <= 0 || C1 <= 0)
6337     return SDValue();
6338 
6339   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
6340   int64_t Bits = std::min(C0, C1);
6341   int64_t Diff = std::abs(C0 - C1);
6342   if (Diff != 1 && Diff != 2 && Diff != 3)
6343     return SDValue();
6344 
6345   // Build nodes.
6346   SDLoc DL(N);
6347   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
6348   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
6349   SDValue NA0 =
6350       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
6351   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
6352   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
6353 }
6354 
6355 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
6356 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
6357 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
6358 // not undo itself, but they are redundant.
6359 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
6360   SDValue Src = N->getOperand(0);
6361 
6362   if (Src.getOpcode() != N->getOpcode())
6363     return SDValue();
6364 
6365   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
6366       !isa<ConstantSDNode>(Src.getOperand(1)))
6367     return SDValue();
6368 
6369   unsigned ShAmt1 = N->getConstantOperandVal(1);
6370   unsigned ShAmt2 = Src.getConstantOperandVal(1);
6371   Src = Src.getOperand(0);
6372 
6373   unsigned CombinedShAmt;
6374   if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW)
6375     CombinedShAmt = ShAmt1 | ShAmt2;
6376   else
6377     CombinedShAmt = ShAmt1 ^ ShAmt2;
6378 
6379   if (CombinedShAmt == 0)
6380     return Src;
6381 
6382   SDLoc DL(N);
6383   return DAG.getNode(
6384       N->getOpcode(), DL, N->getValueType(0), Src,
6385       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
6386 }
6387 
6388 // Combine a constant select operand into its use:
6389 //
6390 // (and (select cond, -1, c), x)
6391 //   -> (select cond, x, (and x, c))  [AllOnes=1]
6392 // (or  (select cond, 0, c), x)
6393 //   -> (select cond, x, (or x, c))  [AllOnes=0]
6394 // (xor (select cond, 0, c), x)
6395 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
6396 // (add (select cond, 0, c), x)
6397 //   -> (select cond, x, (add x, c))  [AllOnes=0]
6398 // (sub x, (select cond, 0, c))
6399 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
6400 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
6401                                    SelectionDAG &DAG, bool AllOnes) {
6402   EVT VT = N->getValueType(0);
6403 
6404   // Skip vectors.
6405   if (VT.isVector())
6406     return SDValue();
6407 
6408   if ((Slct.getOpcode() != ISD::SELECT &&
6409        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
6410       !Slct.hasOneUse())
6411     return SDValue();
6412 
6413   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
6414     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
6415   };
6416 
6417   bool SwapSelectOps;
6418   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
6419   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
6420   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
6421   SDValue NonConstantVal;
6422   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
6423     SwapSelectOps = false;
6424     NonConstantVal = FalseVal;
6425   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
6426     SwapSelectOps = true;
6427     NonConstantVal = TrueVal;
6428   } else
6429     return SDValue();
6430 
6431   // Slct is now know to be the desired identity constant when CC is true.
6432   TrueVal = OtherOp;
6433   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
6434   // Unless SwapSelectOps says the condition should be false.
6435   if (SwapSelectOps)
6436     std::swap(TrueVal, FalseVal);
6437 
6438   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
6439     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
6440                        {Slct.getOperand(0), Slct.getOperand(1),
6441                         Slct.getOperand(2), TrueVal, FalseVal});
6442 
6443   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
6444                      {Slct.getOperand(0), TrueVal, FalseVal});
6445 }
6446 
6447 // Attempt combineSelectAndUse on each operand of a commutative operator N.
6448 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
6449                                               bool AllOnes) {
6450   SDValue N0 = N->getOperand(0);
6451   SDValue N1 = N->getOperand(1);
6452   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
6453     return Result;
6454   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
6455     return Result;
6456   return SDValue();
6457 }
6458 
6459 // Transform (add (mul x, c0), c1) ->
6460 //           (add (mul (add x, c1/c0), c0), c1%c0).
6461 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
6462 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
6463 // to an infinite loop in DAGCombine if transformed.
6464 // Or transform (add (mul x, c0), c1) ->
6465 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
6466 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
6467 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
6468 // lead to an infinite loop in DAGCombine if transformed.
6469 // Or transform (add (mul x, c0), c1) ->
6470 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
6471 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
6472 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
6473 // lead to an infinite loop in DAGCombine if transformed.
6474 // Or transform (add (mul x, c0), c1) ->
6475 //              (mul (add x, c1/c0), c0).
6476 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
6477 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
6478                                      const RISCVSubtarget &Subtarget) {
6479   // Skip for vector types and larger types.
6480   EVT VT = N->getValueType(0);
6481   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
6482     return SDValue();
6483   // The first operand node must be a MUL and has no other use.
6484   SDValue N0 = N->getOperand(0);
6485   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
6486     return SDValue();
6487   // Check if c0 and c1 match above conditions.
6488   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
6489   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
6490   if (!N0C || !N1C)
6491     return SDValue();
6492   int64_t C0 = N0C->getSExtValue();
6493   int64_t C1 = N1C->getSExtValue();
6494   int64_t CA, CB;
6495   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
6496     return SDValue();
6497   // Search for proper CA (non-zero) and CB that both are simm12.
6498   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
6499       !isInt<12>(C0 * (C1 / C0))) {
6500     CA = C1 / C0;
6501     CB = C1 % C0;
6502   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
6503              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
6504     CA = C1 / C0 + 1;
6505     CB = C1 % C0 - C0;
6506   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
6507              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
6508     CA = C1 / C0 - 1;
6509     CB = C1 % C0 + C0;
6510   } else
6511     return SDValue();
6512   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
6513   SDLoc DL(N);
6514   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
6515                              DAG.getConstant(CA, DL, VT));
6516   SDValue New1 =
6517       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
6518   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
6519 }
6520 
6521 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
6522                                  const RISCVSubtarget &Subtarget) {
6523   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
6524     return V;
6525   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
6526     return V;
6527   // fold (add (select lhs, rhs, cc, 0, y), x) ->
6528   //      (select lhs, rhs, cc, x, (add x, y))
6529   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
6530 }
6531 
6532 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
6533   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
6534   //      (select lhs, rhs, cc, x, (sub x, y))
6535   SDValue N0 = N->getOperand(0);
6536   SDValue N1 = N->getOperand(1);
6537   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
6538 }
6539 
6540 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) {
6541   // fold (and (select lhs, rhs, cc, -1, y), x) ->
6542   //      (select lhs, rhs, cc, x, (and x, y))
6543   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
6544 }
6545 
6546 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
6547                                 const RISCVSubtarget &Subtarget) {
6548   if (Subtarget.hasStdExtZbp()) {
6549     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
6550       return GREV;
6551     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
6552       return GORC;
6553     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
6554       return SHFL;
6555   }
6556 
6557   // fold (or (select cond, 0, y), x) ->
6558   //      (select cond, x, (or x, y))
6559   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
6560 }
6561 
6562 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
6563   // fold (xor (select cond, 0, y), x) ->
6564   //      (select cond, x, (xor x, y))
6565   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
6566 }
6567 
6568 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND
6569 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free
6570 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be
6571 // removed during type legalization leaving an ADD/SUB/MUL use that won't use
6572 // ADDW/SUBW/MULW.
6573 static SDValue performANY_EXTENDCombine(SDNode *N,
6574                                         TargetLowering::DAGCombinerInfo &DCI,
6575                                         const RISCVSubtarget &Subtarget) {
6576   if (!Subtarget.is64Bit())
6577     return SDValue();
6578 
6579   SelectionDAG &DAG = DCI.DAG;
6580 
6581   SDValue Src = N->getOperand(0);
6582   EVT VT = N->getValueType(0);
6583   if (VT != MVT::i64 || Src.getValueType() != MVT::i32)
6584     return SDValue();
6585 
6586   // The opcode must be one that can implicitly sign_extend.
6587   // FIXME: Additional opcodes.
6588   switch (Src.getOpcode()) {
6589   default:
6590     return SDValue();
6591   case ISD::MUL:
6592     if (!Subtarget.hasStdExtM())
6593       return SDValue();
6594     LLVM_FALLTHROUGH;
6595   case ISD::ADD:
6596   case ISD::SUB:
6597     break;
6598   }
6599 
6600   // Only handle cases where the result is used by a CopyToReg. That likely
6601   // means the value is a liveout of the basic block. This helps prevent
6602   // infinite combine loops like PR51206.
6603   if (none_of(N->uses(),
6604               [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; }))
6605     return SDValue();
6606 
6607   SmallVector<SDNode *, 4> SetCCs;
6608   for (SDNode::use_iterator UI = Src.getNode()->use_begin(),
6609                             UE = Src.getNode()->use_end();
6610        UI != UE; ++UI) {
6611     SDNode *User = *UI;
6612     if (User == N)
6613       continue;
6614     if (UI.getUse().getResNo() != Src.getResNo())
6615       continue;
6616     // All i32 setccs are legalized by sign extending operands.
6617     if (User->getOpcode() == ISD::SETCC) {
6618       SetCCs.push_back(User);
6619       continue;
6620     }
6621     // We don't know if we can extend this user.
6622     break;
6623   }
6624 
6625   // If we don't have any SetCCs, this isn't worthwhile.
6626   if (SetCCs.empty())
6627     return SDValue();
6628 
6629   SDLoc DL(N);
6630   SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src);
6631   DCI.CombineTo(N, SExt);
6632 
6633   // Promote all the setccs.
6634   for (SDNode *SetCC : SetCCs) {
6635     SmallVector<SDValue, 4> Ops;
6636 
6637     for (unsigned j = 0; j != 2; ++j) {
6638       SDValue SOp = SetCC->getOperand(j);
6639       if (SOp == Src)
6640         Ops.push_back(SExt);
6641       else
6642         Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp));
6643     }
6644 
6645     Ops.push_back(SetCC->getOperand(2));
6646     DCI.CombineTo(SetCC,
6647                   DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
6648   }
6649   return SDValue(N, 0);
6650 }
6651 
6652 // Try to form VWMUL or VWMULU.
6653 // FIXME: Support VWMULSU.
6654 static SDValue combineMUL_VLToVWMUL(SDNode *N, SDValue Op0, SDValue Op1,
6655                                     SelectionDAG &DAG) {
6656   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
6657   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
6658   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
6659   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
6660     return SDValue();
6661 
6662   SDValue Mask = N->getOperand(2);
6663   SDValue VL = N->getOperand(3);
6664 
6665   // Make sure the mask and VL match.
6666   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
6667     return SDValue();
6668 
6669   MVT VT = N->getSimpleValueType(0);
6670 
6671   // Determine the narrow size for a widening multiply.
6672   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
6673   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
6674                                   VT.getVectorElementCount());
6675 
6676   SDLoc DL(N);
6677 
6678   // See if the other operand is the same opcode.
6679   if (Op0.getOpcode() == Op1.getOpcode()) {
6680     if (!Op1.hasOneUse())
6681       return SDValue();
6682 
6683     // Make sure the mask and VL match.
6684     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
6685       return SDValue();
6686 
6687     Op1 = Op1.getOperand(0);
6688   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
6689     // The operand is a splat of a scalar.
6690 
6691     // The VL must be the same.
6692     if (Op1.getOperand(1) != VL)
6693       return SDValue();
6694 
6695     // Get the scalar value.
6696     Op1 = Op1.getOperand(0);
6697 
6698     // See if have enough sign bits or zero bits in the scalar to use a
6699     // widening multiply by splatting to smaller element size.
6700     unsigned EltBits = VT.getScalarSizeInBits();
6701     unsigned ScalarBits = Op1.getValueSizeInBits();
6702     // Make sure we're getting all element bits from the scalar register.
6703     // FIXME: Support implicit sign extension of vmv.v.x?
6704     if (ScalarBits < EltBits)
6705       return SDValue();
6706 
6707     if (IsSignExt) {
6708       if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize))
6709         return SDValue();
6710     } else {
6711       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
6712       if (!DAG.MaskedValueIsZero(Op1, Mask))
6713         return SDValue();
6714     }
6715 
6716     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL);
6717   } else
6718     return SDValue();
6719 
6720   Op0 = Op0.getOperand(0);
6721 
6722   // Re-introduce narrower extends if needed.
6723   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
6724   if (Op0.getValueType() != NarrowVT)
6725     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
6726   if (Op1.getValueType() != NarrowVT)
6727     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
6728 
6729   unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
6730   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
6731 }
6732 
6733 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
6734                                                DAGCombinerInfo &DCI) const {
6735   SelectionDAG &DAG = DCI.DAG;
6736 
6737   // Helper to call SimplifyDemandedBits on an operand of N where only some low
6738   // bits are demanded. N will be added to the Worklist if it was not deleted.
6739   // Caller should return SDValue(N, 0) if this returns true.
6740   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
6741     SDValue Op = N->getOperand(OpNo);
6742     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
6743     if (!SimplifyDemandedBits(Op, Mask, DCI))
6744       return false;
6745 
6746     if (N->getOpcode() != ISD::DELETED_NODE)
6747       DCI.AddToWorklist(N);
6748     return true;
6749   };
6750 
6751   switch (N->getOpcode()) {
6752   default:
6753     break;
6754   case RISCVISD::SplitF64: {
6755     SDValue Op0 = N->getOperand(0);
6756     // If the input to SplitF64 is just BuildPairF64 then the operation is
6757     // redundant. Instead, use BuildPairF64's operands directly.
6758     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
6759       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
6760 
6761     SDLoc DL(N);
6762 
6763     // It's cheaper to materialise two 32-bit integers than to load a double
6764     // from the constant pool and transfer it to integer registers through the
6765     // stack.
6766     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
6767       APInt V = C->getValueAPF().bitcastToAPInt();
6768       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
6769       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
6770       return DCI.CombineTo(N, Lo, Hi);
6771     }
6772 
6773     // This is a target-specific version of a DAGCombine performed in
6774     // DAGCombiner::visitBITCAST. It performs the equivalent of:
6775     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
6776     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
6777     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
6778         !Op0.getNode()->hasOneUse())
6779       break;
6780     SDValue NewSplitF64 =
6781         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
6782                     Op0.getOperand(0));
6783     SDValue Lo = NewSplitF64.getValue(0);
6784     SDValue Hi = NewSplitF64.getValue(1);
6785     APInt SignBit = APInt::getSignMask(32);
6786     if (Op0.getOpcode() == ISD::FNEG) {
6787       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
6788                                   DAG.getConstant(SignBit, DL, MVT::i32));
6789       return DCI.CombineTo(N, Lo, NewHi);
6790     }
6791     assert(Op0.getOpcode() == ISD::FABS);
6792     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
6793                                 DAG.getConstant(~SignBit, DL, MVT::i32));
6794     return DCI.CombineTo(N, Lo, NewHi);
6795   }
6796   case RISCVISD::SLLW:
6797   case RISCVISD::SRAW:
6798   case RISCVISD::SRLW:
6799   case RISCVISD::ROLW:
6800   case RISCVISD::RORW: {
6801     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
6802     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6803         SimplifyDemandedLowBitsHelper(1, 5))
6804       return SDValue(N, 0);
6805     break;
6806   }
6807   case RISCVISD::CLZW:
6808   case RISCVISD::CTZW: {
6809     // Only the lower 32 bits of the first operand are read
6810     if (SimplifyDemandedLowBitsHelper(0, 32))
6811       return SDValue(N, 0);
6812     break;
6813   }
6814   case RISCVISD::FSL:
6815   case RISCVISD::FSR: {
6816     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
6817     unsigned BitWidth = N->getOperand(2).getValueSizeInBits();
6818     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
6819     if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1))
6820       return SDValue(N, 0);
6821     break;
6822   }
6823   case RISCVISD::FSLW:
6824   case RISCVISD::FSRW: {
6825     // Only the lower 32 bits of Values and lower 6 bits of shift amount are
6826     // read.
