1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "RISCV.h" 16 #include "RISCVMachineFunctionInfo.h" 17 #include "RISCVRegisterInfo.h" 18 #include "RISCVSubtarget.h" 19 #include "RISCVTargetMachine.h" 20 #include "Utils/RISCVMatInt.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IntrinsicsRISCV.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/raw_ostream.h" 37 38 using namespace llvm; 39 40 #define DEBUG_TYPE "riscv-lower" 41 42 STATISTIC(NumTailCalls, "Number of tail calls"); 43 44 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 45 const RISCVSubtarget &STI) 46 : TargetLowering(TM), Subtarget(STI) { 47 48 if (Subtarget.isRV32E()) 49 report_fatal_error("Codegen not yet implemented for RV32E"); 50 51 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 52 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 53 54 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 55 !Subtarget.hasStdExtF()) { 56 errs() << "Hard-float 'f' ABI can't be used for a target that " 57 "doesn't support the F instruction set extension (ignoring " 58 "target-abi)\n"; 59 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 60 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 61 !Subtarget.hasStdExtD()) { 62 errs() << "Hard-float 'd' ABI can't be used for a target that " 63 "doesn't support the D instruction set extension (ignoring " 64 "target-abi)\n"; 65 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 66 } 67 68 switch (ABI) { 69 default: 70 report_fatal_error("Don't know how to lower this ABI"); 71 case RISCVABI::ABI_ILP32: 72 case RISCVABI::ABI_ILP32F: 73 case RISCVABI::ABI_ILP32D: 74 case RISCVABI::ABI_LP64: 75 case RISCVABI::ABI_LP64F: 76 case RISCVABI::ABI_LP64D: 77 break; 78 } 79 80 MVT XLenVT = Subtarget.getXLenVT(); 81 82 // Set up the register classes. 83 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 84 85 if (Subtarget.hasStdExtZfh()) 86 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 87 if (Subtarget.hasStdExtF()) 88 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 89 if (Subtarget.hasStdExtD()) 90 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 91 92 // Compute derived properties from the register classes. 93 computeRegisterProperties(STI.getRegisterInfo()); 94 95 setStackPointerRegisterToSaveRestore(RISCV::X2); 96 97 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 98 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 99 100 // TODO: add all necessary setOperationAction calls. 101 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 102 103 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 104 setOperationAction(ISD::BR_CC, XLenVT, Expand); 105 setOperationAction(ISD::SELECT, XLenVT, Custom); 106 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 107 108 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 109 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 110 111 setOperationAction(ISD::VASTART, MVT::Other, Custom); 112 setOperationAction(ISD::VAARG, MVT::Other, Expand); 113 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 114 setOperationAction(ISD::VAEND, MVT::Other, Expand); 115 116 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 117 if (!Subtarget.hasStdExtZbb()) { 118 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 119 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 120 } 121 122 if (Subtarget.is64Bit()) { 123 setOperationAction(ISD::ADD, MVT::i32, Custom); 124 setOperationAction(ISD::SUB, MVT::i32, Custom); 125 setOperationAction(ISD::SHL, MVT::i32, Custom); 126 setOperationAction(ISD::SRA, MVT::i32, Custom); 127 setOperationAction(ISD::SRL, MVT::i32, Custom); 128 } 129 130 if (!Subtarget.hasStdExtM()) { 131 setOperationAction(ISD::MUL, XLenVT, Expand); 132 setOperationAction(ISD::MULHS, XLenVT, Expand); 133 setOperationAction(ISD::MULHU, XLenVT, Expand); 134 setOperationAction(ISD::SDIV, XLenVT, Expand); 135 setOperationAction(ISD::UDIV, XLenVT, Expand); 136 setOperationAction(ISD::SREM, XLenVT, Expand); 137 setOperationAction(ISD::UREM, XLenVT, Expand); 138 } 139 140 if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) { 141 setOperationAction(ISD::MUL, MVT::i32, Custom); 142 setOperationAction(ISD::SDIV, MVT::i32, Custom); 143 setOperationAction(ISD::UDIV, MVT::i32, Custom); 144 setOperationAction(ISD::UREM, MVT::i32, Custom); 145 } 146 147 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 148 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 149 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 150 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 151 152 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 153 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 154 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 155 156 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 157 if (Subtarget.is64Bit()) { 158 setOperationAction(ISD::ROTL, MVT::i32, Custom); 159 setOperationAction(ISD::ROTR, MVT::i32, Custom); 160 } 161 } else { 162 setOperationAction(ISD::ROTL, XLenVT, Expand); 163 setOperationAction(ISD::ROTR, XLenVT, Expand); 164 } 165 166 if (Subtarget.hasStdExtZbp()) { 167 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 168 setOperationAction(ISD::BSWAP, XLenVT, Custom); 169 170 if (Subtarget.is64Bit()) { 171 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 172 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 173 } 174 } else { 175 setOperationAction(ISD::BSWAP, XLenVT, Expand); 176 } 177 178 if (Subtarget.hasStdExtZbb()) { 179 setOperationAction(ISD::SMIN, XLenVT, Legal); 180 setOperationAction(ISD::SMAX, XLenVT, Legal); 181 setOperationAction(ISD::UMIN, XLenVT, Legal); 182 setOperationAction(ISD::UMAX, XLenVT, Legal); 183 } else { 184 setOperationAction(ISD::CTTZ, XLenVT, Expand); 185 setOperationAction(ISD::CTLZ, XLenVT, Expand); 186 setOperationAction(ISD::CTPOP, XLenVT, Expand); 187 } 188 189 if (Subtarget.hasStdExtZbt()) { 190 setOperationAction(ISD::FSHL, XLenVT, Legal); 191 setOperationAction(ISD::FSHR, XLenVT, Legal); 192 193 if (Subtarget.is64Bit()) { 194 setOperationAction(ISD::FSHL, MVT::i32, Custom); 195 setOperationAction(ISD::FSHR, MVT::i32, Custom); 196 } 197 } 198 199 ISD::CondCode FPCCToExpand[] = { 200 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 201 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 202 ISD::SETGE, ISD::SETNE}; 203 204 ISD::NodeType FPOpToExpand[] = { 205 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 206 ISD::FP_TO_FP16}; 207 208 if (Subtarget.hasStdExtZfh()) 209 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 210 211 if (Subtarget.hasStdExtZfh()) { 212 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 213 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 214 for (auto CC : FPCCToExpand) 215 setCondCodeAction(CC, MVT::f16, Expand); 216 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 217 setOperationAction(ISD::SELECT, MVT::f16, Custom); 218 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 219 for (auto Op : FPOpToExpand) 220 setOperationAction(Op, MVT::f16, Expand); 221 } 222 223 if (Subtarget.hasStdExtF()) { 224 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 225 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 226 for (auto CC : FPCCToExpand) 227 setCondCodeAction(CC, MVT::f32, Expand); 228 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 229 setOperationAction(ISD::SELECT, MVT::f32, Custom); 230 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 231 for (auto Op : FPOpToExpand) 232 setOperationAction(Op, MVT::f32, Expand); 233 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 234 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 235 } 236 237 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 238 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 239 240 if (Subtarget.hasStdExtD()) { 241 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 242 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 243 for (auto CC : FPCCToExpand) 244 setCondCodeAction(CC, MVT::f64, Expand); 245 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 246 setOperationAction(ISD::SELECT, MVT::f64, Custom); 247 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 248 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 249 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 250 for (auto Op : FPOpToExpand) 251 setOperationAction(Op, MVT::f64, Expand); 252 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 253 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 254 } 255 256 if (Subtarget.is64Bit()) { 257 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 258 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 259 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 260 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 261 } 262 263 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 264 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 265 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 266 267 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 268 269 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 270 // Unfortunately this can't be determined just from the ISA naming string. 271 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 272 Subtarget.is64Bit() ? Legal : Custom); 273 274 setOperationAction(ISD::TRAP, MVT::Other, Legal); 275 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 276 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 277 278 if (Subtarget.hasStdExtA()) { 279 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 280 setMinCmpXchgSizeInBits(32); 281 } else { 282 setMaxAtomicSizeInBitsSupported(0); 283 } 284 285 setBooleanContents(ZeroOrOneBooleanContent); 286 287 // Function alignments. 288 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 289 setMinFunctionAlignment(FunctionAlignment); 290 setPrefFunctionAlignment(FunctionAlignment); 291 292 // Effectively disable jump table generation. 293 setMinimumJumpTableEntries(INT_MAX); 294 295 // Jumps are expensive, compared to logic 296 setJumpIsExpensive(); 297 298 // We can use any register for comparisons 299 setHasMultipleConditionRegisters(); 300 301 if (Subtarget.hasStdExtZbp()) { 302 setTargetDAGCombine(ISD::OR); 303 } 304 } 305 306 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, 307 EVT VT) const { 308 if (!VT.isVector()) 309 return getPointerTy(DL); 310 return VT.changeVectorElementTypeToInteger(); 311 } 312 313 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 314 const CallInst &I, 315 MachineFunction &MF, 316 unsigned Intrinsic) const { 317 switch (Intrinsic) { 318 default: 319 return false; 320 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 321 case Intrinsic::riscv_masked_atomicrmw_add_i32: 322 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 323 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 324 case Intrinsic::riscv_masked_atomicrmw_max_i32: 325 case Intrinsic::riscv_masked_atomicrmw_min_i32: 326 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 327 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 328 case Intrinsic::riscv_masked_cmpxchg_i32: 329 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 330 Info.opc = ISD::INTRINSIC_W_CHAIN; 331 Info.memVT = MVT::getVT(PtrTy->getElementType()); 332 Info.ptrVal = I.getArgOperand(0); 333 Info.offset = 0; 334 Info.align = Align(4); 335 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 336 MachineMemOperand::MOVolatile; 337 return true; 338 } 339 } 340 341 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 342 const AddrMode &AM, Type *Ty, 343 unsigned AS, 344 Instruction *I) const { 345 // No global is ever allowed as a base. 346 if (AM.BaseGV) 347 return false; 348 349 // Require a 12-bit signed offset. 350 if (!isInt<12>(AM.BaseOffs)) 351 return false; 352 353 switch (AM.Scale) { 354 case 0: // "r+i" or just "i", depending on HasBaseReg. 355 break; 356 case 1: 357 if (!AM.HasBaseReg) // allow "r+i". 358 break; 359 return false; // disallow "r+r" or "r+r+i". 360 default: 361 return false; 362 } 363 364 return true; 365 } 366 367 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 368 return isInt<12>(Imm); 369 } 370 371 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 372 return isInt<12>(Imm); 373 } 374 375 // On RV32, 64-bit integers are split into their high and low parts and held 376 // in two different registers, so the trunc is free since the low register can 377 // just be used. 378 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 379 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 380 return false; 381 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 382 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 383 return (SrcBits == 64 && DestBits == 32); 384 } 385 386 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 387 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 388 !SrcVT.isInteger() || !DstVT.isInteger()) 389 return false; 390 unsigned SrcBits = SrcVT.getSizeInBits(); 391 unsigned DestBits = DstVT.getSizeInBits(); 392 return (SrcBits == 64 && DestBits == 32); 393 } 394 395 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 396 // Zexts are free if they can be combined with a load. 397 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 398 EVT MemVT = LD->getMemoryVT(); 399 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 400 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 401 (LD->getExtensionType() == ISD::NON_EXTLOAD || 402 LD->getExtensionType() == ISD::ZEXTLOAD)) 403 return true; 404 } 405 406 return TargetLowering::isZExtFree(Val, VT2); 407 } 408 409 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 410 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 411 } 412 413 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 414 return Subtarget.hasStdExtZbb(); 415 } 416 417 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 418 return Subtarget.hasStdExtZbb(); 419 } 420 421 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 422 bool ForCodeSize) const { 423 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 424 return false; 425 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 426 return false; 427 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 428 return false; 429 if (Imm.isNegZero()) 430 return false; 431 return Imm.isZero(); 432 } 433 434 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 435 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 436 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 437 (VT == MVT::f64 && Subtarget.hasStdExtD()); 438 } 439 440 // Changes the condition code and swaps operands if necessary, so the SetCC 441 // operation matches one of the comparisons supported directly in the RISC-V 442 // ISA. 443 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { 444 switch (CC) { 445 default: 446 break; 447 case ISD::SETGT: 448 case ISD::SETLE: 449 case ISD::SETUGT: 450 case ISD::SETULE: 451 CC = ISD::getSetCCSwappedOperands(CC); 452 std::swap(LHS, RHS); 453 break; 454 } 455 } 456 457 // Return the RISC-V branch opcode that matches the given DAG integer 458 // condition code. The CondCode must be one of those supported by the RISC-V 459 // ISA (see normaliseSetCC). 