1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicsRISCV.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "riscv-lower"
45 
46 STATISTIC(NumTailCalls, "Number of tail calls");
47 
48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
49                                          const RISCVSubtarget &STI)
50     : TargetLowering(TM), Subtarget(STI) {
51 
52   if (Subtarget.isRV32E())
53     report_fatal_error("Codegen not yet implemented for RV32E");
54 
55   RISCVABI::ABI ABI = Subtarget.getTargetABI();
56   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
57 
58   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
59       !Subtarget.hasStdExtF()) {
60     errs() << "Hard-float 'f' ABI can't be used for a target that "
61                 "doesn't support the F instruction set extension (ignoring "
62                           "target-abi)\n";
63     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
64   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
65              !Subtarget.hasStdExtD()) {
66     errs() << "Hard-float 'd' ABI can't be used for a target that "
67               "doesn't support the D instruction set extension (ignoring "
68               "target-abi)\n";
69     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
70   }
71 
72   switch (ABI) {
73   default:
74     report_fatal_error("Don't know how to lower this ABI");
75   case RISCVABI::ABI_ILP32:
76   case RISCVABI::ABI_ILP32F:
77   case RISCVABI::ABI_ILP32D:
78   case RISCVABI::ABI_LP64:
79   case RISCVABI::ABI_LP64F:
80   case RISCVABI::ABI_LP64D:
81     break;
82   }
83 
84   MVT XLenVT = Subtarget.getXLenVT();
85 
86   // Set up the register classes.
87   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
88 
89   if (Subtarget.hasStdExtZfh())
90     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
91   if (Subtarget.hasStdExtF())
92     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
93   if (Subtarget.hasStdExtD())
94     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
95 
96   static const MVT::SimpleValueType BoolVecVTs[] = {
97       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
98       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
99   static const MVT::SimpleValueType IntVecVTs[] = {
100       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
101       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
102       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
103       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
104       MVT::nxv4i64, MVT::nxv8i64};
105   static const MVT::SimpleValueType F16VecVTs[] = {
106       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
107       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
108   static const MVT::SimpleValueType F32VecVTs[] = {
109       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
110   static const MVT::SimpleValueType F64VecVTs[] = {
111       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
112 
113   if (Subtarget.hasVInstructions()) {
114     auto addRegClassForRVV = [this](MVT VT) {
115       unsigned Size = VT.getSizeInBits().getKnownMinValue();
116       assert(Size <= 512 && isPowerOf2_32(Size));
117       const TargetRegisterClass *RC;
118       if (Size <= 64)
119         RC = &RISCV::VRRegClass;
120       else if (Size == 128)
121         RC = &RISCV::VRM2RegClass;
122       else if (Size == 256)
123         RC = &RISCV::VRM4RegClass;
124       else
125         RC = &RISCV::VRM8RegClass;
126 
127       addRegisterClass(VT, RC);
128     };
129 
130     for (MVT VT : BoolVecVTs)
131       addRegClassForRVV(VT);
132     for (MVT VT : IntVecVTs) {
133       if (VT.getVectorElementType() == MVT::i64 &&
134           !Subtarget.hasVInstructionsI64())
135         continue;
136       addRegClassForRVV(VT);
137     }
138 
139     if (Subtarget.hasVInstructionsF16())
140       for (MVT VT : F16VecVTs)
141         addRegClassForRVV(VT);
142 
143     if (Subtarget.hasVInstructionsF32())
144       for (MVT VT : F32VecVTs)
145         addRegClassForRVV(VT);
146 
147     if (Subtarget.hasVInstructionsF64())
148       for (MVT VT : F64VecVTs)
149         addRegClassForRVV(VT);
150 
151     if (Subtarget.useRVVForFixedLengthVectors()) {
152       auto addRegClassForFixedVectors = [this](MVT VT) {
153         MVT ContainerVT = getContainerForFixedLengthVector(VT);
154         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
155         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
156         addRegisterClass(VT, TRI.getRegClass(RCID));
157       };
158       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
159         if (useRVVForFixedLengthVectorVT(VT))
160           addRegClassForFixedVectors(VT);
161 
162       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
163         if (useRVVForFixedLengthVectorVT(VT))
164           addRegClassForFixedVectors(VT);
165     }
166   }
167 
168   // Compute derived properties from the register classes.
169   computeRegisterProperties(STI.getRegisterInfo());
170 
171   setStackPointerRegisterToSaveRestore(RISCV::X2);
172 
173   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
174     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
175 
176   // TODO: add all necessary setOperationAction calls.
177   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
178 
179   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
180   setOperationAction(ISD::BR_CC, XLenVT, Expand);
181   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
182   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
183 
184   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
185   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
186 
187   setOperationAction(ISD::VASTART, MVT::Other, Custom);
188   setOperationAction(ISD::VAARG, MVT::Other, Expand);
189   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
190   setOperationAction(ISD::VAEND, MVT::Other, Expand);
191 
192   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
193   if (!Subtarget.hasStdExtZbb()) {
194     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
195     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
196   }
197 
198   if (Subtarget.is64Bit()) {
199     setOperationAction(ISD::ADD, MVT::i32, Custom);
200     setOperationAction(ISD::SUB, MVT::i32, Custom);
201     setOperationAction(ISD::SHL, MVT::i32, Custom);
202     setOperationAction(ISD::SRA, MVT::i32, Custom);
203     setOperationAction(ISD::SRL, MVT::i32, Custom);
204 
205     setOperationAction(ISD::UADDO, MVT::i32, Custom);
206     setOperationAction(ISD::USUBO, MVT::i32, Custom);
207     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
208     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
209   } else {
210     setLibcallName(RTLIB::SHL_I128, nullptr);
211     setLibcallName(RTLIB::SRL_I128, nullptr);
212     setLibcallName(RTLIB::SRA_I128, nullptr);
213     setLibcallName(RTLIB::MUL_I128, nullptr);
214     setLibcallName(RTLIB::MULO_I64, nullptr);
215   }
216 
217   if (!Subtarget.hasStdExtM()) {
218     setOperationAction(ISD::MUL, XLenVT, Expand);
219     setOperationAction(ISD::MULHS, XLenVT, Expand);
220     setOperationAction(ISD::MULHU, XLenVT, Expand);
221     setOperationAction(ISD::SDIV, XLenVT, Expand);
222     setOperationAction(ISD::UDIV, XLenVT, Expand);
223     setOperationAction(ISD::SREM, XLenVT, Expand);
224     setOperationAction(ISD::UREM, XLenVT, Expand);
225   } else {
226     if (Subtarget.is64Bit()) {
227       setOperationAction(ISD::MUL, MVT::i32, Custom);
228       setOperationAction(ISD::MUL, MVT::i128, Custom);
229 
230       setOperationAction(ISD::SDIV, MVT::i8, Custom);
231       setOperationAction(ISD::UDIV, MVT::i8, Custom);
232       setOperationAction(ISD::UREM, MVT::i8, Custom);
233       setOperationAction(ISD::SDIV, MVT::i16, Custom);
234       setOperationAction(ISD::UDIV, MVT::i16, Custom);
235       setOperationAction(ISD::UREM, MVT::i16, Custom);
236       setOperationAction(ISD::SDIV, MVT::i32, Custom);
237       setOperationAction(ISD::UDIV, MVT::i32, Custom);
238       setOperationAction(ISD::UREM, MVT::i32, Custom);
239     } else {
240       setOperationAction(ISD::MUL, MVT::i64, Custom);
241     }
242   }
243 
244   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
245   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
246   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
247   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
248 
249   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
250   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
251   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
252 
253   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
254       Subtarget.hasStdExtZbkb()) {
255     if (Subtarget.is64Bit()) {
256       setOperationAction(ISD::ROTL, MVT::i32, Custom);
257       setOperationAction(ISD::ROTR, MVT::i32, Custom);
258     }
259   } else {
260     setOperationAction(ISD::ROTL, XLenVT, Expand);
261     setOperationAction(ISD::ROTR, XLenVT, Expand);
262   }
263 
264   if (Subtarget.hasStdExtZbp()) {
265     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
266     // more combining.
267     setOperationAction(ISD::BITREVERSE, XLenVT,   Custom);
268     setOperationAction(ISD::BSWAP,      XLenVT,   Custom);
269     setOperationAction(ISD::BITREVERSE, MVT::i8,  Custom);
270     // BSWAP i8 doesn't exist.
271     setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
272     setOperationAction(ISD::BSWAP,      MVT::i16, Custom);
273 
274     if (Subtarget.is64Bit()) {
275       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
276       setOperationAction(ISD::BSWAP,      MVT::i32, Custom);
277     }
278   } else {
279     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
280     // pattern match it directly in isel.
281     setOperationAction(ISD::BSWAP, XLenVT,
282                        (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())
283                            ? Legal
284                            : Expand);
285     // Zbkb can use rev8+brev8 to implement bitreverse.
286     setOperationAction(ISD::BITREVERSE, XLenVT,
287                        Subtarget.hasStdExtZbkb() ? Custom : Expand);
288   }
289 
290   if (Subtarget.hasStdExtZbb()) {
291     setOperationAction(ISD::SMIN, XLenVT, Legal);
292     setOperationAction(ISD::SMAX, XLenVT, Legal);
293     setOperationAction(ISD::UMIN, XLenVT, Legal);
294     setOperationAction(ISD::UMAX, XLenVT, Legal);
295 
296     if (Subtarget.is64Bit()) {
297       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
298       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
299       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
300       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
301     }
302   } else {
303     setOperationAction(ISD::CTTZ, XLenVT, Expand);
304     setOperationAction(ISD::CTLZ, XLenVT, Expand);
305     setOperationAction(ISD::CTPOP, XLenVT, Expand);
306 
307     if (Subtarget.is64Bit())
308       setOperationAction(ISD::ABS, MVT::i32, Custom);
309   }
310 
311   if (Subtarget.hasStdExtZbt()) {
312     setOperationAction(ISD::FSHL, XLenVT, Custom);
313     setOperationAction(ISD::FSHR, XLenVT, Custom);
314     setOperationAction(ISD::SELECT, XLenVT, Legal);
315 
316     if (Subtarget.is64Bit()) {
317       setOperationAction(ISD::FSHL, MVT::i32, Custom);
318       setOperationAction(ISD::FSHR, MVT::i32, Custom);
319     }
320   } else {
321     setOperationAction(ISD::SELECT, XLenVT, Custom);
322   }
323 
324   static constexpr ISD::NodeType FPLegalNodeTypes[] = {
325       ISD::FMINNUM,        ISD::FMAXNUM,       ISD::LRINT,
326       ISD::LLRINT,         ISD::LROUND,        ISD::LLROUND,
327       ISD::STRICT_LRINT,   ISD::STRICT_LLRINT, ISD::STRICT_LROUND,
328       ISD::STRICT_LLROUND, ISD::STRICT_FMA,    ISD::STRICT_FADD,
329       ISD::STRICT_FSUB,    ISD::STRICT_FMUL,   ISD::STRICT_FDIV,
330       ISD::STRICT_FSQRT,   ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS};
331 
332   static const ISD::CondCode FPCCToExpand[] = {
333       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
334       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
335       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
336 
337   static const ISD::NodeType FPOpToExpand[] = {
338       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
339       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
340 
341   if (Subtarget.hasStdExtZfh())
342     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
343 
344   if (Subtarget.hasStdExtZfh()) {
345     for (auto NT : FPLegalNodeTypes)
346       setOperationAction(NT, MVT::f16, Legal);
347     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
348     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
349     for (auto CC : FPCCToExpand)
350       setCondCodeAction(CC, MVT::f16, Expand);
351     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
352     setOperationAction(ISD::SELECT, MVT::f16, Custom);
353     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
354 
355     setOperationAction(ISD::FREM,       MVT::f16, Promote);
356     setOperationAction(ISD::FCEIL,      MVT::f16, Promote);
357     setOperationAction(ISD::FFLOOR,     MVT::f16, Promote);
358     setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
359     setOperationAction(ISD::FRINT,      MVT::f16, Promote);
360     setOperationAction(ISD::FROUND,     MVT::f16, Promote);
361     setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote);
362     setOperationAction(ISD::FTRUNC,     MVT::f16, Promote);
363     setOperationAction(ISD::FPOW,       MVT::f16, Promote);
364     setOperationAction(ISD::FPOWI,      MVT::f16, Promote);
365     setOperationAction(ISD::FCOS,       MVT::f16, Promote);
366     setOperationAction(ISD::FSIN,       MVT::f16, Promote);
367     setOperationAction(ISD::FSINCOS,    MVT::f16, Promote);
368     setOperationAction(ISD::FEXP,       MVT::f16, Promote);
369     setOperationAction(ISD::FEXP2,      MVT::f16, Promote);
370     setOperationAction(ISD::FLOG,       MVT::f16, Promote);
371     setOperationAction(ISD::FLOG2,      MVT::f16, Promote);
372     setOperationAction(ISD::FLOG10,     MVT::f16, Promote);
373 
374     // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
375     // complete support for all operations in LegalizeDAG.
376 
377     // We need to custom promote this.
378     if (Subtarget.is64Bit())
379       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
380   }
381 
382   if (Subtarget.hasStdExtF()) {
383     for (auto NT : FPLegalNodeTypes)
384       setOperationAction(NT, MVT::f32, Legal);
385     for (auto CC : FPCCToExpand)
386       setCondCodeAction(CC, MVT::f32, Expand);
387     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
388     setOperationAction(ISD::SELECT, MVT::f32, Custom);
389     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
390     for (auto Op : FPOpToExpand)
391       setOperationAction(Op, MVT::f32, Expand);
392     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
393     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
394   }
395 
396   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
397     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
398 
399   if (Subtarget.hasStdExtD()) {
400     for (auto NT : FPLegalNodeTypes)
401       setOperationAction(NT, MVT::f64, Legal);
402     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
403     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
404     for (auto CC : FPCCToExpand)
405       setCondCodeAction(CC, MVT::f64, Expand);
406     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
407     setOperationAction(ISD::SELECT, MVT::f64, Custom);
408     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
409     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
410     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
411     for (auto Op : FPOpToExpand)
412       setOperationAction(Op, MVT::f64, Expand);
413     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
414     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
415   }
416 
417   if (Subtarget.is64Bit()) {
418     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
419     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
420     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
421     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
422   }
423 
424   if (Subtarget.hasStdExtF()) {
425     setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom);
426     setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom);
427 
428     setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal);
429     setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal);
430     setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal);
431     setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal);
432 
433     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
434     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
435   }
436 
437   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
438   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
439   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
440   setOperationAction(ISD::JumpTable, XLenVT, Custom);
441 
442   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
443 
444   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
445   // Unfortunately this can't be determined just from the ISA naming string.
446   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
447                      Subtarget.is64Bit() ? Legal : Custom);
448 
449   setOperationAction(ISD::TRAP, MVT::Other, Legal);
450   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
451   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
452   if (Subtarget.is64Bit())
453     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
454 
455   if (Subtarget.hasStdExtA()) {
456     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
457     setMinCmpXchgSizeInBits(32);
458   } else {
459     setMaxAtomicSizeInBitsSupported(0);
460   }
461 
462   setBooleanContents(ZeroOrOneBooleanContent);
463 
464   if (Subtarget.hasVInstructions()) {
465     setBooleanVectorContents(ZeroOrOneBooleanContent);
466 
467     setOperationAction(ISD::VSCALE, XLenVT, Custom);
468 
469     // RVV intrinsics may have illegal operands.
470     // We also need to custom legalize vmv.x.s.
471     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
472     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
473     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
474     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
475     if (Subtarget.is64Bit()) {
476       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
477     } else {
478       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
479       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
480     }
481 
482     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
483     setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
484 
485     static const unsigned IntegerVPOps[] = {
486         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
487         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
488         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
489         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
490         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
491         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
492         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
493         ISD::VP_MERGE,       ISD::VP_SELECT};
494 
495     static const unsigned FloatingPointVPOps[] = {
496         ISD::VP_FADD,        ISD::VP_FSUB,        ISD::VP_FMUL,
497         ISD::VP_FDIV,        ISD::VP_FNEG,        ISD::VP_FMA,
498         ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, ISD::VP_REDUCE_FMIN,
499         ISD::VP_REDUCE_FMAX, ISD::VP_MERGE,       ISD::VP_SELECT};
500 
501     if (!Subtarget.is64Bit()) {
502       // We must custom-lower certain vXi64 operations on RV32 due to the vector
503       // element type being illegal.
504       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
505       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
506 
507       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
508       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
509       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
510       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
511       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
512       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
513       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
514       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
515 
516       setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom);
517       setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom);
518       setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom);
519       setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom);
520       setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom);
521       setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom);
522       setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom);
523       setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom);
524     }
525 
526     for (MVT VT : BoolVecVTs) {
527       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
528 
529       // Mask VTs are custom-expanded into a series of standard nodes
530       setOperationAction(ISD::TRUNCATE, VT, Custom);
531       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
532       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
533       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
534 
535       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
536       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
537 
538       setOperationAction(ISD::SELECT, VT, Custom);
539       setOperationAction(ISD::SELECT_CC, VT, Expand);
540       setOperationAction(ISD::VSELECT, VT, Expand);
541       setOperationAction(ISD::VP_MERGE, VT, Expand);
542       setOperationAction(ISD::VP_SELECT, VT, Expand);
543 
544       setOperationAction(ISD::VP_AND, VT, Custom);
545       setOperationAction(ISD::VP_OR, VT, Custom);
546       setOperationAction(ISD::VP_XOR, VT, Custom);
547 
548       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
549       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
550       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
551 
552       setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
553       setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
554       setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
555 
556       // RVV has native int->float & float->int conversions where the
557       // element type sizes are within one power-of-two of each other. Any
558       // wider distances between type sizes have to be lowered as sequences
559       // which progressively narrow the gap in stages.
560       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
561       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
562       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
563       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
564 
565       // Expand all extending loads to types larger than this, and truncating
566       // stores from types larger than this.
567       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
568         setTruncStoreAction(OtherVT, VT, Expand);
569         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
570         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
571         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
572       }
573     }
574 
575     for (MVT VT : IntVecVTs) {
576       if (VT.getVectorElementType() == MVT::i64 &&
577           !Subtarget.hasVInstructionsI64())
578         continue;
579 
580       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
581       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
582 
583       // Vectors implement MULHS/MULHU.
584       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
585       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
586 
587       // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
588       if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) {
589         setOperationAction(ISD::MULHU, VT, Expand);
590         setOperationAction(ISD::MULHS, VT, Expand);
591       }
592 
593       setOperationAction(ISD::SMIN, VT, Legal);
594       setOperationAction(ISD::SMAX, VT, Legal);
595       setOperationAction(ISD::UMIN, VT, Legal);
596       setOperationAction(ISD::UMAX, VT, Legal);
597 
598       setOperationAction(ISD::ROTL, VT, Expand);
599       setOperationAction(ISD::ROTR, VT, Expand);
600 
601       setOperationAction(ISD::CTTZ, VT, Expand);
602       setOperationAction(ISD::CTLZ, VT, Expand);
603       setOperationAction(ISD::CTPOP, VT, Expand);
604 
605       setOperationAction(ISD::BSWAP, VT, Expand);
606 
607       // Custom-lower extensions and truncations from/to mask types.
608       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
609       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
610       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
611 
612       // RVV has native int->float & float->int conversions where the
613       // element type sizes are within one power-of-two of each other. Any
614       // wider distances between type sizes have to be lowered as sequences
615       // which progressively narrow the gap in stages.
616       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
617       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
618       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
619       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
620 
621       setOperationAction(ISD::SADDSAT, VT, Legal);
622       setOperationAction(ISD::UADDSAT, VT, Legal);
623       setOperationAction(ISD::SSUBSAT, VT, Legal);
624       setOperationAction(ISD::USUBSAT, VT, Legal);
625 
626       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
627       // nodes which truncate by one power of two at a time.
628       setOperationAction(ISD::TRUNCATE, VT, Custom);
629 
630       // Custom-lower insert/extract operations to simplify patterns.
631       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
632       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
633 
634       // Custom-lower reduction operations to set up the corresponding custom
635       // nodes' operands.
636       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
637       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
638       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
639       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
640       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
641       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
642       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
643       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
644 
645       for (unsigned VPOpc : IntegerVPOps)
646         setOperationAction(VPOpc, VT, Custom);
647 
648       setOperationAction(ISD::LOAD, VT, Custom);
649       setOperationAction(ISD::STORE, VT, Custom);
650 
651       setOperationAction(ISD::MLOAD, VT, Custom);
652       setOperationAction(ISD::MSTORE, VT, Custom);
653       setOperationAction(ISD::MGATHER, VT, Custom);
654       setOperationAction(ISD::MSCATTER, VT, Custom);
655 
656       setOperationAction(ISD::VP_LOAD, VT, Custom);
657       setOperationAction(ISD::VP_STORE, VT, Custom);
658       setOperationAction(ISD::VP_GATHER, VT, Custom);
659       setOperationAction(ISD::VP_SCATTER, VT, Custom);
660 
661       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
662       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
663       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
664 
665       setOperationAction(ISD::SELECT, VT, Custom);
666       setOperationAction(ISD::SELECT_CC, VT, Expand);
667 
668       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
669       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
670 
671       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
672         setTruncStoreAction(VT, OtherVT, Expand);
673         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
674         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
675         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
676       }
677 
678       // Splice
679       setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
680 
681       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
682       // type that can represent the value exactly.
683       if (VT.getVectorElementType() != MVT::i64) {
684         MVT FloatEltVT =
685             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
686         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
687         if (isTypeLegal(FloatVT)) {
688           setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
689           setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
690         }
691       }
692     }
693 
694     // Expand various CCs to best match the RVV ISA, which natively supports UNE
695     // but no other unordered comparisons, and supports all ordered comparisons
696     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
697     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
698     // and we pattern-match those back to the "original", swapping operands once
699     // more. This way we catch both operations and both "vf" and "fv" forms with
700     // fewer patterns.
701     static const ISD::CondCode VFPCCToExpand[] = {
702         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
703         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
704         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
705     };
706 
707     // Sets common operation actions on RVV floating-point vector types.
708     const auto SetCommonVFPActions = [&](MVT VT) {
709       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
710       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
711       // sizes are within one power-of-two of each other. Therefore conversions
712       // between vXf16 and vXf64 must be lowered as sequences which convert via
713       // vXf32.
714       setOperationAction(ISD::FP_ROUND, VT, Custom);
715       setOperationAction(ISD::FP_EXTEND, VT, Custom);
716       // Custom-lower insert/extract operations to simplify patterns.
717       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
718       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
719       // Expand various condition codes (explained above).
720       for (auto CC : VFPCCToExpand)
721         setCondCodeAction(CC, VT, Expand);
722 
723       setOperationAction(ISD::FMINNUM, VT, Legal);
724       setOperationAction(ISD::FMAXNUM, VT, Legal);
725 
726       setOperationAction(ISD::FTRUNC, VT, Custom);
727       setOperationAction(ISD::FCEIL, VT, Custom);
728       setOperationAction(ISD::FFLOOR, VT, Custom);
729       setOperationAction(ISD::FROUND, VT, Custom);
730 
731       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
732       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
733       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
734       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
735 
736       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
737 
738       setOperationAction(ISD::LOAD, VT, Custom);
739       setOperationAction(ISD::STORE, VT, Custom);
740 
741       setOperationAction(ISD::MLOAD, VT, Custom);
742       setOperationAction(ISD::MSTORE, VT, Custom);
743       setOperationAction(ISD::MGATHER, VT, Custom);
744       setOperationAction(ISD::MSCATTER, VT, Custom);
745 
746       setOperationAction(ISD::VP_LOAD, VT, Custom);
747       setOperationAction(ISD::VP_STORE, VT, Custom);
748       setOperationAction(ISD::VP_GATHER, VT, Custom);
749       setOperationAction(ISD::VP_SCATTER, VT, Custom);
750 
751       setOperationAction(ISD::SELECT, VT, Custom);
752       setOperationAction(ISD::SELECT_CC, VT, Expand);
753 
754       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
755       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
756       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
757 
758       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
759       setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
760 
761       for (unsigned VPOpc : FloatingPointVPOps)
762         setOperationAction(VPOpc, VT, Custom);
763     };
764 
765     // Sets common extload/truncstore actions on RVV floating-point vector
766     // types.