6827     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6828         SimplifyDemandedLowBitsHelper(1, 32) ||
6829         SimplifyDemandedLowBitsHelper(2, 6))
6830       return SDValue(N, 0);
6831     break;
6832   }
6833   case RISCVISD::GREV:
6834   case RISCVISD::GORC: {
6835     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
6836     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
6837     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
6838     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
6839       return SDValue(N, 0);
6840 
6841     return combineGREVI_GORCI(N, DCI.DAG);
6842   }
6843   case RISCVISD::GREVW:
6844   case RISCVISD::GORCW: {
6845     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
6846     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6847         SimplifyDemandedLowBitsHelper(1, 5))
6848       return SDValue(N, 0);
6849 
6850     return combineGREVI_GORCI(N, DCI.DAG);
6851   }
6852   case RISCVISD::SHFL:
6853   case RISCVISD::UNSHFL: {
6854     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
6855     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
6856     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
6857     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
6858       return SDValue(N, 0);
6859 
6860     break;
6861   }
6862   case RISCVISD::SHFLW:
6863   case RISCVISD::UNSHFLW: {
6864     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
6865     SDValue LHS = N->getOperand(0);
6866     SDValue RHS = N->getOperand(1);
6867     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
6868     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4);
6869     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6870         SimplifyDemandedLowBitsHelper(1, 4))
6871       return SDValue(N, 0);
6872 
6873     break;
6874   }
6875   case RISCVISD::BCOMPRESSW:
6876   case RISCVISD::BDECOMPRESSW: {
6877     // Only the lower 32 bits of LHS and RHS are read.
6878     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6879         SimplifyDemandedLowBitsHelper(1, 32))
6880       return SDValue(N, 0);
6881 
6882     break;
6883   }
6884   case RISCVISD::FMV_X_ANYEXTH:
6885   case RISCVISD::FMV_X_ANYEXTW_RV64: {
6886     SDLoc DL(N);
6887     SDValue Op0 = N->getOperand(0);
6888     MVT VT = N->getSimpleValueType(0);
6889     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
6890     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
6891     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
6892     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
6893          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
6894         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
6895          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
6896       assert(Op0.getOperand(0).getValueType() == VT &&
6897              "Unexpected value type!");
6898       return Op0.getOperand(0);
6899     }
6900 
6901     // This is a target-specific version of a DAGCombine performed in
6902     // DAGCombiner::visitBITCAST. It performs the equivalent of:
6903     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
6904     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
6905     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
6906         !Op0.getNode()->hasOneUse())
6907       break;
6908     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
6909     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
6910     APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits());
6911     if (Op0.getOpcode() == ISD::FNEG)
6912       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
6913                          DAG.getConstant(SignBit, DL, VT));
6914 
6915     assert(Op0.getOpcode() == ISD::FABS);
6916     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
6917                        DAG.getConstant(~SignBit, DL, VT));
6918   }
6919   case ISD::ADD:
6920     return performADDCombine(N, DAG, Subtarget);
6921   case ISD::SUB:
6922     return performSUBCombine(N, DAG);
6923   case ISD::AND:
6924     return performANDCombine(N, DAG);
6925   case ISD::OR:
6926     return performORCombine(N, DAG, Subtarget);
6927   case ISD::XOR:
6928     return performXORCombine(N, DAG);
6929   case ISD::ANY_EXTEND:
6930     return performANY_EXTENDCombine(N, DCI, Subtarget);
6931   case ISD::ZERO_EXTEND:
6932     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
6933     // type legalization. This is safe because fp_to_uint produces poison if
6934     // it overflows.
6935     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit() &&
6936         N->getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
6937         isTypeLegal(N->getOperand(0).getOperand(0).getValueType()))
6938       return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
6939                          N->getOperand(0).getOperand(0));
6940     return SDValue();
6941   case RISCVISD::SELECT_CC: {
6942     // Transform
6943     SDValue LHS = N->getOperand(0);
6944     SDValue RHS = N->getOperand(1);
6945     SDValue TrueV = N->getOperand(3);
6946     SDValue FalseV = N->getOperand(4);
6947 
6948     // If the True and False values are the same, we don't need a select_cc.
6949     if (TrueV == FalseV)
6950       return TrueV;
6951 
6952     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
6953     if (!ISD::isIntEqualitySetCC(CCVal))
6954       break;
6955 
6956     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
6957     //      (select_cc X, Y, lt, trueV, falseV)
6958     // Sometimes the setcc is introduced after select_cc has been formed.
6959     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
6960         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
6961       // If we're looking for eq 0 instead of ne 0, we need to invert the
6962       // condition.
6963       bool Invert = CCVal == ISD::SETEQ;
6964       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
6965       if (Invert)
6966         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
6967 
6968       SDLoc DL(N);
6969       RHS = LHS.getOperand(1);
6970       LHS = LHS.getOperand(0);
6971       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
6972 
6973       SDValue TargetCC = DAG.getCondCode(CCVal);
6974       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
6975                          {LHS, RHS, TargetCC, TrueV, FalseV});
6976     }
6977 
6978     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
6979     //      (select_cc X, Y, eq/ne, trueV, falseV)
6980     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
6981       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
6982                          {LHS.getOperand(0), LHS.getOperand(1),
6983                           N->getOperand(2), TrueV, FalseV});
6984     // (select_cc X, 1, setne, trueV, falseV) ->
6985     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
6986     // This can occur when legalizing some floating point comparisons.
6987     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
6988     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
6989       SDLoc DL(N);
6990       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
6991       SDValue TargetCC = DAG.getCondCode(CCVal);
6992       RHS = DAG.getConstant(0, DL, LHS.getValueType());
6993       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
6994                          {LHS, RHS, TargetCC, TrueV, FalseV});
6995     }
6996 
6997     break;
6998   }
6999   case RISCVISD::BR_CC: {
7000     SDValue LHS = N->getOperand(1);
7001     SDValue RHS = N->getOperand(2);
7002     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
7003     if (!ISD::isIntEqualitySetCC(CCVal))
7004       break;
7005 
7006     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
7007     //      (br_cc X, Y, lt, dest)
7008     // Sometimes the setcc is introduced after br_cc has been formed.
7009     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
7010         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
7011       // If we're looking for eq 0 instead of ne 0, we need to invert the
7012       // condition.
7013       bool Invert = CCVal == ISD::SETEQ;
7014       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
7015       if (Invert)
7016         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7017 
7018       SDLoc DL(N);
7019       RHS = LHS.getOperand(1);
7020       LHS = LHS.getOperand(0);
7021       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
7022 
7023       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
7024                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
7025                          N->getOperand(4));
7026     }
7027 
7028     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
7029     //      (br_cc X, Y, eq/ne, trueV, falseV)
7030     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
7031       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
7032                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
7033                          N->getOperand(3), N->getOperand(4));
7034 
7035     // (br_cc X, 1, setne, br_cc) ->
7036     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
7037     // This can occur when legalizing some floating point comparisons.
7038     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
7039     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
7040       SDLoc DL(N);
7041       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7042       SDValue TargetCC = DAG.getCondCode(CCVal);
7043       RHS = DAG.getConstant(0, DL, LHS.getValueType());
7044       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
7045                          N->getOperand(0), LHS, RHS, TargetCC,
7046                          N->getOperand(4));
7047     }
7048     break;
7049   }
7050   case ISD::FCOPYSIGN: {
7051     EVT VT = N->getValueType(0);
7052     if (!VT.isVector())
7053       break;
7054     // There is a form of VFSGNJ which injects the negated sign of its second
7055     // operand. Try and bubble any FNEG up after the extend/round to produce
7056     // this optimized pattern. Avoid modifying cases where FP_ROUND and
7057     // TRUNC=1.
7058     SDValue In2 = N->getOperand(1);
7059     // Avoid cases where the extend/round has multiple uses, as duplicating
7060     // those is typically more expensive than removing a fneg.
7061     if (!In2.hasOneUse())
7062       break;
7063     if (In2.getOpcode() != ISD::FP_EXTEND &&
7064         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
7065       break;
7066     In2 = In2.getOperand(0);
7067     if (In2.getOpcode() != ISD::FNEG)
7068       break;
7069     SDLoc DL(N);
7070     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
7071     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
7072                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
7073   }
7074   case ISD::MGATHER:
7075   case ISD::MSCATTER:
7076   case ISD::VP_GATHER:
7077   case ISD::VP_SCATTER: {
7078     if (!DCI.isBeforeLegalize())
7079       break;
7080     SDValue Index, ScaleOp;
7081     bool IsIndexScaled = false;
7082     bool IsIndexSigned = false;
7083     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
7084       Index = VPGSN->getIndex();
7085       ScaleOp = VPGSN->getScale();
7086       IsIndexScaled = VPGSN->isIndexScaled();
7087       IsIndexSigned = VPGSN->isIndexSigned();
7088     } else {
7089       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
7090       Index = MGSN->getIndex();
7091       ScaleOp = MGSN->getScale();
7092       IsIndexScaled = MGSN->isIndexScaled();
7093       IsIndexSigned = MGSN->isIndexSigned();
7094     }
7095     EVT IndexVT = Index.getValueType();
7096     MVT XLenVT = Subtarget.getXLenVT();
7097     // RISCV indexed loads only support the "unsigned unscaled" addressing
7098     // mode, so anything else must be manually legalized.
7099     bool NeedsIdxLegalization =
7100         IsIndexScaled ||
7101         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
7102     if (!NeedsIdxLegalization)
7103       break;
7104 
7105     SDLoc DL(N);
7106 
7107     // Any index legalization should first promote to XLenVT, so we don't lose
7108     // bits when scaling. This may create an illegal index type so we let
7109     // LLVM's legalization take care of the splitting.
7110     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
7111     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
7112       IndexVT = IndexVT.changeVectorElementType(XLenVT);
7113       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
7114                           DL, IndexVT, Index);
7115     }
7116 
7117     unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
7118     if (IsIndexScaled && Scale != 1) {
7119       // Manually scale the indices by the element size.
7120       // TODO: Sanitize the scale operand here?
7121       // TODO: For VP nodes, should we use VP_SHL here?
7122       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
7123       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
7124       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
7125     }
7126 
7127     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
7128     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
7129       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
7130                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
7131                               VPGN->getScale(), VPGN->getMask(),
7132                               VPGN->getVectorLength()},
7133                              VPGN->getMemOperand(), NewIndexTy);
7134     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
7135       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
7136                               {VPSN->getChain(), VPSN->getValue(),
7137                                VPSN->getBasePtr(), Index, VPSN->getScale(),
7138                                VPSN->getMask(), VPSN->getVectorLength()},
7139                               VPSN->getMemOperand(), NewIndexTy);
7140     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
7141       return DAG.getMaskedGather(
7142           N->getVTList(), MGN->getMemoryVT(), DL,
7143           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
7144            MGN->getBasePtr(), Index, MGN->getScale()},
7145           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
7146     const auto *MSN = cast<MaskedScatterSDNode>(N);
7147     return DAG.getMaskedScatter(
7148         N->getVTList(), MSN->getMemoryVT(), DL,
7149         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
7150          Index, MSN->getScale()},
7151         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
7152   }
7153   case RISCVISD::SRA_VL:
7154   case RISCVISD::SRL_VL:
7155   case RISCVISD::SHL_VL: {
7156     SDValue ShAmt = N->getOperand(1);
7157     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
7158       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
7159       SDLoc DL(N);
7160       SDValue VL = N->getOperand(3);
7161       EVT VT = N->getValueType(0);
7162       ShAmt =
7163           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL);
7164       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
7165                          N->getOperand(2), N->getOperand(3));
7166     }
7167     break;
7168   }
7169   case ISD::SRA:
7170   case ISD::SRL:
7171   case ISD::SHL: {
7172     SDValue ShAmt = N->getOperand(1);
7173     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
7174       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
7175       SDLoc DL(N);
7176       EVT VT = N->getValueType(0);
7177       ShAmt =
7178           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0));
7179       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
7180     }
7181     break;
7182   }
7183   case RISCVISD::MUL_VL: {
7184     SDValue Op0 = N->getOperand(0);
7185     SDValue Op1 = N->getOperand(1);
7186     if (SDValue V = combineMUL_VLToVWMUL(N, Op0, Op1, DAG))
7187       return V;
7188     if (SDValue V = combineMUL_VLToVWMUL(N, Op1, Op0, DAG))
7189       return V;
7190     return SDValue();
7191   }
7192   case ISD::STORE: {
7193     auto *Store = cast<StoreSDNode>(N);
7194     SDValue Val = Store->getValue();
7195     // Combine store of vmv.x.s to vse with VL of 1.
7196     // FIXME: Support FP.
7197     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
7198       SDValue Src = Val.getOperand(0);
7199       EVT VecVT = Src.getValueType();
7200       EVT MemVT = Store->getMemoryVT();
7201       // The memory VT and the element type must match.
7202       if (VecVT.getVectorElementType() == MemVT) {
7203         SDLoc DL(N);
7204         MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
7205         return DAG.getStoreVP(Store->getChain(), DL, Src, Store->getBasePtr(),
7206                               DAG.getConstant(1, DL, MaskVT),
7207                               DAG.getConstant(1, DL, Subtarget.getXLenVT()),
7208                               Store->getPointerInfo(),
7209                               Store->getOriginalAlign(),
7210                               Store->getMemOperand()->getFlags());
7211       }
7212     }
7213 
7214     break;
7215   }
7216   }
7217 
7218   return SDValue();
7219 }
7220 
7221 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
7222     const SDNode *N, CombineLevel Level) const {
7223   // The following folds are only desirable if `(OP _, c1 << c2)` can be
7224   // materialised in fewer instructions than `(OP _, c1)`:
7225   //
7226   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
7227   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
7228   SDValue N0 = N->getOperand(0);
7229   EVT Ty = N0.getValueType();
7230   if (Ty.isScalarInteger() &&
7231       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
7232     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7233     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
7234     if (C1 && C2) {
7235       const APInt &C1Int = C1->getAPIntValue();
7236       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
7237 
7238       // We can materialise `c1 << c2` into an add immediate, so it's "free",
7239       // and the combine should happen, to potentially allow further combines
7240       // later.
7241       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
7242           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
7243         return true;
7244 
7245       // We can materialise `c1` in an add immediate, so it's "free", and the
7246       // combine should be prevented.
7247       if (C1Int.getMinSignedBits() <= 64 &&
7248           isLegalAddImmediate(C1Int.getSExtValue()))
7249         return false;
7250 
7251       // Neither constant will fit into an immediate, so find materialisation
7252       // costs.
7253       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
7254                                               Subtarget.getFeatureBits(),
7255                                               /*CompressionCost*/true);
7256       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
7257           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
7258           /*CompressionCost*/true);
7259 
7260       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
7261       // combine should be prevented.