460 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 461 switch (CC) { 462 default: 463 llvm_unreachable("Unsupported CondCode"); 464 case ISD::SETEQ: 465 return RISCV::BEQ; 466 case ISD::SETNE: 467 return RISCV::BNE; 468 case ISD::SETLT: 469 return RISCV::BLT; 470 case ISD::SETGE: 471 return RISCV::BGE; 472 case ISD::SETULT: 473 return RISCV::BLTU; 474 case ISD::SETUGE: 475 return RISCV::BGEU; 476 } 477 } 478 479 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 480 SelectionDAG &DAG) const { 481 switch (Op.getOpcode()) { 482 default: 483 report_fatal_error("unimplemented operand"); 484 case ISD::GlobalAddress: 485 return lowerGlobalAddress(Op, DAG); 486 case ISD::BlockAddress: 487 return lowerBlockAddress(Op, DAG); 488 case ISD::ConstantPool: 489 return lowerConstantPool(Op, DAG); 490 case ISD::GlobalTLSAddress: 491 return lowerGlobalTLSAddress(Op, DAG); 492 case ISD::SELECT: 493 return lowerSELECT(Op, DAG); 494 case ISD::VASTART: 495 return lowerVASTART(Op, DAG); 496 case ISD::FRAMEADDR: 497 return lowerFRAMEADDR(Op, DAG); 498 case ISD::RETURNADDR: 499 return lowerRETURNADDR(Op, DAG); 500 case ISD::SHL_PARTS: 501 return lowerShiftLeftParts(Op, DAG); 502 case ISD::SRA_PARTS: 503 return lowerShiftRightParts(Op, DAG, true); 504 case ISD::SRL_PARTS: 505 return lowerShiftRightParts(Op, DAG, false); 506 case ISD::BITCAST: { 507 assert(((Subtarget.is64Bit() && Subtarget.hasStdExtF()) || 508 Subtarget.hasStdExtZfh()) && 509 "Unexpected custom legalisation"); 510 SDLoc DL(Op); 511 SDValue Op0 = Op.getOperand(0); 512 if (Op.getValueType() == MVT::f16 && Subtarget.hasStdExtZfh()) { 513 if (Op0.getValueType() != MVT::i16) 514 return SDValue(); 515 SDValue NewOp0 = 516 DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), Op0); 517 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 518 return FPConv; 519 } else if (Op.getValueType() == MVT::f32 && Subtarget.is64Bit() && 520 Subtarget.hasStdExtF()) { 521 if (Op0.getValueType() != MVT::i32) 522 return SDValue(); 523 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 524 SDValue FPConv = 525 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 526 return FPConv; 527 } 528 return SDValue(); 529 } 530 case ISD::INTRINSIC_WO_CHAIN: 531 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 532 case ISD::BSWAP: 533 case ISD::BITREVERSE: { 534 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 535 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 536 MVT VT = Op.getSimpleValueType(); 537 SDLoc DL(Op); 538 // Start with the maximum immediate value which is the bitwidth - 1. 539 unsigned Imm = VT.getSizeInBits() - 1; 540 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 541 if (Op.getOpcode() == ISD::BSWAP) 542 Imm &= ~0x7U; 543 return DAG.getNode(RISCVISD::GREVI, DL, VT, Op.getOperand(0), 544 DAG.getTargetConstant(Imm, DL, Subtarget.getXLenVT())); 545 } 546 } 547 } 548 549 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 550 SelectionDAG &DAG, unsigned Flags) { 551 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 552 } 553 554 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 555 SelectionDAG &DAG, unsigned Flags) { 556 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 557 Flags); 558 } 559 560 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 561 SelectionDAG &DAG, unsigned Flags) { 562 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 563 N->getOffset(), Flags); 564 } 565 566 template <class NodeTy> 567 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 568 bool IsLocal) const { 569 SDLoc DL(N); 570 EVT Ty = getPointerTy(DAG.getDataLayout()); 571 572 if (isPositionIndependent()) { 573 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 574 if (IsLocal) 575 // Use PC-relative addressing to access the symbol. This generates the 576 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 577 // %pcrel_lo(auipc)). 578 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 579 580 // Use PC-relative addressing to access the GOT for this symbol, then load 581 // the address from the GOT. This generates the pattern (PseudoLA sym), 582 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 583 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 584 } 585 586 switch (getTargetMachine().getCodeModel()) { 587 default: 588 report_fatal_error("Unsupported code model for lowering"); 589 case CodeModel::Small: { 590 // Generate a sequence for accessing addresses within the first 2 GiB of 591 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 592 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 593 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 594 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 595 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 596 } 597 case CodeModel::Medium: { 598 // Generate a sequence for accessing addresses within any 2GiB range within 599 // the address space. This generates the pattern (PseudoLLA sym), which 600 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 601 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 602 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 603 } 604 } 605 } 606 607 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 608 SelectionDAG &DAG) const { 609 SDLoc DL(Op); 610 EVT Ty = Op.getValueType(); 611 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 612 int64_t Offset = N->getOffset(); 613 MVT XLenVT = Subtarget.getXLenVT(); 614 615 const GlobalValue *GV = N->getGlobal(); 616 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 617 SDValue Addr = getAddr(N, DAG, IsLocal); 618 619 // In order to maximise the opportunity for common subexpression elimination, 620 // emit a separate ADD node for the global address offset instead of folding 621 // it in the global address node. Later peephole optimisations may choose to 622 // fold it back in when profitable. 623 if (Offset != 0) 624 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 625 DAG.getConstant(Offset, DL, XLenVT)); 626 return Addr; 627 } 628 629 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 630 SelectionDAG &DAG) const { 631 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 632 633 return getAddr(N, DAG); 634 } 635 636 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 637 SelectionDAG &DAG) const { 638 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 639 640 return getAddr(N, DAG); 641 } 642 643 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 644 SelectionDAG &DAG, 645 bool UseGOT) const { 646 SDLoc DL(N); 647 EVT Ty = getPointerTy(DAG.getDataLayout()); 648 const GlobalValue *GV = N->getGlobal(); 649 MVT XLenVT = Subtarget.getXLenVT(); 650 651 if (UseGOT) { 652 // Use PC-relative addressing to access the GOT for this TLS symbol, then 653 // load the address from the GOT and add the thread pointer. This generates 654 // the pattern (PseudoLA_TLS_IE sym), which expands to 655 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 656 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 657 SDValue Load = 658 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 659 660 // Add the thread pointer. 661 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 662 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 663 } 664 665 // Generate a sequence for accessing the address relative to the thread 666 // pointer, with the appropriate adjustment for the thread pointer offset. 667 // This generates the pattern 668 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 669 SDValue AddrHi = 670 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 671 SDValue AddrAdd = 672 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 673 SDValue AddrLo = 674 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 675 676 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 677 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 678 SDValue MNAdd = SDValue( 679 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 680 0); 681 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 682 } 683 684 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 685 SelectionDAG &DAG) const { 686 SDLoc DL(N); 687 EVT Ty = getPointerTy(DAG.getDataLayout()); 688 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 689 const GlobalValue *GV = N->getGlobal(); 690 691 // Use a PC-relative addressing mode to access the global dynamic GOT address. 692 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 693 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 694 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 695 SDValue Load = 696 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 697 698 // Prepare argument list to generate call. 699 ArgListTy Args; 700 ArgListEntry Entry; 701 Entry.Node = Load; 702 Entry.Ty = CallTy; 703 Args.push_back(Entry); 704 705 // Setup call to __tls_get_addr. 706 TargetLowering::CallLoweringInfo CLI(DAG); 707 CLI.setDebugLoc(DL) 708 .setChain(DAG.getEntryNode()) 709 .setLibCallee(CallingConv::C, CallTy, 710 DAG.getExternalSymbol("__tls_get_addr", Ty), 711 std::move(Args)); 712 713 return LowerCallTo(CLI).first; 714 } 715 716 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 717 SelectionDAG &DAG) const { 718 SDLoc DL(Op); 719 EVT Ty = Op.getValueType(); 720 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 721 int64_t Offset = N->getOffset(); 722 MVT XLenVT = Subtarget.getXLenVT(); 723 724 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 725 726 if (DAG.getMachineFunction().getFunction().getCallingConv() == 727 CallingConv::GHC) 728 report_fatal_error("In GHC calling convention TLS is not supported"); 729 730 SDValue Addr; 731 switch (Model) { 732 case TLSModel::LocalExec: 733 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 734 break; 735 case TLSModel::InitialExec: 736 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 737 break; 738 case TLSModel::LocalDynamic: 739 case TLSModel::GeneralDynamic: 740 Addr = getDynamicTLSAddr(N, DAG); 741 break; 742 } 743 744 // In order to maximise the opportunity for common subexpression elimination, 745 // emit a separate ADD node for the global address offset instead of folding 746 // it in the global address node. Later peephole optimisations may choose to 747 // fold it back in when profitable. 748 if (Offset != 0) 749 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 750 DAG.getConstant(Offset, DL, XLenVT)); 751 return Addr; 752 } 753 754 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 755 SDValue CondV = Op.getOperand(0); 756 SDValue TrueV = Op.getOperand(1); 757 SDValue FalseV = Op.getOperand(2); 758 SDLoc DL(Op); 759 MVT XLenVT = Subtarget.getXLenVT(); 760 761 // If the result type is XLenVT and CondV is the output of a SETCC node 762 // which also operated on XLenVT inputs, then merge the SETCC node into the 763 // lowered RISCVISD::SELECT_CC to take advantage of the integer 764 // compare+branch instructions. i.e.: 765 // (select (setcc lhs, rhs, cc), truev, falsev) 766 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 767 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 768 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 769 SDValue LHS = CondV.getOperand(0); 770 SDValue RHS = CondV.getOperand(1); 771 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 772 ISD::CondCode CCVal = CC->get(); 773 774 normaliseSetCC(LHS, RHS, CCVal); 775 776 SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); 777 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 778 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 779 } 780 781 // Otherwise: 782 // (select condv, truev, falsev) 783 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 784 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 785 SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); 786 787 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 788 789 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 790 } 791 792 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 793 MachineFunction &MF = DAG.getMachineFunction(); 794 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 795 796 SDLoc DL(Op); 797 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 798 getPointerTy(MF.getDataLayout())); 799 800 // vastart just stores the address of the VarArgsFrameIndex slot into the 801 // memory location argument. 802 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 803 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 804 MachinePointerInfo(SV)); 805 } 806 807 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 808 SelectionDAG &DAG) const { 809 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 810 MachineFunction &MF = DAG.getMachineFunction(); 811 MachineFrameInfo &MFI = MF.getFrameInfo(); 812 MFI.setFrameAddressIsTaken(true); 813 Register FrameReg = RI.getFrameRegister(MF); 814 int XLenInBytes = Subtarget.getXLen() / 8; 815 816 EVT VT = Op.getValueType(); 817 SDLoc DL(Op); 818 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 819 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 820 while (Depth--) { 821 int Offset = -(XLenInBytes * 2); 822 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 823 DAG.getIntPtrConstant(Offset, DL)); 824 FrameAddr = 825 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 826 } 827 return FrameAddr; 828 } 829 830 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 831 SelectionDAG &DAG) const { 832 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 833 MachineFunction &MF = DAG.getMachineFunction(); 834 MachineFrameInfo &MFI = MF.getFrameInfo(); 835 MFI.setReturnAddressIsTaken(true); 836 MVT XLenVT = Subtarget.getXLenVT(); 837 int XLenInBytes = Subtarget.getXLen() / 8; 838 839 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 840 return SDValue(); 841 842 EVT VT = Op.getValueType(); 843 SDLoc DL(Op); 844 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 845 if (Depth) { 846 int Off = -XLenInBytes; 847 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 848 SDValue Offset = DAG.getConstant(Off, DL, VT); 849 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 850 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 851 MachinePointerInfo()); 852 } 853 854 // Return the value of the return address register, marking it an implicit 855 // live-in. 856 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 857 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 858 } 859 860 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 861 SelectionDAG &DAG) const { 862 SDLoc DL(Op); 863 SDValue Lo = Op.getOperand(0); 864 SDValue Hi = Op.getOperand(1); 865 SDValue Shamt = Op.getOperand(2); 866 EVT VT = Lo.getValueType(); 867 868 // if Shamt-XLEN < 0: // Shamt < XLEN 869 // Lo = Lo << Shamt 870 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 871 // else: 872 // Lo = 0 873 // Hi = Lo << (Shamt-XLEN) 874 875 SDValue Zero = DAG.getConstant(0, DL, VT); 876 SDValue One = DAG.getConstant(1, DL, VT); 877 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 878 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 879 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 880 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 881 882 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 883 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 884 SDValue ShiftRightLo = 885 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 886 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 887 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 888 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 889 890 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 891 892 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 893 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 894 895 SDValue Parts[2] = {Lo, Hi}; 896 return DAG.getMergeValues(Parts, DL); 897 } 898 899 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 900 bool IsSRA) const { 901 SDLoc DL(Op); 902 SDValue Lo = Op.getOperand(0); 903 SDValue Hi = Op.getOperand(1); 904 SDValue Shamt = Op.getOperand(2); 905 EVT VT = Lo.getValueType(); 906 907 // SRA expansion: 908 // if Shamt-XLEN < 0: // Shamt < XLEN 909 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 910 // Hi = Hi >>s Shamt 911 // else: 912 // Lo = Hi >>s (Shamt-XLEN); 913 // Hi = Hi >>s (XLEN-1) 914 // 915 // SRL expansion: 916 // if Shamt-XLEN < 0: // Shamt < XLEN 917 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 918 // Hi = Hi >>u Shamt 919 // else: 920 // Lo = Hi >>u (Shamt-XLEN); 921 // Hi = 0; 922 923 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 924 925 SDValue Zero = DAG.getConstant(0, DL, VT); 926 SDValue One = DAG.getConstant(1, DL, VT); 927 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 928 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 929 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 930 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 931 932 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 933 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 934 SDValue ShiftLeftHi = 935 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 936 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 937 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 938 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 939 SDValue HiFalse = 940 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 941 942 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 943 944 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 945 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 946 947 SDValue Parts[2] = {Lo, Hi}; 948 return DAG.getMergeValues(Parts, DL); 949 } 950 951 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 952 SelectionDAG &DAG) const { 953 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 954 SDLoc DL(Op); 955 switch (IntNo) { 956 default: 957 return SDValue(); // Don't custom lower most intrinsics. 