1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/IntrinsicsRISCV.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/KnownBits.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "riscv-lower" 45 46 STATISTIC(NumTailCalls, "Number of tail calls"); 47 48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 49 const RISCVSubtarget &STI) 50 : TargetLowering(TM), Subtarget(STI) { 51 52 if (Subtarget.isRV32E()) 53 report_fatal_error("Codegen not yet implemented for RV32E"); 54 55 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 56 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 57 58 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 59 !Subtarget.hasStdExtF()) { 60 errs() << "Hard-float 'f' ABI can't be used for a target that " 61 "doesn't support the F instruction set extension (ignoring " 62 "target-abi)\n"; 63 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 64 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 65 !Subtarget.hasStdExtD()) { 66 errs() << "Hard-float 'd' ABI can't be used for a target that " 67 "doesn't support the D instruction set extension (ignoring " 68 "target-abi)\n"; 69 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 70 } 71 72 switch (ABI) { 73 default: 74 report_fatal_error("Don't know how to lower this ABI"); 75 case RISCVABI::ABI_ILP32: 76 case RISCVABI::ABI_ILP32F: 77 case RISCVABI::ABI_ILP32D: 78 case RISCVABI::ABI_LP64: 79 case RISCVABI::ABI_LP64F: 80 case RISCVABI::ABI_LP64D: 81 break; 82 } 83 84 MVT XLenVT = Subtarget.getXLenVT(); 85 86 // Set up the register classes. 87 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 88 89 if (Subtarget.hasStdExtZfh()) 90 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 91 if (Subtarget.hasStdExtF()) 92 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 93 if (Subtarget.hasStdExtD()) 94 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 95 96 static const MVT::SimpleValueType BoolVecVTs[] = { 97 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 98 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 99 static const MVT::SimpleValueType IntVecVTs[] = { 100 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 101 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 102 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 103 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 104 MVT::nxv4i64, MVT::nxv8i64}; 105 static const MVT::SimpleValueType F16VecVTs[] = { 106 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 107 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 108 static const MVT::SimpleValueType F32VecVTs[] = { 109 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 110 static const MVT::SimpleValueType F64VecVTs[] = { 111 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 112 113 if (Subtarget.hasVInstructions()) { 114 auto addRegClassForRVV = [this](MVT VT) { 115 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 116 assert(Size <= 512 && isPowerOf2_32(Size)); 117 const TargetRegisterClass *RC; 118 if (Size <= 64) 119 RC = &RISCV::VRRegClass; 120 else if (Size == 128) 121 RC = &RISCV::VRM2RegClass; 122 else if (Size == 256) 123 RC = &RISCV::VRM4RegClass; 124 else 125 RC = &RISCV::VRM8RegClass; 126 127 addRegisterClass(VT, RC); 128 }; 129 130 for (MVT VT : BoolVecVTs) 131 addRegClassForRVV(VT); 132 for (MVT VT : IntVecVTs) { 133 if (VT.getVectorElementType() == MVT::i64 && 134 !Subtarget.hasVInstructionsI64()) 135 continue; 136 addRegClassForRVV(VT); 137 } 138 139 if (Subtarget.hasVInstructionsF16()) 140 for (MVT VT : F16VecVTs) 141 addRegClassForRVV(VT); 142 143 if (Subtarget.hasVInstructionsF32()) 144 for (MVT VT : F32VecVTs) 145 addRegClassForRVV(VT); 146 147 if (Subtarget.hasVInstructionsF64()) 148 for (MVT VT : F64VecVTs) 149 addRegClassForRVV(VT); 150 151 if (Subtarget.useRVVForFixedLengthVectors()) { 152 auto addRegClassForFixedVectors = [this](MVT VT) { 153 MVT ContainerVT = getContainerForFixedLengthVector(VT); 154 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 155 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 156 addRegisterClass(VT, TRI.getRegClass(RCID)); 157 }; 158 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 159 if (useRVVForFixedLengthVectorVT(VT)) 160 addRegClassForFixedVectors(VT); 161 162 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 163 if (useRVVForFixedLengthVectorVT(VT)) 164 addRegClassForFixedVectors(VT); 165 } 166 } 167 168 // Compute derived properties from the register classes. 169 computeRegisterProperties(STI.getRegisterInfo()); 170 171 setStackPointerRegisterToSaveRestore(RISCV::X2); 172 173 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 174 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 175 176 // TODO: add all necessary setOperationAction calls. 177 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 178 179 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 180 setOperationAction(ISD::BR_CC, XLenVT, Expand); 181 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 182 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 183 184 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 185 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 186 187 setOperationAction(ISD::VASTART, MVT::Other, Custom); 188 setOperationAction(ISD::VAARG, MVT::Other, Expand); 189 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 190 setOperationAction(ISD::VAEND, MVT::Other, Expand); 191 192 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 193 if (!Subtarget.hasStdExtZbb()) { 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 195 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 196 } 197 198 if (Subtarget.is64Bit()) { 199 setOperationAction(ISD::ADD, MVT::i32, Custom); 200 setOperationAction(ISD::SUB, MVT::i32, Custom); 201 setOperationAction(ISD::SHL, MVT::i32, Custom); 202 setOperationAction(ISD::SRA, MVT::i32, Custom); 203 setOperationAction(ISD::SRL, MVT::i32, Custom); 204 205 setOperationAction(ISD::UADDO, MVT::i32, Custom); 206 setOperationAction(ISD::USUBO, MVT::i32, Custom); 207 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 208 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 209 } else { 210 setLibcallName(RTLIB::SHL_I128, nullptr); 211 setLibcallName(RTLIB::SRL_I128, nullptr); 212 setLibcallName(RTLIB::SRA_I128, nullptr); 213 setLibcallName(RTLIB::MUL_I128, nullptr); 214 setLibcallName(RTLIB::MULO_I64, nullptr); 215 } 216 217 if (!Subtarget.hasStdExtM()) { 218 setOperationAction(ISD::MUL, XLenVT, Expand); 219 setOperationAction(ISD::MULHS, XLenVT, Expand); 220 setOperationAction(ISD::MULHU, XLenVT, Expand); 221 setOperationAction(ISD::SDIV, XLenVT, Expand); 222 setOperationAction(ISD::UDIV, XLenVT, Expand); 223 setOperationAction(ISD::SREM, XLenVT, Expand); 224 setOperationAction(ISD::UREM, XLenVT, Expand); 225 } else { 226 if (Subtarget.is64Bit()) { 227 setOperationAction(ISD::MUL, MVT::i32, Custom); 228 setOperationAction(ISD::MUL, MVT::i128, Custom); 229 230 setOperationAction(ISD::SDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UDIV, MVT::i8, Custom); 232 setOperationAction(ISD::UREM, MVT::i8, Custom); 233 setOperationAction(ISD::SDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UDIV, MVT::i16, Custom); 235 setOperationAction(ISD::UREM, MVT::i16, Custom); 236 setOperationAction(ISD::SDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UDIV, MVT::i32, Custom); 238 setOperationAction(ISD::UREM, MVT::i32, Custom); 239 } else { 240 setOperationAction(ISD::MUL, MVT::i64, Custom); 241 } 242 } 243 244 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 246 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 247 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 248 249 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 251 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 252 253 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 254 if (Subtarget.is64Bit()) { 255 setOperationAction(ISD::ROTL, MVT::i32, Custom); 256 setOperationAction(ISD::ROTR, MVT::i32, Custom); 257 } 258 } else { 259 setOperationAction(ISD::ROTL, XLenVT, Expand); 260 setOperationAction(ISD::ROTR, XLenVT, Expand); 261 } 262 263 if (Subtarget.hasStdExtZbp()) { 264 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 265 // more combining. 266 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 267 setOperationAction(ISD::BSWAP, XLenVT, Custom); 268 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 269 // BSWAP i8 doesn't exist. 270 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 271 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 272 273 if (Subtarget.is64Bit()) { 274 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 275 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 276 } 277 } else { 278 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 279 // pattern match it directly in isel. 280 setOperationAction(ISD::BSWAP, XLenVT, 281 Subtarget.hasStdExtZbb() ? Legal : Expand); 282 } 283 284 if (Subtarget.hasStdExtZbb()) { 285 setOperationAction(ISD::SMIN, XLenVT, Legal); 286 setOperationAction(ISD::SMAX, XLenVT, Legal); 287 setOperationAction(ISD::UMIN, XLenVT, Legal); 288 setOperationAction(ISD::UMAX, XLenVT, Legal); 289 290 if (Subtarget.is64Bit()) { 291 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 292 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 293 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 294 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 295 } 296 } else { 297 setOperationAction(ISD::CTTZ, XLenVT, Expand); 298 setOperationAction(ISD::CTLZ, XLenVT, Expand); 299 setOperationAction(ISD::CTPOP, XLenVT, Expand); 300 } 301 302 if (Subtarget.hasStdExtZbt()) { 303 setOperationAction(ISD::FSHL, XLenVT, Custom); 304 setOperationAction(ISD::FSHR, XLenVT, Custom); 305 setOperationAction(ISD::SELECT, XLenVT, Legal); 306 307 if (Subtarget.is64Bit()) { 308 setOperationAction(ISD::FSHL, MVT::i32, Custom); 309 setOperationAction(ISD::FSHR, MVT::i32, Custom); 310 } 311 } else { 312 setOperationAction(ISD::SELECT, XLenVT, Custom); 313 } 314 315 static const ISD::CondCode FPCCToExpand[] = { 316 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 317 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 318 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 319 320 static const ISD::NodeType FPOpToExpand[] = { 321 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 322 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 323 324 if (Subtarget.hasStdExtZfh()) 325 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 326 327 if (Subtarget.hasStdExtZfh()) { 328 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 329 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 330 setOperationAction(ISD::LRINT, MVT::f16, Legal); 331 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 332 setOperationAction(ISD::LROUND, MVT::f16, Legal); 333 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 334 setOperationAction(ISD::STRICT_LRINT, MVT::f16, Legal); 335 setOperationAction(ISD::STRICT_LLRINT, MVT::f16, Legal); 336 setOperationAction(ISD::STRICT_LROUND, MVT::f16, Legal); 337 setOperationAction(ISD::STRICT_LLROUND, MVT::f16, Legal); 338 setOperationAction(ISD::STRICT_FADD, MVT::f16, Legal); 339 setOperationAction(ISD::STRICT_FMA, MVT::f16, Legal); 340 setOperationAction(ISD::STRICT_FSUB, MVT::f16, Legal); 341 setOperationAction(ISD::STRICT_FMUL, MVT::f16, Legal); 342 setOperationAction(ISD::STRICT_FDIV, MVT::f16, Legal); 343 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); 344 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 345 setOperationAction(ISD::STRICT_FSQRT, MVT::f16, Legal); 346 setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Legal); 347 setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Legal); 348 for (auto CC : FPCCToExpand) 349 setCondCodeAction(CC, MVT::f16, Expand); 350 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 351 setOperationAction(ISD::SELECT, MVT::f16, Custom); 352 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 353 354 setOperationAction(ISD::FREM, MVT::f16, Promote); 355 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 356 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 357 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 358 setOperationAction(ISD::FRINT, MVT::f16, Promote); 359 setOperationAction(ISD::FROUND, MVT::f16, Promote); 360 setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote); 361 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 362 setOperationAction(ISD::FPOW, MVT::f16, Promote); 363 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 364 setOperationAction(ISD::FCOS, MVT::f16, Promote); 365 setOperationAction(ISD::FSIN, MVT::f16, Promote); 366 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 367 setOperationAction(ISD::FEXP, MVT::f16, Promote); 368 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 369 setOperationAction(ISD::FLOG, MVT::f16, Promote); 370 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 371 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 372 373 // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have 374 // complete support for all operations in LegalizeDAG. 375 376 // We need to custom promote this. 377 if (Subtarget.is64Bit()) 378 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 379 } 380 381 if (Subtarget.hasStdExtF()) { 382 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 383 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 384 setOperationAction(ISD::LRINT, MVT::f32, Legal); 385 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 386 setOperationAction(ISD::LROUND, MVT::f32, Legal); 387 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 388 setOperationAction(ISD::STRICT_LRINT, MVT::f32, Legal); 389 setOperationAction(ISD::STRICT_LLRINT, MVT::f32, Legal); 390 setOperationAction(ISD::STRICT_LROUND, MVT::f32, Legal); 391 setOperationAction(ISD::STRICT_LLROUND, MVT::f32, Legal); 392 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 393 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 394 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 395 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 396 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 397 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 398 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 399 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 400 for (auto CC : FPCCToExpand) 401 setCondCodeAction(CC, MVT::f32, Expand); 402 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 403 setOperationAction(ISD::SELECT, MVT::f32, Custom); 404 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 405 for (auto Op : FPOpToExpand) 406 setOperationAction(Op, MVT::f32, Expand); 407 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 408 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 409 } 410 411 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 412 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 413 414 if (Subtarget.hasStdExtD()) { 415 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 416 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 417 setOperationAction(ISD::LRINT, MVT::f64, Legal); 418 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 419 setOperationAction(ISD::LROUND, MVT::f64, Legal); 420 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 421 setOperationAction(ISD::STRICT_LRINT, MVT::f64, Legal); 422 setOperationAction(ISD::STRICT_LLRINT, MVT::f64, Legal); 423 setOperationAction(ISD::STRICT_LROUND, MVT::f64, Legal); 424 setOperationAction(ISD::STRICT_LLROUND, MVT::f64, Legal); 425 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 426 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 427 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 428 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 429 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 430 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 431 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 432 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 433 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 434 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 435 for (auto CC : FPCCToExpand) 436 setCondCodeAction(CC, MVT::f64, Expand); 437 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 438 setOperationAction(ISD::SELECT, MVT::f64, Custom); 439 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 440 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 441 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 442 for (auto Op : FPOpToExpand) 443 setOperationAction(Op, MVT::f64, Expand); 444 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 445 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 446 } 447 448 if (Subtarget.is64Bit()) { 449 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 450 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 451 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 452 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 453 } 454 455 if (Subtarget.hasStdExtF()) { 456 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 457 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 458 459 setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal); 460 setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal); 461 setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal); 462 setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal); 463 464 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 465 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 466 } 467 468 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 469 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 470 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 471 setOperationAction(ISD::JumpTable, XLenVT, Custom); 472 473 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 474 475 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 476 // Unfortunately this can't be determined just from the ISA naming string. 477 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 478 Subtarget.is64Bit() ? Legal : Custom); 479 480 setOperationAction(ISD::TRAP, MVT::Other, Legal); 481 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 482 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 483 if (Subtarget.is64Bit()) 484 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 485 486 if (Subtarget.hasStdExtA()) { 487 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 488 setMinCmpXchgSizeInBits(32); 489 } else { 490 setMaxAtomicSizeInBitsSupported(0); 491 } 492 493 setBooleanContents(ZeroOrOneBooleanContent); 494 495 if (Subtarget.hasVInstructions()) { 496 setBooleanVectorContents(ZeroOrOneBooleanContent); 497 498 setOperationAction(ISD::VSCALE, XLenVT, Custom); 499 500 // RVV intrinsics may have illegal operands. 501 // We also need to custom legalize vmv.x.s. 502 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 503 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 504 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 505 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 506 if (Subtarget.is64Bit()) { 507 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 508 } else { 509 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 510 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 511 } 512 513 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 514 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 515 516 static const unsigned IntegerVPOps[] = { 517 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 518 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 519 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 520 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 521 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 522 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 523 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 524 ISD::VP_MERGE, ISD::VP_SELECT}; 525 526 static const unsigned FloatingPointVPOps[] = { 527 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 528 ISD::VP_FDIV, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 529 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_MERGE, 530 ISD::VP_SELECT}; 531 532 if (!Subtarget.is64Bit()) { 533 // We must custom-lower certain vXi64 operations on RV32 due to the vector 534 // element type being illegal. 535 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 536 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 537 538 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 539 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 540 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 541 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 542 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 543 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 544 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 545 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 546 547 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 548 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 549 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 550 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 551 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 552 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 553 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 554 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 555 } 556 557 for (MVT VT : BoolVecVTs) { 558 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 559 560 // Mask VTs are custom-expanded into a series of standard nodes 561 setOperationAction(ISD::TRUNCATE, VT, Custom); 562 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 563 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 564 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 565 566 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 567 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 568 569 setOperationAction(ISD::SELECT, VT, Custom); 570 setOperationAction(ISD::SELECT_CC, VT, Expand); 571 setOperationAction(ISD::VSELECT, VT, Expand); 572 setOperationAction(ISD::VP_SELECT, VT, Expand); 573 574 setOperationAction(ISD::VP_AND, VT, Custom); 575 setOperationAction(ISD::VP_OR, VT, Custom); 576 setOperationAction(ISD::VP_XOR, VT, Custom); 577 578 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 579 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 580 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 581 582 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 583 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 584 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 585 586 // RVV has native int->float & float->int conversions where the 587 // element type sizes are within one power-of-two of each other. Any 588 // wider distances between type sizes have to be lowered as sequences 589 // which progressively narrow the gap in stages. 590 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 591 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 592 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 593 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 594 595 // Expand all extending loads to types larger than this, and truncating 596 // stores from types larger than this. 597 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 598 setTruncStoreAction(OtherVT, VT, Expand); 599 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 600 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 601 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 602 } 603 } 604 605 for (MVT VT : IntVecVTs) { 606 if (VT.getVectorElementType() == MVT::i64 && 607 !Subtarget.hasVInstructionsI64()) 608 continue; 609 610 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 611 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 612 613 // Vectors implement MULHS/MULHU. 614 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 615 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 616 617 // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*. 618 if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) { 619 setOperationAction(ISD::MULHU, VT, Expand); 620 setOperationAction(ISD::MULHS, VT, Expand); 621 } 622 623 setOperationAction(ISD::SMIN, VT, Legal); 624 setOperationAction(ISD::SMAX, VT, Legal); 625 setOperationAction(ISD::UMIN, VT, Legal); 626 setOperationAction(ISD::UMAX, VT, Legal); 627 628 setOperationAction(ISD::ROTL, VT, Expand); 629 setOperationAction(ISD::ROTR, VT, Expand); 630 631 setOperationAction(ISD::CTTZ, VT, Expand); 632 setOperationAction(ISD::CTLZ, VT, Expand); 633 setOperationAction(ISD::CTPOP, VT, Expand); 634 635 setOperationAction(ISD::BSWAP, VT, Expand); 636 637 // Custom-lower extensions and truncations from/to mask types. 638 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 639 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 640 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 641 642 // RVV has native int->float & float->int conversions where the 643 // element type sizes are within one power-of-two of each other. Any 644 // wider distances between type sizes have to be lowered as sequences 645 // which progressively narrow the gap in stages. 646 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 647 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 648 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 649 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 650 651 setOperationAction(ISD::SADDSAT, VT, Legal); 652 setOperationAction(ISD::UADDSAT, VT, Legal); 653 setOperationAction(ISD::SSUBSAT, VT, Legal); 654 setOperationAction(ISD::USUBSAT, VT, Legal); 655 656 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 657 // nodes which truncate by one power of two at a time. 658 setOperationAction(ISD::TRUNCATE, VT, Custom); 659 660 // Custom-lower insert/extract operations to simplify patterns. 661 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 662 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 663 664 // Custom-lower reduction operations to set up the corresponding custom 665 // nodes' operands. 666 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 667 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 668 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 669 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 670 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 671 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 672 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 673 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 674 675 for (unsigned VPOpc : IntegerVPOps) 676 setOperationAction(VPOpc, VT, Custom); 677 678 setOperationAction(ISD::LOAD, VT, Custom); 679 setOperationAction(ISD::STORE, VT, Custom); 680 681 setOperationAction(ISD::MLOAD, VT, Custom); 682 setOperationAction(ISD::MSTORE, VT, Custom); 683 setOperationAction(ISD::MGATHER, VT, Custom); 684 setOperationAction(ISD::MSCATTER, VT, Custom); 685 686 setOperationAction(ISD::VP_LOAD, VT, Custom); 687 setOperationAction(ISD::VP_STORE, VT, Custom); 688 setOperationAction(ISD::VP_GATHER, VT, Custom); 689 setOperationAction(ISD::VP_SCATTER, VT, Custom); 690 691 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 692 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 693 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 694 695 setOperationAction(ISD::SELECT, VT, Custom); 696 setOperationAction(ISD::SELECT_CC, VT, Expand); 697 698 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 699 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 700 701 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 702 setTruncStoreAction(VT, OtherVT, Expand); 703 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 704 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 705 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 706 } 707 708 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 709 // type that can represent the value exactly. 710 if (VT.getVectorElementType() != MVT::i64) { 711 MVT FloatEltVT = 712 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 713 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 714 if (isTypeLegal(FloatVT)) { 715 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 716 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 717 } 718 } 719 } 720 721 // Expand various CCs to best match the RVV ISA, which natively supports UNE 722 // but no other unordered comparisons, and supports all ordered comparisons 723 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 724 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 725 // and we pattern-match those back to the "original", swapping operands once 726 // more. This way we catch both operations and both "vf" and "fv" forms with 727 // fewer patterns. 728 static const ISD::CondCode VFPCCToExpand[] = { 729 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 730 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 731 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 732 }; 733 734 // Sets common operation actions on RVV floating-point vector types. 735 const auto SetCommonVFPActions = [&](MVT VT) { 736 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 737 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 738 // sizes are within one power-of-two of each other. Therefore conversions 739 // between vXf16 and vXf64 must be lowered as sequences which convert via 740 // vXf32. 741 setOperationAction(ISD::FP_ROUND, VT, Custom); 742 setOperationAction(ISD::FP_EXTEND, VT, Custom); 743 // Custom-lower insert/extract operations to simplify patterns. 744 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 745 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 746 // Expand various condition codes (explained above). 747 for (auto CC : VFPCCToExpand) 748 setCondCodeAction(CC, VT, Expand); 749 750 setOperationAction(ISD::FMINNUM, VT, Legal); 751 setOperationAction(ISD::FMAXNUM, VT, Legal); 752 753 setOperationAction(ISD::FTRUNC, VT, Custom); 754 setOperationAction(ISD::FCEIL, VT, Custom); 755 setOperationAction(ISD::FFLOOR, VT, Custom); 756 757 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 758 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 759 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 760 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 761 762 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 763 764 setOperationAction(ISD::LOAD, VT, Custom); 765 setOperationAction(ISD::STORE, VT, Custom); 766 767 setOperationAction(ISD::MLOAD, VT, Custom); 768 setOperationAction(ISD::MSTORE, VT, Custom); 769 setOperationAction(ISD::MGATHER, VT, Custom); 770 setOperationAction(ISD::MSCATTER, VT, Custom); 771 772 setOperationAction(ISD::VP_LOAD, VT, Custom); 773 setOperationAction(ISD::VP_STORE, VT, Custom); 774 setOperationAction(ISD::VP_GATHER, VT, Custom); 775 setOperationAction(ISD::VP_SCATTER, VT, Custom); 776 777 setOperationAction(ISD::SELECT, VT, Custom); 778 setOperationAction(ISD::SELECT_CC, VT, Expand); 779 780 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 781 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 782 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 783 784 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 785 786 for (unsigned VPOpc : FloatingPointVPOps) 787 setOperationAction(VPOpc, VT, Custom); 788 }; 789 790 // Sets common extload/truncstore actions on RVV floating-point vector 791 // types. 792 const auto SetCommonVFPExtLoadTruncStoreActions = 793 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 794 for (auto SmallVT : SmallerVTs) { 795 setTruncStoreAction(VT, SmallVT, Expand); 796 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 797 } 798 }; 799 800 if (Subtarget.hasVInstructionsF16()) 801 for (MVT VT : F16VecVTs) 802 SetCommonVFPActions(VT); 803 804 for (MVT VT : F32VecVTs) { 805 if (Subtarget.hasVInstructionsF32()) 806 SetCommonVFPActions(VT); 807 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 808 } 809 810 for (MVT VT : F64VecVTs) { 811 if (Subtarget.hasVInstructionsF64()) 812 SetCommonVFPActions(VT); 813 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 814 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 815 } 816 817 if (Subtarget.useRVVForFixedLengthVectors()) { 818 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 819 if (!useRVVForFixedLengthVectorVT(VT)) 820 continue; 821 822 // By default everything must be expanded. 823 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 824 setOperationAction(Op, VT, Expand); 825 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 826 setTruncStoreAction(VT, OtherVT, Expand); 827 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 828 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 829 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 830 } 831 832 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 833 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 834 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 835 836 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 837 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 838 839 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 840 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 841 842 setOperationAction(ISD::LOAD, VT, Custom); 843 setOperationAction(ISD::STORE, VT, Custom); 844 845 setOperationAction(ISD::SETCC, VT, Custom); 846 847 setOperationAction(ISD::SELECT, VT, Custom); 848 849 setOperationAction(ISD::TRUNCATE, VT, Custom); 850 851 setOperationAction(ISD::BITCAST, VT, Custom); 852 853 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 854 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 855 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 856 857 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 858 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 859 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 860 861 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 862 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 863 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 864 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 865 866 // Operations below are different for between masks and other vectors. 867 if (VT.getVectorElementType() == MVT::i1) { 868 setOperationAction(ISD::VP_AND, VT, Custom); 869 setOperationAction(ISD::VP_OR, VT, Custom); 870 setOperationAction(ISD::VP_XOR, VT, Custom); 871 setOperationAction(ISD::AND, VT, Custom); 872 setOperationAction(ISD::OR, VT, Custom); 873 setOperationAction(ISD::XOR, VT, Custom); 874 continue; 875 } 876 877 // Use SPLAT_VECTOR to prevent type legalization from destroying the 878 // splats when type legalizing i64 scalar on RV32. 879 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 880 // improvements first. 881 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 882 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 883 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 884 } 885 886 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 887 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 888 889 setOperationAction(ISD::MLOAD, VT, Custom); 890 setOperationAction(ISD::MSTORE, VT, Custom); 891 setOperationAction(ISD::MGATHER, VT, Custom); 892 setOperationAction(ISD::MSCATTER, VT, Custom); 893 894 setOperationAction(ISD::VP_LOAD, VT, Custom); 895 setOperationAction(ISD::VP_STORE, VT, Custom); 896 setOperationAction(ISD::VP_GATHER, VT, Custom); 897 setOperationAction(ISD::VP_SCATTER, VT, Custom); 898 899 setOperationAction(ISD::ADD, VT, Custom); 900 setOperationAction(ISD::MUL, VT, Custom); 901 setOperationAction(ISD::SUB, VT, Custom); 902 setOperationAction(ISD::AND, VT, Custom); 903 setOperationAction(ISD::OR, VT, Custom); 904 setOperationAction(ISD::XOR, VT, Custom); 905 setOperationAction(ISD::SDIV, VT, Custom); 906 setOperationAction(ISD::SREM, VT, Custom); 907 setOperationAction(ISD::UDIV, VT, Custom); 908 setOperationAction(ISD::UREM, VT, Custom); 909 setOperationAction(ISD::SHL, VT, Custom); 910 setOperationAction(ISD::SRA, VT, Custom); 911 setOperationAction(ISD::SRL, VT, Custom); 912 913 setOperationAction(ISD::SMIN, VT, Custom); 914 setOperationAction(ISD::SMAX, VT, Custom); 915 setOperationAction(ISD::UMIN, VT, Custom); 916 setOperationAction(ISD::UMAX, VT, Custom); 917 setOperationAction(ISD::ABS, VT, Custom); 918 919 // vXi64 MULHS/MULHU requires the V extension instead of Zve64*. 920 if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) { 921 setOperationAction(ISD::MULHS, VT, Custom); 922 setOperationAction(ISD::MULHU, VT, Custom); 923 } 924 925 setOperationAction(ISD::SADDSAT, VT, Custom); 926 setOperationAction(ISD::UADDSAT, VT, Custom); 927 setOperationAction(ISD::SSUBSAT, VT, Custom); 928 setOperationAction(ISD::USUBSAT, VT, Custom); 929 930 setOperationAction(ISD::VSELECT, VT, Custom); 931 setOperationAction(ISD::SELECT_CC, VT, Expand); 932 933 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 934 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 935 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 936 937 // Custom-lower reduction operations to set up the corresponding custom 938 // nodes' operands. 939 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 940 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 941 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 942 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 943 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 944 945 for (unsigned VPOpc : IntegerVPOps) 946 setOperationAction(VPOpc, VT, Custom); 947 948 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 949 // type that can represent the value exactly. 950 if (VT.getVectorElementType() != MVT::i64) { 951 MVT FloatEltVT = 952 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 953 EVT FloatVT = 954 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 955 if (isTypeLegal(FloatVT)) { 956 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 957 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 958 } 959 } 960 } 961 962 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 963 if (!useRVVForFixedLengthVectorVT(VT)) 964 continue; 965 966 // By default everything must be expanded. 967 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 968 setOperationAction(Op, VT, Expand); 969 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 970 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 971 setTruncStoreAction(VT, OtherVT, Expand); 972 } 973 974 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 975 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 976 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 977 978 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 979 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 980 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 981 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 982 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 983 984 setOperationAction(ISD::LOAD, VT, Custom); 985 setOperationAction(ISD::STORE, VT, Custom); 986 setOperationAction(ISD::MLOAD, VT, Custom); 987 setOperationAction(ISD::MSTORE, VT, Custom); 988 setOperationAction(ISD::MGATHER, VT, Custom); 989 setOperationAction(ISD::MSCATTER, VT, Custom); 990 991 setOperationAction(ISD::VP_LOAD, VT, Custom); 992 setOperationAction(ISD::VP_STORE, VT, Custom); 993 setOperationAction(ISD::VP_GATHER, VT, Custom); 994 setOperationAction(ISD::VP_SCATTER, VT, Custom); 995 996 setOperationAction(ISD::FADD, VT, Custom); 997 setOperationAction(ISD::FSUB, VT, Custom); 998 setOperationAction(ISD::FMUL, VT, Custom); 999 setOperationAction(ISD::FDIV, VT, Custom); 1000 setOperationAction(ISD::FNEG, VT, Custom); 1001 setOperationAction(ISD::FABS, VT, Custom); 1002 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 1003 setOperationAction(ISD::FSQRT, VT, Custom); 1004 setOperationAction(ISD::FMA, VT, Custom); 1005 setOperationAction(ISD::FMINNUM, VT, Custom); 1006 setOperationAction(ISD::FMAXNUM, VT, Custom); 1007 1008 setOperationAction(ISD::FP_ROUND, VT, Custom); 1009 setOperationAction(ISD::FP_EXTEND, VT, Custom); 1010 1011 setOperationAction(ISD::FTRUNC, VT, Custom); 1012 setOperationAction(ISD::FCEIL, VT, Custom); 1013 setOperationAction(ISD::FFLOOR, VT, Custom); 1014 1015 for (auto CC : VFPCCToExpand) 1016 setCondCodeAction(CC, VT, Expand); 1017 1018 setOperationAction(ISD::VSELECT, VT, Custom); 1019 setOperationAction(ISD::SELECT, VT, Custom); 1020 setOperationAction(ISD::SELECT_CC, VT, Expand); 1021 1022 setOperationAction(ISD::BITCAST, VT, Custom); 1023 1024 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 1025 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 1026 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 1027 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 1028 1029 for (unsigned VPOpc : FloatingPointVPOps) 1030 setOperationAction(VPOpc, VT, Custom); 1031 } 1032 1033 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 1034 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 1035 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 1036 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 1037 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 1038 if (Subtarget.hasStdExtZfh()) 1039 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 1040 if (Subtarget.hasStdExtF()) 1041 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 1042 if (Subtarget.hasStdExtD()) 1043 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 1044 } 1045 } 1046 1047 // Function alignments. 1048 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 1049 setMinFunctionAlignment(FunctionAlignment); 1050 setPrefFunctionAlignment(FunctionAlignment); 1051 1052 setMinimumJumpTableEntries(5); 1053 1054 // Jumps are expensive, compared to logic 1055 setJumpIsExpensive(); 1056 1057 setTargetDAGCombine(ISD::ADD); 1058 setTargetDAGCombine(ISD::SUB); 1059 setTargetDAGCombine(ISD::AND); 1060 setTargetDAGCombine(ISD::OR); 1061 setTargetDAGCombine(ISD::XOR); 1062 setTargetDAGCombine(ISD::ANY_EXTEND); 1063 if (Subtarget.hasStdExtF()) { 1064 setTargetDAGCombine(ISD::ZERO_EXTEND); 1065 setTargetDAGCombine(ISD::FP_TO_SINT); 1066 setTargetDAGCombine(ISD::FP_TO_UINT); 1067 setTargetDAGCombine(ISD::FP_TO_SINT_SAT); 1068 setTargetDAGCombine(ISD::FP_TO_UINT_SAT); 1069 } 1070 if (Subtarget.hasVInstructions()) { 1071 setTargetDAGCombine(ISD::FCOPYSIGN); 1072 setTargetDAGCombine(ISD::MGATHER); 1073 setTargetDAGCombine(ISD::MSCATTER); 1074 setTargetDAGCombine(ISD::VP_GATHER); 1075 setTargetDAGCombine(ISD::VP_SCATTER); 1076 setTargetDAGCombine(ISD::SRA); 1077 setTargetDAGCombine(ISD::SRL); 1078 setTargetDAGCombine(ISD::SHL); 1079 setTargetDAGCombine(ISD::STORE); 1080 } 1081 } 1082 1083 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 1084 LLVMContext &Context, 1085 EVT VT) const { 1086 if (!VT.isVector()) 1087 return getPointerTy(DL); 1088 if (Subtarget.hasVInstructions() && 1089 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 1090 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 1091 return VT.changeVectorElementTypeToInteger(); 1092 } 1093 1094 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 1095 return Subtarget.getXLenVT(); 1096 } 1097 1098 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1099 const CallInst &I, 1100 MachineFunction &MF, 1101 unsigned Intrinsic) const { 1102 auto &DL = I.getModule()->getDataLayout(); 1103 switch (Intrinsic) { 1104 default: 1105 return false; 1106 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 1107 case Intrinsic::riscv_masked_atomicrmw_add_i32: 1108 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 1109 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 1110 case Intrinsic::riscv_masked_atomicrmw_max_i32: 1111 case Intrinsic::riscv_masked_atomicrmw_min_i32: 1112 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 1113 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 1114 case Intrinsic::riscv_masked_cmpxchg_i32: { 1115 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 1116 Info.opc = ISD::INTRINSIC_W_CHAIN; 1117 Info.memVT = MVT::getVT(PtrTy->getPointerElementType()); 1118 Info.ptrVal = I.getArgOperand(0); 1119 Info.offset = 0; 1120 Info.align = Align(4); 1121 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1122 MachineMemOperand::MOVolatile; 1123 return true; 1124 } 1125 case Intrinsic::riscv_masked_strided_load: 1126 Info.opc = ISD::INTRINSIC_W_CHAIN; 1127 Info.ptrVal = I.getArgOperand(1); 1128 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1129 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1130 Info.size = MemoryLocation::UnknownSize; 1131 Info.flags |= MachineMemOperand::MOLoad; 1132 return true; 1133 case Intrinsic::riscv_masked_strided_store: 1134 Info.opc = ISD::INTRINSIC_VOID; 1135 Info.ptrVal = I.getArgOperand(1); 1136 Info.memVT = 1137 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1138 Info.align = Align( 1139 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1140 8); 1141 Info.size = MemoryLocation::UnknownSize; 1142 Info.flags |= MachineMemOperand::MOStore; 1143 return true; 1144 } 1145 } 1146 1147 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1148 const AddrMode &AM, Type *Ty, 1149 unsigned AS, 1150 Instruction *I) const { 1151 // No global is ever allowed as a base. 1152 if (AM.BaseGV) 1153 return false; 1154 1155 // Require a 12-bit signed offset. 1156 if (!isInt<12>(AM.BaseOffs)) 1157 return false; 1158 1159 switch (AM.Scale) { 1160 case 0: // "r+i" or just "i", depending on HasBaseReg. 1161 break; 1162 case 1: 1163 if (!AM.HasBaseReg) // allow "r+i". 1164 break; 1165 return false; // disallow "r+r" or "r+r+i". 1166 default: 1167 return false; 1168 } 1169 1170 return true; 1171 } 1172 1173 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1174 return isInt<12>(Imm); 1175 } 1176 1177 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1178 return isInt<12>(Imm); 1179 } 1180 1181 // On RV32, 64-bit integers are split into their high and low parts and held 1182 // in two different registers, so the trunc is free since the low register can 1183 // just be used. 1184 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1185 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1186 return false; 1187 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1188 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1189 return (SrcBits == 64 && DestBits == 32); 1190 } 1191 1192 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1193 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1194 !SrcVT.isInteger() || !DstVT.isInteger()) 1195 return false; 1196 unsigned SrcBits = SrcVT.getSizeInBits(); 1197 unsigned DestBits = DstVT.getSizeInBits(); 1198 return (SrcBits == 64 && DestBits == 32); 1199 } 1200 1201 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1202 // Zexts are free if they can be combined with a load. 1203 // Don't advertise i32->i64 zextload as being free for RV64. It interacts 1204 // poorly with type legalization of compares preferring sext. 1205 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1206 EVT MemVT = LD->getMemoryVT(); 1207 if ((MemVT == MVT::i8 || MemVT == MVT::i16) && 1208 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1209 LD->getExtensionType() == ISD::ZEXTLOAD)) 1210 return true; 1211 } 1212 1213 return TargetLowering::isZExtFree(Val, VT2); 1214 } 1215 1216 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1217 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1218 } 1219 1220 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1221 return Subtarget.hasStdExtZbb(); 1222 } 1223 1224 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1225 return Subtarget.hasStdExtZbb(); 1226 } 1227 1228 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { 1229 EVT VT = Y.getValueType(); 1230 1231 // FIXME: Support vectors once we have tests. 1232 if (VT.isVector()) 1233 return false; 1234 1235 return Subtarget.hasStdExtZbb() && !isa<ConstantSDNode>(Y); 1236 } 1237 1238 /// Check if sinking \p I's operands to I's basic block is profitable, because 1239 /// the operands can be folded into a target instruction, e.g. 1240 /// splats of scalars can fold into vector instructions. 1241 bool RISCVTargetLowering::shouldSinkOperands( 1242 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1243 using namespace llvm::PatternMatch; 1244 1245 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1246 return false; 1247 1248 auto IsSinker = [&](Instruction *I, int Operand) { 1249 switch (I->getOpcode()) { 1250 case Instruction::Add: 1251 case Instruction::Sub: 1252 case Instruction::Mul: 1253 case Instruction::And: 1254 case Instruction::Or: 1255 case Instruction::Xor: 1256 case Instruction::FAdd: 1257 case Instruction::FSub: 1258 case Instruction::FMul: 1259 case Instruction::FDiv: 1260 case Instruction::ICmp: 1261 case Instruction::FCmp: 1262 return true; 1263 case Instruction::Shl: 1264 case Instruction::LShr: 1265 case Instruction::AShr: 1266 case Instruction::UDiv: 1267 case Instruction::SDiv: 1268 case Instruction::URem: 1269 case Instruction::SRem: 1270 return Operand == 1; 1271 case Instruction::Call: 1272 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1273 switch (II->getIntrinsicID()) { 1274 case Intrinsic::fma: 1275 return Operand == 0 || Operand == 1; 1276 // FIXME: Our patterns can only match vx/vf instructions when the splat 1277 // it on the RHS, because TableGen doesn't recognize our VP operations 1278 // as commutative. 1279 case Intrinsic::vp_add: 1280 case Intrinsic::vp_mul: 1281 case Intrinsic::vp_and: 1282 case Intrinsic::vp_or: 1283 case Intrinsic::vp_xor: 1284 case Intrinsic::vp_fadd: 1285 case Intrinsic::vp_fmul: 1286 case Intrinsic::vp_shl: 1287 case Intrinsic::vp_lshr: 1288 case Intrinsic::vp_ashr: 1289 case Intrinsic::vp_udiv: 1290 case Intrinsic::vp_sdiv: 1291 case Intrinsic::vp_urem: 1292 case Intrinsic::vp_srem: 1293 return Operand == 1; 1294 // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have 1295 // explicit patterns for both LHS and RHS (as 'vr' versions). 1296 case Intrinsic::vp_sub: 1297 case Intrinsic::vp_fsub: 1298 case Intrinsic::vp_fdiv: 1299 return Operand == 0 || Operand == 1; 1300 default: 1301 return false; 1302 } 1303 } 1304 return false; 1305 default: 1306 return false; 1307 } 1308 }; 1309 1310 for (auto OpIdx : enumerate(I->operands())) { 1311 if (!IsSinker(I, OpIdx.index())) 1312 continue; 1313 1314 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1315 // Make sure we are not already sinking this operand 1316 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1317 continue; 1318 1319 // We are looking for a splat that can be sunk. 1320 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1321 m_Undef(), m_ZeroMask()))) 1322 continue; 1323 1324 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1325 // and vector registers 1326 for (Use &U : Op->uses()) { 1327 Instruction *Insn = cast<Instruction>(U.getUser()); 1328 if (!IsSinker(Insn, U.getOperandNo())) 1329 return false; 1330 } 1331 1332 Ops.push_back(&Op->getOperandUse(0)); 1333 Ops.push_back(&OpIdx.value()); 1334 } 1335 return true; 1336 } 1337 1338 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1339 bool ForCodeSize) const { 1340 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1341 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1342 return false; 1343 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1344 return false; 1345 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1346 return false; 1347 return Imm.isZero(); 1348 } 1349 1350 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1351 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1352 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1353 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1354 } 1355 1356 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1357 CallingConv::ID CC, 1358 EVT VT) const { 1359 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1360 // We might still end up using a GPR but that will be decided based on ABI. 1361 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1362 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1363 return MVT::f32; 1364 1365 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1366 } 1367 1368 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1369 CallingConv::ID CC, 1370 EVT VT) const { 1371 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1372 // We might still end up using a GPR but that will be decided based on ABI. 1373 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1374 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1375 return 1; 1376 1377 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1378 } 1379 1380 // Changes the condition code and swaps operands if necessary, so the SetCC 1381 // operation matches one of the comparisons supported directly by branches 1382 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1383 // with 1/-1. 