7262       if (C1Cost < ShiftedC1Cost)
7263         return false;
7264     }
7265   }
7266   return true;
7267 }
7268 
7269 bool RISCVTargetLowering::targetShrinkDemandedConstant(
7270     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
7271     TargetLoweringOpt &TLO) const {
7272   // Delay this optimization as late as possible.
7273   if (!TLO.LegalOps)
7274     return false;
7275 
7276   EVT VT = Op.getValueType();
7277   if (VT.isVector())
7278     return false;
7279 
7280   // Only handle AND for now.
7281   if (Op.getOpcode() != ISD::AND)
7282     return false;
7283 
7284   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7285   if (!C)
7286     return false;
7287 
7288   const APInt &Mask = C->getAPIntValue();
7289 
7290   // Clear all non-demanded bits initially.
7291   APInt ShrunkMask = Mask & DemandedBits;
7292 
7293   // Try to make a smaller immediate by setting undemanded bits.
7294 
7295   APInt ExpandedMask = Mask | ~DemandedBits;
7296 
7297   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
7298     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
7299   };
7300   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
7301     if (NewMask == Mask)
7302       return true;
7303     SDLoc DL(Op);
7304     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
7305     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
7306     return TLO.CombineTo(Op, NewOp);
7307   };
7308 
7309   // If the shrunk mask fits in sign extended 12 bits, let the target
7310   // independent code apply it.
7311   if (ShrunkMask.isSignedIntN(12))
7312     return false;
7313 
7314   // Preserve (and X, 0xffff) when zext.h is supported.
7315   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
7316     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
7317     if (IsLegalMask(NewMask))
7318       return UseMask(NewMask);
7319   }
7320 
7321   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
7322   if (VT == MVT::i64) {
7323     APInt NewMask = APInt(64, 0xffffffff);
7324     if (IsLegalMask(NewMask))
7325       return UseMask(NewMask);
7326   }
7327 
7328   // For the remaining optimizations, we need to be able to make a negative
7329   // number through a combination of mask and undemanded bits.
7330   if (!ExpandedMask.isNegative())
7331     return false;
7332 
7333   // What is the fewest number of bits we need to represent the negative number.
7334   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
7335 
7336   // Try to make a 12 bit negative immediate. If that fails try to make a 32
7337   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
7338   APInt NewMask = ShrunkMask;
7339   if (MinSignedBits <= 12)
7340     NewMask.setBitsFrom(11);
7341   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
7342     NewMask.setBitsFrom(31);
7343   else
7344     return false;
7345 
7346   // Sanity check that our new mask is a subset of the demanded mask.
7347   assert(IsLegalMask(NewMask));
7348   return UseMask(NewMask);
7349 }
7350 
7351 static void computeGREV(APInt &Src, unsigned ShAmt) {
7352   ShAmt &= Src.getBitWidth() - 1;
7353   uint64_t x = Src.getZExtValue();
7354   if (ShAmt & 1)
7355     x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
7356   if (ShAmt & 2)
7357     x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
7358   if (ShAmt & 4)
7359     x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
7360   if (ShAmt & 8)
7361     x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8);
7362   if (ShAmt & 16)
7363     x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16);
7364   if (ShAmt & 32)
7365     x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32);
7366   Src = x;
7367 }
7368 
7369 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
7370                                                         KnownBits &Known,
7371                                                         const APInt &DemandedElts,
7372                                                         const SelectionDAG &DAG,
7373                                                         unsigned Depth) const {
7374   unsigned BitWidth = Known.getBitWidth();
7375   unsigned Opc = Op.getOpcode();
7376   assert((Opc >= ISD::BUILTIN_OP_END ||
7377           Opc == ISD::INTRINSIC_WO_CHAIN ||
7378           Opc == ISD::INTRINSIC_W_CHAIN ||
7379           Opc == ISD::INTRINSIC_VOID) &&
7380          "Should use MaskedValueIsZero if you don't know whether Op"
7381          " is a target node!");
7382 
7383   Known.resetAll();
7384   switch (Opc) {
7385   default: break;
7386   case RISCVISD::SELECT_CC: {
7387     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
7388     // If we don't know any bits, early out.
7389     if (Known.isUnknown())
7390       break;
7391     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
7392 
7393     // Only known if known in both the LHS and RHS.
7394     Known = KnownBits::commonBits(Known, Known2);
7395     break;
7396   }
7397   case RISCVISD::REMUW: {
7398     KnownBits Known2;
7399     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
7400     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
7401     // We only care about the lower 32 bits.
7402     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
7403     // Restore the original width by sign extending.
7404     Known = Known.sext(BitWidth);
7405     break;
7406   }
7407   case RISCVISD::DIVUW: {
7408     KnownBits Known2;
7409     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
7410     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
7411     // We only care about the lower 32 bits.
7412     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
7413     // Restore the original width by sign extending.
7414     Known = Known.sext(BitWidth);
7415     break;
7416   }
7417   case RISCVISD::CTZW: {
7418     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
7419     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
7420     unsigned LowBits = Log2_32(PossibleTZ) + 1;
7421     Known.Zero.setBitsFrom(LowBits);
7422     break;
7423   }
7424   case RISCVISD::CLZW: {
7425     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
7426     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
7427     unsigned LowBits = Log2_32(PossibleLZ) + 1;
7428     Known.Zero.setBitsFrom(LowBits);
7429     break;
7430   }
7431   case RISCVISD::GREV:
7432   case RISCVISD::GREVW: {
7433     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7434       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
7435       if (Opc == RISCVISD::GREVW)
7436         Known = Known.trunc(32);
7437       unsigned ShAmt = C->getZExtValue();
7438       computeGREV(Known.Zero, ShAmt);
7439       computeGREV(Known.One, ShAmt);
7440       if (Opc == RISCVISD::GREVW)
7441         Known = Known.sext(BitWidth);
7442     }
7443     break;
7444   }
7445   case RISCVISD::READ_VLENB:
7446     // We assume VLENB is at least 16 bytes.
7447     Known.Zero.setLowBits(4);
7448     // We assume VLENB is no more than 65536 / 8 bytes.
7449     Known.Zero.setBitsFrom(14);
7450     break;
7451   case ISD::INTRINSIC_W_CHAIN: {
7452     unsigned IntNo = Op.getConstantOperandVal(1);
7453     switch (IntNo) {
7454     default:
7455       // We can't do anything for most intrinsics.
7456       break;
7457     case Intrinsic::riscv_vsetvli:
7458     case Intrinsic::riscv_vsetvlimax:
7459       // Assume that VL output is positive and would fit in an int32_t.
7460       // TODO: VLEN might be capped at 16 bits in a future V spec update.
7461       if (BitWidth >= 32)
7462         Known.Zero.setBitsFrom(31);
7463       break;
7464     }
7465     break;
7466   }
7467   }
7468 }
7469 
7470 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
7471     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
7472     unsigned Depth) const {
7473   switch (Op.getOpcode()) {
7474   default:
7475     break;
7476   case RISCVISD::SELECT_CC: {
7477     unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
7478     if (Tmp == 1) return 1;  // Early out.
7479     unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
7480     return std::min(Tmp, Tmp2);
7481   }
7482   case RISCVISD::SLLW:
7483   case RISCVISD::SRAW:
7484   case RISCVISD::SRLW:
7485   case RISCVISD::DIVW:
7486   case RISCVISD::DIVUW:
7487   case RISCVISD::REMUW:
7488   case RISCVISD::ROLW:
7489   case RISCVISD::RORW:
7490   case RISCVISD::GREVW:
7491   case RISCVISD::GORCW:
7492   case RISCVISD::FSLW:
7493   case RISCVISD::FSRW:
7494   case RISCVISD::SHFLW:
7495   case RISCVISD::UNSHFLW:
7496   case RISCVISD::BCOMPRESSW:
7497   case RISCVISD::BDECOMPRESSW:
7498   case RISCVISD::FCVT_W_RTZ_RV64:
7499   case RISCVISD::FCVT_WU_RTZ_RV64:
7500     // TODO: As the result is sign-extended, this is conservatively correct. A
7501     // more precise answer could be calculated for SRAW depending on known
7502     // bits in the shift amount.
7503     return 33;
7504   case RISCVISD::SHFL:
7505   case RISCVISD::UNSHFL: {
7506     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
7507     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
7508     // will stay within the upper 32 bits. If there were more than 32 sign bits
7509     // before there will be at least 33 sign bits after.
7510     if (Op.getValueType() == MVT::i64 &&
7511         isa<ConstantSDNode>(Op.getOperand(1)) &&
7512         (Op.getConstantOperandVal(1) & 0x10) == 0) {
7513       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
7514       if (Tmp > 32)
7515         return 33;
7516     }
7517     break;
7518   }
7519   case RISCVISD::VMV_X_S:
7520     // The number of sign bits of the scalar result is computed by obtaining the
7521     // element type of the input vector operand, subtracting its width from the
7522     // XLEN, and then adding one (sign bit within the element type). If the
7523     // element type is wider than XLen, the least-significant XLEN bits are
7524     // taken.
7525     if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen())
7526       return 1;
7527     return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1;
7528   }
7529 
7530   return 1;
7531 }
7532 
7533 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
7534                                                   MachineBasicBlock *BB) {
7535   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
7536 
7537   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
7538   // Should the count have wrapped while it was being read, we need to try
7539   // again.
7540   // ...
7541   // read:
7542   // rdcycleh x3 # load high word of cycle
7543   // rdcycle  x2 # load low word of cycle
7544   // rdcycleh x4 # load high word of cycle
7545   // bne x3, x4, read # check if high word reads match, otherwise try again
7546   // ...
7547 
7548   MachineFunction &MF = *BB->getParent();
7549   const BasicBlock *LLVM_BB = BB->getBasicBlock();
7550   MachineFunction::iterator It = ++BB->getIterator();
7551 
7552   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
7553   MF.insert(It, LoopMBB);
7554 
7555   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
7556   MF.insert(It, DoneMBB);
7557 
7558   // Transfer the remainder of BB and its successor edges to DoneMBB.
7559   DoneMBB->splice(DoneMBB->begin(), BB,
7560                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
7561   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
7562 
7563   BB->addSuccessor(LoopMBB);
7564 
7565   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7566   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
7567   Register LoReg = MI.getOperand(0).getReg();
7568   Register HiReg = MI.getOperand(1).getReg();
7569   DebugLoc DL = MI.getDebugLoc();
7570 
7571   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
7572   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
7573       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
7574       .addReg(RISCV::X0);
7575   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
7576       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
7577       .addReg(RISCV::X0);
7578   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
7579       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
7580       .addReg(RISCV::X0);
7581 
7582   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
7583       .addReg(HiReg)
7584       .addReg(ReadAgainReg)
7585       .addMBB(LoopMBB);
7586 
7587   LoopMBB->addSuccessor(LoopMBB);
7588   LoopMBB->addSuccessor(DoneMBB);
7589 
7590   MI.eraseFromParent();
7591 
7592   return DoneMBB;
7593 }
7594 
7595 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
7596                                              MachineBasicBlock *BB) {
7597   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
7598 
7599   MachineFunction &MF = *BB->getParent();
7600   DebugLoc DL = MI.getDebugLoc();
7601   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
7602   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
7603   Register LoReg = MI.getOperand(0).getReg();
7604   Register HiReg = MI.getOperand(1).getReg();
7605   Register SrcReg = MI.getOperand(2).getReg();
7606   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
7607   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
7608 
7609   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
7610                           RI);
7611   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
7612   MachineMemOperand *MMOLo =
7613       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
7614   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
7615       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
7616   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
7617       .addFrameIndex(FI)
7618       .addImm(0)
7619       .addMemOperand(MMOLo);
7620   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
7621       .addFrameIndex(FI)
7622       .addImm(4)
7623       .addMemOperand(MMOHi);
7624   MI.eraseFromParent(); // The pseudo instruction is gone now.
7625   return BB;
7626 }
7627 
7628 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
7629                                                  MachineBasicBlock *BB) {
7630   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
7631          "Unexpected instruction");
7632 
7633   MachineFunction &MF = *BB->getParent();
7634   DebugLoc DL = MI.getDebugLoc();
7635   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
7636   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
7637   Register DstReg = MI.getOperand(0).getReg();
7638   Register LoReg = MI.getOperand(1).getReg();
7639   Register HiReg = MI.getOperand(2).getReg();
7640   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
7641   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
7642 
7643   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
7644   MachineMemOperand *MMOLo =
7645       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
7646   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
7647       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
7648   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
7649       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
7650       .addFrameIndex(FI)
7651       .addImm(0)
7652       .addMemOperand(MMOLo);
7653   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
7654       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
7655       .addFrameIndex(FI)
7656       .addImm(4)
7657       .addMemOperand(MMOHi);
7658   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
7659   MI.eraseFromParent(); // The pseudo instruction is gone now.
7660   return BB;
7661 }
7662 
7663 static bool isSelectPseudo(MachineInstr &MI) {
7664   switch (MI.getOpcode()) {
7665   default:
7666     return false;
7667   case RISCV::Select_GPR_Using_CC_GPR:
7668   case RISCV::Select_FPR16_Using_CC_GPR:
7669   case RISCV::Select_FPR32_Using_CC_GPR:
7670   case RISCV::Select_FPR64_Using_CC_GPR:
7671     return true;
7672   }
7673 }
7674 
7675 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
7676                                            MachineBasicBlock *BB,
7677                                            const RISCVSubtarget &Subtarget) {
7678   // To "insert" Select_* instructions, we actually have to insert the triangle
7679   // control-flow pattern.  The incoming instructions know the destination vreg
7680   // to set, the condition code register to branch on, the true/false values to
7681   // select between, and the condcode to use to select the appropriate branch.
7682   //
7683   // We produce the following control flow:
7684   //     HeadMBB
7685   //     |  \
7686   //     |  IfFalseMBB
7687   //     | /
7688   //    TailMBB
7689   //
7690   // When we find a sequence of selects we attempt to optimize their emission
7691   // by sharing the control flow. Currently we only handle cases where we have
7692   // multiple selects with the exact same condition (same LHS, RHS and CC).
7693   // The selects may be interleaved with other instructions if the other
7694   // instructions meet some requirements we deem safe:
7695   // - They are debug instructions. Otherwise,
7696   // - They do not have side-effects, do not access memory and their inputs do
7697   //   not depend on the results of the select pseudo-instructions.
7698   // The TrueV/FalseV operands of the selects cannot depend on the result of
7699   // previous selects in the sequence.
7700   // These conditions could be further relaxed. See the X86 target for a
7701   // related approach and more information.