958 case Intrinsic::thread_pointer: { 959 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 960 return DAG.getRegister(RISCV::X4, PtrVT); 961 } 962 } 963 } 964 965 // Returns the opcode of the target-specific SDNode that implements the 32-bit 966 // form of the given Opcode. 967 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 968 switch (Opcode) { 969 default: 970 llvm_unreachable("Unexpected opcode"); 971 case ISD::SHL: 972 return RISCVISD::SLLW; 973 case ISD::SRA: 974 return RISCVISD::SRAW; 975 case ISD::SRL: 976 return RISCVISD::SRLW; 977 case ISD::SDIV: 978 return RISCVISD::DIVW; 979 case ISD::UDIV: 980 return RISCVISD::DIVUW; 981 case ISD::UREM: 982 return RISCVISD::REMUW; 983 case ISD::ROTL: 984 return RISCVISD::ROLW; 985 case ISD::ROTR: 986 return RISCVISD::RORW; 987 case RISCVISD::GREVI: 988 return RISCVISD::GREVIW; 989 case RISCVISD::GORCI: 990 return RISCVISD::GORCIW; 991 } 992 } 993 994 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 995 // Because i32 isn't a legal type for RV64, these operations would otherwise 996 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 997 // later one because the fact the operation was originally of type i32 is 998 // lost. 999 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG) { 1000 SDLoc DL(N); 1001 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 1002 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1003 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 1004 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 1005 // ReplaceNodeResults requires we maintain the same type for the return value. 1006 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 1007 } 1008 1009 // Converts the given 32-bit operation to a i64 operation with signed extension 1010 // semantic to reduce the signed extension instructions. 1011 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 1012 SDLoc DL(N); 1013 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1014 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 1015 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 1016 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 1017 DAG.getValueType(MVT::i32)); 1018 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 1019 } 1020 1021 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 1022 SmallVectorImpl<SDValue> &Results, 1023 SelectionDAG &DAG) const { 1024 SDLoc DL(N); 1025 switch (N->getOpcode()) { 1026 default: 1027 llvm_unreachable("Don't know how to custom type legalize this operation!"); 1028 case ISD::STRICT_FP_TO_SINT: 1029 case ISD::STRICT_FP_TO_UINT: 1030 case ISD::FP_TO_SINT: 1031 case ISD::FP_TO_UINT: { 1032 bool IsStrict = N->isStrictFPOpcode(); 1033 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1034 "Unexpected custom legalisation"); 1035 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 1036 // If the FP type needs to be softened, emit a library call using the 'si' 1037 // version. If we left it to default legalization we'd end up with 'di'. If 1038 // the FP type doesn't need to be softened just let generic type 1039 // legalization promote the result type. 1040 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 1041 TargetLowering::TypeSoftenFloat) 1042 return; 1043 RTLIB::Libcall LC; 1044 if (N->getOpcode() == ISD::FP_TO_SINT || 1045 N->getOpcode() == ISD::STRICT_FP_TO_SINT) 1046 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 1047 else 1048 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 1049 MakeLibCallOptions CallOptions; 1050 EVT OpVT = Op0.getValueType(); 1051 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 1052 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 1053 SDValue Result; 1054 std::tie(Result, Chain) = 1055 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 1056 Results.push_back(Result); 1057 if (IsStrict) 1058 Results.push_back(Chain); 1059 break; 1060 } 1061 case ISD::READCYCLECOUNTER: { 1062 assert(!Subtarget.is64Bit() && 1063 "READCYCLECOUNTER only has custom type legalization on riscv32"); 1064 1065 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 1066 SDValue RCW = 1067 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 1068 1069 Results.push_back( 1070 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 1071 Results.push_back(RCW.getValue(2)); 1072 break; 1073 } 1074 case ISD::ADD: 1075 case ISD::SUB: 1076 case ISD::MUL: 1077 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1078 "Unexpected custom legalisation"); 1079 if (N->getOperand(1).getOpcode() == ISD::Constant) 1080 return; 1081 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 1082 break; 1083 case ISD::SHL: 1084 case ISD::SRA: 1085 case ISD::SRL: 1086 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1087 "Unexpected custom legalisation"); 1088 if (N->getOperand(1).getOpcode() == ISD::Constant) 1089 return; 1090 Results.push_back(customLegalizeToWOp(N, DAG)); 1091 break; 1092 case ISD::ROTL: 1093 case ISD::ROTR: 1094 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1095 "Unexpected custom legalisation"); 1096 Results.push_back(customLegalizeToWOp(N, DAG)); 1097 break; 1098 case ISD::SDIV: 1099 case ISD::UDIV: 1100 case ISD::UREM: 1101 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1102 Subtarget.hasStdExtM() && "Unexpected custom legalisation"); 1103 if (N->getOperand(0).getOpcode() == ISD::Constant || 1104 N->getOperand(1).getOpcode() == ISD::Constant) 1105 return; 1106 Results.push_back(customLegalizeToWOp(N, DAG)); 1107 break; 1108 case ISD::BITCAST: { 1109 assert(((N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1110 Subtarget.hasStdExtF()) || 1111 (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh())) && 1112 "Unexpected custom legalisation"); 1113 SDValue Op0 = N->getOperand(0); 1114 if (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh()) { 1115 if (Op0.getValueType() != MVT::f16) 1116 return; 1117 SDValue FPConv = 1118 DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, Subtarget.getXLenVT(), Op0); 1119 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 1120 } else if (N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1121 Subtarget.hasStdExtF()) { 1122 if (Op0.getValueType() != MVT::f32) 1123 return; 1124 SDValue FPConv = 1125 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 1126 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 1127 } 1128 break; 1129 } 1130 case RISCVISD::GREVI: 1131 case RISCVISD::GORCI: { 1132 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1133 "Unexpected custom legalisation"); 1134 // This is similar to customLegalizeToWOp, except that we pass the second 1135 // operand (a TargetConstant) straight through: it is already of type 1136 // XLenVT. 1137 SDLoc DL(N); 1138 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 1139 SDValue NewOp0 = 1140 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1141 SDValue NewRes = 1142 DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, N->getOperand(1)); 1143 // ReplaceNodeResults requires we maintain the same type for the return 1144 // value. 1145 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 1146 break; 1147 } 1148 case ISD::BSWAP: 1149 case ISD::BITREVERSE: { 1150 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1151 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 1152 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 1153 N->getOperand(0)); 1154 unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24; 1155 SDValue GREVIW = DAG.getNode(RISCVISD::GREVIW, DL, MVT::i64, NewOp0, 1156 DAG.getTargetConstant(Imm, DL, 1157 Subtarget.getXLenVT())); 1158 // ReplaceNodeResults requires we maintain the same type for the return 1159 // value. 1160 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW)); 1161 break; 1162 } 1163 case ISD::FSHL: 1164 case ISD::FSHR: { 1165 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1166 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 1167 SDValue NewOp0 = 1168 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1169 SDValue NewOp1 = 1170 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 1171 SDValue NewOp2 = 1172 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 1173 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 1174 // Mask the shift amount to 5 bits. 1175 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 1176 DAG.getConstant(0x1f, DL, MVT::i64)); 1177 unsigned Opc = 1178 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 1179 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 1180 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 1181 break; 1182 } 1183 } 1184 } 1185 1186 // A structure to hold one of the bit-manipulation patterns below. Together, a 1187 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 1188 // (or (and (shl x, 1), 0xAAAAAAAA), 1189 // (and (srl x, 1), 0x55555555)) 1190 struct RISCVBitmanipPat { 1191 SDValue Op; 1192 unsigned ShAmt; 1193 bool IsSHL; 1194 1195 bool formsPairWith(const RISCVBitmanipPat &Other) const { 1196 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 1197 } 1198 }; 1199 1200 // Matches any of the following bit-manipulation patterns: 1201 // (and (shl x, 1), (0x55555555 << 1)) 1202 // (and (srl x, 1), 0x55555555) 1203 // (shl (and x, 0x55555555), 1) 1204 // (srl (and x, (0x55555555 << 1)), 1) 1205 // where the shift amount and mask may vary thus: 1206 // [1] = 0x55555555 / 0xAAAAAAAA 1207 // [2] = 0x33333333 / 0xCCCCCCCC 1208 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 1209 // [8] = 0x00FF00FF / 0xFF00FF00 1210 // [16] = 0x0000FFFF / 0xFFFFFFFF 1211 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 1212 static Optional<RISCVBitmanipPat> matchRISCVBitmanipPat(SDValue Op) { 1213 Optional<uint64_t> Mask; 1214 // Optionally consume a mask around the shift operation. 1215 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 1216 Mask = Op.getConstantOperandVal(1); 1217 Op = Op.getOperand(0); 1218 } 1219 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 1220 return None; 1221 bool IsSHL = Op.getOpcode() == ISD::SHL; 1222 1223 if (!isa<ConstantSDNode>(Op.getOperand(1))) 1224 return None; 1225 auto ShAmt = Op.getConstantOperandVal(1); 1226 1227 if (!isPowerOf2_64(ShAmt)) 1228 return None; 1229 1230 // These are the unshifted masks which we use to match bit-manipulation 1231 // patterns. They may be shifted left in certain circumstances. 1232 static const uint64_t BitmanipMasks[] = { 1233 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 1234 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL, 1235 }; 1236 1237 unsigned MaskIdx = Log2_64(ShAmt); 1238 if (MaskIdx >= array_lengthof(BitmanipMasks)) 1239 return None; 1240 1241 auto Src = Op.getOperand(0); 1242 1243 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 1244 auto ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 1245 1246 // The expected mask is shifted left when the AND is found around SHL 1247 // patterns. 1248 // ((x >> 1) & 0x55555555) 1249 // ((x << 1) & 0xAAAAAAAA) 1250 bool SHLExpMask = IsSHL; 1251 1252 if (!Mask) { 1253 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 1254 // the mask is all ones: consume that now. 1255 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 1256 Mask = Src.getConstantOperandVal(1); 1257 Src = Src.getOperand(0); 1258 // The expected mask is now in fact shifted left for SRL, so reverse the 1259 // decision. 1260 // ((x & 0xAAAAAAAA) >> 1) 1261 // ((x & 0x55555555) << 1) 1262 SHLExpMask = !SHLExpMask; 1263 } else { 1264 // Use a default shifted mask of all-ones if there's no AND, truncated 1265 // down to the expected width. This simplifies the logic later on. 1266 Mask = maskTrailingOnes<uint64_t>(Width); 1267 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 1268 } 1269 } 1270 1271 if (SHLExpMask) 1272 ExpMask <<= ShAmt; 1273 1274 if (Mask != ExpMask) 1275 return None; 1276 1277 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 1278 } 1279 1280 // Match the following pattern as a GREVI(W) operation 1281 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 1282 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 1283 const RISCVSubtarget &Subtarget) { 1284 EVT VT = Op.getValueType(); 1285 1286 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 1287 auto LHS = matchRISCVBitmanipPat(Op.getOperand(0)); 1288 auto RHS = matchRISCVBitmanipPat(Op.getOperand(1)); 1289 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 1290 SDLoc DL(Op); 1291 return DAG.getNode( 1292 RISCVISD::GREVI, DL, VT, LHS->Op, 1293 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 1294 } 1295 } 1296 return SDValue(); 1297 } 1298 1299 // Matches any the following pattern as a GORCI(W) operation 1300 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 1301 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 1302 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 1303 // Note that with the variant of 3., 1304 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 1305 // the inner pattern will first be matched as GREVI and then the outer 1306 // pattern will be matched to GORC via the first rule above. 1307 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 1308 const RISCVSubtarget &Subtarget) { 1309 EVT VT = Op.getValueType(); 1310 1311 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 1312 SDLoc DL(Op); 1313 SDValue Op0 = Op.getOperand(0); 1314 SDValue Op1 = Op.getOperand(1); 1315 1316 // Check for either commutable permutation of (or (GREVI x, shamt), x) 1317 for (const auto &OpPair : 1318 {std::make_pair(Op0, Op1), std::make_pair(Op1, Op0)}) { 1319 if (OpPair.first.getOpcode() == RISCVISD::GREVI && 1320 OpPair.first.getOperand(0) == OpPair.second && 1321 isPowerOf2_32(OpPair.first.getConstantOperandVal(1))) 1322 return DAG.getNode(RISCVISD::GORCI, DL, VT, OpPair.second, 1323 OpPair.first.getOperand(1)); 1324 } 1325 1326 // OR is commutable so canonicalize its OR operand to the left 1327 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 1328 std::swap(Op0, Op1); 1329 if (Op0.getOpcode() != ISD::OR) 1330 return SDValue(); 1331 SDValue OrOp0 = Op0.getOperand(0); 1332 SDValue OrOp1 = Op0.getOperand(1); 1333 auto LHS = matchRISCVBitmanipPat(OrOp0); 1334 // OR is commutable so swap the operands and try again: x might have been 1335 // on the left 1336 if (!LHS) { 1337 std::swap(OrOp0, OrOp1); 1338 LHS = matchRISCVBitmanipPat(OrOp0); 1339 } 1340 auto RHS = matchRISCVBitmanipPat(Op1); 1341 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 1342 return DAG.getNode( 1343 RISCVISD::GORCI, DL, VT, LHS->Op, 1344 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 1345 } 1346 } 1347 return SDValue(); 1348 } 1349 1350 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 1351 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 1352 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 1353 // not undo itself, but they are redundant. 1354 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 1355 unsigned ShAmt1 = N->getConstantOperandVal(1); 1356 SDValue Src = N->getOperand(0); 1357 1358 if (Src.getOpcode() != N->getOpcode()) 1359 return SDValue(); 1360 1361 unsigned ShAmt2 = Src.getConstantOperandVal(1); 1362 Src = Src.getOperand(0); 1363 1364 unsigned CombinedShAmt; 1365 if (N->getOpcode() == RISCVISD::GORCI || N->getOpcode() == RISCVISD::GORCIW) 1366 CombinedShAmt = ShAmt1 | ShAmt2; 1367 else 1368 CombinedShAmt = ShAmt1 ^ ShAmt2; 1369 1370 if (CombinedShAmt == 0) 1371 return Src; 1372 1373 SDLoc DL(N); 1374 return DAG.getNode(N->getOpcode(), DL, N->getValueType(0), Src, 1375 DAG.getTargetConstant(CombinedShAmt, DL, 1376 N->getOperand(1).getValueType())); 1377 } 1378 1379 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 1380 DAGCombinerInfo &DCI) const { 1381 SelectionDAG &DAG = DCI.DAG; 1382 1383 switch (N->getOpcode()) { 1384 default: 1385 break; 1386 case RISCVISD::SplitF64: { 1387 SDValue Op0 = N->getOperand(0); 1388 // If the input to SplitF64 is just BuildPairF64 then the operation is 1389 // redundant. Instead, use BuildPairF64's operands directly. 