1384 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1385 ISD::CondCode &CC, SelectionDAG &DAG) { 1386 // Convert X > -1 to X >= 0. 1387 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1388 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1389 CC = ISD::SETGE; 1390 return; 1391 } 1392 // Convert X < 1 to 0 >= X. 1393 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1394 RHS = LHS; 1395 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1396 CC = ISD::SETGE; 1397 return; 1398 } 1399 1400 switch (CC) { 1401 default: 1402 break; 1403 case ISD::SETGT: 1404 case ISD::SETLE: 1405 case ISD::SETUGT: 1406 case ISD::SETULE: 1407 CC = ISD::getSetCCSwappedOperands(CC); 1408 std::swap(LHS, RHS); 1409 break; 1410 } 1411 } 1412 1413 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1414 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1415 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1416 if (VT.getVectorElementType() == MVT::i1) 1417 KnownSize *= 8; 1418 1419 switch (KnownSize) { 1420 default: 1421 llvm_unreachable("Invalid LMUL."); 1422 case 8: 1423 return RISCVII::VLMUL::LMUL_F8; 1424 case 16: 1425 return RISCVII::VLMUL::LMUL_F4; 1426 case 32: 1427 return RISCVII::VLMUL::LMUL_F2; 1428 case 64: 1429 return RISCVII::VLMUL::LMUL_1; 1430 case 128: 1431 return RISCVII::VLMUL::LMUL_2; 1432 case 256: 1433 return RISCVII::VLMUL::LMUL_4; 1434 case 512: 1435 return RISCVII::VLMUL::LMUL_8; 1436 } 1437 } 1438 1439 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1440 switch (LMul) { 1441 default: 1442 llvm_unreachable("Invalid LMUL."); 1443 case RISCVII::VLMUL::LMUL_F8: 1444 case RISCVII::VLMUL::LMUL_F4: 1445 case RISCVII::VLMUL::LMUL_F2: 1446 case RISCVII::VLMUL::LMUL_1: 1447 return RISCV::VRRegClassID; 1448 case RISCVII::VLMUL::LMUL_2: 1449 return RISCV::VRM2RegClassID; 1450 case RISCVII::VLMUL::LMUL_4: 1451 return RISCV::VRM4RegClassID; 1452 case RISCVII::VLMUL::LMUL_8: 1453 return RISCV::VRM8RegClassID; 1454 } 1455 } 1456 1457 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1458 RISCVII::VLMUL LMUL = getLMUL(VT); 1459 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1460 LMUL == RISCVII::VLMUL::LMUL_F4 || 1461 LMUL == RISCVII::VLMUL::LMUL_F2 || 1462 LMUL == RISCVII::VLMUL::LMUL_1) { 1463 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1464 "Unexpected subreg numbering"); 1465 return RISCV::sub_vrm1_0 + Index; 1466 } 1467 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1468 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1469 "Unexpected subreg numbering"); 1470 return RISCV::sub_vrm2_0 + Index; 1471 } 1472 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1473 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1474 "Unexpected subreg numbering"); 1475 return RISCV::sub_vrm4_0 + Index; 1476 } 1477 llvm_unreachable("Invalid vector type."); 1478 } 1479 1480 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1481 if (VT.getVectorElementType() == MVT::i1) 1482 return RISCV::VRRegClassID; 1483 return getRegClassIDForLMUL(getLMUL(VT)); 1484 } 1485 1486 // Attempt to decompose a subvector insert/extract between VecVT and 1487 // SubVecVT via subregister indices. Returns the subregister index that 1488 // can perform the subvector insert/extract with the given element index, as 1489 // well as the index corresponding to any leftover subvectors that must be 1490 // further inserted/extracted within the register class for SubVecVT. 1491 std::pair<unsigned, unsigned> 1492 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1493 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1494 const RISCVRegisterInfo *TRI) { 1495 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1496 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1497 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1498 "Register classes not ordered"); 1499 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1500 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1501 // Try to compose a subregister index that takes us from the incoming 1502 // LMUL>1 register class down to the outgoing one. At each step we half 1503 // the LMUL: 1504 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1505 // Note that this is not guaranteed to find a subregister index, such as 1506 // when we are extracting from one VR type to another. 1507 unsigned SubRegIdx = RISCV::NoSubRegister; 1508 for (const unsigned RCID : 1509 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1510 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1511 VecVT = VecVT.getHalfNumVectorElementsVT(); 1512 bool IsHi = 1513 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1514 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1515 getSubregIndexByMVT(VecVT, IsHi)); 1516 if (IsHi) 1517 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1518 } 1519 return {SubRegIdx, InsertExtractIdx}; 1520 } 1521 1522 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1523 // stores for those types. 1524 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1525 return !Subtarget.useRVVForFixedLengthVectors() || 1526 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1527 } 1528 1529 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1530 if (ScalarTy->isPointerTy()) 1531 return true; 1532 1533 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1534 ScalarTy->isIntegerTy(32)) 1535 return true; 1536 1537 if (ScalarTy->isIntegerTy(64)) 1538 return Subtarget.hasVInstructionsI64(); 1539 1540 if (ScalarTy->isHalfTy()) 1541 return Subtarget.hasVInstructionsF16(); 1542 if (ScalarTy->isFloatTy()) 1543 return Subtarget.hasVInstructionsF32(); 1544 if (ScalarTy->isDoubleTy()) 1545 return Subtarget.hasVInstructionsF64(); 1546 1547 return false; 1548 } 1549 1550 static SDValue getVLOperand(SDValue Op) { 1551 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1552 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 1553 "Unexpected opcode"); 1554 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 1555 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 1556 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1557 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 1558 if (!II) 1559 return SDValue(); 1560 return Op.getOperand(II->VLOperand + 1 + HasChain); 1561 } 1562 1563 static bool useRVVForFixedLengthVectorVT(MVT VT, 1564 const RISCVSubtarget &Subtarget) { 1565 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1566 if (!Subtarget.useRVVForFixedLengthVectors()) 1567 return false; 1568 1569 // We only support a set of vector types with a consistent maximum fixed size 1570 // across all supported vector element types to avoid legalization issues. 1571 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1572 // fixed-length vector type we support is 1024 bytes. 1573 if (VT.getFixedSizeInBits() > 1024 * 8) 1574 return false; 1575 1576 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1577 1578 MVT EltVT = VT.getVectorElementType(); 1579 1580 // Don't use RVV for vectors we cannot scalarize if required. 1581 switch (EltVT.SimpleTy) { 1582 // i1 is supported but has different rules. 1583 default: 1584 return false; 1585 case MVT::i1: 1586 // Masks can only use a single register. 1587 if (VT.getVectorNumElements() > MinVLen) 1588 return false; 1589 MinVLen /= 8; 1590 break; 1591 case MVT::i8: 1592 case MVT::i16: 1593 case MVT::i32: 1594 break; 1595 case MVT::i64: 1596 if (!Subtarget.hasVInstructionsI64()) 1597 return false; 1598 break; 1599 case MVT::f16: 1600 if (!Subtarget.hasVInstructionsF16()) 1601 return false; 1602 break; 1603 case MVT::f32: 1604 if (!Subtarget.hasVInstructionsF32()) 1605 return false; 1606 break; 1607 case MVT::f64: 1608 if (!Subtarget.hasVInstructionsF64()) 1609 return false; 1610 break; 1611 } 1612 1613 // Reject elements larger than ELEN. 1614 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1615 return false; 1616 1617 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1618 // Don't use RVV for types that don't fit. 1619 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1620 return false; 1621 1622 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1623 // the base fixed length RVV support in place. 1624 if (!VT.isPow2VectorType()) 1625 return false; 1626 1627 return true; 1628 } 1629 1630 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1631 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1632 } 1633 1634 // Return the largest legal scalable vector type that matches VT's element type. 1635 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1636 const RISCVSubtarget &Subtarget) { 1637 // This may be called before legal types are setup. 1638 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1639 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1640 "Expected legal fixed length vector!"); 1641 1642 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1643 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1644 1645 MVT EltVT = VT.getVectorElementType(); 1646 switch (EltVT.SimpleTy) { 1647 default: 1648 llvm_unreachable("unexpected element type for RVV container"); 1649 case MVT::i1: 1650 case MVT::i8: 1651 case MVT::i16: 1652 case MVT::i32: 1653 case MVT::i64: 1654 case MVT::f16: 1655 case MVT::f32: 1656 case MVT::f64: { 1657 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1658 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1659 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1660 unsigned NumElts = 1661 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1662 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1663 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1664 return MVT::getScalableVectorVT(EltVT, NumElts); 1665 } 1666 } 1667 } 1668 1669 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1670 const RISCVSubtarget &Subtarget) { 1671 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1672 Subtarget); 1673 } 1674 1675 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1676 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1677 } 1678 1679 // Grow V to consume an entire RVV register. 1680 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1681 const RISCVSubtarget &Subtarget) { 1682 assert(VT.isScalableVector() && 1683 "Expected to convert into a scalable vector!"); 1684 assert(V.getValueType().isFixedLengthVector() && 1685 "Expected a fixed length vector operand!"); 1686 SDLoc DL(V); 1687 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1688 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1689 } 1690 1691 // Shrink V so it's just big enough to maintain a VT's worth of data. 1692 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1693 const RISCVSubtarget &Subtarget) { 1694 assert(VT.isFixedLengthVector() && 1695 "Expected to convert into a fixed length vector!"); 1696 assert(V.getValueType().isScalableVector() && 1697 "Expected a scalable vector operand!"); 1698 SDLoc DL(V); 1699 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1700 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1701 } 1702 1703 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1704 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1705 // the vector type that it is contained in. 1706 static std::pair<SDValue, SDValue> 1707 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1708 const RISCVSubtarget &Subtarget) { 1709 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1710 MVT XLenVT = Subtarget.getXLenVT(); 1711 SDValue VL = VecVT.isFixedLengthVector() 1712 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1713 : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 1714 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1715 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1716 return {Mask, VL}; 1717 } 1718 1719 // As above but assuming the given type is a scalable vector type. 1720 static std::pair<SDValue, SDValue> 1721 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1722 const RISCVSubtarget &Subtarget) { 1723 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1724 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1725 } 1726 1727 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1728 // of either is (currently) supported. This can get us into an infinite loop 1729 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1730 // as a ..., etc. 1731 // Until either (or both) of these can reliably lower any node, reporting that 1732 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1733 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1734 // which is not desirable. 1735 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1736 EVT VT, unsigned DefinedValues) const { 1737 return false; 1738 } 1739 1740 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1741 // Only splats are currently supported. 1742 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1743 return true; 1744 1745 return false; 1746 } 1747 1748 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, 1749 const RISCVSubtarget &Subtarget) { 1750 // RISCV FP-to-int conversions saturate to the destination register size, but 1751 // don't produce 0 for nan. We can use a conversion instruction and fix the 1752 // nan case with a compare and a select. 1753 SDValue Src = Op.getOperand(0); 1754 1755 EVT DstVT = Op.getValueType(); 1756 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1757 1758 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1759 unsigned Opc; 1760 if (SatVT == DstVT) 1761 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 1762 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1763 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 1764 else 1765 return SDValue(); 1766 // FIXME: Support other SatVTs by clamping before or after the conversion. 1767 1768 SDLoc DL(Op); 1769 SDValue FpToInt = DAG.getNode( 1770 Opc, DL, DstVT, Src, 1771 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT())); 1772 1773 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1774 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1775 } 1776 1777 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1778 // and back. Taking care to avoid converting values that are nan or already 1779 // correct. 1780 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1781 // have FRM dependencies modeled yet. 1782 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1783 MVT VT = Op.getSimpleValueType(); 1784 assert(VT.isVector() && "Unexpected type"); 1785 1786 SDLoc DL(Op); 1787 1788 // Freeze the source since we are increasing the number of uses. 1789 SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0)); 1790 1791 // Truncate to integer and convert back to FP. 1792 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1793 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1794 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1795 1796 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1797 1798 if (Op.getOpcode() == ISD::FCEIL) { 1799 // If the truncated value is the greater than or equal to the original 1800 // value, we've computed the ceil. Otherwise, we went the wrong way and 1801 // need to increase by 1. 1802 // FIXME: This should use a masked operation. Handle here or in isel? 1803 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1804 DAG.getConstantFP(1.0, DL, VT)); 1805 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1806 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1807 } else if (Op.getOpcode() == ISD::FFLOOR) { 1808 // If the truncated value is the less than or equal to the original value, 1809 // we've computed the floor. Otherwise, we went the wrong way and need to 1810 // decrease by 1. 1811 // FIXME: This should use a masked operation. Handle here or in isel? 1812 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1813 DAG.getConstantFP(1.0, DL, VT)); 1814 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1815 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1816 } 1817 1818 // Restore the original sign so that -0.0 is preserved. 1819 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1820 1821 // Determine the largest integer that can be represented exactly. This and 1822 // values larger than it don't have any fractional bits so don't need to 1823 // be converted. 1824 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1825 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1826 APFloat MaxVal = APFloat(FltSem); 1827 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1828 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1829 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1830 1831 // If abs(Src) was larger than MaxVal or nan, keep it. 1832 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1833 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1834 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1835 } 1836 1837 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1838 const RISCVSubtarget &Subtarget) { 1839 MVT VT = Op.getSimpleValueType(); 1840 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1841 1842 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1843 1844 SDLoc DL(Op); 1845 SDValue Mask, VL; 1846 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1847 1848 unsigned Opc = 1849 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1850 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1851 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1852 } 1853 1854 struct VIDSequence { 1855 int64_t StepNumerator; 1856 unsigned StepDenominator; 1857 int64_t Addend; 1858 }; 1859 1860 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1861 // to the (non-zero) step S and start value X. This can be then lowered as the 1862 // RVV sequence (VID * S) + X, for example. 1863 // The step S is represented as an integer numerator divided by a positive 1864 // denominator. Note that the implementation currently only identifies 1865 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1866 // cannot detect 2/3, for example. 1867 // Note that this method will also match potentially unappealing index 1868 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1869 // determine whether this is worth generating code for. 1870 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1871 unsigned NumElts = Op.getNumOperands(); 1872 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1873 if (!Op.getValueType().isInteger()) 1874 return None; 1875 1876 Optional<unsigned> SeqStepDenom; 1877 Optional<int64_t> SeqStepNum, SeqAddend; 1878 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1879 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1880 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1881 // Assume undef elements match the sequence; we just have to be careful 1882 // when interpolating across them. 1883 if (Op.getOperand(Idx).isUndef()) 1884 continue; 1885 // The BUILD_VECTOR must be all constants. 1886 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1887 return None; 1888 1889 uint64_t Val = Op.getConstantOperandVal(Idx) & 1890 maskTrailingOnes<uint64_t>(EltSizeInBits); 1891 1892 if (PrevElt) { 1893 // Calculate the step since the last non-undef element, and ensure 1894 // it's consistent across the entire sequence. 1895 unsigned IdxDiff = Idx - PrevElt->second; 1896 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1897 1898 // A zero-value value difference means that we're somewhere in the middle 1899 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1900 // step change before evaluating the sequence. 1901 if (ValDiff != 0) { 1902 int64_t Remainder = ValDiff % IdxDiff; 1903 // Normalize the step if it's greater than 1. 1904 if (Remainder != ValDiff) { 1905 // The difference must cleanly divide the element span. 1906 if (Remainder != 0) 1907 return None; 1908 ValDiff /= IdxDiff; 1909 IdxDiff = 1; 1910 } 1911 1912 if (!SeqStepNum) 1913 SeqStepNum = ValDiff; 1914 else if (ValDiff != SeqStepNum) 1915 return None; 1916 1917 if (!SeqStepDenom) 1918 SeqStepDenom = IdxDiff; 1919 else if (IdxDiff != *SeqStepDenom) 1920 return None; 1921 } 1922 } 1923 1924 // Record and/or check any addend. 1925 if (SeqStepNum && SeqStepDenom) { 1926 uint64_t ExpectedVal = 1927 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1928 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1929 if (!SeqAddend) 1930 SeqAddend = Addend; 1931 else if (SeqAddend != Addend) 1932 return None; 1933 } 1934 1935 // Record this non-undef element for later. 1936 if (!PrevElt || PrevElt->first != Val) 1937 PrevElt = std::make_pair(Val, Idx); 1938 } 1939 // We need to have logged both a step and an addend for this to count as 1940 // a legal index sequence. 1941 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1942 return None; 1943 1944 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1945 } 1946 1947 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1948 const RISCVSubtarget &Subtarget) { 1949 MVT VT = Op.getSimpleValueType(); 1950 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1951 1952 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1953 1954 SDLoc DL(Op); 1955 SDValue Mask, VL; 1956 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1957 1958 MVT XLenVT = Subtarget.getXLenVT(); 1959 unsigned NumElts = Op.getNumOperands(); 1960 1961 if (VT.getVectorElementType() == MVT::i1) { 1962 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1963 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1964 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1965 } 1966 1967 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1968 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1969 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1970 } 1971 1972 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1973 // scalar integer chunks whose bit-width depends on the number of mask 1974 // bits and XLEN. 1975 // First, determine the most appropriate scalar integer type to use. This 1976 // is at most XLenVT, but may be shrunk to a smaller vector element type 1977 // according to the size of the final vector - use i8 chunks rather than 1978 // XLenVT if we're producing a v8i1. This results in more consistent 1979 // codegen across RV32 and RV64. 1980 unsigned NumViaIntegerBits = 1981 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1982 NumViaIntegerBits = std::min(NumViaIntegerBits, 1983 Subtarget.getMaxELENForFixedLengthVectors()); 1984 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1985 // If we have to use more than one INSERT_VECTOR_ELT then this 1986 // optimization is likely to increase code size; avoid peforming it in 1987 // such a case. We can use a load from a constant pool in this case. 1988 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1989 return SDValue(); 1990 // Now we can create our integer vector type. Note that it may be larger 1991 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1992 MVT IntegerViaVecVT = 1993 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1994 divideCeil(NumElts, NumViaIntegerBits)); 1995 1996 uint64_t Bits = 0; 1997 unsigned BitPos = 0, IntegerEltIdx = 0; 1998 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1999 2000 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 2001 // Once we accumulate enough bits to fill our scalar type, insert into 2002 // our vector and clear our accumulated data. 2003 if (I != 0 && I % NumViaIntegerBits == 0) { 2004 if (NumViaIntegerBits <= 32) 2005 Bits = SignExtend64(Bits, 32); 2006 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2007 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 2008 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2009 Bits = 0; 2010 BitPos = 0; 2011 IntegerEltIdx++; 2012 } 2013 SDValue V = Op.getOperand(I); 2014 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 2015 Bits |= ((uint64_t)BitValue << BitPos); 2016 } 2017 2018 // Insert the (remaining) scalar value into position in our integer 2019 // vector type. 2020 if (NumViaIntegerBits <= 32) 2021 Bits = SignExtend64(Bits, 32); 2022 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2023 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 2024 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2025 2026 if (NumElts < NumViaIntegerBits) { 2027 // If we're producing a smaller vector than our minimum legal integer 2028 // type, bitcast to the equivalent (known-legal) mask type, and extract 2029 // our final mask. 2030 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 2031 Vec = DAG.getBitcast(MVT::v8i1, Vec); 2032 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 2033 DAG.getConstant(0, DL, XLenVT)); 2034 } else { 2035 // Else we must have produced an integer type with the same size as the 2036 // mask type; bitcast for the final result. 2037 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 2038 Vec = DAG.getBitcast(VT, Vec); 2039 } 2040 2041 return Vec; 2042 } 2043 2044 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 2045 // vector type, we have a legal equivalently-sized i8 type, so we can use 2046 // that. 2047 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 2048 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 2049 2050 SDValue WideVec; 2051 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2052 // For a splat, perform a scalar truncate before creating the wider 2053 // vector. 2054 assert(Splat.getValueType() == XLenVT && 2055 "Unexpected type for i1 splat value"); 2056 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 2057 DAG.getConstant(1, DL, XLenVT)); 2058 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 2059 } else { 2060 SmallVector<SDValue, 8> Ops(Op->op_values()); 2061 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 2062 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 2063 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 2064 } 2065 2066 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 2067 } 2068 2069 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2070 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 2071 : RISCVISD::VMV_V_X_VL; 2072 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 2073 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2074 } 2075 2076 // Try and match index sequences, which we can lower to the vid instruction 2077 // with optional modifications. An all-undef vector is matched by 2078 // getSplatValue, above. 2079 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 2080 int64_t StepNumerator = SimpleVID->StepNumerator; 2081 unsigned StepDenominator = SimpleVID->StepDenominator; 2082 int64_t Addend = SimpleVID->Addend; 2083 2084 assert(StepNumerator != 0 && "Invalid step"); 2085 bool Negate = false; 2086 int64_t SplatStepVal = StepNumerator; 2087 unsigned StepOpcode = ISD::MUL; 2088 if (StepNumerator != 1) { 2089 if (isPowerOf2_64(std::abs(StepNumerator))) { 2090 Negate = StepNumerator < 0; 2091 StepOpcode = ISD::SHL; 2092 SplatStepVal = Log2_64(std::abs(StepNumerator)); 2093 } 2094 } 2095 2096 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 2097 // threshold since it's the immediate value many RVV instructions accept. 2098 // There is no vmul.vi instruction so ensure multiply constant can fit in 2099 // a single addi instruction. 2100 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 2101 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 2102 isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) { 2103 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 2104 // Convert right out of the scalable type so we can use standard ISD 2105 // nodes for the rest of the computation. If we used scalable types with 2106 // these, we'd lose the fixed-length vector info and generate worse 2107 // vsetvli code. 2108 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 2109 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 2110 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 2111 SDValue SplatStep = DAG.getSplatVector( 2112 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 2113 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); 2114 } 2115 if (StepDenominator != 1) { 2116 SDValue SplatStep = DAG.getSplatVector( 2117 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 2118 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 2119 } 2120 if (Addend != 0 || Negate) { 2121 SDValue SplatAddend = 2122 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 2123 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 2124 } 2125 return VID; 2126 } 2127 } 2128 2129 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2130 // when re-interpreted as a vector with a larger element type. For example, 2131 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2132 // could be instead splat as 2133 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2134 // TODO: This optimization could also work on non-constant splats, but it 2135 // would require bit-manipulation instructions to construct the splat value. 2136 SmallVector<SDValue> Sequence; 2137 unsigned EltBitSize = VT.getScalarSizeInBits(); 2138 const auto *BV = cast<BuildVectorSDNode>(Op); 2139 if (VT.isInteger() && EltBitSize < 64 && 2140 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2141 BV->getRepeatedSequence(Sequence) && 2142 (Sequence.size() * EltBitSize) <= 64) { 2143 unsigned SeqLen = Sequence.size(); 2144 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2145 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2146 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2147 ViaIntVT == MVT::i64) && 2148 "Unexpected sequence type"); 2149 2150 unsigned EltIdx = 0; 2151 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2152 uint64_t SplatValue = 0; 2153 // Construct the amalgamated value which can be splatted as this larger 2154 // vector type. 2155 for (const auto &SeqV : Sequence) { 2156 if (!SeqV.isUndef()) 2157 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2158 << (EltIdx * EltBitSize)); 2159 EltIdx++; 2160 } 2161 2162 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2163 // achieve better constant materializion. 2164 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2165 SplatValue = SignExtend64(SplatValue, 32); 2166 2167 // Since we can't introduce illegal i64 types at this stage, we can only 2168 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2169 // way we can use RVV instructions to splat. 2170 assert((ViaIntVT.bitsLE(XLenVT) || 2171 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2172 "Unexpected bitcast sequence"); 2173 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2174 SDValue ViaVL = 2175 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2176 MVT ViaContainerVT = 2177 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2178 SDValue Splat = 2179 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2180 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2181 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2182 return DAG.getBitcast(VT, Splat); 2183 } 2184 } 2185 2186 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2187 // which constitute a large proportion of the elements. In such cases we can 2188 // splat a vector with the dominant element and make up the shortfall with 2189 // INSERT_VECTOR_ELTs. 2190 // Note that this includes vectors of 2 elements by association. The 2191 // upper-most element is the "dominant" one, allowing us to use a splat to 2192 // "insert" the upper element, and an insert of the lower element at position 2193 // 0, which improves codegen. 2194 SDValue DominantValue; 2195 unsigned MostCommonCount = 0; 2196 DenseMap<SDValue, unsigned> ValueCounts; 2197 unsigned NumUndefElts = 2198 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2199 2200 // Track the number of scalar loads we know we'd be inserting, estimated as 2201 // any non-zero floating-point constant. Other kinds of element are either 2202 // already in registers or are materialized on demand. The threshold at which 2203 // a vector load is more desirable than several scalar materializion and 2204 // vector-insertion instructions is not known. 2205 unsigned NumScalarLoads = 0; 2206 2207 for (SDValue V : Op->op_values()) { 2208 if (V.isUndef()) 2209 continue; 2210 2211 ValueCounts.insert(std::make_pair(V, 0)); 2212 unsigned &Count = ValueCounts[V]; 2213 2214 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2215 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2216 2217 // Is this value dominant? In case of a tie, prefer the highest element as 2218 // it's cheaper to insert near the beginning of a vector than it is at the 2219 // end. 2220 if (++Count >= MostCommonCount) { 2221 DominantValue = V; 2222 MostCommonCount = Count; 2223 } 2224 } 2225 2226 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2227 unsigned NumDefElts = NumElts - NumUndefElts; 2228 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2229 2230 // Don't perform this optimization when optimizing for size, since 2231 // materializing elements and inserting them tends to cause code bloat. 2232 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2233 ((MostCommonCount > DominantValueCountThreshold) || 2234 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2235 // Start by splatting the most common element. 2236 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2237 2238 DenseSet<SDValue> Processed{DominantValue}; 2239 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2240 for (const auto &OpIdx : enumerate(Op->ops())) { 2241 const SDValue &V = OpIdx.value(); 2242 if (V.isUndef() || !Processed.insert(V).second) 2243 continue; 2244 if (ValueCounts[V] == 1) { 2245 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2246 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2247 } else { 2248 // Blend in all instances of this value using a VSELECT, using a 2249 // mask where each bit signals whether that element is the one 2250 // we're after. 2251 SmallVector<SDValue> Ops; 2252 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2253 return DAG.getConstant(V == V1, DL, XLenVT); 2254 }); 2255 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2256 DAG.getBuildVector(SelMaskTy, DL, Ops), 2257 DAG.getSplatBuildVector(VT, DL, V), Vec); 2258 } 2259 } 2260 2261 return Vec; 2262 } 2263 2264 return SDValue(); 2265 } 2266 2267 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 2268 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 2269 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2270 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2271 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2272 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2273 // node in order to try and match RVV vector/scalar instructions. 2274 if ((LoC >> 31) == HiC) 2275 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 2276 2277 // If vl is equal to VLMax and Hi constant is equal to Lo, we could use 2278 // vmv.v.x whose EEW = 32 to lower it. 2279 auto *Const = dyn_cast<ConstantSDNode>(VL); 2280 if (LoC == HiC && Const && Const->getSExtValue() == RISCV::VLMaxSentinel) { 2281 MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 2282 // TODO: if vl <= min(VLMAX), we can also do this. But we could not 2283 // access the subtarget here now. 2284 auto InterVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterVT, Lo, VL); 2285 return DAG.getNode(ISD::BITCAST, DL, VT, InterVec); 2286 } 2287 } 2288 2289 // Fall back to a stack store and stride x0 vector load. 2290 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 2291 } 2292 2293 // Called by type legalization to handle splat of i64 on RV32. 2294 // FIXME: We can optimize this when the type has sign or zero bits in one 2295 // of the halves. 2296 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 2297 SDValue VL, SelectionDAG &DAG) { 2298 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2299 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2300 DAG.getConstant(0, DL, MVT::i32)); 2301 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2302 DAG.getConstant(1, DL, MVT::i32)); 2303 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 2304 } 2305 2306 // This function lowers a splat of a scalar operand Splat with the vector 2307 // length VL. It ensures the final sequence is type legal, which is useful when 2308 // lowering a splat after type legalization. 2309 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 2310 SelectionDAG &DAG, 2311 const RISCVSubtarget &Subtarget) { 2312 if (VT.isFloatingPoint()) { 2313 // If VL is 1, we could use vfmv.s.f. 2314 if (isOneConstant(VL)) 2315 return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, DAG.getUNDEF(VT), 2316 Scalar, VL); 2317 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 2318 } 2319 2320 MVT XLenVT = Subtarget.getXLenVT(); 2321 2322 // Simplest case is that the operand needs to be promoted to XLenVT. 2323 if (Scalar.getValueType().bitsLE(XLenVT)) { 2324 // If the operand is a constant, sign extend to increase our chances 2325 // of being able to use a .vi instruction. ANY_EXTEND would become a 2326 // a zero extend and the simm5 check in isel would fail. 2327 // FIXME: Should we ignore the upper bits in isel instead? 2328 unsigned ExtOpc = 2329 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2330 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2331 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar); 2332 // If VL is 1 and the scalar value won't benefit from immediate, we could 2333 // use vmv.s.x. 2334 if (isOneConstant(VL) && 2335 (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue()))) 2336 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), Scalar, 2337 VL); 2338 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 2339 } 2340 2341 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2342 "Unexpected scalar for splat lowering!"); 2343 2344 if (isOneConstant(VL) && isNullConstant(Scalar)) 2345 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), 2346 DAG.getConstant(0, DL, XLenVT), VL); 2347 2348 // Otherwise use the more complicated splatting algorithm. 2349 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 2350 } 2351 2352 // Is the mask a slidedown that shifts in undefs. 2353 static int matchShuffleAsSlideDown(ArrayRef<int> Mask) { 2354 int Size = Mask.size(); 2355 2356 // Elements shifted in should be undef. 2357 auto CheckUndefs = [&](int Shift) { 2358 for (int i = Size - Shift; i != Size; ++i) 2359 if (Mask[i] >= 0) 2360 return false; 2361 return true; 2362 }; 2363 2364 // Elements should be shifted or undef. 2365 auto MatchShift = [&](int Shift) { 2366 for (int i = 0; i != Size - Shift; ++i) 2367 if (Mask[i] >= 0 && Mask[i] != Shift + i) 2368 return false; 2369 return true; 2370 }; 2371 2372 // Try all possible shifts. 2373 for (int Shift = 1; Shift != Size; ++Shift) 2374 if (CheckUndefs(Shift) && MatchShift(Shift)) 2375 return Shift; 2376 2377 // No match. 2378 return -1; 2379 } 2380 2381 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources, 2382 const RISCVSubtarget &Subtarget) { 2383 // We need to be able to widen elements to the next larger integer type. 2384 if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors()) 2385 return false; 2386 2387 int Size = Mask.size(); 2388 assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); 2389 2390 int Srcs[] = {-1, -1}; 2391 for (int i = 0; i != Size; ++i) { 2392 // Ignore undef elements. 2393 if (Mask[i] < 0) 2394 continue; 2395 2396 // Is this an even or odd element. 2397 int Pol = i % 2; 2398 2399 // Ensure we consistently use the same source for this element polarity. 2400 int Src = Mask[i] / Size; 2401 if (Srcs[Pol] < 0) 2402 Srcs[Pol] = Src; 2403 if (Srcs[Pol] != Src) 2404 return false; 2405 2406 // Make sure the element within the source is appropriate for this element 2407 // in the destination. 2408 int Elt = Mask[i] % Size; 2409 if (Elt != i / 2) 2410 return false; 2411 } 2412 2413 // We need to find a source for each polarity and they can't be the same. 2414 if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1]) 2415 return false; 2416 2417 // Swap the sources if the second source was in the even polarity. 2418 SwapSources = Srcs[0] > Srcs[1]; 2419 2420 return true; 2421 } 2422 2423 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2424 const RISCVSubtarget &Subtarget) { 2425 SDValue V1 = Op.getOperand(0); 2426 SDValue V2 = Op.getOperand(1); 2427 SDLoc DL(Op); 2428 MVT XLenVT = Subtarget.getXLenVT(); 2429 MVT VT = Op.getSimpleValueType(); 2430 unsigned NumElts = VT.getVectorNumElements(); 2431 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2432 2433 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2434 2435 SDValue TrueMask, VL; 2436 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2437 2438 if (SVN->isSplat()) { 2439 const int Lane = SVN->getSplatIndex(); 2440 if (Lane >= 0) { 2441 MVT SVT = VT.getVectorElementType(); 2442 2443 // Turn splatted vector load into a strided load with an X0 stride. 2444 SDValue V = V1; 2445 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2446 // with undef. 2447 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2448 int Offset = Lane; 2449 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2450 int OpElements = 2451 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2452 V = V.getOperand(Offset / OpElements); 2453 Offset %= OpElements; 2454 } 2455 2456 // We need to ensure the load isn't atomic or volatile. 2457 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2458 auto *Ld = cast<LoadSDNode>(V); 2459 Offset *= SVT.getStoreSize(); 2460 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2461 TypeSize::Fixed(Offset), DL); 2462 2463 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2464 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2465 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2466 SDValue IntID = 2467 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2468 SDValue Ops[] = {Ld->getChain(), 2469 IntID, 2470 DAG.getUNDEF(ContainerVT), 2471 NewAddr, 2472 DAG.getRegister(RISCV::X0, XLenVT), 2473 VL}; 2474 SDValue NewLoad = DAG.getMemIntrinsicNode( 2475 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2476 DAG.getMachineFunction().getMachineMemOperand( 2477 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2478 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2479 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2480 } 2481 2482 // Otherwise use a scalar load and splat. This will give the best 2483 // opportunity to fold a splat into the operation. ISel can turn it into 2484 // the x0 strided load if we aren't able to fold away the select. 2485 if (SVT.isFloatingPoint()) 2486 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2487 Ld->getPointerInfo().getWithOffset(Offset), 2488 Ld->getOriginalAlign(), 2489 Ld->getMemOperand()->getFlags()); 2490 else 2491 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2492 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2493 Ld->getOriginalAlign(), 2494 Ld->getMemOperand()->getFlags()); 2495 DAG.makeEquivalentMemoryOrdering(Ld, V); 2496 2497 unsigned Opc = 2498 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2499 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 2500 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2501 } 2502 2503 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2504 assert(Lane < (int)NumElts && "Unexpected lane!"); 2505 SDValue Gather = 2506 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2507 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2508 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2509 } 2510 } 2511 2512 ArrayRef<int> Mask = SVN->getMask(); 2513 2514 // Try to match as a slidedown. 2515 int SlideAmt = matchShuffleAsSlideDown(Mask); 2516 if (SlideAmt >= 0) { 2517 // TODO: Should we reduce the VL to account for the upper undef elements? 2518 // Requires additional vsetvlis, but might be faster to execute. 2519 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2520 SDValue SlideDown = 2521 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 2522 DAG.getUNDEF(ContainerVT), V1, 2523 DAG.getConstant(SlideAmt, DL, XLenVT), 2524 TrueMask, VL); 2525 return convertFromScalableVector(VT, SlideDown, DAG, Subtarget); 2526 } 2527 2528 // Detect an interleave shuffle and lower to 2529 // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1)) 2530 bool SwapSources; 2531 if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) { 2532 // Swap sources if needed. 2533 if (SwapSources) 2534 std::swap(V1, V2); 2535 2536 // Extract the lower half of the vectors. 2537 MVT HalfVT = VT.getHalfNumVectorElementsVT(); 2538 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1, 2539 DAG.getConstant(0, DL, XLenVT)); 2540 V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2, 2541 DAG.getConstant(0, DL, XLenVT)); 2542 2543 // Double the element width and halve the number of elements in an int type. 2544 unsigned EltBits = VT.getScalarSizeInBits(); 2545 MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2); 2546 MVT WideIntVT = 2547 MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2); 2548 // Convert this to a scalable vector. We need to base this on the 2549 // destination size to ensure there's always a type with a smaller LMUL. 2550 MVT WideIntContainerVT = 2551 getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget); 2552 2553 // Convert sources to scalable vectors with the same element count as the 2554 // larger type. 2555 MVT HalfContainerVT = MVT::getVectorVT( 2556 VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount()); 2557 V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget); 2558 V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget); 2559 2560 // Cast sources to integer. 2561 MVT IntEltVT = MVT::getIntegerVT(EltBits); 2562 MVT IntHalfVT = 2563 MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount()); 2564 V1 = DAG.getBitcast(IntHalfVT, V1); 2565 V2 = DAG.getBitcast(IntHalfVT, V2); 2566 2567 // Freeze V2 since we use it twice and we need to be sure that the add and 2568 // multiply see the same value. 2569 V2 = DAG.getNode(ISD::FREEZE, DL, IntHalfVT, V2); 2570 2571 // Recreate TrueMask using the widened type's element count. 2572 MVT MaskVT = 2573 MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount()); 2574 TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 2575 2576 // Widen V1 and V2 with 0s and add one copy of V2 to V1. 2577 SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1, 2578 V2, TrueMask, VL); 2579 // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer. 2580 SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT, 2581 DAG.getAllOnesConstant(DL, XLenVT)); 2582 SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT, 2583 V2, Multiplier, TrueMask, VL); 2584 // Add the new copies to our previous addition giving us 2^eltbits copies of 2585 // V2. This is equivalent to shifting V2 left by eltbits. This should 2586 // combine with the vwmulu.vv above to form vwmaccu.vv. 2587 Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul, 2588 TrueMask, VL); 2589 // Cast back to ContainerVT. We need to re-create a new ContainerVT in case 2590 // WideIntContainerVT is a larger fractional LMUL than implied by the fixed 2591 // vector VT. 2592 ContainerVT = 2593 MVT::getVectorVT(VT.getVectorElementType(), 2594 WideIntContainerVT.getVectorElementCount() * 2); 2595 Add = DAG.getBitcast(ContainerVT, Add); 2596 return convertFromScalableVector(VT, Add, DAG, Subtarget); 2597 } 2598 2599 // Detect shuffles which can be re-expressed as vector selects; these are 2600 // shuffles in which each element in the destination is taken from an element 2601 // at the corresponding index in either source vectors. 2602 bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) { 2603 int MaskIndex = MaskIdx.value(); 2604 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2605 }); 2606 2607 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2608 2609 SmallVector<SDValue> MaskVals; 2610 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2611 // merged with a second vrgather. 2612 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2613 2614 // By default we preserve the original operand order, and use a mask to 2615 // select LHS as true and RHS as false. However, since RVV vector selects may 2616 // feature splats but only on the LHS, we may choose to invert our mask and 2617 // instead select between RHS and LHS. 2618 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2619 bool InvertMask = IsSelect == SwapOps; 2620 2621 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2622 // half. 2623 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2624 2625 // Now construct the mask that will be used by the vselect or blended 2626 // vrgather operation. For vrgathers, construct the appropriate indices into 2627 // each vector. 2628 for (int MaskIndex : Mask) { 2629 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2630 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2631 if (!IsSelect) { 2632 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2633 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2634 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2635 : DAG.getUNDEF(XLenVT)); 2636 GatherIndicesRHS.push_back( 2637 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2638 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2639 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2640 ++LHSIndexCounts[MaskIndex]; 2641 if (!IsLHSOrUndefIndex) 2642 ++RHSIndexCounts[MaskIndex - NumElts]; 2643 } 2644 } 2645 2646 if (SwapOps) { 2647 std::swap(V1, V2); 2648 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2649 } 2650 2651 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2652 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2653 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2654 2655 if (IsSelect) 2656 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2657 2658 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2659 // On such a large vector we're unable to use i8 as the index type. 2660 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2661 // may involve vector splitting if we're already at LMUL=8, or our 2662 // user-supplied maximum fixed-length LMUL. 2663 return SDValue(); 2664 } 2665 2666 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2667 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2668 MVT IndexVT = VT.changeTypeToInteger(); 2669 // Since we can't introduce illegal index types at this stage, use i16 and 2670 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2671 // than XLenVT. 2672 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2673 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2674 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2675 } 2676 2677 MVT IndexContainerVT = 2678 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2679 2680 SDValue Gather; 2681 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2682 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2683 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2684 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2685 } else { 2686 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2687 // If only one index is used, we can use a "splat" vrgather. 