7702   Register LHS = MI.getOperand(1).getReg();
7703   Register RHS = MI.getOperand(2).getReg();
7704   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
7705 
7706   SmallVector<MachineInstr *, 4> SelectDebugValues;
7707   SmallSet<Register, 4> SelectDests;
7708   SelectDests.insert(MI.getOperand(0).getReg());
7709 
7710   MachineInstr *LastSelectPseudo = &MI;
7711 
7712   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
7713        SequenceMBBI != E; ++SequenceMBBI) {
7714     if (SequenceMBBI->isDebugInstr())
7715       continue;
7716     else if (isSelectPseudo(*SequenceMBBI)) {
7717       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
7718           SequenceMBBI->getOperand(2).getReg() != RHS ||
7719           SequenceMBBI->getOperand(3).getImm() != CC ||
7720           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
7721           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
7722         break;
7723       LastSelectPseudo = &*SequenceMBBI;
7724       SequenceMBBI->collectDebugValues(SelectDebugValues);
7725       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
7726     } else {
7727       if (SequenceMBBI->hasUnmodeledSideEffects() ||
7728           SequenceMBBI->mayLoadOrStore())
7729         break;
7730       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
7731             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
7732           }))
7733         break;
7734     }
7735   }
7736 
7737   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
7738   const BasicBlock *LLVM_BB = BB->getBasicBlock();
7739   DebugLoc DL = MI.getDebugLoc();
7740   MachineFunction::iterator I = ++BB->getIterator();
7741 
7742   MachineBasicBlock *HeadMBB = BB;
7743   MachineFunction *F = BB->getParent();
7744   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
7745   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
7746 
7747   F->insert(I, IfFalseMBB);
7748   F->insert(I, TailMBB);
7749 
7750   // Transfer debug instructions associated with the selects to TailMBB.
7751   for (MachineInstr *DebugInstr : SelectDebugValues) {
7752     TailMBB->push_back(DebugInstr->removeFromParent());
7753   }
7754 
7755   // Move all instructions after the sequence to TailMBB.
7756   TailMBB->splice(TailMBB->end(), HeadMBB,
7757                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
7758   // Update machine-CFG edges by transferring all successors of the current
7759   // block to the new block which will contain the Phi nodes for the selects.
7760   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
7761   // Set the successors for HeadMBB.
7762   HeadMBB->addSuccessor(IfFalseMBB);
7763   HeadMBB->addSuccessor(TailMBB);
7764 
7765   // Insert appropriate branch.
7766   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
7767     .addReg(LHS)
7768     .addReg(RHS)
7769     .addMBB(TailMBB);
7770 
7771   // IfFalseMBB just falls through to TailMBB.
7772   IfFalseMBB->addSuccessor(TailMBB);
7773 
7774   // Create PHIs for all of the select pseudo-instructions.
7775   auto SelectMBBI = MI.getIterator();
7776   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
7777   auto InsertionPoint = TailMBB->begin();
7778   while (SelectMBBI != SelectEnd) {
7779     auto Next = std::next(SelectMBBI);
7780     if (isSelectPseudo(*SelectMBBI)) {
7781       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
7782       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
7783               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
7784           .addReg(SelectMBBI->getOperand(4).getReg())
7785           .addMBB(HeadMBB)
7786           .addReg(SelectMBBI->getOperand(5).getReg())
7787           .addMBB(IfFalseMBB);
7788       SelectMBBI->eraseFromParent();
7789     }
7790     SelectMBBI = Next;
7791   }
7792 
7793   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
7794   return TailMBB;
7795 }
7796 
7797 MachineBasicBlock *
7798 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
7799                                                  MachineBasicBlock *BB) const {
7800   switch (MI.getOpcode()) {
7801   default:
7802     llvm_unreachable("Unexpected instr type to insert");
7803   case RISCV::ReadCycleWide:
7804     assert(!Subtarget.is64Bit() &&
7805            "ReadCycleWrite is only to be used on riscv32");
7806     return emitReadCycleWidePseudo(MI, BB);
7807   case RISCV::Select_GPR_Using_CC_GPR:
7808   case RISCV::Select_FPR16_Using_CC_GPR:
7809   case RISCV::Select_FPR32_Using_CC_GPR:
7810   case RISCV::Select_FPR64_Using_CC_GPR:
7811     return emitSelectPseudo(MI, BB, Subtarget);
7812   case RISCV::BuildPairF64Pseudo:
7813     return emitBuildPairF64Pseudo(MI, BB);
7814   case RISCV::SplitF64Pseudo:
7815     return emitSplitF64Pseudo(MI, BB);
7816   }
7817 }
7818 
7819 // Calling Convention Implementation.
7820 // The expectations for frontend ABI lowering vary from target to target.
7821 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
7822 // details, but this is a longer term goal. For now, we simply try to keep the
7823 // role of the frontend as simple and well-defined as possible. The rules can
7824 // be summarised as:
7825 // * Never split up large scalar arguments. We handle them here.
7826 // * If a hardfloat calling convention is being used, and the struct may be
7827 // passed in a pair of registers (fp+fp, int+fp), and both registers are
7828 // available, then pass as two separate arguments. If either the GPRs or FPRs
7829 // are exhausted, then pass according to the rule below.
7830 // * If a struct could never be passed in registers or directly in a stack
7831 // slot (as it is larger than 2*XLEN and the floating point rules don't
7832 // apply), then pass it using a pointer with the byval attribute.
7833 // * If a struct is less than 2*XLEN, then coerce to either a two-element
7834 // word-sized array or a 2*XLEN scalar (depending on alignment).
7835 // * The frontend can determine whether a struct is returned by reference or
7836 // not based on its size and fields. If it will be returned by reference, the
7837 // frontend must modify the prototype so a pointer with the sret annotation is
7838 // passed as the first argument. This is not necessary for large scalar
7839 // returns.
7840 // * Struct return values and varargs should be coerced to structs containing
7841 // register-size fields in the same situations they would be for fixed
7842 // arguments.
7843 
7844 static const MCPhysReg ArgGPRs[] = {
7845   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
7846   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
7847 };
7848 static const MCPhysReg ArgFPR16s[] = {
7849   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
7850   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
7851 };
7852 static const MCPhysReg ArgFPR32s[] = {
7853   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
7854   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
7855 };
7856 static const MCPhysReg ArgFPR64s[] = {
7857   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
7858   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
7859 };
7860 // This is an interim calling convention and it may be changed in the future.
7861 static const MCPhysReg ArgVRs[] = {
7862     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
7863     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
7864     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
7865 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
7866                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
7867                                      RISCV::V20M2, RISCV::V22M2};
7868 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
7869                                      RISCV::V20M4};
7870 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
7871 
7872 // Pass a 2*XLEN argument that has been split into two XLEN values through
7873 // registers or the stack as necessary.
7874 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
7875                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
7876                                 MVT ValVT2, MVT LocVT2,
7877                                 ISD::ArgFlagsTy ArgFlags2) {
7878   unsigned XLenInBytes = XLen / 8;
7879   if (Register Reg = State.AllocateReg(ArgGPRs)) {
7880     // At least one half can be passed via register.
7881     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
7882                                      VA1.getLocVT(), CCValAssign::Full));
7883   } else {
7884     // Both halves must be passed on the stack, with proper alignment.
7885     Align StackAlign =
7886         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
7887     State.addLoc(
7888         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
7889                             State.AllocateStack(XLenInBytes, StackAlign),
7890                             VA1.getLocVT(), CCValAssign::Full));
7891     State.addLoc(CCValAssign::getMem(
7892         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
7893         LocVT2, CCValAssign::Full));
7894     return false;
7895   }
7896 
7897   if (Register Reg = State.AllocateReg(ArgGPRs)) {
7898     // The second half can also be passed via register.
7899     State.addLoc(
7900         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
7901   } else {
7902     // The second half is passed via the stack, without additional alignment.
7903     State.addLoc(CCValAssign::getMem(
7904         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
7905         LocVT2, CCValAssign::Full));
7906   }
7907 
7908   return false;
7909 }
7910 
7911 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
7912                                Optional<unsigned> FirstMaskArgument,
7913                                CCState &State, const RISCVTargetLowering &TLI) {
7914   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
7915   if (RC == &RISCV::VRRegClass) {
7916     // Assign the first mask argument to V0.
7917     // This is an interim calling convention and it may be changed in the
7918     // future.
7919     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
7920       return State.AllocateReg(RISCV::V0);
7921     return State.AllocateReg(ArgVRs);
7922   }
7923   if (RC == &RISCV::VRM2RegClass)
7924     return State.AllocateReg(ArgVRM2s);
7925   if (RC == &RISCV::VRM4RegClass)
7926     return State.AllocateReg(ArgVRM4s);
7927   if (RC == &RISCV::VRM8RegClass)
7928     return State.AllocateReg(ArgVRM8s);
7929   llvm_unreachable("Unhandled register class for ValueType");
7930 }
7931 
7932 // Implements the RISC-V calling convention. Returns true upon failure.
7933 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
7934                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
7935                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
7936                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
7937                      Optional<unsigned> FirstMaskArgument) {
7938   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
7939   assert(XLen == 32 || XLen == 64);
7940   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
7941 
7942   // Any return value split in to more than two values can't be returned
7943   // directly. Vectors are returned via the available vector registers.
7944   if (!LocVT.isVector() && IsRet && ValNo > 1)
7945     return true;
7946 
7947   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
7948   // variadic argument, or if no F16/F32 argument registers are available.
7949   bool UseGPRForF16_F32 = true;
7950   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
7951   // variadic argument, or if no F64 argument registers are available.
7952   bool UseGPRForF64 = true;
7953 
7954   switch (ABI) {
7955   default:
7956     llvm_unreachable("Unexpected ABI");
7957   case RISCVABI::ABI_ILP32:
7958   case RISCVABI::ABI_LP64:
7959     break;
7960   case RISCVABI::ABI_ILP32F:
7961   case RISCVABI::ABI_LP64F:
7962     UseGPRForF16_F32 = !IsFixed;
7963     break;
7964   case RISCVABI::ABI_ILP32D:
7965   case RISCVABI::ABI_LP64D:
7966     UseGPRForF16_F32 = !IsFixed;
7967     UseGPRForF64 = !IsFixed;
7968     break;
7969   }
7970 
7971   // FPR16, FPR32, and FPR64 alias each other.
7972   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
7973     UseGPRForF16_F32 = true;
7974     UseGPRForF64 = true;
7975   }
7976 
7977   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
7978   // similar local variables rather than directly checking against the target
7979   // ABI.
7980 
7981   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
7982     LocVT = XLenVT;
7983     LocInfo = CCValAssign::BCvt;
7984   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
7985     LocVT = MVT::i64;
7986     LocInfo = CCValAssign::BCvt;
7987   }
7988 
7989   // If this is a variadic argument, the RISC-V calling convention requires
7990   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
7991   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
7992   // be used regardless of whether the original argument was split during
7993   // legalisation or not. The argument will not be passed by registers if the
7994   // original type is larger than 2*XLEN, so the register alignment rule does
7995   // not apply.
7996   unsigned TwoXLenInBytes = (2 * XLen) / 8;
7997   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
7998       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
7999     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
8000     // Skip 'odd' register if necessary.
8001     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
8002       State.AllocateReg(ArgGPRs);
8003   }
8004 
8005   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
8006   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
8007       State.getPendingArgFlags();
8008 
8009   assert(PendingLocs.size() == PendingArgFlags.size() &&
8010          "PendingLocs and PendingArgFlags out of sync");
8011 
8012   // Handle passing f64 on RV32D with a soft float ABI or when floating point
8013   // registers are exhausted.
8014   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
8015     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
8016            "Can't lower f64 if it is split");
8017     // Depending on available argument GPRS, f64 may be passed in a pair of
8018     // GPRs, split between a GPR and the stack, or passed completely on the
8019     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
8020     // cases.
8021     Register Reg = State.AllocateReg(ArgGPRs);
8022     LocVT = MVT::i32;
8023     if (!Reg) {
8024       unsigned StackOffset = State.AllocateStack(8, Align(8));
8025       State.addLoc(
8026           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
8027       return false;
8028     }
8029     if (!State.AllocateReg(ArgGPRs))
8030       State.AllocateStack(4, Align(4));
8031     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8032     return false;
8033   }
8034 
8035   // Fixed-length vectors are located in the corresponding scalable-vector
8036   // container types.
8037   if (ValVT.isFixedLengthVector())
8038     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
8039 
8040   // Split arguments might be passed indirectly, so keep track of the pending
8041   // values. Split vectors are passed via a mix of registers and indirectly, so
8042   // treat them as we would any other argument.
8043   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
8044     LocVT = XLenVT;
8045     LocInfo = CCValAssign::Indirect;
8046     PendingLocs.push_back(
8047         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
8048     PendingArgFlags.push_back(ArgFlags);
8049     if (!ArgFlags.isSplitEnd()) {
8050       return false;
8051     }
8052   }
8053 
8054   // If the split argument only had two elements, it should be passed directly
8055   // in registers or on the stack.
8056   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
8057       PendingLocs.size() <= 2) {
8058     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
8059     // Apply the normal calling convention rules to the first half of the
8060     // split argument.
8061     CCValAssign VA = PendingLocs[0];
8062     ISD::ArgFlagsTy AF = PendingArgFlags[0];
8063     PendingLocs.clear();
8064     PendingArgFlags.clear();
8065     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
8066                                ArgFlags);
8067   }
8068 
8069   // Allocate to a register if possible, or else a stack slot.
8070   Register Reg;
8071   unsigned StoreSizeBytes = XLen / 8;
8072   Align StackAlign = Align(XLen / 8);
8073 
8074   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
8075     Reg = State.AllocateReg(ArgFPR16s);
8076   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
8077     Reg = State.AllocateReg(ArgFPR32s);
8078   else if (ValVT == MVT::f64 && !UseGPRForF64)
8079     Reg = State.AllocateReg(ArgFPR64s);
8080   else if (ValVT.isVector()) {
8081     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
8082     if (!Reg) {
8083       // For return values, the vector must be passed fully via registers or
8084       // via the stack.
8085       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
8086       // but we're using all of them.
8087       if (IsRet)
8088         return true;
8089       // Try using a GPR to pass the address
8090       if ((Reg = State.AllocateReg(ArgGPRs))) {
8091         LocVT = XLenVT;
8092         LocInfo = CCValAssign::Indirect;
8093       } else if (ValVT.isScalableVector()) {
8094         report_fatal_error("Unable to pass scalable vector types on the stack");
8095       } else {
8096         // Pass fixed-length vectors on the stack.
8097         LocVT = ValVT;
8098         StoreSizeBytes = ValVT.getStoreSize();
8099         // Align vectors to their element sizes, being careful for vXi1
8100         // vectors.
8101         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
8102       }
8103     }
8104   } else {
8105     Reg = State.AllocateReg(ArgGPRs);
8106   }
8107 
8108   unsigned StackOffset =
8109       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
8110 
8111   // If we reach this point and PendingLocs is non-empty, we must be at the
8112   // end of a split argument that must be passed indirectly.
8113   if (!PendingLocs.empty()) {
8114     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
8115     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
8116 
8117     for (auto &It : PendingLocs) {
8118       if (Reg)
8119         It.convertToReg(Reg);
8120       else
8121         It.convertToMem(StackOffset);
8122       State.addLoc(It);
8123     }
8124     PendingLocs.clear();
8125     PendingArgFlags.clear();
8126     return false;
8127   }
8128 
8129   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
8130           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
8131          "Expected an XLenVT or vector types at this stage");
8132 
8133   if (Reg) {
8134     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8135     return false;
8136   }
8137 
8138   // When a floating-point value is passed on the stack, no bit-conversion is
8139   // needed.