767     const auto SetCommonVFPExtLoadTruncStoreActions =
768         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
769           for (auto SmallVT : SmallerVTs) {
770             setTruncStoreAction(VT, SmallVT, Expand);
771             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
772           }
773         };
774 
775     if (Subtarget.hasVInstructionsF16())
776       for (MVT VT : F16VecVTs)
777         SetCommonVFPActions(VT);
778 
779     for (MVT VT : F32VecVTs) {
780       if (Subtarget.hasVInstructionsF32())
781         SetCommonVFPActions(VT);
782       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
783     }
784 
785     for (MVT VT : F64VecVTs) {
786       if (Subtarget.hasVInstructionsF64())
787         SetCommonVFPActions(VT);
788       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
789       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
790     }
791 
792     if (Subtarget.useRVVForFixedLengthVectors()) {
793       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
794         if (!useRVVForFixedLengthVectorVT(VT))
795           continue;
796 
797         // By default everything must be expanded.
798         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
799           setOperationAction(Op, VT, Expand);
800         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
801           setTruncStoreAction(VT, OtherVT, Expand);
802           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
803           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
804           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
805         }
806 
807         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
808         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
809         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
810 
811         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
812         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
813 
814         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
815         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
816 
817         setOperationAction(ISD::LOAD, VT, Custom);
818         setOperationAction(ISD::STORE, VT, Custom);
819 
820         setOperationAction(ISD::SETCC, VT, Custom);
821 
822         setOperationAction(ISD::SELECT, VT, Custom);
823 
824         setOperationAction(ISD::TRUNCATE, VT, Custom);
825 
826         setOperationAction(ISD::BITCAST, VT, Custom);
827 
828         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
829         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
830         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
831 
832         setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
833         setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
834         setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
835 
836         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
837         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
838         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
839         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
840 
841         // Operations below are different for between masks and other vectors.
842         if (VT.getVectorElementType() == MVT::i1) {
843           setOperationAction(ISD::VP_AND, VT, Custom);
844           setOperationAction(ISD::VP_OR, VT, Custom);
845           setOperationAction(ISD::VP_XOR, VT, Custom);
846           setOperationAction(ISD::AND, VT, Custom);
847           setOperationAction(ISD::OR, VT, Custom);
848           setOperationAction(ISD::XOR, VT, Custom);
849           continue;
850         }
851 
852         // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to
853         // it before type legalization for i64 vectors on RV32. It will then be
854         // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle.
855         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
856         // improvements first.
857         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
858           setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
859           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
860         }
861 
862         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
863         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
864 
865         setOperationAction(ISD::MLOAD, VT, Custom);
866         setOperationAction(ISD::MSTORE, VT, Custom);
867         setOperationAction(ISD::MGATHER, VT, Custom);
868         setOperationAction(ISD::MSCATTER, VT, Custom);
869 
870         setOperationAction(ISD::VP_LOAD, VT, Custom);
871         setOperationAction(ISD::VP_STORE, VT, Custom);
872         setOperationAction(ISD::VP_GATHER, VT, Custom);
873         setOperationAction(ISD::VP_SCATTER, VT, Custom);
874 
875         setOperationAction(ISD::ADD, VT, Custom);
876         setOperationAction(ISD::MUL, VT, Custom);
877         setOperationAction(ISD::SUB, VT, Custom);
878         setOperationAction(ISD::AND, VT, Custom);
879         setOperationAction(ISD::OR, VT, Custom);
880         setOperationAction(ISD::XOR, VT, Custom);
881         setOperationAction(ISD::SDIV, VT, Custom);
882         setOperationAction(ISD::SREM, VT, Custom);
883         setOperationAction(ISD::UDIV, VT, Custom);
884         setOperationAction(ISD::UREM, VT, Custom);
885         setOperationAction(ISD::SHL, VT, Custom);
886         setOperationAction(ISD::SRA, VT, Custom);
887         setOperationAction(ISD::SRL, VT, Custom);
888 
889         setOperationAction(ISD::SMIN, VT, Custom);
890         setOperationAction(ISD::SMAX, VT, Custom);
891         setOperationAction(ISD::UMIN, VT, Custom);
892         setOperationAction(ISD::UMAX, VT, Custom);
893         setOperationAction(ISD::ABS,  VT, Custom);
894 
895         // vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
896         if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) {
897           setOperationAction(ISD::MULHS, VT, Custom);
898           setOperationAction(ISD::MULHU, VT, Custom);
899         }
900 
901         setOperationAction(ISD::SADDSAT, VT, Custom);
902         setOperationAction(ISD::UADDSAT, VT, Custom);
903         setOperationAction(ISD::SSUBSAT, VT, Custom);
904         setOperationAction(ISD::USUBSAT, VT, Custom);
905 
906         setOperationAction(ISD::VSELECT, VT, Custom);
907         setOperationAction(ISD::SELECT_CC, VT, Expand);
908 
909         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
910         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
911         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
912 
913         // Custom-lower reduction operations to set up the corresponding custom
914         // nodes' operands.
915         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
916         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
917         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
918         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
919         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
920 
921         for (unsigned VPOpc : IntegerVPOps)
922           setOperationAction(VPOpc, VT, Custom);
923 
924         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
925         // type that can represent the value exactly.
926         if (VT.getVectorElementType() != MVT::i64) {
927           MVT FloatEltVT =
928               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
929           EVT FloatVT =
930               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
931           if (isTypeLegal(FloatVT)) {
932             setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
933             setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
934           }
935         }
936       }
937 
938       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
939         if (!useRVVForFixedLengthVectorVT(VT))
940           continue;
941 
942         // By default everything must be expanded.
943         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
944           setOperationAction(Op, VT, Expand);
945         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
946           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
947           setTruncStoreAction(VT, OtherVT, Expand);
948         }
949 
950         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
951         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
952         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
953 
954         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
955         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
956         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
957         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
958         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
959 
960         setOperationAction(ISD::LOAD, VT, Custom);
961         setOperationAction(ISD::STORE, VT, Custom);
962         setOperationAction(ISD::MLOAD, VT, Custom);
963         setOperationAction(ISD::MSTORE, VT, Custom);
964         setOperationAction(ISD::MGATHER, VT, Custom);
965         setOperationAction(ISD::MSCATTER, VT, Custom);
966 
967         setOperationAction(ISD::VP_LOAD, VT, Custom);
968         setOperationAction(ISD::VP_STORE, VT, Custom);
969         setOperationAction(ISD::VP_GATHER, VT, Custom);
970         setOperationAction(ISD::VP_SCATTER, VT, Custom);
971 
972         setOperationAction(ISD::FADD, VT, Custom);
973         setOperationAction(ISD::FSUB, VT, Custom);
974         setOperationAction(ISD::FMUL, VT, Custom);
975         setOperationAction(ISD::FDIV, VT, Custom);
976         setOperationAction(ISD::FNEG, VT, Custom);
977         setOperationAction(ISD::FABS, VT, Custom);
978         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
979         setOperationAction(ISD::FSQRT, VT, Custom);
980         setOperationAction(ISD::FMA, VT, Custom);
981         setOperationAction(ISD::FMINNUM, VT, Custom);
982         setOperationAction(ISD::FMAXNUM, VT, Custom);
983 
984         setOperationAction(ISD::FP_ROUND, VT, Custom);
985         setOperationAction(ISD::FP_EXTEND, VT, Custom);
986 
987         setOperationAction(ISD::FTRUNC, VT, Custom);
988         setOperationAction(ISD::FCEIL, VT, Custom);
989         setOperationAction(ISD::FFLOOR, VT, Custom);
990         setOperationAction(ISD::FROUND, VT, Custom);
991 
992         for (auto CC : VFPCCToExpand)
993           setCondCodeAction(CC, VT, Expand);
994 
995         setOperationAction(ISD::VSELECT, VT, Custom);
996         setOperationAction(ISD::SELECT, VT, Custom);
997         setOperationAction(ISD::SELECT_CC, VT, Expand);
998 
999         setOperationAction(ISD::BITCAST, VT, Custom);
1000 
1001         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
1002         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
1003         setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
1004         setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
1005 
1006         for (unsigned VPOpc : FloatingPointVPOps)
1007           setOperationAction(VPOpc, VT, Custom);
1008       }
1009 
1010       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
1011       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
1012       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
1013       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
1014       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1015       if (Subtarget.hasStdExtZfh())
1016         setOperationAction(ISD::BITCAST, MVT::f16, Custom);
1017       if (Subtarget.hasStdExtF())
1018         setOperationAction(ISD::BITCAST, MVT::f32, Custom);
1019       if (Subtarget.hasStdExtD())
1020         setOperationAction(ISD::BITCAST, MVT::f64, Custom);
1021     }
1022   }
1023 
1024   // Function alignments.
1025   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
1026   setMinFunctionAlignment(FunctionAlignment);
1027   setPrefFunctionAlignment(FunctionAlignment);
1028 
1029   setMinimumJumpTableEntries(5);
1030 
1031   // Jumps are expensive, compared to logic
1032   setJumpIsExpensive();
1033 
1034   setTargetDAGCombine(ISD::ADD);
1035   setTargetDAGCombine(ISD::SUB);
1036   setTargetDAGCombine(ISD::AND);
1037   setTargetDAGCombine(ISD::OR);
1038   setTargetDAGCombine(ISD::XOR);
1039   if (Subtarget.hasStdExtZbp()) {
1040     setTargetDAGCombine(ISD::ROTL);
1041     setTargetDAGCombine(ISD::ROTR);
1042   }
1043   if (Subtarget.hasStdExtZbkb())
1044     setTargetDAGCombine(ISD::BITREVERSE);
1045   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1046   if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb())
1047     setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1048   if (Subtarget.hasStdExtF()) {
1049     setTargetDAGCombine(ISD::ZERO_EXTEND);
1050     setTargetDAGCombine(ISD::FP_TO_SINT);
1051     setTargetDAGCombine(ISD::FP_TO_UINT);
1052     setTargetDAGCombine(ISD::FP_TO_SINT_SAT);
1053     setTargetDAGCombine(ISD::FP_TO_UINT_SAT);
1054   }
1055   if (Subtarget.hasVInstructions()) {
1056     setTargetDAGCombine(ISD::FCOPYSIGN);
1057     setTargetDAGCombine(ISD::MGATHER);
1058     setTargetDAGCombine(ISD::MSCATTER);
1059     setTargetDAGCombine(ISD::VP_GATHER);
1060     setTargetDAGCombine(ISD::VP_SCATTER);
1061     setTargetDAGCombine(ISD::SRA);
1062     setTargetDAGCombine(ISD::SRL);
1063     setTargetDAGCombine(ISD::SHL);
1064     setTargetDAGCombine(ISD::STORE);
1065     setTargetDAGCombine(ISD::SPLAT_VECTOR);
1066   }
1067 
1068   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
1069   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
1070 }
1071 
1072 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
1073                                             LLVMContext &Context,
1074                                             EVT VT) const {
1075   if (!VT.isVector())
1076     return getPointerTy(DL);
1077   if (Subtarget.hasVInstructions() &&
1078       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
1079     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
1080   return VT.changeVectorElementTypeToInteger();
1081 }
1082 
1083 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
1084   return Subtarget.getXLenVT();
1085 }
1086 
1087 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1088                                              const CallInst &I,
1089                                              MachineFunction &MF,
1090                                              unsigned Intrinsic) const {
1091   auto &DL = I.getModule()->getDataLayout();
1092   switch (Intrinsic) {
1093   default:
1094     return false;
1095   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
1096   case Intrinsic::riscv_masked_atomicrmw_add_i32:
1097   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
1098   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
1099   case Intrinsic::riscv_masked_atomicrmw_max_i32:
1100   case Intrinsic::riscv_masked_atomicrmw_min_i32:
1101   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
1102   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
1103   case Intrinsic::riscv_masked_cmpxchg_i32:
1104     Info.opc = ISD::INTRINSIC_W_CHAIN;
1105     Info.memVT = MVT::i32;
1106     Info.ptrVal = I.getArgOperand(0);
1107     Info.offset = 0;
1108     Info.align = Align(4);
1109     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1110                  MachineMemOperand::MOVolatile;
1111     return true;
1112   case Intrinsic::riscv_masked_strided_load:
1113     Info.opc = ISD::INTRINSIC_W_CHAIN;
1114     Info.ptrVal = I.getArgOperand(1);
1115     Info.memVT = getValueType(DL, I.getType()->getScalarType());
1116     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
1117     Info.size = MemoryLocation::UnknownSize;
1118     Info.flags |= MachineMemOperand::MOLoad;
1119     return true;
1120   case Intrinsic::riscv_masked_strided_store:
1121     Info.opc = ISD::INTRINSIC_VOID;
1122     Info.ptrVal = I.getArgOperand(1);
1123     Info.memVT =
1124         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
1125     Info.align = Align(
1126         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
1127         8);
1128     Info.size = MemoryLocation::UnknownSize;
1129     Info.flags |= MachineMemOperand::MOStore;
1130     return true;
1131   case Intrinsic::riscv_seg2_load:
1132   case Intrinsic::riscv_seg3_load:
1133   case Intrinsic::riscv_seg4_load:
1134   case Intrinsic::riscv_seg5_load:
1135   case Intrinsic::riscv_seg6_load:
1136   case Intrinsic::riscv_seg7_load:
1137   case Intrinsic::riscv_seg8_load:
1138     Info.opc = ISD::INTRINSIC_W_CHAIN;
1139     Info.ptrVal = I.getArgOperand(0);
1140     Info.memVT =
1141         getValueType(DL, I.getType()->getStructElementType(0)->getScalarType());
1142     Info.align =
1143         Align(DL.getTypeSizeInBits(
1144                   I.getType()->getStructElementType(0)->getScalarType()) /
1145               8);
1146     Info.size = MemoryLocation::UnknownSize;
1147     Info.flags |= MachineMemOperand::MOLoad;
1148     return true;
1149   }
1150 }
1151 
1152 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1153                                                 const AddrMode &AM, Type *Ty,
1154                                                 unsigned AS,
1155                                                 Instruction *I) const {
1156   // No global is ever allowed as a base.
1157   if (AM.BaseGV)
1158     return false;
1159 
1160   // Require a 12-bit signed offset.
1161   if (!isInt<12>(AM.BaseOffs))
1162     return false;
1163 
1164   switch (AM.Scale) {
1165   case 0: // "r+i" or just "i", depending on HasBaseReg.
1166     break;
1167   case 1:
1168     if (!AM.HasBaseReg) // allow "r+i".
1169       break;
1170     return false; // disallow "r+r" or "r+r+i".
1171   default:
1172     return false;
1173   }
1174 
1175   return true;
1176 }
1177 
1178 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1179   return isInt<12>(Imm);
1180 }
1181 
1182 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1183   return isInt<12>(Imm);
1184 }
1185 
1186 // On RV32, 64-bit integers are split into their high and low parts and held
1187 // in two different registers, so the trunc is free since the low register can
1188 // just be used.
1189 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1190   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1191     return false;
1192   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1193   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1194   return (SrcBits == 64 && DestBits == 32);
1195 }
1196 
1197 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1198   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1199       !SrcVT.isInteger() || !DstVT.isInteger())
1200     return false;
1201   unsigned SrcBits = SrcVT.getSizeInBits();
1202   unsigned DestBits = DstVT.getSizeInBits();
1203   return (SrcBits == 64 && DestBits == 32);
1204 }
1205 
1206 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1207   // Zexts are free if they can be combined with a load.
1208   // Don't advertise i32->i64 zextload as being free for RV64. It interacts
1209   // poorly with type legalization of compares preferring sext.
1210   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1211     EVT MemVT = LD->getMemoryVT();
1212     if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1213         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1214          LD->getExtensionType() == ISD::ZEXTLOAD))
1215       return true;
1216   }
1217 
1218   return TargetLowering::isZExtFree(Val, VT2);
1219 }
1220 
1221 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1222   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1223 }
1224 
1225 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1226   return Subtarget.hasStdExtZbb();
1227 }
1228 
1229 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1230   return Subtarget.hasStdExtZbb();
1231 }
1232 
1233 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1234   EVT VT = Y.getValueType();
1235 
1236   // FIXME: Support vectors once we have tests.
1237   if (VT.isVector())
1238     return false;
1239 
1240   return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
1241           Subtarget.hasStdExtZbkb()) &&
1242          !isa<ConstantSDNode>(Y);
1243 }
1244 
1245 /// Check if sinking \p I's operands to I's basic block is profitable, because
1246 /// the operands can be folded into a target instruction, e.g.
1247 /// splats of scalars can fold into vector instructions.
1248 bool RISCVTargetLowering::shouldSinkOperands(
1249     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1250   using namespace llvm::PatternMatch;
1251 
1252   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1253     return false;
1254 
1255   auto IsSinker = [&](Instruction *I, int Operand) {
1256     switch (I->getOpcode()) {
1257     case Instruction::Add:
1258     case Instruction::Sub:
1259     case Instruction::Mul:
1260     case Instruction::And:
1261     case Instruction::Or:
1262     case Instruction::Xor:
1263     case Instruction::FAdd:
1264     case Instruction::FSub:
1265     case Instruction::FMul:
1266     case Instruction::FDiv:
1267     case Instruction::ICmp:
1268     case Instruction::FCmp:
1269       return true;
1270     case Instruction::Shl:
1271     case Instruction::LShr:
1272     case Instruction::AShr:
1273     case Instruction::UDiv:
1274     case Instruction::SDiv:
1275     case Instruction::URem:
1276     case Instruction::SRem:
1277       return Operand == 1;
1278     case Instruction::Call:
1279       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1280         switch (II->getIntrinsicID()) {
1281         case Intrinsic::fma:
1282         case Intrinsic::vp_fma:
1283           return Operand == 0 || Operand == 1;
1284         // FIXME: Our patterns can only match vx/vf instructions when the splat
1285         // it on the RHS, because TableGen doesn't recognize our VP operations
1286         // as commutative.
1287         case Intrinsic::vp_add:
1288         case Intrinsic::vp_mul:
1289         case Intrinsic::vp_and:
1290         case Intrinsic::vp_or:
1291         case Intrinsic::vp_xor:
1292         case Intrinsic::vp_fadd:
1293         case Intrinsic::vp_fmul:
1294         case Intrinsic::vp_shl:
1295         case Intrinsic::vp_lshr:
1296         case Intrinsic::vp_ashr:
1297         case Intrinsic::vp_udiv:
1298         case Intrinsic::vp_sdiv:
1299         case Intrinsic::vp_urem:
1300         case Intrinsic::vp_srem:
1301           return Operand == 1;
1302         // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have
1303         // explicit patterns for both LHS and RHS (as 'vr' versions).
1304         case Intrinsic::vp_sub:
1305         case Intrinsic::vp_fsub:
1306         case Intrinsic::vp_fdiv:
1307           return Operand == 0 || Operand == 1;
1308         default:
1309           return false;
1310         }
1311       }
1312       return false;
1313     default:
1314       return false;
1315     }
1316   };
1317 
1318   for (auto OpIdx : enumerate(I->operands())) {
1319     if (!IsSinker(I, OpIdx.index()))
1320       continue;
1321 
1322     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1323     // Make sure we are not already sinking this operand
1324     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1325       continue;
1326 
1327     // We are looking for a splat that can be sunk.
1328     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1329                              m_Undef(), m_ZeroMask())))
1330       continue;
1331 
1332     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1333     // and vector registers
1334     for (Use &U : Op->uses()) {
1335       Instruction *Insn = cast<Instruction>(U.getUser());
1336       if (!IsSinker(Insn, U.getOperandNo()))
1337         return false;
1338     }
1339 
1340     Ops.push_back(&Op->getOperandUse(0));
1341     Ops.push_back(&OpIdx.value());
1342   }
1343   return true;
1344 }
1345 
1346 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1347                                        bool ForCodeSize) const {
1348   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1349   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1350     return false;
1351   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1352     return false;
1353   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1354     return false;
1355   return Imm.isZero();
1356 }
1357 
1358 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1359   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1360          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1361          (VT == MVT::f64 && Subtarget.hasStdExtD());
1362 }
1363 
1364 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1365                                                       CallingConv::ID CC,
1366                                                       EVT VT) const {
1367   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1368   // We might still end up using a GPR but that will be decided based on ABI.
1369   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1370   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1371     return MVT::f32;
1372 
1373   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1374 }
1375 
1376 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1377                                                            CallingConv::ID CC,
1378                                                            EVT VT) const {
1379   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1380   // We might still end up using a GPR but that will be decided based on ABI.
1381   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1382   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1383     return 1;
1384 
1385   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1386 }
1387 
1388 // Changes the condition code and swaps operands if necessary, so the SetCC
1389 // operation matches one of the comparisons supported directly by branches
1390 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1391 // with 1/-1.
1392 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1393                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1394   // Convert X > -1 to X >= 0.
1395   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1396     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1397     CC = ISD::SETGE;
1398     return;
1399   }
1400   // Convert X < 1 to 0 >= X.
1401   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1402     RHS = LHS;
1403     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1404     CC = ISD::SETGE;
1405     return;
1406   }
1407 
1408   switch (CC) {
1409   default:
1410     break;
1411   case ISD::SETGT:
1412   case ISD::SETLE:
1413   case ISD::SETUGT:
1414   case ISD::SETULE:
1415     CC = ISD::getSetCCSwappedOperands(CC);
1416     std::swap(LHS, RHS);
1417     break;
1418   }
1419 }
1420 
1421 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1422   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1423   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1424   if (VT.getVectorElementType() == MVT::i1)
1425     KnownSize *= 8;
1426 
1427   switch (KnownSize) {
1428   default:
1429     llvm_unreachable("Invalid LMUL.");
1430   case 8:
1431     return RISCVII::VLMUL::LMUL_F8;
1432   case 16:
1433     return RISCVII::VLMUL::LMUL_F4;
1434   case 32:
1435     return RISCVII::VLMUL::LMUL_F2;
1436   case 64:
1437     return RISCVII::VLMUL::LMUL_1;
1438   case 128:
1439     return RISCVII::VLMUL::LMUL_2;
1440   case 256:
1441     return RISCVII::VLMUL::LMUL_4;
1442   case 512:
1443     return RISCVII::VLMUL::LMUL_8;
1444   }
1445 }
1446 
1447 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1448   switch (LMul) {
1449   default:
1450     llvm_unreachable("Invalid LMUL.");
1451   case RISCVII::VLMUL::LMUL_F8:
1452   case RISCVII::VLMUL::LMUL_F4:
1453   case RISCVII::VLMUL::LMUL_F2:
1454   case RISCVII::VLMUL::LMUL_1:
1455     return RISCV::VRRegClassID;
1456   case RISCVII::VLMUL::LMUL_2:
1457     return RISCV::VRM2RegClassID;
1458   case RISCVII::VLMUL::LMUL_4:
1459     return RISCV::VRM4RegClassID;
1460   case RISCVII::VLMUL::LMUL_8:
1461     return RISCV::VRM8RegClassID;
1462   }
1463 }
1464 
1465 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1466   RISCVII::VLMUL LMUL = getLMUL(VT);
1467   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1468       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1469       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1470       LMUL == RISCVII::VLMUL::LMUL_1) {
1471     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1472                   "Unexpected subreg numbering");
1473     return RISCV::sub_vrm1_0 + Index;
1474   }
1475   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1476     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1477                   "Unexpected subreg numbering");
1478     return RISCV::sub_vrm2_0 + Index;
1479   }
1480   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1481     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1482                   "Unexpected subreg numbering");
1483     return RISCV::sub_vrm4_0 + Index;
1484   }
1485   llvm_unreachable("Invalid vector type.");
1486 }
1487 
1488 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1489   if (VT.getVectorElementType() == MVT::i1)
1490     return RISCV::VRRegClassID;
1491   return getRegClassIDForLMUL(getLMUL(VT));
1492 }
1493 
1494 // Attempt to decompose a subvector insert/extract between VecVT and
1495 // SubVecVT via subregister indices. Returns the subregister index that
1496 // can perform the subvector insert/extract with the given element index, as
1497 // well as the index corresponding to any leftover subvectors that must be
1498 // further inserted/extracted within the register class for SubVecVT.