2688 // TODO: We can splat the most-common index and fix-up any stragglers, if 2689 // that's beneficial. 2690 if (LHSIndexCounts.size() == 1) { 2691 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2692 Gather = 2693 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2694 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2695 } else { 2696 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2697 LHSIndices = 2698 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2699 2700 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2701 TrueMask, VL); 2702 } 2703 } 2704 2705 // If a second vector operand is used by this shuffle, blend it in with an 2706 // additional vrgather. 2707 if (!V2.isUndef()) { 2708 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2709 // If only one index is used, we can use a "splat" vrgather. 2710 // TODO: We can splat the most-common index and fix-up any stragglers, if 2711 // that's beneficial. 2712 if (RHSIndexCounts.size() == 1) { 2713 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2714 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2715 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2716 } else { 2717 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2718 RHSIndices = 2719 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2720 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2721 VL); 2722 } 2723 2724 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2725 SelectMask = 2726 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2727 2728 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2729 Gather, VL); 2730 } 2731 2732 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2733 } 2734 2735 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2736 SDLoc DL, SelectionDAG &DAG, 2737 const RISCVSubtarget &Subtarget) { 2738 if (VT.isScalableVector()) 2739 return DAG.getFPExtendOrRound(Op, DL, VT); 2740 assert(VT.isFixedLengthVector() && 2741 "Unexpected value type for RVV FP extend/round lowering"); 2742 SDValue Mask, VL; 2743 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2744 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2745 ? RISCVISD::FP_EXTEND_VL 2746 : RISCVISD::FP_ROUND_VL; 2747 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2748 } 2749 2750 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2751 // the exponent. 2752 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2753 MVT VT = Op.getSimpleValueType(); 2754 unsigned EltSize = VT.getScalarSizeInBits(); 2755 SDValue Src = Op.getOperand(0); 2756 SDLoc DL(Op); 2757 2758 // We need a FP type that can represent the value. 2759 // TODO: Use f16 for i8 when possible? 2760 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2761 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2762 2763 // Legal types should have been checked in the RISCVTargetLowering 2764 // constructor. 2765 // TODO: Splitting may make sense in some cases. 2766 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2767 "Expected legal float type!"); 2768 2769 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2770 // The trailing zero count is equal to log2 of this single bit value. 2771 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2772 SDValue Neg = 2773 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2774 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2775 } 2776 2777 // We have a legal FP type, convert to it. 2778 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2779 // Bitcast to integer and shift the exponent to the LSB. 2780 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2781 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2782 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2783 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2784 DAG.getConstant(ShiftAmt, DL, IntVT)); 2785 // Truncate back to original type to allow vnsrl. 2786 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2787 // The exponent contains log2 of the value in biased form. 2788 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2789 2790 // For trailing zeros, we just need to subtract the bias. 2791 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2792 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2793 DAG.getConstant(ExponentBias, DL, VT)); 2794 2795 // For leading zeros, we need to remove the bias and convert from log2 to 2796 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 2797 unsigned Adjust = ExponentBias + (EltSize - 1); 2798 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 2799 } 2800 2801 // While RVV has alignment restrictions, we should always be able to load as a 2802 // legal equivalently-sized byte-typed vector instead. This method is 2803 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2804 // the load is already correctly-aligned, it returns SDValue(). 2805 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2806 SelectionDAG &DAG) const { 2807 auto *Load = cast<LoadSDNode>(Op); 2808 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2809 2810 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2811 Load->getMemoryVT(), 2812 *Load->getMemOperand())) 2813 return SDValue(); 2814 2815 SDLoc DL(Op); 2816 MVT VT = Op.getSimpleValueType(); 2817 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2818 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2819 "Unexpected unaligned RVV load type"); 2820 MVT NewVT = 2821 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2822 assert(NewVT.isValid() && 2823 "Expecting equally-sized RVV vector types to be legal"); 2824 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2825 Load->getPointerInfo(), Load->getOriginalAlign(), 2826 Load->getMemOperand()->getFlags()); 2827 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2828 } 2829 2830 // While RVV has alignment restrictions, we should always be able to store as a 2831 // legal equivalently-sized byte-typed vector instead. This method is 2832 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2833 // returns SDValue() if the store is already correctly aligned. 2834 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2835 SelectionDAG &DAG) const { 2836 auto *Store = cast<StoreSDNode>(Op); 2837 assert(Store && Store->getValue().getValueType().isVector() && 2838 "Expected vector store"); 2839 2840 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2841 Store->getMemoryVT(), 2842 *Store->getMemOperand())) 2843 return SDValue(); 2844 2845 SDLoc DL(Op); 2846 SDValue StoredVal = Store->getValue(); 2847 MVT VT = StoredVal.getSimpleValueType(); 2848 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2849 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2850 "Unexpected unaligned RVV store type"); 2851 MVT NewVT = 2852 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2853 assert(NewVT.isValid() && 2854 "Expecting equally-sized RVV vector types to be legal"); 2855 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2856 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2857 Store->getPointerInfo(), Store->getOriginalAlign(), 2858 Store->getMemOperand()->getFlags()); 2859 } 2860 2861 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2862 SelectionDAG &DAG) const { 2863 switch (Op.getOpcode()) { 2864 default: 2865 report_fatal_error("unimplemented operand"); 2866 case ISD::GlobalAddress: 2867 return lowerGlobalAddress(Op, DAG); 2868 case ISD::BlockAddress: 2869 return lowerBlockAddress(Op, DAG); 2870 case ISD::ConstantPool: 2871 return lowerConstantPool(Op, DAG); 2872 case ISD::JumpTable: 2873 return lowerJumpTable(Op, DAG); 2874 case ISD::GlobalTLSAddress: 2875 return lowerGlobalTLSAddress(Op, DAG); 2876 case ISD::SELECT: 2877 return lowerSELECT(Op, DAG); 2878 case ISD::BRCOND: 2879 return lowerBRCOND(Op, DAG); 2880 case ISD::VASTART: 2881 return lowerVASTART(Op, DAG); 2882 case ISD::FRAMEADDR: 2883 return lowerFRAMEADDR(Op, DAG); 2884 case ISD::RETURNADDR: 2885 return lowerRETURNADDR(Op, DAG); 2886 case ISD::SHL_PARTS: 2887 return lowerShiftLeftParts(Op, DAG); 2888 case ISD::SRA_PARTS: 2889 return lowerShiftRightParts(Op, DAG, true); 2890 case ISD::SRL_PARTS: 2891 return lowerShiftRightParts(Op, DAG, false); 2892 case ISD::BITCAST: { 2893 SDLoc DL(Op); 2894 EVT VT = Op.getValueType(); 2895 SDValue Op0 = Op.getOperand(0); 2896 EVT Op0VT = Op0.getValueType(); 2897 MVT XLenVT = Subtarget.getXLenVT(); 2898 if (VT.isFixedLengthVector()) { 2899 // We can handle fixed length vector bitcasts with a simple replacement 2900 // in isel. 2901 if (Op0VT.isFixedLengthVector()) 2902 return Op; 2903 // When bitcasting from scalar to fixed-length vector, insert the scalar 2904 // into a one-element vector of the result type, and perform a vector 2905 // bitcast. 2906 if (!Op0VT.isVector()) { 2907 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2908 if (!isTypeLegal(BVT)) 2909 return SDValue(); 2910 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2911 DAG.getUNDEF(BVT), Op0, 2912 DAG.getConstant(0, DL, XLenVT))); 2913 } 2914 return SDValue(); 2915 } 2916 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2917 // thus: bitcast the vector to a one-element vector type whose element type 2918 // is the same as the result type, and extract the first element. 2919 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2920 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 2921 if (!isTypeLegal(BVT)) 2922 return SDValue(); 2923 SDValue BVec = DAG.getBitcast(BVT, Op0); 2924 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2925 DAG.getConstant(0, DL, XLenVT)); 2926 } 2927 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2928 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2929 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2930 return FPConv; 2931 } 2932 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2933 Subtarget.hasStdExtF()) { 2934 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2935 SDValue FPConv = 2936 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2937 return FPConv; 2938 } 2939 return SDValue(); 2940 } 2941 case ISD::INTRINSIC_WO_CHAIN: 2942 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2943 case ISD::INTRINSIC_W_CHAIN: 2944 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2945 case ISD::INTRINSIC_VOID: 2946 return LowerINTRINSIC_VOID(Op, DAG); 2947 case ISD::BSWAP: 2948 case ISD::BITREVERSE: { 2949 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2950 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2951 MVT VT = Op.getSimpleValueType(); 2952 SDLoc DL(Op); 2953 // Start with the maximum immediate value which is the bitwidth - 1. 2954 unsigned Imm = VT.getSizeInBits() - 1; 2955 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2956 if (Op.getOpcode() == ISD::BSWAP) 2957 Imm &= ~0x7U; 2958 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2959 DAG.getConstant(Imm, DL, VT)); 2960 } 2961 case ISD::FSHL: 2962 case ISD::FSHR: { 2963 MVT VT = Op.getSimpleValueType(); 2964 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2965 SDLoc DL(Op); 2966 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2967 // use log(XLen) bits. Mask the shift amount accordingly to prevent 2968 // accidentally setting the extra bit. 2969 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2970 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2971 DAG.getConstant(ShAmtWidth, DL, VT)); 2972 // fshl and fshr concatenate their operands in the same order. fsr and fsl 2973 // instruction use different orders. fshl will return its first operand for 2974 // shift of zero, fshr will return its second operand. fsl and fsr both 2975 // return rs1 so the ISD nodes need to have different operand orders. 2976 // Shift amount is in rs2. 2977 SDValue Op0 = Op.getOperand(0); 2978 SDValue Op1 = Op.getOperand(1); 2979 unsigned Opc = RISCVISD::FSL; 2980 if (Op.getOpcode() == ISD::FSHR) { 2981 std::swap(Op0, Op1); 2982 Opc = RISCVISD::FSR; 2983 } 2984 return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt); 2985 } 2986 case ISD::TRUNCATE: { 2987 SDLoc DL(Op); 2988 MVT VT = Op.getSimpleValueType(); 2989 // Only custom-lower vector truncates 2990 if (!VT.isVector()) 2991 return Op; 2992 2993 // Truncates to mask types are handled differently 2994 if (VT.getVectorElementType() == MVT::i1) 2995 return lowerVectorMaskTrunc(Op, DAG); 2996 2997 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2998 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2999 // truncate by one power of two at a time. 3000 MVT DstEltVT = VT.getVectorElementType(); 3001 3002 SDValue Src = Op.getOperand(0); 3003 MVT SrcVT = Src.getSimpleValueType(); 3004 MVT SrcEltVT = SrcVT.getVectorElementType(); 3005 3006 assert(DstEltVT.bitsLT(SrcEltVT) && 3007 isPowerOf2_64(DstEltVT.getSizeInBits()) && 3008 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 3009 "Unexpected vector truncate lowering"); 3010 3011 MVT ContainerVT = SrcVT; 3012 if (SrcVT.isFixedLengthVector()) { 3013 ContainerVT = getContainerForFixedLengthVector(SrcVT); 3014 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3015 } 3016 3017 SDValue Result = Src; 3018 SDValue Mask, VL; 3019 std::tie(Mask, VL) = 3020 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 3021 LLVMContext &Context = *DAG.getContext(); 3022 const ElementCount Count = ContainerVT.getVectorElementCount(); 3023 do { 3024 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 3025 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 3026 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 3027 Mask, VL); 3028 } while (SrcEltVT != DstEltVT); 3029 3030 if (SrcVT.isFixedLengthVector()) 3031 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 3032 3033 return Result; 3034 } 3035 case ISD::ANY_EXTEND: 3036 case ISD::ZERO_EXTEND: 3037 if (Op.getOperand(0).getValueType().isVector() && 3038 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3039 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 3040 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 3041 case ISD::SIGN_EXTEND: 3042 if (Op.getOperand(0).getValueType().isVector() && 3043 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3044 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 3045 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 3046 case ISD::SPLAT_VECTOR_PARTS: 3047 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 3048 case ISD::INSERT_VECTOR_ELT: 3049 return lowerINSERT_VECTOR_ELT(Op, DAG); 3050 case ISD::EXTRACT_VECTOR_ELT: 3051 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 3052 case ISD::VSCALE: { 3053 MVT VT = Op.getSimpleValueType(); 3054 SDLoc DL(Op); 3055 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 3056 // We define our scalable vector types for lmul=1 to use a 64 bit known 3057 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 3058 // vscale as VLENB / 8. 3059 static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); 3060 if (isa<ConstantSDNode>(Op.getOperand(0))) { 3061 // We assume VLENB is a multiple of 8. We manually choose the best shift 3062 // here because SimplifyDemandedBits isn't always able to simplify it. 3063 uint64_t Val = Op.getConstantOperandVal(0); 3064 if (isPowerOf2_64(Val)) { 3065 uint64_t Log2 = Log2_64(Val); 3066 if (Log2 < 3) 3067 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 3068 DAG.getConstant(3 - Log2, DL, VT)); 3069 if (Log2 > 3) 3070 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 3071 DAG.getConstant(Log2 - 3, DL, VT)); 3072 return VLENB; 3073 } 3074 // If the multiplier is a multiple of 8, scale it down to avoid needing 3075 // to shift the VLENB value. 3076 if ((Val % 8) == 0) 3077 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 3078 DAG.getConstant(Val / 8, DL, VT)); 3079 } 3080 3081 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 3082 DAG.getConstant(3, DL, VT)); 3083 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 3084 } 3085 case ISD::FPOWI: { 3086 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 3087 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 3088 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 3089 Op.getOperand(1).getValueType() == MVT::i32) { 3090 SDLoc DL(Op); 3091 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 3092 SDValue Powi = 3093 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 3094 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 3095 DAG.getIntPtrConstant(0, DL)); 3096 } 3097 return SDValue(); 3098 } 3099 case ISD::FP_EXTEND: { 3100 // RVV can only do fp_extend to types double the size as the source. We 3101 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 3102 // via f32. 3103 SDLoc DL(Op); 3104 MVT VT = Op.getSimpleValueType(); 3105 SDValue Src = Op.getOperand(0); 3106 MVT SrcVT = Src.getSimpleValueType(); 3107 3108 // Prepare any fixed-length vector operands. 3109 MVT ContainerVT = VT; 3110 if (SrcVT.isFixedLengthVector()) { 3111 ContainerVT = getContainerForFixedLengthVector(VT); 3112 MVT SrcContainerVT = 3113 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 3114 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3115 } 3116 3117 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 3118 SrcVT.getVectorElementType() != MVT::f16) { 3119 // For scalable vectors, we only need to close the gap between 3120 // vXf16->vXf64. 3121 if (!VT.isFixedLengthVector()) 3122 return Op; 3123 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 3124 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3125 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3126 } 3127 3128 MVT InterVT = VT.changeVectorElementType(MVT::f32); 3129 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 3130 SDValue IntermediateExtend = getRVVFPExtendOrRound( 3131 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 3132 3133 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 3134 DL, DAG, Subtarget); 3135 if (VT.isFixedLengthVector()) 3136 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 3137 return Extend; 3138 } 3139 case ISD::FP_ROUND: { 3140 // RVV can only do fp_round to types half the size as the source. We 3141 // custom-lower f64->f16 rounds via RVV's round-to-odd float 3142 // conversion instruction. 3143 SDLoc DL(Op); 3144 MVT VT = Op.getSimpleValueType(); 3145 SDValue Src = Op.getOperand(0); 3146 MVT SrcVT = Src.getSimpleValueType(); 3147 3148 // Prepare any fixed-length vector operands. 3149 MVT ContainerVT = VT; 3150 if (VT.isFixedLengthVector()) { 3151 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3152 ContainerVT = 3153 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3154 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3155 } 3156 3157 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 3158 SrcVT.getVectorElementType() != MVT::f64) { 3159 // For scalable vectors, we only need to close the gap between 3160 // vXf64<->vXf16. 3161 if (!VT.isFixedLengthVector()) 3162 return Op; 3163 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 3164 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3165 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3166 } 3167 3168 SDValue Mask, VL; 3169 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3170 3171 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 3172 SDValue IntermediateRound = 3173 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 3174 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 3175 DL, DAG, Subtarget); 3176 3177 if (VT.isFixedLengthVector()) 3178 return convertFromScalableVector(VT, Round, DAG, Subtarget); 3179 return Round; 3180 } 3181 case ISD::FP_TO_SINT: 3182 case ISD::FP_TO_UINT: 3183 case ISD::SINT_TO_FP: 3184 case ISD::UINT_TO_FP: { 3185 // RVV can only do fp<->int conversions to types half/double the size as 3186 // the source. We custom-lower any conversions that do two hops into 3187 // sequences. 3188 MVT VT = Op.getSimpleValueType(); 3189 if (!VT.isVector()) 3190 return Op; 3191 SDLoc DL(Op); 3192 SDValue Src = Op.getOperand(0); 3193 MVT EltVT = VT.getVectorElementType(); 3194 MVT SrcVT = Src.getSimpleValueType(); 3195 MVT SrcEltVT = SrcVT.getVectorElementType(); 3196 unsigned EltSize = EltVT.getSizeInBits(); 3197 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 3198 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 3199 "Unexpected vector element types"); 3200 3201 bool IsInt2FP = SrcEltVT.isInteger(); 3202 // Widening conversions 3203 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 3204 if (IsInt2FP) { 3205 // Do a regular integer sign/zero extension then convert to float. 3206 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 3207 VT.getVectorElementCount()); 3208 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 3209 ? ISD::ZERO_EXTEND 3210 : ISD::SIGN_EXTEND; 3211 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 3212 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 3213 } 3214 // FP2Int 3215 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 3216 // Do one doubling fp_extend then complete the operation by converting 3217 // to int. 3218 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3219 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 3220 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 3221 } 3222 3223 // Narrowing conversions 3224 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 3225 if (IsInt2FP) { 3226 // One narrowing int_to_fp, then an fp_round. 3227 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 3228 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3229 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 3230 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 3231 } 3232 // FP2Int 3233 // One narrowing fp_to_int, then truncate the integer. If the float isn't 3234 // representable by the integer, the result is poison. 3235 MVT IVecVT = 3236 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 3237 VT.getVectorElementCount()); 3238 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 3239 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 3240 } 3241 3242 // Scalable vectors can exit here. Patterns will handle equally-sized 3243 // conversions halving/doubling ones. 3244 if (!VT.isFixedLengthVector()) 3245 return Op; 3246 3247 // For fixed-length vectors we lower to a custom "VL" node. 3248 unsigned RVVOpc = 0; 3249 switch (Op.getOpcode()) { 3250 default: 3251 llvm_unreachable("Impossible opcode"); 3252 case ISD::FP_TO_SINT: 3253 RVVOpc = RISCVISD::FP_TO_SINT_VL; 3254 break; 3255 case ISD::FP_TO_UINT: 3256 RVVOpc = RISCVISD::FP_TO_UINT_VL; 3257 break; 3258 case ISD::SINT_TO_FP: 3259 RVVOpc = RISCVISD::SINT_TO_FP_VL; 3260 break; 3261 case ISD::UINT_TO_FP: 3262 RVVOpc = RISCVISD::UINT_TO_FP_VL; 3263 break; 3264 } 3265 3266 MVT ContainerVT, SrcContainerVT; 3267 // Derive the reference container type from the larger vector type. 3268 if (SrcEltSize > EltSize) { 3269 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3270 ContainerVT = 3271 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3272 } else { 3273 ContainerVT = getContainerForFixedLengthVector(VT); 3274 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 3275 } 3276 3277 SDValue Mask, VL; 3278 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3279 3280 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3281 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 3282 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3283 } 3284 case ISD::FP_TO_SINT_SAT: 3285 case ISD::FP_TO_UINT_SAT: 3286 return lowerFP_TO_INT_SAT(Op, DAG, Subtarget); 3287 case ISD::FTRUNC: 3288 case ISD::FCEIL: 3289 case ISD::FFLOOR: 3290 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 3291 case ISD::VECREDUCE_ADD: 3292 case ISD::VECREDUCE_UMAX: 3293 case ISD::VECREDUCE_SMAX: 3294 case ISD::VECREDUCE_UMIN: 3295 case ISD::VECREDUCE_SMIN: 3296 return lowerVECREDUCE(Op, DAG); 3297 case ISD::VECREDUCE_AND: 3298 case ISD::VECREDUCE_OR: 3299 case ISD::VECREDUCE_XOR: 3300 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3301 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 3302 return lowerVECREDUCE(Op, DAG); 3303 case ISD::VECREDUCE_FADD: 3304 case ISD::VECREDUCE_SEQ_FADD: 3305 case ISD::VECREDUCE_FMIN: 3306 case ISD::VECREDUCE_FMAX: 3307 return lowerFPVECREDUCE(Op, DAG); 3308 case ISD::VP_REDUCE_ADD: 3309 case ISD::VP_REDUCE_UMAX: 3310 case ISD::VP_REDUCE_SMAX: 3311 case ISD::VP_REDUCE_UMIN: 3312 case ISD::VP_REDUCE_SMIN: 3313 case ISD::VP_REDUCE_FADD: 3314 case ISD::VP_REDUCE_SEQ_FADD: 3315 case ISD::VP_REDUCE_FMIN: 3316 case ISD::VP_REDUCE_FMAX: 3317 return lowerVPREDUCE(Op, DAG); 3318 case ISD::VP_REDUCE_AND: 3319 case ISD::VP_REDUCE_OR: 3320 case ISD::VP_REDUCE_XOR: 3321 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 3322 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 3323 return lowerVPREDUCE(Op, DAG); 3324 case ISD::INSERT_SUBVECTOR: 3325 return lowerINSERT_SUBVECTOR(Op, DAG); 3326 case ISD::EXTRACT_SUBVECTOR: 3327 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3328 case ISD::STEP_VECTOR: 3329 return lowerSTEP_VECTOR(Op, DAG); 3330 case ISD::VECTOR_REVERSE: 3331 return lowerVECTOR_REVERSE(Op, DAG); 3332 case ISD::BUILD_VECTOR: 3333 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3334 case ISD::SPLAT_VECTOR: 3335 if (Op.getValueType().getVectorElementType() == MVT::i1) 3336 return lowerVectorMaskSplat(Op, DAG); 3337 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 3338 case ISD::VECTOR_SHUFFLE: 3339 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3340 case ISD::CONCAT_VECTORS: { 3341 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3342 // better than going through the stack, as the default expansion does. 3343 SDLoc DL(Op); 3344 MVT VT = Op.getSimpleValueType(); 3345 unsigned NumOpElts = 3346 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3347 SDValue Vec = DAG.getUNDEF(VT); 3348 for (const auto &OpIdx : enumerate(Op->ops())) { 3349 SDValue SubVec = OpIdx.value(); 3350 // Don't insert undef subvectors. 3351 if (SubVec.isUndef()) 3352 continue; 3353 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec, 3354 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3355 } 3356 return Vec; 3357 } 3358 case ISD::LOAD: 3359 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3360 return V; 3361 if (Op.getValueType().isFixedLengthVector()) 3362 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3363 return Op; 3364 case ISD::STORE: 3365 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3366 return V; 3367 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3368 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3369 return Op; 3370 case ISD::MLOAD: 3371 case ISD::VP_LOAD: 3372 return lowerMaskedLoad(Op, DAG); 3373 case ISD::MSTORE: 3374 case ISD::VP_STORE: 3375 return lowerMaskedStore(Op, DAG); 3376 case ISD::SETCC: 3377 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3378 case ISD::ADD: 3379 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3380 case ISD::SUB: 3381 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3382 case ISD::MUL: 3383 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3384 case ISD::MULHS: 3385 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3386 case ISD::MULHU: 3387 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3388 case ISD::AND: 3389 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3390 RISCVISD::AND_VL); 3391 case ISD::OR: 3392 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3393 RISCVISD::OR_VL); 3394 case ISD::XOR: 3395 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3396 RISCVISD::XOR_VL); 3397 case ISD::SDIV: 3398 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3399 case ISD::SREM: 3400 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3401 case ISD::UDIV: 3402 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3403 case ISD::UREM: 3404 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3405 case ISD::SHL: 3406 case ISD::SRA: 3407 case ISD::SRL: 3408 if (Op.getSimpleValueType().isFixedLengthVector()) 3409 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3410 // This can be called for an i32 shift amount that needs to be promoted. 3411 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3412 "Unexpected custom legalisation"); 3413 return SDValue(); 3414 case ISD::SADDSAT: 3415 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3416 case ISD::UADDSAT: 3417 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3418 case ISD::SSUBSAT: 3419 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3420 case ISD::USUBSAT: 3421 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3422 case ISD::FADD: 3423 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3424 case ISD::FSUB: 3425 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3426 case ISD::FMUL: 3427 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3428 case ISD::FDIV: 3429 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3430 case ISD::FNEG: 3431 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3432 case ISD::FABS: 3433 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3434 case ISD::FSQRT: 3435 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3436 case ISD::FMA: 3437 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 3438 case ISD::SMIN: 3439 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3440 case ISD::SMAX: 3441 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3442 case ISD::UMIN: 3443 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3444 case ISD::UMAX: 3445 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3446 case ISD::FMINNUM: 3447 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3448 case ISD::FMAXNUM: 3449 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3450 case ISD::ABS: 3451 return lowerABS(Op, DAG); 3452 case ISD::CTLZ_ZERO_UNDEF: 3453 case ISD::CTTZ_ZERO_UNDEF: 3454 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3455 case ISD::VSELECT: 3456 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3457 case ISD::FCOPYSIGN: 3458 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3459 case ISD::MGATHER: 3460 case ISD::VP_GATHER: 3461 return lowerMaskedGather(Op, DAG); 3462 case ISD::MSCATTER: 3463 case ISD::VP_SCATTER: 3464 return lowerMaskedScatter(Op, DAG); 3465 case ISD::FLT_ROUNDS_: 3466 return lowerGET_ROUNDING(Op, DAG); 3467 case ISD::SET_ROUNDING: 3468 return lowerSET_ROUNDING(Op, DAG); 3469 case ISD::VP_SELECT: 3470 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3471 case ISD::VP_MERGE: 3472 return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL); 3473 case ISD::VP_ADD: 3474 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3475 case ISD::VP_SUB: 3476 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3477 case ISD::VP_MUL: 3478 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3479 case ISD::VP_SDIV: 3480 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3481 case ISD::VP_UDIV: 3482 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3483 case ISD::VP_SREM: 3484 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3485 case ISD::VP_UREM: 3486 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3487 case ISD::VP_AND: 3488 return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL); 3489 case ISD::VP_OR: 3490 return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL); 3491 case ISD::VP_XOR: 3492 return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL); 3493 case ISD::VP_ASHR: 3494 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3495 case ISD::VP_LSHR: 3496 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3497 case ISD::VP_SHL: 3498 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3499 case ISD::VP_FADD: 3500 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3501 case ISD::VP_FSUB: 3502 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3503 case ISD::VP_FMUL: 3504 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3505 case ISD::VP_FDIV: 3506 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3507 } 3508 } 3509 3510 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3511 SelectionDAG &DAG, unsigned Flags) { 3512 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3513 } 3514 3515 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3516 SelectionDAG &DAG, unsigned Flags) { 3517 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3518 Flags); 3519 } 3520 3521 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3522 SelectionDAG &DAG, unsigned Flags) { 3523 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3524 N->getOffset(), Flags); 3525 } 3526 3527 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3528 SelectionDAG &DAG, unsigned Flags) { 3529 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3530 } 3531 3532 template <class NodeTy> 3533 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3534 bool IsLocal) const { 3535 SDLoc DL(N); 3536 EVT Ty = getPointerTy(DAG.getDataLayout()); 3537 3538 if (isPositionIndependent()) { 3539 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3540 if (IsLocal) 3541 // Use PC-relative addressing to access the symbol. This generates the 3542 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3543 // %pcrel_lo(auipc)). 3544 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3545 3546 // Use PC-relative addressing to access the GOT for this symbol, then load 3547 // the address from the GOT. This generates the pattern (PseudoLA sym), 3548 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3549 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3550 } 3551 3552 switch (getTargetMachine().getCodeModel()) { 3553 default: 3554 report_fatal_error("Unsupported code model for lowering"); 3555 case CodeModel::Small: { 3556 // Generate a sequence for accessing addresses within the first 2 GiB of 3557 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3558 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3559 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3560 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3561 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3562 } 3563 case CodeModel::Medium: { 3564 // Generate a sequence for accessing addresses within any 2GiB range within 3565 // the address space. This generates the pattern (PseudoLLA sym), which 3566 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3567 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3568 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3569 } 3570 } 3571 } 3572 3573 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3574 SelectionDAG &DAG) const { 3575 SDLoc DL(Op); 3576 EVT Ty = Op.getValueType(); 3577 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3578 int64_t Offset = N->getOffset(); 3579 MVT XLenVT = Subtarget.getXLenVT(); 3580 3581 const GlobalValue *GV = N->getGlobal(); 3582 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3583 SDValue Addr = getAddr(N, DAG, IsLocal); 3584 3585 // In order to maximise the opportunity for common subexpression elimination, 3586 // emit a separate ADD node for the global address offset instead of folding 3587 // it in the global address node. Later peephole optimisations may choose to 3588 // fold it back in when profitable. 3589 if (Offset != 0) 3590 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3591 DAG.getConstant(Offset, DL, XLenVT)); 3592 return Addr; 3593 } 3594 3595 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3596 SelectionDAG &DAG) const { 3597 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3598 3599 return getAddr(N, DAG); 3600 } 3601 3602 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3603 SelectionDAG &DAG) const { 3604 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3605 3606 return getAddr(N, DAG); 3607 } 3608 3609 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3610 SelectionDAG &DAG) const { 3611 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3612 3613 return getAddr(N, DAG); 3614 } 3615 3616 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3617 SelectionDAG &DAG, 3618 bool UseGOT) const { 3619 SDLoc DL(N); 3620 EVT Ty = getPointerTy(DAG.getDataLayout()); 3621 const GlobalValue *GV = N->getGlobal(); 3622 MVT XLenVT = Subtarget.getXLenVT(); 3623 3624 if (UseGOT) { 3625 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3626 // load the address from the GOT and add the thread pointer. This generates 3627 // the pattern (PseudoLA_TLS_IE sym), which expands to 3628 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3629 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3630 SDValue Load = 3631 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3632 3633 // Add the thread pointer. 3634 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3635 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3636 } 3637 3638 // Generate a sequence for accessing the address relative to the thread 3639 // pointer, with the appropriate adjustment for the thread pointer offset. 3640 // This generates the pattern 3641 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3642 SDValue AddrHi = 3643 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3644 SDValue AddrAdd = 3645 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3646 SDValue AddrLo = 3647 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3648 3649 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3650 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3651 SDValue MNAdd = SDValue( 3652 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3653 0); 3654 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3655 } 3656 3657 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3658 SelectionDAG &DAG) const { 3659 SDLoc DL(N); 3660 EVT Ty = getPointerTy(DAG.getDataLayout()); 3661 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3662 const GlobalValue *GV = N->getGlobal(); 3663 3664 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3665 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3666 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3667 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3668 SDValue Load = 3669 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3670 3671 // Prepare argument list to generate call. 3672 ArgListTy Args; 3673 ArgListEntry Entry; 3674 Entry.Node = Load; 3675 Entry.Ty = CallTy; 3676 Args.push_back(Entry); 3677 3678 // Setup call to __tls_get_addr. 3679 TargetLowering::CallLoweringInfo CLI(DAG); 3680 CLI.setDebugLoc(DL) 3681 .setChain(DAG.getEntryNode()) 3682 .setLibCallee(CallingConv::C, CallTy, 3683 DAG.getExternalSymbol("__tls_get_addr", Ty), 3684 std::move(Args)); 3685 3686 return LowerCallTo(CLI).first; 3687 } 3688 3689 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3690 SelectionDAG &DAG) const { 3691 SDLoc DL(Op); 3692 EVT Ty = Op.getValueType(); 3693 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3694 int64_t Offset = N->getOffset(); 3695 MVT XLenVT = Subtarget.getXLenVT(); 3696 3697 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3698 3699 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3700 CallingConv::GHC) 3701 report_fatal_error("In GHC calling convention TLS is not supported"); 3702 3703 SDValue Addr; 3704 switch (Model) { 3705 case TLSModel::LocalExec: 3706 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3707 break; 3708 case TLSModel::InitialExec: 3709 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3710 break; 3711 case TLSModel::LocalDynamic: 3712 case TLSModel::GeneralDynamic: 3713 Addr = getDynamicTLSAddr(N, DAG); 3714 break; 3715 } 3716 3717 // In order to maximise the opportunity for common subexpression elimination, 3718 // emit a separate ADD node for the global address offset instead of folding 3719 // it in the global address node. Later peephole optimisations may choose to 3720 // fold it back in when profitable. 3721 if (Offset != 0) 3722 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3723 DAG.getConstant(Offset, DL, XLenVT)); 3724 return Addr; 3725 } 3726 3727 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3728 SDValue CondV = Op.getOperand(0); 3729 SDValue TrueV = Op.getOperand(1); 3730 SDValue FalseV = Op.getOperand(2); 3731 SDLoc DL(Op); 3732 MVT VT = Op.getSimpleValueType(); 3733 MVT XLenVT = Subtarget.getXLenVT(); 3734 3735 // Lower vector SELECTs to VSELECTs by splatting the condition. 3736 if (VT.isVector()) { 3737 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3738 SDValue CondSplat = VT.isScalableVector() 3739 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3740 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3741 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3742 } 3743 3744 // If the result type is XLenVT and CondV is the output of a SETCC node 3745 // which also operated on XLenVT inputs, then merge the SETCC node into the 3746 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3747 // compare+branch instructions. i.e.: 3748 // (select (setcc lhs, rhs, cc), truev, falsev) 3749 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3750 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3751 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3752 SDValue LHS = CondV.getOperand(0); 3753 SDValue RHS = CondV.getOperand(1); 3754 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3755 ISD::CondCode CCVal = CC->get(); 3756 3757 // Special case for a select of 2 constants that have a diffence of 1. 3758 // Normally this is done by DAGCombine, but if the select is introduced by 3759 // type legalization or op legalization, we miss it. Restricting to SETLT 3760 // case for now because that is what signed saturating add/sub need. 3761 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3762 // but we would probably want to swap the true/false values if the condition 3763 // is SETGE/SETLE to avoid an XORI. 3764 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3765 CCVal == ISD::SETLT) { 3766 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3767 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3768 if (TrueVal - 1 == FalseVal) 3769 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3770 if (TrueVal + 1 == FalseVal) 3771 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3772 } 3773 3774 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3775 3776 SDValue TargetCC = DAG.getCondCode(CCVal); 3777 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3778 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3779 } 3780 3781 // Otherwise: 3782 // (select condv, truev, falsev) 3783 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3784 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3785 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3786 3787 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3788 3789 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3790 } 3791 3792 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3793 SDValue CondV = Op.getOperand(1); 3794 SDLoc DL(Op); 3795 MVT XLenVT = Subtarget.getXLenVT(); 3796 3797 if (CondV.getOpcode() == ISD::SETCC && 3798 CondV.getOperand(0).getValueType() == XLenVT) { 3799 SDValue LHS = CondV.getOperand(0); 3800 SDValue RHS = CondV.getOperand(1); 3801 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3802 3803 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3804 3805 SDValue TargetCC = DAG.getCondCode(CCVal); 3806 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3807 LHS, RHS, TargetCC, Op.getOperand(2)); 3808 } 3809 3810 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3811 CondV, DAG.getConstant(0, DL, XLenVT), 3812 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3813 } 3814 3815 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3816 MachineFunction &MF = DAG.getMachineFunction(); 3817 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3818 3819 SDLoc DL(Op); 3820 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3821 getPointerTy(MF.getDataLayout())); 3822 3823 // vastart just stores the address of the VarArgsFrameIndex slot into the 3824 // memory location argument. 3825 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3826 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3827 MachinePointerInfo(SV)); 3828 } 3829 3830 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3831 SelectionDAG &DAG) const { 3832 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3833 MachineFunction &MF = DAG.getMachineFunction(); 3834 MachineFrameInfo &MFI = MF.getFrameInfo(); 3835 MFI.setFrameAddressIsTaken(true); 3836 Register FrameReg = RI.getFrameRegister(MF); 3837 int XLenInBytes = Subtarget.getXLen() / 8; 3838 3839 EVT VT = Op.getValueType(); 3840 SDLoc DL(Op); 3841 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3842 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3843 while (Depth--) { 3844 int Offset = -(XLenInBytes * 2); 3845 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3846 DAG.getIntPtrConstant(Offset, DL)); 3847 FrameAddr = 3848 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3849 } 3850 return FrameAddr; 3851 } 3852 3853 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3854 SelectionDAG &DAG) const { 3855 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3856 MachineFunction &MF = DAG.getMachineFunction(); 3857 MachineFrameInfo &MFI = MF.getFrameInfo(); 3858 MFI.setReturnAddressIsTaken(true); 3859 MVT XLenVT = Subtarget.getXLenVT(); 3860 int XLenInBytes = Subtarget.getXLen() / 8; 3861 3862 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3863 return SDValue(); 3864 3865 EVT VT = Op.getValueType(); 3866 SDLoc DL(Op); 3867 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3868 if (Depth) { 3869 int Off = -XLenInBytes; 3870 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3871 SDValue Offset = DAG.getConstant(Off, DL, VT); 3872 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3873 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3874 MachinePointerInfo()); 3875 } 3876 3877 // Return the value of the return address register, marking it an implicit 3878 // live-in. 3879 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3880 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3881 } 3882 3883 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3884 SelectionDAG &DAG) const { 3885 SDLoc DL(Op); 3886 SDValue Lo = Op.getOperand(0); 3887 SDValue Hi = Op.getOperand(1); 3888 SDValue Shamt = Op.getOperand(2); 3889 EVT VT = Lo.getValueType(); 3890 3891 // if Shamt-XLEN < 0: // Shamt < XLEN 3892 // Lo = Lo << Shamt 3893 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 3894 // else: 3895 // Lo = 0 3896 // Hi = Lo << (Shamt-XLEN) 3897 3898 SDValue Zero = DAG.getConstant(0, DL, VT); 3899 SDValue One = DAG.getConstant(1, DL, VT); 3900 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3901 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3902 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3903 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3904 3905 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3906 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3907 SDValue ShiftRightLo = 3908 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3909 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3910 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3911 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3912 3913 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3914 3915 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3916 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3917 3918 SDValue Parts[2] = {Lo, Hi}; 3919 return DAG.getMergeValues(Parts, DL); 3920 } 3921 3922 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3923 bool IsSRA) const { 3924 SDLoc DL(Op); 3925 SDValue Lo = Op.getOperand(0); 3926 SDValue Hi = Op.getOperand(1); 3927 SDValue Shamt = Op.getOperand(2); 3928 EVT VT = Lo.getValueType(); 3929 3930 // SRA expansion: 3931 // if Shamt-XLEN < 0: // Shamt < XLEN 3932 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3933 // Hi = Hi >>s Shamt 3934 // else: 3935 // Lo = Hi >>s (Shamt-XLEN); 3936 // Hi = Hi >>s (XLEN-1) 3937 // 3938 // SRL expansion: 3939 // if Shamt-XLEN < 0: // Shamt < XLEN 3940 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3941 // Hi = Hi >>u Shamt 3942 // else: 3943 // Lo = Hi >>u (Shamt-XLEN); 3944 // Hi = 0; 3945 3946 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3947 3948 SDValue Zero = DAG.getConstant(0, DL, VT); 3949 SDValue One = DAG.getConstant(1, DL, VT); 3950 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3951 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3952 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3953 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3954 3955 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3956 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3957 SDValue ShiftLeftHi = 3958 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 3959 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3960 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3961 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 3962 SDValue HiFalse = 3963 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 3964 3965 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3966 3967 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3968 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3969 3970 SDValue Parts[2] = {Lo, Hi}; 3971 return DAG.getMergeValues(Parts, DL); 3972 } 3973 3974 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 3975 // legal equivalently-sized i8 type, so we can use that as a go-between. 3976 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3977 SelectionDAG &DAG) const { 3978 SDLoc DL(Op); 3979 MVT VT = Op.getSimpleValueType(); 3980 SDValue SplatVal = Op.getOperand(0); 3981 // All-zeros or all-ones splats are handled specially. 3982 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 3983 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3984 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 3985 } 3986 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 3987 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3988 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3989 } 3990 MVT XLenVT = Subtarget.getXLenVT(); 3991 assert(SplatVal.getValueType() == XLenVT && 3992 "Unexpected type for i1 splat value"); 3993 MVT InterVT = VT.changeVectorElementType(MVT::i8); 3994 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 3995 DAG.getConstant(1, DL, XLenVT)); 3996 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 3997 SDValue Zero = DAG.getConstant(0, DL, InterVT); 3998 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 3999 } 4000 4001 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 4002 // illegal (currently only vXi64 RV32). 4003 // FIXME: We could also catch non-constant sign-extended i32 values and lower 4004 // them to SPLAT_VECTOR_I64 4005 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 4006 SelectionDAG &DAG) const { 4007 SDLoc DL(Op); 4008 MVT VecVT = Op.getSimpleValueType(); 4009 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 4010 "Unexpected SPLAT_VECTOR_PARTS lowering"); 4011 4012 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 4013 SDValue Lo = Op.getOperand(0); 4014 SDValue Hi = Op.getOperand(1); 4015 4016 if (VecVT.isFixedLengthVector()) { 4017 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4018 SDLoc DL(Op); 4019 SDValue Mask, VL; 4020 std::tie(Mask, VL) = 4021 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4022 4023 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 4024 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 4025 } 4026 4027 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 4028 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 4029 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 4030 // If Hi constant is all the same sign bit as Lo, lower this as a custom 4031 // node in order to try and match RVV vector/scalar instructions. 