1390 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 1391 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 1392 1393 SDLoc DL(N); 1394 1395 // It's cheaper to materialise two 32-bit integers than to load a double 1396 // from the constant pool and transfer it to integer registers through the 1397 // stack. 1398 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 1399 APInt V = C->getValueAPF().bitcastToAPInt(); 1400 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 1401 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 1402 return DCI.CombineTo(N, Lo, Hi); 1403 } 1404 1405 // This is a target-specific version of a DAGCombine performed in 1406 // DAGCombiner::visitBITCAST. It performs the equivalent of: 1407 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 1408 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 1409 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 1410 !Op0.getNode()->hasOneUse()) 1411 break; 1412 SDValue NewSplitF64 = 1413 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 1414 Op0.getOperand(0)); 1415 SDValue Lo = NewSplitF64.getValue(0); 1416 SDValue Hi = NewSplitF64.getValue(1); 1417 APInt SignBit = APInt::getSignMask(32); 1418 if (Op0.getOpcode() == ISD::FNEG) { 1419 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 1420 DAG.getConstant(SignBit, DL, MVT::i32)); 1421 return DCI.CombineTo(N, Lo, NewHi); 1422 } 1423 assert(Op0.getOpcode() == ISD::FABS); 1424 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 1425 DAG.getConstant(~SignBit, DL, MVT::i32)); 1426 return DCI.CombineTo(N, Lo, NewHi); 1427 } 1428 case RISCVISD::SLLW: 1429 case RISCVISD::SRAW: 1430 case RISCVISD::SRLW: 1431 case RISCVISD::ROLW: 1432 case RISCVISD::RORW: { 1433 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 1434 SDValue LHS = N->getOperand(0); 1435 SDValue RHS = N->getOperand(1); 1436 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 1437 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 1438 if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) || 1439 SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) { 1440 if (N->getOpcode() != ISD::DELETED_NODE) 1441 DCI.AddToWorklist(N); 1442 return SDValue(N, 0); 1443 } 1444 break; 1445 } 1446 case RISCVISD::FSLW: 1447 case RISCVISD::FSRW: { 1448 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 1449 // read. 1450 SDValue Op0 = N->getOperand(0); 1451 SDValue Op1 = N->getOperand(1); 1452 SDValue ShAmt = N->getOperand(2); 1453 APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 1454 APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6); 1455 if (SimplifyDemandedBits(Op0, OpMask, DCI) || 1456 SimplifyDemandedBits(Op1, OpMask, DCI) || 1457 SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 1458 if (N->getOpcode() != ISD::DELETED_NODE) 1459 DCI.AddToWorklist(N); 1460 return SDValue(N, 0); 1461 } 1462 break; 1463 } 1464 case RISCVISD::GREVIW: 1465 case RISCVISD::GORCIW: { 1466 // Only the lower 32 bits of the first operand are read 1467 SDValue Op0 = N->getOperand(0); 1468 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 1469 if (SimplifyDemandedBits(Op0, Mask, DCI)) { 1470 if (N->getOpcode() != ISD::DELETED_NODE) 1471 DCI.AddToWorklist(N); 1472 return SDValue(N, 0); 1473 } 1474 1475 return combineGREVI_GORCI(N, DCI.DAG); 1476 } 1477 case RISCVISD::FMV_X_ANYEXTW_RV64: { 1478 SDLoc DL(N); 1479 SDValue Op0 = N->getOperand(0); 1480 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 1481 // conversion is unnecessary and can be replaced with an ANY_EXTEND 1482 // of the FMV_W_X_RV64 operand. 1483 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 1484 assert(Op0.getOperand(0).getValueType() == MVT::i64 && 1485 "Unexpected value type!"); 1486 return Op0.getOperand(0); 1487 } 1488 1489 // This is a target-specific version of a DAGCombine performed in 1490 // DAGCombiner::visitBITCAST. It performs the equivalent of: 1491 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 1492 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 1493 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 1494 !Op0.getNode()->hasOneUse()) 1495 break; 1496 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 1497 Op0.getOperand(0)); 1498 APInt SignBit = APInt::getSignMask(32).sext(64); 1499 if (Op0.getOpcode() == ISD::FNEG) 1500 return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 1501 DAG.getConstant(SignBit, DL, MVT::i64)); 1502 1503 assert(Op0.getOpcode() == ISD::FABS); 1504 return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 1505 DAG.getConstant(~SignBit, DL, MVT::i64)); 1506 } 1507 case RISCVISD::GREVI: 1508 case RISCVISD::GORCI: 1509 return combineGREVI_GORCI(N, DCI.DAG); 1510 case ISD::OR: 1511 if (auto GREV = combineORToGREV(SDValue(N, 0), DCI.DAG, Subtarget)) 1512 return GREV; 1513 if (auto GORC = combineORToGORC(SDValue(N, 0), DCI.DAG, Subtarget)) 1514 return GORC; 1515 break; 1516 } 1517 1518 return SDValue(); 1519 } 1520 1521 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 1522 const SDNode *N, CombineLevel Level) const { 1523 // The following folds are only desirable if `(OP _, c1 << c2)` can be 1524 // materialised in fewer instructions than `(OP _, c1)`: 1525 // 1526 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 1527 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 1528 SDValue N0 = N->getOperand(0); 1529 EVT Ty = N0.getValueType(); 1530 if (Ty.isScalarInteger() && 1531 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 1532 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 1533 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 1534 if (C1 && C2) { 1535 APInt C1Int = C1->getAPIntValue(); 1536 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 1537 1538 // We can materialise `c1 << c2` into an add immediate, so it's "free", 1539 // and the combine should happen, to potentially allow further combines 1540 // later. 1541 if (ShiftedC1Int.getMinSignedBits() <= 64 && 1542 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 1543 return true; 1544 1545 // We can materialise `c1` in an add immediate, so it's "free", and the 1546 // combine should be prevented. 1547 if (C1Int.getMinSignedBits() <= 64 && 1548 isLegalAddImmediate(C1Int.getSExtValue())) 1549 return false; 1550 1551 // Neither constant will fit into an immediate, so find materialisation 1552 // costs. 1553 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 1554 Subtarget.is64Bit()); 1555 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 1556 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 1557 1558 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 1559 // combine should be prevented. 1560 if (C1Cost < ShiftedC1Cost) 1561 return false; 1562 } 1563 } 1564 return true; 1565 } 1566 1567 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 1568 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 1569 unsigned Depth) const { 1570 switch (Op.getOpcode()) { 1571 default: 1572 break; 1573 case RISCVISD::SLLW: 1574 case RISCVISD::SRAW: 1575 case RISCVISD::SRLW: 1576 case RISCVISD::DIVW: 1577 case RISCVISD::DIVUW: 1578 case RISCVISD::REMUW: 1579 case RISCVISD::ROLW: 1580 case RISCVISD::RORW: 1581 case RISCVISD::GREVIW: 1582 case RISCVISD::GORCIW: 1583 case RISCVISD::FSLW: 1584 case RISCVISD::FSRW: 1585 // TODO: As the result is sign-extended, this is conservatively correct. A 1586 // more precise answer could be calculated for SRAW depending on known 1587 // bits in the shift amount. 1588 return 33; 1589 } 1590 1591 return 1; 1592 } 1593 1594 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 1595 MachineBasicBlock *BB) { 1596 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 1597 1598 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 1599 // Should the count have wrapped while it was being read, we need to try 1600 // again. 1601 // ... 1602 // read: 1603 // rdcycleh x3 # load high word of cycle 1604 // rdcycle x2 # load low word of cycle 1605 // rdcycleh x4 # load high word of cycle 1606 // bne x3, x4, read # check if high word reads match, otherwise try again 1607 // ... 1608 1609 MachineFunction &MF = *BB->getParent(); 1610 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1611 MachineFunction::iterator It = ++BB->getIterator(); 1612 1613 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 1614 MF.insert(It, LoopMBB); 1615 1616 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 1617 MF.insert(It, DoneMBB); 1618 1619 // Transfer the remainder of BB and its successor edges to DoneMBB. 1620 DoneMBB->splice(DoneMBB->begin(), BB, 1621 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1622 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 1623 1624 BB->addSuccessor(LoopMBB); 1625 1626 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1627 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1628 Register LoReg = MI.getOperand(0).getReg(); 1629 Register HiReg = MI.getOperand(1).getReg(); 1630 DebugLoc DL = MI.getDebugLoc(); 1631 1632 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1633 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 1634 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 1635 .addReg(RISCV::X0); 1636 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 1637 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 1638 .addReg(RISCV::X0); 1639 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 1640 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 1641 .addReg(RISCV::X0); 1642 1643 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 1644 .addReg(HiReg) 1645 .addReg(ReadAgainReg) 1646 .addMBB(LoopMBB); 1647 1648 LoopMBB->addSuccessor(LoopMBB); 1649 LoopMBB->addSuccessor(DoneMBB); 1650 1651 MI.eraseFromParent(); 1652 1653 return DoneMBB; 1654 } 1655 1656 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 1657 MachineBasicBlock *BB) { 1658 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 1659 1660 MachineFunction &MF = *BB->getParent(); 1661 DebugLoc DL = MI.getDebugLoc(); 1662 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1663 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 1664 Register LoReg = MI.getOperand(0).getReg(); 1665 Register HiReg = MI.getOperand(1).getReg(); 1666 Register SrcReg = MI.getOperand(2).getReg(); 1667 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 1668 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 1669 1670 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 1671 RI); 1672 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 1673 MachineMemOperand *MMOLo = 1674 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 1675 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 1676 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 1677 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 1678 .addFrameIndex(FI) 1679 .addImm(0) 1680 .addMemOperand(MMOLo); 1681 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 1682 .addFrameIndex(FI) 1683 .addImm(4) 1684 .addMemOperand(MMOHi); 1685 MI.eraseFromParent(); // The pseudo instruction is gone now. 1686 return BB; 1687 } 1688 1689 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 1690 MachineBasicBlock *BB) { 1691 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 1692 "Unexpected instruction"); 1693 1694 MachineFunction &MF = *BB->getParent(); 1695 DebugLoc DL = MI.getDebugLoc(); 1696 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1697 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 1698 Register DstReg = MI.getOperand(0).getReg(); 1699 Register LoReg = MI.getOperand(1).getReg(); 1700 Register HiReg = MI.getOperand(2).getReg(); 1701 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 1702 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 1703 1704 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 1705 MachineMemOperand *MMOLo = 1706 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 1707 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 1708 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 1709 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 1710 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 1711 .addFrameIndex(FI) 1712 .addImm(0) 1713 .addMemOperand(MMOLo); 1714 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 1715 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 1716 .addFrameIndex(FI) 1717 .addImm(4) 1718 .addMemOperand(MMOHi); 1719 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 1720 MI.eraseFromParent(); // The pseudo instruction is gone now. 1721 return BB; 1722 } 1723 1724 static bool isSelectPseudo(MachineInstr &MI) { 1725 switch (MI.getOpcode()) { 1726 default: 1727 return false; 1728 case RISCV::Select_GPR_Using_CC_GPR: 1729 case RISCV::Select_FPR16_Using_CC_GPR: 1730 case RISCV::Select_FPR32_Using_CC_GPR: 1731 case RISCV::Select_FPR64_Using_CC_GPR: 1732 return true; 1733 } 1734 } 1735 1736 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 1737 MachineBasicBlock *BB) { 1738 // To "insert" Select_* instructions, we actually have to insert the triangle 1739 // control-flow pattern. The incoming instructions know the destination vreg 1740 // to set, the condition code register to branch on, the true/false values to 1741 // select between, and the condcode to use to select the appropriate branch. 1742 // 1743 // We produce the following control flow: 1744 // HeadMBB 1745 // | \ 1746 // | IfFalseMBB 1747 // | / 1748 // TailMBB 1749 // 1750 // When we find a sequence of selects we attempt to optimize their emission 1751 // by sharing the control flow. Currently we only handle cases where we have 1752 // multiple selects with the exact same condition (same LHS, RHS and CC). 1753 // The selects may be interleaved with other instructions if the other 1754 // instructions meet some requirements we deem safe: 1755 // - They are debug instructions. Otherwise, 1756 // - They do not have side-effects, do not access memory and their inputs do 1757 // not depend on the results of the select pseudo-instructions. 1758 // The TrueV/FalseV operands of the selects cannot depend on the result of 1759 // previous selects in the sequence. 1760 // These conditions could be further relaxed. See the X86 target for a 1761 // related approach and more information. 1762 Register LHS = MI.getOperand(1).getReg(); 1763 Register RHS = MI.getOperand(2).getReg(); 1764 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 1765 1766 SmallVector<MachineInstr *, 4> SelectDebugValues; 1767 SmallSet<Register, 4> SelectDests; 1768 SelectDests.insert(MI.getOperand(0).getReg()); 1769 1770 MachineInstr *LastSelectPseudo = &MI; 1771 1772 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 1773 SequenceMBBI != E; ++SequenceMBBI) { 1774 if (SequenceMBBI->isDebugInstr()) 1775 continue; 1776 else if (isSelectPseudo(*SequenceMBBI)) { 1777 if (SequenceMBBI->getOperand(1).getReg() != LHS || 1778 SequenceMBBI->getOperand(2).getReg() != RHS || 1779 SequenceMBBI->getOperand(3).getImm() != CC || 1780 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 1781 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 1782 break; 1783 LastSelectPseudo = &*SequenceMBBI; 1784 SequenceMBBI->collectDebugValues(SelectDebugValues); 1785 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 1786 } else { 1787 if (SequenceMBBI->hasUnmodeledSideEffects() || 1788 SequenceMBBI->mayLoadOrStore()) 1789 break; 1790 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 1791 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 1792 })) 1793 break; 1794 } 1795 } 1796 1797 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 1798 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1799 DebugLoc DL = MI.getDebugLoc(); 1800 MachineFunction::iterator I = ++BB->getIterator(); 1801 1802 MachineBasicBlock *HeadMBB = BB; 1803 MachineFunction *F = BB->getParent(); 1804 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 1805 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 1806 1807 F->insert(I, IfFalseMBB); 1808 F->insert(I, TailMBB); 1809 1810 // Transfer debug instructions associated with the selects to TailMBB. 