1499 std::pair<unsigned, unsigned>
1500 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1501     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1502     const RISCVRegisterInfo *TRI) {
1503   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1504                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1505                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1506                 "Register classes not ordered");
1507   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1508   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1509   // Try to compose a subregister index that takes us from the incoming
1510   // LMUL>1 register class down to the outgoing one. At each step we half
1511   // the LMUL:
1512   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1513   // Note that this is not guaranteed to find a subregister index, such as
1514   // when we are extracting from one VR type to another.
1515   unsigned SubRegIdx = RISCV::NoSubRegister;
1516   for (const unsigned RCID :
1517        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1518     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1519       VecVT = VecVT.getHalfNumVectorElementsVT();
1520       bool IsHi =
1521           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1522       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1523                                             getSubregIndexByMVT(VecVT, IsHi));
1524       if (IsHi)
1525         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1526     }
1527   return {SubRegIdx, InsertExtractIdx};
1528 }
1529 
1530 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1531 // stores for those types.
1532 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1533   return !Subtarget.useRVVForFixedLengthVectors() ||
1534          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1535 }
1536 
1537 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1538   if (ScalarTy->isPointerTy())
1539     return true;
1540 
1541   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1542       ScalarTy->isIntegerTy(32))
1543     return true;
1544 
1545   if (ScalarTy->isIntegerTy(64))
1546     return Subtarget.hasVInstructionsI64();
1547 
1548   if (ScalarTy->isHalfTy())
1549     return Subtarget.hasVInstructionsF16();
1550   if (ScalarTy->isFloatTy())
1551     return Subtarget.hasVInstructionsF32();
1552   if (ScalarTy->isDoubleTy())
1553     return Subtarget.hasVInstructionsF64();
1554 
1555   return false;
1556 }
1557 
1558 static SDValue getVLOperand(SDValue Op) {
1559   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1560           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
1561          "Unexpected opcode");
1562   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
1563   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
1564   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
1565       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
1566   if (!II)
1567     return SDValue();
1568   return Op.getOperand(II->VLOperand + 1 + HasChain);
1569 }
1570 
1571 static bool useRVVForFixedLengthVectorVT(MVT VT,
1572                                          const RISCVSubtarget &Subtarget) {
1573   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1574   if (!Subtarget.useRVVForFixedLengthVectors())
1575     return false;
1576 
1577   // We only support a set of vector types with a consistent maximum fixed size
1578   // across all supported vector element types to avoid legalization issues.
1579   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1580   // fixed-length vector type we support is 1024 bytes.
1581   if (VT.getFixedSizeInBits() > 1024 * 8)
1582     return false;
1583 
1584   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1585 
1586   MVT EltVT = VT.getVectorElementType();
1587 
1588   // Don't use RVV for vectors we cannot scalarize if required.
1589   switch (EltVT.SimpleTy) {
1590   // i1 is supported but has different rules.
1591   default:
1592     return false;
1593   case MVT::i1:
1594     // Masks can only use a single register.
1595     if (VT.getVectorNumElements() > MinVLen)
1596       return false;
1597     MinVLen /= 8;
1598     break;
1599   case MVT::i8:
1600   case MVT::i16:
1601   case MVT::i32:
1602     break;
1603   case MVT::i64:
1604     if (!Subtarget.hasVInstructionsI64())
1605       return false;
1606     break;
1607   case MVT::f16:
1608     if (!Subtarget.hasVInstructionsF16())
1609       return false;
1610     break;
1611   case MVT::f32:
1612     if (!Subtarget.hasVInstructionsF32())
1613       return false;
1614     break;
1615   case MVT::f64:
1616     if (!Subtarget.hasVInstructionsF64())
1617       return false;
1618     break;
1619   }
1620 
1621   // Reject elements larger than ELEN.
1622   if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors())
1623     return false;
1624 
1625   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1626   // Don't use RVV for types that don't fit.
1627   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1628     return false;
1629 
1630   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1631   // the base fixed length RVV support in place.
1632   if (!VT.isPow2VectorType())
1633     return false;
1634 
1635   return true;
1636 }
1637 
1638 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1639   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1640 }
1641 
1642 // Return the largest legal scalable vector type that matches VT's element type.
1643 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1644                                             const RISCVSubtarget &Subtarget) {
1645   // This may be called before legal types are setup.
1646   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1647           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1648          "Expected legal fixed length vector!");
1649 
1650   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1651   unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors();
1652 
1653   MVT EltVT = VT.getVectorElementType();
1654   switch (EltVT.SimpleTy) {
1655   default:
1656     llvm_unreachable("unexpected element type for RVV container");
1657   case MVT::i1:
1658   case MVT::i8:
1659   case MVT::i16:
1660   case MVT::i32:
1661   case MVT::i64:
1662   case MVT::f16:
1663   case MVT::f32:
1664   case MVT::f64: {
1665     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1666     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1667     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1668     unsigned NumElts =
1669         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1670     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1671     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1672     return MVT::getScalableVectorVT(EltVT, NumElts);
1673   }
1674   }
1675 }
1676 
1677 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1678                                             const RISCVSubtarget &Subtarget) {
1679   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1680                                           Subtarget);
1681 }
1682 
1683 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1684   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1685 }
1686 
1687 // Grow V to consume an entire RVV register.
1688 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1689                                        const RISCVSubtarget &Subtarget) {
1690   assert(VT.isScalableVector() &&
1691          "Expected to convert into a scalable vector!");
1692   assert(V.getValueType().isFixedLengthVector() &&
1693          "Expected a fixed length vector operand!");
1694   SDLoc DL(V);
1695   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1696   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1697 }
1698 
1699 // Shrink V so it's just big enough to maintain a VT's worth of data.
1700 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1701                                          const RISCVSubtarget &Subtarget) {
1702   assert(VT.isFixedLengthVector() &&
1703          "Expected to convert into a fixed length vector!");
1704   assert(V.getValueType().isScalableVector() &&
1705          "Expected a scalable vector operand!");
1706   SDLoc DL(V);
1707   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1708   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1709 }
1710 
1711 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1712 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1713 // the vector type that it is contained in.
1714 static std::pair<SDValue, SDValue>
1715 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1716                 const RISCVSubtarget &Subtarget) {
1717   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1718   MVT XLenVT = Subtarget.getXLenVT();
1719   SDValue VL = VecVT.isFixedLengthVector()
1720                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1721                    : DAG.getRegister(RISCV::X0, XLenVT);
1722   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1723   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1724   return {Mask, VL};
1725 }
1726 
1727 // As above but assuming the given type is a scalable vector type.
1728 static std::pair<SDValue, SDValue>
1729 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1730                         const RISCVSubtarget &Subtarget) {
1731   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1732   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1733 }
1734 
1735 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1736 // of either is (currently) supported. This can get us into an infinite loop
1737 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1738 // as a ..., etc.
1739 // Until either (or both) of these can reliably lower any node, reporting that
1740 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1741 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1742 // which is not desirable.
1743 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1744     EVT VT, unsigned DefinedValues) const {
1745   return false;
1746 }
1747 
1748 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
1749                                   const RISCVSubtarget &Subtarget) {
1750   // RISCV FP-to-int conversions saturate to the destination register size, but
1751   // don't produce 0 for nan. We can use a conversion instruction and fix the
1752   // nan case with a compare and a select.
1753   SDValue Src = Op.getOperand(0);
1754 
1755   EVT DstVT = Op.getValueType();
1756   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1757 
1758   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1759   unsigned Opc;
1760   if (SatVT == DstVT)
1761     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
1762   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1763     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
1764   else
1765     return SDValue();
1766   // FIXME: Support other SatVTs by clamping before or after the conversion.
1767 
1768   SDLoc DL(Op);
1769   SDValue FpToInt = DAG.getNode(
1770       Opc, DL, DstVT, Src,
1771       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
1772 
1773   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1774   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1775 }
1776 
1777 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1778 // and back. Taking care to avoid converting values that are nan or already
1779 // correct.
1780 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1781 // have FRM dependencies modeled yet.
1782 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1783   MVT VT = Op.getSimpleValueType();
1784   assert(VT.isVector() && "Unexpected type");
1785 
1786   SDLoc DL(Op);
1787 
1788   // Freeze the source since we are increasing the number of uses.
1789   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1790 
1791   // Truncate to integer and convert back to FP.
1792   MVT IntVT = VT.changeVectorElementTypeToInteger();
1793   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1794   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1795 
1796   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1797 
1798   if (Op.getOpcode() == ISD::FCEIL) {
1799     // If the truncated value is the greater than or equal to the original
1800     // value, we've computed the ceil. Otherwise, we went the wrong way and
1801     // need to increase by 1.
1802     // FIXME: This should use a masked operation. Handle here or in isel?
1803     SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1804                                  DAG.getConstantFP(1.0, DL, VT));
1805     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1806     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1807   } else if (Op.getOpcode() == ISD::FFLOOR) {
1808     // If the truncated value is the less than or equal to the original value,
1809     // we've computed the floor. Otherwise, we went the wrong way and need to
1810     // decrease by 1.
1811     // FIXME: This should use a masked operation. Handle here or in isel?
1812     SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1813                                  DAG.getConstantFP(1.0, DL, VT));
1814     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1815     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1816   }
1817 
1818   // Restore the original sign so that -0.0 is preserved.
1819   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1820 
1821   // Determine the largest integer that can be represented exactly. This and
1822   // values larger than it don't have any fractional bits so don't need to
1823   // be converted.
1824   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1825   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1826   APFloat MaxVal = APFloat(FltSem);
1827   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1828                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1829   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1830 
1831   // If abs(Src) was larger than MaxVal or nan, keep it.
1832   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1833   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1834   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1835 }
1836 
1837 // ISD::FROUND is defined to round to nearest with ties rounding away from 0.
1838 // This mode isn't supported in vector hardware on RISCV. But as long as we
1839 // aren't compiling with trapping math, we can emulate this with
1840 // floor(X + copysign(nextafter(0.5, 0.0), X)).
1841 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM
1842 // dependencies modeled yet.
1843 // FIXME: Use masked operations to avoid final merge.
1844 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) {
1845   MVT VT = Op.getSimpleValueType();
1846   assert(VT.isVector() && "Unexpected type");
1847 
1848   SDLoc DL(Op);
1849 
1850   // Freeze the source since we are increasing the number of uses.
1851   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1852 
1853   // We do the conversion on the absolute value and fix the sign at the end.
1854   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1855 
1856   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1857   bool Ignored;
1858   APFloat Point5Pred = APFloat(0.5f);
1859   Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored);
1860   Point5Pred.next(/*nextDown*/ true);
1861 
1862   // Add the adjustment.
1863   SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs,
1864                                DAG.getConstantFP(Point5Pred, DL, VT));
1865 
1866   // Truncate to integer and convert back to fp.
1867   MVT IntVT = VT.changeVectorElementTypeToInteger();
1868   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust);
1869   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1870 
1871   // Restore the original sign.
1872   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1873 
1874   // Determine the largest integer that can be represented exactly. This and
1875   // values larger than it don't have any fractional bits so don't need to
1876   // be converted.
1877   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1878   APFloat MaxVal = APFloat(FltSem);
1879   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1880                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1881   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1882 
1883   // If abs(Src) was larger than MaxVal or nan, keep it.
1884   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1885   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1886   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1887 }
1888 
1889 struct VIDSequence {
1890   int64_t StepNumerator;
1891   unsigned StepDenominator;
1892   int64_t Addend;
1893 };
1894 
1895 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1896 // to the (non-zero) step S and start value X. This can be then lowered as the
1897 // RVV sequence (VID * S) + X, for example.
1898 // The step S is represented as an integer numerator divided by a positive
1899 // denominator. Note that the implementation currently only identifies
1900 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1901 // cannot detect 2/3, for example.
1902 // Note that this method will also match potentially unappealing index
1903 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1904 // determine whether this is worth generating code for.
1905 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1906   unsigned NumElts = Op.getNumOperands();
1907   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1908   if (!Op.getValueType().isInteger())
1909     return None;
1910 
1911   Optional<unsigned> SeqStepDenom;
1912   Optional<int64_t> SeqStepNum, SeqAddend;
1913   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1914   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1915   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1916     // Assume undef elements match the sequence; we just have to be careful
1917     // when interpolating across them.
1918     if (Op.getOperand(Idx).isUndef())
1919       continue;
1920     // The BUILD_VECTOR must be all constants.
1921     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1922       return None;
1923 
1924     uint64_t Val = Op.getConstantOperandVal(Idx) &
1925                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1926 
1927     if (PrevElt) {
1928       // Calculate the step since the last non-undef element, and ensure
1929       // it's consistent across the entire sequence.
1930       unsigned IdxDiff = Idx - PrevElt->second;
1931       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1932 
1933       // A zero-value value difference means that we're somewhere in the middle
1934       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1935       // step change before evaluating the sequence.
1936       if (ValDiff != 0) {
1937         int64_t Remainder = ValDiff % IdxDiff;
1938         // Normalize the step if it's greater than 1.
1939         if (Remainder != ValDiff) {
1940           // The difference must cleanly divide the element span.
1941           if (Remainder != 0)
1942             return None;
1943           ValDiff /= IdxDiff;
1944           IdxDiff = 1;
1945         }
1946 
1947         if (!SeqStepNum)
1948           SeqStepNum = ValDiff;
1949         else if (ValDiff != SeqStepNum)
1950           return None;
1951 
1952         if (!SeqStepDenom)
1953           SeqStepDenom = IdxDiff;
1954         else if (IdxDiff != *SeqStepDenom)
1955           return None;
1956       }
1957     }
1958 
1959     // Record and/or check any addend.
1960     if (SeqStepNum && SeqStepDenom) {
1961       uint64_t ExpectedVal =
1962           (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1963       int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1964       if (!SeqAddend)
1965         SeqAddend = Addend;
1966       else if (SeqAddend != Addend)
1967         return None;
1968     }
1969 
1970     // Record this non-undef element for later.
1971     if (!PrevElt || PrevElt->first != Val)
1972       PrevElt = std::make_pair(Val, Idx);
1973   }
1974   // We need to have logged both a step and an addend for this to count as
1975   // a legal index sequence.
1976   if (!SeqStepNum || !SeqStepDenom || !SeqAddend)
1977     return None;
1978 
1979   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1980 }
1981 
1982 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT
1983 // and lower it as a VRGATHER_VX_VL from the source vector.
1984 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL,
1985                                   SelectionDAG &DAG,
1986                                   const RISCVSubtarget &Subtarget) {
1987   if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1988     return SDValue();
1989   SDValue Vec = SplatVal.getOperand(0);
1990   // Only perform this optimization on vectors of the same size for simplicity.
1991   if (Vec.getValueType() != VT)
1992     return SDValue();
1993   SDValue Idx = SplatVal.getOperand(1);
1994   // The index must be a legal type.
1995   if (Idx.getValueType() != Subtarget.getXLenVT())
1996     return SDValue();
1997 
1998   MVT ContainerVT = VT;
1999   if (VT.isFixedLengthVector()) {
2000     ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2001     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2002   }
2003 
2004   SDValue Mask, VL;
2005   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2006 
2007   SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec,
2008                                Idx, Mask, VL);
2009 
2010   if (!VT.isFixedLengthVector())
2011     return Gather;
2012 
2013   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2014 }
2015 
2016 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
2017                                  const RISCVSubtarget &Subtarget) {
2018   MVT VT = Op.getSimpleValueType();
2019   assert(VT.isFixedLengthVector() && "Unexpected vector!");
2020 
2021   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2022 
2023   SDLoc DL(Op);
2024   SDValue Mask, VL;
2025   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2026 
2027   MVT XLenVT = Subtarget.getXLenVT();
2028   unsigned NumElts = Op.getNumOperands();
2029 
2030   if (VT.getVectorElementType() == MVT::i1) {
2031     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
2032       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
2033       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
2034     }
2035 
2036     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
2037       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
2038       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
2039     }
2040 
2041     // Lower constant mask BUILD_VECTORs via an integer vector type, in
2042     // scalar integer chunks whose bit-width depends on the number of mask
2043     // bits and XLEN.
2044     // First, determine the most appropriate scalar integer type to use. This
2045     // is at most XLenVT, but may be shrunk to a smaller vector element type
2046     // according to the size of the final vector - use i8 chunks rather than
2047     // XLenVT if we're producing a v8i1. This results in more consistent
2048     // codegen across RV32 and RV64.
2049     unsigned NumViaIntegerBits =
2050         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
2051     NumViaIntegerBits = std::min(NumViaIntegerBits,
2052                                  Subtarget.getMaxELENForFixedLengthVectors());
2053     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
2054       // If we have to use more than one INSERT_VECTOR_ELT then this
2055       // optimization is likely to increase code size; avoid peforming it in
2056       // such a case. We can use a load from a constant pool in this case.
2057       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
2058         return SDValue();
2059       // Now we can create our integer vector type. Note that it may be larger
2060       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
2061       MVT IntegerViaVecVT =
2062           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
2063                            divideCeil(NumElts, NumViaIntegerBits));
2064 
2065       uint64_t Bits = 0;
2066       unsigned BitPos = 0, IntegerEltIdx = 0;
2067       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
2068 
2069       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
2070         // Once we accumulate enough bits to fill our scalar type, insert into
2071         // our vector and clear our accumulated data.
2072         if (I != 0 && I % NumViaIntegerBits == 0) {
2073           if (NumViaIntegerBits <= 32)
2074             Bits = SignExtend64(Bits, 32);
2075           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2076           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
2077                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2078           Bits = 0;
2079           BitPos = 0;
2080           IntegerEltIdx++;
2081         }
2082         SDValue V = Op.getOperand(I);
2083         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
2084         Bits |= ((uint64_t)BitValue << BitPos);
2085       }
2086 
2087       // Insert the (remaining) scalar value into position in our integer
2088       // vector type.
2089       if (NumViaIntegerBits <= 32)
2090         Bits = SignExtend64(Bits, 32);
2091       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2092       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
2093                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2094 
2095       if (NumElts < NumViaIntegerBits) {
2096         // If we're producing a smaller vector than our minimum legal integer
2097         // type, bitcast to the equivalent (known-legal) mask type, and extract
2098         // our final mask.
2099         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
2100         Vec = DAG.getBitcast(MVT::v8i1, Vec);
2101         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
2102                           DAG.getConstant(0, DL, XLenVT));
2103       } else {
2104         // Else we must have produced an integer type with the same size as the
2105         // mask type; bitcast for the final result.
2106         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
2107         Vec = DAG.getBitcast(VT, Vec);
2108       }
2109 
2110       return Vec;
2111     }
2112 
2113     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
2114     // vector type, we have a legal equivalently-sized i8 type, so we can use
2115     // that.
2116     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
2117     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
2118 
2119     SDValue WideVec;
2120     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2121       // For a splat, perform a scalar truncate before creating the wider
2122       // vector.
2123       assert(Splat.getValueType() == XLenVT &&
2124              "Unexpected type for i1 splat value");
2125       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
2126                           DAG.getConstant(1, DL, XLenVT));
2127       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
2128     } else {
2129       SmallVector<SDValue, 8> Ops(Op->op_values());
2130       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
2131       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
2132       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
2133     }
2134 
2135     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
2136   }
2137 
2138   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2139     if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget))
2140       return Gather;
2141     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2142                                         : RISCVISD::VMV_V_X_VL;
2143     Splat =
2144         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL);
2145     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2146   }
2147 
2148   // Try and match index sequences, which we can lower to the vid instruction
2149   // with optional modifications. An all-undef vector is matched by
2150   // getSplatValue, above.
2151   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2152     int64_t StepNumerator = SimpleVID->StepNumerator;
2153     unsigned StepDenominator = SimpleVID->StepDenominator;
2154     int64_t Addend = SimpleVID->Addend;
2155 
2156     assert(StepNumerator != 0 && "Invalid step");
2157     bool Negate = false;
2158     int64_t SplatStepVal = StepNumerator;
2159     unsigned StepOpcode = ISD::MUL;
2160     if (StepNumerator != 1) {
2161       if (isPowerOf2_64(std::abs(StepNumerator))) {
2162         Negate = StepNumerator < 0;
2163         StepOpcode = ISD::SHL;
2164         SplatStepVal = Log2_64(std::abs(StepNumerator));
2165       }
2166     }
2167 
2168     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2169     // threshold since it's the immediate value many RVV instructions accept.
2170     // There is no vmul.vi instruction so ensure multiply constant can fit in
2171     // a single addi instruction.
2172     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2173          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2174         isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) {
2175       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2176       // Convert right out of the scalable type so we can use standard ISD
2177       // nodes for the rest of the computation. If we used scalable types with
2178       // these, we'd lose the fixed-length vector info and generate worse
2179       // vsetvli code.
2180       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2181       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2182           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2183         SDValue SplatStep = DAG.getSplatVector(
2184             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2185         VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2186       }
2187       if (StepDenominator != 1) {
2188         SDValue SplatStep = DAG.getSplatVector(
2189             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2190         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2191       }
2192       if (Addend != 0 || Negate) {
2193         SDValue SplatAddend =
2194             DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2195         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2196       }
2197       return VID;
2198     }
2199   }
2200 
2201   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2202   // when re-interpreted as a vector with a larger element type. For example,
2203   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2204   // could be instead splat as
2205   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2206   // TODO: This optimization could also work on non-constant splats, but it
2207   // would require bit-manipulation instructions to construct the splat value.
2208   SmallVector<SDValue> Sequence;
2209   unsigned EltBitSize = VT.getScalarSizeInBits();
2210   const auto *BV = cast<BuildVectorSDNode>(Op);
2211   if (VT.isInteger() && EltBitSize < 64 &&
2212       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2213       BV->getRepeatedSequence(Sequence) &&
2214       (Sequence.size() * EltBitSize) <= 64) {
2215     unsigned SeqLen = Sequence.size();
2216     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2217     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2218     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2219             ViaIntVT == MVT::i64) &&
2220            "Unexpected sequence type");
2221 
2222     unsigned EltIdx = 0;
2223     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2224     uint64_t SplatValue = 0;
2225     // Construct the amalgamated value which can be splatted as this larger
2226     // vector type.
2227     for (const auto &SeqV : Sequence) {
2228       if (!SeqV.isUndef())
2229         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2230                        << (EltIdx * EltBitSize));
2231       EltIdx++;
2232     }
2233 
2234     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2235     // achieve better constant materializion.