4032 if ((LoC >> 31) == HiC) 4033 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 4034 } 4035 4036 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 4037 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 4038 isa<ConstantSDNode>(Hi.getOperand(1)) && 4039 Hi.getConstantOperandVal(1) == 31) 4040 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 4041 4042 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 4043 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 4044 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64)); 4045 } 4046 4047 // Custom-lower extensions from mask vectors by using a vselect either with 1 4048 // for zero/any-extension or -1 for sign-extension: 4049 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 4050 // Note that any-extension is lowered identically to zero-extension. 4051 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 4052 int64_t ExtTrueVal) const { 4053 SDLoc DL(Op); 4054 MVT VecVT = Op.getSimpleValueType(); 4055 SDValue Src = Op.getOperand(0); 4056 // Only custom-lower extensions from mask types 4057 assert(Src.getValueType().isVector() && 4058 Src.getValueType().getVectorElementType() == MVT::i1); 4059 4060 MVT XLenVT = Subtarget.getXLenVT(); 4061 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 4062 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 4063 4064 if (VecVT.isScalableVector()) { 4065 // Be careful not to introduce illegal scalar types at this stage, and be 4066 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 4067 // illegal and must be expanded. Since we know that the constants are 4068 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 4069 bool IsRV32E64 = 4070 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 4071 4072 if (!IsRV32E64) { 4073 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 4074 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 4075 } else { 4076 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 4077 SplatTrueVal = 4078 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 4079 } 4080 4081 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 4082 } 4083 4084 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4085 MVT I1ContainerVT = 4086 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4087 4088 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 4089 4090 SDValue Mask, VL; 4091 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4092 4093 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 4094 SplatTrueVal = 4095 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 4096 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 4097 SplatTrueVal, SplatZero, VL); 4098 4099 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 4100 } 4101 4102 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 4103 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 4104 MVT ExtVT = Op.getSimpleValueType(); 4105 // Only custom-lower extensions from fixed-length vector types. 4106 if (!ExtVT.isFixedLengthVector()) 4107 return Op; 4108 MVT VT = Op.getOperand(0).getSimpleValueType(); 4109 // Grab the canonical container type for the extended type. Infer the smaller 4110 // type from that to ensure the same number of vector elements, as we know 4111 // the LMUL will be sufficient to hold the smaller type. 4112 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 4113 // Get the extended container type manually to ensure the same number of 4114 // vector elements between source and dest. 4115 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4116 ContainerExtVT.getVectorElementCount()); 4117 4118 SDValue Op1 = 4119 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4120 4121 SDLoc DL(Op); 4122 SDValue Mask, VL; 4123 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4124 4125 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 4126 4127 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 4128 } 4129 4130 // Custom-lower truncations from vectors to mask vectors by using a mask and a 4131 // setcc operation: 4132 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 4133 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 4134 SelectionDAG &DAG) const { 4135 SDLoc DL(Op); 4136 EVT MaskVT = Op.getValueType(); 4137 // Only expect to custom-lower truncations to mask types 4138 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 4139 "Unexpected type for vector mask lowering"); 4140 SDValue Src = Op.getOperand(0); 4141 MVT VecVT = Src.getSimpleValueType(); 4142 4143 // If this is a fixed vector, we need to convert it to a scalable vector. 4144 MVT ContainerVT = VecVT; 4145 if (VecVT.isFixedLengthVector()) { 4146 ContainerVT = getContainerForFixedLengthVector(VecVT); 4147 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 4148 } 4149 4150 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 4151 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 4152 4153 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 4154 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 4155 4156 if (VecVT.isScalableVector()) { 4157 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 4158 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 4159 } 4160 4161 SDValue Mask, VL; 4162 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4163 4164 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 4165 SDValue Trunc = 4166 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 4167 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 4168 DAG.getCondCode(ISD::SETNE), Mask, VL); 4169 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 4170 } 4171 4172 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 4173 // first position of a vector, and that vector is slid up to the insert index. 4174 // By limiting the active vector length to index+1 and merging with the 4175 // original vector (with an undisturbed tail policy for elements >= VL), we 4176 // achieve the desired result of leaving all elements untouched except the one 4177 // at VL-1, which is replaced with the desired value. 4178 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4179 SelectionDAG &DAG) const { 4180 SDLoc DL(Op); 4181 MVT VecVT = Op.getSimpleValueType(); 4182 SDValue Vec = Op.getOperand(0); 4183 SDValue Val = Op.getOperand(1); 4184 SDValue Idx = Op.getOperand(2); 4185 4186 if (VecVT.getVectorElementType() == MVT::i1) { 4187 // FIXME: For now we just promote to an i8 vector and insert into that, 4188 // but this is probably not optimal. 4189 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4190 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4191 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 4192 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 4193 } 4194 4195 MVT ContainerVT = VecVT; 4196 // If the operand is a fixed-length vector, convert to a scalable one. 4197 if (VecVT.isFixedLengthVector()) { 4198 ContainerVT = getContainerForFixedLengthVector(VecVT); 4199 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4200 } 4201 4202 MVT XLenVT = Subtarget.getXLenVT(); 4203 4204 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4205 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 4206 // Even i64-element vectors on RV32 can be lowered without scalar 4207 // legalization if the most-significant 32 bits of the value are not affected 4208 // by the sign-extension of the lower 32 bits. 4209 // TODO: We could also catch sign extensions of a 32-bit value. 4210 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 4211 const auto *CVal = cast<ConstantSDNode>(Val); 4212 if (isInt<32>(CVal->getSExtValue())) { 4213 IsLegalInsert = true; 4214 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4215 } 4216 } 4217 4218 SDValue Mask, VL; 4219 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4220 4221 SDValue ValInVec; 4222 4223 if (IsLegalInsert) { 4224 unsigned Opc = 4225 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 4226 if (isNullConstant(Idx)) { 4227 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 4228 if (!VecVT.isFixedLengthVector()) 4229 return Vec; 4230 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 4231 } 4232 ValInVec = 4233 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 4234 } else { 4235 // On RV32, i64-element vectors must be specially handled to place the 4236 // value at element 0, by using two vslide1up instructions in sequence on 4237 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 4238 // this. 4239 SDValue One = DAG.getConstant(1, DL, XLenVT); 4240 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 4241 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 4242 MVT I32ContainerVT = 4243 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 4244 SDValue I32Mask = 4245 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 4246 // Limit the active VL to two. 4247 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 4248 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 4249 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 4250 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 4251 InsertI64VL); 4252 // First slide in the hi value, then the lo in underneath it. 4253 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 4254 ValHi, I32Mask, InsertI64VL); 4255 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 4256 ValLo, I32Mask, InsertI64VL); 4257 // Bitcast back to the right container type. 4258 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 4259 } 4260 4261 // Now that the value is in a vector, slide it into position. 4262 SDValue InsertVL = 4263 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 4264 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4265 ValInVec, Idx, Mask, InsertVL); 4266 if (!VecVT.isFixedLengthVector()) 4267 return Slideup; 4268 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4269 } 4270 4271 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 4272 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 4273 // types this is done using VMV_X_S to allow us to glean information about the 4274 // sign bits of the result. 4275 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4276 SelectionDAG &DAG) const { 4277 SDLoc DL(Op); 4278 SDValue Idx = Op.getOperand(1); 4279 SDValue Vec = Op.getOperand(0); 4280 EVT EltVT = Op.getValueType(); 4281 MVT VecVT = Vec.getSimpleValueType(); 4282 MVT XLenVT = Subtarget.getXLenVT(); 4283 4284 if (VecVT.getVectorElementType() == MVT::i1) { 4285 // FIXME: For now we just promote to an i8 vector and extract from that, 4286 // but this is probably not optimal. 4287 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4288 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4289 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 4290 } 4291 4292 // If this is a fixed vector, we need to convert it to a scalable vector. 4293 MVT ContainerVT = VecVT; 4294 if (VecVT.isFixedLengthVector()) { 4295 ContainerVT = getContainerForFixedLengthVector(VecVT); 4296 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4297 } 4298 4299 // If the index is 0, the vector is already in the right position. 4300 if (!isNullConstant(Idx)) { 4301 // Use a VL of 1 to avoid processing more elements than we need. 4302 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4303 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4304 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4305 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4306 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4307 } 4308 4309 if (!EltVT.isInteger()) { 4310 // Floating-point extracts are handled in TableGen. 4311 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 4312 DAG.getConstant(0, DL, XLenVT)); 4313 } 4314 4315 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4316 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 4317 } 4318 4319 // Some RVV intrinsics may claim that they want an integer operand to be 4320 // promoted or expanded. 4321 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 4322 const RISCVSubtarget &Subtarget) { 4323 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 4324 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 4325 "Unexpected opcode"); 4326 4327 if (!Subtarget.hasVInstructions()) 4328 return SDValue(); 4329 4330 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 4331 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 4332 SDLoc DL(Op); 4333 4334 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4335 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4336 if (!II || !II->hasSplatOperand()) 4337 return SDValue(); 4338 4339 unsigned SplatOp = II->SplatOperand + 1 + HasChain; 4340 assert(SplatOp < Op.getNumOperands()); 4341 4342 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4343 SDValue &ScalarOp = Operands[SplatOp]; 4344 MVT OpVT = ScalarOp.getSimpleValueType(); 4345 MVT XLenVT = Subtarget.getXLenVT(); 4346 4347 // If this isn't a scalar, or its type is XLenVT we're done. 4348 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4349 return SDValue(); 4350 4351 // Simplest case is that the operand needs to be promoted to XLenVT. 4352 if (OpVT.bitsLT(XLenVT)) { 4353 // If the operand is a constant, sign extend to increase our chances 4354 // of being able to use a .vi instruction. ANY_EXTEND would become a 4355 // a zero extend and the simm5 check in isel would fail. 4356 // FIXME: Should we ignore the upper bits in isel instead? 4357 unsigned ExtOpc = 4358 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4359 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4360 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4361 } 4362 4363 // Use the previous operand to get the vXi64 VT. The result might be a mask 4364 // VT for compares. Using the previous operand assumes that the previous 4365 // operand will never have a smaller element size than a scalar operand and 4366 // that a widening operation never uses SEW=64. 4367 // NOTE: If this fails the below assert, we can probably just find the 4368 // element count from any operand or result and use it to construct the VT. 4369 assert(II->SplatOperand > 0 && "Unexpected splat operand!"); 4370 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4371 4372 // The more complex case is when the scalar is larger than XLenVT. 4373 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4374 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4375 4376 // If this is a sign-extended 32-bit constant, we can truncate it and rely 4377 // on the instruction to sign-extend since SEW>XLEN. 4378 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 4379 if (isInt<32>(CVal->getSExtValue())) { 4380 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4381 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4382 } 4383 } 4384 4385 // We need to convert the scalar to a splat vector. 4386 // FIXME: Can we implicitly truncate the scalar if it is known to 4387 // be sign extended? 4388 SDValue VL = getVLOperand(Op); 4389 assert(VL.getValueType() == XLenVT); 4390 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 4391 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4392 } 4393 4394 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4395 SelectionDAG &DAG) const { 4396 unsigned IntNo = Op.getConstantOperandVal(0); 4397 SDLoc DL(Op); 4398 MVT XLenVT = Subtarget.getXLenVT(); 4399 4400 switch (IntNo) { 4401 default: 4402 break; // Don't custom lower most intrinsics. 4403 case Intrinsic::thread_pointer: { 4404 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4405 return DAG.getRegister(RISCV::X4, PtrVT); 4406 } 4407 case Intrinsic::riscv_orc_b: 4408 // Lower to the GORCI encoding for orc.b. 4409 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 4410 DAG.getConstant(7, DL, XLenVT)); 4411 case Intrinsic::riscv_grev: 4412 case Intrinsic::riscv_gorc: { 4413 unsigned Opc = 4414 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4415 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4416 } 4417 case Intrinsic::riscv_shfl: 4418 case Intrinsic::riscv_unshfl: { 4419 unsigned Opc = 4420 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4421 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4422 } 4423 case Intrinsic::riscv_bcompress: 4424 case Intrinsic::riscv_bdecompress: { 4425 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4426 : RISCVISD::BDECOMPRESS; 4427 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4428 } 4429 case Intrinsic::riscv_bfp: 4430 return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1), 4431 Op.getOperand(2)); 4432 case Intrinsic::riscv_fsl: 4433 return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1), 4434 Op.getOperand(2), Op.getOperand(3)); 4435 case Intrinsic::riscv_fsr: 4436 return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1), 4437 Op.getOperand(2), Op.getOperand(3)); 4438 case Intrinsic::riscv_vmv_x_s: 4439 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4440 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4441 Op.getOperand(1)); 4442 case Intrinsic::riscv_vmv_v_x: 4443 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4444 Op.getSimpleValueType(), DL, DAG, Subtarget); 4445 case Intrinsic::riscv_vfmv_v_f: 4446 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4447 Op.getOperand(1), Op.getOperand(2)); 4448 case Intrinsic::riscv_vmv_s_x: { 4449 SDValue Scalar = Op.getOperand(2); 4450 4451 if (Scalar.getValueType().bitsLE(XLenVT)) { 4452 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4453 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4454 Op.getOperand(1), Scalar, Op.getOperand(3)); 4455 } 4456 4457 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4458 4459 // This is an i64 value that lives in two scalar registers. We have to 4460 // insert this in a convoluted way. First we build vXi64 splat containing 4461 // the/ two values that we assemble using some bit math. Next we'll use 4462 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4463 // to merge element 0 from our splat into the source vector. 4464 // FIXME: This is probably not the best way to do this, but it is 4465 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4466 // point. 4467 // sw lo, (a0) 4468 // sw hi, 4(a0) 4469 // vlse vX, (a0) 4470 // 4471 // vid.v vVid 4472 // vmseq.vx mMask, vVid, 0 4473 // vmerge.vvm vDest, vSrc, vVal, mMask 4474 MVT VT = Op.getSimpleValueType(); 4475 SDValue Vec = Op.getOperand(1); 4476 SDValue VL = getVLOperand(Op); 4477 4478 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 4479 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4480 DAG.getConstant(0, DL, MVT::i32), VL); 4481 4482 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 4483 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4484 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4485 SDValue SelectCond = 4486 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4487 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4488 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4489 Vec, VL); 4490 } 4491 case Intrinsic::riscv_vslide1up: 4492 case Intrinsic::riscv_vslide1down: 4493 case Intrinsic::riscv_vslide1up_mask: 4494 case Intrinsic::riscv_vslide1down_mask: { 4495 // We need to special case these when the scalar is larger than XLen. 4496 unsigned NumOps = Op.getNumOperands(); 4497 bool IsMasked = NumOps == 7; 4498 unsigned OpOffset = IsMasked ? 1 : 0; 4499 SDValue Scalar = Op.getOperand(2 + OpOffset); 4500 if (Scalar.getValueType().bitsLE(XLenVT)) 4501 break; 4502 4503 // Splatting a sign extended constant is fine. 4504 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 4505 if (isInt<32>(CVal->getSExtValue())) 4506 break; 4507 4508 MVT VT = Op.getSimpleValueType(); 4509 assert(VT.getVectorElementType() == MVT::i64 && 4510 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 4511 4512 // Convert the vector source to the equivalent nxvXi32 vector. 4513 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4514 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 4515 4516 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4517 DAG.getConstant(0, DL, XLenVT)); 4518 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4519 DAG.getConstant(1, DL, XLenVT)); 4520 4521 // Double the VL since we halved SEW. 4522 SDValue VL = getVLOperand(Op); 4523 SDValue I32VL = 4524 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4525 4526 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 4527 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 4528 4529 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4530 // instructions. 4531 if (IntNo == Intrinsic::riscv_vslide1up || 4532 IntNo == Intrinsic::riscv_vslide1up_mask) { 4533 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 4534 I32Mask, I32VL); 4535 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 4536 I32Mask, I32VL); 4537 } else { 4538 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 4539 I32Mask, I32VL); 4540 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 4541 I32Mask, I32VL); 4542 } 4543 4544 // Convert back to nxvXi64. 4545 Vec = DAG.getBitcast(VT, Vec); 4546 4547 if (!IsMasked) 4548 return Vec; 4549 4550 // Apply mask after the operation. 4551 SDValue Mask = Op.getOperand(NumOps - 3); 4552 SDValue MaskedOff = Op.getOperand(1); 4553 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 4554 } 4555 } 4556 4557 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4558 } 4559 4560 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4561 SelectionDAG &DAG) const { 4562 unsigned IntNo = Op.getConstantOperandVal(1); 4563 switch (IntNo) { 4564 default: 4565 break; 4566 case Intrinsic::riscv_masked_strided_load: { 4567 SDLoc DL(Op); 4568 MVT XLenVT = Subtarget.getXLenVT(); 4569 4570 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4571 // the selection of the masked intrinsics doesn't do this for us. 4572 SDValue Mask = Op.getOperand(5); 4573 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4574 4575 MVT VT = Op->getSimpleValueType(0); 4576 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4577 4578 SDValue PassThru = Op.getOperand(2); 4579 if (!IsUnmasked) { 4580 MVT MaskVT = 4581 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4582 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4583 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4584 } 4585 4586 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4587 4588 SDValue IntID = DAG.getTargetConstant( 4589 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4590 XLenVT); 4591 4592 auto *Load = cast<MemIntrinsicSDNode>(Op); 4593 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4594 if (IsUnmasked) 4595 Ops.push_back(DAG.getUNDEF(ContainerVT)); 4596 else 4597 Ops.push_back(PassThru); 4598 Ops.push_back(Op.getOperand(3)); // Ptr 4599 Ops.push_back(Op.getOperand(4)); // Stride 4600 if (!IsUnmasked) 4601 Ops.push_back(Mask); 4602 Ops.push_back(VL); 4603 if (!IsUnmasked) { 4604 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4605 Ops.push_back(Policy); 4606 } 4607 4608 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4609 SDValue Result = 4610 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4611 Load->getMemoryVT(), Load->getMemOperand()); 4612 SDValue Chain = Result.getValue(1); 4613 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4614 return DAG.getMergeValues({Result, Chain}, DL); 4615 } 4616 } 4617 4618 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4619 } 4620 4621 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4622 SelectionDAG &DAG) const { 4623 unsigned IntNo = Op.getConstantOperandVal(1); 4624 switch (IntNo) { 4625 default: 4626 break; 4627 case Intrinsic::riscv_masked_strided_store: { 4628 SDLoc DL(Op); 4629 MVT XLenVT = Subtarget.getXLenVT(); 4630 4631 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4632 // the selection of the masked intrinsics doesn't do this for us. 4633 SDValue Mask = Op.getOperand(5); 4634 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4635 4636 SDValue Val = Op.getOperand(2); 4637 MVT VT = Val.getSimpleValueType(); 4638 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4639 4640 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4641 if (!IsUnmasked) { 4642 MVT MaskVT = 4643 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4644 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4645 } 4646 4647 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4648 4649 SDValue IntID = DAG.getTargetConstant( 4650 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4651 XLenVT); 4652 4653 auto *Store = cast<MemIntrinsicSDNode>(Op); 4654 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4655 Ops.push_back(Val); 4656 Ops.push_back(Op.getOperand(3)); // Ptr 4657 Ops.push_back(Op.getOperand(4)); // Stride 4658 if (!IsUnmasked) 4659 Ops.push_back(Mask); 4660 Ops.push_back(VL); 4661 4662 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 4663 Ops, Store->getMemoryVT(), 4664 Store->getMemOperand()); 4665 } 4666 } 4667 4668 return SDValue(); 4669 } 4670 4671 static MVT getLMUL1VT(MVT VT) { 4672 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 4673 "Unexpected vector MVT"); 4674 return MVT::getScalableVectorVT( 4675 VT.getVectorElementType(), 4676 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 4677 } 4678 4679 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 4680 switch (ISDOpcode) { 4681 default: 4682 llvm_unreachable("Unhandled reduction"); 4683 case ISD::VECREDUCE_ADD: 4684 return RISCVISD::VECREDUCE_ADD_VL; 4685 case ISD::VECREDUCE_UMAX: 4686 return RISCVISD::VECREDUCE_UMAX_VL; 4687 case ISD::VECREDUCE_SMAX: 4688 return RISCVISD::VECREDUCE_SMAX_VL; 4689 case ISD::VECREDUCE_UMIN: 4690 return RISCVISD::VECREDUCE_UMIN_VL; 4691 case ISD::VECREDUCE_SMIN: 4692 return RISCVISD::VECREDUCE_SMIN_VL; 4693 case ISD::VECREDUCE_AND: 4694 return RISCVISD::VECREDUCE_AND_VL; 4695 case ISD::VECREDUCE_OR: 4696 return RISCVISD::VECREDUCE_OR_VL; 4697 case ISD::VECREDUCE_XOR: 4698 return RISCVISD::VECREDUCE_XOR_VL; 4699 } 4700 } 4701 4702 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 4703 SelectionDAG &DAG, 4704 bool IsVP) const { 4705 SDLoc DL(Op); 4706 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 4707 MVT VecVT = Vec.getSimpleValueType(); 4708 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 4709 Op.getOpcode() == ISD::VECREDUCE_OR || 4710 Op.getOpcode() == ISD::VECREDUCE_XOR || 4711 Op.getOpcode() == ISD::VP_REDUCE_AND || 4712 Op.getOpcode() == ISD::VP_REDUCE_OR || 4713 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 4714 "Unexpected reduction lowering"); 4715 4716 MVT XLenVT = Subtarget.getXLenVT(); 4717 assert(Op.getValueType() == XLenVT && 4718 "Expected reduction output to be legalized to XLenVT"); 4719 4720 MVT ContainerVT = VecVT; 4721 if (VecVT.isFixedLengthVector()) { 4722 ContainerVT = getContainerForFixedLengthVector(VecVT); 4723 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4724 } 4725 4726 SDValue Mask, VL; 4727 if (IsVP) { 4728 Mask = Op.getOperand(2); 4729 VL = Op.getOperand(3); 4730 } else { 4731 std::tie(Mask, VL) = 4732 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4733 } 4734 4735 unsigned BaseOpc; 4736 ISD::CondCode CC; 4737 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4738 4739 switch (Op.getOpcode()) { 4740 default: 4741 llvm_unreachable("Unhandled reduction"); 4742 case ISD::VECREDUCE_AND: 4743 case ISD::VP_REDUCE_AND: { 4744 // vcpop ~x == 0 4745 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 4746 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 4747 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4748 CC = ISD::SETEQ; 4749 BaseOpc = ISD::AND; 4750 break; 4751 } 4752 case ISD::VECREDUCE_OR: 4753 case ISD::VP_REDUCE_OR: 4754 // vcpop x != 0 4755 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4756 CC = ISD::SETNE; 4757 BaseOpc = ISD::OR; 4758 break; 4759 case ISD::VECREDUCE_XOR: 4760 case ISD::VP_REDUCE_XOR: { 4761 // ((vcpop x) & 1) != 0 4762 SDValue One = DAG.getConstant(1, DL, XLenVT); 4763 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4764 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 4765 CC = ISD::SETNE; 4766 BaseOpc = ISD::XOR; 4767 break; 4768 } 4769 } 4770 4771 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 4772 4773 if (!IsVP) 4774 return SetCC; 4775 4776 // Now include the start value in the operation. 4777 // Note that we must return the start value when no elements are operated 4778 // upon. The vcpop instructions we've emitted in each case above will return 4779 // 0 for an inactive vector, and so we've already received the neutral value: 4780 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 4781 // can simply include the start value. 4782 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 4783 } 4784 4785 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 4786 SelectionDAG &DAG) const { 4787 SDLoc DL(Op); 4788 SDValue Vec = Op.getOperand(0); 4789 EVT VecEVT = Vec.getValueType(); 4790 4791 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 4792 4793 // Due to ordering in legalize types we may have a vector type that needs to 4794 // be split. Do that manually so we can get down to a legal type. 4795 while (getTypeAction(*DAG.getContext(), VecEVT) == 4796 TargetLowering::TypeSplitVector) { 4797 SDValue Lo, Hi; 4798 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 4799 VecEVT = Lo.getValueType(); 4800 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 4801 } 4802 4803 // TODO: The type may need to be widened rather than split. Or widened before 4804 // it can be split. 4805 if (!isTypeLegal(VecEVT)) 4806 return SDValue(); 4807 4808 MVT VecVT = VecEVT.getSimpleVT(); 4809 MVT VecEltVT = VecVT.getVectorElementType(); 4810 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 4811 4812 MVT ContainerVT = VecVT; 4813 if (VecVT.isFixedLengthVector()) { 4814 ContainerVT = getContainerForFixedLengthVector(VecVT); 4815 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4816 } 4817 4818 MVT M1VT = getLMUL1VT(ContainerVT); 4819 MVT XLenVT = Subtarget.getXLenVT(); 4820 4821 SDValue Mask, VL; 4822 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4823 4824 SDValue NeutralElem = 4825 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 4826 SDValue IdentitySplat = lowerScalarSplat( 4827 NeutralElem, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 4828 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 4829 IdentitySplat, Mask, VL); 4830 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4831 DAG.getConstant(0, DL, XLenVT)); 4832 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4833 } 4834 4835 // Given a reduction op, this function returns the matching reduction opcode, 4836 // the vector SDValue and the scalar SDValue required to lower this to a 4837 // RISCVISD node. 4838 static std::tuple<unsigned, SDValue, SDValue> 4839 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 4840 SDLoc DL(Op); 4841 auto Flags = Op->getFlags(); 4842 unsigned Opcode = Op.getOpcode(); 4843 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 4844 switch (Opcode) { 4845 default: 4846 llvm_unreachable("Unhandled reduction"); 4847 case ISD::VECREDUCE_FADD: { 4848 // Use positive zero if we can. It is cheaper to materialize. 4849 SDValue Zero = 4850 DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); 4851 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); 4852 } 4853 case ISD::VECREDUCE_SEQ_FADD: 4854 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 4855 Op.getOperand(0)); 4856 case ISD::VECREDUCE_FMIN: 4857 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 4858 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4859 case ISD::VECREDUCE_FMAX: 4860 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 4861 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4862 } 4863 } 4864 4865 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 4866 SelectionDAG &DAG) const { 4867 SDLoc DL(Op); 4868 MVT VecEltVT = Op.getSimpleValueType(); 4869 4870 unsigned RVVOpcode; 4871 SDValue VectorVal, ScalarVal; 4872 std::tie(RVVOpcode, VectorVal, ScalarVal) = 4873 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 4874 MVT VecVT = VectorVal.getSimpleValueType(); 4875 4876 MVT ContainerVT = VecVT; 4877 if (VecVT.isFixedLengthVector()) { 4878 ContainerVT = getContainerForFixedLengthVector(VecVT); 4879 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 4880 } 4881 4882 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 4883 MVT XLenVT = Subtarget.getXLenVT(); 4884 4885 SDValue Mask, VL; 4886 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4887 4888 SDValue ScalarSplat = lowerScalarSplat( 4889 ScalarVal, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 4890 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 4891 VectorVal, ScalarSplat, Mask, VL); 4892 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4893 DAG.getConstant(0, DL, XLenVT)); 4894 } 4895 4896 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 4897 switch (ISDOpcode) { 4898 default: 4899 llvm_unreachable("Unhandled reduction"); 4900 case ISD::VP_REDUCE_ADD: 4901 return RISCVISD::VECREDUCE_ADD_VL; 4902 case ISD::VP_REDUCE_UMAX: 4903 return RISCVISD::VECREDUCE_UMAX_VL; 4904 case ISD::VP_REDUCE_SMAX: 4905 return RISCVISD::VECREDUCE_SMAX_VL; 4906 case ISD::VP_REDUCE_UMIN: 4907 return RISCVISD::VECREDUCE_UMIN_VL; 4908 case ISD::VP_REDUCE_SMIN: 4909 return RISCVISD::VECREDUCE_SMIN_VL; 4910 case ISD::VP_REDUCE_AND: 4911 return RISCVISD::VECREDUCE_AND_VL; 4912 case ISD::VP_REDUCE_OR: 4913 return RISCVISD::VECREDUCE_OR_VL; 4914 case ISD::VP_REDUCE_XOR: 4915 return RISCVISD::VECREDUCE_XOR_VL; 4916 case ISD::VP_REDUCE_FADD: 4917 return RISCVISD::VECREDUCE_FADD_VL; 4918 case ISD::VP_REDUCE_SEQ_FADD: 4919 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 4920 case ISD::VP_REDUCE_FMAX: 4921 return RISCVISD::VECREDUCE_FMAX_VL; 4922 case ISD::VP_REDUCE_FMIN: 4923 return RISCVISD::VECREDUCE_FMIN_VL; 4924 } 4925 } 4926 4927 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 4928 SelectionDAG &DAG) const { 4929 SDLoc DL(Op); 4930 SDValue Vec = Op.getOperand(1); 4931 EVT VecEVT = Vec.getValueType(); 4932 4933 // TODO: The type may need to be widened rather than split. Or widened before 4934 // it can be split. 4935 if (!isTypeLegal(VecEVT)) 4936 return SDValue(); 4937 4938 MVT VecVT = VecEVT.getSimpleVT(); 4939 MVT VecEltVT = VecVT.getVectorElementType(); 4940 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 4941 4942 MVT ContainerVT = VecVT; 4943 if (VecVT.isFixedLengthVector()) { 4944 ContainerVT = getContainerForFixedLengthVector(VecVT); 4945 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4946 } 4947 4948 SDValue VL = Op.getOperand(3); 4949 SDValue Mask = Op.getOperand(2); 4950 4951 MVT M1VT = getLMUL1VT(ContainerVT); 4952 MVT XLenVT = Subtarget.getXLenVT(); 4953 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 4954 4955 SDValue StartSplat = 4956 lowerScalarSplat(Op.getOperand(0), DAG.getConstant(1, DL, XLenVT), M1VT, 4957 DL, DAG, Subtarget); 4958 SDValue Reduction = 4959 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 4960 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 4961 DAG.getConstant(0, DL, XLenVT)); 4962 if (!VecVT.isInteger()) 4963 return Elt0; 4964 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4965 } 4966 4967 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 4968 SelectionDAG &DAG) const { 4969 SDValue Vec = Op.getOperand(0); 4970 SDValue SubVec = Op.getOperand(1); 4971 MVT VecVT = Vec.getSimpleValueType(); 4972 MVT SubVecVT = SubVec.getSimpleValueType(); 4973 4974 SDLoc DL(Op); 4975 MVT XLenVT = Subtarget.getXLenVT(); 4976 unsigned OrigIdx = Op.getConstantOperandVal(2); 4977 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4978 4979 // We don't have the ability to slide mask vectors up indexed by their i1 4980 // elements; the smallest we can do is i8. Often we are able to bitcast to 4981 // equivalent i8 vectors. Note that when inserting a fixed-length vector 4982 // into a scalable one, we might not necessarily have enough scalable 4983 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 4984 if (SubVecVT.getVectorElementType() == MVT::i1 && 4985 (OrigIdx != 0 || !Vec.isUndef())) { 4986 if (VecVT.getVectorMinNumElements() >= 8 && 4987 SubVecVT.getVectorMinNumElements() >= 8) { 4988 assert(OrigIdx % 8 == 0 && "Invalid index"); 4989 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4990 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4991 "Unexpected mask vector lowering"); 4992 OrigIdx /= 8; 4993 SubVecVT = 4994 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4995 SubVecVT.isScalableVector()); 4996 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4997 VecVT.isScalableVector()); 4998 Vec = DAG.getBitcast(VecVT, Vec); 4999 SubVec = DAG.getBitcast(SubVecVT, SubVec); 5000 } else { 5001 // We can't slide this mask vector up indexed by its i1 elements. 5002 // This poses a problem when we wish to insert a scalable vector which 5003 // can't be re-expressed as a larger type. Just choose the slow path and 5004 // extend to a larger type, then truncate back down. 5005 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5006 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5007 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5008 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 5009 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 5010 Op.getOperand(2)); 5011 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 5012 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 5013 } 5014 } 5015 5016 // If the subvector vector is a fixed-length type, we cannot use subregister 5017 // manipulation to simplify the codegen; we don't know which register of a 5018 // LMUL group contains the specific subvector as we only know the minimum 5019 // register size. Therefore we must slide the vector group up the full 5020 // amount. 5021 if (SubVecVT.isFixedLengthVector()) { 5022 if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector()) 5023 return Op; 5024 MVT ContainerVT = VecVT; 5025 if (VecVT.isFixedLengthVector()) { 5026 ContainerVT = getContainerForFixedLengthVector(VecVT); 5027 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5028 } 5029 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 5030 DAG.getUNDEF(ContainerVT), SubVec, 5031 DAG.getConstant(0, DL, XLenVT)); 5032 if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) { 5033 SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget); 5034 return DAG.getBitcast(Op.getValueType(), SubVec); 5035 } 5036 SDValue Mask = 5037 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5038 // Set the vector length to only the number of elements we care about. Note 5039 // that for slideup this includes the offset. 5040 SDValue VL = 5041 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 5042 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5043 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 5044 SubVec, SlideupAmt, Mask, VL); 5045 if (VecVT.isFixedLengthVector()) 5046 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 5047 return DAG.getBitcast(Op.getValueType(), Slideup); 5048 } 5049 5050 unsigned SubRegIdx, RemIdx; 5051 std::tie(SubRegIdx, RemIdx) = 5052 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5053 VecVT, SubVecVT, OrigIdx, TRI); 5054 5055 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 5056 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 5057 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 5058 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 5059 5060 // 1. If the Idx has been completely eliminated and this subvector's size is 5061 // a vector register or a multiple thereof, or the surrounding elements are 5062 // undef, then this is a subvector insert which naturally aligns to a vector 5063 // register. These can easily be handled using subregister manipulation. 5064 // 2. If the subvector is smaller than a vector register, then the insertion 5065 // must preserve the undisturbed elements of the register. We do this by 5066 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 5067 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 5068 // subvector within the vector register, and an INSERT_SUBVECTOR of that 5069 // LMUL=1 type back into the larger vector (resolving to another subregister 5070 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 5071 // to avoid allocating a large register group to hold our subvector. 5072 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 5073 return Op; 5074 5075 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 5076 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 5077 // (in our case undisturbed). This means we can set up a subvector insertion 5078 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 5079 // size of the subvector. 5080 MVT InterSubVT = VecVT; 5081 SDValue AlignedExtract = Vec; 5082 unsigned AlignedIdx = OrigIdx - RemIdx; 5083 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5084 InterSubVT = getLMUL1VT(VecVT); 5085 // Extract a subvector equal to the nearest full vector register type. This 5086 // should resolve to a EXTRACT_SUBREG instruction. 5087 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5088 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5089 } 5090 5091 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5092 // For scalable vectors this must be further multiplied by vscale. 5093 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 5094 5095 SDValue Mask, VL; 5096 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5097 5098 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 5099 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 5100 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 5101 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 5102 5103 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 5104 DAG.getUNDEF(InterSubVT), SubVec, 5105 DAG.getConstant(0, DL, XLenVT)); 5106 5107 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 5108 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 5109 5110 // If required, insert this subvector back into the correct vector register. 5111 // This should resolve to an INSERT_SUBREG instruction. 5112 if (VecVT.bitsGT(InterSubVT)) 5113 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 5114 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5115 5116 // We might have bitcast from a mask type: cast back to the original type if 5117 // required. 5118 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 5119 } 5120 5121 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 5122 SelectionDAG &DAG) const { 5123 SDValue Vec = Op.getOperand(0); 5124 MVT SubVecVT = Op.getSimpleValueType(); 5125 MVT VecVT = Vec.getSimpleValueType(); 5126 5127 SDLoc DL(Op); 5128 MVT XLenVT = Subtarget.getXLenVT(); 5129 unsigned OrigIdx = Op.getConstantOperandVal(1); 5130 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5131 5132 // We don't have the ability to slide mask vectors down indexed by their i1 5133 // elements; the smallest we can do is i8. Often we are able to bitcast to 5134 // equivalent i8 vectors. Note that when extracting a fixed-length vector 5135 // from a scalable one, we might not necessarily have enough scalable 5136 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 5137 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 5138 if (VecVT.getVectorMinNumElements() >= 8 && 5139 SubVecVT.getVectorMinNumElements() >= 8) { 5140 assert(OrigIdx % 8 == 0 && "Invalid index"); 5141 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5142 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5143 "Unexpected mask vector lowering"); 5144 OrigIdx /= 8; 5145 SubVecVT = 5146 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5147 SubVecVT.isScalableVector()); 5148 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5149 VecVT.isScalableVector()); 5150 Vec = DAG.getBitcast(VecVT, Vec); 5151 } else { 5152 // We can't slide this mask vector down, indexed by its i1 elements. 5153 // This poses a problem when we wish to extract a scalable vector which 5154 // can't be re-expressed as a larger type. Just choose the slow path and 5155 // extend to a larger type, then truncate back down. 5156 // TODO: We could probably improve this when extracting certain fixed 5157 // from fixed, where we can extract as i8 and shift the correct element 5158 // right to reach the desired subvector? 5159 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5160 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5161 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5162 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 5163 Op.getOperand(1)); 5164 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 5165 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 5166 } 5167 } 5168 5169 // If the subvector vector is a fixed-length type, we cannot use subregister 5170 // manipulation to simplify the codegen; we don't know which register of a 5171 // LMUL group contains the specific subvector as we only know the minimum 5172 // register size. Therefore we must slide the vector group down the full 5173 // amount. 5174 if (SubVecVT.isFixedLengthVector()) { 5175 // With an index of 0 this is a cast-like subvector, which can be performed 5176 // with subregister operations. 5177 if (OrigIdx == 0) 5178 return Op; 5179 MVT ContainerVT = VecVT; 5180 if (VecVT.isFixedLengthVector()) { 5181 ContainerVT = getContainerForFixedLengthVector(VecVT); 5182 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5183 } 5184 SDValue Mask = 5185 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5186 // Set the vector length to only the number of elements we care about. This 5187 // avoids sliding down elements we're going to discard straight away. 5188 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 5189 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5190 SDValue Slidedown = 5191 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5192 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 5193 // Now we can use a cast-like subvector extract to get the result. 5194 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5195 DAG.getConstant(0, DL, XLenVT)); 5196 return DAG.getBitcast(Op.getValueType(), Slidedown); 5197 } 5198 5199 unsigned SubRegIdx, RemIdx; 5200 std::tie(SubRegIdx, RemIdx) = 5201 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5202 VecVT, SubVecVT, OrigIdx, TRI); 5203 5204 // If the Idx has been completely eliminated then this is a subvector extract 5205 // which naturally aligns to a vector register. These can easily be handled 5206 // using subregister manipulation. 5207 if (RemIdx == 0) 5208 return Op; 5209 5210 // Else we must shift our vector register directly to extract the subvector. 5211 // Do this using VSLIDEDOWN. 5212 5213 // If the vector type is an LMUL-group type, extract a subvector equal to the 5214 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 5215 // instruction. 5216 MVT InterSubVT = VecVT; 5217 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5218 InterSubVT = getLMUL1VT(VecVT); 5219 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5220 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 5221 } 5222 5223 // Slide this vector register down by the desired number of elements in order 5224 // to place the desired subvector starting at element 0. 5225 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5226 // For scalable vectors this must be further multiplied by vscale. 5227 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 5228 5229 SDValue Mask, VL; 5230 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 5231 SDValue Slidedown = 5232 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 5233 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 5234 5235 // Now the vector is in the right position, extract our final subvector. This 5236 // should resolve to a COPY. 5237 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5238 DAG.getConstant(0, DL, XLenVT)); 5239 5240 // We might have bitcast from a mask type: cast back to the original type if 5241 // required. 5242 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 5243 } 5244 5245 // Lower step_vector to the vid instruction. Any non-identity step value must 5246 // be accounted for my manual expansion. 5247 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 5248 SelectionDAG &DAG) const { 5249 SDLoc DL(Op); 5250 MVT VT = Op.getSimpleValueType(); 5251 MVT XLenVT = Subtarget.getXLenVT(); 5252 SDValue Mask, VL; 5253 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 5254 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 5255 uint64_t StepValImm = Op.getConstantOperandVal(0); 5256 if (StepValImm != 1) { 5257 if (isPowerOf2_64(StepValImm)) { 5258 SDValue StepVal = 5259 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 5260 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 5261 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 5262 } else { 5263 SDValue StepVal = lowerScalarSplat( 5264 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 5265 DL, DAG, Subtarget); 5266 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 5267 } 5268 } 5269 return StepVec; 5270 } 5271 5272 // Implement vector_reverse using vrgather.vv with indices determined by 5273 // subtracting the id of each element from (VLMAX-1). This will convert 5274 // the indices like so: 5275 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 5276 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 5277 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 5278 SelectionDAG &DAG) const { 5279 SDLoc DL(Op); 5280 MVT VecVT = Op.getSimpleValueType(); 5281 unsigned EltSize = VecVT.getScalarSizeInBits(); 5282 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 5283 5284 unsigned MaxVLMAX = 0; 5285 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 5286 if (VectorBitsMax != 0) 5287 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 5288 5289 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 5290 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 5291 5292 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 5293 // to use vrgatherei16.vv. 5294 // TODO: It's also possible to use vrgatherei16.vv for other types to 5295 // decrease register width for the index calculation. 5296 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 5297 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 5298 // Reverse each half, then reassemble them in reverse order. 5299 // NOTE: It's also possible that after splitting that VLMAX no longer 5300 // requires vrgatherei16.vv. 5301 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 5302 SDValue Lo, Hi; 5303 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 5304 EVT LoVT, HiVT; 5305 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5306 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 5307 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 5308 // Reassemble the low and high pieces reversed. 5309 // FIXME: This is a CONCAT_VECTORS. 