1811 for (MachineInstr *DebugInstr : SelectDebugValues) { 1812 TailMBB->push_back(DebugInstr->removeFromParent()); 1813 } 1814 1815 // Move all instructions after the sequence to TailMBB. 1816 TailMBB->splice(TailMBB->end(), HeadMBB, 1817 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 1818 // Update machine-CFG edges by transferring all successors of the current 1819 // block to the new block which will contain the Phi nodes for the selects. 1820 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 1821 // Set the successors for HeadMBB. 1822 HeadMBB->addSuccessor(IfFalseMBB); 1823 HeadMBB->addSuccessor(TailMBB); 1824 1825 // Insert appropriate branch. 1826 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 1827 1828 BuildMI(HeadMBB, DL, TII.get(Opcode)) 1829 .addReg(LHS) 1830 .addReg(RHS) 1831 .addMBB(TailMBB); 1832 1833 // IfFalseMBB just falls through to TailMBB. 1834 IfFalseMBB->addSuccessor(TailMBB); 1835 1836 // Create PHIs for all of the select pseudo-instructions. 1837 auto SelectMBBI = MI.getIterator(); 1838 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 1839 auto InsertionPoint = TailMBB->begin(); 1840 while (SelectMBBI != SelectEnd) { 1841 auto Next = std::next(SelectMBBI); 1842 if (isSelectPseudo(*SelectMBBI)) { 1843 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 1844 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 1845 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 1846 .addReg(SelectMBBI->getOperand(4).getReg()) 1847 .addMBB(HeadMBB) 1848 .addReg(SelectMBBI->getOperand(5).getReg()) 1849 .addMBB(IfFalseMBB); 1850 SelectMBBI->eraseFromParent(); 1851 } 1852 SelectMBBI = Next; 1853 } 1854 1855 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 1856 return TailMBB; 1857 } 1858 1859 MachineBasicBlock * 1860 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 1861 MachineBasicBlock *BB) const { 1862 switch (MI.getOpcode()) { 1863 default: 1864 llvm_unreachable("Unexpected instr type to insert"); 1865 case RISCV::ReadCycleWide: 1866 assert(!Subtarget.is64Bit() && 1867 "ReadCycleWrite is only to be used on riscv32"); 1868 return emitReadCycleWidePseudo(MI, BB); 1869 case RISCV::Select_GPR_Using_CC_GPR: 1870 case RISCV::Select_FPR16_Using_CC_GPR: 1871 case RISCV::Select_FPR32_Using_CC_GPR: 1872 case RISCV::Select_FPR64_Using_CC_GPR: 1873 return emitSelectPseudo(MI, BB); 1874 case RISCV::BuildPairF64Pseudo: 1875 return emitBuildPairF64Pseudo(MI, BB); 1876 case RISCV::SplitF64Pseudo: 1877 return emitSplitF64Pseudo(MI, BB); 1878 } 1879 } 1880 1881 // Calling Convention Implementation. 1882 // The expectations for frontend ABI lowering vary from target to target. 1883 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 1884 // details, but this is a longer term goal. For now, we simply try to keep the 1885 // role of the frontend as simple and well-defined as possible. The rules can 1886 // be summarised as: 1887 // * Never split up large scalar arguments. We handle them here. 1888 // * If a hardfloat calling convention is being used, and the struct may be 1889 // passed in a pair of registers (fp+fp, int+fp), and both registers are 1890 // available, then pass as two separate arguments. If either the GPRs or FPRs 1891 // are exhausted, then pass according to the rule below. 1892 // * If a struct could never be passed in registers or directly in a stack 1893 // slot (as it is larger than 2*XLEN and the floating point rules don't 1894 // apply), then pass it using a pointer with the byval attribute. 1895 // * If a struct is less than 2*XLEN, then coerce to either a two-element 1896 // word-sized array or a 2*XLEN scalar (depending on alignment). 1897 // * The frontend can determine whether a struct is returned by reference or 1898 // not based on its size and fields. If it will be returned by reference, the 1899 // frontend must modify the prototype so a pointer with the sret annotation is 1900 // passed as the first argument. This is not necessary for large scalar 1901 // returns. 1902 // * Struct return values and varargs should be coerced to structs containing 1903 // register-size fields in the same situations they would be for fixed 1904 // arguments. 1905 1906 static const MCPhysReg ArgGPRs[] = { 1907 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 1908 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 1909 }; 1910 static const MCPhysReg ArgFPR16s[] = { 1911 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 1912 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 1913 }; 1914 static const MCPhysReg ArgFPR32s[] = { 1915 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 1916 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 1917 }; 1918 static const MCPhysReg ArgFPR64s[] = { 1919 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 1920 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 1921 }; 1922 1923 // Pass a 2*XLEN argument that has been split into two XLEN values through 1924 // registers or the stack as necessary. 1925 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 1926 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 1927 MVT ValVT2, MVT LocVT2, 1928 ISD::ArgFlagsTy ArgFlags2) { 1929 unsigned XLenInBytes = XLen / 8; 1930 if (Register Reg = State.AllocateReg(ArgGPRs)) { 1931 // At least one half can be passed via register. 1932 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 1933 VA1.getLocVT(), CCValAssign::Full)); 1934 } else { 1935 // Both halves must be passed on the stack, with proper alignment. 1936 Align StackAlign = 1937 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 1938 State.addLoc( 1939 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 1940 State.AllocateStack(XLenInBytes, StackAlign), 1941 VA1.getLocVT(), CCValAssign::Full)); 1942 State.addLoc(CCValAssign::getMem( 1943 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 1944 LocVT2, CCValAssign::Full)); 1945 return false; 1946 } 1947 1948 if (Register Reg = State.AllocateReg(ArgGPRs)) { 1949 // The second half can also be passed via register. 1950 State.addLoc( 1951 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 1952 } else { 1953 // The second half is passed via the stack, without additional alignment. 1954 State.addLoc(CCValAssign::getMem( 1955 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 1956 LocVT2, CCValAssign::Full)); 1957 } 1958 1959 return false; 1960 } 1961 1962 // Implements the RISC-V calling convention. Returns true upon failure. 1963 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 1964 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 1965 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 1966 bool IsRet, Type *OrigTy) { 1967 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 1968 assert(XLen == 32 || XLen == 64); 1969 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 1970 1971 // Any return value split in to more than two values can't be returned 1972 // directly. 1973 if (IsRet && ValNo > 1) 1974 return true; 1975 1976 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 1977 // variadic argument, or if no F16/F32 argument registers are available. 1978 bool UseGPRForF16_F32 = true; 1979 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 1980 // variadic argument, or if no F64 argument registers are available. 1981 bool UseGPRForF64 = true; 1982 1983 switch (ABI) { 1984 default: 1985 llvm_unreachable("Unexpected ABI"); 1986 case RISCVABI::ABI_ILP32: 1987 case RISCVABI::ABI_LP64: 1988 break; 1989 case RISCVABI::ABI_ILP32F: 1990 case RISCVABI::ABI_LP64F: 1991 UseGPRForF16_F32 = !IsFixed; 1992 break; 1993 case RISCVABI::ABI_ILP32D: 1994 case RISCVABI::ABI_LP64D: 1995 UseGPRForF16_F32 = !IsFixed; 1996 UseGPRForF64 = !IsFixed; 1997 break; 1998 } 1999 2000 // FPR16, FPR32, and FPR64 alias each other. 2001 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 2002 UseGPRForF16_F32 = true; 2003 UseGPRForF64 = true; 2004 } 2005 2006 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 2007 // similar local variables rather than directly checking against the target 2008 // ABI. 2009 2010 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 2011 LocVT = XLenVT; 2012 LocInfo = CCValAssign::BCvt; 2013 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 2014 LocVT = MVT::i64; 2015 LocInfo = CCValAssign::BCvt; 2016 } 2017 2018 // If this is a variadic argument, the RISC-V calling convention requires 2019 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 2020 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 2021 // be used regardless of whether the original argument was split during 2022 // legalisation or not. The argument will not be passed by registers if the 2023 // original type is larger than 2*XLEN, so the register alignment rule does 2024 // not apply. 2025 unsigned TwoXLenInBytes = (2 * XLen) / 8; 2026 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 2027 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 2028 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 2029 // Skip 'odd' register if necessary. 2030 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 2031 State.AllocateReg(ArgGPRs); 2032 } 2033 2034 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 2035 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 2036 State.getPendingArgFlags(); 2037 2038 assert(PendingLocs.size() == PendingArgFlags.size() && 2039 "PendingLocs and PendingArgFlags out of sync"); 2040 2041 // Handle passing f64 on RV32D with a soft float ABI or when floating point 2042 // registers are exhausted. 2043 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 2044 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 2045 "Can't lower f64 if it is split"); 2046 // Depending on available argument GPRS, f64 may be passed in a pair of 2047 // GPRs, split between a GPR and the stack, or passed completely on the 2048 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 2049 // cases. 2050 Register Reg = State.AllocateReg(ArgGPRs); 2051 LocVT = MVT::i32; 2052 if (!Reg) { 2053 unsigned StackOffset = State.AllocateStack(8, Align(8)); 2054 State.addLoc( 2055 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 2056 return false; 2057 } 2058 if (!State.AllocateReg(ArgGPRs)) 2059 State.AllocateStack(4, Align(4)); 2060 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2061 return false; 2062 } 2063 2064 // Split arguments might be passed indirectly, so keep track of the pending 2065 // values. 2066 if (ArgFlags.isSplit() || !PendingLocs.empty()) { 2067 LocVT = XLenVT; 2068 LocInfo = CCValAssign::Indirect; 2069 PendingLocs.push_back( 2070 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 2071 PendingArgFlags.push_back(ArgFlags); 2072 if (!ArgFlags.isSplitEnd()) { 2073 return false; 2074 } 2075 } 2076 2077 // If the split argument only had two elements, it should be passed directly 2078 // in registers or on the stack. 2079 if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 2080 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 2081 // Apply the normal calling convention rules to the first half of the 2082 // split argument. 2083 CCValAssign VA = PendingLocs[0]; 2084 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 2085 PendingLocs.clear(); 2086 PendingArgFlags.clear(); 2087 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 2088 ArgFlags); 2089 } 2090 2091 // Allocate to a register if possible, or else a stack slot. 2092 Register Reg; 2093 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 2094 Reg = State.AllocateReg(ArgFPR16s); 2095 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 2096 Reg = State.AllocateReg(ArgFPR32s); 2097 else if (ValVT == MVT::f64 && !UseGPRForF64) 2098 Reg = State.AllocateReg(ArgFPR64s); 2099 else 2100 Reg = State.AllocateReg(ArgGPRs); 2101 unsigned StackOffset = 2102 Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8)); 2103 2104 // If we reach this point and PendingLocs is non-empty, we must be at the 2105 // end of a split argument that must be passed indirectly. 2106 if (!PendingLocs.empty()) { 2107 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 2108 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 2109 2110 for (auto &It : PendingLocs) { 2111 if (Reg) 2112 It.convertToReg(Reg); 2113 else 2114 It.convertToMem(StackOffset); 2115 State.addLoc(It); 2116 } 2117 PendingLocs.clear(); 2118 PendingArgFlags.clear(); 2119 return false; 2120 } 2121 2122 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT) && 2123 "Expected an XLenVT at this stage"); 2124 2125 if (Reg) { 2126 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2127 return false; 2128 } 2129 2130 // When a floating-point value is passed on the stack, no bit-conversion is 2131 // needed. 2132 if (ValVT.isFloatingPoint()) { 2133 LocVT = ValVT; 2134 LocInfo = CCValAssign::Full; 2135 } 2136 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 2137 return false; 2138 } 2139 2140 void RISCVTargetLowering::analyzeInputArgs( 2141 MachineFunction &MF, CCState &CCInfo, 2142 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 2143 unsigned NumArgs = Ins.size(); 2144 FunctionType *FType = MF.getFunction().getFunctionType(); 2145 2146 for (unsigned i = 0; i != NumArgs; ++i) { 2147 MVT ArgVT = Ins[i].VT; 2148 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 2149 2150 Type *ArgTy = nullptr; 2151 if (IsRet) 2152 ArgTy = FType->getReturnType(); 2153 else if (Ins[i].isOrigArg()) 2154 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 2155 2156 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 2157 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 2158 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy)) { 2159 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 2160 << EVT(ArgVT).getEVTString() << '\n'); 2161 llvm_unreachable(nullptr); 2162 } 2163 } 2164 } 2165 2166 void RISCVTargetLowering::analyzeOutputArgs( 2167 MachineFunction &MF, CCState &CCInfo, 2168 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 2169 CallLoweringInfo *CLI) const { 2170 unsigned NumArgs = Outs.size(); 2171 2172 for (unsigned i = 0; i != NumArgs; i++) { 2173 MVT ArgVT = Outs[i].VT; 2174 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 2175 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 2176 2177 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 2178 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 2179 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) { 2180 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 2181 << EVT(ArgVT).getEVTString() << "\n"); 2182 llvm_unreachable(nullptr); 2183 } 2184 } 2185 } 2186 2187 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 2188 // values. 2189 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 2190 const CCValAssign &VA, const SDLoc &DL) { 2191 switch (VA.getLocInfo()) { 2192 default: 2193 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 2194 case CCValAssign::Full: 2195 break; 2196 case CCValAssign::BCvt: 2197 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 2198 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 2199 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 2200 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 2201 else 2202 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 2203 break; 2204 } 2205 return Val; 2206 } 2207 2208 // The caller is responsible for loading the full value if the argument is 2209 // passed with CCValAssign::Indirect. 