2236     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2237       SplatValue = SignExtend64(SplatValue, 32);
2238 
2239     // Since we can't introduce illegal i64 types at this stage, we can only
2240     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2241     // way we can use RVV instructions to splat.
2242     assert((ViaIntVT.bitsLE(XLenVT) ||
2243             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2244            "Unexpected bitcast sequence");
2245     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2246       SDValue ViaVL =
2247           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2248       MVT ViaContainerVT =
2249           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2250       SDValue Splat =
2251           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2252                       DAG.getUNDEF(ViaContainerVT),
2253                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2254       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2255       return DAG.getBitcast(VT, Splat);
2256     }
2257   }
2258 
2259   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2260   // which constitute a large proportion of the elements. In such cases we can
2261   // splat a vector with the dominant element and make up the shortfall with
2262   // INSERT_VECTOR_ELTs.
2263   // Note that this includes vectors of 2 elements by association. The
2264   // upper-most element is the "dominant" one, allowing us to use a splat to
2265   // "insert" the upper element, and an insert of the lower element at position
2266   // 0, which improves codegen.
2267   SDValue DominantValue;
2268   unsigned MostCommonCount = 0;
2269   DenseMap<SDValue, unsigned> ValueCounts;
2270   unsigned NumUndefElts =
2271       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2272 
2273   // Track the number of scalar loads we know we'd be inserting, estimated as
2274   // any non-zero floating-point constant. Other kinds of element are either
2275   // already in registers or are materialized on demand. The threshold at which
2276   // a vector load is more desirable than several scalar materializion and
2277   // vector-insertion instructions is not known.
2278   unsigned NumScalarLoads = 0;
2279 
2280   for (SDValue V : Op->op_values()) {
2281     if (V.isUndef())
2282       continue;
2283 
2284     ValueCounts.insert(std::make_pair(V, 0));
2285     unsigned &Count = ValueCounts[V];
2286 
2287     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2288       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2289 
2290     // Is this value dominant? In case of a tie, prefer the highest element as
2291     // it's cheaper to insert near the beginning of a vector than it is at the
2292     // end.
2293     if (++Count >= MostCommonCount) {
2294       DominantValue = V;
2295       MostCommonCount = Count;
2296     }
2297   }
2298 
2299   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2300   unsigned NumDefElts = NumElts - NumUndefElts;
2301   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2302 
2303   // Don't perform this optimization when optimizing for size, since
2304   // materializing elements and inserting them tends to cause code bloat.
2305   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2306       ((MostCommonCount > DominantValueCountThreshold) ||
2307        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2308     // Start by splatting the most common element.
2309     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2310 
2311     DenseSet<SDValue> Processed{DominantValue};
2312     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2313     for (const auto &OpIdx : enumerate(Op->ops())) {
2314       const SDValue &V = OpIdx.value();
2315       if (V.isUndef() || !Processed.insert(V).second)
2316         continue;
2317       if (ValueCounts[V] == 1) {
2318         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2319                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2320       } else {
2321         // Blend in all instances of this value using a VSELECT, using a
2322         // mask where each bit signals whether that element is the one
2323         // we're after.
2324         SmallVector<SDValue> Ops;
2325         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2326           return DAG.getConstant(V == V1, DL, XLenVT);
2327         });
2328         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2329                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2330                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2331       }
2332     }
2333 
2334     return Vec;
2335   }
2336 
2337   return SDValue();
2338 }
2339 
2340 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2341                                    SDValue Lo, SDValue Hi, SDValue VL,
2342                                    SelectionDAG &DAG) {
2343   bool HasPassthru = Passthru && !Passthru.isUndef();
2344   if (!HasPassthru && !Passthru)
2345     Passthru = DAG.getUNDEF(VT);
2346   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2347     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2348     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2349     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2350     // node in order to try and match RVV vector/scalar instructions.
2351     if ((LoC >> 31) == HiC)
2352       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
2353 
2354     // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use
2355     // vmv.v.x whose EEW = 32 to lower it.
2356     auto *Const = dyn_cast<ConstantSDNode>(VL);
2357     if (LoC == HiC && Const && Const->isAllOnesValue()) {
2358       MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
2359       // TODO: if vl <= min(VLMAX), we can also do this. But we could not
2360       // access the subtarget here now.
2361       auto InterVec = DAG.getNode(
2362           RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo,
2363                                   DAG.getRegister(RISCV::X0, MVT::i32));
2364       return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
2365     }
2366   }
2367 
2368   // Fall back to a stack store and stride x0 vector load.
2369   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo,
2370                      Hi, VL);
2371 }
2372 
2373 // Called by type legalization to handle splat of i64 on RV32.
2374 // FIXME: We can optimize this when the type has sign or zero bits in one
2375 // of the halves.
2376 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2377                                    SDValue Scalar, SDValue VL,
2378                                    SelectionDAG &DAG) {
2379   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2380   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2381                            DAG.getConstant(0, DL, MVT::i32));
2382   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2383                            DAG.getConstant(1, DL, MVT::i32));
2384   return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG);
2385 }
2386 
2387 // This function lowers a splat of a scalar operand Splat with the vector
2388 // length VL. It ensures the final sequence is type legal, which is useful when
2389 // lowering a splat after type legalization.
2390 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL,
2391                                 MVT VT, SDLoc DL, SelectionDAG &DAG,
2392                                 const RISCVSubtarget &Subtarget) {
2393   bool HasPassthru = Passthru && !Passthru.isUndef();
2394   if (!HasPassthru && !Passthru)
2395     Passthru = DAG.getUNDEF(VT);
2396   if (VT.isFloatingPoint()) {
2397     // If VL is 1, we could use vfmv.s.f.
2398     if (isOneConstant(VL))
2399       return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL);
2400     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL);
2401   }
2402 
2403   MVT XLenVT = Subtarget.getXLenVT();
2404 
2405   // Simplest case is that the operand needs to be promoted to XLenVT.
2406   if (Scalar.getValueType().bitsLE(XLenVT)) {
2407     // If the operand is a constant, sign extend to increase our chances
2408     // of being able to use a .vi instruction. ANY_EXTEND would become a
2409     // a zero extend and the simm5 check in isel would fail.
2410     // FIXME: Should we ignore the upper bits in isel instead?
2411     unsigned ExtOpc =
2412         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2413     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2414     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
2415     // If VL is 1 and the scalar value won't benefit from immediate, we could
2416     // use vmv.s.x.
2417     if (isOneConstant(VL) &&
2418         (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
2419       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL);
2420     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
2421   }
2422 
2423   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2424          "Unexpected scalar for splat lowering!");
2425 
2426   if (isOneConstant(VL) && isNullConstant(Scalar))
2427     return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru,
2428                        DAG.getConstant(0, DL, XLenVT), VL);
2429 
2430   // Otherwise use the more complicated splatting algorithm.
2431   return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG);
2432 }
2433 
2434 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources,
2435                                 const RISCVSubtarget &Subtarget) {
2436   // We need to be able to widen elements to the next larger integer type.
2437   if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors())
2438     return false;
2439 
2440   int Size = Mask.size();
2441   assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
2442 
2443   int Srcs[] = {-1, -1};
2444   for (int i = 0; i != Size; ++i) {
2445     // Ignore undef elements.
2446     if (Mask[i] < 0)
2447       continue;
2448 
2449     // Is this an even or odd element.
2450     int Pol = i % 2;
2451 
2452     // Ensure we consistently use the same source for this element polarity.
2453     int Src = Mask[i] / Size;
2454     if (Srcs[Pol] < 0)
2455       Srcs[Pol] = Src;
2456     if (Srcs[Pol] != Src)
2457       return false;
2458 
2459     // Make sure the element within the source is appropriate for this element
2460     // in the destination.
2461     int Elt = Mask[i] % Size;
2462     if (Elt != i / 2)
2463       return false;
2464   }
2465 
2466   // We need to find a source for each polarity and they can't be the same.
2467   if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1])
2468     return false;
2469 
2470   // Swap the sources if the second source was in the even polarity.
2471   SwapSources = Srcs[0] > Srcs[1];
2472 
2473   return true;
2474 }
2475 
2476 /// Match shuffles that concatenate two vectors, rotate the concatenation,
2477 /// and then extract the original number of elements from the rotated result.
2478 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The
2479 /// returned rotation amount is for a rotate right, where elements move from
2480 /// higher elements to lower elements. \p LoSrc indicates the first source
2481 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector
2482 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be
2483 /// 0 or 1 if a rotation is found.
2484 ///
2485 /// NOTE: We talk about rotate to the right which matches how bit shift and
2486 /// rotate instructions are described where LSBs are on the right, but LLVM IR
2487 /// and the table below write vectors with the lowest elements on the left.
2488 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) {
2489   int Size = Mask.size();
2490 
2491   // We need to detect various ways of spelling a rotation:
2492   //   [11, 12, 13, 14, 15,  0,  1,  2]
2493   //   [-1, 12, 13, 14, -1, -1,  1, -1]
2494   //   [-1, -1, -1, -1, -1, -1,  1,  2]
2495   //   [ 3,  4,  5,  6,  7,  8,  9, 10]
2496   //   [-1,  4,  5,  6, -1, -1,  9, -1]
2497   //   [-1,  4,  5,  6, -1, -1, -1, -1]
2498   int Rotation = 0;
2499   LoSrc = -1;
2500   HiSrc = -1;
2501   for (int i = 0; i != Size; ++i) {
2502     int M = Mask[i];
2503     if (M < 0)
2504       continue;
2505 
2506     // Determine where a rotate vector would have started.
2507     int StartIdx = i - (M % Size);
2508     // The identity rotation isn't interesting, stop.
2509     if (StartIdx == 0)
2510       return -1;
2511 
2512     // If we found the tail of a vector the rotation must be the missing
2513     // front. If we found the head of a vector, it must be how much of the
2514     // head.
2515     int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
2516 
2517     if (Rotation == 0)
2518       Rotation = CandidateRotation;
2519     else if (Rotation != CandidateRotation)
2520       // The rotations don't match, so we can't match this mask.
2521       return -1;
2522 
2523     // Compute which value this mask is pointing at.
2524     int MaskSrc = M < Size ? 0 : 1;
2525 
2526     // Compute which of the two target values this index should be assigned to.
2527     // This reflects whether the high elements are remaining or the low elemnts
2528     // are remaining.
2529     int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc;
2530 
2531     // Either set up this value if we've not encountered it before, or check
2532     // that it remains consistent.
2533     if (TargetSrc < 0)
2534       TargetSrc = MaskSrc;
2535     else if (TargetSrc != MaskSrc)
2536       // This may be a rotation, but it pulls from the inputs in some
2537       // unsupported interleaving.
2538       return -1;
2539   }
2540 
2541   // Check that we successfully analyzed the mask, and normalize the results.
2542   assert(Rotation != 0 && "Failed to locate a viable rotation!");
2543   assert((LoSrc >= 0 || HiSrc >= 0) &&
2544          "Failed to find a rotated input vector!");
2545 
2546   return Rotation;
2547 }
2548 
2549 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2550                                    const RISCVSubtarget &Subtarget) {
2551   SDValue V1 = Op.getOperand(0);
2552   SDValue V2 = Op.getOperand(1);
2553   SDLoc DL(Op);
2554   MVT XLenVT = Subtarget.getXLenVT();
2555   MVT VT = Op.getSimpleValueType();
2556   unsigned NumElts = VT.getVectorNumElements();
2557   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2558 
2559   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2560 
2561   SDValue TrueMask, VL;
2562   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2563 
2564   if (SVN->isSplat()) {
2565     const int Lane = SVN->getSplatIndex();
2566     if (Lane >= 0) {
2567       MVT SVT = VT.getVectorElementType();
2568 
2569       // Turn splatted vector load into a strided load with an X0 stride.
2570       SDValue V = V1;
2571       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2572       // with undef.
2573       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2574       int Offset = Lane;
2575       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2576         int OpElements =
2577             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2578         V = V.getOperand(Offset / OpElements);
2579         Offset %= OpElements;
2580       }
2581 
2582       // We need to ensure the load isn't atomic or volatile.
2583       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2584         auto *Ld = cast<LoadSDNode>(V);
2585         Offset *= SVT.getStoreSize();
2586         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2587                                                    TypeSize::Fixed(Offset), DL);
2588 
2589         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2590         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2591           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2592           SDValue IntID =
2593               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2594           SDValue Ops[] = {Ld->getChain(),
2595                            IntID,
2596                            DAG.getUNDEF(ContainerVT),
2597                            NewAddr,
2598                            DAG.getRegister(RISCV::X0, XLenVT),
2599                            VL};
2600           SDValue NewLoad = DAG.getMemIntrinsicNode(
2601               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2602               DAG.getMachineFunction().getMachineMemOperand(
2603                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2604           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2605           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2606         }
2607 
2608         // Otherwise use a scalar load and splat. This will give the best
2609         // opportunity to fold a splat into the operation. ISel can turn it into
2610         // the x0 strided load if we aren't able to fold away the select.
2611         if (SVT.isFloatingPoint())
2612           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2613                           Ld->getPointerInfo().getWithOffset(Offset),
2614                           Ld->getOriginalAlign(),
2615                           Ld->getMemOperand()->getFlags());
2616         else
2617           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2618                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2619                              Ld->getOriginalAlign(),
2620                              Ld->getMemOperand()->getFlags());
2621         DAG.makeEquivalentMemoryOrdering(Ld, V);
2622 
2623         unsigned Opc =
2624             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2625         SDValue Splat =
2626             DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL);
2627         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2628       }
2629 
2630       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2631       assert(Lane < (int)NumElts && "Unexpected lane!");
2632       SDValue Gather =
2633           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
2634                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
2635       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2636     }
2637   }
2638 
2639   ArrayRef<int> Mask = SVN->getMask();
2640 
2641   // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may
2642   // be undef which can be handled with a single SLIDEDOWN/UP.
2643   int LoSrc, HiSrc;
2644   int Rotation = isElementRotate(LoSrc, HiSrc, Mask);
2645   if (Rotation > 0) {
2646     SDValue LoV, HiV;
2647     if (LoSrc >= 0) {
2648       LoV = LoSrc == 0 ? V1 : V2;
2649       LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget);
2650     }
2651     if (HiSrc >= 0) {
2652       HiV = HiSrc == 0 ? V1 : V2;
2653       HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget);
2654     }
2655 
2656     // We found a rotation. We need to slide HiV down by Rotation. Then we need
2657     // to slide LoV up by (NumElts - Rotation).
2658     unsigned InvRotate = NumElts - Rotation;
2659 
2660     SDValue Res = DAG.getUNDEF(ContainerVT);
2661     if (HiV) {
2662       // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN.
2663       // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it
2664       // causes multiple vsetvlis in some test cases such as lowering
2665       // reduce.mul
2666       SDValue DownVL = VL;
2667       if (LoV)
2668         DownVL = DAG.getConstant(InvRotate, DL, XLenVT);
2669       Res =
2670           DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV,
2671                       DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL);
2672     }
2673     if (LoV)
2674       Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV,
2675                         DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL);
2676 
2677     return convertFromScalableVector(VT, Res, DAG, Subtarget);
2678   }
2679 
2680   // Detect an interleave shuffle and lower to
2681   // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
2682   bool SwapSources;
2683   if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) {
2684     // Swap sources if needed.
2685     if (SwapSources)
2686       std::swap(V1, V2);
2687 
2688     // Extract the lower half of the vectors.
2689     MVT HalfVT = VT.getHalfNumVectorElementsVT();
2690     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
2691                      DAG.getConstant(0, DL, XLenVT));
2692     V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2,
2693                      DAG.getConstant(0, DL, XLenVT));
2694 
2695     // Double the element width and halve the number of elements in an int type.
2696     unsigned EltBits = VT.getScalarSizeInBits();
2697     MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
2698     MVT WideIntVT =
2699         MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2);
2700     // Convert this to a scalable vector. We need to base this on the
2701     // destination size to ensure there's always a type with a smaller LMUL.
2702     MVT WideIntContainerVT =
2703         getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget);
2704 
2705     // Convert sources to scalable vectors with the same element count as the
2706     // larger type.
2707     MVT HalfContainerVT = MVT::getVectorVT(
2708         VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount());
2709     V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget);
2710     V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget);
2711 
2712     // Cast sources to integer.
2713     MVT IntEltVT = MVT::getIntegerVT(EltBits);
2714     MVT IntHalfVT =
2715         MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount());
2716     V1 = DAG.getBitcast(IntHalfVT, V1);
2717     V2 = DAG.getBitcast(IntHalfVT, V2);
2718 
2719     // Freeze V2 since we use it twice and we need to be sure that the add and
2720     // multiply see the same value.
2721     V2 = DAG.getFreeze(V2);
2722 
2723     // Recreate TrueMask using the widened type's element count.
2724     MVT MaskVT =
2725         MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount());
2726     TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
2727 
2728     // Widen V1 and V2 with 0s and add one copy of V2 to V1.
2729     SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1,
2730                               V2, TrueMask, VL);
2731     // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer.
2732     SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT,
2733                                      DAG.getUNDEF(IntHalfVT),
2734                                      DAG.getAllOnesConstant(DL, XLenVT));
2735     SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT,
2736                                    V2, Multiplier, TrueMask, VL);
2737     // Add the new copies to our previous addition giving us 2^eltbits copies of
2738     // V2. This is equivalent to shifting V2 left by eltbits. This should
2739     // combine with the vwmulu.vv above to form vwmaccu.vv.
2740     Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul,
2741                       TrueMask, VL);
2742     // Cast back to ContainerVT. We need to re-create a new ContainerVT in case
2743     // WideIntContainerVT is a larger fractional LMUL than implied by the fixed
2744     // vector VT.
2745     ContainerVT =
2746         MVT::getVectorVT(VT.getVectorElementType(),
2747                          WideIntContainerVT.getVectorElementCount() * 2);
2748     Add = DAG.getBitcast(ContainerVT, Add);
2749     return convertFromScalableVector(VT, Add, DAG, Subtarget);
2750   }
2751 
2752   // Detect shuffles which can be re-expressed as vector selects; these are
2753   // shuffles in which each element in the destination is taken from an element
2754   // at the corresponding index in either source vectors.
2755   bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) {
2756     int MaskIndex = MaskIdx.value();
2757     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2758   });
2759 
2760   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2761 
2762   SmallVector<SDValue> MaskVals;
2763   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2764   // merged with a second vrgather.
2765   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2766 
2767   // By default we preserve the original operand order, and use a mask to
2768   // select LHS as true and RHS as false. However, since RVV vector selects may
2769   // feature splats but only on the LHS, we may choose to invert our mask and
2770   // instead select between RHS and LHS.
2771   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2772   bool InvertMask = IsSelect == SwapOps;
2773 
2774   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2775   // half.
2776   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2777 
2778   // Now construct the mask that will be used by the vselect or blended
2779   // vrgather operation. For vrgathers, construct the appropriate indices into
2780   // each vector.
2781   for (int MaskIndex : Mask) {
2782     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2783     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2784     if (!IsSelect) {
2785       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2786       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2787                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2788                                      : DAG.getUNDEF(XLenVT));
2789       GatherIndicesRHS.push_back(
2790           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2791                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2792       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2793         ++LHSIndexCounts[MaskIndex];
2794       if (!IsLHSOrUndefIndex)
2795         ++RHSIndexCounts[MaskIndex - NumElts];
2796     }
2797   }
2798 
2799   if (SwapOps) {
2800     std::swap(V1, V2);
2801     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2802   }
2803 
2804   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2805   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2806   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2807 
2808   if (IsSelect)
2809     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2810 
2811   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2812     // On such a large vector we're unable to use i8 as the index type.
2813     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2814     // may involve vector splitting if we're already at LMUL=8, or our
2815     // user-supplied maximum fixed-length LMUL.
2816     return SDValue();
2817   }
2818 
2819   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2820   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2821   MVT IndexVT = VT.changeTypeToInteger();
2822   // Since we can't introduce illegal index types at this stage, use i16 and
2823   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2824   // than XLenVT.
2825   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2826     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2827     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2828   }
2829 
2830   MVT IndexContainerVT =
2831       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2832 
2833   SDValue Gather;
2834   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2835   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2836   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2837     Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG,
2838                               Subtarget);
2839   } else {
2840     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2841     // If only one index is used, we can use a "splat" vrgather.
2842     // TODO: We can splat the most-common index and fix-up any stragglers, if
2843     // that's beneficial.
2844     if (LHSIndexCounts.size() == 1) {
2845       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2846       Gather =
2847           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2848                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2849     } else {
2850       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2851       LHSIndices =
2852           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2853 
2854       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2855                            TrueMask, VL);
2856     }
2857   }
2858 
2859   // If a second vector operand is used by this shuffle, blend it in with an
2860   // additional vrgather.
2861   if (!V2.isUndef()) {
2862     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2863     // If only one index is used, we can use a "splat" vrgather.
2864     // TODO: We can splat the most-common index and fix-up any stragglers, if
2865     // that's beneficial.
2866     if (RHSIndexCounts.size() == 1) {
2867       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2868       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2869                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2870     } else {
2871       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2872       RHSIndices =
2873           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2874       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2875                        VL);
2876     }
2877 
2878     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2879     SelectMask =
2880         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2881 
2882     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2883                          Gather, VL);
2884   }
2885 
2886   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2887 }
2888 
2889 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
2890   // Support splats for any type. These should type legalize well.
2891   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
2892     return true;
2893 
2894   // Only support legal VTs for other shuffles for now.
2895   if (!isTypeLegal(VT))
2896     return false;
2897 
2898   MVT SVT = VT.getSimpleVT();
2899 
2900   bool SwapSources;
2901   int LoSrc, HiSrc;
2902   return (isElementRotate(LoSrc, HiSrc, M) > 0) ||
2903          isInterleaveShuffle(M, SVT, SwapSources, Subtarget);
2904 }
2905 
2906 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
2907                                      SDLoc DL, SelectionDAG &DAG,
2908                                      const RISCVSubtarget &Subtarget) {
2909   if (VT.isScalableVector())
2910     return DAG.getFPExtendOrRound(Op, DL, VT);
2911   assert(VT.isFixedLengthVector() &&
2912          "Unexpected value type for RVV FP extend/round lowering");
2913   SDValue Mask, VL;
2914   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2915   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
2916                         ? RISCVISD::FP_EXTEND_VL
2917                         : RISCVISD::FP_ROUND_VL;
2918   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
2919 }
2920 
2921 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2922 // the exponent.
2923 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2924   MVT VT = Op.getSimpleValueType();
2925   unsigned EltSize = VT.getScalarSizeInBits();
2926   SDValue Src = Op.getOperand(0);
2927   SDLoc DL(Op);
2928 
2929   // We need a FP type that can represent the value.
2930   // TODO: Use f16 for i8 when possible?
2931   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2932   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2933 
2934   // Legal types should have been checked in the RISCVTargetLowering
2935   // constructor.
2936   // TODO: Splitting may make sense in some cases.
2937   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2938          "Expected legal float type!");
2939 
2940   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2941   // The trailing zero count is equal to log2 of this single bit value.
2942   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2943     SDValue Neg =
2944         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2945     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2946   }
2947 
2948   // We have a legal FP type, convert to it.
2949   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2950   // Bitcast to integer and shift the exponent to the LSB.
2951   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2952   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2953   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2954   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2955                               DAG.getConstant(ShiftAmt, DL, IntVT));
2956   // Truncate back to original type to allow vnsrl.
2957   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2958   // The exponent contains log2 of the value in biased form.
2959   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2960 
2961   // For trailing zeros, we just need to subtract the bias.