5310 SDValue Res = 5311 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 5312 DAG.getIntPtrConstant(0, DL)); 5313 return DAG.getNode( 5314 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 5315 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 5316 } 5317 5318 // Just promote the int type to i16 which will double the LMUL. 5319 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 5320 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 5321 } 5322 5323 MVT XLenVT = Subtarget.getXLenVT(); 5324 SDValue Mask, VL; 5325 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5326 5327 // Calculate VLMAX-1 for the desired SEW. 5328 unsigned MinElts = VecVT.getVectorMinNumElements(); 5329 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5330 DAG.getConstant(MinElts, DL, XLenVT)); 5331 SDValue VLMinus1 = 5332 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 5333 5334 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 5335 bool IsRV32E64 = 5336 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 5337 SDValue SplatVL; 5338 if (!IsRV32E64) 5339 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 5340 else 5341 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 5342 5343 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 5344 SDValue Indices = 5345 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 5346 5347 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 5348 } 5349 5350 SDValue 5351 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5352 SelectionDAG &DAG) const { 5353 SDLoc DL(Op); 5354 auto *Load = cast<LoadSDNode>(Op); 5355 5356 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5357 Load->getMemoryVT(), 5358 *Load->getMemOperand()) && 5359 "Expecting a correctly-aligned load"); 5360 5361 MVT VT = Op.getSimpleValueType(); 5362 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5363 5364 SDValue VL = 5365 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5366 5367 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5368 SDValue NewLoad = DAG.getMemIntrinsicNode( 5369 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 5370 Load->getMemoryVT(), Load->getMemOperand()); 5371 5372 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5373 return DAG.getMergeValues({Result, Load->getChain()}, DL); 5374 } 5375 5376 SDValue 5377 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5378 SelectionDAG &DAG) const { 5379 SDLoc DL(Op); 5380 auto *Store = cast<StoreSDNode>(Op); 5381 5382 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5383 Store->getMemoryVT(), 5384 *Store->getMemOperand()) && 5385 "Expecting a correctly-aligned store"); 5386 5387 SDValue StoreVal = Store->getValue(); 5388 MVT VT = StoreVal.getSimpleValueType(); 5389 5390 // If the size less than a byte, we need to pad with zeros to make a byte. 5391 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5392 VT = MVT::v8i1; 5393 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5394 DAG.getConstant(0, DL, VT), StoreVal, 5395 DAG.getIntPtrConstant(0, DL)); 5396 } 5397 5398 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5399 5400 SDValue VL = 5401 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5402 5403 SDValue NewValue = 5404 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5405 return DAG.getMemIntrinsicNode( 5406 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 5407 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 5408 Store->getMemoryVT(), Store->getMemOperand()); 5409 } 5410 5411 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5412 SelectionDAG &DAG) const { 5413 SDLoc DL(Op); 5414 MVT VT = Op.getSimpleValueType(); 5415 5416 const auto *MemSD = cast<MemSDNode>(Op); 5417 EVT MemVT = MemSD->getMemoryVT(); 5418 MachineMemOperand *MMO = MemSD->getMemOperand(); 5419 SDValue Chain = MemSD->getChain(); 5420 SDValue BasePtr = MemSD->getBasePtr(); 5421 5422 SDValue Mask, PassThru, VL; 5423 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5424 Mask = VPLoad->getMask(); 5425 PassThru = DAG.getUNDEF(VT); 5426 VL = VPLoad->getVectorLength(); 5427 } else { 5428 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5429 Mask = MLoad->getMask(); 5430 PassThru = MLoad->getPassThru(); 5431 } 5432 5433 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5434 5435 MVT XLenVT = Subtarget.getXLenVT(); 5436 5437 MVT ContainerVT = VT; 5438 if (VT.isFixedLengthVector()) { 5439 ContainerVT = getContainerForFixedLengthVector(VT); 5440 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5441 if (!IsUnmasked) { 5442 MVT MaskVT = 5443 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5444 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5445 } 5446 } 5447 5448 if (!VL) 5449 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5450 5451 unsigned IntID = 5452 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5453 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5454 if (IsUnmasked) 5455 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5456 else 5457 Ops.push_back(PassThru); 5458 Ops.push_back(BasePtr); 5459 if (!IsUnmasked) 5460 Ops.push_back(Mask); 5461 Ops.push_back(VL); 5462 if (!IsUnmasked) 5463 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5464 5465 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5466 5467 SDValue Result = 5468 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5469 Chain = Result.getValue(1); 5470 5471 if (VT.isFixedLengthVector()) 5472 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5473 5474 return DAG.getMergeValues({Result, Chain}, DL); 5475 } 5476 5477 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5478 SelectionDAG &DAG) const { 5479 SDLoc DL(Op); 5480 5481 const auto *MemSD = cast<MemSDNode>(Op); 5482 EVT MemVT = MemSD->getMemoryVT(); 5483 MachineMemOperand *MMO = MemSD->getMemOperand(); 5484 SDValue Chain = MemSD->getChain(); 5485 SDValue BasePtr = MemSD->getBasePtr(); 5486 SDValue Val, Mask, VL; 5487 5488 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5489 Val = VPStore->getValue(); 5490 Mask = VPStore->getMask(); 5491 VL = VPStore->getVectorLength(); 5492 } else { 5493 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5494 Val = MStore->getValue(); 5495 Mask = MStore->getMask(); 5496 } 5497 5498 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5499 5500 MVT VT = Val.getSimpleValueType(); 5501 MVT XLenVT = Subtarget.getXLenVT(); 5502 5503 MVT ContainerVT = VT; 5504 if (VT.isFixedLengthVector()) { 5505 ContainerVT = getContainerForFixedLengthVector(VT); 5506 5507 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5508 if (!IsUnmasked) { 5509 MVT MaskVT = 5510 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5511 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5512 } 5513 } 5514 5515 if (!VL) 5516 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5517 5518 unsigned IntID = 5519 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 5520 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5521 Ops.push_back(Val); 5522 Ops.push_back(BasePtr); 5523 if (!IsUnmasked) 5524 Ops.push_back(Mask); 5525 Ops.push_back(VL); 5526 5527 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5528 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5529 } 5530 5531 SDValue 5532 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 5533 SelectionDAG &DAG) const { 5534 MVT InVT = Op.getOperand(0).getSimpleValueType(); 5535 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 5536 5537 MVT VT = Op.getSimpleValueType(); 5538 5539 SDValue Op1 = 5540 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 5541 SDValue Op2 = 5542 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5543 5544 SDLoc DL(Op); 5545 SDValue VL = 5546 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5547 5548 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5549 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5550 5551 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 5552 Op.getOperand(2), Mask, VL); 5553 5554 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 5555 } 5556 5557 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5558 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5559 MVT VT = Op.getSimpleValueType(); 5560 5561 if (VT.getVectorElementType() == MVT::i1) 5562 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5563 5564 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5565 } 5566 5567 SDValue 5568 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5569 SelectionDAG &DAG) const { 5570 unsigned Opc; 5571 switch (Op.getOpcode()) { 5572 default: llvm_unreachable("Unexpected opcode!"); 5573 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5574 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5575 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5576 } 5577 5578 return lowerToScalableOp(Op, DAG, Opc); 5579 } 5580 5581 // Lower vector ABS to smax(X, sub(0, X)). 5582 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5583 SDLoc DL(Op); 5584 MVT VT = Op.getSimpleValueType(); 5585 SDValue X = Op.getOperand(0); 5586 5587 assert(VT.isFixedLengthVector() && "Unexpected type"); 5588 5589 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5590 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5591 5592 SDValue Mask, VL; 5593 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5594 5595 SDValue SplatZero = 5596 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5597 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 5598 SDValue NegX = 5599 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 5600 SDValue Max = 5601 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 5602 5603 return convertFromScalableVector(VT, Max, DAG, Subtarget); 5604 } 5605 5606 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 5607 SDValue Op, SelectionDAG &DAG) const { 5608 SDLoc DL(Op); 5609 MVT VT = Op.getSimpleValueType(); 5610 SDValue Mag = Op.getOperand(0); 5611 SDValue Sign = Op.getOperand(1); 5612 assert(Mag.getValueType() == Sign.getValueType() && 5613 "Can only handle COPYSIGN with matching types."); 5614 5615 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5616 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 5617 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 5618 5619 SDValue Mask, VL; 5620 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5621 5622 SDValue CopySign = 5623 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 5624 5625 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 5626 } 5627 5628 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 5629 SDValue Op, SelectionDAG &DAG) const { 5630 MVT VT = Op.getSimpleValueType(); 5631 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5632 5633 MVT I1ContainerVT = 5634 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5635 5636 SDValue CC = 5637 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 5638 SDValue Op1 = 5639 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5640 SDValue Op2 = 5641 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 5642 5643 SDLoc DL(Op); 5644 SDValue Mask, VL; 5645 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5646 5647 SDValue Select = 5648 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 5649 5650 return convertFromScalableVector(VT, Select, DAG, Subtarget); 5651 } 5652 5653 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 5654 unsigned NewOpc, 5655 bool HasMask) const { 5656 MVT VT = Op.getSimpleValueType(); 5657 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5658 5659 // Create list of operands by converting existing ones to scalable types. 5660 SmallVector<SDValue, 6> Ops; 5661 for (const SDValue &V : Op->op_values()) { 5662 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5663 5664 // Pass through non-vector operands. 5665 if (!V.getValueType().isVector()) { 5666 Ops.push_back(V); 5667 continue; 5668 } 5669 5670 // "cast" fixed length vector to a scalable vector. 5671 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 5672 "Only fixed length vectors are supported!"); 5673 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5674 } 5675 5676 SDLoc DL(Op); 5677 SDValue Mask, VL; 5678 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5679 if (HasMask) 5680 Ops.push_back(Mask); 5681 Ops.push_back(VL); 5682 5683 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 5684 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 5685 } 5686 5687 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 5688 // * Operands of each node are assumed to be in the same order. 5689 // * The EVL operand is promoted from i32 to i64 on RV64. 5690 // * Fixed-length vectors are converted to their scalable-vector container 5691 // types. 5692 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 5693 unsigned RISCVISDOpc) const { 5694 SDLoc DL(Op); 5695 MVT VT = Op.getSimpleValueType(); 5696 SmallVector<SDValue, 4> Ops; 5697 5698 for (const auto &OpIdx : enumerate(Op->ops())) { 5699 SDValue V = OpIdx.value(); 5700 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5701 // Pass through operands which aren't fixed-length vectors. 5702 if (!V.getValueType().isFixedLengthVector()) { 5703 Ops.push_back(V); 5704 continue; 5705 } 5706 // "cast" fixed length vector to a scalable vector. 5707 MVT OpVT = V.getSimpleValueType(); 5708 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 5709 assert(useRVVForFixedLengthVectorVT(OpVT) && 5710 "Only fixed length vectors are supported!"); 5711 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5712 } 5713 5714 if (!VT.isFixedLengthVector()) 5715 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 5716 5717 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5718 5719 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 5720 5721 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 5722 } 5723 5724 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG, 5725 unsigned MaskOpc, 5726 unsigned VecOpc) const { 5727 MVT VT = Op.getSimpleValueType(); 5728 if (VT.getVectorElementType() != MVT::i1) 5729 return lowerVPOp(Op, DAG, VecOpc); 5730 5731 // It is safe to drop mask parameter as masked-off elements are undef. 5732 SDValue Op1 = Op->getOperand(0); 5733 SDValue Op2 = Op->getOperand(1); 5734 SDValue VL = Op->getOperand(3); 5735 5736 MVT ContainerVT = VT; 5737 const bool IsFixed = VT.isFixedLengthVector(); 5738 if (IsFixed) { 5739 ContainerVT = getContainerForFixedLengthVector(VT); 5740 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 5741 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 5742 } 5743 5744 SDLoc DL(Op); 5745 SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL); 5746 if (!IsFixed) 5747 return Val; 5748 return convertFromScalableVector(VT, Val, DAG, Subtarget); 5749 } 5750 5751 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 5752 // matched to a RVV indexed load. The RVV indexed load instructions only 5753 // support the "unsigned unscaled" addressing mode; indices are implicitly 5754 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5755 // signed or scaled indexing is extended to the XLEN value type and scaled 5756 // accordingly. 5757 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 5758 SelectionDAG &DAG) const { 5759 SDLoc DL(Op); 5760 MVT VT = Op.getSimpleValueType(); 5761 5762 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5763 EVT MemVT = MemSD->getMemoryVT(); 5764 MachineMemOperand *MMO = MemSD->getMemOperand(); 5765 SDValue Chain = MemSD->getChain(); 5766 SDValue BasePtr = MemSD->getBasePtr(); 5767 5768 ISD::LoadExtType LoadExtType; 5769 SDValue Index, Mask, PassThru, VL; 5770 5771 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 5772 Index = VPGN->getIndex(); 5773 Mask = VPGN->getMask(); 5774 PassThru = DAG.getUNDEF(VT); 5775 VL = VPGN->getVectorLength(); 5776 // VP doesn't support extending loads. 5777 LoadExtType = ISD::NON_EXTLOAD; 5778 } else { 5779 // Else it must be a MGATHER. 5780 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 5781 Index = MGN->getIndex(); 5782 Mask = MGN->getMask(); 5783 PassThru = MGN->getPassThru(); 5784 LoadExtType = MGN->getExtensionType(); 5785 } 5786 5787 MVT IndexVT = Index.getSimpleValueType(); 5788 MVT XLenVT = Subtarget.getXLenVT(); 5789 5790 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5791 "Unexpected VTs!"); 5792 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5793 // Targets have to explicitly opt-in for extending vector loads. 5794 assert(LoadExtType == ISD::NON_EXTLOAD && 5795 "Unexpected extending MGATHER/VP_GATHER"); 5796 (void)LoadExtType; 5797 5798 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5799 // the selection of the masked intrinsics doesn't do this for us. 5800 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5801 5802 MVT ContainerVT = VT; 5803 if (VT.isFixedLengthVector()) { 5804 // We need to use the larger of the result and index type to determine the 5805 // scalable type to use so we don't increase LMUL for any operand/result. 5806 if (VT.bitsGE(IndexVT)) { 5807 ContainerVT = getContainerForFixedLengthVector(VT); 5808 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5809 ContainerVT.getVectorElementCount()); 5810 } else { 5811 IndexVT = getContainerForFixedLengthVector(IndexVT); 5812 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 5813 IndexVT.getVectorElementCount()); 5814 } 5815 5816 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5817 5818 if (!IsUnmasked) { 5819 MVT MaskVT = 5820 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5821 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5822 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5823 } 5824 } 5825 5826 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 5827 IndexVT = IndexVT.changeVectorElementType(XLenVT); 5828 Index = DAG.getNode(ISD::TRUNCATE, DL, IndexVT, Index); 5829 } 5830 5831 if (!VL) 5832 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5833 5834 unsigned IntID = 5835 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 5836 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5837 if (IsUnmasked) 5838 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5839 else 5840 Ops.push_back(PassThru); 5841 Ops.push_back(BasePtr); 5842 Ops.push_back(Index); 5843 if (!IsUnmasked) 5844 Ops.push_back(Mask); 5845 Ops.push_back(VL); 5846 if (!IsUnmasked) 5847 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5848 5849 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5850 SDValue Result = 5851 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5852 Chain = Result.getValue(1); 5853 5854 if (VT.isFixedLengthVector()) 5855 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5856 5857 return DAG.getMergeValues({Result, Chain}, DL); 5858 } 5859 5860 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 5861 // matched to a RVV indexed store. The RVV indexed store instructions only 5862 // support the "unsigned unscaled" addressing mode; indices are implicitly 5863 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5864 // signed or scaled indexing is extended to the XLEN value type and scaled 5865 // accordingly. 5866 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 5867 SelectionDAG &DAG) const { 5868 SDLoc DL(Op); 5869 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5870 EVT MemVT = MemSD->getMemoryVT(); 5871 MachineMemOperand *MMO = MemSD->getMemOperand(); 5872 SDValue Chain = MemSD->getChain(); 5873 SDValue BasePtr = MemSD->getBasePtr(); 5874 5875 bool IsTruncatingStore = false; 5876 SDValue Index, Mask, Val, VL; 5877 5878 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 5879 Index = VPSN->getIndex(); 5880 Mask = VPSN->getMask(); 5881 Val = VPSN->getValue(); 5882 VL = VPSN->getVectorLength(); 5883 // VP doesn't support truncating stores. 5884 IsTruncatingStore = false; 5885 } else { 5886 // Else it must be a MSCATTER. 5887 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 5888 Index = MSN->getIndex(); 5889 Mask = MSN->getMask(); 5890 Val = MSN->getValue(); 5891 IsTruncatingStore = MSN->isTruncatingStore(); 5892 } 5893 5894 MVT VT = Val.getSimpleValueType(); 5895 MVT IndexVT = Index.getSimpleValueType(); 5896 MVT XLenVT = Subtarget.getXLenVT(); 5897 5898 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5899 "Unexpected VTs!"); 5900 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5901 // Targets have to explicitly opt-in for extending vector loads and 5902 // truncating vector stores. 5903 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 5904 (void)IsTruncatingStore; 5905 5906 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5907 // the selection of the masked intrinsics doesn't do this for us. 5908 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5909 5910 MVT ContainerVT = VT; 5911 if (VT.isFixedLengthVector()) { 5912 // We need to use the larger of the value and index type to determine the 5913 // scalable type to use so we don't increase LMUL for any operand/result. 5914 if (VT.bitsGE(IndexVT)) { 5915 ContainerVT = getContainerForFixedLengthVector(VT); 5916 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5917 ContainerVT.getVectorElementCount()); 5918 } else { 5919 IndexVT = getContainerForFixedLengthVector(IndexVT); 5920 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 5921 IndexVT.getVectorElementCount()); 5922 } 5923 5924 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5925 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5926 5927 if (!IsUnmasked) { 5928 MVT MaskVT = 5929 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5930 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5931 } 5932 } 5933 5934 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 5935 IndexVT = IndexVT.changeVectorElementType(XLenVT); 5936 Index = DAG.getNode(ISD::TRUNCATE, DL, IndexVT, Index); 5937 } 5938 5939 if (!VL) 5940 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5941 5942 unsigned IntID = 5943 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 5944 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5945 Ops.push_back(Val); 5946 Ops.push_back(BasePtr); 5947 Ops.push_back(Index); 5948 if (!IsUnmasked) 5949 Ops.push_back(Mask); 5950 Ops.push_back(VL); 5951 5952 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5953 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5954 } 5955 5956 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 5957 SelectionDAG &DAG) const { 5958 const MVT XLenVT = Subtarget.getXLenVT(); 5959 SDLoc DL(Op); 5960 SDValue Chain = Op->getOperand(0); 5961 SDValue SysRegNo = DAG.getTargetConstant( 5962 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5963 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 5964 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 5965 5966 // Encoding used for rounding mode in RISCV differs from that used in 5967 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 5968 // table, which consists of a sequence of 4-bit fields, each representing 5969 // corresponding FLT_ROUNDS mode. 5970 static const int Table = 5971 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 5972 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 5973 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 5974 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 5975 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 5976 5977 SDValue Shift = 5978 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 5979 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5980 DAG.getConstant(Table, DL, XLenVT), Shift); 5981 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5982 DAG.getConstant(7, DL, XLenVT)); 5983 5984 return DAG.getMergeValues({Masked, Chain}, DL); 5985 } 5986 5987 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 5988 SelectionDAG &DAG) const { 5989 const MVT XLenVT = Subtarget.getXLenVT(); 5990 SDLoc DL(Op); 5991 SDValue Chain = Op->getOperand(0); 5992 SDValue RMValue = Op->getOperand(1); 5993 SDValue SysRegNo = DAG.getTargetConstant( 5994 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5995 5996 // Encoding used for rounding mode in RISCV differs from that used in 5997 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 5998 // a table, which consists of a sequence of 4-bit fields, each representing 5999 // corresponding RISCV mode. 6000 static const unsigned Table = 6001 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 6002 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 6003 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 6004 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 6005 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 6006 6007 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 6008 DAG.getConstant(2, DL, XLenVT)); 6009 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6010 DAG.getConstant(Table, DL, XLenVT), Shift); 6011 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6012 DAG.getConstant(0x7, DL, XLenVT)); 6013 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 6014 RMValue); 6015 } 6016 6017 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) { 6018 switch (IntNo) { 6019 default: 6020 llvm_unreachable("Unexpected Intrinsic"); 6021 case Intrinsic::riscv_grev: 6022 return RISCVISD::GREVW; 6023 case Intrinsic::riscv_gorc: 6024 return RISCVISD::GORCW; 6025 case Intrinsic::riscv_bcompress: 6026 return RISCVISD::BCOMPRESSW; 6027 case Intrinsic::riscv_bdecompress: 6028 return RISCVISD::BDECOMPRESSW; 6029 case Intrinsic::riscv_bfp: 6030 return RISCVISD::BFPW; 6031 case Intrinsic::riscv_fsl: 6032 return RISCVISD::FSLW; 6033 case Intrinsic::riscv_fsr: 6034 return RISCVISD::FSRW; 6035 } 6036 } 6037 6038 // Converts the given intrinsic to a i64 operation with any extension. 6039 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG, 6040 unsigned IntNo) { 6041 SDLoc DL(N); 6042 RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo); 6043 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6044 SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6045 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2); 6046 // ReplaceNodeResults requires we maintain the same type for the return value. 6047 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6048 } 6049 6050 // Returns the opcode of the target-specific SDNode that implements the 32-bit 6051 // form of the given Opcode. 6052 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 6053 switch (Opcode) { 6054 default: 6055 llvm_unreachable("Unexpected opcode"); 6056 case ISD::SHL: 6057 return RISCVISD::SLLW; 6058 case ISD::SRA: 6059 return RISCVISD::SRAW; 6060 case ISD::SRL: 6061 return RISCVISD::SRLW; 6062 case ISD::SDIV: 6063 return RISCVISD::DIVW; 6064 case ISD::UDIV: 6065 return RISCVISD::DIVUW; 6066 case ISD::UREM: 6067 return RISCVISD::REMUW; 6068 case ISD::ROTL: 6069 return RISCVISD::ROLW; 6070 case ISD::ROTR: 6071 return RISCVISD::RORW; 6072 case RISCVISD::GREV: 6073 return RISCVISD::GREVW; 6074 case RISCVISD::GORC: 6075 return RISCVISD::GORCW; 6076 } 6077 } 6078 6079 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 6080 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 6081 // otherwise be promoted to i64, making it difficult to select the 6082 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 6083 // type i8/i16/i32 is lost. 6084 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 6085 unsigned ExtOpc = ISD::ANY_EXTEND) { 6086 SDLoc DL(N); 6087 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6088 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 6089 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 6090 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6091 // ReplaceNodeResults requires we maintain the same type for the return value. 6092 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6093 } 6094 6095 // Converts the given 32-bit operation to a i64 operation with signed extension 6096 // semantic to reduce the signed extension instructions. 6097 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 6098 SDLoc DL(N); 6099 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6100 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6101 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 6102 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6103 DAG.getValueType(MVT::i32)); 6104 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 6105 } 6106 6107 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 6108 SmallVectorImpl<SDValue> &Results, 6109 SelectionDAG &DAG) const { 6110 SDLoc DL(N); 6111 switch (N->getOpcode()) { 6112 default: 6113 llvm_unreachable("Don't know how to custom type legalize this operation!"); 6114 case ISD::STRICT_FP_TO_SINT: 6115 case ISD::STRICT_FP_TO_UINT: 6116 case ISD::FP_TO_SINT: 6117 case ISD::FP_TO_UINT: { 6118 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6119 "Unexpected custom legalisation"); 6120 bool IsStrict = N->isStrictFPOpcode(); 6121 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 6122 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 6123 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 6124 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 6125 TargetLowering::TypeSoftenFloat) { 6126 if (!isTypeLegal(Op0.getValueType())) 6127 return; 6128 if (IsStrict) { 6129 unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64 6130 : RISCVISD::STRICT_FCVT_WU_RV64; 6131 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 6132 SDValue Res = DAG.getNode( 6133 Opc, DL, VTs, N->getOperand(0), Op0, 6134 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6135 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6136 Results.push_back(Res.getValue(1)); 6137 return; 6138 } 6139 unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 6140 SDValue Res = 6141 DAG.getNode(Opc, DL, MVT::i64, Op0, 6142 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6143 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6144 return; 6145 } 6146 // If the FP type needs to be softened, emit a library call using the 'si' 6147 // version. If we left it to default legalization we'd end up with 'di'. If 6148 // the FP type doesn't need to be softened just let generic type 6149 // legalization promote the result type. 6150 RTLIB::Libcall LC; 6151 if (IsSigned) 6152 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 6153 else 6154 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 6155 MakeLibCallOptions CallOptions; 6156 EVT OpVT = Op0.getValueType(); 6157 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 6158 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 6159 SDValue Result; 6160 std::tie(Result, Chain) = 6161 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 6162 Results.push_back(Result); 6163 if (IsStrict) 6164 Results.push_back(Chain); 6165 break; 6166 } 6167 case ISD::READCYCLECOUNTER: { 6168 assert(!Subtarget.is64Bit() && 6169 "READCYCLECOUNTER only has custom type legalization on riscv32"); 6170 6171 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 6172 SDValue RCW = 6173 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 6174 6175 Results.push_back( 6176 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 6177 Results.push_back(RCW.getValue(2)); 6178 break; 6179 } 6180 case ISD::MUL: { 6181 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 6182 unsigned XLen = Subtarget.getXLen(); 6183 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 6184 if (Size > XLen) { 6185 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 6186 SDValue LHS = N->getOperand(0); 6187 SDValue RHS = N->getOperand(1); 6188 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 6189 6190 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 6191 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 6192 // We need exactly one side to be unsigned. 6193 if (LHSIsU == RHSIsU) 6194 return; 6195 6196 auto MakeMULPair = [&](SDValue S, SDValue U) { 6197 MVT XLenVT = Subtarget.getXLenVT(); 6198 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 6199 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 6200 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 6201 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 6202 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 6203 }; 6204 6205 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 6206 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 6207 6208 // The other operand should be signed, but still prefer MULH when 6209 // possible. 6210 if (RHSIsU && LHSIsS && !RHSIsS) 6211 Results.push_back(MakeMULPair(LHS, RHS)); 6212 else if (LHSIsU && RHSIsS && !LHSIsS) 6213 Results.push_back(MakeMULPair(RHS, LHS)); 6214 6215 return; 6216 } 6217 LLVM_FALLTHROUGH; 6218 } 6219 case ISD::ADD: 6220 case ISD::SUB: 6221 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6222 "Unexpected custom legalisation"); 6223 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 6224 break; 6225 case ISD::SHL: 6226 case ISD::SRA: 6227 case ISD::SRL: 6228 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6229 "Unexpected custom legalisation"); 6230 if (N->getOperand(1).getOpcode() != ISD::Constant) { 6231 Results.push_back(customLegalizeToWOp(N, DAG)); 6232 break; 6233 } 6234 6235 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 6236 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 6237 // shift amount. 6238 if (N->getOpcode() == ISD::SHL) { 6239 SDLoc DL(N); 6240 SDValue NewOp0 = 6241 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6242 SDValue NewOp1 = 6243 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 6244 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 6245 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6246 DAG.getValueType(MVT::i32)); 6247 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6248 } 6249 6250 break; 6251 case ISD::ROTL: 6252 case ISD::ROTR: 6253 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6254 "Unexpected custom legalisation"); 6255 Results.push_back(customLegalizeToWOp(N, DAG)); 6256 break; 6257 case ISD::CTTZ: 6258 case ISD::CTTZ_ZERO_UNDEF: 6259 case ISD::CTLZ: 6260 case ISD::CTLZ_ZERO_UNDEF: { 6261 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6262 "Unexpected custom legalisation"); 6263 6264 SDValue NewOp0 = 6265 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6266 bool IsCTZ = 6267 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 6268 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 6269 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 6270 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6271 return; 6272 } 6273 case ISD::SDIV: 6274 case ISD::UDIV: 6275 case ISD::UREM: { 6276 MVT VT = N->getSimpleValueType(0); 6277 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 6278 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 6279 "Unexpected custom legalisation"); 6280 // Don't promote division/remainder by constant since we should expand those 6281 // to multiply by magic constant. 6282 // FIXME: What if the expansion is disabled for minsize. 6283 if (N->getOperand(1).getOpcode() == ISD::Constant) 6284 return; 6285 6286 // If the input is i32, use ANY_EXTEND since the W instructions don't read 6287 // the upper 32 bits. For other types we need to sign or zero extend 6288 // based on the opcode. 6289 unsigned ExtOpc = ISD::ANY_EXTEND; 6290 if (VT != MVT::i32) 6291 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 6292 : ISD::ZERO_EXTEND; 6293 6294 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 6295 break; 6296 } 6297 case ISD::UADDO: 6298 case ISD::USUBO: { 6299 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6300 "Unexpected custom legalisation"); 6301 bool IsAdd = N->getOpcode() == ISD::UADDO; 6302 // Create an ADDW or SUBW. 6303 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6304 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6305 SDValue Res = 6306 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 6307 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 6308 DAG.getValueType(MVT::i32)); 6309 6310 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 6311 // Since the inputs are sign extended from i32, this is equivalent to 6312 // comparing the lower 32 bits. 6313 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6314 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 6315 IsAdd ? ISD::SETULT : ISD::SETUGT); 6316 6317 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6318 Results.push_back(Overflow); 6319 return; 6320 } 6321 case ISD::UADDSAT: 6322 case ISD::USUBSAT: { 6323 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6324 "Unexpected custom legalisation"); 6325 if (Subtarget.hasStdExtZbb()) { 6326 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 6327 // sign extend allows overflow of the lower 32 bits to be detected on 6328 // the promoted size. 6329 SDValue LHS = 6330 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6331 SDValue RHS = 6332 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 6333 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 6334 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6335 return; 6336 } 6337 6338 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 6339 // promotion for UADDO/USUBO. 6340 Results.push_back(expandAddSubSat(N, DAG)); 6341 return; 6342 } 6343 case ISD::BITCAST: { 6344 EVT VT = N->getValueType(0); 6345 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 6346 SDValue Op0 = N->getOperand(0); 6347 EVT Op0VT = Op0.getValueType(); 6348 MVT XLenVT = Subtarget.getXLenVT(); 6349 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 6350 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 6351 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 6352 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 6353 Subtarget.hasStdExtF()) { 6354 SDValue FPConv = 6355 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 6356 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 6357 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 6358 isTypeLegal(Op0VT)) { 6359 // Custom-legalize bitcasts from fixed-length vector types to illegal 6360 // scalar types in order to improve codegen. Bitcast the vector to a 6361 // one-element vector type whose element type is the same as the result 6362 // type, and extract the first element. 6363 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 6364 if (isTypeLegal(BVT)) { 6365 SDValue BVec = DAG.getBitcast(BVT, Op0); 6366 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 6367 DAG.getConstant(0, DL, XLenVT))); 6368 } 6369 } 6370 break; 6371 } 6372 case RISCVISD::GREV: 6373 case RISCVISD::GORC: { 6374 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6375 "Unexpected custom legalisation"); 6376 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6377 // This is similar to customLegalizeToWOp, except that we pass the second 6378 // operand (a TargetConstant) straight through: it is already of type 6379 // XLenVT. 6380 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6381 SDValue NewOp0 = 6382 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6383 SDValue NewOp1 = 6384 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6385 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6386 // ReplaceNodeResults requires we maintain the same type for the return 6387 // value. 6388 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6389 break; 6390 } 6391 case RISCVISD::SHFL: { 6392 // There is no SHFLIW instruction, but we can just promote the operation. 6393 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6394 "Unexpected custom legalisation"); 6395 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6396 SDValue NewOp0 = 6397 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6398 SDValue NewOp1 = 6399 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6400 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 6401 // ReplaceNodeResults requires we maintain the same type for the return 6402 // value. 6403 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6404 break; 6405 } 6406 case ISD::BSWAP: 6407 case ISD::BITREVERSE: { 6408 MVT VT = N->getSimpleValueType(0); 6409 MVT XLenVT = Subtarget.getXLenVT(); 6410 assert((VT == MVT::i8 || VT == MVT::i16 || 6411 (VT == MVT::i32 && Subtarget.is64Bit())) && 6412 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 6413 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 6414 unsigned Imm = VT.getSizeInBits() - 1; 6415 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 6416 if (N->getOpcode() == ISD::BSWAP) 6417 Imm &= ~0x7U; 6418 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 6419 SDValue GREVI = 6420 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 6421 // ReplaceNodeResults requires we maintain the same type for the return 6422 // value. 6423 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 6424 break; 6425 } 6426 case ISD::FSHL: 6427 case ISD::FSHR: { 6428 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6429 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 6430 SDValue NewOp0 = 6431 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6432 SDValue NewOp1 = 6433 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6434 SDValue NewShAmt = 6435 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6436 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 6437 // Mask the shift amount to 5 bits to prevent accidentally setting bit 5. 6438 NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt, 6439 DAG.getConstant(0x1f, DL, MVT::i64)); 6440 // fshl and fshr concatenate their operands in the same order. fsrw and fslw 6441 // instruction use different orders. fshl will return its first operand for 6442 // shift of zero, fshr will return its second operand. fsl and fsr both 6443 // return rs1 so the ISD nodes need to have different operand orders. 6444 // Shift amount is in rs2. 6445 unsigned Opc = RISCVISD::FSLW; 6446 if (N->getOpcode() == ISD::FSHR) { 6447 std::swap(NewOp0, NewOp1); 6448 Opc = RISCVISD::FSRW; 6449 } 6450 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt); 6451 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 6452 break; 6453 } 6454 case ISD::EXTRACT_VECTOR_ELT: { 6455 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 6456 // type is illegal (currently only vXi64 RV32). 6457 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 6458 // transferred to the destination register. We issue two of these from the 6459 // upper- and lower- halves of the SEW-bit vector element, slid down to the 6460 // first element. 6461 SDValue Vec = N->getOperand(0); 6462 SDValue Idx = N->getOperand(1); 6463 6464 // The vector type hasn't been legalized yet so we can't issue target 6465 // specific nodes if it needs legalization. 6466 // FIXME: We would manually legalize if it's important. 6467 if (!isTypeLegal(Vec.getValueType())) 6468 return; 6469 6470 MVT VecVT = Vec.getSimpleValueType(); 6471 6472 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 6473 VecVT.getVectorElementType() == MVT::i64 && 6474 "Unexpected EXTRACT_VECTOR_ELT legalization"); 6475 6476 // If this is a fixed vector, we need to convert it to a scalable vector. 6477 MVT ContainerVT = VecVT; 6478 if (VecVT.isFixedLengthVector()) { 6479 ContainerVT = getContainerForFixedLengthVector(VecVT); 6480 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 6481 } 6482 6483 MVT XLenVT = Subtarget.getXLenVT(); 6484 6485 // Use a VL of 1 to avoid processing more elements than we need. 6486 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6487 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6488 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6489 6490 // Unless the index is known to be 0, we must slide the vector down to get 6491 // the desired element into index 0. 6492 if (!isNullConstant(Idx)) { 6493 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 6494 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 6495 } 6496 6497 // Extract the lower XLEN bits of the correct vector element. 6498 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6499 6500 // To extract the upper XLEN bits of the vector element, shift the first 6501 // element right by 32 bits and re-extract the lower XLEN bits. 6502 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6503 DAG.getConstant(32, DL, XLenVT), VL); 6504 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 6505 ThirtyTwoV, Mask, VL); 6506 6507 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6508 6509 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6510 break; 6511 } 6512 case ISD::INTRINSIC_WO_CHAIN: { 6513 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 6514 switch (IntNo) { 6515 default: 6516 llvm_unreachable( 6517 "Don't know how to custom type legalize this intrinsic!"); 6518 case Intrinsic::riscv_grev: 6519 case Intrinsic::riscv_gorc: 6520 case Intrinsic::riscv_bcompress: 6521 case Intrinsic::riscv_bdecompress: 6522 case Intrinsic::riscv_bfp: { 6523 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6524 "Unexpected custom legalisation"); 6525 Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo)); 6526 break; 6527 } 6528 case Intrinsic::riscv_fsl: 6529 case Intrinsic::riscv_fsr: { 6530 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6531 "Unexpected custom legalisation"); 6532 SDValue NewOp1 = 6533 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6534 SDValue NewOp2 = 6535 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6536 SDValue NewOp3 = 6537 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3)); 6538 unsigned Opc = getRISCVWOpcodeByIntr(IntNo); 6539 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3); 6540 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6541 break; 6542 } 6543 case Intrinsic::riscv_orc_b: { 6544 // Lower to the GORCI encoding for orc.b with the operand extended. 6545 SDValue NewOp = 6546 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6547 // If Zbp is enabled, use GORCIW which will sign extend the result. 6548 unsigned Opc = 6549 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 6550 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 6551 DAG.getConstant(7, DL, MVT::i64)); 6552 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6553 return; 6554 } 6555 case Intrinsic::riscv_shfl: 6556 case Intrinsic::riscv_unshfl: { 6557 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6558 "Unexpected custom legalisation"); 6559 SDValue NewOp1 = 6560 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6561 SDValue NewOp2 = 6562 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6563 unsigned Opc = 6564 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 6565 if (isa<ConstantSDNode>(N->getOperand(2))) { 6566 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 6567 DAG.getConstant(0xf, DL, MVT::i64)); 6568 Opc = 6569 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 6570 } 6571 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6572 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6573 break; 6574 } 6575 case Intrinsic::riscv_vmv_x_s: { 6576 EVT VT = N->getValueType(0); 6577 MVT XLenVT = Subtarget.getXLenVT(); 6578 if (VT.bitsLT(XLenVT)) { 6579 // Simple case just extract using vmv.x.s and truncate. 6580 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 6581 Subtarget.getXLenVT(), N->getOperand(1)); 6582 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 6583 return; 6584 } 6585 6586 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 6587 "Unexpected custom legalization"); 6588 6589 // We need to do the move in two steps. 6590 SDValue Vec = N->getOperand(1); 6591 MVT VecVT = Vec.getSimpleValueType(); 6592 6593 // First extract the lower XLEN bits of the element. 6594 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6595 6596 // To extract the upper XLEN bits of the vector element, shift the first 6597 // element right by 32 bits and re-extract the lower XLEN bits. 6598 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6599 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 6600 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6601 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 6602 DAG.getConstant(32, DL, XLenVT), VL); 6603 SDValue LShr32 = 6604 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 6605 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6606 6607 Results.push_back( 6608 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6609 break; 6610 } 6611 } 6612 break; 6613 } 6614 case ISD::VECREDUCE_ADD: 6615 case ISD::VECREDUCE_AND: 6616 case ISD::VECREDUCE_OR: 6617 case ISD::VECREDUCE_XOR: 6618 case ISD::VECREDUCE_SMAX: 6619 case ISD::VECREDUCE_UMAX: 6620 case ISD::VECREDUCE_SMIN: 6621 case ISD::VECREDUCE_UMIN: 6622 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 6623 Results.push_back(V); 6624 break; 6625 case ISD::VP_REDUCE_ADD: 6626 case ISD::VP_REDUCE_AND: 6627 case ISD::VP_REDUCE_OR: 6628 case ISD::VP_REDUCE_XOR: 6629 case ISD::VP_REDUCE_SMAX: 6630 case ISD::VP_REDUCE_UMAX: 6631 case ISD::VP_REDUCE_SMIN: 6632 case ISD::VP_REDUCE_UMIN: 6633 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 6634 Results.push_back(V); 6635 break; 6636 case ISD::FLT_ROUNDS_: { 6637 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 6638 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 6639 Results.push_back(Res.getValue(0)); 6640 Results.push_back(Res.getValue(1)); 6641 break; 6642 } 6643 } 6644 } 6645 6646 // A structure to hold one of the bit-manipulation patterns below. Together, a 6647 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 6648 // (or (and (shl x, 1), 0xAAAAAAAA), 6649 // (and (srl x, 1), 0x55555555)) 6650 struct RISCVBitmanipPat { 6651 SDValue Op; 6652 unsigned ShAmt; 6653 bool IsSHL; 6654 6655 bool formsPairWith(const RISCVBitmanipPat &Other) const { 6656 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 6657 } 6658 }; 6659 6660 // Matches patterns of the form 6661 // (and (shl x, C2), (C1 << C2)) 6662 // (and (srl x, C2), C1) 6663 // (shl (and x, C1), C2) 6664 // (srl (and x, (C1 << C2)), C2) 6665 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 6666 // The expected masks for each shift amount are specified in BitmanipMasks where 6667 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 6668 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 6669 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 6670 // XLen is 64. 6671 static Optional<RISCVBitmanipPat> 6672 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 6673 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 6674 "Unexpected number of masks"); 6675 Optional<uint64_t> Mask; 6676 // Optionally consume a mask around the shift operation. 6677 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 6678 Mask = Op.getConstantOperandVal(1); 6679 Op = Op.getOperand(0); 6680 } 6681 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 6682 return None; 6683 bool IsSHL = Op.getOpcode() == ISD::SHL; 6684 6685 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6686 return None; 6687 uint64_t ShAmt = Op.getConstantOperandVal(1); 6688 6689 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6690 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 6691 return None; 6692 // If we don't have enough masks for 64 bit, then we must be trying to 6693 // match SHFL so we're only allowed to shift 1/4 of the width. 6694 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 6695 return None; 6696 6697 SDValue Src = Op.getOperand(0); 6698 6699 // The expected mask is shifted left when the AND is found around SHL 6700 // patterns. 6701 // ((x >> 1) & 0x55555555) 6702 // ((x << 1) & 0xAAAAAAAA) 6703 bool SHLExpMask = IsSHL; 6704 6705 if (!Mask) { 6706 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 6707 // the mask is all ones: consume that now. 6708 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 6709 Mask = Src.getConstantOperandVal(1); 6710 Src = Src.getOperand(0); 6711 // The expected mask is now in fact shifted left for SRL, so reverse the 6712 // decision. 6713 // ((x & 0xAAAAAAAA) >> 1) 6714 // ((x & 0x55555555) << 1) 6715 SHLExpMask = !SHLExpMask; 6716 } else { 6717 // Use a default shifted mask of all-ones if there's no AND, truncated 6718 // down to the expected width. This simplifies the logic later on. 6719 Mask = maskTrailingOnes<uint64_t>(Width); 6720 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 6721 } 6722 } 6723 6724 unsigned MaskIdx = Log2_32(ShAmt); 6725 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6726 6727 if (SHLExpMask) 6728 ExpMask <<= ShAmt; 6729 6730 if (Mask != ExpMask) 6731 return None; 6732 6733 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 6734 } 6735 6736 // Matches any of the following bit-manipulation patterns: 6737 // (and (shl x, 1), (0x55555555 << 1)) 6738 // (and (srl x, 1), 0x55555555) 6739 // (shl (and x, 0x55555555), 1) 6740 // (srl (and x, (0x55555555 << 1)), 1) 6741 // where the shift amount and mask may vary thus: 6742 // [1] = 0x55555555 / 0xAAAAAAAA 6743 // [2] = 0x33333333 / 0xCCCCCCCC 6744 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 6745 // [8] = 0x00FF00FF / 0xFF00FF00 6746 // [16] = 0x0000FFFF / 0xFFFFFFFF 6747 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 6748 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 6749 // These are the unshifted masks which we use to match bit-manipulation 6750 // patterns. They may be shifted left in certain circumstances. 