8140   if (ValVT.isFloatingPoint()) {
8141     LocVT = ValVT;
8142     LocInfo = CCValAssign::Full;
8143   }
8144   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
8145   return false;
8146 }
8147 
8148 template <typename ArgTy>
8149 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
8150   for (const auto &ArgIdx : enumerate(Args)) {
8151     MVT ArgVT = ArgIdx.value().VT;
8152     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
8153       return ArgIdx.index();
8154   }
8155   return None;
8156 }
8157 
8158 void RISCVTargetLowering::analyzeInputArgs(
8159     MachineFunction &MF, CCState &CCInfo,
8160     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
8161     RISCVCCAssignFn Fn) const {
8162   unsigned NumArgs = Ins.size();
8163   FunctionType *FType = MF.getFunction().getFunctionType();
8164 
8165   Optional<unsigned> FirstMaskArgument;
8166   if (Subtarget.hasVInstructions())
8167     FirstMaskArgument = preAssignMask(Ins);
8168 
8169   for (unsigned i = 0; i != NumArgs; ++i) {
8170     MVT ArgVT = Ins[i].VT;
8171     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
8172 
8173     Type *ArgTy = nullptr;
8174     if (IsRet)
8175       ArgTy = FType->getReturnType();
8176     else if (Ins[i].isOrigArg())
8177       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
8178 
8179     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
8180     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
8181            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
8182            FirstMaskArgument)) {
8183       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
8184                         << EVT(ArgVT).getEVTString() << '\n');
8185       llvm_unreachable(nullptr);
8186     }
8187   }
8188 }
8189 
8190 void RISCVTargetLowering::analyzeOutputArgs(
8191     MachineFunction &MF, CCState &CCInfo,
8192     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
8193     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
8194   unsigned NumArgs = Outs.size();
8195 
8196   Optional<unsigned> FirstMaskArgument;
8197   if (Subtarget.hasVInstructions())
8198     FirstMaskArgument = preAssignMask(Outs);
8199 
8200   for (unsigned i = 0; i != NumArgs; i++) {
8201     MVT ArgVT = Outs[i].VT;
8202     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
8203     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
8204 
8205     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
8206     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
8207            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
8208            FirstMaskArgument)) {
8209       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
8210                         << EVT(ArgVT).getEVTString() << "\n");
8211       llvm_unreachable(nullptr);
8212     }
8213   }
8214 }
8215 
8216 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
8217 // values.
8218 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
8219                                    const CCValAssign &VA, const SDLoc &DL,
8220                                    const RISCVSubtarget &Subtarget) {
8221   switch (VA.getLocInfo()) {
8222   default:
8223     llvm_unreachable("Unexpected CCValAssign::LocInfo");
8224   case CCValAssign::Full:
8225     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
8226       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
8227     break;
8228   case CCValAssign::BCvt:
8229     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
8230       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
8231     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
8232       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
8233     else
8234       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
8235     break;
8236   }
8237   return Val;
8238 }
8239 
8240 // The caller is responsible for loading the full value if the argument is
8241 // passed with CCValAssign::Indirect.
8242 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
8243                                 const CCValAssign &VA, const SDLoc &DL,
8244                                 const RISCVTargetLowering &TLI) {
8245   MachineFunction &MF = DAG.getMachineFunction();
8246   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8247   EVT LocVT = VA.getLocVT();
8248   SDValue Val;
8249   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
8250   Register VReg = RegInfo.createVirtualRegister(RC);
8251   RegInfo.addLiveIn(VA.getLocReg(), VReg);
8252   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
8253 
8254   if (VA.getLocInfo() == CCValAssign::Indirect)
8255     return Val;
8256 
8257   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
8258 }
8259 
8260 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
8261                                    const CCValAssign &VA, const SDLoc &DL,
8262                                    const RISCVSubtarget &Subtarget) {
8263   EVT LocVT = VA.getLocVT();
8264 
8265   switch (VA.getLocInfo()) {
8266   default:
8267     llvm_unreachable("Unexpected CCValAssign::LocInfo");
8268   case CCValAssign::Full:
8269     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
8270       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
8271     break;
8272   case CCValAssign::BCvt:
8273     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
8274       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
8275     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
8276       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
8277     else
8278       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
8279     break;
8280   }
8281   return Val;
8282 }
8283 
8284 // The caller is responsible for loading the full value if the argument is
8285 // passed with CCValAssign::Indirect.
8286 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
8287                                 const CCValAssign &VA, const SDLoc &DL) {
8288   MachineFunction &MF = DAG.getMachineFunction();
8289   MachineFrameInfo &MFI = MF.getFrameInfo();
8290   EVT LocVT = VA.getLocVT();
8291   EVT ValVT = VA.getValVT();
8292   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
8293   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
8294                                  /*Immutable=*/true);
8295   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
8296   SDValue Val;
8297 
8298   ISD::LoadExtType ExtType;
8299   switch (VA.getLocInfo()) {
8300   default:
8301     llvm_unreachable("Unexpected CCValAssign::LocInfo");
8302   case CCValAssign::Full:
8303   case CCValAssign::Indirect:
8304   case CCValAssign::BCvt:
8305     ExtType = ISD::NON_EXTLOAD;
8306     break;
8307   }
8308   Val = DAG.getExtLoad(
8309       ExtType, DL, LocVT, Chain, FIN,
8310       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
8311   return Val;
8312 }
8313 
8314 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
8315                                        const CCValAssign &VA, const SDLoc &DL) {
8316   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
8317          "Unexpected VA");
8318   MachineFunction &MF = DAG.getMachineFunction();
8319   MachineFrameInfo &MFI = MF.getFrameInfo();
8320   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8321 
8322   if (VA.isMemLoc()) {
8323     // f64 is passed on the stack.
8324     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
8325     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
8326     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
8327                        MachinePointerInfo::getFixedStack(MF, FI));
8328   }
8329 
8330   assert(VA.isRegLoc() && "Expected register VA assignment");
8331 
8332   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
8333   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
8334   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
8335   SDValue Hi;
8336   if (VA.getLocReg() == RISCV::X17) {
8337     // Second half of f64 is passed on the stack.
8338     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
8339     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
8340     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
8341                      MachinePointerInfo::getFixedStack(MF, FI));
8342   } else {
8343     // Second half of f64 is passed in another GPR.
8344     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
8345     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
8346     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
8347   }
8348   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
8349 }
8350 
8351 // FastCC has less than 1% performance improvement for some particular
8352 // benchmark. But theoretically, it may has benenfit for some cases.
8353 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
8354                             unsigned ValNo, MVT ValVT, MVT LocVT,
8355                             CCValAssign::LocInfo LocInfo,
8356                             ISD::ArgFlagsTy ArgFlags, CCState &State,
8357                             bool IsFixed, bool IsRet, Type *OrigTy,
8358                             const RISCVTargetLowering &TLI,
8359                             Optional<unsigned> FirstMaskArgument) {
8360 
8361   // X5 and X6 might be used for save-restore libcall.
8362   static const MCPhysReg GPRList[] = {
8363       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
8364       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
8365       RISCV::X29, RISCV::X30, RISCV::X31};
8366 
8367   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
8368     if (unsigned Reg = State.AllocateReg(GPRList)) {
8369       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8370       return false;
8371     }
8372   }
8373 
8374   if (LocVT == MVT::f16) {
8375     static const MCPhysReg FPR16List[] = {
8376         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
8377         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
8378         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
8379         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
8380     if (unsigned Reg = State.AllocateReg(FPR16List)) {
8381       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8382       return false;
8383     }
8384   }
8385 
8386   if (LocVT == MVT::f32) {
8387     static const MCPhysReg FPR32List[] = {
8388         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
8389         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
8390         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
8391         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
8392     if (unsigned Reg = State.AllocateReg(FPR32List)) {
8393       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8394       return false;
8395     }
8396   }
8397 
8398   if (LocVT == MVT::f64) {
8399     static const MCPhysReg FPR64List[] = {
8400         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
8401         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
8402         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
8403         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
8404     if (unsigned Reg = State.AllocateReg(FPR64List)) {
8405       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8406       return false;
8407     }
8408   }
8409 
8410   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
8411     unsigned Offset4 = State.AllocateStack(4, Align(4));
8412     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
8413     return false;
8414   }
8415 
8416   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
8417     unsigned Offset5 = State.AllocateStack(8, Align(8));
8418     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
8419     return false;
8420   }
8421 
8422   if (LocVT.isVector()) {
8423     if (unsigned Reg =
8424             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
8425       // Fixed-length vectors are located in the corresponding scalable-vector
8426       // container types.
8427       if (ValVT.isFixedLengthVector())
8428         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
8429       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8430     } else {
8431       // Try and pass the address via a "fast" GPR.
8432       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
8433         LocInfo = CCValAssign::Indirect;
8434         LocVT = TLI.getSubtarget().getXLenVT();
8435         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
8436       } else if (ValVT.isFixedLengthVector()) {
8437         auto StackAlign =
8438             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
8439         unsigned StackOffset =
8440             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
8441         State.addLoc(
8442             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
8443       } else {
8444         // Can't pass scalable vectors on the stack.
8445         return true;
8446       }
8447     }
8448 
8449     return false;
8450   }
8451 
8452   return true; // CC didn't match.
8453 }
8454 
8455 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
8456                          CCValAssign::LocInfo LocInfo,
8457                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
8458 
8459   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
8460     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
8461     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
8462     static const MCPhysReg GPRList[] = {
8463         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
8464         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
8465     if (unsigned Reg = State.AllocateReg(GPRList)) {
8466       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8467       return false;
8468     }
8469   }
8470 
8471   if (LocVT == MVT::f32) {
8472     // Pass in STG registers: F1, ..., F6
8473     //                        fs0 ... fs5
8474     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
8475                                           RISCV::F18_F, RISCV::F19_F,
8476                                           RISCV::F20_F, RISCV::F21_F};
8477     if (unsigned Reg = State.AllocateReg(FPR32List)) {
8478       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8479       return false;
8480     }
8481   }
8482 
8483   if (LocVT == MVT::f64) {
8484     // Pass in STG registers: D1, ..., D6
8485     //                        fs6 ... fs11
8486     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
8487                                           RISCV::F24_D, RISCV::F25_D,
8488                                           RISCV::F26_D, RISCV::F27_D};
8489     if (unsigned Reg = State.AllocateReg(FPR64List)) {
8490       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8491       return false;
8492     }
8493   }
8494 
8495   report_fatal_error("No registers left in GHC calling convention");
8496   return true;
8497 }
8498 
8499 // Transform physical registers into virtual registers.
8500 SDValue RISCVTargetLowering::LowerFormalArguments(
8501     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
8502     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
8503     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
8504 
8505   MachineFunction &MF = DAG.getMachineFunction();
8506 
8507   switch (CallConv) {
8508   default:
8509     report_fatal_error("Unsupported calling convention");
8510   case CallingConv::C:
8511   case CallingConv::Fast:
8512     break;
8513   case CallingConv::GHC:
8514     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
8515         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
8516       report_fatal_error(
8517         "GHC calling convention requires the F and D instruction set extensions");
8518   }
8519 
8520   const Function &Func = MF.getFunction();
8521   if (Func.hasFnAttribute("interrupt")) {
8522     if (!Func.arg_empty())
8523       report_fatal_error(
8524         "Functions with the interrupt attribute cannot have arguments!");
8525 
8526     StringRef Kind =
8527       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
8528 
8529     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
8530       report_fatal_error(
8531         "Function interrupt attribute argument not supported!");
8532   }
8533 
8534   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8535   MVT XLenVT = Subtarget.getXLenVT();
8536   unsigned XLenInBytes = Subtarget.getXLen() / 8;
8537   // Used with vargs to acumulate store chains.
8538   std::vector<SDValue> OutChains;
8539 
8540   // Assign locations to all of the incoming arguments.
8541   SmallVector<CCValAssign, 16> ArgLocs;
8542   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
8543 
8544   if (CallConv == CallingConv::GHC)
8545     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
8546   else
8547     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
8548                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
8549                                                    : CC_RISCV);
8550 
8551   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
8552     CCValAssign &VA = ArgLocs[i];
8553     SDValue ArgValue;
8554     // Passing f64 on RV32D with a soft float ABI must be handled as a special
8555     // case.
8556     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
8557       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
8558     else if (VA.isRegLoc())
8559       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
8560     else
8561       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
8562 
8563     if (VA.getLocInfo() == CCValAssign::Indirect) {
8564       // If the original argument was split and passed by reference (e.g. i128
8565       // on RV32), we need to load all parts of it here (using the same
8566       // address). Vectors may be partly split to registers and partly to the
8567       // stack, in which case the base address is partly offset and subsequent
8568       // stores are relative to that.
8569       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
8570                                    MachinePointerInfo()));
8571       unsigned ArgIndex = Ins[i].OrigArgIndex;
8572       unsigned ArgPartOffset = Ins[i].PartOffset;
8573       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
8574       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
8575         CCValAssign &PartVA = ArgLocs[i + 1];
8576         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
8577         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
8578         if (PartVA.getValVT().isScalableVector())
8579           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
8580         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
8581         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
8582                                      MachinePointerInfo()));
8583         ++i;
8584       }
8585       continue;
8586     }
8587     InVals.push_back(ArgValue);
8588   }
8589 
8590   if (IsVarArg) {
8591     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
8592     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
8593     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
8594     MachineFrameInfo &MFI = MF.getFrameInfo();
8595     MachineRegisterInfo &RegInfo = MF.getRegInfo();
8596     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
8597 
8598     // Offset of the first variable argument from stack pointer, and size of
8599     // the vararg save area. For now, the varargs save area is either zero or
8600     // large enough to hold a0-a7.
8601     int VaArgOffset, VarArgsSaveSize;
8602 
8603     // If all registers are allocated, then all varargs must be passed on the
8604     // stack and we don't need to save any argregs.
8605     if (ArgRegs.size() == Idx) {
8606       VaArgOffset = CCInfo.getNextStackOffset();
8607       VarArgsSaveSize = 0;
8608     } else {
8609       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
8610       VaArgOffset = -VarArgsSaveSize;
8611     }
8612 
8613     // Record the frame index of the first variable argument
8614     // which is a value necessary to VASTART.
8615     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
8616     RVFI->setVarArgsFrameIndex(FI);
8617 
8618     // If saving an odd number of registers then create an extra stack slot to
8619     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
8620     // offsets to even-numbered registered remain 2*XLEN-aligned.
8621     if (Idx % 2) {
8622       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
8623       VarArgsSaveSize += XLenInBytes;
8624     }
8625 
8626     // Copy the integer registers that may have been used for passing varargs
8627     // to the vararg save area.
8628     for (unsigned I = Idx; I < ArgRegs.size();
8629          ++I, VaArgOffset += XLenInBytes) {
8630       const Register Reg = RegInfo.createVirtualRegister(RC);
8631       RegInfo.addLiveIn(ArgRegs[I], Reg);
8632       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
8633       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
8634       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
8635       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
8636                                    MachinePointerInfo::getFixedStack(MF, FI));
8637       cast<StoreSDNode>(Store.getNode())
8638           ->getMemOperand()
8639           ->setValue((Value *)nullptr);
8640       OutChains.push_back(Store);
8641     }
8642     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
8643   }
8644 
8645   // All stores are grouped in one node to allow the matching between
8646   // the size of Ins and InVals. This only happens for vararg functions.
8647   if (!OutChains.empty()) {
8648     OutChains.push_back(Chain);
8649     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
8650   }
8651 
8652   return Chain;
8653 }
8654 
8655 /// isEligibleForTailCallOptimization - Check whether the call is eligible
8656 /// for tail call optimization.