2962   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2963     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2964                        DAG.getConstant(ExponentBias, DL, VT));
2965 
2966   // For leading zeros, we need to remove the bias and convert from log2 to
2967   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2968   unsigned Adjust = ExponentBias + (EltSize - 1);
2969   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2970 }
2971 
2972 // While RVV has alignment restrictions, we should always be able to load as a
2973 // legal equivalently-sized byte-typed vector instead. This method is
2974 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2975 // the load is already correctly-aligned, it returns SDValue().
2976 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2977                                                     SelectionDAG &DAG) const {
2978   auto *Load = cast<LoadSDNode>(Op);
2979   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2980 
2981   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2982                                      Load->getMemoryVT(),
2983                                      *Load->getMemOperand()))
2984     return SDValue();
2985 
2986   SDLoc DL(Op);
2987   MVT VT = Op.getSimpleValueType();
2988   unsigned EltSizeBits = VT.getScalarSizeInBits();
2989   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2990          "Unexpected unaligned RVV load type");
2991   MVT NewVT =
2992       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2993   assert(NewVT.isValid() &&
2994          "Expecting equally-sized RVV vector types to be legal");
2995   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2996                           Load->getPointerInfo(), Load->getOriginalAlign(),
2997                           Load->getMemOperand()->getFlags());
2998   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2999 }
3000 
3001 // While RVV has alignment restrictions, we should always be able to store as a
3002 // legal equivalently-sized byte-typed vector instead. This method is
3003 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
3004 // returns SDValue() if the store is already correctly aligned.
3005 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
3006                                                      SelectionDAG &DAG) const {
3007   auto *Store = cast<StoreSDNode>(Op);
3008   assert(Store && Store->getValue().getValueType().isVector() &&
3009          "Expected vector store");
3010 
3011   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
3012                                      Store->getMemoryVT(),
3013                                      *Store->getMemOperand()))
3014     return SDValue();
3015 
3016   SDLoc DL(Op);
3017   SDValue StoredVal = Store->getValue();
3018   MVT VT = StoredVal.getSimpleValueType();
3019   unsigned EltSizeBits = VT.getScalarSizeInBits();
3020   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
3021          "Unexpected unaligned RVV store type");
3022   MVT NewVT =
3023       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
3024   assert(NewVT.isValid() &&
3025          "Expecting equally-sized RVV vector types to be legal");
3026   StoredVal = DAG.getBitcast(NewVT, StoredVal);
3027   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
3028                       Store->getPointerInfo(), Store->getOriginalAlign(),
3029                       Store->getMemOperand()->getFlags());
3030 }
3031 
3032 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
3033                                             SelectionDAG &DAG) const {
3034   switch (Op.getOpcode()) {
3035   default:
3036     report_fatal_error("unimplemented operand");
3037   case ISD::GlobalAddress:
3038     return lowerGlobalAddress(Op, DAG);
3039   case ISD::BlockAddress:
3040     return lowerBlockAddress(Op, DAG);
3041   case ISD::ConstantPool:
3042     return lowerConstantPool(Op, DAG);
3043   case ISD::JumpTable:
3044     return lowerJumpTable(Op, DAG);
3045   case ISD::GlobalTLSAddress:
3046     return lowerGlobalTLSAddress(Op, DAG);
3047   case ISD::SELECT:
3048     return lowerSELECT(Op, DAG);
3049   case ISD::BRCOND:
3050     return lowerBRCOND(Op, DAG);
3051   case ISD::VASTART:
3052     return lowerVASTART(Op, DAG);
3053   case ISD::FRAMEADDR:
3054     return lowerFRAMEADDR(Op, DAG);
3055   case ISD::RETURNADDR:
3056     return lowerRETURNADDR(Op, DAG);
3057   case ISD::SHL_PARTS:
3058     return lowerShiftLeftParts(Op, DAG);
3059   case ISD::SRA_PARTS:
3060     return lowerShiftRightParts(Op, DAG, true);
3061   case ISD::SRL_PARTS:
3062     return lowerShiftRightParts(Op, DAG, false);
3063   case ISD::BITCAST: {
3064     SDLoc DL(Op);
3065     EVT VT = Op.getValueType();
3066     SDValue Op0 = Op.getOperand(0);
3067     EVT Op0VT = Op0.getValueType();
3068     MVT XLenVT = Subtarget.getXLenVT();
3069     if (VT.isFixedLengthVector()) {
3070       // We can handle fixed length vector bitcasts with a simple replacement
3071       // in isel.
3072       if (Op0VT.isFixedLengthVector())
3073         return Op;
3074       // When bitcasting from scalar to fixed-length vector, insert the scalar
3075       // into a one-element vector of the result type, and perform a vector
3076       // bitcast.
3077       if (!Op0VT.isVector()) {
3078         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
3079         if (!isTypeLegal(BVT))
3080           return SDValue();
3081         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
3082                                               DAG.getUNDEF(BVT), Op0,
3083                                               DAG.getConstant(0, DL, XLenVT)));
3084       }
3085       return SDValue();
3086     }
3087     // Custom-legalize bitcasts from fixed-length vector types to scalar types
3088     // thus: bitcast the vector to a one-element vector type whose element type
3089     // is the same as the result type, and extract the first element.
3090     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
3091       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
3092       if (!isTypeLegal(BVT))
3093         return SDValue();
3094       SDValue BVec = DAG.getBitcast(BVT, Op0);
3095       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
3096                          DAG.getConstant(0, DL, XLenVT));
3097     }
3098     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
3099       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
3100       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
3101       return FPConv;
3102     }
3103     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
3104         Subtarget.hasStdExtF()) {
3105       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
3106       SDValue FPConv =
3107           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
3108       return FPConv;
3109     }
3110     return SDValue();
3111   }
3112   case ISD::INTRINSIC_WO_CHAIN:
3113     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3114   case ISD::INTRINSIC_W_CHAIN:
3115     return LowerINTRINSIC_W_CHAIN(Op, DAG);
3116   case ISD::INTRINSIC_VOID:
3117     return LowerINTRINSIC_VOID(Op, DAG);
3118   case ISD::BSWAP:
3119   case ISD::BITREVERSE: {
3120     MVT VT = Op.getSimpleValueType();
3121     SDLoc DL(Op);
3122     if (Subtarget.hasStdExtZbp()) {
3123       // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
3124       // Start with the maximum immediate value which is the bitwidth - 1.
3125       unsigned Imm = VT.getSizeInBits() - 1;
3126       // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
3127       if (Op.getOpcode() == ISD::BSWAP)
3128         Imm &= ~0x7U;
3129       return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
3130                          DAG.getConstant(Imm, DL, VT));
3131     }
3132     assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
3133     assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
3134     // Expand bitreverse to a bswap(rev8) followed by brev8.
3135     SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
3136     // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized
3137     // as brev8 by an isel pattern.
3138     return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap,
3139                        DAG.getConstant(7, DL, VT));
3140   }
3141   case ISD::FSHL:
3142   case ISD::FSHR: {
3143     MVT VT = Op.getSimpleValueType();
3144     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
3145     SDLoc DL(Op);
3146     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
3147     // use log(XLen) bits. Mask the shift amount accordingly to prevent
3148     // accidentally setting the extra bit.
3149     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
3150     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
3151                                 DAG.getConstant(ShAmtWidth, DL, VT));
3152     // fshl and fshr concatenate their operands in the same order. fsr and fsl
3153     // instruction use different orders. fshl will return its first operand for
3154     // shift of zero, fshr will return its second operand. fsl and fsr both
3155     // return rs1 so the ISD nodes need to have different operand orders.
3156     // Shift amount is in rs2.
3157     SDValue Op0 = Op.getOperand(0);
3158     SDValue Op1 = Op.getOperand(1);
3159     unsigned Opc = RISCVISD::FSL;
3160     if (Op.getOpcode() == ISD::FSHR) {
3161       std::swap(Op0, Op1);
3162       Opc = RISCVISD::FSR;
3163     }
3164     return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt);
3165   }
3166   case ISD::TRUNCATE: {
3167     SDLoc DL(Op);
3168     MVT VT = Op.getSimpleValueType();
3169     // Only custom-lower vector truncates
3170     if (!VT.isVector())
3171       return Op;
3172 
3173     // Truncates to mask types are handled differently
3174     if (VT.getVectorElementType() == MVT::i1)
3175       return lowerVectorMaskTrunc(Op, DAG);
3176 
3177     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
3178     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
3179     // truncate by one power of two at a time.
3180     MVT DstEltVT = VT.getVectorElementType();
3181 
3182     SDValue Src = Op.getOperand(0);
3183     MVT SrcVT = Src.getSimpleValueType();
3184     MVT SrcEltVT = SrcVT.getVectorElementType();
3185 
3186     assert(DstEltVT.bitsLT(SrcEltVT) &&
3187            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
3188            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
3189            "Unexpected vector truncate lowering");
3190 
3191     MVT ContainerVT = SrcVT;
3192     if (SrcVT.isFixedLengthVector()) {
3193       ContainerVT = getContainerForFixedLengthVector(SrcVT);
3194       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3195     }
3196 
3197     SDValue Result = Src;
3198     SDValue Mask, VL;
3199     std::tie(Mask, VL) =
3200         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
3201     LLVMContext &Context = *DAG.getContext();
3202     const ElementCount Count = ContainerVT.getVectorElementCount();
3203     do {
3204       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
3205       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
3206       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
3207                            Mask, VL);
3208     } while (SrcEltVT != DstEltVT);
3209 
3210     if (SrcVT.isFixedLengthVector())
3211       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
3212 
3213     return Result;
3214   }
3215   case ISD::ANY_EXTEND:
3216   case ISD::ZERO_EXTEND:
3217     if (Op.getOperand(0).getValueType().isVector() &&
3218         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3219       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
3220     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
3221   case ISD::SIGN_EXTEND:
3222     if (Op.getOperand(0).getValueType().isVector() &&
3223         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3224       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
3225     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
3226   case ISD::SPLAT_VECTOR_PARTS:
3227     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
3228   case ISD::INSERT_VECTOR_ELT:
3229     return lowerINSERT_VECTOR_ELT(Op, DAG);
3230   case ISD::EXTRACT_VECTOR_ELT:
3231     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3232   case ISD::VSCALE: {
3233     MVT VT = Op.getSimpleValueType();
3234     SDLoc DL(Op);
3235     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
3236     // We define our scalable vector types for lmul=1 to use a 64 bit known
3237     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
3238     // vscale as VLENB / 8.
3239     static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
3240     if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock)
3241       report_fatal_error("Support for VLEN==32 is incomplete.");
3242     if (isa<ConstantSDNode>(Op.getOperand(0))) {
3243       // We assume VLENB is a multiple of 8. We manually choose the best shift
3244       // here because SimplifyDemandedBits isn't always able to simplify it.
3245       uint64_t Val = Op.getConstantOperandVal(0);
3246       if (isPowerOf2_64(Val)) {
3247         uint64_t Log2 = Log2_64(Val);
3248         if (Log2 < 3)
3249           return DAG.getNode(ISD::SRL, DL, VT, VLENB,
3250                              DAG.getConstant(3 - Log2, DL, VT));
3251         if (Log2 > 3)
3252           return DAG.getNode(ISD::SHL, DL, VT, VLENB,
3253                              DAG.getConstant(Log2 - 3, DL, VT));
3254         return VLENB;
3255       }
3256       // If the multiplier is a multiple of 8, scale it down to avoid needing
3257       // to shift the VLENB value.
3258       if ((Val % 8) == 0)
3259         return DAG.getNode(ISD::MUL, DL, VT, VLENB,
3260                            DAG.getConstant(Val / 8, DL, VT));
3261     }
3262 
3263     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
3264                                  DAG.getConstant(3, DL, VT));
3265     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
3266   }
3267   case ISD::FPOWI: {
3268     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
3269     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
3270     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
3271         Op.getOperand(1).getValueType() == MVT::i32) {
3272       SDLoc DL(Op);
3273       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
3274       SDValue Powi =
3275           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
3276       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
3277                          DAG.getIntPtrConstant(0, DL));
3278     }
3279     return SDValue();
3280   }
3281   case ISD::FP_EXTEND: {
3282     // RVV can only do fp_extend to types double the size as the source. We
3283     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
3284     // via f32.
3285     SDLoc DL(Op);
3286     MVT VT = Op.getSimpleValueType();
3287     SDValue Src = Op.getOperand(0);
3288     MVT SrcVT = Src.getSimpleValueType();
3289 
3290     // Prepare any fixed-length vector operands.
3291     MVT ContainerVT = VT;
3292     if (SrcVT.isFixedLengthVector()) {
3293       ContainerVT = getContainerForFixedLengthVector(VT);
3294       MVT SrcContainerVT =
3295           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
3296       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3297     }
3298 
3299     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
3300         SrcVT.getVectorElementType() != MVT::f16) {
3301       // For scalable vectors, we only need to close the gap between
3302       // vXf16->vXf64.
3303       if (!VT.isFixedLengthVector())
3304         return Op;
3305       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
3306       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
3307       return convertFromScalableVector(VT, Src, DAG, Subtarget);
3308     }
3309 
3310     MVT InterVT = VT.changeVectorElementType(MVT::f32);
3311     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
3312     SDValue IntermediateExtend = getRVVFPExtendOrRound(
3313         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
3314 
3315     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
3316                                            DL, DAG, Subtarget);
3317     if (VT.isFixedLengthVector())
3318       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
3319     return Extend;
3320   }
3321   case ISD::FP_ROUND: {
3322     // RVV can only do fp_round to types half the size as the source. We
3323     // custom-lower f64->f16 rounds via RVV's round-to-odd float
3324     // conversion instruction.
3325     SDLoc DL(Op);
3326     MVT VT = Op.getSimpleValueType();
3327     SDValue Src = Op.getOperand(0);
3328     MVT SrcVT = Src.getSimpleValueType();
3329 
3330     // Prepare any fixed-length vector operands.
3331     MVT ContainerVT = VT;
3332     if (VT.isFixedLengthVector()) {
3333       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3334       ContainerVT =
3335           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3336       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3337     }
3338 
3339     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
3340         SrcVT.getVectorElementType() != MVT::f64) {
3341       // For scalable vectors, we only need to close the gap between
3342       // vXf64<->vXf16.
3343       if (!VT.isFixedLengthVector())
3344         return Op;
3345       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
3346       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
3347       return convertFromScalableVector(VT, Src, DAG, Subtarget);
3348     }
3349 
3350     SDValue Mask, VL;
3351     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3352 
3353     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
3354     SDValue IntermediateRound =
3355         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
3356     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
3357                                           DL, DAG, Subtarget);
3358 
3359     if (VT.isFixedLengthVector())
3360       return convertFromScalableVector(VT, Round, DAG, Subtarget);
3361     return Round;
3362   }
3363   case ISD::FP_TO_SINT:
3364   case ISD::FP_TO_UINT:
3365   case ISD::SINT_TO_FP:
3366   case ISD::UINT_TO_FP: {
3367     // RVV can only do fp<->int conversions to types half/double the size as
3368     // the source. We custom-lower any conversions that do two hops into
3369     // sequences.
3370     MVT VT = Op.getSimpleValueType();
3371     if (!VT.isVector())
3372       return Op;
3373     SDLoc DL(Op);
3374     SDValue Src = Op.getOperand(0);
3375     MVT EltVT = VT.getVectorElementType();
3376     MVT SrcVT = Src.getSimpleValueType();
3377     MVT SrcEltVT = SrcVT.getVectorElementType();
3378     unsigned EltSize = EltVT.getSizeInBits();
3379     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
3380     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
3381            "Unexpected vector element types");
3382 
3383     bool IsInt2FP = SrcEltVT.isInteger();
3384     // Widening conversions
3385     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
3386       if (IsInt2FP) {
3387         // Do a regular integer sign/zero extension then convert to float.
3388         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
3389                                       VT.getVectorElementCount());
3390         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
3391                                  ? ISD::ZERO_EXTEND
3392                                  : ISD::SIGN_EXTEND;
3393         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
3394         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
3395       }
3396       // FP2Int
3397       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
3398       // Do one doubling fp_extend then complete the operation by converting
3399       // to int.
3400       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3401       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
3402       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
3403     }
3404 
3405     // Narrowing conversions
3406     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
3407       if (IsInt2FP) {
3408         // One narrowing int_to_fp, then an fp_round.
3409         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
3410         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3411         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
3412         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
3413       }
3414       // FP2Int
3415       // One narrowing fp_to_int, then truncate the integer. If the float isn't
3416       // representable by the integer, the result is poison.
3417       MVT IVecVT =
3418           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
3419                            VT.getVectorElementCount());
3420       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
3421       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
3422     }
3423 
3424     // Scalable vectors can exit here. Patterns will handle equally-sized
3425     // conversions halving/doubling ones.
3426     if (!VT.isFixedLengthVector())
3427       return Op;
3428 
3429     // For fixed-length vectors we lower to a custom "VL" node.
3430     unsigned RVVOpc = 0;
3431     switch (Op.getOpcode()) {
3432     default:
3433       llvm_unreachable("Impossible opcode");
3434     case ISD::FP_TO_SINT:
3435       RVVOpc = RISCVISD::FP_TO_SINT_VL;
3436       break;
3437     case ISD::FP_TO_UINT:
3438       RVVOpc = RISCVISD::FP_TO_UINT_VL;
3439       break;
3440     case ISD::SINT_TO_FP:
3441       RVVOpc = RISCVISD::SINT_TO_FP_VL;
3442       break;
3443     case ISD::UINT_TO_FP:
3444       RVVOpc = RISCVISD::UINT_TO_FP_VL;
3445       break;
3446     }
3447 
3448     MVT ContainerVT, SrcContainerVT;
3449     // Derive the reference container type from the larger vector type.
3450     if (SrcEltSize > EltSize) {
3451       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3452       ContainerVT =
3453           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3454     } else {
3455       ContainerVT = getContainerForFixedLengthVector(VT);
3456       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
3457     }
3458 
3459     SDValue Mask, VL;
3460     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3461 
3462     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3463     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3464     return convertFromScalableVector(VT, Src, DAG, Subtarget);
3465   }
3466   case ISD::FP_TO_SINT_SAT:
3467   case ISD::FP_TO_UINT_SAT:
3468     return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
3469   case ISD::FTRUNC:
3470   case ISD::FCEIL:
3471   case ISD::FFLOOR:
3472     return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3473   case ISD::FROUND:
3474     return lowerFROUND(Op, DAG);
3475   case ISD::VECREDUCE_ADD:
3476   case ISD::VECREDUCE_UMAX:
3477   case ISD::VECREDUCE_SMAX:
3478   case ISD::VECREDUCE_UMIN:
3479   case ISD::VECREDUCE_SMIN:
3480     return lowerVECREDUCE(Op, DAG);
3481   case ISD::VECREDUCE_AND:
3482   case ISD::VECREDUCE_OR:
3483   case ISD::VECREDUCE_XOR:
3484     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3485       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3486     return lowerVECREDUCE(Op, DAG);
3487   case ISD::VECREDUCE_FADD:
3488   case ISD::VECREDUCE_SEQ_FADD:
3489   case ISD::VECREDUCE_FMIN:
3490   case ISD::VECREDUCE_FMAX:
3491     return lowerFPVECREDUCE(Op, DAG);
3492   case ISD::VP_REDUCE_ADD:
3493   case ISD::VP_REDUCE_UMAX:
3494   case ISD::VP_REDUCE_SMAX:
3495   case ISD::VP_REDUCE_UMIN:
3496   case ISD::VP_REDUCE_SMIN:
3497   case ISD::VP_REDUCE_FADD:
3498   case ISD::VP_REDUCE_SEQ_FADD:
3499   case ISD::VP_REDUCE_FMIN:
3500   case ISD::VP_REDUCE_FMAX:
3501     return lowerVPREDUCE(Op, DAG);
3502   case ISD::VP_REDUCE_AND:
3503   case ISD::VP_REDUCE_OR:
3504   case ISD::VP_REDUCE_XOR:
3505     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3506       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3507     return lowerVPREDUCE(Op, DAG);
3508   case ISD::INSERT_SUBVECTOR:
3509     return lowerINSERT_SUBVECTOR(Op, DAG);
3510   case ISD::EXTRACT_SUBVECTOR:
3511     return lowerEXTRACT_SUBVECTOR(Op, DAG);
3512   case ISD::STEP_VECTOR:
3513     return lowerSTEP_VECTOR(Op, DAG);
3514   case ISD::VECTOR_REVERSE:
3515     return lowerVECTOR_REVERSE(Op, DAG);
3516   case ISD::VECTOR_SPLICE:
3517     return lowerVECTOR_SPLICE(Op, DAG);
3518   case ISD::BUILD_VECTOR:
3519     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3520   case ISD::SPLAT_VECTOR:
3521     if (Op.getValueType().getVectorElementType() == MVT::i1)
3522       return lowerVectorMaskSplat(Op, DAG);
3523     return SDValue();
3524   case ISD::VECTOR_SHUFFLE:
3525     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3526   case ISD::CONCAT_VECTORS: {
3527     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3528     // better than going through the stack, as the default expansion does.
3529     SDLoc DL(Op);
3530     MVT VT = Op.getSimpleValueType();
3531     unsigned NumOpElts =
3532         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3533     SDValue Vec = DAG.getUNDEF(VT);
3534     for (const auto &OpIdx : enumerate(Op->ops())) {
3535       SDValue SubVec = OpIdx.value();
3536       // Don't insert undef subvectors.
3537       if (SubVec.isUndef())
3538         continue;
3539       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
3540                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3541     }
3542     return Vec;
3543   }
3544   case ISD::LOAD:
3545     if (auto V = expandUnalignedRVVLoad(Op, DAG))
3546       return V;
3547     if (Op.getValueType().isFixedLengthVector())
3548       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3549     return Op;
3550   case ISD::STORE:
3551     if (auto V = expandUnalignedRVVStore(Op, DAG))
3552       return V;
3553     if (Op.getOperand(1).getValueType().isFixedLengthVector())
3554       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3555     return Op;
3556   case ISD::MLOAD:
3557   case ISD::VP_LOAD:
3558     return lowerMaskedLoad(Op, DAG);
3559   case ISD::MSTORE:
3560   case ISD::VP_STORE:
3561     return lowerMaskedStore(Op, DAG);
3562   case ISD::SETCC:
3563     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3564   case ISD::ADD:
3565     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3566   case ISD::SUB:
3567     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3568   case ISD::MUL:
3569     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3570   case ISD::MULHS:
3571     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3572   case ISD::MULHU:
3573     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3574   case ISD::AND:
3575     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3576                                               RISCVISD::AND_VL);
3577   case ISD::OR:
3578     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3579                                               RISCVISD::OR_VL);
3580   case ISD::XOR:
3581     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3582                                               RISCVISD::XOR_VL);
3583   case ISD::SDIV:
3584     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3585   case ISD::SREM:
3586     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3587   case ISD::UDIV:
3588     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3589   case ISD::UREM:
3590     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3591   case ISD::SHL:
3592   case ISD::SRA:
3593   case ISD::SRL:
3594     if (Op.getSimpleValueType().isFixedLengthVector())
3595       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3596     // This can be called for an i32 shift amount that needs to be promoted.