6751 static const uint64_t BitmanipMasks[] = { 6752 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 6753 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 6754 6755 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6756 } 6757 6758 // Match the following pattern as a GREVI(W) operation 6759 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 6760 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 6761 const RISCVSubtarget &Subtarget) { 6762 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6763 EVT VT = Op.getValueType(); 6764 6765 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6766 auto LHS = matchGREVIPat(Op.getOperand(0)); 6767 auto RHS = matchGREVIPat(Op.getOperand(1)); 6768 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 6769 SDLoc DL(Op); 6770 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 6771 DAG.getConstant(LHS->ShAmt, DL, VT)); 6772 } 6773 } 6774 return SDValue(); 6775 } 6776 6777 // Matches any the following pattern as a GORCI(W) operation 6778 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 6779 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 6780 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 6781 // Note that with the variant of 3., 6782 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 6783 // the inner pattern will first be matched as GREVI and then the outer 6784 // pattern will be matched to GORC via the first rule above. 6785 // 4. (or (rotl/rotr x, bitwidth/2), x) 6786 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 6787 const RISCVSubtarget &Subtarget) { 6788 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6789 EVT VT = Op.getValueType(); 6790 6791 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6792 SDLoc DL(Op); 6793 SDValue Op0 = Op.getOperand(0); 6794 SDValue Op1 = Op.getOperand(1); 6795 6796 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 6797 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 6798 isa<ConstantSDNode>(Reverse.getOperand(1)) && 6799 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 6800 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 6801 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 6802 if ((Reverse.getOpcode() == ISD::ROTL || 6803 Reverse.getOpcode() == ISD::ROTR) && 6804 Reverse.getOperand(0) == X && 6805 isa<ConstantSDNode>(Reverse.getOperand(1))) { 6806 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 6807 if (RotAmt == (VT.getSizeInBits() / 2)) 6808 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 6809 DAG.getConstant(RotAmt, DL, VT)); 6810 } 6811 return SDValue(); 6812 }; 6813 6814 // Check for either commutable permutation of (or (GREVI x, shamt), x) 6815 if (SDValue V = MatchOROfReverse(Op0, Op1)) 6816 return V; 6817 if (SDValue V = MatchOROfReverse(Op1, Op0)) 6818 return V; 6819 6820 // OR is commutable so canonicalize its OR operand to the left 6821 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 6822 std::swap(Op0, Op1); 6823 if (Op0.getOpcode() != ISD::OR) 6824 return SDValue(); 6825 SDValue OrOp0 = Op0.getOperand(0); 6826 SDValue OrOp1 = Op0.getOperand(1); 6827 auto LHS = matchGREVIPat(OrOp0); 6828 // OR is commutable so swap the operands and try again: x might have been 6829 // on the left 6830 if (!LHS) { 6831 std::swap(OrOp0, OrOp1); 6832 LHS = matchGREVIPat(OrOp0); 6833 } 6834 auto RHS = matchGREVIPat(Op1); 6835 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 6836 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 6837 DAG.getConstant(LHS->ShAmt, DL, VT)); 6838 } 6839 } 6840 return SDValue(); 6841 } 6842 6843 // Matches any of the following bit-manipulation patterns: 6844 // (and (shl x, 1), (0x22222222 << 1)) 6845 // (and (srl x, 1), 0x22222222) 6846 // (shl (and x, 0x22222222), 1) 6847 // (srl (and x, (0x22222222 << 1)), 1) 6848 // where the shift amount and mask may vary thus: 6849 // [1] = 0x22222222 / 0x44444444 6850 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 6851 // [4] = 0x00F000F0 / 0x0F000F00 6852 // [8] = 0x0000FF00 / 0x00FF0000 6853 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 6854 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 6855 // These are the unshifted masks which we use to match bit-manipulation 6856 // patterns. They may be shifted left in certain circumstances. 6857 static const uint64_t BitmanipMasks[] = { 6858 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 6859 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 6860 6861 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6862 } 6863 6864 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 6865 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 6866 const RISCVSubtarget &Subtarget) { 6867 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6868 EVT VT = Op.getValueType(); 6869 6870 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 6871 return SDValue(); 6872 6873 SDValue Op0 = Op.getOperand(0); 6874 SDValue Op1 = Op.getOperand(1); 6875 6876 // Or is commutable so canonicalize the second OR to the LHS. 6877 if (Op0.getOpcode() != ISD::OR) 6878 std::swap(Op0, Op1); 6879 if (Op0.getOpcode() != ISD::OR) 6880 return SDValue(); 6881 6882 // We found an inner OR, so our operands are the operands of the inner OR 6883 // and the other operand of the outer OR. 6884 SDValue A = Op0.getOperand(0); 6885 SDValue B = Op0.getOperand(1); 6886 SDValue C = Op1; 6887 6888 auto Match1 = matchSHFLPat(A); 6889 auto Match2 = matchSHFLPat(B); 6890 6891 // If neither matched, we failed. 6892 if (!Match1 && !Match2) 6893 return SDValue(); 6894 6895 // We had at least one match. if one failed, try the remaining C operand. 6896 if (!Match1) { 6897 std::swap(A, C); 6898 Match1 = matchSHFLPat(A); 6899 if (!Match1) 6900 return SDValue(); 6901 } else if (!Match2) { 6902 std::swap(B, C); 6903 Match2 = matchSHFLPat(B); 6904 if (!Match2) 6905 return SDValue(); 6906 } 6907 assert(Match1 && Match2); 6908 6909 // Make sure our matches pair up. 6910 if (!Match1->formsPairWith(*Match2)) 6911 return SDValue(); 6912 6913 // All the remains is to make sure C is an AND with the same input, that masks 6914 // out the bits that are being shuffled. 6915 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 6916 C.getOperand(0) != Match1->Op) 6917 return SDValue(); 6918 6919 uint64_t Mask = C.getConstantOperandVal(1); 6920 6921 static const uint64_t BitmanipMasks[] = { 6922 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 6923 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 6924 }; 6925 6926 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6927 unsigned MaskIdx = Log2_32(Match1->ShAmt); 6928 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6929 6930 if (Mask != ExpMask) 6931 return SDValue(); 6932 6933 SDLoc DL(Op); 6934 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 6935 DAG.getConstant(Match1->ShAmt, DL, VT)); 6936 } 6937 6938 // Optimize (add (shl x, c0), (shl y, c1)) -> 6939 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 6940 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 6941 const RISCVSubtarget &Subtarget) { 6942 // Perform this optimization only in the zba extension. 6943 if (!Subtarget.hasStdExtZba()) 6944 return SDValue(); 6945 6946 // Skip for vector types and larger types. 6947 EVT VT = N->getValueType(0); 6948 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6949 return SDValue(); 6950 6951 // The two operand nodes must be SHL and have no other use. 6952 SDValue N0 = N->getOperand(0); 6953 SDValue N1 = N->getOperand(1); 6954 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 6955 !N0->hasOneUse() || !N1->hasOneUse()) 6956 return SDValue(); 6957 6958 // Check c0 and c1. 6959 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6960 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 6961 if (!N0C || !N1C) 6962 return SDValue(); 6963 int64_t C0 = N0C->getSExtValue(); 6964 int64_t C1 = N1C->getSExtValue(); 6965 if (C0 <= 0 || C1 <= 0) 6966 return SDValue(); 6967 6968 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 6969 int64_t Bits = std::min(C0, C1); 6970 int64_t Diff = std::abs(C0 - C1); 6971 if (Diff != 1 && Diff != 2 && Diff != 3) 6972 return SDValue(); 6973 6974 // Build nodes. 6975 SDLoc DL(N); 6976 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 6977 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 6978 SDValue NA0 = 6979 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 6980 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 6981 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 6982 } 6983 6984 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 6985 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 6986 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 6987 // not undo itself, but they are redundant. 6988 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 6989 SDValue Src = N->getOperand(0); 6990 6991 if (Src.getOpcode() != N->getOpcode()) 6992 return SDValue(); 6993 6994 if (!isa<ConstantSDNode>(N->getOperand(1)) || 6995 !isa<ConstantSDNode>(Src.getOperand(1))) 6996 return SDValue(); 6997 6998 unsigned ShAmt1 = N->getConstantOperandVal(1); 6999 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7000 Src = Src.getOperand(0); 7001 7002 unsigned CombinedShAmt; 7003 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 7004 CombinedShAmt = ShAmt1 | ShAmt2; 7005 else 7006 CombinedShAmt = ShAmt1 ^ ShAmt2; 7007 7008 if (CombinedShAmt == 0) 7009 return Src; 7010 7011 SDLoc DL(N); 7012 return DAG.getNode( 7013 N->getOpcode(), DL, N->getValueType(0), Src, 7014 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7015 } 7016 7017 // Combine a constant select operand into its use: 7018 // 7019 // (and (select cond, -1, c), x) 7020 // -> (select cond, x, (and x, c)) [AllOnes=1] 7021 // (or (select cond, 0, c), x) 7022 // -> (select cond, x, (or x, c)) [AllOnes=0] 7023 // (xor (select cond, 0, c), x) 7024 // -> (select cond, x, (xor x, c)) [AllOnes=0] 7025 // (add (select cond, 0, c), x) 7026 // -> (select cond, x, (add x, c)) [AllOnes=0] 7027 // (sub x, (select cond, 0, c)) 7028 // -> (select cond, x, (sub x, c)) [AllOnes=0] 7029 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 7030 SelectionDAG &DAG, bool AllOnes) { 7031 EVT VT = N->getValueType(0); 7032 7033 // Skip vectors. 7034 if (VT.isVector()) 7035 return SDValue(); 7036 7037 if ((Slct.getOpcode() != ISD::SELECT && 7038 Slct.getOpcode() != RISCVISD::SELECT_CC) || 7039 !Slct.hasOneUse()) 7040 return SDValue(); 7041 7042 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 7043 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 7044 }; 7045 7046 bool SwapSelectOps; 7047 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 7048 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 7049 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 7050 SDValue NonConstantVal; 7051 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 7052 SwapSelectOps = false; 7053 NonConstantVal = FalseVal; 7054 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 7055 SwapSelectOps = true; 7056 NonConstantVal = TrueVal; 7057 } else 7058 return SDValue(); 7059 7060 // Slct is now know to be the desired identity constant when CC is true. 7061 TrueVal = OtherOp; 7062 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 7063 // Unless SwapSelectOps says the condition should be false. 7064 if (SwapSelectOps) 7065 std::swap(TrueVal, FalseVal); 7066 7067 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 7068 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 7069 {Slct.getOperand(0), Slct.getOperand(1), 7070 Slct.getOperand(2), TrueVal, FalseVal}); 7071 7072 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 7073 {Slct.getOperand(0), TrueVal, FalseVal}); 7074 } 7075 7076 // Attempt combineSelectAndUse on each operand of a commutative operator N. 7077 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 7078 bool AllOnes) { 7079 SDValue N0 = N->getOperand(0); 7080 SDValue N1 = N->getOperand(1); 7081 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 7082 return Result; 7083 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 7084 return Result; 7085 return SDValue(); 7086 } 7087 7088 // Transform (add (mul x, c0), c1) -> 7089 // (add (mul (add x, c1/c0), c0), c1%c0). 7090 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 7091 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 7092 // to an infinite loop in DAGCombine if transformed. 7093 // Or transform (add (mul x, c0), c1) -> 7094 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 7095 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 7096 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 7097 // lead to an infinite loop in DAGCombine if transformed. 7098 // Or transform (add (mul x, c0), c1) -> 7099 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 7100 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 7101 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 7102 // lead to an infinite loop in DAGCombine if transformed. 7103 // Or transform (add (mul x, c0), c1) -> 7104 // (mul (add x, c1/c0), c0). 7105 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 7106 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 7107 const RISCVSubtarget &Subtarget) { 7108 // Skip for vector types and larger types. 7109 EVT VT = N->getValueType(0); 7110 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7111 return SDValue(); 7112 // The first operand node must be a MUL and has no other use. 7113 SDValue N0 = N->getOperand(0); 7114 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 7115 return SDValue(); 7116 // Check if c0 and c1 match above conditions. 7117 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7118 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7119 if (!N0C || !N1C) 7120 return SDValue(); 7121 int64_t C0 = N0C->getSExtValue(); 7122 int64_t C1 = N1C->getSExtValue(); 7123 int64_t CA, CB; 7124 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 7125 return SDValue(); 7126 // Search for proper CA (non-zero) and CB that both are simm12. 7127 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 7128 !isInt<12>(C0 * (C1 / C0))) { 7129 CA = C1 / C0; 7130 CB = C1 % C0; 7131 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 7132 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 7133 CA = C1 / C0 + 1; 7134 CB = C1 % C0 - C0; 7135 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 7136 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 7137 CA = C1 / C0 - 1; 7138 CB = C1 % C0 + C0; 7139 } else 7140 return SDValue(); 7141 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 7142 SDLoc DL(N); 7143 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 7144 DAG.getConstant(CA, DL, VT)); 7145 SDValue New1 = 7146 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 7147 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 7148 } 7149 7150 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 7151 const RISCVSubtarget &Subtarget) { 7152 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 7153 return V; 7154 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 7155 return V; 7156 // fold (add (select lhs, rhs, cc, 0, y), x) -> 7157 // (select lhs, rhs, cc, x, (add x, y)) 7158 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7159 } 7160 7161 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 7162 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 7163 // (select lhs, rhs, cc, x, (sub x, y)) 7164 SDValue N0 = N->getOperand(0); 7165 SDValue N1 = N->getOperand(1); 7166 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 7167 } 7168 7169 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 7170 // fold (and (select lhs, rhs, cc, -1, y), x) -> 7171 // (select lhs, rhs, cc, x, (and x, y)) 7172 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 7173 } 7174 7175 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 7176 const RISCVSubtarget &Subtarget) { 7177 if (Subtarget.hasStdExtZbp()) { 7178 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 7179 return GREV; 7180 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 7181 return GORC; 7182 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 7183 return SHFL; 7184 } 7185 7186 // fold (or (select cond, 0, y), x) -> 7187 // (select cond, x, (or x, y)) 7188 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7189 } 7190 7191 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 7192 // fold (xor (select cond, 0, y), x) -> 7193 // (select cond, x, (xor x, y)) 7194 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7195 } 7196 7197 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 7198 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 7199 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 7200 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 7201 // ADDW/SUBW/MULW. 7202 static SDValue performANY_EXTENDCombine(SDNode *N, 7203 TargetLowering::DAGCombinerInfo &DCI, 7204 const RISCVSubtarget &Subtarget) { 7205 if (!Subtarget.is64Bit()) 7206 return SDValue(); 7207 7208 SelectionDAG &DAG = DCI.DAG; 7209 7210 SDValue Src = N->getOperand(0); 7211 EVT VT = N->getValueType(0); 7212 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 7213 return SDValue(); 7214 7215 // The opcode must be one that can implicitly sign_extend. 7216 // FIXME: Additional opcodes. 7217 switch (Src.getOpcode()) { 7218 default: 7219 return SDValue(); 7220 case ISD::MUL: 7221 if (!Subtarget.hasStdExtM()) 7222 return SDValue(); 7223 LLVM_FALLTHROUGH; 7224 case ISD::ADD: 7225 case ISD::SUB: 7226 break; 7227 } 7228 7229 // Only handle cases where the result is used by a CopyToReg. That likely 7230 // means the value is a liveout of the basic block. This helps prevent 7231 // infinite combine loops like PR51206. 7232 if (none_of(N->uses(), 7233 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 7234 return SDValue(); 7235 7236 SmallVector<SDNode *, 4> SetCCs; 7237 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 7238 UE = Src.getNode()->use_end(); 7239 UI != UE; ++UI) { 7240 SDNode *User = *UI; 7241 if (User == N) 7242 continue; 7243 if (UI.getUse().getResNo() != Src.getResNo()) 7244 continue; 7245 // All i32 setccs are legalized by sign extending operands. 7246 if (User->getOpcode() == ISD::SETCC) { 7247 SetCCs.push_back(User); 7248 continue; 7249 } 7250 // We don't know if we can extend this user. 7251 break; 7252 } 7253 7254 // If we don't have any SetCCs, this isn't worthwhile. 7255 if (SetCCs.empty()) 7256 return SDValue(); 7257 7258 SDLoc DL(N); 7259 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 7260 DCI.CombineTo(N, SExt); 7261 7262 // Promote all the setccs. 7263 for (SDNode *SetCC : SetCCs) { 7264 SmallVector<SDValue, 4> Ops; 7265 7266 for (unsigned j = 0; j != 2; ++j) { 7267 SDValue SOp = SetCC->getOperand(j); 7268 if (SOp == Src) 7269 Ops.push_back(SExt); 7270 else 7271 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 7272 } 7273 7274 Ops.push_back(SetCC->getOperand(2)); 7275 DCI.CombineTo(SetCC, 7276 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 7277 } 7278 return SDValue(N, 0); 7279 } 7280 7281 // Try to form VWMUL or VWMULU. 7282 // FIXME: Support VWMULSU. 7283 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG, 7284 bool Commute) { 7285 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 7286 SDValue Op0 = N->getOperand(0); 7287 SDValue Op1 = N->getOperand(1); 7288 if (Commute) 7289 std::swap(Op0, Op1); 7290 7291 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 7292 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 7293 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 7294 return SDValue(); 7295 7296 SDValue Mask = N->getOperand(2); 7297 SDValue VL = N->getOperand(3); 7298 7299 // Make sure the mask and VL match. 7300 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 7301 return SDValue(); 7302 7303 MVT VT = N->getSimpleValueType(0); 7304 7305 // Determine the narrow size for a widening multiply. 7306 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 7307 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 7308 VT.getVectorElementCount()); 7309 7310 SDLoc DL(N); 7311 7312 // See if the other operand is the same opcode. 7313 if (Op0.getOpcode() == Op1.getOpcode()) { 7314 if (!Op1.hasOneUse()) 7315 return SDValue(); 7316 7317 // Make sure the mask and VL match. 7318 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 7319 return SDValue(); 7320 7321 Op1 = Op1.getOperand(0); 7322 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 7323 // The operand is a splat of a scalar. 7324 7325 // The VL must be the same. 7326 if (Op1.getOperand(1) != VL) 7327 return SDValue(); 7328 7329 // Get the scalar value. 7330 Op1 = Op1.getOperand(0); 7331 7332 // See if have enough sign bits or zero bits in the scalar to use a 7333 // widening multiply by splatting to smaller element size. 7334 unsigned EltBits = VT.getScalarSizeInBits(); 7335 unsigned ScalarBits = Op1.getValueSizeInBits(); 7336 // Make sure we're getting all element bits from the scalar register. 7337 // FIXME: Support implicit sign extension of vmv.v.x? 7338 if (ScalarBits < EltBits) 7339 return SDValue(); 7340 7341 if (IsSignExt) { 7342 if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize)) 7343 return SDValue(); 7344 } else { 7345 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 7346 if (!DAG.MaskedValueIsZero(Op1, Mask)) 7347 return SDValue(); 7348 } 7349 7350 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL); 7351 } else 7352 return SDValue(); 7353 7354 Op0 = Op0.getOperand(0); 7355 7356 // Re-introduce narrower extends if needed. 7357 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 7358 if (Op0.getValueType() != NarrowVT) 7359 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 7360 if (Op1.getValueType() != NarrowVT) 7361 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 7362 7363 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 7364 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 7365 } 7366 7367 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) { 7368 switch (Op.getOpcode()) { 7369 case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE; 7370 case ISD::FTRUNC: return RISCVFPRndMode::RTZ; 7371 case ISD::FFLOOR: return RISCVFPRndMode::RDN; 7372 case ISD::FCEIL: return RISCVFPRndMode::RUP; 7373 case ISD::FROUND: return RISCVFPRndMode::RMM; 7374 } 7375 7376 return RISCVFPRndMode::Invalid; 7377 } 7378 7379 // Fold 7380 // (fp_to_int (froundeven X)) -> fcvt X, rne 7381 // (fp_to_int (ftrunc X)) -> fcvt X, rtz 7382 // (fp_to_int (ffloor X)) -> fcvt X, rdn 7383 // (fp_to_int (fceil X)) -> fcvt X, rup 7384 // (fp_to_int (fround X)) -> fcvt X, rmm 7385 static SDValue performFP_TO_INTCombine(SDNode *N, 7386 TargetLowering::DAGCombinerInfo &DCI, 7387 const RISCVSubtarget &Subtarget) { 7388 SelectionDAG &DAG = DCI.DAG; 7389 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7390 MVT XLenVT = Subtarget.getXLenVT(); 7391 7392 // Only handle XLen or i32 types. Other types narrower than XLen will 7393 // eventually be legalized to XLenVT. 7394 EVT VT = N->getValueType(0); 7395 if (VT != MVT::i32 && VT != XLenVT) 7396 return SDValue(); 7397 7398 SDValue Src = N->getOperand(0); 7399 7400 // Ensure the FP type is also legal. 7401 if (!TLI.isTypeLegal(Src.getValueType())) 7402 return SDValue(); 7403 7404 // Don't do this for f16 with Zfhmin and not Zfh. 7405 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 7406 return SDValue(); 7407 7408 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 7409 if (FRM == RISCVFPRndMode::Invalid) 7410 return SDValue(); 7411 7412 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; 7413 7414 unsigned Opc; 7415 if (VT == XLenVT) 7416 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 7417 else 7418 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 7419 7420 SDLoc DL(N); 7421 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0), 7422 DAG.getTargetConstant(FRM, DL, XLenVT)); 7423 return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt); 7424 } 7425 7426 // Fold 7427 // (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne)) 7428 // (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz)) 7429 // (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn)) 7430 // (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup)) 7431 // (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm)) 7432 static SDValue performFP_TO_INT_SATCombine(SDNode *N, 7433 TargetLowering::DAGCombinerInfo &DCI, 7434 const RISCVSubtarget &Subtarget) { 7435 SelectionDAG &DAG = DCI.DAG; 7436 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7437 MVT XLenVT = Subtarget.getXLenVT(); 7438 7439 // Only handle XLen types. Other types narrower than XLen will eventually be 7440 // legalized to XLenVT. 7441 EVT DstVT = N->getValueType(0); 7442 if (DstVT != XLenVT) 7443 return SDValue(); 7444 7445 SDValue Src = N->getOperand(0); 7446 7447 // Ensure the FP type is also legal. 7448 if (!TLI.isTypeLegal(Src.getValueType())) 7449 return SDValue(); 7450 7451 // Don't do this for f16 with Zfhmin and not Zfh. 7452 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 7453 return SDValue(); 7454 7455 EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 7456 7457 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 7458 if (FRM == RISCVFPRndMode::Invalid) 7459 return SDValue(); 7460 7461 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT; 7462 7463 unsigned Opc; 7464 if (SatVT == DstVT) 7465 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 7466 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 7467 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 7468 else 7469 return SDValue(); 7470 // FIXME: Support other SatVTs by clamping before or after the conversion. 7471 7472 Src = Src.getOperand(0); 7473 7474 SDLoc DL(N); 7475 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src, 7476 DAG.getTargetConstant(FRM, DL, XLenVT)); 7477 7478 // RISCV FP-to-int conversions saturate to the destination register size, but 7479 // don't produce 0 for nan. 7480 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 7481 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 7482 } 7483 7484 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 7485 DAGCombinerInfo &DCI) const { 7486 SelectionDAG &DAG = DCI.DAG; 7487 7488 // Helper to call SimplifyDemandedBits on an operand of N where only some low 7489 // bits are demanded. N will be added to the Worklist if it was not deleted. 7490 // Caller should return SDValue(N, 0) if this returns true. 7491 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 7492 SDValue Op = N->getOperand(OpNo); 7493 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 7494 if (!SimplifyDemandedBits(Op, Mask, DCI)) 7495 return false; 7496 7497 if (N->getOpcode() != ISD::DELETED_NODE) 7498 DCI.AddToWorklist(N); 7499 return true; 7500 }; 7501 7502 switch (N->getOpcode()) { 7503 default: 7504 break; 7505 case RISCVISD::SplitF64: { 7506 SDValue Op0 = N->getOperand(0); 7507 // If the input to SplitF64 is just BuildPairF64 then the operation is 7508 // redundant. Instead, use BuildPairF64's operands directly. 7509 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 7510 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 7511 7512 SDLoc DL(N); 7513 7514 // It's cheaper to materialise two 32-bit integers than to load a double 7515 // from the constant pool and transfer it to integer registers through the 7516 // stack. 7517 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 7518 APInt V = C->getValueAPF().bitcastToAPInt(); 7519 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 7520 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 7521 return DCI.CombineTo(N, Lo, Hi); 7522 } 7523 7524 // This is a target-specific version of a DAGCombine performed in 7525 // DAGCombiner::visitBITCAST. It performs the equivalent of: 7526 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7527 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7528 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 7529 !Op0.getNode()->hasOneUse()) 7530 break; 7531 SDValue NewSplitF64 = 7532 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 7533 Op0.getOperand(0)); 7534 SDValue Lo = NewSplitF64.getValue(0); 7535 SDValue Hi = NewSplitF64.getValue(1); 7536 APInt SignBit = APInt::getSignMask(32); 7537 if (Op0.getOpcode() == ISD::FNEG) { 7538 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 7539 DAG.getConstant(SignBit, DL, MVT::i32)); 7540 return DCI.CombineTo(N, Lo, NewHi); 7541 } 7542 assert(Op0.getOpcode() == ISD::FABS); 7543 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 7544 DAG.getConstant(~SignBit, DL, MVT::i32)); 7545 return DCI.CombineTo(N, Lo, NewHi); 7546 } 7547 case RISCVISD::SLLW: 7548 case RISCVISD::SRAW: 7549 case RISCVISD::SRLW: 7550 case RISCVISD::ROLW: 7551 case RISCVISD::RORW: { 7552 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7553 if (SimplifyDemandedLowBitsHelper(0, 32) || 7554 SimplifyDemandedLowBitsHelper(1, 5)) 7555 return SDValue(N, 0); 7556 break; 7557 } 7558 case RISCVISD::CLZW: 7559 case RISCVISD::CTZW: { 7560 // Only the lower 32 bits of the first operand are read 7561 if (SimplifyDemandedLowBitsHelper(0, 32)) 7562 return SDValue(N, 0); 7563 break; 7564 } 7565 case RISCVISD::GREV: 7566 case RISCVISD::GORC: { 7567 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 7568 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7569 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7570 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 7571 return SDValue(N, 0); 7572 7573 return combineGREVI_GORCI(N, DAG); 7574 } 7575 case RISCVISD::GREVW: 7576 case RISCVISD::GORCW: { 7577 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7578 if (SimplifyDemandedLowBitsHelper(0, 32) || 7579 SimplifyDemandedLowBitsHelper(1, 5)) 7580 return SDValue(N, 0); 7581 7582 return combineGREVI_GORCI(N, DAG); 7583 } 7584 case RISCVISD::SHFL: 7585 case RISCVISD::UNSHFL: { 7586 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 7587 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7588 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7589 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 7590 return SDValue(N, 0); 7591 7592 break; 7593 } 7594 case RISCVISD::SHFLW: 7595 case RISCVISD::UNSHFLW: { 7596 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 7597 SDValue LHS = N->getOperand(0); 7598 SDValue RHS = N->getOperand(1); 7599 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 7600 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 7601 if (SimplifyDemandedLowBitsHelper(0, 32) || 7602 SimplifyDemandedLowBitsHelper(1, 4)) 7603 return SDValue(N, 0); 7604 7605 break; 7606 } 7607 case RISCVISD::BCOMPRESSW: 7608 case RISCVISD::BDECOMPRESSW: { 7609 // Only the lower 32 bits of LHS and RHS are read. 7610 if (SimplifyDemandedLowBitsHelper(0, 32) || 7611 SimplifyDemandedLowBitsHelper(1, 32)) 7612 return SDValue(N, 0); 7613 7614 break; 7615 } 7616 case RISCVISD::FMV_X_ANYEXTH: 7617 case RISCVISD::FMV_X_ANYEXTW_RV64: { 7618 SDLoc DL(N); 7619 SDValue Op0 = N->getOperand(0); 7620 MVT VT = N->getSimpleValueType(0); 7621 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 7622 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 7623 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 7624 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 7625 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 7626 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 7627 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 7628 assert(Op0.getOperand(0).getValueType() == VT && 7629 "Unexpected value type!"); 7630 return Op0.getOperand(0); 7631 } 7632 7633 // This is a target-specific version of a DAGCombine performed in 7634 // DAGCombiner::visitBITCAST. It performs the equivalent of: 7635 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7636 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7637 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 7638 !Op0.getNode()->hasOneUse()) 7639 break; 7640 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 7641 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 7642 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 7643 if (Op0.getOpcode() == ISD::FNEG) 7644 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 7645 DAG.getConstant(SignBit, DL, VT)); 7646 7647 assert(Op0.getOpcode() == ISD::FABS); 7648 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 7649 DAG.getConstant(~SignBit, DL, VT)); 7650 } 7651 case ISD::ADD: 7652 return performADDCombine(N, DAG, Subtarget); 7653 case ISD::SUB: 7654 return performSUBCombine(N, DAG); 7655 case ISD::AND: 7656 return performANDCombine(N, DAG); 7657 case ISD::OR: 7658 return performORCombine(N, DAG, Subtarget); 7659 case ISD::XOR: 7660 return performXORCombine(N, DAG); 7661 case ISD::ANY_EXTEND: 7662 return performANY_EXTENDCombine(N, DCI, Subtarget); 7663 case ISD::ZERO_EXTEND: 7664 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 7665 // type legalization. This is safe because fp_to_uint produces poison if 7666 // it overflows. 7667 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { 7668 SDValue Src = N->getOperand(0); 7669 if (Src.getOpcode() == ISD::FP_TO_UINT && 7670 isTypeLegal(Src.getOperand(0).getValueType())) 7671 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 7672 Src.getOperand(0)); 7673 if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && 7674 isTypeLegal(Src.getOperand(1).getValueType())) { 7675 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 7676 SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, 7677 Src.getOperand(0), Src.getOperand(1)); 7678 DCI.CombineTo(N, Res); 7679 DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); 7680 DCI.recursivelyDeleteUnusedNodes(Src.getNode()); 7681 return SDValue(N, 0); // Return N so it doesn't get rechecked. 7682 } 7683 } 7684 return SDValue(); 7685 case RISCVISD::SELECT_CC: { 7686 // Transform 7687 SDValue LHS = N->getOperand(0); 7688 SDValue RHS = N->getOperand(1); 7689 SDValue TrueV = N->getOperand(3); 7690 SDValue FalseV = N->getOperand(4); 7691 7692 // If the True and False values are the same, we don't need a select_cc. 7693 if (TrueV == FalseV) 7694 return TrueV; 7695 7696 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 7697 if (!ISD::isIntEqualitySetCC(CCVal)) 7698 break; 7699 7700 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 7701 // (select_cc X, Y, lt, trueV, falseV) 7702 // Sometimes the setcc is introduced after select_cc has been formed. 7703 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7704 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7705 // If we're looking for eq 0 instead of ne 0, we need to invert the 7706 // condition. 7707 bool Invert = CCVal == ISD::SETEQ; 7708 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7709 if (Invert) 7710 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7711 7712 SDLoc DL(N); 7713 RHS = LHS.getOperand(1); 7714 LHS = LHS.getOperand(0); 7715 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7716 7717 SDValue TargetCC = DAG.getCondCode(CCVal); 7718 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7719 {LHS, RHS, TargetCC, TrueV, FalseV}); 7720 } 7721 7722 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 7723 // (select_cc X, Y, eq/ne, trueV, falseV) 7724 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7725 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 7726 {LHS.getOperand(0), LHS.getOperand(1), 7727 N->getOperand(2), TrueV, FalseV}); 7728 // (select_cc X, 1, setne, trueV, falseV) -> 7729 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 7730 // This can occur when legalizing some floating point comparisons. 7731 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7732 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7733 SDLoc DL(N); 7734 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7735 SDValue TargetCC = DAG.getCondCode(CCVal); 7736 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7737 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7738 {LHS, RHS, TargetCC, TrueV, FalseV}); 7739 } 7740 7741 break; 7742 } 7743 case RISCVISD::BR_CC: { 7744 SDValue LHS = N->getOperand(1); 7745 SDValue RHS = N->getOperand(2); 7746 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 7747 if (!ISD::isIntEqualitySetCC(CCVal)) 7748 break; 7749 7750 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 7751 // (br_cc X, Y, lt, dest) 7752 // Sometimes the setcc is introduced after br_cc has been formed. 7753 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7754 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7755 // If we're looking for eq 0 instead of ne 0, we need to invert the 7756 // condition. 7757 bool Invert = CCVal == ISD::SETEQ; 7758 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7759 if (Invert) 7760 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7761 7762 SDLoc DL(N); 7763 RHS = LHS.getOperand(1); 7764 LHS = LHS.getOperand(0); 7765 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7766 7767 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7768 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 7769 N->getOperand(4)); 7770 } 7771 7772 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 7773 // (br_cc X, Y, eq/ne, trueV, falseV) 7774 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7775 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 7776 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 7777 N->getOperand(3), N->getOperand(4)); 7778 7779 // (br_cc X, 1, setne, br_cc) -> 7780 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 7781 // This can occur when legalizing some floating point comparisons. 7782 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7783 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7784 SDLoc DL(N); 7785 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7786 SDValue TargetCC = DAG.getCondCode(CCVal); 7787 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7788 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7789 N->getOperand(0), LHS, RHS, TargetCC, 7790 N->getOperand(4)); 7791 } 7792 break; 7793 } 7794 case ISD::FP_TO_SINT: 7795 case ISD::FP_TO_UINT: 7796 return performFP_TO_INTCombine(N, DCI, Subtarget); 7797 case ISD::FP_TO_SINT_SAT: 7798 case ISD::FP_TO_UINT_SAT: 7799 return performFP_TO_INT_SATCombine(N, DCI, Subtarget); 7800 case ISD::FCOPYSIGN: { 7801 EVT VT = N->getValueType(0); 7802 if (!VT.isVector()) 7803 break; 7804 // There is a form of VFSGNJ which injects the negated sign of its second 7805 // operand. Try and bubble any FNEG up after the extend/round to produce 7806 // this optimized pattern. Avoid modifying cases where FP_ROUND and 7807 // TRUNC=1. 7808 SDValue In2 = N->getOperand(1); 7809 // Avoid cases where the extend/round has multiple uses, as duplicating 7810 // those is typically more expensive than removing a fneg. 7811 if (!In2.hasOneUse()) 7812 break; 7813 if (In2.getOpcode() != ISD::FP_EXTEND && 7814 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 7815 break; 7816 In2 = In2.getOperand(0); 7817 if (In2.getOpcode() != ISD::FNEG) 7818 break; 7819 SDLoc DL(N); 7820 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 7821 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 7822 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 7823 } 7824 case ISD::MGATHER: 7825 case ISD::MSCATTER: 7826 case ISD::VP_GATHER: 7827 case ISD::VP_SCATTER: { 7828 if (!DCI.isBeforeLegalize()) 7829 break; 7830 SDValue Index, ScaleOp; 7831 bool IsIndexScaled = false; 7832 bool IsIndexSigned = false; 7833 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 7834 Index = VPGSN->getIndex(); 7835 ScaleOp = VPGSN->getScale(); 7836 IsIndexScaled = VPGSN->isIndexScaled(); 7837 IsIndexSigned = VPGSN->isIndexSigned(); 7838 } else { 7839 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 7840 Index = MGSN->getIndex(); 7841 ScaleOp = MGSN->getScale(); 7842 IsIndexScaled = MGSN->isIndexScaled(); 7843 IsIndexSigned = MGSN->isIndexSigned(); 7844 } 7845 EVT IndexVT = Index.getValueType(); 7846 MVT XLenVT = Subtarget.getXLenVT(); 7847 // RISCV indexed loads only support the "unsigned unscaled" addressing 7848 // mode, so anything else must be manually legalized. 7849 bool NeedsIdxLegalization = 7850 IsIndexScaled || 7851 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 7852 if (!NeedsIdxLegalization) 7853 break; 7854 7855 SDLoc DL(N); 7856 7857 // Any index legalization should first promote to XLenVT, so we don't lose 7858 // bits when scaling. This may create an illegal index type so we let 7859 // LLVM's legalization take care of the splitting. 7860 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 7861 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 7862 IndexVT = IndexVT.changeVectorElementType(XLenVT); 7863 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 7864 DL, IndexVT, Index); 7865 } 7866 7867 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 7868 if (IsIndexScaled && Scale != 1) { 7869 // Manually scale the indices by the element size. 7870 // TODO: Sanitize the scale operand here? 7871 // TODO: For VP nodes, should we use VP_SHL here? 7872 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 7873 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 7874 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 7875 } 7876 7877 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 7878 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 7879 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 7880 {VPGN->getChain(), VPGN->getBasePtr(), Index, 7881 VPGN->getScale(), VPGN->getMask(), 7882 VPGN->getVectorLength()}, 7883 VPGN->getMemOperand(), NewIndexTy); 7884 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 7885 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 7886 {VPSN->getChain(), VPSN->getValue(), 7887 VPSN->getBasePtr(), Index, VPSN->getScale(), 7888 VPSN->getMask(), VPSN->getVectorLength()}, 7889 VPSN->getMemOperand(), NewIndexTy); 7890 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 7891 return DAG.getMaskedGather( 7892 N->getVTList(), MGN->getMemoryVT(), DL, 7893 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 7894 MGN->getBasePtr(), Index, MGN->getScale()}, 7895 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 7896 const auto *MSN = cast<MaskedScatterSDNode>(N); 7897 return DAG.getMaskedScatter( 7898 N->getVTList(), MSN->getMemoryVT(), DL, 7899 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 7900 Index, MSN->getScale()}, 7901 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 7902 } 7903 case RISCVISD::SRA_VL: 7904 case RISCVISD::SRL_VL: 7905 case RISCVISD::SHL_VL: { 7906 SDValue ShAmt = N->getOperand(1); 7907 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7908 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7909 SDLoc DL(N); 7910 SDValue VL = N->getOperand(3); 7911 EVT VT = N->getValueType(0); 7912 ShAmt = 7913 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 7914 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 7915 N->getOperand(2), N->getOperand(3)); 7916 } 7917 break; 7918 } 7919 case ISD::SRA: 7920 case ISD::SRL: 7921 case ISD::SHL: { 7922 SDValue ShAmt = N->getOperand(1); 7923 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7924 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7925 SDLoc DL(N); 7926 EVT VT = N->getValueType(0); 7927 ShAmt = 7928 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 7929 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 7930 } 7931 break; 7932 } 7933 case RISCVISD::MUL_VL: 7934 if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false)) 7935 return V; 7936 // Mul is commutative. 7937 return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true); 7938 case ISD::STORE: { 7939 auto *Store = cast<StoreSDNode>(N); 7940 SDValue Val = Store->getValue(); 7941 // Combine store of vmv.x.s to vse with VL of 1. 7942 // FIXME: Support FP. 7943 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 7944 SDValue Src = Val.getOperand(0); 7945 EVT VecVT = Src.getValueType(); 7946 EVT MemVT = Store->getMemoryVT(); 7947 // The memory VT and the element type must match. 7948 if (VecVT.getVectorElementType() == MemVT) { 7949 SDLoc DL(N); 7950 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 7951 return DAG.getStoreVP( 7952 Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(), 7953 DAG.getConstant(1, DL, MaskVT), 7954 DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT, 7955 Store->getMemOperand(), Store->getAddressingMode(), 7956 Store->isTruncatingStore(), /*IsCompress*/ false); 7957 } 7958 } 7959 7960 break; 7961 } 7962 } 7963 7964 return SDValue(); 7965 } 7966 7967 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 7968 const SDNode *N, CombineLevel Level) const { 7969 // The following folds are only desirable if `(OP _, c1 << c2)` can be 7970 // materialised in fewer instructions than `(OP _, c1)`: 7971 // 7972 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 7973 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 7974 SDValue N0 = N->getOperand(0); 7975 EVT Ty = N0.getValueType(); 7976 if (Ty.isScalarInteger() && 7977 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 7978 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7979 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7980 if (C1 && C2) { 7981 const APInt &C1Int = C1->getAPIntValue(); 7982 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 7983 7984 // We can materialise `c1 << c2` into an add immediate, so it's "free", 7985 // and the combine should happen, to potentially allow further combines 7986 // later. 7987 if (ShiftedC1Int.getMinSignedBits() <= 64 && 7988 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 7989 return true; 7990 7991 // We can materialise `c1` in an add immediate, so it's "free", and the 7992 // combine should be prevented. 7993 if (C1Int.getMinSignedBits() <= 64 && 7994 isLegalAddImmediate(C1Int.getSExtValue())) 7995 return false; 7996 7997 // Neither constant will fit into an immediate, so find materialisation 7998 // costs. 7999 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 8000 Subtarget.getFeatureBits(), 8001 /*CompressionCost*/true); 8002 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 8003 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 8004 /*CompressionCost*/true); 8005 8006 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 8007 // combine should be prevented. 8008 if (C1Cost < ShiftedC1Cost) 8009 return false; 8010 } 8011 } 8012 return true; 8013 } 8014 8015 bool RISCVTargetLowering::targetShrinkDemandedConstant( 8016 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 8017 TargetLoweringOpt &TLO) const { 8018 // Delay this optimization as late as possible. 8019 if (!TLO.LegalOps) 8020 return false; 8021 8022 EVT VT = Op.getValueType(); 8023 if (VT.isVector()) 8024 return false; 8025 8026 // Only handle AND for now. 8027 if (Op.getOpcode() != ISD::AND) 8028 return false; 8029 8030 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 8031 if (!C) 8032 return false; 8033 8034 const APInt &Mask = C->getAPIntValue(); 8035 8036 // Clear all non-demanded bits initially. 8037 APInt ShrunkMask = Mask & DemandedBits; 8038 8039 // Try to make a smaller immediate by setting undemanded bits. 8040 8041 APInt ExpandedMask = Mask | ~DemandedBits; 8042 8043 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 8044 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 8045 }; 8046 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 8047 if (NewMask == Mask) 8048 return true; 8049 SDLoc DL(Op); 8050 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 8051 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 8052 return TLO.CombineTo(Op, NewOp); 8053 }; 8054 8055 // If the shrunk mask fits in sign extended 12 bits, let the target 8056 // independent code apply it. 8057 if (ShrunkMask.isSignedIntN(12)) 8058 return false; 8059 8060 // Preserve (and X, 0xffff) when zext.h is supported. 8061 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 8062 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 8063 if (IsLegalMask(NewMask)) 8064 return UseMask(NewMask); 8065 } 8066 8067 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 8068 if (VT == MVT::i64) { 8069 APInt NewMask = APInt(64, 0xffffffff); 8070 if (IsLegalMask(NewMask)) 8071 return UseMask(NewMask); 8072 } 8073 8074 // For the remaining optimizations, we need to be able to make a negative 8075 // number through a combination of mask and undemanded bits. 8076 if (!ExpandedMask.isNegative()) 8077 return false; 8078 8079 // What is the fewest number of bits we need to represent the negative number. 8080 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 8081 8082 // Try to make a 12 bit negative immediate. If that fails try to make a 32 8083 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 8084 APInt NewMask = ShrunkMask; 8085 if (MinSignedBits <= 12) 8086 NewMask.setBitsFrom(11); 8087 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 8088 NewMask.setBitsFrom(31); 8089 else 8090 return false; 8091 8092 // Check that our new mask is a subset of the demanded mask. 8093 assert(IsLegalMask(NewMask)); 8094 return UseMask(NewMask); 8095 } 8096 8097 static void computeGREV(APInt &Src, unsigned ShAmt) { 8098 ShAmt &= Src.getBitWidth() - 1; 8099 uint64_t x = Src.getZExtValue(); 8100 if (ShAmt & 1) 8101 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 8102 if (ShAmt & 2) 8103 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 8104 if (ShAmt & 4) 8105 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 8106 if (ShAmt & 8) 8107 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 8108 if (ShAmt & 16) 8109 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 8110 if (ShAmt & 32) 8111 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 8112 Src = x; 8113 } 8114 8115 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 8116 KnownBits &Known, 8117 const APInt &DemandedElts, 8118 const SelectionDAG &DAG, 8119 unsigned Depth) const { 8120 unsigned BitWidth = Known.getBitWidth(); 8121 unsigned Opc = Op.getOpcode(); 8122 assert((Opc >= ISD::BUILTIN_OP_END || 8123 Opc == ISD::INTRINSIC_WO_CHAIN || 8124 Opc == ISD::INTRINSIC_W_CHAIN || 8125 Opc == ISD::INTRINSIC_VOID) && 8126 "Should use MaskedValueIsZero if you don't know whether Op" 8127 " is a target node!"); 8128 8129 Known.resetAll(); 8130 switch (Opc) { 8131 default: break; 8132 case RISCVISD::SELECT_CC: { 8133 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 8134 // If we don't know any bits, early out. 8135 if (Known.isUnknown()) 8136 break; 8137 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 8138 8139 // Only known if known in both the LHS and RHS. 8140 Known = KnownBits::commonBits(Known, Known2); 8141 break; 8142 } 8143 case RISCVISD::REMUW: { 8144 KnownBits Known2; 8145 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 8146 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 8147 // We only care about the lower 32 bits. 8148 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 8149 // Restore the original width by sign extending. 8150 Known = Known.sext(BitWidth); 8151 break; 8152 } 8153 case RISCVISD::DIVUW: { 8154 KnownBits Known2; 8155 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 8156 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 8157 // We only care about the lower 32 bits. 8158 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 8159 // Restore the original width by sign extending. 