2210 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 2211 const CCValAssign &VA, const SDLoc &DL) { 2212 MachineFunction &MF = DAG.getMachineFunction(); 2213 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 2214 EVT LocVT = VA.getLocVT(); 2215 SDValue Val; 2216 const TargetRegisterClass *RC; 2217 2218 switch (LocVT.getSimpleVT().SimpleTy) { 2219 default: 2220 llvm_unreachable("Unexpected register type"); 2221 case MVT::i32: 2222 case MVT::i64: 2223 RC = &RISCV::GPRRegClass; 2224 break; 2225 case MVT::f16: 2226 RC = &RISCV::FPR16RegClass; 2227 break; 2228 case MVT::f32: 2229 RC = &RISCV::FPR32RegClass; 2230 break; 2231 case MVT::f64: 2232 RC = &RISCV::FPR64RegClass; 2233 break; 2234 } 2235 2236 Register VReg = RegInfo.createVirtualRegister(RC); 2237 RegInfo.addLiveIn(VA.getLocReg(), VReg); 2238 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 2239 2240 if (VA.getLocInfo() == CCValAssign::Indirect) 2241 return Val; 2242 2243 return convertLocVTToValVT(DAG, Val, VA, DL); 2244 } 2245 2246 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 2247 const CCValAssign &VA, const SDLoc &DL) { 2248 EVT LocVT = VA.getLocVT(); 2249 2250 switch (VA.getLocInfo()) { 2251 default: 2252 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 2253 case CCValAssign::Full: 2254 break; 2255 case CCValAssign::BCvt: 2256 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 2257 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 2258 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 2259 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 2260 else 2261 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 2262 break; 2263 } 2264 return Val; 2265 } 2266 2267 // The caller is responsible for loading the full value if the argument is 2268 // passed with CCValAssign::Indirect. 2269 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 2270 const CCValAssign &VA, const SDLoc &DL) { 2271 MachineFunction &MF = DAG.getMachineFunction(); 2272 MachineFrameInfo &MFI = MF.getFrameInfo(); 2273 EVT LocVT = VA.getLocVT(); 2274 EVT ValVT = VA.getValVT(); 2275 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 2276 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 2277 VA.getLocMemOffset(), /*Immutable=*/true); 2278 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2279 SDValue Val; 2280 2281 ISD::LoadExtType ExtType; 2282 switch (VA.getLocInfo()) { 2283 default: 2284 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 2285 case CCValAssign::Full: 2286 case CCValAssign::Indirect: 2287 case CCValAssign::BCvt: 2288 ExtType = ISD::NON_EXTLOAD; 2289 break; 2290 } 2291 Val = DAG.getExtLoad( 2292 ExtType, DL, LocVT, Chain, FIN, 2293 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 2294 return Val; 2295 } 2296 2297 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 2298 const CCValAssign &VA, const SDLoc &DL) { 2299 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 2300 "Unexpected VA"); 2301 MachineFunction &MF = DAG.getMachineFunction(); 2302 MachineFrameInfo &MFI = MF.getFrameInfo(); 2303 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 2304 2305 if (VA.isMemLoc()) { 2306 // f64 is passed on the stack. 2307 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 2308 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 2309 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 2310 MachinePointerInfo::getFixedStack(MF, FI)); 2311 } 2312 2313 assert(VA.isRegLoc() && "Expected register VA assignment"); 2314 2315 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 2316 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 2317 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 2318 SDValue Hi; 2319 if (VA.getLocReg() == RISCV::X17) { 2320 // Second half of f64 is passed on the stack. 2321 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 2322 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 2323 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 2324 MachinePointerInfo::getFixedStack(MF, FI)); 2325 } else { 2326 // Second half of f64 is passed in another GPR. 2327 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 2328 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 2329 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 2330 } 2331 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 2332 } 2333 2334 // FastCC has less than 1% performance improvement for some particular 2335 // benchmark. But theoretically, it may has benenfit for some cases. 2336 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT, 2337 CCValAssign::LocInfo LocInfo, 2338 ISD::ArgFlagsTy ArgFlags, CCState &State) { 2339 2340 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 2341 // X5 and X6 might be used for save-restore libcall. 2342 static const MCPhysReg GPRList[] = { 2343 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 2344 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 2345 RISCV::X29, RISCV::X30, RISCV::X31}; 2346 if (unsigned Reg = State.AllocateReg(GPRList)) { 2347 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2348 return false; 2349 } 2350 } 2351 2352 if (LocVT == MVT::f16) { 2353 static const MCPhysReg FPR16List[] = { 2354 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 2355 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 2356 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 2357 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 2358 if (unsigned Reg = State.AllocateReg(FPR16List)) { 2359 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2360 return false; 2361 } 2362 } 2363 2364 if (LocVT == MVT::f32) { 2365 static const MCPhysReg FPR32List[] = { 2366 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 2367 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 2368 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 2369 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 2370 if (unsigned Reg = State.AllocateReg(FPR32List)) { 2371 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2372 return false; 2373 } 2374 } 2375 2376 if (LocVT == MVT::f64) { 2377 static const MCPhysReg FPR64List[] = { 2378 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 2379 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 2380 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 2381 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 2382 if (unsigned Reg = State.AllocateReg(FPR64List)) { 2383 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2384 return false; 2385 } 2386 } 2387 2388 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 2389 unsigned Offset4 = State.AllocateStack(4, Align(4)); 2390 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 2391 return false; 2392 } 2393 2394 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 2395 unsigned Offset5 = State.AllocateStack(8, Align(8)); 2396 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 2397 return false; 2398 } 2399 2400 return true; // CC didn't match. 2401 } 2402 2403 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 2404 CCValAssign::LocInfo LocInfo, 2405 ISD::ArgFlagsTy ArgFlags, CCState &State) { 2406 2407 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 2408 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 2409 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 2410 static const MCPhysReg GPRList[] = { 2411 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 2412 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 2413 if (unsigned Reg = State.AllocateReg(GPRList)) { 2414 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2415 return false; 2416 } 2417 } 2418 2419 if (LocVT == MVT::f32) { 2420 // Pass in STG registers: F1, ..., F6 2421 // fs0 ... fs5 2422 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 2423 RISCV::F18_F, RISCV::F19_F, 2424 RISCV::F20_F, RISCV::F21_F}; 2425 if (unsigned Reg = State.AllocateReg(FPR32List)) { 2426 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2427 return false; 2428 } 2429 } 2430 2431 if (LocVT == MVT::f64) { 2432 // Pass in STG registers: D1, ..., D6 2433 // fs6 ... fs11 2434 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 2435 RISCV::F24_D, RISCV::F25_D, 2436 RISCV::F26_D, RISCV::F27_D}; 2437 if (unsigned Reg = State.AllocateReg(FPR64List)) { 2438 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2439 return false; 2440 } 2441 } 2442 2443 report_fatal_error("No registers left in GHC calling convention"); 2444 return true; 2445 } 2446 2447 // Transform physical registers into virtual registers. 2448 SDValue RISCVTargetLowering::LowerFormalArguments( 2449 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 2450 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2451 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2452 2453 MachineFunction &MF = DAG.getMachineFunction(); 2454 2455 switch (CallConv) { 2456 default: 2457 report_fatal_error("Unsupported calling convention"); 2458 case CallingConv::C: 2459 case CallingConv::Fast: 2460 break; 2461 case CallingConv::GHC: 2462 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 2463 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 2464 report_fatal_error( 2465 "GHC calling convention requires the F and D instruction set extensions"); 2466 } 2467 2468 const Function &Func = MF.getFunction(); 2469 if (Func.hasFnAttribute("interrupt")) { 2470 if (!Func.arg_empty()) 2471 report_fatal_error( 2472 "Functions with the interrupt attribute cannot have arguments!"); 2473 2474 StringRef Kind = 2475 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 2476 2477 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 2478 report_fatal_error( 2479 "Function interrupt attribute argument not supported!"); 2480 } 2481 2482 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2483 MVT XLenVT = Subtarget.getXLenVT(); 2484 unsigned XLenInBytes = Subtarget.getXLen() / 8; 2485 // Used with vargs to acumulate store chains. 2486 std::vector<SDValue> OutChains; 2487 2488 // Assign locations to all of the incoming arguments. 2489 SmallVector<CCValAssign, 16> ArgLocs; 2490 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 2491 2492 if (CallConv == CallingConv::Fast) 2493 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC); 2494 else if (CallConv == CallingConv::GHC) 2495 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 2496 else 2497 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 2498 2499 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2500 CCValAssign &VA = ArgLocs[i]; 2501 SDValue ArgValue; 2502 // Passing f64 on RV32D with a soft float ABI must be handled as a special 2503 // case. 2504 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 2505 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 2506 else if (VA.isRegLoc()) 2507 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL); 2508 else 2509 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 2510 2511 if (VA.getLocInfo() == CCValAssign::Indirect) { 2512 // If the original argument was split and passed by reference (e.g. i128 2513 // on RV32), we need to load all parts of it here (using the same 2514 // address). 2515 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 2516 MachinePointerInfo())); 2517 unsigned ArgIndex = Ins[i].OrigArgIndex; 2518 assert(Ins[i].PartOffset == 0); 2519 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 2520 CCValAssign &PartVA = ArgLocs[i + 1]; 2521 unsigned PartOffset = Ins[i + 1].PartOffset; 2522 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 2523 DAG.getIntPtrConstant(PartOffset, DL)); 2524 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 2525 MachinePointerInfo())); 2526 ++i; 2527 } 2528 continue; 2529 } 2530 InVals.push_back(ArgValue); 2531 } 2532 2533 if (IsVarArg) { 2534 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 2535 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 2536 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 2537 MachineFrameInfo &MFI = MF.getFrameInfo(); 2538 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 2539 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 2540 2541 // Offset of the first variable argument from stack pointer, and size of 2542 // the vararg save area. For now, the varargs save area is either zero or 2543 // large enough to hold a0-a7. 2544 int VaArgOffset, VarArgsSaveSize; 2545 2546 // If all registers are allocated, then all varargs must be passed on the 2547 // stack and we don't need to save any argregs. 2548 if (ArgRegs.size() == Idx) { 2549 VaArgOffset = CCInfo.getNextStackOffset(); 2550 VarArgsSaveSize = 0; 2551 } else { 2552 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 2553 VaArgOffset = -VarArgsSaveSize; 2554 } 2555 2556 // Record the frame index of the first variable argument 2557 // which is a value necessary to VASTART. 2558 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 2559 RVFI->setVarArgsFrameIndex(FI); 2560 2561 // If saving an odd number of registers then create an extra stack slot to 2562 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 2563 // offsets to even-numbered registered remain 2*XLEN-aligned. 2564 if (Idx % 2) { 2565 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 2566 VarArgsSaveSize += XLenInBytes; 2567 } 2568 2569 // Copy the integer registers that may have been used for passing varargs 2570 // to the vararg save area. 2571 for (unsigned I = Idx; I < ArgRegs.size(); 2572 ++I, VaArgOffset += XLenInBytes) { 2573 const Register Reg = RegInfo.createVirtualRegister(RC); 2574 RegInfo.addLiveIn(ArgRegs[I], Reg); 2575 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 2576 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 2577 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2578 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 2579 MachinePointerInfo::getFixedStack(MF, FI)); 2580 cast<StoreSDNode>(Store.getNode()) 2581 ->getMemOperand() 2582 ->setValue((Value *)nullptr); 2583 OutChains.push_back(Store); 2584 } 2585 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 2586 } 2587 2588 // All stores are grouped in one node to allow the matching between 2589 // the size of Ins and InVals. This only happens for vararg functions. 2590 if (!OutChains.empty()) { 2591 OutChains.push_back(Chain); 2592 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 2593 } 2594 2595 return Chain; 2596 } 2597 2598 /// isEligibleForTailCallOptimization - Check whether the call is eligible 2599 /// for tail call optimization. 2600 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 2601 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 2602 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 2603 const SmallVector<CCValAssign, 16> &ArgLocs) const { 2604 2605 auto &Callee = CLI.Callee; 2606 auto CalleeCC = CLI.CallConv; 2607 auto &Outs = CLI.Outs; 2608 auto &Caller = MF.getFunction(); 2609 auto CallerCC = Caller.getCallingConv(); 2610 2611 // Exception-handling functions need a special set of instructions to 2612 // indicate a return to the hardware. Tail-calling another function would 2613 // probably break this. 2614 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 2615 // should be expanded as new function attributes are introduced. 2616 if (Caller.hasFnAttribute("interrupt")) 2617 return false; 2618 2619 // Do not tail call opt if the stack is used to pass parameters. 2620 if (CCInfo.getNextStackOffset() != 0) 2621 return false; 2622 2623 // Do not tail call opt if any parameters need to be passed indirectly. 2624 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 2625 // passed indirectly. So the address of the value will be passed in a 2626 // register, or if not available, then the address is put on the stack. In 2627 // order to pass indirectly, space on the stack often needs to be allocated 2628 // in order to store the value. In this case the CCInfo.getNextStackOffset() 2629 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 2630 // are passed CCValAssign::Indirect. 2631 for (auto &VA : ArgLocs) 2632 if (VA.getLocInfo() == CCValAssign::Indirect) 2633 return false; 2634 2635 // Do not tail call opt if either caller or callee uses struct return 2636 // semantics. 2637 auto IsCallerStructRet = Caller.hasStructRetAttr(); 2638 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 2639 if (IsCallerStructRet || IsCalleeStructRet) 2640 return false; 2641 2642 // Externally-defined functions with weak linkage should not be 2643 // tail-called. The behaviour of branch instructions in this situation (as 2644 // used for tail calls) is implementation-defined, so we cannot rely on the 2645 // linker replacing the tail call with a return. 2646 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 2647 const GlobalValue *GV = G->getGlobal(); 2648 if (GV->hasExternalWeakLinkage()) 2649 return false; 2650 } 2651 2652 // The callee has to preserve all registers the caller needs to preserve. 