3597     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3598            "Unexpected custom legalisation");
3599     return SDValue();
3600   case ISD::SADDSAT:
3601     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3602   case ISD::UADDSAT:
3603     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3604   case ISD::SSUBSAT:
3605     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3606   case ISD::USUBSAT:
3607     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3608   case ISD::FADD:
3609     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3610   case ISD::FSUB:
3611     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3612   case ISD::FMUL:
3613     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3614   case ISD::FDIV:
3615     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3616   case ISD::FNEG:
3617     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3618   case ISD::FABS:
3619     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3620   case ISD::FSQRT:
3621     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3622   case ISD::FMA:
3623     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
3624   case ISD::SMIN:
3625     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3626   case ISD::SMAX:
3627     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3628   case ISD::UMIN:
3629     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3630   case ISD::UMAX:
3631     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3632   case ISD::FMINNUM:
3633     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3634   case ISD::FMAXNUM:
3635     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3636   case ISD::ABS:
3637     return lowerABS(Op, DAG);
3638   case ISD::CTLZ_ZERO_UNDEF:
3639   case ISD::CTTZ_ZERO_UNDEF:
3640     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3641   case ISD::VSELECT:
3642     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3643   case ISD::FCOPYSIGN:
3644     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3645   case ISD::MGATHER:
3646   case ISD::VP_GATHER:
3647     return lowerMaskedGather(Op, DAG);
3648   case ISD::MSCATTER:
3649   case ISD::VP_SCATTER:
3650     return lowerMaskedScatter(Op, DAG);
3651   case ISD::FLT_ROUNDS_:
3652     return lowerGET_ROUNDING(Op, DAG);
3653   case ISD::SET_ROUNDING:
3654     return lowerSET_ROUNDING(Op, DAG);
3655   case ISD::VP_SELECT:
3656     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3657   case ISD::VP_MERGE:
3658     return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL);
3659   case ISD::VP_ADD:
3660     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3661   case ISD::VP_SUB:
3662     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3663   case ISD::VP_MUL:
3664     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3665   case ISD::VP_SDIV:
3666     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3667   case ISD::VP_UDIV:
3668     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3669   case ISD::VP_SREM:
3670     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3671   case ISD::VP_UREM:
3672     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3673   case ISD::VP_AND:
3674     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3675   case ISD::VP_OR:
3676     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3677   case ISD::VP_XOR:
3678     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3679   case ISD::VP_ASHR:
3680     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3681   case ISD::VP_LSHR:
3682     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3683   case ISD::VP_SHL:
3684     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3685   case ISD::VP_FADD:
3686     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3687   case ISD::VP_FSUB:
3688     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3689   case ISD::VP_FMUL:
3690     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3691   case ISD::VP_FDIV:
3692     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3693   case ISD::VP_FNEG:
3694     return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL);
3695   case ISD::VP_FMA:
3696     return lowerVPOp(Op, DAG, RISCVISD::FMA_VL);
3697   }
3698 }
3699 
3700 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3701                              SelectionDAG &DAG, unsigned Flags) {
3702   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3703 }
3704 
3705 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3706                              SelectionDAG &DAG, unsigned Flags) {
3707   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3708                                    Flags);
3709 }
3710 
3711 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3712                              SelectionDAG &DAG, unsigned Flags) {
3713   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3714                                    N->getOffset(), Flags);
3715 }
3716 
3717 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3718                              SelectionDAG &DAG, unsigned Flags) {
3719   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3720 }
3721 
3722 template <class NodeTy>
3723 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3724                                      bool IsLocal) const {
3725   SDLoc DL(N);
3726   EVT Ty = getPointerTy(DAG.getDataLayout());
3727 
3728   if (isPositionIndependent()) {
3729     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3730     if (IsLocal)
3731       // Use PC-relative addressing to access the symbol. This generates the
3732       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3733       // %pcrel_lo(auipc)).
3734       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3735 
3736     // Use PC-relative addressing to access the GOT for this symbol, then load
3737     // the address from the GOT. This generates the pattern (PseudoLA sym),
3738     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3739     SDValue Load =
3740         SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
3741     MachineFunction &MF = DAG.getMachineFunction();
3742     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3743         MachinePointerInfo::getGOT(MF),
3744         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3745             MachineMemOperand::MOInvariant,
3746         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3747     DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
3748     return Load;
3749   }
3750 
3751   switch (getTargetMachine().getCodeModel()) {
3752   default:
3753     report_fatal_error("Unsupported code model for lowering");
3754   case CodeModel::Small: {
3755     // Generate a sequence for accessing addresses within the first 2 GiB of
3756     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3757     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3758     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3759     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3760     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
3761   }
3762   case CodeModel::Medium: {
3763     // Generate a sequence for accessing addresses within any 2GiB range within
3764     // the address space. This generates the pattern (PseudoLLA sym), which
3765     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3766     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3767     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3768   }
3769   }
3770 }
3771 
3772 template SDValue RISCVTargetLowering::getAddr<GlobalAddressSDNode>(
3773     GlobalAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3774 template SDValue RISCVTargetLowering::getAddr<BlockAddressSDNode>(
3775     BlockAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3776 template SDValue RISCVTargetLowering::getAddr<ConstantPoolSDNode>(
3777     ConstantPoolSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3778 template SDValue RISCVTargetLowering::getAddr<JumpTableSDNode>(
3779     JumpTableSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3780 
3781 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3782                                                 SelectionDAG &DAG) const {
3783   SDLoc DL(Op);
3784   EVT Ty = Op.getValueType();
3785   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3786   int64_t Offset = N->getOffset();
3787   MVT XLenVT = Subtarget.getXLenVT();
3788 
3789   const GlobalValue *GV = N->getGlobal();
3790   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3791   SDValue Addr = getAddr(N, DAG, IsLocal);
3792 
3793   // In order to maximise the opportunity for common subexpression elimination,
3794   // emit a separate ADD node for the global address offset instead of folding
3795   // it in the global address node. Later peephole optimisations may choose to
3796   // fold it back in when profitable.
3797   if (Offset != 0)
3798     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3799                        DAG.getConstant(Offset, DL, XLenVT));
3800   return Addr;
3801 }
3802 
3803 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3804                                                SelectionDAG &DAG) const {
3805   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3806 
3807   return getAddr(N, DAG);
3808 }
3809 
3810 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3811                                                SelectionDAG &DAG) const {
3812   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3813 
3814   return getAddr(N, DAG);
3815 }
3816 
3817 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3818                                             SelectionDAG &DAG) const {
3819   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3820 
3821   return getAddr(N, DAG);
3822 }
3823 
3824 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3825                                               SelectionDAG &DAG,
3826                                               bool UseGOT) const {
3827   SDLoc DL(N);
3828   EVT Ty = getPointerTy(DAG.getDataLayout());
3829   const GlobalValue *GV = N->getGlobal();
3830   MVT XLenVT = Subtarget.getXLenVT();
3831 
3832   if (UseGOT) {
3833     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3834     // load the address from the GOT and add the thread pointer. This generates
3835     // the pattern (PseudoLA_TLS_IE sym), which expands to
3836     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3837     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3838     SDValue Load =
3839         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
3840     MachineFunction &MF = DAG.getMachineFunction();
3841     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3842         MachinePointerInfo::getGOT(MF),
3843         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3844             MachineMemOperand::MOInvariant,
3845         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3846     DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
3847 
3848     // Add the thread pointer.
3849     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3850     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3851   }
3852 
3853   // Generate a sequence for accessing the address relative to the thread
3854   // pointer, with the appropriate adjustment for the thread pointer offset.
3855   // This generates the pattern
3856   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3857   SDValue AddrHi =
3858       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3859   SDValue AddrAdd =
3860       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3861   SDValue AddrLo =
3862       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3863 
3864   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3865   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3866   SDValue MNAdd = SDValue(
3867       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
3868       0);
3869   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
3870 }
3871 
3872 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3873                                                SelectionDAG &DAG) const {
3874   SDLoc DL(N);
3875   EVT Ty = getPointerTy(DAG.getDataLayout());
3876   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3877   const GlobalValue *GV = N->getGlobal();
3878 
3879   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3880   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3881   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3882   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3883   SDValue Load =
3884       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
3885 
3886   // Prepare argument list to generate call.
3887   ArgListTy Args;
3888   ArgListEntry Entry;
3889   Entry.Node = Load;
3890   Entry.Ty = CallTy;
3891   Args.push_back(Entry);
3892 
3893   // Setup call to __tls_get_addr.
3894   TargetLowering::CallLoweringInfo CLI(DAG);
3895   CLI.setDebugLoc(DL)
3896       .setChain(DAG.getEntryNode())
3897       .setLibCallee(CallingConv::C, CallTy,
3898                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3899                     std::move(Args));
3900 
3901   return LowerCallTo(CLI).first;
3902 }
3903 
3904 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3905                                                    SelectionDAG &DAG) const {
3906   SDLoc DL(Op);
3907   EVT Ty = Op.getValueType();
3908   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3909   int64_t Offset = N->getOffset();
3910   MVT XLenVT = Subtarget.getXLenVT();
3911 
3912   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3913 
3914   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3915       CallingConv::GHC)
3916     report_fatal_error("In GHC calling convention TLS is not supported");
3917 
3918   SDValue Addr;
3919   switch (Model) {
3920   case TLSModel::LocalExec:
3921     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3922     break;
3923   case TLSModel::InitialExec:
3924     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3925     break;
3926   case TLSModel::LocalDynamic:
3927   case TLSModel::GeneralDynamic:
3928     Addr = getDynamicTLSAddr(N, DAG);
3929     break;
3930   }
3931 
3932   // In order to maximise the opportunity for common subexpression elimination,
3933   // emit a separate ADD node for the global address offset instead of folding
3934   // it in the global address node. Later peephole optimisations may choose to
3935   // fold it back in when profitable.
3936   if (Offset != 0)
3937     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3938                        DAG.getConstant(Offset, DL, XLenVT));
3939   return Addr;
3940 }
3941 
3942 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3943   SDValue CondV = Op.getOperand(0);
3944   SDValue TrueV = Op.getOperand(1);
3945   SDValue FalseV = Op.getOperand(2);
3946   SDLoc DL(Op);
3947   MVT VT = Op.getSimpleValueType();
3948   MVT XLenVT = Subtarget.getXLenVT();
3949 
3950   // Lower vector SELECTs to VSELECTs by splatting the condition.
3951   if (VT.isVector()) {
3952     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3953     SDValue CondSplat = VT.isScalableVector()
3954                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3955                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3956     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3957   }
3958 
3959   // If the result type is XLenVT and CondV is the output of a SETCC node
3960   // which also operated on XLenVT inputs, then merge the SETCC node into the
3961   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3962   // compare+branch instructions. i.e.:
3963   // (select (setcc lhs, rhs, cc), truev, falsev)
3964   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3965   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3966       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3967     SDValue LHS = CondV.getOperand(0);
3968     SDValue RHS = CondV.getOperand(1);
3969     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3970     ISD::CondCode CCVal = CC->get();
3971 
3972     // Special case for a select of 2 constants that have a diffence of 1.
3973     // Normally this is done by DAGCombine, but if the select is introduced by
3974     // type legalization or op legalization, we miss it. Restricting to SETLT
3975     // case for now because that is what signed saturating add/sub need.
3976     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3977     // but we would probably want to swap the true/false values if the condition
3978     // is SETGE/SETLE to avoid an XORI.
3979     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3980         CCVal == ISD::SETLT) {
3981       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3982       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3983       if (TrueVal - 1 == FalseVal)
3984         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3985       if (TrueVal + 1 == FalseVal)
3986         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3987     }
3988 
3989     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3990 
3991     SDValue TargetCC = DAG.getCondCode(CCVal);
3992     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3993     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3994   }
3995 
3996   // Otherwise:
3997   // (select condv, truev, falsev)
3998   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3999   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4000   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
4001 
4002   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
4003 
4004   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
4005 }
4006 
4007 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
4008   SDValue CondV = Op.getOperand(1);
4009   SDLoc DL(Op);
4010   MVT XLenVT = Subtarget.getXLenVT();
4011 
4012   if (CondV.getOpcode() == ISD::SETCC &&
4013       CondV.getOperand(0).getValueType() == XLenVT) {
4014     SDValue LHS = CondV.getOperand(0);
4015     SDValue RHS = CondV.getOperand(1);
4016     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
4017 
4018     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
4019 
4020     SDValue TargetCC = DAG.getCondCode(CCVal);
4021     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
4022                        LHS, RHS, TargetCC, Op.getOperand(2));
4023   }
4024 
4025   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
4026                      CondV, DAG.getConstant(0, DL, XLenVT),
4027                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
4028 }
4029 
4030 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
4031   MachineFunction &MF = DAG.getMachineFunction();
4032   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
4033 
4034   SDLoc DL(Op);
4035   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
4036                                  getPointerTy(MF.getDataLayout()));
4037 
4038   // vastart just stores the address of the VarArgsFrameIndex slot into the
4039   // memory location argument.
4040   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4041   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
4042                       MachinePointerInfo(SV));
4043 }
4044 
4045 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
4046                                             SelectionDAG &DAG) const {
4047   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
4048   MachineFunction &MF = DAG.getMachineFunction();
4049   MachineFrameInfo &MFI = MF.getFrameInfo();
4050   MFI.setFrameAddressIsTaken(true);
4051   Register FrameReg = RI.getFrameRegister(MF);
4052   int XLenInBytes = Subtarget.getXLen() / 8;
4053 
4054   EVT VT = Op.getValueType();
4055   SDLoc DL(Op);
4056   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
4057   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4058   while (Depth--) {
4059     int Offset = -(XLenInBytes * 2);
4060     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
4061                               DAG.getIntPtrConstant(Offset, DL));
4062     FrameAddr =
4063         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
4064   }
4065   return FrameAddr;
4066 }
4067 
4068 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
4069                                              SelectionDAG &DAG) const {
4070   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
4071   MachineFunction &MF = DAG.getMachineFunction();
4072   MachineFrameInfo &MFI = MF.getFrameInfo();
4073   MFI.setReturnAddressIsTaken(true);
4074   MVT XLenVT = Subtarget.getXLenVT();
4075   int XLenInBytes = Subtarget.getXLen() / 8;
4076 
4077   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
4078     return SDValue();
4079 
4080   EVT VT = Op.getValueType();
4081   SDLoc DL(Op);
4082   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4083   if (Depth) {
4084     int Off = -XLenInBytes;
4085     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
4086     SDValue Offset = DAG.getConstant(Off, DL, VT);
4087     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4088                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4089                        MachinePointerInfo());
4090   }
4091 
4092   // Return the value of the return address register, marking it an implicit
4093   // live-in.
4094   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
4095   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
4096 }
4097 
4098 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
4099                                                  SelectionDAG &DAG) const {
4100   SDLoc DL(Op);
4101   SDValue Lo = Op.getOperand(0);
4102   SDValue Hi = Op.getOperand(1);
4103   SDValue Shamt = Op.getOperand(2);
4104   EVT VT = Lo.getValueType();
4105 
4106   // if Shamt-XLEN < 0: // Shamt < XLEN
4107   //   Lo = Lo << Shamt
4108   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt))
4109   // else:
4110   //   Lo = 0
4111   //   Hi = Lo << (Shamt-XLEN)
4112 
4113   SDValue Zero = DAG.getConstant(0, DL, VT);
4114   SDValue One = DAG.getConstant(1, DL, VT);
4115   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4116   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4117   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4118   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4119 
4120   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
4121   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
4122   SDValue ShiftRightLo =
4123       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
4124   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
4125   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
4126   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
4127 
4128   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4129 
4130   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
4131   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4132 
4133   SDValue Parts[2] = {Lo, Hi};
4134   return DAG.getMergeValues(Parts, DL);
4135 }
4136 
4137 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
4138                                                   bool IsSRA) const {
4139   SDLoc DL(Op);
4140   SDValue Lo = Op.getOperand(0);
4141   SDValue Hi = Op.getOperand(1);
4142   SDValue Shamt = Op.getOperand(2);
4143   EVT VT = Lo.getValueType();
4144 
4145   // SRA expansion:
4146   //   if Shamt-XLEN < 0: // Shamt < XLEN
4147   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4148   //     Hi = Hi >>s Shamt
4149   //   else:
4150   //     Lo = Hi >>s (Shamt-XLEN);
4151   //     Hi = Hi >>s (XLEN-1)
4152   //
4153   // SRL expansion:
4154   //   if Shamt-XLEN < 0: // Shamt < XLEN
4155   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4156   //     Hi = Hi >>u Shamt
4157   //   else:
4158   //     Lo = Hi >>u (Shamt-XLEN);
4159   //     Hi = 0;
4160 
4161   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
4162 
4163   SDValue Zero = DAG.getConstant(0, DL, VT);
4164   SDValue One = DAG.getConstant(1, DL, VT);
4165   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4166   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4167   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4168   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4169 
4170   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
4171   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
4172   SDValue ShiftLeftHi =
4173       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
4174   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
4175   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
4176   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
4177   SDValue HiFalse =
4178       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
4179 
4180   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4181 
4182   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
4183   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4184 
4185   SDValue Parts[2] = {Lo, Hi};
4186   return DAG.getMergeValues(Parts, DL);
4187 }
4188 
4189 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
4190 // legal equivalently-sized i8 type, so we can use that as a go-between.
4191 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
4192                                                   SelectionDAG &DAG) const {
4193   SDLoc DL(Op);
4194   MVT VT = Op.getSimpleValueType();
4195   SDValue SplatVal = Op.getOperand(0);
4196   // All-zeros or all-ones splats are handled specially.
4197   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
4198     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4199     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
4200   }
4201   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
4202     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4203     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
4204   }
4205   MVT XLenVT = Subtarget.getXLenVT();
4206   assert(SplatVal.getValueType() == XLenVT &&
4207          "Unexpected type for i1 splat value");
4208   MVT InterVT = VT.changeVectorElementType(MVT::i8);
4209   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
4210                          DAG.getConstant(1, DL, XLenVT));
4211   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
4212   SDValue Zero = DAG.getConstant(0, DL, InterVT);
4213   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
4214 }
4215 
4216 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
4217 // illegal (currently only vXi64 RV32).
4218 // FIXME: We could also catch non-constant sign-extended i32 values and lower
4219 // them to VMV_V_X_VL.
4220 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
4221                                                      SelectionDAG &DAG) const {
4222   SDLoc DL(Op);
4223   MVT VecVT = Op.getSimpleValueType();
4224   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
4225          "Unexpected SPLAT_VECTOR_PARTS lowering");
4226 
4227   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
4228   SDValue Lo = Op.getOperand(0);
4229   SDValue Hi = Op.getOperand(1);
4230 
4231   if (VecVT.isFixedLengthVector()) {
4232     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4233     SDLoc DL(Op);
4234     SDValue Mask, VL;
4235     std::tie(Mask, VL) =
4236         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4237 
4238     SDValue Res =
4239         splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG);
4240     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
4241   }
4242 
4243   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
4244     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
4245     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
4246     // If Hi constant is all the same sign bit as Lo, lower this as a custom
4247     // node in order to try and match RVV vector/scalar instructions.
4248     if ((LoC >> 31) == HiC)
4249       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4250                          Lo, DAG.getRegister(RISCV::X0, MVT::i32));
4251   }
4252 
4253   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
4254   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
4255       isa<ConstantSDNode>(Hi.getOperand(1)) &&
4256       Hi.getConstantOperandVal(1) == 31)
4257     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo,
4258                        DAG.getRegister(RISCV::X0, MVT::i32));
4259 
4260   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
4261   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT,
4262                      DAG.getUNDEF(VecVT), Lo, Hi,
4263                      DAG.getRegister(RISCV::X0, MVT::i32));
4264 }
4265 
4266 // Custom-lower extensions from mask vectors by using a vselect either with 1
4267 // for zero/any-extension or -1 for sign-extension:
4268 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
4269 // Note that any-extension is lowered identically to zero-extension.
4270 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
4271                                                 int64_t ExtTrueVal) const {
4272   SDLoc DL(Op);
4273   MVT VecVT = Op.getSimpleValueType();
4274   SDValue Src = Op.getOperand(0);
4275   // Only custom-lower extensions from mask types
4276   assert(Src.getValueType().isVector() &&
4277          Src.getValueType().getVectorElementType() == MVT::i1);
4278 
4279   if (VecVT.isScalableVector()) {
4280     SDValue SplatZero = DAG.getConstant(0, DL, VecVT);
4281     SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT);
4282     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
4283   }
4284 
4285   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4286   MVT I1ContainerVT =
4287       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4288 
4289   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
4290 
4291   SDValue Mask, VL;
4292   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4293 
4294   MVT XLenVT = Subtarget.getXLenVT();
4295   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
4296   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
4297 
4298   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4299                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4300   SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4301                              DAG.getUNDEF(ContainerVT), SplatTrueVal, VL);
4302   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
4303                                SplatTrueVal, SplatZero, VL);
4304 
4305   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
4306 }
4307 
4308 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
4309     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
4310   MVT ExtVT = Op.getSimpleValueType();
4311   // Only custom-lower extensions from fixed-length vector types.
4312   if (!ExtVT.isFixedLengthVector())
4313     return Op;
4314   MVT VT = Op.getOperand(0).getSimpleValueType();
4315   // Grab the canonical container type for the extended type. Infer the smaller
4316   // type from that to ensure the same number of vector elements, as we know
4317   // the LMUL will be sufficient to hold the smaller type.
4318   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
4319   // Get the extended container type manually to ensure the same number of
4320   // vector elements between source and dest.
4321   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4322                                      ContainerExtVT.getVectorElementCount());
4323 
4324   SDValue Op1 =
4325       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4326 
4327   SDLoc DL(Op);
4328   SDValue Mask, VL;
4329   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4330 
4331   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
4332 
4333   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
4334 }
4335 
4336 // Custom-lower truncations from vectors to mask vectors by using a mask and a
4337 // setcc operation:
4338 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
4339 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
4340                                                   SelectionDAG &DAG) const {
4341   SDLoc DL(Op);
4342   EVT MaskVT = Op.getValueType();
4343   // Only expect to custom-lower truncations to mask types
4344   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
4345          "Unexpected type for vector mask lowering");
4346   SDValue Src = Op.getOperand(0);
4347   MVT VecVT = Src.getSimpleValueType();
4348 
4349   // If this is a fixed vector, we need to convert it to a scalable vector.
4350   MVT ContainerVT = VecVT;
4351   if (VecVT.isFixedLengthVector()) {
4352     ContainerVT = getContainerForFixedLengthVector(VecVT);
4353     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4354   }
4355 
4356   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
4357   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
4358 
4359   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4360                          DAG.getUNDEF(ContainerVT), SplatOne);
4361   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4362                           DAG.getUNDEF(ContainerVT), SplatZero);
4363 
4364   if (VecVT.isScalableVector()) {
4365     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
4366     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
4367   }
4368 
4369   SDValue Mask, VL;
4370   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4371 
4372   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
4373   SDValue Trunc =
4374       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
4375   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
4376                       DAG.getCondCode(ISD::SETNE), Mask, VL);
4377   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
4378 }
4379 
4380 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
4381 // first position of a vector, and that vector is slid up to the insert index.
4382 // By limiting the active vector length to index+1 and merging with the
4383 // original vector (with an undisturbed tail policy for elements >= VL), we
4384 // achieve the desired result of leaving all elements untouched except the one
4385 // at VL-1, which is replaced with the desired value.
4386 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4387                                                     SelectionDAG &DAG) const {
4388   SDLoc DL(Op);
4389   MVT VecVT = Op.getSimpleValueType();
4390   SDValue Vec = Op.getOperand(0);
4391   SDValue Val = Op.getOperand(1);
4392   SDValue Idx = Op.getOperand(2);
4393 
4394   if (VecVT.getVectorElementType() == MVT::i1) {
4395     // FIXME: For now we just promote to an i8 vector and insert into that,
4396     // but this is probably not optimal.
4397     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4398     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4399     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
4400     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
4401   }
4402 
4403   MVT ContainerVT = VecVT;
4404   // If the operand is a fixed-length vector, convert to a scalable one.