8160 Known = Known.sext(BitWidth); 8161 break; 8162 } 8163 case RISCVISD::CTZW: { 8164 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8165 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 8166 unsigned LowBits = Log2_32(PossibleTZ) + 1; 8167 Known.Zero.setBitsFrom(LowBits); 8168 break; 8169 } 8170 case RISCVISD::CLZW: { 8171 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8172 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 8173 unsigned LowBits = Log2_32(PossibleLZ) + 1; 8174 Known.Zero.setBitsFrom(LowBits); 8175 break; 8176 } 8177 case RISCVISD::GREV: 8178 case RISCVISD::GREVW: { 8179 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8180 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8181 if (Opc == RISCVISD::GREVW) 8182 Known = Known.trunc(32); 8183 unsigned ShAmt = C->getZExtValue(); 8184 computeGREV(Known.Zero, ShAmt); 8185 computeGREV(Known.One, ShAmt); 8186 if (Opc == RISCVISD::GREVW) 8187 Known = Known.sext(BitWidth); 8188 } 8189 break; 8190 } 8191 case RISCVISD::READ_VLENB: 8192 // We assume VLENB is at least 16 bytes. 8193 Known.Zero.setLowBits(4); 8194 // We assume VLENB is no more than 65536 / 8 bytes. 8195 Known.Zero.setBitsFrom(14); 8196 break; 8197 case ISD::INTRINSIC_W_CHAIN: 8198 case ISD::INTRINSIC_WO_CHAIN: { 8199 unsigned IntNo = 8200 Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1); 8201 switch (IntNo) { 8202 default: 8203 // We can't do anything for most intrinsics. 8204 break; 8205 case Intrinsic::riscv_vsetvli: 8206 case Intrinsic::riscv_vsetvlimax: 8207 case Intrinsic::riscv_vsetvli_opt: 8208 case Intrinsic::riscv_vsetvlimax_opt: 8209 // Assume that VL output is positive and would fit in an int32_t. 8210 // TODO: VLEN might be capped at 16 bits in a future V spec update. 8211 if (BitWidth >= 32) 8212 Known.Zero.setBitsFrom(31); 8213 break; 8214 } 8215 break; 8216 } 8217 } 8218 } 8219 8220 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 8221 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 8222 unsigned Depth) const { 8223 switch (Op.getOpcode()) { 8224 default: 8225 break; 8226 case RISCVISD::SELECT_CC: { 8227 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 8228 if (Tmp == 1) return 1; // Early out. 8229 unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 8230 return std::min(Tmp, Tmp2); 8231 } 8232 case RISCVISD::SLLW: 8233 case RISCVISD::SRAW: 8234 case RISCVISD::SRLW: 8235 case RISCVISD::DIVW: 8236 case RISCVISD::DIVUW: 8237 case RISCVISD::REMUW: 8238 case RISCVISD::ROLW: 8239 case RISCVISD::RORW: 8240 case RISCVISD::GREVW: 8241 case RISCVISD::GORCW: 8242 case RISCVISD::FSLW: 8243 case RISCVISD::FSRW: 8244 case RISCVISD::SHFLW: 8245 case RISCVISD::UNSHFLW: 8246 case RISCVISD::BCOMPRESSW: 8247 case RISCVISD::BDECOMPRESSW: 8248 case RISCVISD::BFPW: 8249 case RISCVISD::FCVT_W_RV64: 8250 case RISCVISD::FCVT_WU_RV64: 8251 case RISCVISD::STRICT_FCVT_W_RV64: 8252 case RISCVISD::STRICT_FCVT_WU_RV64: 8253 // TODO: As the result is sign-extended, this is conservatively correct. A 8254 // more precise answer could be calculated for SRAW depending on known 8255 // bits in the shift amount. 8256 return 33; 8257 case RISCVISD::SHFL: 8258 case RISCVISD::UNSHFL: { 8259 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 8260 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 8261 // will stay within the upper 32 bits. If there were more than 32 sign bits 8262 // before there will be at least 33 sign bits after. 8263 if (Op.getValueType() == MVT::i64 && 8264 isa<ConstantSDNode>(Op.getOperand(1)) && 8265 (Op.getConstantOperandVal(1) & 0x10) == 0) { 8266 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 8267 if (Tmp > 32) 8268 return 33; 8269 } 8270 break; 8271 } 8272 case RISCVISD::VMV_X_S: 8273 // The number of sign bits of the scalar result is computed by obtaining the 8274 // element type of the input vector operand, subtracting its width from the 8275 // XLEN, and then adding one (sign bit within the element type). If the 8276 // element type is wider than XLen, the least-significant XLEN bits are 8277 // taken. 8278 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 8279 return 1; 8280 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 8281 } 8282 8283 return 1; 8284 } 8285 8286 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 8287 MachineBasicBlock *BB) { 8288 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 8289 8290 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 8291 // Should the count have wrapped while it was being read, we need to try 8292 // again. 8293 // ... 8294 // read: 8295 // rdcycleh x3 # load high word of cycle 8296 // rdcycle x2 # load low word of cycle 8297 // rdcycleh x4 # load high word of cycle 8298 // bne x3, x4, read # check if high word reads match, otherwise try again 8299 // ... 8300 8301 MachineFunction &MF = *BB->getParent(); 8302 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8303 MachineFunction::iterator It = ++BB->getIterator(); 8304 8305 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 8306 MF.insert(It, LoopMBB); 8307 8308 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 8309 MF.insert(It, DoneMBB); 8310 8311 // Transfer the remainder of BB and its successor edges to DoneMBB. 8312 DoneMBB->splice(DoneMBB->begin(), BB, 8313 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8314 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 8315 8316 BB->addSuccessor(LoopMBB); 8317 8318 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8319 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8320 Register LoReg = MI.getOperand(0).getReg(); 8321 Register HiReg = MI.getOperand(1).getReg(); 8322 DebugLoc DL = MI.getDebugLoc(); 8323 8324 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 8325 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 8326 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 8327 .addReg(RISCV::X0); 8328 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 8329 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 8330 .addReg(RISCV::X0); 8331 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 8332 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 8333 .addReg(RISCV::X0); 8334 8335 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 8336 .addReg(HiReg) 8337 .addReg(ReadAgainReg) 8338 .addMBB(LoopMBB); 8339 8340 LoopMBB->addSuccessor(LoopMBB); 8341 LoopMBB->addSuccessor(DoneMBB); 8342 8343 MI.eraseFromParent(); 8344 8345 return DoneMBB; 8346 } 8347 8348 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 8349 MachineBasicBlock *BB) { 8350 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 8351 8352 MachineFunction &MF = *BB->getParent(); 8353 DebugLoc DL = MI.getDebugLoc(); 8354 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 8355 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 8356 Register LoReg = MI.getOperand(0).getReg(); 8357 Register HiReg = MI.getOperand(1).getReg(); 8358 Register SrcReg = MI.getOperand(2).getReg(); 8359 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 8360 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 8361 8362 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 8363 RI); 8364 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 8365 MachineMemOperand *MMOLo = 8366 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 8367 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 8368 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 8369 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 8370 .addFrameIndex(FI) 8371 .addImm(0) 8372 .addMemOperand(MMOLo); 8373 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 8374 .addFrameIndex(FI) 8375 .addImm(4) 8376 .addMemOperand(MMOHi); 8377 MI.eraseFromParent(); // The pseudo instruction is gone now. 8378 return BB; 8379 } 8380 8381 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 8382 MachineBasicBlock *BB) { 8383 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 8384 "Unexpected instruction"); 8385 8386 MachineFunction &MF = *BB->getParent(); 8387 DebugLoc DL = MI.getDebugLoc(); 8388 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 8389 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 8390 Register DstReg = MI.getOperand(0).getReg(); 8391 Register LoReg = MI.getOperand(1).getReg(); 8392 Register HiReg = MI.getOperand(2).getReg(); 8393 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 8394 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 8395 8396 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 8397 MachineMemOperand *MMOLo = 8398 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 8399 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 8400 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 8401 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 8402 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 8403 .addFrameIndex(FI) 8404 .addImm(0) 8405 .addMemOperand(MMOLo); 8406 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 8407 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 8408 .addFrameIndex(FI) 8409 .addImm(4) 8410 .addMemOperand(MMOHi); 8411 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 8412 MI.eraseFromParent(); // The pseudo instruction is gone now. 8413 return BB; 8414 } 8415 8416 static bool isSelectPseudo(MachineInstr &MI) { 8417 switch (MI.getOpcode()) { 8418 default: 8419 return false; 8420 case RISCV::Select_GPR_Using_CC_GPR: 8421 case RISCV::Select_FPR16_Using_CC_GPR: 8422 case RISCV::Select_FPR32_Using_CC_GPR: 8423 case RISCV::Select_FPR64_Using_CC_GPR: 8424 return true; 8425 } 8426 } 8427 8428 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB, 8429 unsigned RelOpcode, unsigned EqOpcode, 8430 const RISCVSubtarget &Subtarget) { 8431 DebugLoc DL = MI.getDebugLoc(); 8432 Register DstReg = MI.getOperand(0).getReg(); 8433 Register Src1Reg = MI.getOperand(1).getReg(); 8434 Register Src2Reg = MI.getOperand(2).getReg(); 8435 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 8436 Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass); 8437 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 8438 8439 // Save the current FFLAGS. 8440 BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags); 8441 8442 auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg) 8443 .addReg(Src1Reg) 8444 .addReg(Src2Reg); 8445 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 8446 MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); 8447 8448 // Restore the FFLAGS. 8449 BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) 8450 .addReg(SavedFFlags, RegState::Kill); 8451 8452 // Issue a dummy FEQ opcode to raise exception for signaling NaNs. 8453 auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0) 8454 .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill())) 8455 .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill())); 8456 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 8457 MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept); 8458 8459 // Erase the pseudoinstruction. 8460 MI.eraseFromParent(); 8461 return BB; 8462 } 8463 8464 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 8465 MachineBasicBlock *BB, 8466 const RISCVSubtarget &Subtarget) { 8467 // To "insert" Select_* instructions, we actually have to insert the triangle 8468 // control-flow pattern. The incoming instructions know the destination vreg 8469 // to set, the condition code register to branch on, the true/false values to 8470 // select between, and the condcode to use to select the appropriate branch. 8471 // 8472 // We produce the following control flow: 8473 // HeadMBB 8474 // | \ 8475 // | IfFalseMBB 8476 // | / 8477 // TailMBB 8478 // 8479 // When we find a sequence of selects we attempt to optimize their emission 8480 // by sharing the control flow. Currently we only handle cases where we have 8481 // multiple selects with the exact same condition (same LHS, RHS and CC). 8482 // The selects may be interleaved with other instructions if the other 8483 // instructions meet some requirements we deem safe: 8484 // - They are debug instructions. Otherwise, 8485 // - They do not have side-effects, do not access memory and their inputs do 8486 // not depend on the results of the select pseudo-instructions. 8487 // The TrueV/FalseV operands of the selects cannot depend on the result of 8488 // previous selects in the sequence. 8489 // These conditions could be further relaxed. See the X86 target for a 8490 // related approach and more information. 8491 Register LHS = MI.getOperand(1).getReg(); 8492 Register RHS = MI.getOperand(2).getReg(); 8493 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 8494 8495 SmallVector<MachineInstr *, 4> SelectDebugValues; 8496 SmallSet<Register, 4> SelectDests; 8497 SelectDests.insert(MI.getOperand(0).getReg()); 8498 8499 MachineInstr *LastSelectPseudo = &MI; 8500 8501 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 8502 SequenceMBBI != E; ++SequenceMBBI) { 8503 if (SequenceMBBI->isDebugInstr()) 8504 continue; 8505 else if (isSelectPseudo(*SequenceMBBI)) { 8506 if (SequenceMBBI->getOperand(1).getReg() != LHS || 8507 SequenceMBBI->getOperand(2).getReg() != RHS || 8508 SequenceMBBI->getOperand(3).getImm() != CC || 8509 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 8510 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 8511 break; 8512 LastSelectPseudo = &*SequenceMBBI; 8513 SequenceMBBI->collectDebugValues(SelectDebugValues); 8514 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 8515 } else { 8516 if (SequenceMBBI->hasUnmodeledSideEffects() || 8517 SequenceMBBI->mayLoadOrStore()) 8518 break; 8519 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 8520 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 8521 })) 8522 break; 8523 } 8524 } 8525 8526 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 8527 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8528 DebugLoc DL = MI.getDebugLoc(); 8529 MachineFunction::iterator I = ++BB->getIterator(); 8530 8531 MachineBasicBlock *HeadMBB = BB; 8532 MachineFunction *F = BB->getParent(); 8533 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 8534 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 8535 8536 F->insert(I, IfFalseMBB); 8537 F->insert(I, TailMBB); 8538 8539 // Transfer debug instructions associated with the selects to TailMBB. 8540 for (MachineInstr *DebugInstr : SelectDebugValues) { 8541 TailMBB->push_back(DebugInstr->removeFromParent()); 8542 } 8543 8544 // Move all instructions after the sequence to TailMBB. 8545 TailMBB->splice(TailMBB->end(), HeadMBB, 8546 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 8547 // Update machine-CFG edges by transferring all successors of the current 8548 // block to the new block which will contain the Phi nodes for the selects. 8549 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 8550 // Set the successors for HeadMBB. 8551 HeadMBB->addSuccessor(IfFalseMBB); 8552 HeadMBB->addSuccessor(TailMBB); 8553 8554 // Insert appropriate branch. 8555 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 8556 .addReg(LHS) 8557 .addReg(RHS) 8558 .addMBB(TailMBB); 8559 8560 // IfFalseMBB just falls through to TailMBB. 8561 IfFalseMBB->addSuccessor(TailMBB); 8562 8563 // Create PHIs for all of the select pseudo-instructions. 8564 auto SelectMBBI = MI.getIterator(); 8565 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 8566 auto InsertionPoint = TailMBB->begin(); 8567 while (SelectMBBI != SelectEnd) { 8568 auto Next = std::next(SelectMBBI); 8569 if (isSelectPseudo(*SelectMBBI)) { 8570 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 8571 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 8572 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 8573 .addReg(SelectMBBI->getOperand(4).getReg()) 8574 .addMBB(HeadMBB) 8575 .addReg(SelectMBBI->getOperand(5).getReg()) 8576 .addMBB(IfFalseMBB); 8577 SelectMBBI->eraseFromParent(); 8578 } 8579 SelectMBBI = Next; 8580 } 8581 8582 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 8583 return TailMBB; 8584 } 8585 8586 MachineBasicBlock * 8587 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 8588 MachineBasicBlock *BB) const { 8589 switch (MI.getOpcode()) { 8590 default: 8591 llvm_unreachable("Unexpected instr type to insert"); 8592 case RISCV::ReadCycleWide: 8593 assert(!Subtarget.is64Bit() && 8594 "ReadCycleWrite is only to be used on riscv32"); 8595 return emitReadCycleWidePseudo(MI, BB); 8596 case RISCV::Select_GPR_Using_CC_GPR: 8597 case RISCV::Select_FPR16_Using_CC_GPR: 8598 case RISCV::Select_FPR32_Using_CC_GPR: 8599 case RISCV::Select_FPR64_Using_CC_GPR: 8600 return emitSelectPseudo(MI, BB, Subtarget); 8601 case RISCV::BuildPairF64Pseudo: 8602 return emitBuildPairF64Pseudo(MI, BB); 8603 case RISCV::SplitF64Pseudo: 8604 return emitSplitF64Pseudo(MI, BB); 8605 case RISCV::PseudoQuietFLE_H: 8606 return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget); 8607 case RISCV::PseudoQuietFLT_H: 8608 return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget); 8609 case RISCV::PseudoQuietFLE_S: 8610 return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget); 8611 case RISCV::PseudoQuietFLT_S: 8612 return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget); 8613 case RISCV::PseudoQuietFLE_D: 8614 return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget); 8615 case RISCV::PseudoQuietFLT_D: 8616 return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget); 8617 } 8618 } 8619 8620 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 8621 SDNode *Node) const { 8622 // Add FRM dependency to any instructions with dynamic rounding mode. 8623 unsigned Opc = MI.getOpcode(); 8624 auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); 8625 if (Idx < 0) 8626 return; 8627 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) 8628 return; 8629 // If the instruction already reads FRM, don't add another read. 8630 if (MI.readsRegister(RISCV::FRM)) 8631 return; 8632 MI.addOperand( 8633 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); 8634 } 8635 8636 // Calling Convention Implementation. 8637 // The expectations for frontend ABI lowering vary from target to target. 8638 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 8639 // details, but this is a longer term goal. For now, we simply try to keep the 8640 // role of the frontend as simple and well-defined as possible. The rules can 8641 // be summarised as: 8642 // * Never split up large scalar arguments. We handle them here. 8643 // * If a hardfloat calling convention is being used, and the struct may be 8644 // passed in a pair of registers (fp+fp, int+fp), and both registers are 8645 // available, then pass as two separate arguments. If either the GPRs or FPRs 8646 // are exhausted, then pass according to the rule below. 8647 // * If a struct could never be passed in registers or directly in a stack 8648 // slot (as it is larger than 2*XLEN and the floating point rules don't 8649 // apply), then pass it using a pointer with the byval attribute. 8650 // * If a struct is less than 2*XLEN, then coerce to either a two-element 8651 // word-sized array or a 2*XLEN scalar (depending on alignment). 8652 // * The frontend can determine whether a struct is returned by reference or 8653 // not based on its size and fields. If it will be returned by reference, the 8654 // frontend must modify the prototype so a pointer with the sret annotation is 8655 // passed as the first argument. This is not necessary for large scalar 8656 // returns. 8657 // * Struct return values and varargs should be coerced to structs containing 8658 // register-size fields in the same situations they would be for fixed 8659 // arguments. 8660 8661 static const MCPhysReg ArgGPRs[] = { 8662 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 8663 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 8664 }; 8665 static const MCPhysReg ArgFPR16s[] = { 8666 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 8667 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 8668 }; 8669 static const MCPhysReg ArgFPR32s[] = { 8670 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 8671 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 8672 }; 8673 static const MCPhysReg ArgFPR64s[] = { 8674 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 8675 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 8676 }; 8677 // This is an interim calling convention and it may be changed in the future. 8678 static const MCPhysReg ArgVRs[] = { 8679 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 8680 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 8681 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 8682 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 8683 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 8684 RISCV::V20M2, RISCV::V22M2}; 8685 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 8686 RISCV::V20M4}; 8687 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 8688 8689 // Pass a 2*XLEN argument that has been split into two XLEN values through 8690 // registers or the stack as necessary. 8691 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 8692 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 8693 MVT ValVT2, MVT LocVT2, 8694 ISD::ArgFlagsTy ArgFlags2) { 8695 unsigned XLenInBytes = XLen / 8; 8696 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8697 // At least one half can be passed via register. 8698 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 8699 VA1.getLocVT(), CCValAssign::Full)); 8700 } else { 8701 // Both halves must be passed on the stack, with proper alignment. 8702 Align StackAlign = 8703 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 8704 State.addLoc( 8705 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 8706 State.AllocateStack(XLenInBytes, StackAlign), 8707 VA1.getLocVT(), CCValAssign::Full)); 8708 State.addLoc(CCValAssign::getMem( 8709 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8710 LocVT2, CCValAssign::Full)); 8711 return false; 8712 } 8713 8714 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8715 // The second half can also be passed via register. 8716 State.addLoc( 8717 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 8718 } else { 8719 // The second half is passed via the stack, without additional alignment. 8720 State.addLoc(CCValAssign::getMem( 8721 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8722 LocVT2, CCValAssign::Full)); 8723 } 8724 8725 return false; 8726 } 8727 8728 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 8729 Optional<unsigned> FirstMaskArgument, 8730 CCState &State, const RISCVTargetLowering &TLI) { 8731 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 8732 if (RC == &RISCV::VRRegClass) { 8733 // Assign the first mask argument to V0. 8734 // This is an interim calling convention and it may be changed in the 8735 // future. 8736 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 8737 return State.AllocateReg(RISCV::V0); 8738 return State.AllocateReg(ArgVRs); 8739 } 8740 if (RC == &RISCV::VRM2RegClass) 8741 return State.AllocateReg(ArgVRM2s); 8742 if (RC == &RISCV::VRM4RegClass) 8743 return State.AllocateReg(ArgVRM4s); 8744 if (RC == &RISCV::VRM8RegClass) 8745 return State.AllocateReg(ArgVRM8s); 8746 llvm_unreachable("Unhandled register class for ValueType"); 8747 } 8748 8749 // Implements the RISC-V calling convention. Returns true upon failure. 8750 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 8751 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 8752 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 8753 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 8754 Optional<unsigned> FirstMaskArgument) { 8755 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 8756 assert(XLen == 32 || XLen == 64); 8757 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 8758 8759 // Any return value split in to more than two values can't be returned 8760 // directly. Vectors are returned via the available vector registers. 8761 if (!LocVT.isVector() && IsRet && ValNo > 1) 8762 return true; 8763 8764 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 8765 // variadic argument, or if no F16/F32 argument registers are available. 8766 bool UseGPRForF16_F32 = true; 8767 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 8768 // variadic argument, or if no F64 argument registers are available. 8769 bool UseGPRForF64 = true; 8770 8771 switch (ABI) { 8772 default: 8773 llvm_unreachable("Unexpected ABI"); 8774 case RISCVABI::ABI_ILP32: 8775 case RISCVABI::ABI_LP64: 8776 break; 8777 case RISCVABI::ABI_ILP32F: 8778 case RISCVABI::ABI_LP64F: 8779 UseGPRForF16_F32 = !IsFixed; 8780 break; 8781 case RISCVABI::ABI_ILP32D: 8782 case RISCVABI::ABI_LP64D: 8783 UseGPRForF16_F32 = !IsFixed; 8784 UseGPRForF64 = !IsFixed; 8785 break; 8786 } 8787 8788 // FPR16, FPR32, and FPR64 alias each other. 8789 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 8790 UseGPRForF16_F32 = true; 8791 UseGPRForF64 = true; 8792 } 8793 8794 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 8795 // similar local variables rather than directly checking against the target 8796 // ABI. 8797 8798 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 8799 LocVT = XLenVT; 8800 LocInfo = CCValAssign::BCvt; 8801 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 8802 LocVT = MVT::i64; 8803 LocInfo = CCValAssign::BCvt; 8804 } 8805 8806 // If this is a variadic argument, the RISC-V calling convention requires 8807 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 8808 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 8809 // be used regardless of whether the original argument was split during 8810 // legalisation or not. The argument will not be passed by registers if the 8811 // original type is larger than 2*XLEN, so the register alignment rule does 8812 // not apply. 8813 unsigned TwoXLenInBytes = (2 * XLen) / 8; 8814 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 8815 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 8816 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 8817 // Skip 'odd' register if necessary. 8818 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 8819 State.AllocateReg(ArgGPRs); 8820 } 8821 8822 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 8823 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 8824 State.getPendingArgFlags(); 8825 8826 assert(PendingLocs.size() == PendingArgFlags.size() && 8827 "PendingLocs and PendingArgFlags out of sync"); 8828 8829 // Handle passing f64 on RV32D with a soft float ABI or when floating point 8830 // registers are exhausted. 8831 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 8832 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 8833 "Can't lower f64 if it is split"); 8834 // Depending on available argument GPRS, f64 may be passed in a pair of 8835 // GPRs, split between a GPR and the stack, or passed completely on the 8836 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 8837 // cases. 8838 Register Reg = State.AllocateReg(ArgGPRs); 8839 LocVT = MVT::i32; 8840 if (!Reg) { 8841 unsigned StackOffset = State.AllocateStack(8, Align(8)); 8842 State.addLoc( 8843 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8844 return false; 8845 } 8846 if (!State.AllocateReg(ArgGPRs)) 8847 State.AllocateStack(4, Align(4)); 8848 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8849 return false; 8850 } 8851 8852 // Fixed-length vectors are located in the corresponding scalable-vector 8853 // container types. 8854 if (ValVT.isFixedLengthVector()) 8855 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8856 8857 // Split arguments might be passed indirectly, so keep track of the pending 8858 // values. Split vectors are passed via a mix of registers and indirectly, so 8859 // treat them as we would any other argument. 8860 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 8861 LocVT = XLenVT; 8862 LocInfo = CCValAssign::Indirect; 8863 PendingLocs.push_back( 8864 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 8865 PendingArgFlags.push_back(ArgFlags); 8866 if (!ArgFlags.isSplitEnd()) { 8867 return false; 8868 } 8869 } 8870 8871 // If the split argument only had two elements, it should be passed directly 8872 // in registers or on the stack. 8873 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 8874 PendingLocs.size() <= 2) { 8875 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 8876 // Apply the normal calling convention rules to the first half of the 8877 // split argument. 8878 CCValAssign VA = PendingLocs[0]; 8879 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 8880 PendingLocs.clear(); 8881 PendingArgFlags.clear(); 8882 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 8883 ArgFlags); 8884 } 8885 8886 // Allocate to a register if possible, or else a stack slot. 8887 Register Reg; 8888 unsigned StoreSizeBytes = XLen / 8; 8889 Align StackAlign = Align(XLen / 8); 8890 8891 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 8892 Reg = State.AllocateReg(ArgFPR16s); 8893 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 8894 Reg = State.AllocateReg(ArgFPR32s); 8895 else if (ValVT == MVT::f64 && !UseGPRForF64) 8896 Reg = State.AllocateReg(ArgFPR64s); 8897 else if (ValVT.isVector()) { 8898 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 8899 if (!Reg) { 8900 // For return values, the vector must be passed fully via registers or 8901 // via the stack. 8902 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 8903 // but we're using all of them. 8904 if (IsRet) 8905 return true; 8906 // Try using a GPR to pass the address 8907 if ((Reg = State.AllocateReg(ArgGPRs))) { 8908 LocVT = XLenVT; 8909 LocInfo = CCValAssign::Indirect; 8910 } else if (ValVT.isScalableVector()) { 8911 LocVT = XLenVT; 8912 LocInfo = CCValAssign::Indirect; 8913 } else { 8914 // Pass fixed-length vectors on the stack. 8915 LocVT = ValVT; 8916 StoreSizeBytes = ValVT.getStoreSize(); 8917 // Align vectors to their element sizes, being careful for vXi1 8918 // vectors. 8919 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8920 } 8921 } 8922 } else { 8923 Reg = State.AllocateReg(ArgGPRs); 8924 } 8925 8926 unsigned StackOffset = 8927 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 8928 8929 // If we reach this point and PendingLocs is non-empty, we must be at the 8930 // end of a split argument that must be passed indirectly. 8931 if (!PendingLocs.empty()) { 8932 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 8933 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 8934 8935 for (auto &It : PendingLocs) { 8936 if (Reg) 8937 It.convertToReg(Reg); 8938 else 8939 It.convertToMem(StackOffset); 8940 State.addLoc(It); 8941 } 8942 PendingLocs.clear(); 8943 PendingArgFlags.clear(); 8944 return false; 8945 } 8946 8947 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 8948 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 8949 "Expected an XLenVT or vector types at this stage"); 8950 8951 if (Reg) { 8952 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8953 return false; 8954 } 8955 8956 // When a floating-point value is passed on the stack, no bit-conversion is 8957 // needed. 8958 if (ValVT.isFloatingPoint()) { 8959 LocVT = ValVT; 8960 LocInfo = CCValAssign::Full; 8961 } 8962 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8963 return false; 8964 } 8965 8966 template <typename ArgTy> 8967 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 8968 for (const auto &ArgIdx : enumerate(Args)) { 8969 MVT ArgVT = ArgIdx.value().VT; 8970 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 8971 return ArgIdx.index(); 8972 } 8973 return None; 8974 } 8975 8976 void RISCVTargetLowering::analyzeInputArgs( 8977 MachineFunction &MF, CCState &CCInfo, 8978 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 8979 RISCVCCAssignFn Fn) const { 8980 unsigned NumArgs = Ins.size(); 8981 FunctionType *FType = MF.getFunction().getFunctionType(); 8982 8983 Optional<unsigned> FirstMaskArgument; 8984 if (Subtarget.hasVInstructions()) 8985 FirstMaskArgument = preAssignMask(Ins); 8986 8987 for (unsigned i = 0; i != NumArgs; ++i) { 8988 MVT ArgVT = Ins[i].VT; 8989 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 8990 8991 Type *ArgTy = nullptr; 8992 if (IsRet) 8993 ArgTy = FType->getReturnType(); 8994 else if (Ins[i].isOrigArg()) 8995 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 8996 8997 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8998 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8999 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 9000 FirstMaskArgument)) { 9001 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 9002 << EVT(ArgVT).getEVTString() << '\n'); 9003 llvm_unreachable(nullptr); 9004 } 9005 } 9006 } 9007 9008 void RISCVTargetLowering::analyzeOutputArgs( 9009 MachineFunction &MF, CCState &CCInfo, 9010 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 9011 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 9012 unsigned NumArgs = Outs.size(); 9013 9014 Optional<unsigned> FirstMaskArgument; 9015 if (Subtarget.hasVInstructions()) 9016 FirstMaskArgument = preAssignMask(Outs); 9017 9018 for (unsigned i = 0; i != NumArgs; i++) { 9019 MVT ArgVT = Outs[i].VT; 9020 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9021 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 9022 9023 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9024 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 9025 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 9026 FirstMaskArgument)) { 9027 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 9028 << EVT(ArgVT).getEVTString() << "\n"); 9029 llvm_unreachable(nullptr); 9030 } 9031 } 9032 } 9033 9034 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 9035 // values. 9036 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 9037 const CCValAssign &VA, const SDLoc &DL, 9038 const RISCVSubtarget &Subtarget) { 9039 switch (VA.getLocInfo()) { 9040 default: 9041 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9042 case CCValAssign::Full: 9043 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 9044 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 9045 break; 9046 case CCValAssign::BCvt: 9047 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9048 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 9049 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9050 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 9051 else 9052 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 9053 break; 9054 } 9055 return Val; 9056 } 9057 9058 // The caller is responsible for loading the full value if the argument is 9059 // passed with CCValAssign::Indirect. 9060 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 9061 const CCValAssign &VA, const SDLoc &DL, 9062 const RISCVTargetLowering &TLI) { 9063 MachineFunction &MF = DAG.getMachineFunction(); 9064 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9065 EVT LocVT = VA.getLocVT(); 9066 SDValue Val; 9067 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 9068 Register VReg = RegInfo.createVirtualRegister(RC); 9069 RegInfo.addLiveIn(VA.getLocReg(), VReg); 9070 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 9071 9072 if (VA.getLocInfo() == CCValAssign::Indirect) 9073 return Val; 9074 9075 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 9076 } 9077 9078 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 9079 const CCValAssign &VA, const SDLoc &DL, 9080 const RISCVSubtarget &Subtarget) { 9081 EVT LocVT = VA.getLocVT(); 9082 9083 switch (VA.getLocInfo()) { 9084 default: 9085 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9086 case CCValAssign::Full: 9087 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 9088 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 9089 break; 9090 case CCValAssign::BCvt: 9091 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9092 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 9093 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9094 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 9095 else 9096 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 9097 break; 9098 } 9099 return Val; 9100 } 9101 9102 // The caller is responsible for loading the full value if the argument is 9103 // passed with CCValAssign::Indirect. 9104 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 9105 const CCValAssign &VA, const SDLoc &DL) { 9106 MachineFunction &MF = DAG.getMachineFunction(); 9107 MachineFrameInfo &MFI = MF.getFrameInfo(); 9108 EVT LocVT = VA.getLocVT(); 9109 EVT ValVT = VA.getValVT(); 9110 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 9111 if (ValVT.isScalableVector()) { 9112 // When the value is a scalable vector, we save the pointer which points to 9113 // the scalable vector value in the stack. The ValVT will be the pointer 9114 // type, instead of the scalable vector type. 9115 ValVT = LocVT; 9116 } 9117 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 9118 /*IsImmutable=*/true); 9119 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 9120 SDValue Val; 9121 9122 ISD::LoadExtType ExtType; 9123 switch (VA.getLocInfo()) { 9124 default: 9125 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9126 case CCValAssign::Full: 9127 case CCValAssign::Indirect: 9128 case CCValAssign::BCvt: 9129 ExtType = ISD::NON_EXTLOAD; 9130 break; 9131 } 9132 Val = DAG.getExtLoad( 9133 ExtType, DL, LocVT, Chain, FIN, 9134 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 9135 return Val; 9136 } 9137 9138 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 9139 const CCValAssign &VA, const SDLoc &DL) { 9140 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 9141 "Unexpected VA"); 9142 MachineFunction &MF = DAG.getMachineFunction(); 9143 MachineFrameInfo &MFI = MF.getFrameInfo(); 9144 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9145 9146 if (VA.isMemLoc()) { 9147 // f64 is passed on the stack. 9148 int FI = 9149 MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true); 9150 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 9151 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 9152 MachinePointerInfo::getFixedStack(MF, FI)); 9153 } 9154 9155 assert(VA.isRegLoc() && "Expected register VA assignment"); 9156 9157 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9158 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 9159 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 9160 SDValue Hi; 9161 if (VA.getLocReg() == RISCV::X17) { 9162 // Second half of f64 is passed on the stack. 9163 int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true); 9164 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 9165 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 9166 MachinePointerInfo::getFixedStack(MF, FI)); 9167 } else { 9168 // Second half of f64 is passed in another GPR. 9169 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9170 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 9171 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 9172 } 9173 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 9174 } 9175 9176 // FastCC has less than 1% performance improvement for some particular 9177 // benchmark. But theoretically, it may has benenfit for some cases. 9178 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 9179 unsigned ValNo, MVT ValVT, MVT LocVT, 9180 CCValAssign::LocInfo LocInfo, 9181 ISD::ArgFlagsTy ArgFlags, CCState &State, 9182 bool IsFixed, bool IsRet, Type *OrigTy, 9183 const RISCVTargetLowering &TLI, 9184 Optional<unsigned> FirstMaskArgument) { 9185 9186 // X5 and X6 might be used for save-restore libcall. 9187 static const MCPhysReg GPRList[] = { 9188 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 9189 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 9190 RISCV::X29, RISCV::X30, RISCV::X31}; 9191 9192 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 9193 if (unsigned Reg = State.AllocateReg(GPRList)) { 9194 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9195 return false; 9196 } 9197 } 9198 9199 if (LocVT == MVT::f16) { 9200 static const MCPhysReg FPR16List[] = { 9201 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 9202 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 9203 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 9204 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 9205 if (unsigned Reg = State.AllocateReg(FPR16List)) { 9206 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9207 return false; 9208 } 9209 } 9210 9211 if (LocVT == MVT::f32) { 9212 static const MCPhysReg FPR32List[] = { 9213 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 9214 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 9215 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 9216 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 9217 if (unsigned Reg = State.AllocateReg(FPR32List)) { 9218 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9219 return false; 9220 } 9221 } 9222 9223 if (LocVT == MVT::f64) { 9224 static const MCPhysReg FPR64List[] = { 9225 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 9226 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 9227 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 9228 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 9229 if (unsigned Reg = State.AllocateReg(FPR64List)) { 9230 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9231 return false; 9232 } 9233 } 9234 9235 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 9236 unsigned Offset4 = State.AllocateStack(4, Align(4)); 9237 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 9238 return false; 9239 } 9240 9241 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 9242 unsigned Offset5 = State.AllocateStack(8, Align(8)); 9243 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 9244 return false; 9245 } 9246 9247 if (LocVT.isVector()) { 9248 if (unsigned Reg = 9249 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 9250 // Fixed-length vectors are located in the corresponding scalable-vector 9251 // container types. 9252 if (ValVT.isFixedLengthVector()) 9253 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 9254 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9255 } else { 9256 // Try and pass the address via a "fast" GPR. 9257 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 9258 LocInfo = CCValAssign::Indirect; 9259 LocVT = TLI.getSubtarget().getXLenVT(); 9260 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 9261 } else if (ValVT.isFixedLengthVector()) { 9262 auto StackAlign = 9263 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 9264 unsigned StackOffset = 9265 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 9266 State.addLoc( 9267 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9268 } else { 9269 // Can't pass scalable vectors on the stack. 9270 return true; 9271 } 9272 } 9273 9274 return false; 9275 } 9276 9277 return true; // CC didn't match. 9278 } 9279 9280 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 9281 CCValAssign::LocInfo LocInfo, 9282 ISD::ArgFlagsTy ArgFlags, CCState &State) { 9283 9284 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 9285 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 9286 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 9287 static const MCPhysReg GPRList[] = { 9288 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 9289 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 9290 if (unsigned Reg = State.AllocateReg(GPRList)) { 9291 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9292 return false; 9293 } 9294 } 9295 9296 if (LocVT == MVT::f32) { 9297 // Pass in STG registers: F1, ..., F6 9298 // fs0 ... fs5 9299 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 9300 RISCV::F18_F, RISCV::F19_F, 9301 RISCV::F20_F, RISCV::F21_F}; 9302 if (unsigned Reg = State.AllocateReg(FPR32List)) { 9303 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9304 return false; 9305 } 9306 } 9307 9308 if (LocVT == MVT::f64) { 9309 // Pass in STG registers: D1, ..., D6 9310 // fs6 ... fs11 9311 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 9312 RISCV::F24_D, RISCV::F25_D, 9313 RISCV::F26_D, RISCV::F27_D}; 9314 if (unsigned Reg = State.AllocateReg(FPR64List)) { 9315 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9316 return false; 9317 } 9318 } 9319 9320 report_fatal_error("No registers left in GHC calling convention"); 9321 return true; 9322 } 9323 9324 // Transform physical registers into virtual registers. 9325 SDValue RISCVTargetLowering::LowerFormalArguments( 9326 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 9327 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 9328 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 9329 9330 MachineFunction &MF = DAG.getMachineFunction(); 9331 9332 switch (CallConv) { 9333 default: 9334 report_fatal_error("Unsupported calling convention"); 9335 case CallingConv::C: 9336 case CallingConv::Fast: 9337 break; 9338 case CallingConv::GHC: 9339 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 9340 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 9341 report_fatal_error( 9342 "GHC calling convention requires the F and D instruction set extensions"); 9343 } 9344 9345 const Function &Func = MF.getFunction(); 9346 if (Func.hasFnAttribute("interrupt")) { 9347 if (!Func.arg_empty()) 9348 report_fatal_error( 9349 "Functions with the interrupt attribute cannot have arguments!"); 9350 9351 StringRef Kind = 9352 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9353 9354 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 9355 report_fatal_error( 9356 "Function interrupt attribute argument not supported!"); 9357 } 9358 9359 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9360 MVT XLenVT = Subtarget.getXLenVT(); 9361 unsigned XLenInBytes = Subtarget.getXLen() / 8; 9362 // Used with vargs to acumulate store chains. 9363 std::vector<SDValue> OutChains; 9364 9365 // Assign locations to all of the incoming arguments. 9366 SmallVector<CCValAssign, 16> ArgLocs; 9367 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 9368 9369 if (CallConv == CallingConv::GHC) 9370 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 9371 else 9372 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 9373 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 9374 : CC_RISCV); 9375 9376 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 9377 CCValAssign &VA = ArgLocs[i]; 9378 SDValue ArgValue; 9379 // Passing f64 on RV32D with a soft float ABI must be handled as a special 9380 // case. 9381 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 9382 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 9383 else if (VA.isRegLoc()) 9384 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 9385 else 9386 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 9387 9388 if (VA.getLocInfo() == CCValAssign::Indirect) { 9389 // If the original argument was split and passed by reference (e.g. i128 9390 // on RV32), we need to load all parts of it here (using the same 9391 // address). Vectors may be partly split to registers and partly to the 9392 // stack, in which case the base address is partly offset and subsequent 9393 // stores are relative to that. 9394 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 9395 MachinePointerInfo())); 9396 unsigned ArgIndex = Ins[i].OrigArgIndex; 9397 unsigned ArgPartOffset = Ins[i].PartOffset; 9398 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 9399 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 9400 CCValAssign &PartVA = ArgLocs[i + 1]; 9401 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 9402 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 9403 if (PartVA.getValVT().isScalableVector()) 9404 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 9405 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 9406 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 9407 MachinePointerInfo())); 9408 ++i; 9409 } 9410 continue; 9411 } 9412 InVals.push_back(ArgValue); 9413 } 9414 9415 if (IsVarArg) { 9416 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 9417 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 9418 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 9419 MachineFrameInfo &MFI = MF.getFrameInfo(); 9420 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9421 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 9422 9423 // Offset of the first variable argument from stack pointer, and size of 9424 // the vararg save area. For now, the varargs save area is either zero or 9425 // large enough to hold a0-a7. 9426 int VaArgOffset, VarArgsSaveSize; 9427 9428 // If all registers are allocated, then all varargs must be passed on the 9429 // stack and we don't need to save any argregs. 9430 if (ArgRegs.size() == Idx) { 9431 VaArgOffset = CCInfo.getNextStackOffset(); 9432 VarArgsSaveSize = 0; 9433 } else { 9434 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 9435 VaArgOffset = -VarArgsSaveSize; 9436 } 9437 9438 // Record the frame index of the first variable argument 9439 // which is a value necessary to VASTART. 9440 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 9441 RVFI->setVarArgsFrameIndex(FI); 9442 9443 // If saving an odd number of registers then create an extra stack slot to 9444 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 9445 // offsets to even-numbered registered remain 2*XLEN-aligned. 9446 if (Idx % 2) { 9447 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 9448 VarArgsSaveSize += XLenInBytes; 9449 } 9450 9451 // Copy the integer registers that may have been used for passing varargs 9452 // to the vararg save area. 9453 for (unsigned I = Idx; I < ArgRegs.size(); 9454 ++I, VaArgOffset += XLenInBytes) { 9455 const Register Reg = RegInfo.createVirtualRegister(RC); 9456 RegInfo.addLiveIn(ArgRegs[I], Reg); 9457 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 9458 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 9459 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 9460 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 9461 MachinePointerInfo::getFixedStack(MF, FI)); 9462 cast<StoreSDNode>(Store.getNode()) 9463 ->getMemOperand() 9464 ->setValue((Value *)nullptr); 9465 OutChains.push_back(Store); 9466 } 9467 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 9468 } 9469 9470 // All stores are grouped in one node to allow the matching between 9471 // the size of Ins and InVals. This only happens for vararg functions. 9472 if (!OutChains.empty()) { 9473 OutChains.push_back(Chain); 9474 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 9475 } 9476 9477 return Chain; 9478 } 9479 9480 /// isEligibleForTailCallOptimization - Check whether the call is eligible 9481 /// for tail call optimization. 9482 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 9483 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 9484 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 9485 const SmallVector<CCValAssign, 16> &ArgLocs) const { 9486 9487 auto &Callee = CLI.Callee; 9488 auto CalleeCC = CLI.CallConv; 9489 auto &Outs = CLI.Outs; 9490 auto &Caller = MF.getFunction(); 9491 auto CallerCC = Caller.getCallingConv(); 9492 9493 // Exception-handling functions need a special set of instructions to 9494 // indicate a return to the hardware. Tail-calling another function would 9495 // probably break this. 9496 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 9497 // should be expanded as new function attributes are introduced. 9498 if (Caller.hasFnAttribute("interrupt")) 9499 return false; 9500 9501 // Do not tail call opt if the stack is used to pass parameters. 9502 if (CCInfo.getNextStackOffset() != 0) 9503 return false; 9504 9505 // Do not tail call opt if any parameters need to be passed indirectly. 9506 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 9507 // passed indirectly. So the address of the value will be passed in a 9508 // register, or if not available, then the address is put on the stack. In 9509 // order to pass indirectly, space on the stack often needs to be allocated 9510 // in order to store the value. In this case the CCInfo.getNextStackOffset() 9511 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 9512 // are passed CCValAssign::Indirect. 