2653 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2654 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 2655 if (CalleeCC != CallerCC) { 2656 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 2657 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 2658 return false; 2659 } 2660 2661 // Byval parameters hand the function a pointer directly into the stack area 2662 // we want to reuse during a tail call. Working around this *is* possible 2663 // but less efficient and uglier in LowerCall. 2664 for (auto &Arg : Outs) 2665 if (Arg.Flags.isByVal()) 2666 return false; 2667 2668 return true; 2669 } 2670 2671 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 2672 // and output parameter nodes. 2673 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 2674 SmallVectorImpl<SDValue> &InVals) const { 2675 SelectionDAG &DAG = CLI.DAG; 2676 SDLoc &DL = CLI.DL; 2677 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 2678 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 2679 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 2680 SDValue Chain = CLI.Chain; 2681 SDValue Callee = CLI.Callee; 2682 bool &IsTailCall = CLI.IsTailCall; 2683 CallingConv::ID CallConv = CLI.CallConv; 2684 bool IsVarArg = CLI.IsVarArg; 2685 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2686 MVT XLenVT = Subtarget.getXLenVT(); 2687 2688 MachineFunction &MF = DAG.getMachineFunction(); 2689 2690 // Analyze the operands of the call, assigning locations to each operand. 2691 SmallVector<CCValAssign, 16> ArgLocs; 2692 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 2693 2694 if (CallConv == CallingConv::Fast) 2695 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC); 2696 else if (CallConv == CallingConv::GHC) 2697 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 2698 else 2699 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 2700 2701 // Check if it's really possible to do a tail call. 2702 if (IsTailCall) 2703 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 2704 2705 if (IsTailCall) 2706 ++NumTailCalls; 2707 else if (CLI.CB && CLI.CB->isMustTailCall()) 2708 report_fatal_error("failed to perform tail call elimination on a call " 2709 "site marked musttail"); 2710 2711 // Get a count of how many bytes are to be pushed on the stack. 2712 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 2713 2714 // Create local copies for byval args 2715 SmallVector<SDValue, 8> ByValArgs; 2716 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 2717 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2718 if (!Flags.isByVal()) 2719 continue; 2720 2721 SDValue Arg = OutVals[i]; 2722 unsigned Size = Flags.getByValSize(); 2723 Align Alignment = Flags.getNonZeroByValAlign(); 2724 2725 int FI = 2726 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 2727 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2728 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 2729 2730 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 2731 /*IsVolatile=*/false, 2732 /*AlwaysInline=*/false, IsTailCall, 2733 MachinePointerInfo(), MachinePointerInfo()); 2734 ByValArgs.push_back(FIPtr); 2735 } 2736 2737 if (!IsTailCall) 2738 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 2739 2740 // Copy argument values to their designated locations. 2741 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 2742 SmallVector<SDValue, 8> MemOpChains; 2743 SDValue StackPtr; 2744 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 2745 CCValAssign &VA = ArgLocs[i]; 2746 SDValue ArgValue = OutVals[i]; 2747 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2748 2749 // Handle passing f64 on RV32D with a soft float ABI as a special case. 2750 bool IsF64OnRV32DSoftABI = 2751 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 2752 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 2753 SDValue SplitF64 = DAG.getNode( 2754 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 2755 SDValue Lo = SplitF64.getValue(0); 2756 SDValue Hi = SplitF64.getValue(1); 2757 2758 Register RegLo = VA.getLocReg(); 2759 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 2760 2761 if (RegLo == RISCV::X17) { 2762 // Second half of f64 is passed on the stack. 2763 // Work out the address of the stack slot. 2764 if (!StackPtr.getNode()) 2765 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 2766 // Emit the store. 2767 MemOpChains.push_back( 2768 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 2769 } else { 2770 // Second half of f64 is passed in another GPR. 2771 assert(RegLo < RISCV::X31 && "Invalid register pair"); 2772 Register RegHigh = RegLo + 1; 2773 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 2774 } 2775 continue; 2776 } 2777 2778 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 2779 // as any other MemLoc. 2780 2781 // Promote the value if needed. 2782 // For now, only handle fully promoted and indirect arguments. 2783 if (VA.getLocInfo() == CCValAssign::Indirect) { 2784 // Store the argument in a stack slot and pass its address. 2785 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); 2786 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 2787 MemOpChains.push_back( 2788 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 2789 MachinePointerInfo::getFixedStack(MF, FI))); 2790 // If the original argument was split (e.g. i128), we need 2791 // to store all parts of it here (and pass just one address). 2792 unsigned ArgIndex = Outs[i].OrigArgIndex; 2793 assert(Outs[i].PartOffset == 0); 2794 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 2795 SDValue PartValue = OutVals[i + 1]; 2796 unsigned PartOffset = Outs[i + 1].PartOffset; 2797 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 2798 DAG.getIntPtrConstant(PartOffset, DL)); 2799 MemOpChains.push_back( 2800 DAG.getStore(Chain, DL, PartValue, Address, 2801 MachinePointerInfo::getFixedStack(MF, FI))); 2802 ++i; 2803 } 2804 ArgValue = SpillSlot; 2805 } else { 2806 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL); 2807 } 2808 2809 // Use local copy if it is a byval arg. 2810 if (Flags.isByVal()) 2811 ArgValue = ByValArgs[j++]; 2812 2813 if (VA.isRegLoc()) { 2814 // Queue up the argument copies and emit them at the end. 2815 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 2816 } else { 2817 assert(VA.isMemLoc() && "Argument not register or memory"); 2818 assert(!IsTailCall && "Tail call not allowed if stack is used " 2819 "for passing parameters"); 2820 2821 // Work out the address of the stack slot. 2822 if (!StackPtr.getNode()) 2823 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 2824 SDValue Address = 2825 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 2826 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 2827 2828 // Emit the store. 2829 MemOpChains.push_back( 2830 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 2831 } 2832 } 2833 2834 // Join the stores, which are independent of one another. 2835 if (!MemOpChains.empty()) 2836 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 2837 2838 SDValue Glue; 2839 2840 // Build a sequence of copy-to-reg nodes, chained and glued together. 2841 for (auto &Reg : RegsToPass) { 2842 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 2843 Glue = Chain.getValue(1); 2844 } 2845 2846 // Validate that none of the argument registers have been marked as 2847 // reserved, if so report an error. Do the same for the return address if this 2848 // is not a tailcall. 2849 validateCCReservedRegs(RegsToPass, MF); 2850 if (!IsTailCall && 2851 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 2852 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 2853 MF.getFunction(), 2854 "Return address register required, but has been reserved."}); 2855 2856 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 2857 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 2858 // split it and then direct call can be matched by PseudoCALL. 2859 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 2860 const GlobalValue *GV = S->getGlobal(); 2861 2862 unsigned OpFlags = RISCVII::MO_CALL; 2863 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 2864 OpFlags = RISCVII::MO_PLT; 2865 2866 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 2867 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 2868 unsigned OpFlags = RISCVII::MO_CALL; 2869 2870 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 2871 nullptr)) 2872 OpFlags = RISCVII::MO_PLT; 2873 2874 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 2875 } 2876 2877 // The first call operand is the chain and the second is the target address. 2878 SmallVector<SDValue, 8> Ops; 2879 Ops.push_back(Chain); 2880 Ops.push_back(Callee); 2881 2882 // Add argument registers to the end of the list so that they are 2883 // known live into the call. 2884 for (auto &Reg : RegsToPass) 2885 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 2886 2887 if (!IsTailCall) { 2888 // Add a register mask operand representing the call-preserved registers. 2889 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2890 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 2891 assert(Mask && "Missing call preserved mask for calling convention"); 2892 Ops.push_back(DAG.getRegisterMask(Mask)); 2893 } 2894 2895 // Glue the call to the argument copies, if any. 2896 if (Glue.getNode()) 2897 Ops.push_back(Glue); 2898 2899 // Emit the call. 2900 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2901 2902 if (IsTailCall) { 2903 MF.getFrameInfo().setHasTailCall(); 2904 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 2905 } 2906 2907 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 2908 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 2909 Glue = Chain.getValue(1); 2910 2911 // Mark the end of the call, which is glued to the call itself. 2912 Chain = DAG.getCALLSEQ_END(Chain, 2913 DAG.getConstant(NumBytes, DL, PtrVT, true), 2914 DAG.getConstant(0, DL, PtrVT, true), 2915 Glue, DL); 2916 Glue = Chain.getValue(1); 2917 2918 // Assign locations to each value returned by this call. 2919 SmallVector<CCValAssign, 16> RVLocs; 2920 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 2921 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 2922 2923 // Copy all of the result registers out of their specified physreg. 2924 for (auto &VA : RVLocs) { 2925 // Copy the value out 2926 SDValue RetValue = 2927 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 2928 // Glue the RetValue to the end of the call sequence 2929 Chain = RetValue.getValue(1); 2930 Glue = RetValue.getValue(2); 2931 2932 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 2933 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 2934 SDValue RetValue2 = 2935 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 2936 Chain = RetValue2.getValue(1); 2937 Glue = RetValue2.getValue(2); 2938 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 2939 RetValue2); 2940 } 2941 2942 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL); 2943 2944 InVals.push_back(RetValue); 2945 } 2946 2947 return Chain; 2948 } 2949 2950 bool RISCVTargetLowering::CanLowerReturn( 2951 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 2952 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 2953 SmallVector<CCValAssign, 16> RVLocs; 2954 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 2955 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 2956 MVT VT = Outs[i].VT; 2957 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 2958 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 2959 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 2960 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr)) 2961 return false; 2962 } 2963 return true; 2964 } 2965 2966 SDValue 2967 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 2968 bool IsVarArg, 2969 const SmallVectorImpl<ISD::OutputArg> &Outs, 2970 const SmallVectorImpl<SDValue> &OutVals, 2971 const SDLoc &DL, SelectionDAG &DAG) const { 2972 const MachineFunction &MF = DAG.getMachineFunction(); 2973 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 2974 2975 // Stores the assignment of the return value to a location. 2976 SmallVector<CCValAssign, 16> RVLocs; 2977 2978 // Info about the registers and stack slot. 2979 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 2980 *DAG.getContext()); 2981 2982 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 2983 nullptr); 2984 2985 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 2986 report_fatal_error("GHC functions return void only"); 2987 2988 SDValue Glue; 2989 SmallVector<SDValue, 4> RetOps(1, Chain); 2990 2991 // Copy the result values into the output registers. 2992 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 2993 SDValue Val = OutVals[i]; 2994 CCValAssign &VA = RVLocs[i]; 2995 assert(VA.isRegLoc() && "Can only return in registers!"); 2996 2997 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 2998 // Handle returning f64 on RV32D with a soft float ABI. 2999 assert(VA.isRegLoc() && "Expected return via registers"); 3000 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 3001 DAG.getVTList(MVT::i32, MVT::i32), Val); 3002 SDValue Lo = SplitF64.getValue(0); 3003 SDValue Hi = SplitF64.getValue(1); 3004 Register RegLo = VA.getLocReg(); 3005 assert(RegLo < RISCV::X31 && "Invalid register pair"); 3006 Register RegHi = RegLo + 1; 3007 3008 if (STI.isRegisterReservedByUser(RegLo) || 3009 STI.isRegisterReservedByUser(RegHi)) 3010 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 3011 MF.getFunction(), 3012 "Return value register required, but has been reserved."}); 3013 3014 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 3015 Glue = Chain.getValue(1); 3016 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 3017 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 3018 Glue = Chain.getValue(1); 3019 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 3020 } else { 3021 // Handle a 'normal' return. 3022 Val = convertValVTToLocVT(DAG, Val, VA, DL); 3023 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 3024 3025 if (STI.isRegisterReservedByUser(VA.getLocReg())) 3026 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 3027 MF.getFunction(), 3028 "Return value register required, but has been reserved."}); 3029 3030 // Guarantee that all emitted copies are stuck together. 3031 Glue = Chain.getValue(1); 3032 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 3033 } 3034 } 3035 3036 RetOps[0] = Chain; // Update chain. 3037 3038 // Add the glue node if we have it. 3039 if (Glue.getNode()) { 3040 RetOps.push_back(Glue); 3041 } 3042 3043 // Interrupt service routines use different return instructions. 3044 const Function &Func = DAG.getMachineFunction().getFunction(); 3045 if (Func.hasFnAttribute("interrupt")) { 3046 if (!Func.getReturnType()->isVoidTy()) 3047 report_fatal_error( 3048 "Functions with the interrupt attribute must have void return type!"); 3049 3050 MachineFunction &MF = DAG.getMachineFunction(); 3051 StringRef Kind = 3052 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 3053 3054 unsigned RetOpc; 3055 if (Kind == "user") 3056 RetOpc = RISCVISD::URET_FLAG; 3057 else if (Kind == "supervisor") 3058 RetOpc = RISCVISD::SRET_FLAG; 3059 else 3060 RetOpc = RISCVISD::MRET_FLAG; 3061 3062 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 3063 } 3064 3065 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 3066 } 3067 3068 void RISCVTargetLowering::validateCCReservedRegs( 3069 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 3070 MachineFunction &MF) const { 3071 const Function &F = MF.getFunction(); 3072 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 3073 3074 if (std::any_of(std::begin(Regs), std::end(Regs), [&STI](auto Reg) { 3075 return STI.isRegisterReservedByUser(Reg.first); 3076 })) 3077 F.getContext().diagnose(DiagnosticInfoUnsupported{ 3078 F, "Argument register required, but has been reserved."