4405   if (VecVT.isFixedLengthVector()) {
4406     ContainerVT = getContainerForFixedLengthVector(VecVT);
4407     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4408   }
4409 
4410   MVT XLenVT = Subtarget.getXLenVT();
4411 
4412   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4413   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
4414   // Even i64-element vectors on RV32 can be lowered without scalar
4415   // legalization if the most-significant 32 bits of the value are not affected
4416   // by the sign-extension of the lower 32 bits.
4417   // TODO: We could also catch sign extensions of a 32-bit value.
4418   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
4419     const auto *CVal = cast<ConstantSDNode>(Val);
4420     if (isInt<32>(CVal->getSExtValue())) {
4421       IsLegalInsert = true;
4422       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4423     }
4424   }
4425 
4426   SDValue Mask, VL;
4427   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4428 
4429   SDValue ValInVec;
4430 
4431   if (IsLegalInsert) {
4432     unsigned Opc =
4433         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
4434     if (isNullConstant(Idx)) {
4435       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
4436       if (!VecVT.isFixedLengthVector())
4437         return Vec;
4438       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
4439     }
4440     ValInVec =
4441         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
4442   } else {
4443     // On RV32, i64-element vectors must be specially handled to place the
4444     // value at element 0, by using two vslide1up instructions in sequence on
4445     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
4446     // this.
4447     SDValue One = DAG.getConstant(1, DL, XLenVT);
4448     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
4449     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
4450     MVT I32ContainerVT =
4451         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
4452     SDValue I32Mask =
4453         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
4454     // Limit the active VL to two.
4455     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
4456     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
4457     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
4458     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT,
4459                            DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL);
4460     // First slide in the hi value, then the lo in underneath it.
4461     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4462                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi,
4463                            I32Mask, InsertI64VL);
4464     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4465                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo,
4466                            I32Mask, InsertI64VL);
4467     // Bitcast back to the right container type.
4468     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
4469   }
4470 
4471   // Now that the value is in a vector, slide it into position.
4472   SDValue InsertVL =
4473       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
4474   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4475                                 ValInVec, Idx, Mask, InsertVL);
4476   if (!VecVT.isFixedLengthVector())
4477     return Slideup;
4478   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4479 }
4480 
4481 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
4482 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
4483 // types this is done using VMV_X_S to allow us to glean information about the
4484 // sign bits of the result.
4485 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4486                                                      SelectionDAG &DAG) const {
4487   SDLoc DL(Op);
4488   SDValue Idx = Op.getOperand(1);
4489   SDValue Vec = Op.getOperand(0);
4490   EVT EltVT = Op.getValueType();
4491   MVT VecVT = Vec.getSimpleValueType();
4492   MVT XLenVT = Subtarget.getXLenVT();
4493 
4494   if (VecVT.getVectorElementType() == MVT::i1) {
4495     if (VecVT.isFixedLengthVector()) {
4496       unsigned NumElts = VecVT.getVectorNumElements();
4497       if (NumElts >= 8) {
4498         MVT WideEltVT;
4499         unsigned WidenVecLen;
4500         SDValue ExtractElementIdx;
4501         SDValue ExtractBitIdx;
4502         unsigned MaxEEW = Subtarget.getMaxELENForFixedLengthVectors();
4503         MVT LargestEltVT = MVT::getIntegerVT(
4504             std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
4505         if (NumElts <= LargestEltVT.getSizeInBits()) {
4506           assert(isPowerOf2_32(NumElts) &&
4507                  "the number of elements should be power of 2");
4508           WideEltVT = MVT::getIntegerVT(NumElts);
4509           WidenVecLen = 1;
4510           ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
4511           ExtractBitIdx = Idx;
4512         } else {
4513           WideEltVT = LargestEltVT;
4514           WidenVecLen = NumElts / WideEltVT.getSizeInBits();
4515           // extract element index = index / element width
4516           ExtractElementIdx = DAG.getNode(
4517               ISD::SRL, DL, XLenVT, Idx,
4518               DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
4519           // mask bit index = index % element width
4520           ExtractBitIdx = DAG.getNode(
4521               ISD::AND, DL, XLenVT, Idx,
4522               DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
4523         }
4524         MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
4525         Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
4526         SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
4527                                          Vec, ExtractElementIdx);
4528         // Extract the bit from GPR.
4529         SDValue ShiftRight =
4530             DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
4531         return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
4532                            DAG.getConstant(1, DL, XLenVT));
4533       }
4534     }
4535     // Otherwise, promote to an i8 vector and extract from that.
4536     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4537     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4538     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4539   }
4540 
4541   // If this is a fixed vector, we need to convert it to a scalable vector.
4542   MVT ContainerVT = VecVT;
4543   if (VecVT.isFixedLengthVector()) {
4544     ContainerVT = getContainerForFixedLengthVector(VecVT);
4545     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4546   }
4547 
4548   // If the index is 0, the vector is already in the right position.
4549   if (!isNullConstant(Idx)) {
4550     // Use a VL of 1 to avoid processing more elements than we need.
4551     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4552     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4553     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4554     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4555                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4556   }
4557 
4558   if (!EltVT.isInteger()) {
4559     // Floating-point extracts are handled in TableGen.
4560     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4561                        DAG.getConstant(0, DL, XLenVT));
4562   }
4563 
4564   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4565   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4566 }
4567 
4568 // Some RVV intrinsics may claim that they want an integer operand to be
4569 // promoted or expanded.
4570 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG,
4571                                            const RISCVSubtarget &Subtarget) {
4572   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4573           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4574          "Unexpected opcode");
4575 
4576   if (!Subtarget.hasVInstructions())
4577     return SDValue();
4578 
4579   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4580   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4581   SDLoc DL(Op);
4582 
4583   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4584       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4585   if (!II || !II->hasScalarOperand())
4586     return SDValue();
4587 
4588   unsigned SplatOp = II->ScalarOperand + 1 + HasChain;
4589   assert(SplatOp < Op.getNumOperands());
4590 
4591   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4592   SDValue &ScalarOp = Operands[SplatOp];
4593   MVT OpVT = ScalarOp.getSimpleValueType();
4594   MVT XLenVT = Subtarget.getXLenVT();
4595 
4596   // If this isn't a scalar, or its type is XLenVT we're done.
4597   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4598     return SDValue();
4599 
4600   // Simplest case is that the operand needs to be promoted to XLenVT.
4601   if (OpVT.bitsLT(XLenVT)) {
4602     // If the operand is a constant, sign extend to increase our chances
4603     // of being able to use a .vi instruction. ANY_EXTEND would become a
4604     // a zero extend and the simm5 check in isel would fail.
4605     // FIXME: Should we ignore the upper bits in isel instead?
4606     unsigned ExtOpc =
4607         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4608     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4609     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4610   }
4611 
4612   // Use the previous operand to get the vXi64 VT. The result might be a mask
4613   // VT for compares. Using the previous operand assumes that the previous
4614   // operand will never have a smaller element size than a scalar operand and
4615   // that a widening operation never uses SEW=64.
4616   // NOTE: If this fails the below assert, we can probably just find the
4617   // element count from any operand or result and use it to construct the VT.
4618   assert(II->ScalarOperand > 0 && "Unexpected splat operand!");
4619   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4620 
4621   // The more complex case is when the scalar is larger than XLenVT.
4622   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4623          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4624 
4625   // If this is a sign-extended 32-bit constant, we can truncate it and rely
4626   // on the instruction to sign-extend since SEW>XLEN.
4627   if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
4628     if (isInt<32>(CVal->getSExtValue())) {
4629       ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4630       return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4631     }
4632   }
4633 
4634   switch (IntNo) {
4635   case Intrinsic::riscv_vslide1up:
4636   case Intrinsic::riscv_vslide1down:
4637   case Intrinsic::riscv_vslide1up_mask:
4638   case Intrinsic::riscv_vslide1down_mask: {
4639     // We need to special case these when the scalar is larger than XLen.
4640     unsigned NumOps = Op.getNumOperands();
4641     bool IsMasked = NumOps == 7;
4642 
4643     // Convert the vector source to the equivalent nxvXi32 vector.
4644     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4645     SDValue Vec = DAG.getBitcast(I32VT, Operands[2]);
4646 
4647     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4648                                    DAG.getConstant(0, DL, XLenVT));
4649     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4650                                    DAG.getConstant(1, DL, XLenVT));
4651 
4652     // Double the VL since we halved SEW.
4653     SDValue AVL = getVLOperand(Op);
4654     SDValue I32VL;
4655 
4656     // Optimize for constant AVL
4657     if (isa<ConstantSDNode>(AVL)) {
4658       unsigned EltSize = VT.getScalarSizeInBits();
4659       unsigned MinSize = VT.getSizeInBits().getKnownMinValue();
4660 
4661       unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
4662       unsigned MaxVLMAX =
4663           RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
4664 
4665       unsigned VectorBitsMin = Subtarget.getRealMinVLen();
4666       unsigned MinVLMAX =
4667           RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize);
4668 
4669       uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue();
4670       if (AVLInt <= MinVLMAX) {
4671         I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT);
4672       } else if (AVLInt >= 2 * MaxVLMAX) {
4673         // Just set vl to VLMAX in this situation
4674         RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT);
4675         SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4676         unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits());
4677         SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4678         SDValue SETVLMAX = DAG.getTargetConstant(
4679             Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32);
4680         I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW,
4681                             LMUL);
4682       } else {
4683         // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl
4684         // is related to the hardware implementation.
4685         // So let the following code handle
4686       }
4687     }
4688     if (!I32VL) {
4689       RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT);
4690       SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4691       unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits());
4692       SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4693       SDValue SETVL =
4694           DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32);
4695       // Using vsetvli instruction to get actually used length which related to
4696       // the hardware implementation
4697       SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL,
4698                                SEW, LMUL);
4699       I32VL =
4700           DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4701     }
4702 
4703     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
4704     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, I32VL);
4705 
4706     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4707     // instructions.
4708     SDValue Passthru;
4709     if (IsMasked)
4710       Passthru = DAG.getUNDEF(I32VT);
4711     else
4712       Passthru = DAG.getBitcast(I32VT, Operands[1]);
4713 
4714     if (IntNo == Intrinsic::riscv_vslide1up ||
4715         IntNo == Intrinsic::riscv_vslide1up_mask) {
4716       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4717                         ScalarHi, I32Mask, I32VL);
4718       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4719                         ScalarLo, I32Mask, I32VL);
4720     } else {
4721       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4722                         ScalarLo, I32Mask, I32VL);
4723       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4724                         ScalarHi, I32Mask, I32VL);
4725     }
4726 
4727     // Convert back to nxvXi64.
4728     Vec = DAG.getBitcast(VT, Vec);
4729 
4730     if (!IsMasked)
4731       return Vec;
4732     // Apply mask after the operation.
4733     SDValue Mask = Operands[NumOps - 3];
4734     SDValue MaskedOff = Operands[1];
4735     // Assume Policy operand is the last operand.
4736     uint64_t Policy =
4737         cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue();
4738     // We don't need to select maskedoff if it's undef.
4739     if (MaskedOff.isUndef())
4740       return Vec;
4741     // TAMU
4742     if (Policy == RISCVII::TAIL_AGNOSTIC)
4743       return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff,
4744                          AVL);
4745     // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma.
4746     // It's fine because vmerge does not care mask policy.
4747     return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff,
4748                        AVL);
4749   }
4750   }
4751 
4752   // We need to convert the scalar to a splat vector.
4753   // FIXME: Can we implicitly truncate the scalar if it is known to
4754   // be sign extended?
4755   SDValue VL = getVLOperand(Op);
4756   assert(VL.getValueType() == XLenVT);
4757   ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG);
4758   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4759 }
4760 
4761 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4762                                                      SelectionDAG &DAG) const {
4763   unsigned IntNo = Op.getConstantOperandVal(0);
4764   SDLoc DL(Op);
4765   MVT XLenVT = Subtarget.getXLenVT();
4766 
4767   switch (IntNo) {
4768   default:
4769     break; // Don't custom lower most intrinsics.
4770   case Intrinsic::thread_pointer: {
4771     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4772     return DAG.getRegister(RISCV::X4, PtrVT);
4773   }
4774   case Intrinsic::riscv_orc_b:
4775   case Intrinsic::riscv_brev8: {
4776     // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8.
4777     unsigned Opc =
4778         IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC;
4779     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4780                        DAG.getConstant(7, DL, XLenVT));
4781   }
4782   case Intrinsic::riscv_grev:
4783   case Intrinsic::riscv_gorc: {
4784     unsigned Opc =
4785         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4786     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4787   }
4788   case Intrinsic::riscv_zip:
4789   case Intrinsic::riscv_unzip: {
4790     // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip.
4791     // For i32 the immediate is 15. For i64 the immediate is 31.
4792     unsigned Opc =
4793         IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4794     unsigned BitWidth = Op.getValueSizeInBits();
4795     assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width");
4796     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4797                        DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT));
4798   }
4799   case Intrinsic::riscv_shfl:
4800   case Intrinsic::riscv_unshfl: {
4801     unsigned Opc =
4802         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4803     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4804   }
4805   case Intrinsic::riscv_bcompress:
4806   case Intrinsic::riscv_bdecompress: {
4807     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4808                                                        : RISCVISD::BDECOMPRESS;
4809     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4810   }
4811   case Intrinsic::riscv_bfp:
4812     return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1),
4813                        Op.getOperand(2));
4814   case Intrinsic::riscv_fsl:
4815     return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1),
4816                        Op.getOperand(2), Op.getOperand(3));
4817   case Intrinsic::riscv_fsr:
4818     return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1),
4819                        Op.getOperand(2), Op.getOperand(3));
4820   case Intrinsic::riscv_vmv_x_s:
4821     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4822     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4823                        Op.getOperand(1));
4824   case Intrinsic::riscv_vmv_v_x:
4825     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4826                             Op.getOperand(3), Op.getSimpleValueType(), DL, DAG,
4827                             Subtarget);
4828   case Intrinsic::riscv_vfmv_v_f:
4829     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4830                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4831   case Intrinsic::riscv_vmv_s_x: {
4832     SDValue Scalar = Op.getOperand(2);
4833 
4834     if (Scalar.getValueType().bitsLE(XLenVT)) {
4835       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4836       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4837                          Op.getOperand(1), Scalar, Op.getOperand(3));
4838     }
4839 
4840     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4841 
4842     // This is an i64 value that lives in two scalar registers. We have to
4843     // insert this in a convoluted way. First we build vXi64 splat containing
4844     // the/ two values that we assemble using some bit math. Next we'll use
4845     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4846     // to merge element 0 from our splat into the source vector.
4847     // FIXME: This is probably not the best way to do this, but it is
4848     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4849     // point.
4850     //   sw lo, (a0)
4851     //   sw hi, 4(a0)
4852     //   vlse vX, (a0)
4853     //
4854     //   vid.v      vVid
4855     //   vmseq.vx   mMask, vVid, 0
4856     //   vmerge.vvm vDest, vSrc, vVal, mMask
4857     MVT VT = Op.getSimpleValueType();
4858     SDValue Vec = Op.getOperand(1);
4859     SDValue VL = getVLOperand(Op);
4860 
4861     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG);
4862     if (Op.getOperand(1).isUndef())
4863       return SplattedVal;
4864     SDValue SplattedIdx =
4865         DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
4866                     DAG.getConstant(0, DL, MVT::i32), VL);
4867 
4868     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
4869     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4870     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4871     SDValue SelectCond =
4872         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4873                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4874     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4875                        Vec, VL);
4876   }
4877   }
4878 
4879   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4880 }
4881 
4882 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4883                                                     SelectionDAG &DAG) const {
4884   unsigned IntNo = Op.getConstantOperandVal(1);
4885   switch (IntNo) {
4886   default:
4887     break;
4888   case Intrinsic::riscv_masked_strided_load: {
4889     SDLoc DL(Op);
4890     MVT XLenVT = Subtarget.getXLenVT();
4891 
4892     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4893     // the selection of the masked intrinsics doesn't do this for us.
4894     SDValue Mask = Op.getOperand(5);
4895     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4896 
4897     MVT VT = Op->getSimpleValueType(0);
4898     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4899 
4900     SDValue PassThru = Op.getOperand(2);
4901     if (!IsUnmasked) {
4902       MVT MaskVT =
4903           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4904       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4905       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4906     }
4907 
4908     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4909 
4910     SDValue IntID = DAG.getTargetConstant(
4911         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4912         XLenVT);
4913 
4914     auto *Load = cast<MemIntrinsicSDNode>(Op);
4915     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4916     if (IsUnmasked)
4917       Ops.push_back(DAG.getUNDEF(ContainerVT));
4918     else
4919       Ops.push_back(PassThru);
4920     Ops.push_back(Op.getOperand(3)); // Ptr
4921     Ops.push_back(Op.getOperand(4)); // Stride
4922     if (!IsUnmasked)
4923       Ops.push_back(Mask);
4924     Ops.push_back(VL);
4925     if (!IsUnmasked) {
4926       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4927       Ops.push_back(Policy);
4928     }
4929 
4930     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4931     SDValue Result =
4932         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4933                                 Load->getMemoryVT(), Load->getMemOperand());
4934     SDValue Chain = Result.getValue(1);
4935     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4936     return DAG.getMergeValues({Result, Chain}, DL);
4937   }
4938   case Intrinsic::riscv_seg2_load:
4939   case Intrinsic::riscv_seg3_load:
4940   case Intrinsic::riscv_seg4_load:
4941   case Intrinsic::riscv_seg5_load:
4942   case Intrinsic::riscv_seg6_load:
4943   case Intrinsic::riscv_seg7_load:
4944   case Intrinsic::riscv_seg8_load: {
4945     SDLoc DL(Op);
4946     static const Intrinsic::ID VlsegInts[7] = {
4947         Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3,
4948         Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5,
4949         Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7,
4950         Intrinsic::riscv_vlseg8};
4951     unsigned NF = Op->getNumValues() - 1;
4952     assert(NF >= 2 && NF <= 8 && "Unexpected seg number");
4953     MVT XLenVT = Subtarget.getXLenVT();
4954     MVT VT = Op->getSimpleValueType(0);
4955     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4956 
4957     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4958     SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT);
4959     auto *Load = cast<MemIntrinsicSDNode>(Op);
4960     SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT);
4961     ContainerVTs.push_back(MVT::Other);
4962     SDVTList VTs = DAG.getVTList(ContainerVTs);
4963     SDValue Result =
4964         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs,
4965                                 {Load->getChain(), IntID, Op.getOperand(2), VL},
4966                                 Load->getMemoryVT(), Load->getMemOperand());
4967     SmallVector<SDValue, 9> Results;
4968     for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++)
4969       Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx),
4970                                                   DAG, Subtarget));
4971     Results.push_back(Result.getValue(NF));
4972     return DAG.getMergeValues(Results, DL);
4973   }
4974   }
4975 
4976   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4977 }
4978 
4979 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4980                                                  SelectionDAG &DAG) const {
4981   unsigned IntNo = Op.getConstantOperandVal(1);
4982   switch (IntNo) {
4983   default:
4984     break;
4985   case Intrinsic::riscv_masked_strided_store: {
4986     SDLoc DL(Op);
4987     MVT XLenVT = Subtarget.getXLenVT();
4988 
4989     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4990     // the selection of the masked intrinsics doesn't do this for us.
4991     SDValue Mask = Op.getOperand(5);
4992     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4993 
4994     SDValue Val = Op.getOperand(2);
4995     MVT VT = Val.getSimpleValueType();
4996     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4997 
4998     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4999     if (!IsUnmasked) {
5000       MVT MaskVT =
5001           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5002       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5003     }
5004 
5005     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5006 
5007     SDValue IntID = DAG.getTargetConstant(
5008         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
5009         XLenVT);
5010 
5011     auto *Store = cast<MemIntrinsicSDNode>(Op);
5012     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
5013     Ops.push_back(Val);
5014     Ops.push_back(Op.getOperand(3)); // Ptr
5015     Ops.push_back(Op.getOperand(4)); // Stride
5016     if (!IsUnmasked)
5017       Ops.push_back(Mask);
5018     Ops.push_back(VL);
5019 
5020     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
5021                                    Ops, Store->getMemoryVT(),
5022                                    Store->getMemOperand());
5023   }
5024   }
5025 
5026   return SDValue();
5027 }
5028 
5029 static MVT getLMUL1VT(MVT VT) {
5030   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
5031          "Unexpected vector MVT");
5032   return MVT::getScalableVectorVT(
5033       VT.getVectorElementType(),
5034       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
5035 }
5036 
5037 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
5038   switch (ISDOpcode) {
5039   default:
5040     llvm_unreachable("Unhandled reduction");
5041   case ISD::VECREDUCE_ADD:
5042     return RISCVISD::VECREDUCE_ADD_VL;
5043   case ISD::VECREDUCE_UMAX:
5044     return RISCVISD::VECREDUCE_UMAX_VL;
5045   case ISD::VECREDUCE_SMAX:
5046     return RISCVISD::VECREDUCE_SMAX_VL;
5047   case ISD::VECREDUCE_UMIN:
5048     return RISCVISD::VECREDUCE_UMIN_VL;
5049   case ISD::VECREDUCE_SMIN:
5050     return RISCVISD::VECREDUCE_SMIN_VL;
5051   case ISD::VECREDUCE_AND:
5052     return RISCVISD::VECREDUCE_AND_VL;
5053   case ISD::VECREDUCE_OR:
5054     return RISCVISD::VECREDUCE_OR_VL;
5055   case ISD::VECREDUCE_XOR:
5056     return RISCVISD::VECREDUCE_XOR_VL;
5057   }
5058 }
5059 
5060 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
5061                                                          SelectionDAG &DAG,
5062                                                          bool IsVP) const {
5063   SDLoc DL(Op);
5064   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
5065   MVT VecVT = Vec.getSimpleValueType();
5066   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
5067           Op.getOpcode() == ISD::VECREDUCE_OR ||
5068           Op.getOpcode() == ISD::VECREDUCE_XOR ||
5069           Op.getOpcode() == ISD::VP_REDUCE_AND ||
5070           Op.getOpcode() == ISD::VP_REDUCE_OR ||
5071           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
5072          "Unexpected reduction lowering");
5073 
5074   MVT XLenVT = Subtarget.getXLenVT();
5075   assert(Op.getValueType() == XLenVT &&
5076          "Expected reduction output to be legalized to XLenVT");
5077 
5078   MVT ContainerVT = VecVT;
5079   if (VecVT.isFixedLengthVector()) {
5080     ContainerVT = getContainerForFixedLengthVector(VecVT);
5081     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5082   }
5083 
5084   SDValue Mask, VL;
5085   if (IsVP) {
5086     Mask = Op.getOperand(2);
5087     VL = Op.getOperand(3);
5088   } else {
5089     std::tie(Mask, VL) =
5090         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5091   }
5092 
5093   unsigned BaseOpc;
5094   ISD::CondCode CC;
5095   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
5096 
5097   switch (Op.getOpcode()) {
5098   default:
5099     llvm_unreachable("Unhandled reduction");
5100   case ISD::VECREDUCE_AND:
5101   case ISD::VP_REDUCE_AND: {
5102     // vcpop ~x == 0
5103     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
5104     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
5105     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5106     CC = ISD::SETEQ;
5107     BaseOpc = ISD::AND;
5108     break;
5109   }
5110   case ISD::VECREDUCE_OR:
5111   case ISD::VP_REDUCE_OR:
5112     // vcpop x != 0
5113     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5114     CC = ISD::SETNE;
5115     BaseOpc = ISD::OR;
5116     break;
5117   case ISD::VECREDUCE_XOR:
5118   case ISD::VP_REDUCE_XOR: {
5119     // ((vcpop x) & 1) != 0
5120     SDValue One = DAG.getConstant(1, DL, XLenVT);
5121     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5122     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
5123     CC = ISD::SETNE;
5124     BaseOpc = ISD::XOR;
5125     break;
5126   }
5127   }
5128 
5129   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
5130 
5131   if (!IsVP)
5132     return SetCC;
5133 
5134   // Now include the start value in the operation.