9513 for (auto &VA : ArgLocs) 9514 if (VA.getLocInfo() == CCValAssign::Indirect) 9515 return false; 9516 9517 // Do not tail call opt if either caller or callee uses struct return 9518 // semantics. 9519 auto IsCallerStructRet = Caller.hasStructRetAttr(); 9520 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 9521 if (IsCallerStructRet || IsCalleeStructRet) 9522 return false; 9523 9524 // Externally-defined functions with weak linkage should not be 9525 // tail-called. The behaviour of branch instructions in this situation (as 9526 // used for tail calls) is implementation-defined, so we cannot rely on the 9527 // linker replacing the tail call with a return. 9528 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 9529 const GlobalValue *GV = G->getGlobal(); 9530 if (GV->hasExternalWeakLinkage()) 9531 return false; 9532 } 9533 9534 // The callee has to preserve all registers the caller needs to preserve. 9535 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9536 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 9537 if (CalleeCC != CallerCC) { 9538 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 9539 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 9540 return false; 9541 } 9542 9543 // Byval parameters hand the function a pointer directly into the stack area 9544 // we want to reuse during a tail call. Working around this *is* possible 9545 // but less efficient and uglier in LowerCall. 9546 for (auto &Arg : Outs) 9547 if (Arg.Flags.isByVal()) 9548 return false; 9549 9550 return true; 9551 } 9552 9553 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 9554 return DAG.getDataLayout().getPrefTypeAlign( 9555 VT.getTypeForEVT(*DAG.getContext())); 9556 } 9557 9558 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 9559 // and output parameter nodes. 9560 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 9561 SmallVectorImpl<SDValue> &InVals) const { 9562 SelectionDAG &DAG = CLI.DAG; 9563 SDLoc &DL = CLI.DL; 9564 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 9565 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 9566 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 9567 SDValue Chain = CLI.Chain; 9568 SDValue Callee = CLI.Callee; 9569 bool &IsTailCall = CLI.IsTailCall; 9570 CallingConv::ID CallConv = CLI.CallConv; 9571 bool IsVarArg = CLI.IsVarArg; 9572 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9573 MVT XLenVT = Subtarget.getXLenVT(); 9574 9575 MachineFunction &MF = DAG.getMachineFunction(); 9576 9577 // Analyze the operands of the call, assigning locations to each operand. 9578 SmallVector<CCValAssign, 16> ArgLocs; 9579 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 9580 9581 if (CallConv == CallingConv::GHC) 9582 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 9583 else 9584 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 9585 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 9586 : CC_RISCV); 9587 9588 // Check if it's really possible to do a tail call. 9589 if (IsTailCall) 9590 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 9591 9592 if (IsTailCall) 9593 ++NumTailCalls; 9594 else if (CLI.CB && CLI.CB->isMustTailCall()) 9595 report_fatal_error("failed to perform tail call elimination on a call " 9596 "site marked musttail"); 9597 9598 // Get a count of how many bytes are to be pushed on the stack. 9599 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 9600 9601 // Create local copies for byval args 9602 SmallVector<SDValue, 8> ByValArgs; 9603 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9604 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9605 if (!Flags.isByVal()) 9606 continue; 9607 9608 SDValue Arg = OutVals[i]; 9609 unsigned Size = Flags.getByValSize(); 9610 Align Alignment = Flags.getNonZeroByValAlign(); 9611 9612 int FI = 9613 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 9614 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 9615 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 9616 9617 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 9618 /*IsVolatile=*/false, 9619 /*AlwaysInline=*/false, IsTailCall, 9620 MachinePointerInfo(), MachinePointerInfo()); 9621 ByValArgs.push_back(FIPtr); 9622 } 9623 9624 if (!IsTailCall) 9625 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 9626 9627 // Copy argument values to their designated locations. 9628 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 9629 SmallVector<SDValue, 8> MemOpChains; 9630 SDValue StackPtr; 9631 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 9632 CCValAssign &VA = ArgLocs[i]; 9633 SDValue ArgValue = OutVals[i]; 9634 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9635 9636 // Handle passing f64 on RV32D with a soft float ABI as a special case. 9637 bool IsF64OnRV32DSoftABI = 9638 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 9639 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 9640 SDValue SplitF64 = DAG.getNode( 9641 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 9642 SDValue Lo = SplitF64.getValue(0); 9643 SDValue Hi = SplitF64.getValue(1); 9644 9645 Register RegLo = VA.getLocReg(); 9646 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 9647 9648 if (RegLo == RISCV::X17) { 9649 // Second half of f64 is passed on the stack. 9650 // Work out the address of the stack slot. 9651 if (!StackPtr.getNode()) 9652 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9653 // Emit the store. 9654 MemOpChains.push_back( 9655 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 9656 } else { 9657 // Second half of f64 is passed in another GPR. 9658 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9659 Register RegHigh = RegLo + 1; 9660 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 9661 } 9662 continue; 9663 } 9664 9665 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 9666 // as any other MemLoc. 9667 9668 // Promote the value if needed. 9669 // For now, only handle fully promoted and indirect arguments. 9670 if (VA.getLocInfo() == CCValAssign::Indirect) { 9671 // Store the argument in a stack slot and pass its address. 9672 Align StackAlign = 9673 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 9674 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 9675 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 9676 // If the original argument was split (e.g. i128), we need 9677 // to store the required parts of it here (and pass just one address). 9678 // Vectors may be partly split to registers and partly to the stack, in 9679 // which case the base address is partly offset and subsequent stores are 9680 // relative to that. 9681 unsigned ArgIndex = Outs[i].OrigArgIndex; 9682 unsigned ArgPartOffset = Outs[i].PartOffset; 9683 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 9684 // Calculate the total size to store. We don't have access to what we're 9685 // actually storing other than performing the loop and collecting the 9686 // info. 9687 SmallVector<std::pair<SDValue, SDValue>> Parts; 9688 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 9689 SDValue PartValue = OutVals[i + 1]; 9690 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 9691 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 9692 EVT PartVT = PartValue.getValueType(); 9693 if (PartVT.isScalableVector()) 9694 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 9695 StoredSize += PartVT.getStoreSize(); 9696 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 9697 Parts.push_back(std::make_pair(PartValue, Offset)); 9698 ++i; 9699 } 9700 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 9701 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 9702 MemOpChains.push_back( 9703 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 9704 MachinePointerInfo::getFixedStack(MF, FI))); 9705 for (const auto &Part : Parts) { 9706 SDValue PartValue = Part.first; 9707 SDValue PartOffset = Part.second; 9708 SDValue Address = 9709 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 9710 MemOpChains.push_back( 9711 DAG.getStore(Chain, DL, PartValue, Address, 9712 MachinePointerInfo::getFixedStack(MF, FI))); 9713 } 9714 ArgValue = SpillSlot; 9715 } else { 9716 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 9717 } 9718 9719 // Use local copy if it is a byval arg. 9720 if (Flags.isByVal()) 9721 ArgValue = ByValArgs[j++]; 9722 9723 if (VA.isRegLoc()) { 9724 // Queue up the argument copies and emit them at the end. 9725 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 9726 } else { 9727 assert(VA.isMemLoc() && "Argument not register or memory"); 9728 assert(!IsTailCall && "Tail call not allowed if stack is used " 9729 "for passing parameters"); 9730 9731 // Work out the address of the stack slot. 9732 if (!StackPtr.getNode()) 9733 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9734 SDValue Address = 9735 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 9736 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 9737 9738 // Emit the store. 9739 MemOpChains.push_back( 9740 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 9741 } 9742 } 9743 9744 // Join the stores, which are independent of one another. 9745 if (!MemOpChains.empty()) 9746 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 9747 9748 SDValue Glue; 9749 9750 // Build a sequence of copy-to-reg nodes, chained and glued together. 9751 for (auto &Reg : RegsToPass) { 9752 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 9753 Glue = Chain.getValue(1); 9754 } 9755 9756 // Validate that none of the argument registers have been marked as 9757 // reserved, if so report an error. Do the same for the return address if this 9758 // is not a tailcall. 9759 validateCCReservedRegs(RegsToPass, MF); 9760 if (!IsTailCall && 9761 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 9762 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9763 MF.getFunction(), 9764 "Return address register required, but has been reserved."}); 9765 9766 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 9767 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 9768 // split it and then direct call can be matched by PseudoCALL. 9769 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 9770 const GlobalValue *GV = S->getGlobal(); 9771 9772 unsigned OpFlags = RISCVII::MO_CALL; 9773 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 9774 OpFlags = RISCVII::MO_PLT; 9775 9776 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 9777 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 9778 unsigned OpFlags = RISCVII::MO_CALL; 9779 9780 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 9781 nullptr)) 9782 OpFlags = RISCVII::MO_PLT; 9783 9784 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 9785 } 9786 9787 // The first call operand is the chain and the second is the target address. 9788 SmallVector<SDValue, 8> Ops; 9789 Ops.push_back(Chain); 9790 Ops.push_back(Callee); 9791 9792 // Add argument registers to the end of the list so that they are 9793 // known live into the call. 9794 for (auto &Reg : RegsToPass) 9795 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 9796 9797 if (!IsTailCall) { 9798 // Add a register mask operand representing the call-preserved registers. 9799 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9800 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 9801 assert(Mask && "Missing call preserved mask for calling convention"); 9802 Ops.push_back(DAG.getRegisterMask(Mask)); 9803 } 9804 9805 // Glue the call to the argument copies, if any. 9806 if (Glue.getNode()) 9807 Ops.push_back(Glue); 9808 9809 // Emit the call. 9810 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9811 9812 if (IsTailCall) { 9813 MF.getFrameInfo().setHasTailCall(); 9814 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 9815 } 9816 9817 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 9818 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 9819 Glue = Chain.getValue(1); 9820 9821 // Mark the end of the call, which is glued to the call itself. 9822 Chain = DAG.getCALLSEQ_END(Chain, 9823 DAG.getConstant(NumBytes, DL, PtrVT, true), 9824 DAG.getConstant(0, DL, PtrVT, true), 9825 Glue, DL); 9826 Glue = Chain.getValue(1); 9827 9828 // Assign locations to each value returned by this call. 9829 SmallVector<CCValAssign, 16> RVLocs; 9830 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 9831 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 9832 9833 // Copy all of the result registers out of their specified physreg. 9834 for (auto &VA : RVLocs) { 9835 // Copy the value out 9836 SDValue RetValue = 9837 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 9838 // Glue the RetValue to the end of the call sequence 9839 Chain = RetValue.getValue(1); 9840 Glue = RetValue.getValue(2); 9841 9842 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9843 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 9844 SDValue RetValue2 = 9845 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 9846 Chain = RetValue2.getValue(1); 9847 Glue = RetValue2.getValue(2); 9848 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 9849 RetValue2); 9850 } 9851 9852 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 9853 9854 InVals.push_back(RetValue); 9855 } 9856 9857 return Chain; 9858 } 9859 9860 bool RISCVTargetLowering::CanLowerReturn( 9861 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 9862 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 9863 SmallVector<CCValAssign, 16> RVLocs; 9864 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 9865 9866 Optional<unsigned> FirstMaskArgument; 9867 if (Subtarget.hasVInstructions()) 9868 FirstMaskArgument = preAssignMask(Outs); 9869 9870 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9871 MVT VT = Outs[i].VT; 9872 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9873 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9874 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 9875 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 9876 *this, FirstMaskArgument)) 9877 return false; 9878 } 9879 return true; 9880 } 9881 9882 SDValue 9883 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 9884 bool IsVarArg, 9885 const SmallVectorImpl<ISD::OutputArg> &Outs, 9886 const SmallVectorImpl<SDValue> &OutVals, 9887 const SDLoc &DL, SelectionDAG &DAG) const { 9888 const MachineFunction &MF = DAG.getMachineFunction(); 9889 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9890 9891 // Stores the assignment of the return value to a location. 9892 SmallVector<CCValAssign, 16> RVLocs; 9893 9894 // Info about the registers and stack slot. 9895 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 9896 *DAG.getContext()); 9897 9898 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 9899 nullptr, CC_RISCV); 9900 9901 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 9902 report_fatal_error("GHC functions return void only"); 9903 9904 SDValue Glue; 9905 SmallVector<SDValue, 4> RetOps(1, Chain); 9906 9907 // Copy the result values into the output registers. 9908 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 9909 SDValue Val = OutVals[i]; 9910 CCValAssign &VA = RVLocs[i]; 9911 assert(VA.isRegLoc() && "Can only return in registers!"); 9912 9913 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9914 // Handle returning f64 on RV32D with a soft float ABI. 9915 assert(VA.isRegLoc() && "Expected return via registers"); 9916 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 9917 DAG.getVTList(MVT::i32, MVT::i32), Val); 9918 SDValue Lo = SplitF64.getValue(0); 9919 SDValue Hi = SplitF64.getValue(1); 9920 Register RegLo = VA.getLocReg(); 9921 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9922 Register RegHi = RegLo + 1; 9923 9924 if (STI.isRegisterReservedByUser(RegLo) || 9925 STI.isRegisterReservedByUser(RegHi)) 9926 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9927 MF.getFunction(), 9928 "Return value register required, but has been reserved."}); 9929 9930 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 9931 Glue = Chain.getValue(1); 9932 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 9933 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 9934 Glue = Chain.getValue(1); 9935 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 9936 } else { 9937 // Handle a 'normal' return. 9938 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 9939 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 9940 9941 if (STI.isRegisterReservedByUser(VA.getLocReg())) 9942 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9943 MF.getFunction(), 9944 "Return value register required, but has been reserved."}); 9945 9946 // Guarantee that all emitted copies are stuck together. 9947 Glue = Chain.getValue(1); 9948 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 9949 } 9950 } 9951 9952 RetOps[0] = Chain; // Update chain. 9953 9954 // Add the glue node if we have it. 9955 if (Glue.getNode()) { 9956 RetOps.push_back(Glue); 9957 } 9958 9959 unsigned RetOpc = RISCVISD::RET_FLAG; 9960 // Interrupt service routines use different return instructions. 9961 const Function &Func = DAG.getMachineFunction().getFunction(); 9962 if (Func.hasFnAttribute("interrupt")) { 9963 if (!Func.getReturnType()->isVoidTy()) 9964 report_fatal_error( 9965 "Functions with the interrupt attribute must have void return type!"); 9966 9967 MachineFunction &MF = DAG.getMachineFunction(); 9968 StringRef Kind = 9969 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9970 9971 if (Kind == "user") 9972 RetOpc = RISCVISD::URET_FLAG; 9973 else if (Kind == "supervisor") 9974 RetOpc = RISCVISD::SRET_FLAG; 9975 else 9976 RetOpc = RISCVISD::MRET_FLAG; 9977 } 9978 9979 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 9980 } 9981 9982 void RISCVTargetLowering::validateCCReservedRegs( 9983 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 9984 MachineFunction &MF) const { 9985 const Function &F = MF.getFunction(); 9986 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9987 9988 if (llvm::any_of(Regs, [&STI](auto Reg) { 9989 return STI.isRegisterReservedByUser(Reg.first); 9990 })) 9991 F.getContext().diagnose(DiagnosticInfoUnsupported{ 9992 F, "Argument register required, but has been reserved."}); 9993 } 9994 9995 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 9996 return CI->isTailCall(); 9997 } 9998 9999 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 10000 #define NODE_NAME_CASE(NODE) \ 10001 case RISCVISD::NODE: \ 10002 return "RISCVISD::" #NODE; 10003 // clang-format off 10004 switch ((RISCVISD::NodeType)Opcode) { 10005 case RISCVISD::FIRST_NUMBER: 10006 break; 10007 NODE_NAME_CASE(RET_FLAG) 10008 NODE_NAME_CASE(URET_FLAG) 10009 NODE_NAME_CASE(SRET_FLAG) 10010 NODE_NAME_CASE(MRET_FLAG) 10011 NODE_NAME_CASE(CALL) 10012 NODE_NAME_CASE(SELECT_CC) 10013 NODE_NAME_CASE(BR_CC) 10014 NODE_NAME_CASE(BuildPairF64) 10015 NODE_NAME_CASE(SplitF64) 10016 NODE_NAME_CASE(TAIL) 10017 NODE_NAME_CASE(MULHSU) 10018 NODE_NAME_CASE(SLLW) 10019 NODE_NAME_CASE(SRAW) 10020 NODE_NAME_CASE(SRLW) 10021 NODE_NAME_CASE(DIVW) 10022 NODE_NAME_CASE(DIVUW) 10023 NODE_NAME_CASE(REMUW) 10024 NODE_NAME_CASE(ROLW) 10025 NODE_NAME_CASE(RORW) 10026 NODE_NAME_CASE(CLZW) 10027 NODE_NAME_CASE(CTZW) 10028 NODE_NAME_CASE(FSLW) 10029 NODE_NAME_CASE(FSRW) 10030 NODE_NAME_CASE(FSL) 10031 NODE_NAME_CASE(FSR) 10032 NODE_NAME_CASE(FMV_H_X) 10033 NODE_NAME_CASE(FMV_X_ANYEXTH) 10034 NODE_NAME_CASE(FMV_W_X_RV64) 10035 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 10036 NODE_NAME_CASE(FCVT_X) 10037 NODE_NAME_CASE(FCVT_XU) 10038 NODE_NAME_CASE(FCVT_W_RV64) 10039 NODE_NAME_CASE(FCVT_WU_RV64) 10040 NODE_NAME_CASE(STRICT_FCVT_W_RV64) 10041 NODE_NAME_CASE(STRICT_FCVT_WU_RV64) 10042 NODE_NAME_CASE(READ_CYCLE_WIDE) 10043 NODE_NAME_CASE(GREV) 10044 NODE_NAME_CASE(GREVW) 10045 NODE_NAME_CASE(GORC) 10046 NODE_NAME_CASE(GORCW) 10047 NODE_NAME_CASE(SHFL) 10048 NODE_NAME_CASE(SHFLW) 10049 NODE_NAME_CASE(UNSHFL) 10050 NODE_NAME_CASE(UNSHFLW) 10051 NODE_NAME_CASE(BFP) 10052 NODE_NAME_CASE(BFPW) 10053 NODE_NAME_CASE(BCOMPRESS) 10054 NODE_NAME_CASE(BCOMPRESSW) 10055 NODE_NAME_CASE(BDECOMPRESS) 10056 NODE_NAME_CASE(BDECOMPRESSW) 10057 NODE_NAME_CASE(VMV_V_X_VL) 10058 NODE_NAME_CASE(VFMV_V_F_VL) 10059 NODE_NAME_CASE(VMV_X_S) 10060 NODE_NAME_CASE(VMV_S_X_VL) 10061 NODE_NAME_CASE(VFMV_S_F_VL) 10062 NODE_NAME_CASE(SPLAT_VECTOR_I64) 10063 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 10064 NODE_NAME_CASE(READ_VLENB) 10065 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 10066 NODE_NAME_CASE(VSLIDEUP_VL) 10067 NODE_NAME_CASE(VSLIDE1UP_VL) 10068 NODE_NAME_CASE(VSLIDEDOWN_VL) 10069 NODE_NAME_CASE(VSLIDE1DOWN_VL) 10070 NODE_NAME_CASE(VID_VL) 10071 NODE_NAME_CASE(VFNCVT_ROD_VL) 10072 NODE_NAME_CASE(VECREDUCE_ADD_VL) 10073 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 10074 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 10075 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 10076 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 10077 NODE_NAME_CASE(VECREDUCE_AND_VL) 10078 NODE_NAME_CASE(VECREDUCE_OR_VL) 10079 NODE_NAME_CASE(VECREDUCE_XOR_VL) 10080 NODE_NAME_CASE(VECREDUCE_FADD_VL) 10081 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 10082 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 10083 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 10084 NODE_NAME_CASE(ADD_VL) 10085 NODE_NAME_CASE(AND_VL) 10086 NODE_NAME_CASE(MUL_VL) 10087 NODE_NAME_CASE(OR_VL) 10088 NODE_NAME_CASE(SDIV_VL) 10089 NODE_NAME_CASE(SHL_VL) 10090 NODE_NAME_CASE(SREM_VL) 10091 NODE_NAME_CASE(SRA_VL) 10092 NODE_NAME_CASE(SRL_VL) 10093 NODE_NAME_CASE(SUB_VL) 10094 NODE_NAME_CASE(UDIV_VL) 10095 NODE_NAME_CASE(UREM_VL) 10096 NODE_NAME_CASE(XOR_VL) 10097 NODE_NAME_CASE(SADDSAT_VL) 10098 NODE_NAME_CASE(UADDSAT_VL) 10099 NODE_NAME_CASE(SSUBSAT_VL) 10100 NODE_NAME_CASE(USUBSAT_VL) 10101 NODE_NAME_CASE(FADD_VL) 10102 NODE_NAME_CASE(FSUB_VL) 10103 NODE_NAME_CASE(FMUL_VL) 10104 NODE_NAME_CASE(FDIV_VL) 10105 NODE_NAME_CASE(FNEG_VL) 10106 NODE_NAME_CASE(FABS_VL) 10107 NODE_NAME_CASE(FSQRT_VL) 10108 NODE_NAME_CASE(FMA_VL) 10109 NODE_NAME_CASE(FCOPYSIGN_VL) 10110 NODE_NAME_CASE(SMIN_VL) 10111 NODE_NAME_CASE(SMAX_VL) 10112 NODE_NAME_CASE(UMIN_VL) 10113 NODE_NAME_CASE(UMAX_VL) 10114 NODE_NAME_CASE(FMINNUM_VL) 10115 NODE_NAME_CASE(FMAXNUM_VL) 10116 NODE_NAME_CASE(MULHS_VL) 10117 NODE_NAME_CASE(MULHU_VL) 10118 NODE_NAME_CASE(FP_TO_SINT_VL) 10119 NODE_NAME_CASE(FP_TO_UINT_VL) 10120 NODE_NAME_CASE(SINT_TO_FP_VL) 10121 NODE_NAME_CASE(UINT_TO_FP_VL) 10122 NODE_NAME_CASE(FP_EXTEND_VL) 10123 NODE_NAME_CASE(FP_ROUND_VL) 10124 NODE_NAME_CASE(VWMUL_VL) 10125 NODE_NAME_CASE(VWMULU_VL) 10126 NODE_NAME_CASE(VWADDU_VL) 10127 NODE_NAME_CASE(SETCC_VL) 10128 NODE_NAME_CASE(VSELECT_VL) 10129 NODE_NAME_CASE(VP_MERGE_VL) 10130 NODE_NAME_CASE(VMAND_VL) 10131 NODE_NAME_CASE(VMOR_VL) 10132 NODE_NAME_CASE(VMXOR_VL) 10133 NODE_NAME_CASE(VMCLR_VL) 10134 NODE_NAME_CASE(VMSET_VL) 10135 NODE_NAME_CASE(VRGATHER_VX_VL) 10136 NODE_NAME_CASE(VRGATHER_VV_VL) 10137 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 10138 NODE_NAME_CASE(VSEXT_VL) 10139 NODE_NAME_CASE(VZEXT_VL) 10140 NODE_NAME_CASE(VCPOP_VL) 10141 NODE_NAME_CASE(VLE_VL) 10142 NODE_NAME_CASE(VSE_VL) 10143 NODE_NAME_CASE(READ_CSR) 10144 NODE_NAME_CASE(WRITE_CSR) 10145 NODE_NAME_CASE(SWAP_CSR) 10146 } 10147 // clang-format on 10148 return nullptr; 10149 #undef NODE_NAME_CASE 10150 } 10151 10152 /// getConstraintType - Given a constraint letter, return the type of 10153 /// constraint it is for this target. 10154 RISCVTargetLowering::ConstraintType 10155 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 10156 if (Constraint.size() == 1) { 10157 switch (Constraint[0]) { 10158 default: 10159 break; 10160 case 'f': 10161 return C_RegisterClass; 10162 case 'I': 10163 case 'J': 10164 case 'K': 10165 return C_Immediate; 10166 case 'A': 10167 return C_Memory; 10168 case 'S': // A symbolic address 10169 return C_Other; 10170 } 10171 } else { 10172 if (Constraint == "vr" || Constraint == "vm") 10173 return C_RegisterClass; 10174 } 10175 return TargetLowering::getConstraintType(Constraint); 10176 } 10177 10178 std::pair<unsigned, const TargetRegisterClass *> 10179 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 10180 StringRef Constraint, 10181 MVT VT) const { 10182 // First, see if this is a constraint that directly corresponds to a 10183 // RISCV register class. 10184 if (Constraint.size() == 1) { 10185 switch (Constraint[0]) { 10186 case 'r': 10187 // TODO: Support fixed vectors up to XLen for P extension? 10188 if (VT.isVector()) 10189 break; 10190 return std::make_pair(0U, &RISCV::GPRRegClass); 10191 case 'f': 10192 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 10193 return std::make_pair(0U, &RISCV::FPR16RegClass); 10194 if (Subtarget.hasStdExtF() && VT == MVT::f32) 10195 return std::make_pair(0U, &RISCV::FPR32RegClass); 10196 if (Subtarget.hasStdExtD() && VT == MVT::f64) 10197 return std::make_pair(0U, &RISCV::FPR64RegClass); 10198 break; 10199 default: 10200 break; 10201 } 10202 } else if (Constraint == "vr") { 10203 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 10204 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 10205 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 10206 return std::make_pair(0U, RC); 10207 } 10208 } else if (Constraint == "vm") { 10209 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 10210 return std::make_pair(0U, &RISCV::VMV0RegClass); 10211 } 10212 10213 // Clang will correctly decode the usage of register name aliases into their 10214 // official names. However, other frontends like `rustc` do not. This allows 10215 // users of these frontends to use the ABI names for registers in LLVM-style 10216 // register constraints. 10217 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 10218 .Case("{zero}", RISCV::X0) 10219 .Case("{ra}", RISCV::X1) 10220 .Case("{sp}", RISCV::X2) 10221 .Case("{gp}", RISCV::X3) 10222 .Case("{tp}", RISCV::X4) 10223 .Case("{t0}", RISCV::X5) 10224 .Case("{t1}", RISCV::X6) 10225 .Case("{t2}", RISCV::X7) 10226 .Cases("{s0}", "{fp}", RISCV::X8) 10227 .Case("{s1}", RISCV::X9) 10228 .Case("{a0}", RISCV::X10) 10229 .Case("{a1}", RISCV::X11) 10230 .Case("{a2}", RISCV::X12) 10231 .Case("{a3}", RISCV::X13) 10232 .Case("{a4}", RISCV::X14) 10233 .Case("{a5}", RISCV::X15) 10234 .Case("{a6}", RISCV::X16) 10235 .Case("{a7}", RISCV::X17) 10236 .Case("{s2}", RISCV::X18) 10237 .Case("{s3}", RISCV::X19) 10238 .Case("{s4}", RISCV::X20) 10239 .Case("{s5}", RISCV::X21) 10240 .Case("{s6}", RISCV::X22) 10241 .Case("{s7}", RISCV::X23) 10242 .Case("{s8}", RISCV::X24) 10243 .Case("{s9}", RISCV::X25) 10244 .Case("{s10}", RISCV::X26) 10245 .Case("{s11}", RISCV::X27) 10246 .Case("{t3}", RISCV::X28) 10247 .Case("{t4}", RISCV::X29) 10248 .Case("{t5}", RISCV::X30) 10249 .Case("{t6}", RISCV::X31) 10250 .Default(RISCV::NoRegister); 10251 if (XRegFromAlias != RISCV::NoRegister) 10252 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 10253 10254 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 10255 // TableGen record rather than the AsmName to choose registers for InlineAsm 10256 // constraints, plus we want to match those names to the widest floating point 10257 // register type available, manually select floating point registers here. 10258 // 10259 // The second case is the ABI name of the register, so that frontends can also 10260 // use the ABI names in register constraint lists. 10261 if (Subtarget.hasStdExtF()) { 10262 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 10263 .Cases("{f0}", "{ft0}", RISCV::F0_F) 10264 .Cases("{f1}", "{ft1}", RISCV::F1_F) 10265 .Cases("{f2}", "{ft2}", RISCV::F2_F) 10266 .Cases("{f3}", "{ft3}", RISCV::F3_F) 10267 .Cases("{f4}", "{ft4}", RISCV::F4_F) 10268 .Cases("{f5}", "{ft5}", RISCV::F5_F) 10269 .Cases("{f6}", "{ft6}", RISCV::F6_F) 10270 .Cases("{f7}", "{ft7}", RISCV::F7_F) 10271 .Cases("{f8}", "{fs0}", RISCV::F8_F) 10272 .Cases("{f9}", "{fs1}", RISCV::F9_F) 10273 .Cases("{f10}", "{fa0}", RISCV::F10_F) 10274 .Cases("{f11}", "{fa1}", RISCV::F11_F) 10275 .Cases("{f12}", "{fa2}", RISCV::F12_F) 10276 .Cases("{f13}", "{fa3}", RISCV::F13_F) 10277 .Cases("{f14}", "{fa4}", RISCV::F14_F) 10278 .Cases("{f15}", "{fa5}", RISCV::F15_F) 10279 .Cases("{f16}", "{fa6}", RISCV::F16_F) 10280 .Cases("{f17}", "{fa7}", RISCV::F17_F) 10281 .Cases("{f18}", "{fs2}", RISCV::F18_F) 10282 .Cases("{f19}", "{fs3}", RISCV::F19_F) 10283 .Cases("{f20}", "{fs4}", RISCV::F20_F) 10284 .Cases("{f21}", "{fs5}", RISCV::F21_F) 10285 .Cases("{f22}", "{fs6}", RISCV::F22_F) 10286 .Cases("{f23}", "{fs7}", RISCV::F23_F) 10287 .Cases("{f24}", "{fs8}", RISCV::F24_F) 10288 .Cases("{f25}", "{fs9}", RISCV::F25_F) 10289 .Cases("{f26}", "{fs10}", RISCV::F26_F) 10290 .Cases("{f27}", "{fs11}", RISCV::F27_F) 10291 .Cases("{f28}", "{ft8}", RISCV::F28_F) 10292 .Cases("{f29}", "{ft9}", RISCV::F29_F) 10293 .Cases("{f30}", "{ft10}", RISCV::F30_F) 10294 .Cases("{f31}", "{ft11}", RISCV::F31_F) 10295 .Default(RISCV::NoRegister); 10296 if (FReg != RISCV::NoRegister) { 10297 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 10298 if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) { 10299 unsigned RegNo = FReg - RISCV::F0_F; 10300 unsigned DReg = RISCV::F0_D + RegNo; 10301 return std::make_pair(DReg, &RISCV::FPR64RegClass); 10302 } 10303 if (VT == MVT::f32 || VT == MVT::Other) 10304 return std::make_pair(FReg, &RISCV::FPR32RegClass); 10305 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) { 10306 unsigned RegNo = FReg - RISCV::F0_F; 10307 unsigned HReg = RISCV::F0_H + RegNo; 10308 return std::make_pair(HReg, &RISCV::FPR16RegClass); 10309 } 10310 } 10311 } 10312 10313 if (Subtarget.hasVInstructions()) { 10314 Register VReg = StringSwitch<Register>(Constraint.lower()) 10315 .Case("{v0}", RISCV::V0) 10316 .Case("{v1}", RISCV::V1) 10317 .Case("{v2}", RISCV::V2) 10318 .Case("{v3}", RISCV::V3) 10319 .Case("{v4}", RISCV::V4) 10320 .Case("{v5}", RISCV::V5) 10321 .Case("{v6}", RISCV::V6) 10322 .Case("{v7}", RISCV::V7) 10323 .Case("{v8}", RISCV::V8) 10324 .Case("{v9}", RISCV::V9) 10325 .Case("{v10}", RISCV::V10) 10326 .Case("{v11}", RISCV::V11) 10327 .Case("{v12}", RISCV::V12) 10328 .Case("{v13}", RISCV::V13) 10329 .Case("{v14}", RISCV::V14) 10330 .Case("{v15}", RISCV::V15) 10331 .Case("{v16}", RISCV::V16) 10332 .Case("{v17}", RISCV::V17) 10333 .Case("{v18}", RISCV::V18) 10334 .Case("{v19}", RISCV::V19) 10335 .Case("{v20}", RISCV::V20) 10336 .Case("{v21}", RISCV::V21) 10337 .Case("{v22}", RISCV::V22) 10338 .Case("{v23}", RISCV::V23) 10339 .Case("{v24}", RISCV::V24) 10340 .Case("{v25}", RISCV::V25) 10341 .Case("{v26}", RISCV::V26) 10342 .Case("{v27}", RISCV::V27) 10343 .Case("{v28}", RISCV::V28) 10344 .Case("{v29}", RISCV::V29) 10345 .Case("{v30}", RISCV::V30) 10346 .Case("{v31}", RISCV::V31) 10347 .Default(RISCV::NoRegister); 10348 if (VReg != RISCV::NoRegister) { 10349 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 10350 return std::make_pair(VReg, &RISCV::VMRegClass); 10351 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 10352 return std::make_pair(VReg, &RISCV::VRRegClass); 10353 for (const auto *RC : 10354 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 10355 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 10356 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 10357 return std::make_pair(VReg, RC); 10358 } 10359 } 10360 } 10361 } 10362 10363 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 10364 } 10365 10366 unsigned 10367 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 10368 // Currently only support length 1 constraints. 10369 if (ConstraintCode.size() == 1) { 10370 switch (ConstraintCode[0]) { 10371 case 'A': 10372 return InlineAsm::Constraint_A; 10373 default: 10374 break; 10375 } 10376 } 10377 10378 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 10379 } 10380 10381 void RISCVTargetLowering::LowerAsmOperandForConstraint( 10382 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 10383 SelectionDAG &DAG) const { 10384 // Currently only support length 1 constraints. 10385 if (Constraint.length() == 1) { 10386 switch (Constraint[0]) { 10387 case 'I': 10388 // Validate & create a 12-bit signed immediate operand. 10389 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 10390 uint64_t CVal = C->getSExtValue(); 10391 if (isInt<12>(CVal)) 10392 Ops.push_back( 10393 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 10394 } 10395 return; 10396 case 'J': 10397 // Validate & create an integer zero operand. 10398 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 10399 if (C->getZExtValue() == 0) 10400 Ops.push_back( 10401 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 10402 return; 10403 case 'K': 10404 // Validate & create a 5-bit unsigned immediate operand. 10405 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 10406 uint64_t CVal = C->getZExtValue(); 10407 if (isUInt<5>(CVal)) 10408 Ops.push_back( 10409 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 10410 } 10411 return; 10412 case 'S': 10413 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 10414 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 10415 GA->getValueType(0))); 10416 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 10417 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 10418 BA->getValueType(0))); 10419 } 10420 return; 10421 default: 10422 break; 10423 } 10424 } 10425 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 10426 } 10427 10428 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 10429 Instruction *Inst, 10430 AtomicOrdering Ord) const { 10431 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 10432 return Builder.CreateFence(Ord); 10433 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 10434 return Builder.CreateFence(AtomicOrdering::Release); 10435 return nullptr; 10436 } 10437 10438 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 10439 Instruction *Inst, 10440 AtomicOrdering Ord) const { 10441 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 10442 return Builder.CreateFence(AtomicOrdering::Acquire); 10443 return nullptr; 10444 } 10445 10446 TargetLowering::AtomicExpansionKind 10447 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 10448 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 10449 // point operations can't be used in an lr/sc sequence without breaking the 10450 // forward-progress guarantee. 10451 if (AI->isFloatingPointOperation()) 10452 return AtomicExpansionKind::CmpXChg; 10453 10454 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 10455 if (Size == 8 || Size == 16) 10456 return AtomicExpansionKind::MaskedIntrinsic; 10457 return AtomicExpansionKind::None; 10458 } 10459 10460 static Intrinsic::ID 10461 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 10462 if (XLen == 32) { 10463 switch (BinOp) { 10464 default: 10465 llvm_unreachable("Unexpected AtomicRMW BinOp"); 10466 case AtomicRMWInst::Xchg: 10467 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 10468 case AtomicRMWInst::Add: 10469 return Intrinsic::riscv_masked_atomicrmw_add_i32; 10470 case AtomicRMWInst::Sub: 10471 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 10472 case AtomicRMWInst::Nand: 10473 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 10474 case AtomicRMWInst::Max: 10475 return Intrinsic::riscv_masked_atomicrmw_max_i32; 10476 case AtomicRMWInst::Min: 10477 return Intrinsic::riscv_masked_atomicrmw_min_i32; 10478 case AtomicRMWInst::UMax: 10479 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 10480 case AtomicRMWInst::UMin: 10481 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 10482 } 10483 } 10484 10485 if (XLen == 64) { 10486 switch (BinOp) { 10487 default: 10488 llvm_unreachable("Unexpected AtomicRMW BinOp"); 10489 case AtomicRMWInst::Xchg: 10490 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 10491 case AtomicRMWInst::Add: 10492 return Intrinsic::riscv_masked_atomicrmw_add_i64; 10493 case AtomicRMWInst::Sub: 10494 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 10495 case AtomicRMWInst::Nand: 10496 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 10497 case AtomicRMWInst::Max: 10498 return Intrinsic::riscv_masked_atomicrmw_max_i64; 10499 case AtomicRMWInst::Min: 10500 return Intrinsic::riscv_masked_atomicrmw_min_i64; 10501 case AtomicRMWInst::UMax: 10502 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 10503 case AtomicRMWInst::UMin: 10504 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 10505 } 10506 } 10507 10508 llvm_unreachable("Unexpected XLen\n"); 10509 } 10510 10511 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 10512 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 10513 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 10514 unsigned XLen = Subtarget.getXLen(); 10515 Value *Ordering = 10516 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 10517 Type *Tys[] = {AlignedAddr->getType()}; 10518 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 10519 AI->getModule(), 10520 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 10521 10522 if (XLen == 64) { 10523 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 10524 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 10525 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 10526 } 10527 10528 Value *Result; 10529 10530 // Must pass the shift amount needed to sign extend the loaded value prior 10531 // to performing a signed comparison for min/max. ShiftAmt is the number of 10532 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 10533 // is the number of bits to left+right shift the value in order to 10534 // sign-extend. 10535 if (AI->getOperation() == AtomicRMWInst::Min || 10536 AI->getOperation() == AtomicRMWInst::Max) { 10537 const DataLayout &DL = AI->getModule()->getDataLayout(); 10538 unsigned ValWidth = 10539 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 10540 Value *SextShamt = 10541 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 10542 Result = Builder.CreateCall(LrwOpScwLoop, 10543 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 10544 } else { 10545 Result = 10546 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 10547 } 10548 10549 if (XLen == 64) 10550 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 10551 return Result; 10552 } 10553 10554 TargetLowering::AtomicExpansionKind 10555 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 10556 AtomicCmpXchgInst *CI) const { 10557 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 10558 if (Size == 8 || Size == 16) 10559 return AtomicExpansionKind::MaskedIntrinsic; 10560 return AtomicExpansionKind::None; 10561 } 10562 10563 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 10564 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 10565 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 10566 unsigned XLen = Subtarget.getXLen(); 10567 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 10568 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 10569 if (XLen == 64) { 10570 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 10571 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 10572 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 10573 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 10574 } 10575 Type *Tys[] = {AlignedAddr->getType()}; 10576 Function *MaskedCmpXchg = 10577 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 10578 Value *Result = Builder.CreateCall( 10579 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 10580 if (XLen == 64) 10581 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 10582 return Result; 10583 } 10584 10585 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 10586 return false; 10587 } 10588 10589 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 10590 EVT VT) const { 10591 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 10592 return false; 10593 10594 switch (FPVT.getSimpleVT().SimpleTy) { 10595 case MVT::f16: 10596 return Subtarget.hasStdExtZfh(); 10597 case MVT::f32: 10598 return Subtarget.hasStdExtF(); 10599 case MVT::f64: 10600 return Subtarget.hasStdExtD(); 10601 default: 10602 return false; 10603 } 10604 } 10605 10606 unsigned RISCVTargetLowering::getJumpTableEncoding() const { 10607 // If we are using the small code model, we can reduce size of jump table 10608 // entry to 4 bytes. 10609 if (Subtarget.is64Bit() && !isPositionIndependent() && 10610 getTargetMachine().getCodeModel() == CodeModel::Small) { 10611 return MachineJumpTableInfo::EK_Custom32; 10612 } 10613 return TargetLowering::getJumpTableEncoding(); 10614 } 10615 10616 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry( 10617 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 10618 unsigned uid, MCContext &Ctx) const { 10619 assert(Subtarget.is64Bit() && !isPositionIndependent() && 10620 getTargetMachine().getCodeModel() == CodeModel::Small); 10621 return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 10622 } 10623 10624 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 10625 EVT VT) const { 10626 VT = VT.getScalarType(); 10627 10628 if (!VT.isSimple()) 10629 return false; 10630 10631 switch (VT.getSimpleVT().SimpleTy) { 10632 case MVT::f16: 10633 return Subtarget.hasStdExtZfh(); 10634 case MVT::f32: 10635 return Subtarget.hasStdExtF(); 10636 case MVT::f64: 10637 return Subtarget.hasStdExtD(); 10638 default: 10639 break; 10640 } 10641 10642 return false; 10643 } 10644 10645 Register RISCVTargetLowering::getExceptionPointerRegister( 10646 const Constant *PersonalityFn) const { 10647 return RISCV::X10; 10648 } 10649 10650 Register RISCVTargetLowering::getExceptionSelectorRegister( 10651 const Constant *PersonalityFn) const { 10652 return RISCV::X11; 10653 } 10654 10655 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 10656 // Return false to suppress the unnecessary extensions if the LibCall 10657 // arguments or return value is f32 type for LP64 ABI. 10658 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 10659 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 10660 return false; 10661 10662 return true; 10663 } 10664 10665 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 10666 if (Subtarget.is64Bit() && Type == MVT::i32) 10667 return true; 10668 10669 return IsSigned; 10670 } 10671 10672 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 10673 SDValue C) const { 10674 // Check integral scalar types. 10675 if (VT.isScalarInteger()) { 10676 // Omit the optimization if the sub target has the M extension and the data 10677 // size exceeds XLen. 10678 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 10679 return false; 10680 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 10681 // Break the MUL to a SLLI and an ADD/SUB. 10682 const APInt &Imm = ConstNode->getAPIntValue(); 10683 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 10684 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 10685 return true; 10686 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 10687 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 10688 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 10689 (Imm - 8).isPowerOf2())) 10690 return true; 10691 // Omit the following optimization if the sub target has the M extension 10692 // and the data size >= XLen. 10693 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 10694 return false; 10695 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 10696 // a pair of LUI/ADDI. 10697 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 10698 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 10699 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 10700 (1 - ImmS).isPowerOf2()) 10701 return true; 10702 } 10703 } 10704 } 10705 10706 return false; 10707 } 10708 10709 bool RISCVTargetLowering::isMulAddWithConstProfitable( 10710 const SDValue &AddNode, const SDValue &ConstNode) const { 10711 // Let the DAGCombiner decide for vectors. 10712 EVT VT = AddNode.getValueType(); 10713 if (VT.isVector()) 10714 return true; 10715 10716 // Let the DAGCombiner decide for larger types. 10717 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 10718 return true; 10719 10720 // It is worse if c1 is simm12 while c1*c2 is not. 10721 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 10722 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 10723 const APInt &C1 = C1Node->getAPIntValue(); 10724 const APInt &C2 = C2Node->getAPIntValue(); 10725 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 10726 return false; 10727 10728 // Default to true and let the DAGCombiner decide. 10729 return true; 10730 } 10731 10732 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 10733 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 10734 bool *Fast) const { 10735 if (!VT.isVector()) 10736 return false; 10737 10738 EVT ElemVT = VT.getVectorElementType(); 10739 if (Alignment >= ElemVT.getStoreSize()) { 10740 if (Fast) 10741 *Fast = true; 10742 return true; 10743 } 10744 10745 return false; 10746 } 10747 10748 bool RISCVTargetLowering::splitValueIntoRegisterParts( 10749 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 10750 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 10751 bool IsABIRegCopy = CC.hasValue(); 10752 EVT ValueVT = Val.getValueType(); 10753 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10754 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 10755 // and cast to f32. 10756 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 10757 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 10758 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 10759 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 10760 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 10761 Parts[0] = Val; 10762 return true; 10763 } 10764 10765 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10766 LLVMContext &Context = *DAG.getContext(); 10767 EVT ValueEltVT = ValueVT.getVectorElementType(); 10768 EVT PartEltVT = PartVT.getVectorElementType(); 10769 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10770 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10771 if (PartVTBitSize % ValueVTBitSize == 0) { 10772 assert(PartVTBitSize >= ValueVTBitSize); 10773 // If the element types are different, bitcast to the same element type of 10774 // PartVT first. 10775 // Give an example here, we want copy a <vscale x 1 x i8> value to 10776 // <vscale x 4 x i16>. 10777 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 10778 // subvector, then we can bitcast to <vscale x 4 x i16>. 10779 if (ValueEltVT != PartEltVT) { 10780 if (PartVTBitSize > ValueVTBitSize) { 10781 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 10782 assert(Count != 0 && "The number of element should not be zero."); 10783 EVT SameEltTypeVT = 10784 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 10785 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 10786 DAG.getUNDEF(SameEltTypeVT), Val, 10787 DAG.getVectorIdxConstant(0, DL)); 10788 } 10789 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 10790 } else { 10791 Val = 10792 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 10793 Val, DAG.getVectorIdxConstant(0, DL)); 10794 } 10795 Parts[0] = Val; 10796 return true; 10797 } 10798 } 10799 return false; 10800 } 10801 10802 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 10803 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 10804 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 10805 bool IsABIRegCopy = CC.hasValue(); 10806 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10807 SDValue Val = Parts[0]; 10808 10809 // Cast the f32 to i32, truncate to i16, and cast back to f16. 10810 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 10811 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 10812 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 10813 return Val; 10814 } 10815 10816 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10817 LLVMContext &Context = *DAG.getContext(); 10818 SDValue Val = Parts[0]; 10819 EVT ValueEltVT = ValueVT.getVectorElementType(); 10820 EVT PartEltVT = PartVT.getVectorElementType(); 10821 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10822 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10823 if (PartVTBitSize % ValueVTBitSize == 0) { 10824 assert(PartVTBitSize >= ValueVTBitSize); 10825 EVT SameEltTypeVT = ValueVT; 10826 // If the element types are different, convert it to the same element type 10827 // of PartVT. 10828 // Give an example here, we want copy a <vscale x 1 x i8> value from 10829 // <vscale x 4 x i16>. 10830 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 10831 // then we can extract <vscale x 1 x i8>. 10832 if (ValueEltVT != PartEltVT) { 10833 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 10834 assert(Count != 0 && "The number of element should not be zero."); 10835 SameEltTypeVT = 10836 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 10837 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 10838 } 10839 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 10840 DAG.getVectorIdxConstant(0, DL)); 10841 return Val; 10842 } 10843 } 10844 return SDValue(); 10845 } 10846 10847 SDValue 10848 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 10849 SelectionDAG &DAG, 10850 SmallVectorImpl<SDNode *> &Created) const { 10851 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 10852 if (isIntDivCheap(N->getValueType(0), Attr)) 10853 return SDValue(N, 0); // Lower SDIV as SDIV 10854 10855 assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) && 10856 "Unexpected divisor!"); 10857 10858 // Conditional move is needed, so do the transformation iff Zbt is enabled. 10859 if (!Subtarget.hasStdExtZbt()) 10860 return SDValue(); 10861 10862 // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation. 10863 // Besides, more critical path instructions will be generated when dividing 10864 // by 2. So we keep using the original DAGs for these cases. 10865 unsigned Lg2 = Divisor.countTrailingZeros(); 10866 if (Lg2 == 1 || Lg2 >= 12) 10867 return SDValue(); 10868 10869 // fold (sdiv X, pow2) 10870 EVT VT = N->getValueType(0); 10871 if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64)) 10872 return SDValue(); 10873 10874 SDLoc DL(N); 10875 SDValue N0 = N->getOperand(0); 10876 SDValue Zero = DAG.getConstant(0, DL, VT); 10877 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); 10878 10879 // Add (N0 < 0) ? Pow2 - 1 : 0; 10880 SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT); 10881 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 10882 SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 10883 10884 Created.push_back(Cmp.getNode()); 10885 Created.push_back(Add.getNode()); 10886 Created.push_back(Sel.getNode()); 10887 10888 // Divide by pow2. 10889 SDValue SRA = 10890 DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT)); 10891 10892 // If we're dividing by a positive value, we're done. Otherwise, we must 10893 // negate the result. 10894 if (Divisor.isNonNegative()) 10895 return SRA; 10896 10897 Created.push_back(SRA.getNode()); 10898 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 10899 } 10900 10901 #define GET_REGISTER_MATCHER 10902 #include "RISCVGenAsmMatcher.inc" 10903 10904 Register 10905 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 10906 const MachineFunction &MF) const { 10907 Register Reg = MatchRegisterAltName(RegName); 10908 if (Reg == RISCV::NoRegister) 10909 Reg = MatchRegisterName(RegName); 10910 if (Reg == RISCV::NoRegister) 10911 report_fatal_error( 10912 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 10913 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 10914 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 10915 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 10916 StringRef(RegName) + "\".")); 10917 return Reg; 10918 } 10919 10920 namespace llvm { 10921 namespace RISCVVIntrinsicsTable { 10922 10923 #define GET_RISCVVIntrinsicsTable_IMPL 10924 #include "RISCVGenSearchableTables.inc" 10925 10926 } // namespace RISCVVIntrinsicsTable 10927 10928 } // namespace llvm 10929