8657 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
8658 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
8659     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
8660     const SmallVector<CCValAssign, 16> &ArgLocs) const {
8661 
8662   auto &Callee = CLI.Callee;
8663   auto CalleeCC = CLI.CallConv;
8664   auto &Outs = CLI.Outs;
8665   auto &Caller = MF.getFunction();
8666   auto CallerCC = Caller.getCallingConv();
8667 
8668   // Exception-handling functions need a special set of instructions to
8669   // indicate a return to the hardware. Tail-calling another function would
8670   // probably break this.
8671   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
8672   // should be expanded as new function attributes are introduced.
8673   if (Caller.hasFnAttribute("interrupt"))
8674     return false;
8675 
8676   // Do not tail call opt if the stack is used to pass parameters.
8677   if (CCInfo.getNextStackOffset() != 0)
8678     return false;
8679 
8680   // Do not tail call opt if any parameters need to be passed indirectly.
8681   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
8682   // passed indirectly. So the address of the value will be passed in a
8683   // register, or if not available, then the address is put on the stack. In
8684   // order to pass indirectly, space on the stack often needs to be allocated
8685   // in order to store the value. In this case the CCInfo.getNextStackOffset()
8686   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
8687   // are passed CCValAssign::Indirect.
8688   for (auto &VA : ArgLocs)
8689     if (VA.getLocInfo() == CCValAssign::Indirect)
8690       return false;
8691 
8692   // Do not tail call opt if either caller or callee uses struct return
8693   // semantics.
8694   auto IsCallerStructRet = Caller.hasStructRetAttr();
8695   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
8696   if (IsCallerStructRet || IsCalleeStructRet)
8697     return false;
8698 
8699   // Externally-defined functions with weak linkage should not be
8700   // tail-called. The behaviour of branch instructions in this situation (as
8701   // used for tail calls) is implementation-defined, so we cannot rely on the
8702   // linker replacing the tail call with a return.
8703   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
8704     const GlobalValue *GV = G->getGlobal();
8705     if (GV->hasExternalWeakLinkage())
8706       return false;
8707   }
8708 
8709   // The callee has to preserve all registers the caller needs to preserve.
8710   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
8711   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
8712   if (CalleeCC != CallerCC) {
8713     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
8714     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
8715       return false;
8716   }
8717 
8718   // Byval parameters hand the function a pointer directly into the stack area
8719   // we want to reuse during a tail call. Working around this *is* possible
8720   // but less efficient and uglier in LowerCall.
8721   for (auto &Arg : Outs)
8722     if (Arg.Flags.isByVal())
8723       return false;
8724 
8725   return true;
8726 }
8727 
8728 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
8729   return DAG.getDataLayout().getPrefTypeAlign(
8730       VT.getTypeForEVT(*DAG.getContext()));
8731 }
8732 
8733 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
8734 // and output parameter nodes.
8735 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
8736                                        SmallVectorImpl<SDValue> &InVals) const {
8737   SelectionDAG &DAG = CLI.DAG;
8738   SDLoc &DL = CLI.DL;
8739   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
8740   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
8741   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
8742   SDValue Chain = CLI.Chain;
8743   SDValue Callee = CLI.Callee;
8744   bool &IsTailCall = CLI.IsTailCall;
8745   CallingConv::ID CallConv = CLI.CallConv;
8746   bool IsVarArg = CLI.IsVarArg;
8747   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8748   MVT XLenVT = Subtarget.getXLenVT();
8749 
8750   MachineFunction &MF = DAG.getMachineFunction();
8751 
8752   // Analyze the operands of the call, assigning locations to each operand.
8753   SmallVector<CCValAssign, 16> ArgLocs;
8754   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
8755 
8756   if (CallConv == CallingConv::GHC)
8757     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
8758   else
8759     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
8760                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
8761                                                     : CC_RISCV);
8762 
8763   // Check if it's really possible to do a tail call.
8764   if (IsTailCall)
8765     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
8766 
8767   if (IsTailCall)
8768     ++NumTailCalls;
8769   else if (CLI.CB && CLI.CB->isMustTailCall())
8770     report_fatal_error("failed to perform tail call elimination on a call "
8771                        "site marked musttail");
8772 
8773   // Get a count of how many bytes are to be pushed on the stack.
8774   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
8775 
8776   // Create local copies for byval args
8777   SmallVector<SDValue, 8> ByValArgs;
8778   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
8779     ISD::ArgFlagsTy Flags = Outs[i].Flags;
8780     if (!Flags.isByVal())
8781       continue;
8782 
8783     SDValue Arg = OutVals[i];
8784     unsigned Size = Flags.getByValSize();
8785     Align Alignment = Flags.getNonZeroByValAlign();
8786 
8787     int FI =
8788         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
8789     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
8790     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
8791 
8792     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
8793                           /*IsVolatile=*/false,
8794                           /*AlwaysInline=*/false, IsTailCall,
8795                           MachinePointerInfo(), MachinePointerInfo());
8796     ByValArgs.push_back(FIPtr);
8797   }
8798 
8799   if (!IsTailCall)
8800     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
8801 
8802   // Copy argument values to their designated locations.
8803   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
8804   SmallVector<SDValue, 8> MemOpChains;
8805   SDValue StackPtr;
8806   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
8807     CCValAssign &VA = ArgLocs[i];
8808     SDValue ArgValue = OutVals[i];
8809     ISD::ArgFlagsTy Flags = Outs[i].Flags;
8810 
8811     // Handle passing f64 on RV32D with a soft float ABI as a special case.
8812     bool IsF64OnRV32DSoftABI =
8813         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
8814     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
8815       SDValue SplitF64 = DAG.getNode(
8816           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
8817       SDValue Lo = SplitF64.getValue(0);
8818       SDValue Hi = SplitF64.getValue(1);
8819 
8820       Register RegLo = VA.getLocReg();
8821       RegsToPass.push_back(std::make_pair(RegLo, Lo));
8822 
8823       if (RegLo == RISCV::X17) {
8824         // Second half of f64 is passed on the stack.
8825         // Work out the address of the stack slot.
8826         if (!StackPtr.getNode())
8827           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
8828         // Emit the store.
8829         MemOpChains.push_back(
8830             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
8831       } else {
8832         // Second half of f64 is passed in another GPR.
8833         assert(RegLo < RISCV::X31 && "Invalid register pair");
8834         Register RegHigh = RegLo + 1;
8835         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
8836       }
8837       continue;
8838     }
8839 
8840     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
8841     // as any other MemLoc.
8842 
8843     // Promote the value if needed.
8844     // For now, only handle fully promoted and indirect arguments.
8845     if (VA.getLocInfo() == CCValAssign::Indirect) {
8846       // Store the argument in a stack slot and pass its address.
8847       Align StackAlign =
8848           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
8849                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
8850       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
8851       // If the original argument was split (e.g. i128), we need
8852       // to store the required parts of it here (and pass just one address).
8853       // Vectors may be partly split to registers and partly to the stack, in
8854       // which case the base address is partly offset and subsequent stores are
8855       // relative to that.
8856       unsigned ArgIndex = Outs[i].OrigArgIndex;
8857       unsigned ArgPartOffset = Outs[i].PartOffset;
8858       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
8859       // Calculate the total size to store. We don't have access to what we're
8860       // actually storing other than performing the loop and collecting the
8861       // info.
8862       SmallVector<std::pair<SDValue, SDValue>> Parts;
8863       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
8864         SDValue PartValue = OutVals[i + 1];
8865         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
8866         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
8867         EVT PartVT = PartValue.getValueType();
8868         if (PartVT.isScalableVector())
8869           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
8870         StoredSize += PartVT.getStoreSize();
8871         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
8872         Parts.push_back(std::make_pair(PartValue, Offset));
8873         ++i;
8874       }
8875       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
8876       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
8877       MemOpChains.push_back(
8878           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
8879                        MachinePointerInfo::getFixedStack(MF, FI)));
8880       for (const auto &Part : Parts) {
8881         SDValue PartValue = Part.first;
8882         SDValue PartOffset = Part.second;
8883         SDValue Address =
8884             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
8885         MemOpChains.push_back(
8886             DAG.getStore(Chain, DL, PartValue, Address,
8887                          MachinePointerInfo::getFixedStack(MF, FI)));
8888       }
8889       ArgValue = SpillSlot;
8890     } else {
8891       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
8892     }
8893 
8894     // Use local copy if it is a byval arg.
8895     if (Flags.isByVal())
8896       ArgValue = ByValArgs[j++];
8897 
8898     if (VA.isRegLoc()) {
8899       // Queue up the argument copies and emit them at the end.
8900       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
8901     } else {
8902       assert(VA.isMemLoc() && "Argument not register or memory");
8903       assert(!IsTailCall && "Tail call not allowed if stack is used "
8904                             "for passing parameters");
8905 
8906       // Work out the address of the stack slot.
8907       if (!StackPtr.getNode())
8908         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
8909       SDValue Address =
8910           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
8911                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
8912 
8913       // Emit the store.
8914       MemOpChains.push_back(
8915           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
8916     }
8917   }
8918 
8919   // Join the stores, which are independent of one another.
8920   if (!MemOpChains.empty())
8921     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
8922 
8923   SDValue Glue;
8924 
8925   // Build a sequence of copy-to-reg nodes, chained and glued together.
8926   for (auto &Reg : RegsToPass) {
8927     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
8928     Glue = Chain.getValue(1);
8929   }
8930 
8931   // Validate that none of the argument registers have been marked as
8932   // reserved, if so report an error. Do the same for the return address if this
8933   // is not a tailcall.
8934   validateCCReservedRegs(RegsToPass, MF);
8935   if (!IsTailCall &&
8936       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
8937     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
8938         MF.getFunction(),
8939         "Return address register required, but has been reserved."});
8940 
8941   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
8942   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
8943   // split it and then direct call can be matched by PseudoCALL.
8944   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
8945     const GlobalValue *GV = S->getGlobal();
8946 
8947     unsigned OpFlags = RISCVII::MO_CALL;
8948     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
8949       OpFlags = RISCVII::MO_PLT;
8950 
8951     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
8952   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
8953     unsigned OpFlags = RISCVII::MO_CALL;
8954 
8955     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
8956                                                  nullptr))
8957       OpFlags = RISCVII::MO_PLT;
8958 
8959     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
8960   }
8961 
8962   // The first call operand is the chain and the second is the target address.
8963   SmallVector<SDValue, 8> Ops;
8964   Ops.push_back(Chain);
8965   Ops.push_back(Callee);
8966 
8967   // Add argument registers to the end of the list so that they are
8968   // known live into the call.
8969   for (auto &Reg : RegsToPass)
8970     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
8971 
8972   if (!IsTailCall) {
8973     // Add a register mask operand representing the call-preserved registers.
8974     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
8975     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
8976     assert(Mask && "Missing call preserved mask for calling convention");
8977     Ops.push_back(DAG.getRegisterMask(Mask));
8978   }
8979 
8980   // Glue the call to the argument copies, if any.
8981   if (Glue.getNode())
8982     Ops.push_back(Glue);
8983 
8984   // Emit the call.
8985   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8986 
8987   if (IsTailCall) {
8988     MF.getFrameInfo().setHasTailCall();
8989     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
8990   }
8991 
8992   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
8993   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
8994   Glue = Chain.getValue(1);
8995 
8996   // Mark the end of the call, which is glued to the call itself.
8997   Chain = DAG.getCALLSEQ_END(Chain,
8998                              DAG.getConstant(NumBytes, DL, PtrVT, true),
8999                              DAG.getConstant(0, DL, PtrVT, true),
9000                              Glue, DL);
9001   Glue = Chain.getValue(1);
9002 
9003   // Assign locations to each value returned by this call.
9004   SmallVector<CCValAssign, 16> RVLocs;
9005   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
9006   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
9007 
9008   // Copy all of the result registers out of their specified physreg.
9009   for (auto &VA : RVLocs) {
9010     // Copy the value out
9011     SDValue RetValue =
9012         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
9013     // Glue the RetValue to the end of the call sequence
9014     Chain = RetValue.getValue(1);
9015     Glue = RetValue.getValue(2);
9016 
9017     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
9018       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
9019       SDValue RetValue2 =
9020           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
9021       Chain = RetValue2.getValue(1);
9022       Glue = RetValue2.getValue(2);
9023       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
9024                              RetValue2);
9025     }
9026 
9027     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
9028 
9029     InVals.push_back(RetValue);
9030   }
9031 
9032   return Chain;
9033 }
9034 
9035 bool RISCVTargetLowering::CanLowerReturn(
9036     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
9037     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
9038   SmallVector<CCValAssign, 16> RVLocs;
9039   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
9040 
9041   Optional<unsigned> FirstMaskArgument;
9042   if (Subtarget.hasVInstructions())
9043     FirstMaskArgument = preAssignMask(Outs);
9044 
9045   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
9046     MVT VT = Outs[i].VT;
9047     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
9048     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9049     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
9050                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
9051                  *this, FirstMaskArgument))
9052       return false;
9053   }
9054   return true;
9055 }
9056 
9057 SDValue
9058 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
9059                                  bool IsVarArg,
9060                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
9061                                  const SmallVectorImpl<SDValue> &OutVals,
9062                                  const SDLoc &DL, SelectionDAG &DAG) const {
9063   const MachineFunction &MF = DAG.getMachineFunction();
9064   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
9065 
9066   // Stores the assignment of the return value to a location.
9067   SmallVector<CCValAssign, 16> RVLocs;
9068 
9069   // Info about the registers and stack slot.
9070   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
9071                  *DAG.getContext());
9072 
9073   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
9074                     nullptr, CC_RISCV);
9075 
9076   if (CallConv == CallingConv::GHC && !RVLocs.empty())
9077     report_fatal_error("GHC functions return void only");
9078 
9079   SDValue Glue;
9080   SmallVector<SDValue, 4> RetOps(1, Chain);
9081 
9082   // Copy the result values into the output registers.
9083   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
9084     SDValue Val = OutVals[i];
9085     CCValAssign &VA = RVLocs[i];
9086     assert(VA.isRegLoc() && "Can only return in registers!");
9087 
9088     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
9089       // Handle returning f64 on RV32D with a soft float ABI.
9090       assert(VA.isRegLoc() && "Expected return via registers");
9091       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
9092                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
9093       SDValue Lo = SplitF64.getValue(0);
9094       SDValue Hi = SplitF64.getValue(1);
9095       Register RegLo = VA.getLocReg();
9096       assert(RegLo < RISCV::X31 && "Invalid register pair");
9097       Register RegHi = RegLo + 1;
9098 
9099       if (STI.isRegisterReservedByUser(RegLo) ||
9100           STI.isRegisterReservedByUser(RegHi))
9101         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
9102             MF.getFunction(),
9103             "Return value register required, but has been reserved."});
9104 
9105       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
9106       Glue = Chain.getValue(1);
9107       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
9108       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
9109       Glue = Chain.getValue(1);
9110       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
9111     } else {
9112       // Handle a 'normal' return.
9113       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
9114       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
9115 
9116       if (STI.isRegisterReservedByUser(VA.getLocReg()))
9117         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
9118             MF.getFunction(),
9119             "Return value register required, but has been reserved."});
9120 
9121       // Guarantee that all emitted copies are stuck together.