}); 3079 } 3080 3081 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 3082 return CI->isTailCall(); 3083 } 3084 3085 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 3086 #define NODE_NAME_CASE(NODE) \ 3087 case RISCVISD::NODE: \ 3088 return "RISCVISD::" #NODE; 3089 // clang-format off 3090 switch ((RISCVISD::NodeType)Opcode) { 3091 case RISCVISD::FIRST_NUMBER: 3092 break; 3093 NODE_NAME_CASE(RET_FLAG) 3094 NODE_NAME_CASE(URET_FLAG) 3095 NODE_NAME_CASE(SRET_FLAG) 3096 NODE_NAME_CASE(MRET_FLAG) 3097 NODE_NAME_CASE(CALL) 3098 NODE_NAME_CASE(SELECT_CC) 3099 NODE_NAME_CASE(BuildPairF64) 3100 NODE_NAME_CASE(SplitF64) 3101 NODE_NAME_CASE(TAIL) 3102 NODE_NAME_CASE(SLLW) 3103 NODE_NAME_CASE(SRAW) 3104 NODE_NAME_CASE(SRLW) 3105 NODE_NAME_CASE(DIVW) 3106 NODE_NAME_CASE(DIVUW) 3107 NODE_NAME_CASE(REMUW) 3108 NODE_NAME_CASE(ROLW) 3109 NODE_NAME_CASE(RORW) 3110 NODE_NAME_CASE(FSLW) 3111 NODE_NAME_CASE(FSRW) 3112 NODE_NAME_CASE(FMV_H_X) 3113 NODE_NAME_CASE(FMV_X_ANYEXTH) 3114 NODE_NAME_CASE(FMV_W_X_RV64) 3115 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 3116 NODE_NAME_CASE(READ_CYCLE_WIDE) 3117 NODE_NAME_CASE(GREVI) 3118 NODE_NAME_CASE(GREVIW) 3119 NODE_NAME_CASE(GORCI) 3120 NODE_NAME_CASE(GORCIW) 3121 } 3122 // clang-format on 3123 return nullptr; 3124 #undef NODE_NAME_CASE 3125 } 3126 3127 /// getConstraintType - Given a constraint letter, return the type of 3128 /// constraint it is for this target. 3129 RISCVTargetLowering::ConstraintType 3130 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 3131 if (Constraint.size() == 1) { 3132 switch (Constraint[0]) { 3133 default: 3134 break; 3135 case 'f': 3136 return C_RegisterClass; 3137 case 'I': 3138 case 'J': 3139 case 'K': 3140 return C_Immediate; 3141 case 'A': 3142 return C_Memory; 3143 } 3144 } 3145 return TargetLowering::getConstraintType(Constraint); 3146 } 3147 3148 std::pair<unsigned, const TargetRegisterClass *> 3149 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 3150 StringRef Constraint, 3151 MVT VT) const { 3152 // First, see if this is a constraint that directly corresponds to a 3153 // RISCV register class. 3154 if (Constraint.size() == 1) { 3155 switch (Constraint[0]) { 3156 case 'r': 3157 return std::make_pair(0U, &RISCV::GPRRegClass); 3158 case 'f': 3159 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 3160 return std::make_pair(0U, &RISCV::FPR16RegClass); 3161 if (Subtarget.hasStdExtF() && VT == MVT::f32) 3162 return std::make_pair(0U, &RISCV::FPR32RegClass); 3163 if (Subtarget.hasStdExtD() && VT == MVT::f64) 3164 return std::make_pair(0U, &RISCV::FPR64RegClass); 3165 break; 3166 default: 3167 break; 3168 } 3169 } 3170 3171 // Clang will correctly decode the usage of register name aliases into their 3172 // official names. However, other frontends like `rustc` do not. This allows 3173 // users of these frontends to use the ABI names for registers in LLVM-style 3174 // register constraints. 3175 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 3176 .Case("{zero}", RISCV::X0) 3177 .Case("{ra}", RISCV::X1) 3178 .Case("{sp}", RISCV::X2) 3179 .Case("{gp}", RISCV::X3) 3180 .Case("{tp}", RISCV::X4) 3181 .Case("{t0}", RISCV::X5) 3182 .Case("{t1}", RISCV::X6) 3183 .Case("{t2}", RISCV::X7) 3184 .Cases("{s0}", "{fp}", RISCV::X8) 3185 .Case("{s1}", RISCV::X9) 3186 .Case("{a0}", RISCV::X10) 3187 .Case("{a1}", RISCV::X11) 3188 .Case("{a2}", RISCV::X12) 3189 .Case("{a3}", RISCV::X13) 3190 .Case("{a4}", RISCV::X14) 3191 .Case("{a5}", RISCV::X15) 3192 .Case("{a6}", RISCV::X16) 3193 .Case("{a7}", RISCV::X17) 3194 .Case("{s2}", RISCV::X18) 3195 .Case("{s3}", RISCV::X19) 3196 .Case("{s4}", RISCV::X20) 3197 .Case("{s5}", RISCV::X21) 3198 .Case("{s6}", RISCV::X22) 3199 .Case("{s7}", RISCV::X23) 3200 .Case("{s8}", RISCV::X24) 3201 .Case("{s9}", RISCV::X25) 3202 .Case("{s10}", RISCV::X26) 3203 .Case("{s11}", RISCV::X27) 3204 .Case("{t3}", RISCV::X28) 3205 .Case("{t4}", RISCV::X29) 3206 .Case("{t5}", RISCV::X30) 3207 .Case("{t6}", RISCV::X31) 3208 .Default(RISCV::NoRegister); 3209 if (XRegFromAlias != RISCV::NoRegister) 3210 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 3211 3212 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 3213 // TableGen record rather than the AsmName to choose registers for InlineAsm 3214 // constraints, plus we want to match those names to the widest floating point 3215 // register type available, manually select floating point registers here. 3216 // 3217 // The second case is the ABI name of the register, so that frontends can also 3218 // use the ABI names in register constraint lists. 3219 if (Subtarget.hasStdExtF()) { 3220 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 3221 .Cases("{f0}", "{ft0}", RISCV::F0_F) 3222 .Cases("{f1}", "{ft1}", RISCV::F1_F) 3223 .Cases("{f2}", "{ft2}", RISCV::F2_F) 3224 .Cases("{f3}", "{ft3}", RISCV::F3_F) 3225 .Cases("{f4}", "{ft4}", RISCV::F4_F) 3226 .Cases("{f5}", "{ft5}", RISCV::F5_F) 3227 .Cases("{f6}", "{ft6}", RISCV::F6_F) 3228 .Cases("{f7}", "{ft7}", RISCV::F7_F) 3229 .Cases("{f8}", "{fs0}", RISCV::F8_F) 3230 .Cases("{f9}", "{fs1}", RISCV::F9_F) 3231 .Cases("{f10}", "{fa0}", RISCV::F10_F) 3232 .Cases("{f11}", "{fa1}", RISCV::F11_F) 3233 .Cases("{f12}", "{fa2}", RISCV::F12_F) 3234 .Cases("{f13}", "{fa3}", RISCV::F13_F) 3235 .Cases("{f14}", "{fa4}", RISCV::F14_F) 3236 .Cases("{f15}", "{fa5}", RISCV::F15_F) 3237 .Cases("{f16}", "{fa6}", RISCV::F16_F) 3238 .Cases("{f17}", "{fa7}", RISCV::F17_F) 3239 .Cases("{f18}", "{fs2}", RISCV::F18_F) 3240 .Cases("{f19}", "{fs3}", RISCV::F19_F) 3241 .Cases("{f20}", "{fs4}", RISCV::F20_F) 3242 .Cases("{f21}", "{fs5}", RISCV::F21_F) 3243 .Cases("{f22}", "{fs6}", RISCV::F22_F) 3244 .Cases("{f23}", "{fs7}", RISCV::F23_F) 3245 .Cases("{f24}", "{fs8}", RISCV::F24_F) 3246 .Cases("{f25}", "{fs9}", RISCV::F25_F) 3247 .Cases("{f26}", "{fs10}", RISCV::F26_F) 3248 .Cases("{f27}", "{fs11}", RISCV::F27_F) 3249 .Cases("{f28}", "{ft8}", RISCV::F28_F) 3250 .Cases("{f29}", "{ft9}", RISCV::F29_F) 3251 .Cases("{f30}", "{ft10}", RISCV::F30_F) 3252 .Cases("{f31}", "{ft11}", RISCV::F31_F) 3253 .Default(RISCV::NoRegister); 3254 if (FReg != RISCV::NoRegister) { 3255 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 3256 if (Subtarget.hasStdExtD()) { 3257 unsigned RegNo = FReg - RISCV::F0_F; 3258 unsigned DReg = RISCV::F0_D + RegNo; 3259 return std::make_pair(DReg, &RISCV::FPR64RegClass); 3260 } 3261 return std::make_pair(FReg, &RISCV::FPR32RegClass); 3262 } 3263 } 3264 3265 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 3266 } 3267 3268 unsigned 3269 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 3270 // Currently only support length 1 constraints. 3271 if (ConstraintCode.size() == 1) { 3272 switch (ConstraintCode[0]) { 3273 case 'A': 3274 return InlineAsm::Constraint_A; 3275 default: 3276 break; 3277 } 3278 } 3279 3280 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 3281 } 3282 3283 void RISCVTargetLowering::LowerAsmOperandForConstraint( 3284 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 3285 SelectionDAG &DAG) const { 3286 // Currently only support length 1 constraints. 3287 if (Constraint.length() == 1) { 3288 switch (Constraint[0]) { 3289 case 'I': 3290 // Validate & create a 12-bit signed immediate operand. 3291 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3292 uint64_t CVal = C->getSExtValue(); 3293 if (isInt<12>(CVal)) 3294 Ops.push_back( 3295 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 3296 } 3297 return; 3298 case 'J': 3299 // Validate & create an integer zero operand. 3300 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 3301 if (C->getZExtValue() == 0) 3302 Ops.push_back( 3303 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 3304 return; 3305 case 'K': 3306 // Validate & create a 5-bit unsigned immediate operand. 3307 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3308 uint64_t CVal = C->getZExtValue(); 3309 if (isUInt<5>(CVal)) 3310 Ops.push_back( 3311 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 3312 } 3313 return; 3314 default: 3315 break; 3316 } 3317 } 3318 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 3319 } 3320 3321 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 3322 Instruction *Inst, 3323 AtomicOrdering Ord) const { 3324 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 3325 return Builder.CreateFence(Ord); 3326 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 3327 return Builder.CreateFence(AtomicOrdering::Release); 3328 return nullptr; 3329 } 3330 3331 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 3332 Instruction *Inst, 3333 AtomicOrdering Ord) const { 3334 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 3335 return Builder.CreateFence(AtomicOrdering::Acquire); 3336 return nullptr; 3337 } 3338 3339 TargetLowering::AtomicExpansionKind 3340 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 3341 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 3342 // point operations can't be used in an lr/sc sequence without breaking the 3343 // forward-progress guarantee. 3344 if (AI->isFloatingPointOperation()) 3345 return AtomicExpansionKind::CmpXChg; 3346 3347 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 3348 if (Size == 8 || Size == 16) 3349 return AtomicExpansionKind::MaskedIntrinsic; 3350 return AtomicExpansionKind::None; 3351 } 3352 3353 static Intrinsic::ID 3354 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 3355 if (XLen == 32) { 3356 switch (BinOp) { 3357 default: 3358 llvm_unreachable("Unexpected AtomicRMW BinOp"); 3359 case AtomicRMWInst::Xchg: 3360 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 3361 case AtomicRMWInst::Add: 3362 return Intrinsic::riscv_masked_atomicrmw_add_i32; 3363 case AtomicRMWInst::Sub: 3364 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 3365 case AtomicRMWInst::Nand: 3366 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 3367 case AtomicRMWInst::Max: 3368 return Intrinsic::riscv_masked_atomicrmw_max_i32; 3369 case AtomicRMWInst::Min: 3370 return Intrinsic::riscv_masked_atomicrmw_min_i32; 3371 case AtomicRMWInst::UMax: 3372 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 3373 case AtomicRMWInst::UMin: 3374 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 3375 } 3376 } 3377 3378 if (XLen == 64) { 3379 switch (BinOp) { 3380 default: 3381 llvm_unreachable("Unexpected AtomicRMW BinOp"); 3382 case AtomicRMWInst::Xchg: 3383 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 3384 case AtomicRMWInst::Add: 3385 return Intrinsic::riscv_masked_atomicrmw_add_i64; 3386 case AtomicRMWInst::Sub: 3387 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 3388 case AtomicRMWInst::Nand: 3389 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 3390 case AtomicRMWInst::Max: 3391 return Intrinsic::riscv_masked_atomicrmw_max_i64; 3392 case AtomicRMWInst::Min: 3393 return Intrinsic::riscv_masked_atomicrmw_min_i64; 3394 case AtomicRMWInst::UMax: 3395 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 3396 case AtomicRMWInst::UMin: 3397 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 3398 } 3399 } 3400 3401 llvm_unreachable("Unexpected XLen\n"); 3402 } 3403 3404 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 3405 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 3406 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 3407 unsigned XLen = Subtarget.getXLen(); 3408 Value *Ordering = 3409 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 3410 Type *Tys[] = {AlignedAddr->getType()}; 3411 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 3412 AI->getModule(), 3413 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 3414 3415 if (XLen == 64) { 3416 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 3417 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 3418 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 3419 } 3420 3421 Value *Result; 3422 3423 // Must pass the shift amount needed to sign extend the loaded value prior 3424 // to performing a signed comparison for min/max. ShiftAmt is the number of 3425 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 3426 // is the number of bits to left+right shift the value in order to 3427 // sign-extend. 3428 if (AI->getOperation() == AtomicRMWInst::Min || 3429 AI->getOperation() == AtomicRMWInst::Max) { 3430 const DataLayout &DL = AI->getModule()->getDataLayout(); 3431 unsigned ValWidth = 3432 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 3433 Value *SextShamt = 3434 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 3435 Result = Builder.CreateCall(LrwOpScwLoop, 3436 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 3437 } else { 3438 Result = 3439 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 3440 } 3441 3442 if (XLen == 64) 3443 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 3444 return Result; 3445 } 3446 3447 TargetLowering::AtomicExpansionKind 3448 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 3449 AtomicCmpXchgInst *CI) const { 3450 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 3451 if (Size == 8 || Size == 16) 3452 return AtomicExpansionKind::MaskedIntrinsic; 3453 return AtomicExpansionKind::None; 3454 } 3455 3456 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 3457 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 3458 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 3459 unsigned XLen = Subtarget.getXLen(); 3460 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 3461 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 3462 if (XLen == 64) { 3463 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 3464 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 3465 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 3466 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 3467 } 3468 Type *Tys[] = {AlignedAddr->getType()}; 3469 Function *MaskedCmpXchg = 3470 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 3471 Value *Result = Builder.CreateCall( 3472 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 3473 if (XLen == 64) 3474 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 3475 return Result; 3476 } 3477 3478 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 3479 EVT VT) const { 3480 VT = VT.getScalarType(); 3481 3482 if (!VT.isSimple()) 3483 return false; 3484 3485 switch (VT.getSimpleVT().SimpleTy) { 3486 case MVT::f16: 3487 return Subtarget.hasStdExtZfh(); 3488 case MVT::f32: 3489 return Subtarget.hasStdExtF(); 3490 case MVT::f64: 3491 return Subtarget.hasStdExtD(); 3492 default: 3493 break; 3494 } 3495 3496 return false; 3497 } 3498 3499 Register RISCVTargetLowering::getExceptionPointerRegister( 3500 const Constant *PersonalityFn) const { 3501 return RISCV::X10; 3502 } 3503 3504 Register RISCVTargetLowering::getExceptionSelectorRegister( 3505 const Constant *PersonalityFn) const { 3506 return RISCV::X11; 3507 } 3508 3509 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 3510 // Return false to suppress the unnecessary extensions if the LibCall 3511 // arguments or return value is f32 type for LP64 ABI. 3512 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 3513 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 3514 return false; 3515 3516 return true; 3517 } 3518 3519 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 3520 SDValue C) const { 3521 // Check integral scalar types. 3522 if (VT.isScalarInteger()) { 3523 // Do not perform the transformation on riscv32 with the M extension. 3524 if (!Subtarget.is64Bit() && Subtarget.hasStdExtM()) 3525 return false; 3526 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 3527 if (ConstNode->getAPIntValue().getBitWidth() > 8 * sizeof(int64_t)) 3528 return false; 3529 int64_t Imm = ConstNode->getSExtValue(); 3530 if (isPowerOf2_64(Imm + 1) || isPowerOf2_64(Imm - 1) || 3531 isPowerOf2_64(1 - Imm) || isPowerOf2_64(-1 - Imm)) 3532 return true; 3533 } 3534 } 3535 3536 return false; 3537 } 3538 3539 #define GET_REGISTER_MATCHER 3540 #include "RISCVGenAsmMatcher.inc" 3541 3542 Register 3543 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 3544 const MachineFunction &MF) const { 3545 Register Reg = MatchRegisterAltName(RegName); 3546 if (Reg == RISCV::NoRegister) 3547 Reg = MatchRegisterName(RegName); 3548 if (Reg == RISCV::NoRegister) 3549 report_fatal_error( 3550 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 3551 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 3552 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 3553 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 3554 StringRef(RegName) + "\".")); 3555 return Reg; 3556 } 3557