9122       Glue = Chain.getValue(1);
9123       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
9124     }
9125   }
9126 
9127   RetOps[0] = Chain; // Update chain.
9128 
9129   // Add the glue node if we have it.
9130   if (Glue.getNode()) {
9131     RetOps.push_back(Glue);
9132   }
9133 
9134   unsigned RetOpc = RISCVISD::RET_FLAG;
9135   // Interrupt service routines use different return instructions.
9136   const Function &Func = DAG.getMachineFunction().getFunction();
9137   if (Func.hasFnAttribute("interrupt")) {
9138     if (!Func.getReturnType()->isVoidTy())
9139       report_fatal_error(
9140           "Functions with the interrupt attribute must have void return type!");
9141 
9142     MachineFunction &MF = DAG.getMachineFunction();
9143     StringRef Kind =
9144       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
9145 
9146     if (Kind == "user")
9147       RetOpc = RISCVISD::URET_FLAG;
9148     else if (Kind == "supervisor")
9149       RetOpc = RISCVISD::SRET_FLAG;
9150     else
9151       RetOpc = RISCVISD::MRET_FLAG;
9152   }
9153 
9154   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
9155 }
9156 
9157 void RISCVTargetLowering::validateCCReservedRegs(
9158     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
9159     MachineFunction &MF) const {
9160   const Function &F = MF.getFunction();
9161   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
9162 
9163   if (llvm::any_of(Regs, [&STI](auto Reg) {
9164         return STI.isRegisterReservedByUser(Reg.first);
9165       }))
9166     F.getContext().diagnose(DiagnosticInfoUnsupported{
9167         F, "Argument register required, but has been reserved."});
9168 }
9169 
9170 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
9171   return CI->isTailCall();
9172 }
9173 
9174 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
9175 #define NODE_NAME_CASE(NODE)                                                   \
9176   case RISCVISD::NODE:                                                         \
9177     return "RISCVISD::" #NODE;
9178   // clang-format off
9179   switch ((RISCVISD::NodeType)Opcode) {
9180   case RISCVISD::FIRST_NUMBER:
9181     break;
9182   NODE_NAME_CASE(RET_FLAG)
9183   NODE_NAME_CASE(URET_FLAG)
9184   NODE_NAME_CASE(SRET_FLAG)
9185   NODE_NAME_CASE(MRET_FLAG)
9186   NODE_NAME_CASE(CALL)
9187   NODE_NAME_CASE(SELECT_CC)
9188   NODE_NAME_CASE(BR_CC)
9189   NODE_NAME_CASE(BuildPairF64)
9190   NODE_NAME_CASE(SplitF64)
9191   NODE_NAME_CASE(TAIL)
9192   NODE_NAME_CASE(MULHSU)
9193   NODE_NAME_CASE(SLLW)
9194   NODE_NAME_CASE(SRAW)
9195   NODE_NAME_CASE(SRLW)
9196   NODE_NAME_CASE(DIVW)
9197   NODE_NAME_CASE(DIVUW)
9198   NODE_NAME_CASE(REMUW)
9199   NODE_NAME_CASE(ROLW)
9200   NODE_NAME_CASE(RORW)
9201   NODE_NAME_CASE(CLZW)
9202   NODE_NAME_CASE(CTZW)
9203   NODE_NAME_CASE(FSLW)
9204   NODE_NAME_CASE(FSRW)
9205   NODE_NAME_CASE(FSL)
9206   NODE_NAME_CASE(FSR)
9207   NODE_NAME_CASE(FMV_H_X)
9208   NODE_NAME_CASE(FMV_X_ANYEXTH)
9209   NODE_NAME_CASE(FMV_W_X_RV64)
9210   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
9211   NODE_NAME_CASE(FCVT_X_RTZ)
9212   NODE_NAME_CASE(FCVT_XU_RTZ)
9213   NODE_NAME_CASE(FCVT_W_RTZ_RV64)
9214   NODE_NAME_CASE(FCVT_WU_RTZ_RV64)
9215   NODE_NAME_CASE(READ_CYCLE_WIDE)
9216   NODE_NAME_CASE(GREV)
9217   NODE_NAME_CASE(GREVW)
9218   NODE_NAME_CASE(GORC)
9219   NODE_NAME_CASE(GORCW)
9220   NODE_NAME_CASE(SHFL)
9221   NODE_NAME_CASE(SHFLW)
9222   NODE_NAME_CASE(UNSHFL)
9223   NODE_NAME_CASE(UNSHFLW)
9224   NODE_NAME_CASE(BCOMPRESS)
9225   NODE_NAME_CASE(BCOMPRESSW)
9226   NODE_NAME_CASE(BDECOMPRESS)
9227   NODE_NAME_CASE(BDECOMPRESSW)
9228   NODE_NAME_CASE(VMV_V_X_VL)
9229   NODE_NAME_CASE(VFMV_V_F_VL)
9230   NODE_NAME_CASE(VMV_X_S)
9231   NODE_NAME_CASE(VMV_S_X_VL)
9232   NODE_NAME_CASE(VFMV_S_F_VL)
9233   NODE_NAME_CASE(SPLAT_VECTOR_I64)
9234   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
9235   NODE_NAME_CASE(READ_VLENB)
9236   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
9237   NODE_NAME_CASE(VSLIDEUP_VL)
9238   NODE_NAME_CASE(VSLIDE1UP_VL)
9239   NODE_NAME_CASE(VSLIDEDOWN_VL)
9240   NODE_NAME_CASE(VSLIDE1DOWN_VL)
9241   NODE_NAME_CASE(VID_VL)
9242   NODE_NAME_CASE(VFNCVT_ROD_VL)
9243   NODE_NAME_CASE(VECREDUCE_ADD_VL)
9244   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
9245   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
9246   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
9247   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
9248   NODE_NAME_CASE(VECREDUCE_AND_VL)
9249   NODE_NAME_CASE(VECREDUCE_OR_VL)
9250   NODE_NAME_CASE(VECREDUCE_XOR_VL)
9251   NODE_NAME_CASE(VECREDUCE_FADD_VL)
9252   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
9253   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
9254   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
9255   NODE_NAME_CASE(ADD_VL)
9256   NODE_NAME_CASE(AND_VL)
9257   NODE_NAME_CASE(MUL_VL)
9258   NODE_NAME_CASE(OR_VL)
9259   NODE_NAME_CASE(SDIV_VL)
9260   NODE_NAME_CASE(SHL_VL)
9261   NODE_NAME_CASE(SREM_VL)
9262   NODE_NAME_CASE(SRA_VL)
9263   NODE_NAME_CASE(SRL_VL)
9264   NODE_NAME_CASE(SUB_VL)
9265   NODE_NAME_CASE(UDIV_VL)
9266   NODE_NAME_CASE(UREM_VL)
9267   NODE_NAME_CASE(XOR_VL)
9268   NODE_NAME_CASE(SADDSAT_VL)
9269   NODE_NAME_CASE(UADDSAT_VL)
9270   NODE_NAME_CASE(SSUBSAT_VL)
9271   NODE_NAME_CASE(USUBSAT_VL)
9272   NODE_NAME_CASE(FADD_VL)
9273   NODE_NAME_CASE(FSUB_VL)
9274   NODE_NAME_CASE(FMUL_VL)
9275   NODE_NAME_CASE(FDIV_VL)
9276   NODE_NAME_CASE(FNEG_VL)
9277   NODE_NAME_CASE(FABS_VL)
9278   NODE_NAME_CASE(FSQRT_VL)
9279   NODE_NAME_CASE(FMA_VL)
9280   NODE_NAME_CASE(FCOPYSIGN_VL)
9281   NODE_NAME_CASE(SMIN_VL)
9282   NODE_NAME_CASE(SMAX_VL)
9283   NODE_NAME_CASE(UMIN_VL)
9284   NODE_NAME_CASE(UMAX_VL)
9285   NODE_NAME_CASE(FMINNUM_VL)
9286   NODE_NAME_CASE(FMAXNUM_VL)
9287   NODE_NAME_CASE(MULHS_VL)
9288   NODE_NAME_CASE(MULHU_VL)
9289   NODE_NAME_CASE(FP_TO_SINT_VL)
9290   NODE_NAME_CASE(FP_TO_UINT_VL)
9291   NODE_NAME_CASE(SINT_TO_FP_VL)
9292   NODE_NAME_CASE(UINT_TO_FP_VL)
9293   NODE_NAME_CASE(FP_EXTEND_VL)
9294   NODE_NAME_CASE(FP_ROUND_VL)
9295   NODE_NAME_CASE(VWMUL_VL)
9296   NODE_NAME_CASE(VWMULU_VL)
9297   NODE_NAME_CASE(SETCC_VL)
9298   NODE_NAME_CASE(VSELECT_VL)
9299   NODE_NAME_CASE(VMAND_VL)
9300   NODE_NAME_CASE(VMOR_VL)
9301   NODE_NAME_CASE(VMXOR_VL)
9302   NODE_NAME_CASE(VMCLR_VL)
9303   NODE_NAME_CASE(VMSET_VL)
9304   NODE_NAME_CASE(VRGATHER_VX_VL)
9305   NODE_NAME_CASE(VRGATHER_VV_VL)
9306   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
9307   NODE_NAME_CASE(VSEXT_VL)
9308   NODE_NAME_CASE(VZEXT_VL)
9309   NODE_NAME_CASE(VCPOP_VL)
9310   NODE_NAME_CASE(VLE_VL)
9311   NODE_NAME_CASE(VSE_VL)
9312   NODE_NAME_CASE(READ_CSR)
9313   NODE_NAME_CASE(WRITE_CSR)
9314   NODE_NAME_CASE(SWAP_CSR)
9315   }
9316   // clang-format on
9317   return nullptr;
9318 #undef NODE_NAME_CASE
9319 }
9320 
9321 /// getConstraintType - Given a constraint letter, return the type of
9322 /// constraint it is for this target.
9323 RISCVTargetLowering::ConstraintType
9324 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
9325   if (Constraint.size() == 1) {
9326     switch (Constraint[0]) {
9327     default:
9328       break;
9329     case 'f':
9330       return C_RegisterClass;
9331     case 'I':
9332     case 'J':
9333     case 'K':
9334       return C_Immediate;
9335     case 'A':
9336       return C_Memory;
9337     case 'S': // A symbolic address
9338       return C_Other;
9339     }
9340   } else {
9341     if (Constraint == "vr" || Constraint == "vm")
9342       return C_RegisterClass;
9343   }
9344   return TargetLowering::getConstraintType(Constraint);
9345 }
9346 
9347 std::pair<unsigned, const TargetRegisterClass *>
9348 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
9349                                                   StringRef Constraint,
9350                                                   MVT VT) const {
9351   // First, see if this is a constraint that directly corresponds to a
9352   // RISCV register class.
9353   if (Constraint.size() == 1) {
9354     switch (Constraint[0]) {
9355     case 'r':
9356       return std::make_pair(0U, &RISCV::GPRRegClass);
9357     case 'f':
9358       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
9359         return std::make_pair(0U, &RISCV::FPR16RegClass);
9360       if (Subtarget.hasStdExtF() && VT == MVT::f32)
9361         return std::make_pair(0U, &RISCV::FPR32RegClass);
9362       if (Subtarget.hasStdExtD() && VT == MVT::f64)
9363         return std::make_pair(0U, &RISCV::FPR64RegClass);
9364       break;
9365     default:
9366       break;
9367     }
9368   } else {
9369     if (Constraint == "vr") {
9370       for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
9371                              &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
9372         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
9373           return std::make_pair(0U, RC);
9374       }
9375     } else if (Constraint == "vm") {
9376       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
9377         return std::make_pair(0U, &RISCV::VMRegClass);
9378     }
9379   }
9380 
9381   // Clang will correctly decode the usage of register name aliases into their
9382   // official names. However, other frontends like `rustc` do not. This allows
9383   // users of these frontends to use the ABI names for registers in LLVM-style
9384   // register constraints.
9385   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
9386                                .Case("{zero}", RISCV::X0)
9387                                .Case("{ra}", RISCV::X1)
9388                                .Case("{sp}", RISCV::X2)
9389                                .Case("{gp}", RISCV::X3)
9390                                .Case("{tp}", RISCV::X4)
9391                                .Case("{t0}", RISCV::X5)
9392                                .Case("{t1}", RISCV::X6)
9393                                .Case("{t2}", RISCV::X7)
9394                                .Cases("{s0}", "{fp}", RISCV::X8)
9395                                .Case("{s1}", RISCV::X9)
9396                                .Case("{a0}", RISCV::X10)
9397                                .Case("{a1}", RISCV::X11)
9398                                .Case("{a2}", RISCV::X12)
9399                                .Case("{a3}", RISCV::X13)
9400                                .Case("{a4}", RISCV::X14)
9401                                .Case("{a5}", RISCV::X15)
9402                                .Case("{a6}", RISCV::X16)
9403                                .Case("{a7}", RISCV::X17)
9404                                .Case("{s2}", RISCV::X18)
9405                                .Case("{s3}", RISCV::X19)
9406                                .Case("{s4}", RISCV::X20)
9407                                .Case("{s5}", RISCV::X21)
9408                                .Case("{s6}", RISCV::X22)
9409                                .Case("{s7}", RISCV::X23)
9410                                .Case("{s8}", RISCV::X24)
9411                                .Case("{s9}", RISCV::X25)
9412                                .Case("{s10}", RISCV::X26)
9413                                .Case("{s11}", RISCV::X27)
9414                                .Case("{t3}", RISCV::X28)
9415                                .Case("{t4}", RISCV::X29)
9416                                .Case("{t5}", RISCV::X30)
9417                                .Case("{t6}", RISCV::X31)
9418                                .Default(RISCV::NoRegister);
9419   if (XRegFromAlias != RISCV::NoRegister)
9420     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
9421 
9422   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
9423   // TableGen record rather than the AsmName to choose registers for InlineAsm
9424   // constraints, plus we want to match those names to the widest floating point
9425   // register type available, manually select floating point registers here.
9426   //
9427   // The second case is the ABI name of the register, so that frontends can also
9428   // use the ABI names in register constraint lists.
9429   if (Subtarget.hasStdExtF()) {
9430     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
9431                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
9432                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
9433                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
9434                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
9435                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
9436                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
9437                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
9438                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
9439                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
9440                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
9441                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
9442                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
9443                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
9444                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
9445                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
9446                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
9447                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
9448                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
9449                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
9450                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
9451                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
9452                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
9453                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
9454                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
9455                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
9456                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
9457                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
9458                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
9459                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
9460                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
9461                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
9462                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
9463                         .Default(RISCV::NoRegister);
9464     if (FReg != RISCV::NoRegister) {
9465       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
9466       if (Subtarget.hasStdExtD()) {
9467         unsigned RegNo = FReg - RISCV::F0_F;
9468         unsigned DReg = RISCV::F0_D + RegNo;
9469         return std::make_pair(DReg, &RISCV::FPR64RegClass);
9470       }
9471       return std::make_pair(FReg, &RISCV::FPR32RegClass);
9472     }
9473   }
9474 
9475   if (Subtarget.hasVInstructions()) {
9476     Register VReg = StringSwitch<Register>(Constraint.lower())
9477                         .Case("{v0}", RISCV::V0)
9478                         .Case("{v1}", RISCV::V1)
9479                         .Case("{v2}", RISCV::V2)
9480                         .Case("{v3}", RISCV::V3)
9481                         .Case("{v4}", RISCV::V4)
9482                         .Case("{v5}", RISCV::V5)
9483                         .Case("{v6}", RISCV::V6)
9484                         .Case("{v7}", RISCV::V7)
9485                         .Case("{v8}", RISCV::V8)
9486                         .Case("{v9}", RISCV::V9)
9487                         .Case("{v10}", RISCV::V10)
9488                         .Case("{v11}", RISCV::V11)
9489                         .Case("{v12}", RISCV::V12)
9490                         .Case("{v13}", RISCV::V13)
9491                         .Case("{v14}", RISCV::V14)
9492                         .Case("{v15}", RISCV::V15)
9493                         .Case("{v16}", RISCV::V16)
9494                         .Case("{v17}", RISCV::V17)
9495                         .Case("{v18}", RISCV::V18)
9496                         .Case("{v19}", RISCV::V19)
9497                         .Case("{v20}", RISCV::V20)
9498                         .Case("{v21}", RISCV::V21)
9499                         .Case("{v22}", RISCV::V22)
9500                         .Case("{v23}", RISCV::V23)
9501                         .Case("{v24}", RISCV::V24)
9502                         .Case("{v25}", RISCV::V25)
9503                         .Case("{v26}", RISCV::V26)
9504                         .Case("{v27}", RISCV::V27)
9505                         .Case("{v28}", RISCV::V28)
9506                         .Case("{v29}", RISCV::V29)
9507                         .Case("{v30}", RISCV::V30)
9508                         .Case("{v31}", RISCV::V31)
9509                         .Default(RISCV::NoRegister);
9510     if (VReg != RISCV::NoRegister) {
9511       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
9512         return std::make_pair(VReg, &RISCV::VMRegClass);
9513       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
9514         return std::make_pair(VReg, &RISCV::VRRegClass);
9515       for (const auto *RC :
9516            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
9517         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
9518           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
9519           return std::make_pair(VReg, RC);
9520         }
9521       }
9522     }
9523   }
9524 
9525   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
9526 }
9527 
9528 unsigned
9529 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
9530   // Currently only support length 1 constraints.
9531   if (ConstraintCode.size() == 1) {
9532     switch (ConstraintCode[0]) {
9533     case 'A':
9534       return InlineAsm::Constraint_A;
9535     default:
9536       break;
9537     }
9538   }
9539 
9540   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
9541 }
9542 
9543 void RISCVTargetLowering::LowerAsmOperandForConstraint(
9544     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
9545     SelectionDAG &DAG) const {
9546   // Currently only support length 1 constraints.
9547   if (Constraint.length() == 1) {
9548     switch (Constraint[0]) {
9549     case 'I':
9550       // Validate & create a 12-bit signed immediate operand.
9551       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
9552         uint64_t CVal = C->getSExtValue();
9553         if (isInt<12>(CVal))
9554           Ops.push_back(
9555               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
9556       }
9557       return;
9558     case 'J':
9559       // Validate & create an integer zero operand.
9560       if (auto *C = dyn_cast<ConstantSDNode>(Op))
9561         if (C->getZExtValue() == 0)
9562           Ops.push_back(
9563               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
9564       return;
9565     case 'K':
9566       // Validate & create a 5-bit unsigned immediate operand.
9567       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
9568         uint64_t CVal = C->getZExtValue();
9569         if (isUInt<5>(CVal))
9570           Ops.push_back(
9571               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
9572       }
9573       return;
9574     case 'S':
9575       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9576         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
9577                                                  GA->getValueType(0)));
9578       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
9579         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
9580                                                 BA->getValueType(0)));
9581       }
9582       return;
9583     default:
9584       break;
9585     }
9586   }
9587   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
9588 }
9589 
9590 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
9591                                                    Instruction *Inst,
9592                                                    AtomicOrdering Ord) const {
9593   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
9594     return Builder.CreateFence(Ord);
9595   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
9596     return Builder.CreateFence(AtomicOrdering::Release);
9597   return nullptr;
9598 }
9599 
9600 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
9601                                                     Instruction *Inst,
9602                                                     AtomicOrdering Ord) const {
9603   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
9604     return Builder.CreateFence(AtomicOrdering::Acquire);
9605   return nullptr;
9606 }
9607 
9608 TargetLowering::AtomicExpansionKind
9609 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
9610   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
9611   // point operations can't be used in an lr/sc sequence without breaking the
9612   // forward-progress guarantee.
9613   if (AI->isFloatingPointOperation())
9614     return AtomicExpansionKind::CmpXChg;
9615 
9616   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
9617   if (Size == 8 || Size == 16)
9618     return AtomicExpansionKind::MaskedIntrinsic;
9619   return AtomicExpansionKind::None;
9620 }
9621 
9622 static Intrinsic::ID
9623 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
9624   if (XLen == 32) {
9625     switch (BinOp) {
9626     default:
9627       llvm_unreachable("Unexpected AtomicRMW BinOp");
9628     case AtomicRMWInst::Xchg:
9629       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
9630     case AtomicRMWInst::Add:
9631       return Intrinsic::riscv_masked_atomicrmw_add_i32;
9632     case AtomicRMWInst::Sub:
9633       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
9634     case AtomicRMWInst::Nand:
9635       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
9636     case AtomicRMWInst::Max:
9637       return Intrinsic::riscv_masked_atomicrmw_max_i32;
9638     case AtomicRMWInst::Min:
9639       return Intrinsic::riscv_masked_atomicrmw_min_i32;
9640     case AtomicRMWInst::UMax:
9641       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
9642     case AtomicRMWInst::UMin:
9643       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
9644     }
9645   }
9646 
9647   if (XLen == 64) {
9648     switch (BinOp) {
9649     default:
9650       llvm_unreachable("Unexpected AtomicRMW BinOp");
9651     case AtomicRMWInst::Xchg:
9652       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
9653     case AtomicRMWInst::Add:
9654       return Intrinsic::riscv_masked_atomicrmw_add_i64;
9655     case AtomicRMWInst::Sub:
9656       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
9657     case AtomicRMWInst::Nand:
9658       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
9659     case AtomicRMWInst::Max:
9660       return Intrinsic::riscv_masked_atomicrmw_max_i64;
9661     case AtomicRMWInst::Min:
9662       return Intrinsic::riscv_masked_atomicrmw_min_i64;
9663     case AtomicRMWInst::UMax:
9664       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
9665     case AtomicRMWInst::UMin:
9666       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
9667     }
9668   }
9669 
9670   llvm_unreachable("Unexpected XLen\n");
9671 }
9672 
9673 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
9674     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
9675     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
9676   unsigned XLen = Subtarget.getXLen();
9677   Value *Ordering =
9678       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
9679   Type *Tys[] = {AlignedAddr->getType()};
9680   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
9681       AI->getModule(),
9682       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
9683 
9684   if (XLen == 64) {
9685     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
9686     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
9687     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
9688   }
9689 
9690   Value *Result;
9691 
9692   // Must pass the shift amount needed to sign extend the loaded value prior
9693   // to performing a signed comparison for min/max. ShiftAmt is the number of
9694   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
9695   // is the number of bits to left+right shift the value in order to
9696   // sign-extend.
9697   if (AI->getOperation() == AtomicRMWInst::Min ||
9698       AI->getOperation() == AtomicRMWInst::Max) {
9699     const DataLayout &DL = AI->getModule()->getDataLayout();
9700     unsigned ValWidth =
9701         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
9702     Value *SextShamt =
9703         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
9704     Result = Builder.CreateCall(LrwOpScwLoop,
9705                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
9706   } else {
9707     Result =
9708         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
9709   }
9710 
9711   if (XLen == 64)
9712     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
9713   return Result;
9714 }
9715 
9716 TargetLowering::AtomicExpansionKind
9717 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
9718     AtomicCmpXchgInst *CI) const {
9719   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
9720   if (Size == 8 || Size == 16)
9721     return AtomicExpansionKind::MaskedIntrinsic;
9722   return AtomicExpansionKind::None;
9723 }
9724 
9725 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
9726     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
9727     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
9728   unsigned XLen = Subtarget.getXLen();
9729   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
9730   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
9731   if (XLen == 64) {
9732     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
9733     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
9734     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
9735     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
9736   }
9737   Type *Tys[] = {AlignedAddr->getType()};
9738   Function *MaskedCmpXchg =
9739       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
9740   Value *Result = Builder.CreateCall(
9741       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
9742   if (XLen == 64)
9743     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
9744   return Result;
9745 }
9746 
9747 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
9748   return false;
9749 }
9750 
9751 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
9752                                                      EVT VT) const {
9753   VT = VT.getScalarType();
9754 
9755   if (!VT.isSimple())
9756     return false;
9757 
9758   switch (VT.getSimpleVT().SimpleTy) {
9759   case MVT::f16:
9760     return Subtarget.hasStdExtZfh();
9761   case MVT::f32:
9762     return Subtarget.hasStdExtF();
9763   case MVT::f64:
9764     return Subtarget.hasStdExtD();
9765   default:
9766     break;
9767   }
9768 
9769   return false;
9770 }
9771 
9772 Register RISCVTargetLowering::getExceptionPointerRegister(
9773     const Constant *PersonalityFn) const {
9774   return RISCV::X10;
9775 }
9776 
9777 Register RISCVTargetLowering::getExceptionSelectorRegister(
9778     const Constant *PersonalityFn) const {
9779   return RISCV::X11;
9780 }
9781 
9782 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
9783   // Return false to suppress the unnecessary extensions if the LibCall
9784   // arguments or return value is f32 type for LP64 ABI.
9785   RISCVABI::ABI ABI = Subtarget.getTargetABI();
9786   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
9787     return false;
9788 
9789   return true;
9790 }
9791 
9792 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
9793   if (Subtarget.is64Bit() && Type == MVT::i32)
9794     return true;
9795 
9796   return IsSigned;
9797 }
9798 
9799 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
9800                                                  SDValue C) const {
9801   // Check integral scalar types.
9802   if (VT.isScalarInteger()) {
9803     // Omit the optimization if the sub target has the M extension and the data
9804     // size exceeds XLen.
9805     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
9806       return false;
9807     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
9808       // Break the MUL to a SLLI and an ADD/SUB.
9809       const APInt &Imm = ConstNode->getAPIntValue();
9810       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
9811           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
9812         return true;
9813       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
9814       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
9815           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
9816            (Imm - 8).isPowerOf2()))
9817         return true;
9818       // Omit the following optimization if the sub target has the M extension
9819       // and the data size >= XLen.
9820       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
9821         return false;
9822       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
9823       // a pair of LUI/ADDI.
9824       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
9825         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
9826         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
9827             (1 - ImmS).isPowerOf2())
9828         return true;
9829       }
9830     }
9831   }
9832 
9833   return false;
9834 }
9835 
9836 bool RISCVTargetLowering::isMulAddWithConstProfitable(
9837     const SDValue &AddNode, const SDValue &ConstNode) const {
9838   // Let the DAGCombiner decide for vectors.
9839   EVT VT = AddNode.getValueType();
9840   if (VT.isVector())
9841     return true;
9842 
9843   // Let the DAGCombiner decide for larger types.
9844   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
9845     return true;
9846 
9847   // It is worse if c1 is simm12 while c1*c2 is not.
9848   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
9849   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
9850   const APInt &C1 = C1Node->getAPIntValue();
9851   const APInt &C2 = C2Node->getAPIntValue();
9852   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
9853     return false;
9854 
9855   // Default to true and let the DAGCombiner decide.
9856   return true;
9857 }
9858 
9859 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
9860     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
9861     bool *Fast) const {
9862   if (!VT.isVector())
9863     return false;
9864 
9865   EVT ElemVT = VT.getVectorElementType();
9866   if (Alignment >= ElemVT.getStoreSize()) {
9867     if (Fast)
9868       *Fast = true;
9869     return true;
9870   }
9871 
9872   return false;
9873 }
9874 
9875 bool RISCVTargetLowering::splitValueIntoRegisterParts(
9876     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
9877     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
9878   bool IsABIRegCopy = CC.hasValue();
9879   EVT ValueVT = Val.getValueType();
9880   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
9881     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
9882     // and cast to f32.
9883     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
9884     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
9885     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
9886                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
9887     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
9888     Parts[0] = Val;
9889     return true;
9890   }
9891 
9892   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
9893     LLVMContext &Context = *DAG.getContext();
9894     EVT ValueEltVT = ValueVT.getVectorElementType();
9895     EVT PartEltVT = PartVT.getVectorElementType();
9896     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
9897     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
9898     if (PartVTBitSize % ValueVTBitSize == 0) {
9899       // If the element types are different, bitcast to the same element type of
9900       // PartVT first.
9901       if (ValueEltVT != PartEltVT) {
9902         unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
9903         assert(Count != 0 && "The number of element should not be zero.");
9904         EVT SameEltTypeVT =
9905             EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
9906         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
9907       }
9908       Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
9909                         Val, DAG.getConstant(0, DL, Subtarget.getXLenVT()));
9910       Parts[0] = Val;
9911       return true;
9912     }
9913   }
9914   return false;
9915 }
9916 
9917 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
9918     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
9919     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
9920   bool IsABIRegCopy = CC.hasValue();
9921   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
9922     SDValue Val = Parts[0];
9923 
9924     // Cast the f32 to i32, truncate to i16, and cast back to f16.
9925     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
9926     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
9927     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
9928     return Val;
9929   }
9930 
9931   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
9932     LLVMContext &Context = *DAG.getContext();
9933     SDValue Val = Parts[0];
9934     EVT ValueEltVT = ValueVT.getVectorElementType();
9935     EVT PartEltVT = PartVT.getVectorElementType();
9936     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
9937     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
9938     if (PartVTBitSize % ValueVTBitSize == 0) {
9939       EVT SameEltTypeVT = ValueVT;
9940       // If the element types are different, convert it to the same element type
9941       // of PartVT.
9942       if (ValueEltVT != PartEltVT) {
9943         unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
9944         assert(Count != 0 && "The number of element should not be zero.");
9945         SameEltTypeVT =
9946             EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
9947       }
9948       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val,
9949                         DAG.getConstant(0, DL, Subtarget.getXLenVT()));
9950       if (ValueEltVT != PartEltVT)
9951         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
9952       return Val;
9953     }
9954   }
9955   return SDValue();
9956 }
9957 
9958 #define GET_REGISTER_MATCHER
9959 #include "RISCVGenAsmMatcher.inc"
9960 
9961 Register
9962 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
9963                                        const MachineFunction &MF) const {
9964   Register Reg = MatchRegisterAltName(RegName);
9965   if (Reg == RISCV::NoRegister)
9966     Reg = MatchRegisterName(RegName);
9967   if (Reg == RISCV::NoRegister)
9968     report_fatal_error(
9969         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
9970   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
9971   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
9972     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
9973                              StringRef(RegName) + "\"."));
9974   return Reg;
9975 }
9976 
9977 namespace llvm {
9978 namespace RISCVVIntrinsicsTable {
9979 
9980 #define GET_RISCVVIntrinsicsTable_IMPL
9981 #include "RISCVGenSearchableTables.inc"
9982 
9983 } // namespace RISCVVIntrinsicsTable
9984 
9985 } // namespace llvm
9986