5135   // Note that we must return the start value when no elements are operated
5136   // upon. The vcpop instructions we've emitted in each case above will return
5137   // 0 for an inactive vector, and so we've already received the neutral value:
5138   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
5139   // can simply include the start value.
5140   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
5141 }
5142 
5143 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
5144                                             SelectionDAG &DAG) const {
5145   SDLoc DL(Op);
5146   SDValue Vec = Op.getOperand(0);
5147   EVT VecEVT = Vec.getValueType();
5148 
5149   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
5150 
5151   // Due to ordering in legalize types we may have a vector type that needs to
5152   // be split. Do that manually so we can get down to a legal type.
5153   while (getTypeAction(*DAG.getContext(), VecEVT) ==
5154          TargetLowering::TypeSplitVector) {
5155     SDValue Lo, Hi;
5156     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
5157     VecEVT = Lo.getValueType();
5158     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
5159   }
5160 
5161   // TODO: The type may need to be widened rather than split. Or widened before
5162   // it can be split.
5163   if (!isTypeLegal(VecEVT))
5164     return SDValue();
5165 
5166   MVT VecVT = VecEVT.getSimpleVT();
5167   MVT VecEltVT = VecVT.getVectorElementType();
5168   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
5169 
5170   MVT ContainerVT = VecVT;
5171   if (VecVT.isFixedLengthVector()) {
5172     ContainerVT = getContainerForFixedLengthVector(VecVT);
5173     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5174   }
5175 
5176   MVT M1VT = getLMUL1VT(ContainerVT);
5177   MVT XLenVT = Subtarget.getXLenVT();
5178 
5179   SDValue Mask, VL;
5180   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5181 
5182   SDValue NeutralElem =
5183       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
5184   SDValue IdentitySplat =
5185       lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT),
5186                        M1VT, DL, DAG, Subtarget);
5187   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
5188                                   IdentitySplat, Mask, VL);
5189   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5190                              DAG.getConstant(0, DL, XLenVT));
5191   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5192 }
5193 
5194 // Given a reduction op, this function returns the matching reduction opcode,
5195 // the vector SDValue and the scalar SDValue required to lower this to a
5196 // RISCVISD node.
5197 static std::tuple<unsigned, SDValue, SDValue>
5198 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
5199   SDLoc DL(Op);
5200   auto Flags = Op->getFlags();
5201   unsigned Opcode = Op.getOpcode();
5202   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
5203   switch (Opcode) {
5204   default:
5205     llvm_unreachable("Unhandled reduction");
5206   case ISD::VECREDUCE_FADD: {
5207     // Use positive zero if we can. It is cheaper to materialize.
5208     SDValue Zero =
5209         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
5210     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
5211   }
5212   case ISD::VECREDUCE_SEQ_FADD:
5213     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
5214                            Op.getOperand(0));
5215   case ISD::VECREDUCE_FMIN:
5216     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
5217                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5218   case ISD::VECREDUCE_FMAX:
5219     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
5220                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5221   }
5222 }
5223 
5224 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
5225                                               SelectionDAG &DAG) const {
5226   SDLoc DL(Op);
5227   MVT VecEltVT = Op.getSimpleValueType();
5228 
5229   unsigned RVVOpcode;
5230   SDValue VectorVal, ScalarVal;
5231   std::tie(RVVOpcode, VectorVal, ScalarVal) =
5232       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
5233   MVT VecVT = VectorVal.getSimpleValueType();
5234 
5235   MVT ContainerVT = VecVT;
5236   if (VecVT.isFixedLengthVector()) {
5237     ContainerVT = getContainerForFixedLengthVector(VecVT);
5238     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
5239   }
5240 
5241   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
5242   MVT XLenVT = Subtarget.getXLenVT();
5243 
5244   SDValue Mask, VL;
5245   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5246 
5247   SDValue ScalarSplat =
5248       lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT),
5249                        M1VT, DL, DAG, Subtarget);
5250   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
5251                                   VectorVal, ScalarSplat, Mask, VL);
5252   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5253                      DAG.getConstant(0, DL, XLenVT));
5254 }
5255 
5256 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
5257   switch (ISDOpcode) {
5258   default:
5259     llvm_unreachable("Unhandled reduction");
5260   case ISD::VP_REDUCE_ADD:
5261     return RISCVISD::VECREDUCE_ADD_VL;
5262   case ISD::VP_REDUCE_UMAX:
5263     return RISCVISD::VECREDUCE_UMAX_VL;
5264   case ISD::VP_REDUCE_SMAX:
5265     return RISCVISD::VECREDUCE_SMAX_VL;
5266   case ISD::VP_REDUCE_UMIN:
5267     return RISCVISD::VECREDUCE_UMIN_VL;
5268   case ISD::VP_REDUCE_SMIN:
5269     return RISCVISD::VECREDUCE_SMIN_VL;
5270   case ISD::VP_REDUCE_AND:
5271     return RISCVISD::VECREDUCE_AND_VL;
5272   case ISD::VP_REDUCE_OR:
5273     return RISCVISD::VECREDUCE_OR_VL;
5274   case ISD::VP_REDUCE_XOR:
5275     return RISCVISD::VECREDUCE_XOR_VL;
5276   case ISD::VP_REDUCE_FADD:
5277     return RISCVISD::VECREDUCE_FADD_VL;
5278   case ISD::VP_REDUCE_SEQ_FADD:
5279     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
5280   case ISD::VP_REDUCE_FMAX:
5281     return RISCVISD::VECREDUCE_FMAX_VL;
5282   case ISD::VP_REDUCE_FMIN:
5283     return RISCVISD::VECREDUCE_FMIN_VL;
5284   }
5285 }
5286 
5287 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
5288                                            SelectionDAG &DAG) const {
5289   SDLoc DL(Op);
5290   SDValue Vec = Op.getOperand(1);
5291   EVT VecEVT = Vec.getValueType();
5292 
5293   // TODO: The type may need to be widened rather than split. Or widened before
5294   // it can be split.
5295   if (!isTypeLegal(VecEVT))
5296     return SDValue();
5297 
5298   MVT VecVT = VecEVT.getSimpleVT();
5299   MVT VecEltVT = VecVT.getVectorElementType();
5300   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
5301 
5302   MVT ContainerVT = VecVT;
5303   if (VecVT.isFixedLengthVector()) {
5304     ContainerVT = getContainerForFixedLengthVector(VecVT);
5305     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5306   }
5307 
5308   SDValue VL = Op.getOperand(3);
5309   SDValue Mask = Op.getOperand(2);
5310 
5311   MVT M1VT = getLMUL1VT(ContainerVT);
5312   MVT XLenVT = Subtarget.getXLenVT();
5313   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
5314 
5315   SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0),
5316                                         DAG.getConstant(1, DL, XLenVT), M1VT,
5317                                         DL, DAG, Subtarget);
5318   SDValue Reduction =
5319       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
5320   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
5321                              DAG.getConstant(0, DL, XLenVT));
5322   if (!VecVT.isInteger())
5323     return Elt0;
5324   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5325 }
5326 
5327 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5328                                                    SelectionDAG &DAG) const {
5329   SDValue Vec = Op.getOperand(0);
5330   SDValue SubVec = Op.getOperand(1);
5331   MVT VecVT = Vec.getSimpleValueType();
5332   MVT SubVecVT = SubVec.getSimpleValueType();
5333 
5334   SDLoc DL(Op);
5335   MVT XLenVT = Subtarget.getXLenVT();
5336   unsigned OrigIdx = Op.getConstantOperandVal(2);
5337   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5338 
5339   // We don't have the ability to slide mask vectors up indexed by their i1
5340   // elements; the smallest we can do is i8. Often we are able to bitcast to
5341   // equivalent i8 vectors. Note that when inserting a fixed-length vector
5342   // into a scalable one, we might not necessarily have enough scalable
5343   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
5344   if (SubVecVT.getVectorElementType() == MVT::i1 &&
5345       (OrigIdx != 0 || !Vec.isUndef())) {
5346     if (VecVT.getVectorMinNumElements() >= 8 &&
5347         SubVecVT.getVectorMinNumElements() >= 8) {
5348       assert(OrigIdx % 8 == 0 && "Invalid index");
5349       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5350              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5351              "Unexpected mask vector lowering");
5352       OrigIdx /= 8;
5353       SubVecVT =
5354           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5355                            SubVecVT.isScalableVector());
5356       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5357                                VecVT.isScalableVector());
5358       Vec = DAG.getBitcast(VecVT, Vec);
5359       SubVec = DAG.getBitcast(SubVecVT, SubVec);
5360     } else {
5361       // We can't slide this mask vector up indexed by its i1 elements.
5362       // This poses a problem when we wish to insert a scalable vector which
5363       // can't be re-expressed as a larger type. Just choose the slow path and
5364       // extend to a larger type, then truncate back down.
5365       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5366       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5367       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5368       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
5369       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
5370                         Op.getOperand(2));
5371       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
5372       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
5373     }
5374   }
5375 
5376   // If the subvector vector is a fixed-length type, we cannot use subregister
5377   // manipulation to simplify the codegen; we don't know which register of a
5378   // LMUL group contains the specific subvector as we only know the minimum
5379   // register size. Therefore we must slide the vector group up the full
5380   // amount.
5381   if (SubVecVT.isFixedLengthVector()) {
5382     if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
5383       return Op;
5384     MVT ContainerVT = VecVT;
5385     if (VecVT.isFixedLengthVector()) {
5386       ContainerVT = getContainerForFixedLengthVector(VecVT);
5387       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5388     }
5389     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
5390                          DAG.getUNDEF(ContainerVT), SubVec,
5391                          DAG.getConstant(0, DL, XLenVT));
5392     if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
5393       SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
5394       return DAG.getBitcast(Op.getValueType(), SubVec);
5395     }
5396     SDValue Mask =
5397         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5398     // Set the vector length to only the number of elements we care about. Note
5399     // that for slideup this includes the offset.
5400     SDValue VL =
5401         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
5402     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5403     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
5404                                   SubVec, SlideupAmt, Mask, VL);
5405     if (VecVT.isFixedLengthVector())
5406       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
5407     return DAG.getBitcast(Op.getValueType(), Slideup);
5408   }
5409 
5410   unsigned SubRegIdx, RemIdx;
5411   std::tie(SubRegIdx, RemIdx) =
5412       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5413           VecVT, SubVecVT, OrigIdx, TRI);
5414 
5415   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
5416   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
5417                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
5418                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
5419 
5420   // 1. If the Idx has been completely eliminated and this subvector's size is
5421   // a vector register or a multiple thereof, or the surrounding elements are
5422   // undef, then this is a subvector insert which naturally aligns to a vector
5423   // register. These can easily be handled using subregister manipulation.
5424   // 2. If the subvector is smaller than a vector register, then the insertion
5425   // must preserve the undisturbed elements of the register. We do this by
5426   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
5427   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
5428   // subvector within the vector register, and an INSERT_SUBVECTOR of that
5429   // LMUL=1 type back into the larger vector (resolving to another subregister
5430   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
5431   // to avoid allocating a large register group to hold our subvector.
5432   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
5433     return Op;
5434 
5435   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
5436   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
5437   // (in our case undisturbed). This means we can set up a subvector insertion
5438   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
5439   // size of the subvector.
5440   MVT InterSubVT = VecVT;
5441   SDValue AlignedExtract = Vec;
5442   unsigned AlignedIdx = OrigIdx - RemIdx;
5443   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5444     InterSubVT = getLMUL1VT(VecVT);
5445     // Extract a subvector equal to the nearest full vector register type. This
5446     // should resolve to a EXTRACT_SUBREG instruction.
5447     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5448                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
5449   }
5450 
5451   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5452   // For scalable vectors this must be further multiplied by vscale.
5453   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
5454 
5455   SDValue Mask, VL;
5456   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5457 
5458   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
5459   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
5460   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
5461   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
5462 
5463   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
5464                        DAG.getUNDEF(InterSubVT), SubVec,
5465                        DAG.getConstant(0, DL, XLenVT));
5466 
5467   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
5468                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
5469 
5470   // If required, insert this subvector back into the correct vector register.
5471   // This should resolve to an INSERT_SUBREG instruction.
5472   if (VecVT.bitsGT(InterSubVT))
5473     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
5474                           DAG.getConstant(AlignedIdx, DL, XLenVT));
5475 
5476   // We might have bitcast from a mask type: cast back to the original type if
5477   // required.
5478   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
5479 }
5480 
5481 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
5482                                                     SelectionDAG &DAG) const {
5483   SDValue Vec = Op.getOperand(0);
5484   MVT SubVecVT = Op.getSimpleValueType();
5485   MVT VecVT = Vec.getSimpleValueType();
5486 
5487   SDLoc DL(Op);
5488   MVT XLenVT = Subtarget.getXLenVT();
5489   unsigned OrigIdx = Op.getConstantOperandVal(1);
5490   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5491 
5492   // We don't have the ability to slide mask vectors down indexed by their i1
5493   // elements; the smallest we can do is i8. Often we are able to bitcast to
5494   // equivalent i8 vectors. Note that when extracting a fixed-length vector
5495   // from a scalable one, we might not necessarily have enough scalable
5496   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
5497   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
5498     if (VecVT.getVectorMinNumElements() >= 8 &&
5499         SubVecVT.getVectorMinNumElements() >= 8) {
5500       assert(OrigIdx % 8 == 0 && "Invalid index");
5501       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5502              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5503              "Unexpected mask vector lowering");
5504       OrigIdx /= 8;
5505       SubVecVT =
5506           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5507                            SubVecVT.isScalableVector());
5508       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5509                                VecVT.isScalableVector());
5510       Vec = DAG.getBitcast(VecVT, Vec);
5511     } else {
5512       // We can't slide this mask vector down, indexed by its i1 elements.
5513       // This poses a problem when we wish to extract a scalable vector which
5514       // can't be re-expressed as a larger type. Just choose the slow path and
5515       // extend to a larger type, then truncate back down.
5516       // TODO: We could probably improve this when extracting certain fixed
5517       // from fixed, where we can extract as i8 and shift the correct element
5518       // right to reach the desired subvector?
5519       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5520       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5521       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5522       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
5523                         Op.getOperand(1));
5524       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
5525       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
5526     }
5527   }
5528 
5529   // If the subvector vector is a fixed-length type, we cannot use subregister
5530   // manipulation to simplify the codegen; we don't know which register of a
5531   // LMUL group contains the specific subvector as we only know the minimum
5532   // register size. Therefore we must slide the vector group down the full
5533   // amount.
5534   if (SubVecVT.isFixedLengthVector()) {
5535     // With an index of 0 this is a cast-like subvector, which can be performed
5536     // with subregister operations.
5537     if (OrigIdx == 0)
5538       return Op;
5539     MVT ContainerVT = VecVT;
5540     if (VecVT.isFixedLengthVector()) {
5541       ContainerVT = getContainerForFixedLengthVector(VecVT);
5542       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5543     }
5544     SDValue Mask =
5545         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5546     // Set the vector length to only the number of elements we care about. This
5547     // avoids sliding down elements we're going to discard straight away.
5548     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
5549     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5550     SDValue Slidedown =
5551         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5552                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
5553     // Now we can use a cast-like subvector extract to get the result.
5554     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5555                             DAG.getConstant(0, DL, XLenVT));
5556     return DAG.getBitcast(Op.getValueType(), Slidedown);
5557   }
5558 
5559   unsigned SubRegIdx, RemIdx;
5560   std::tie(SubRegIdx, RemIdx) =
5561       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5562           VecVT, SubVecVT, OrigIdx, TRI);
5563 
5564   // If the Idx has been completely eliminated then this is a subvector extract
5565   // which naturally aligns to a vector register. These can easily be handled
5566   // using subregister manipulation.
5567   if (RemIdx == 0)
5568     return Op;
5569 
5570   // Else we must shift our vector register directly to extract the subvector.
5571   // Do this using VSLIDEDOWN.
5572 
5573   // If the vector type is an LMUL-group type, extract a subvector equal to the
5574   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
5575   // instruction.
5576   MVT InterSubVT = VecVT;
5577   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5578     InterSubVT = getLMUL1VT(VecVT);
5579     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5580                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
5581   }
5582 
5583   // Slide this vector register down by the desired number of elements in order
5584   // to place the desired subvector starting at element 0.
5585   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5586   // For scalable vectors this must be further multiplied by vscale.
5587   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
5588 
5589   SDValue Mask, VL;
5590   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
5591   SDValue Slidedown =
5592       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
5593                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
5594 
5595   // Now the vector is in the right position, extract our final subvector. This
5596   // should resolve to a COPY.
5597   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5598                           DAG.getConstant(0, DL, XLenVT));
5599 
5600   // We might have bitcast from a mask type: cast back to the original type if
5601   // required.
5602   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
5603 }
5604 
5605 // Lower step_vector to the vid instruction. Any non-identity step value must
5606 // be accounted for my manual expansion.
5607 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
5608                                               SelectionDAG &DAG) const {
5609   SDLoc DL(Op);
5610   MVT VT = Op.getSimpleValueType();
5611   MVT XLenVT = Subtarget.getXLenVT();
5612   SDValue Mask, VL;
5613   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
5614   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
5615   uint64_t StepValImm = Op.getConstantOperandVal(0);
5616   if (StepValImm != 1) {
5617     if (isPowerOf2_64(StepValImm)) {
5618       SDValue StepVal =
5619           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
5620                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
5621       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
5622     } else {
5623       SDValue StepVal = lowerScalarSplat(
5624           SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()),
5625           VL, VT, DL, DAG, Subtarget);
5626       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
5627     }
5628   }
5629   return StepVec;
5630 }
5631 
5632 // Implement vector_reverse using vrgather.vv with indices determined by
5633 // subtracting the id of each element from (VLMAX-1). This will convert
5634 // the indices like so:
5635 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
5636 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
5637 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
5638                                                  SelectionDAG &DAG) const {
5639   SDLoc DL(Op);
5640   MVT VecVT = Op.getSimpleValueType();
5641   unsigned EltSize = VecVT.getScalarSizeInBits();
5642   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
5643 
5644   unsigned MaxVLMAX = 0;
5645   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
5646   if (VectorBitsMax != 0)
5647     MaxVLMAX =
5648         RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
5649 
5650   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
5651   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
5652 
5653   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
5654   // to use vrgatherei16.vv.
5655   // TODO: It's also possible to use vrgatherei16.vv for other types to
5656   // decrease register width for the index calculation.
5657   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
5658     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
5659     // Reverse each half, then reassemble them in reverse order.
5660     // NOTE: It's also possible that after splitting that VLMAX no longer
5661     // requires vrgatherei16.vv.
5662     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
5663       SDValue Lo, Hi;
5664       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5665       EVT LoVT, HiVT;
5666       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5667       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5668       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5669       // Reassemble the low and high pieces reversed.
5670       // FIXME: This is a CONCAT_VECTORS.
5671       SDValue Res =
5672           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5673                       DAG.getIntPtrConstant(0, DL));
5674       return DAG.getNode(
5675           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5676           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5677     }
5678 
5679     // Just promote the int type to i16 which will double the LMUL.
5680     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5681     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5682   }
5683 
5684   MVT XLenVT = Subtarget.getXLenVT();
5685   SDValue Mask, VL;
5686   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5687 
5688   // Calculate VLMAX-1 for the desired SEW.
5689   unsigned MinElts = VecVT.getVectorMinNumElements();
5690   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5691                               DAG.getConstant(MinElts, DL, XLenVT));
5692   SDValue VLMinus1 =
5693       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5694 
5695   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5696   bool IsRV32E64 =
5697       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5698   SDValue SplatVL;
5699   if (!IsRV32E64)
5700     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5701   else
5702     SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT),
5703                           VLMinus1, DAG.getRegister(RISCV::X0, XLenVT));
5704 
5705   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5706   SDValue Indices =
5707       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5708 
5709   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
5710 }
5711 
5712 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op,
5713                                                 SelectionDAG &DAG) const {
5714   SDLoc DL(Op);
5715   SDValue V1 = Op.getOperand(0);
5716   SDValue V2 = Op.getOperand(1);
5717   MVT XLenVT = Subtarget.getXLenVT();
5718   MVT VecVT = Op.getSimpleValueType();
5719 
5720   unsigned MinElts = VecVT.getVectorMinNumElements();
5721   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5722                               DAG.getConstant(MinElts, DL, XLenVT));
5723 
5724   int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue();
5725   SDValue DownOffset, UpOffset;
5726   if (ImmValue >= 0) {
5727     // The operand is a TargetConstant, we need to rebuild it as a regular
5728     // constant.
5729     DownOffset = DAG.getConstant(ImmValue, DL, XLenVT);
5730     UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset);
5731   } else {
5732     // The operand is a TargetConstant, we need to rebuild it as a regular
5733     // constant rather than negating the original operand.
5734     UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT);
5735     DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset);
5736   }
5737 
5738   MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
5739   SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VLMax);
5740 
5741   SDValue SlideDown =
5742       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1,
5743                   DownOffset, TrueMask, UpOffset);
5744   return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset,
5745                      TrueMask,
5746                      DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT));
5747 }
5748 
5749 SDValue
5750 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5751                                                      SelectionDAG &DAG) const {
5752   SDLoc DL(Op);
5753   auto *Load = cast<LoadSDNode>(Op);
5754 
5755   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5756                                         Load->getMemoryVT(),
5757                                         *Load->getMemOperand()) &&
5758          "Expecting a correctly-aligned load");
5759 
5760   MVT VT = Op.getSimpleValueType();
5761   MVT XLenVT = Subtarget.getXLenVT();
5762   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5763 
5764   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5765 
5766   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5767   SDValue IntID = DAG.getTargetConstant(
5768       IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT);
5769   SmallVector<SDValue, 4> Ops{Load->getChain(), IntID};
5770   if (!IsMaskOp)
5771     Ops.push_back(DAG.getUNDEF(ContainerVT));
5772   Ops.push_back(Load->getBasePtr());
5773   Ops.push_back(VL);
5774   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5775   SDValue NewLoad =
5776       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
5777                               Load->getMemoryVT(), Load->getMemOperand());
5778 
5779   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5780   return DAG.getMergeValues({Result, Load->getChain()}, DL);
5781 }
5782 
5783 SDValue
5784 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5785                                                       SelectionDAG &DAG) const {
5786   SDLoc DL(Op);
5787   auto *Store = cast<StoreSDNode>(Op);
5788 
5789   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5790                                         Store->getMemoryVT(),
5791                                         *Store->getMemOperand()) &&
5792          "Expecting a correctly-aligned store");
5793 
5794   SDValue StoreVal = Store->getValue();
5795   MVT VT = StoreVal.getSimpleValueType();
5796   MVT XLenVT = Subtarget.getXLenVT();
5797 
5798   // If the size less than a byte, we need to pad with zeros to make a byte.
5799   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5800     VT = MVT::v8i1;
5801     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5802                            DAG.getConstant(0, DL, VT), StoreVal,
5803                            DAG.getIntPtrConstant(0, DL));
5804   }
5805 
5806   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5807 
5808   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5809 
5810   SDValue NewValue =
5811       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5812 
5813   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5814   SDValue IntID = DAG.getTargetConstant(
5815       IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT);
5816   return DAG.getMemIntrinsicNode(
5817       ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
5818       {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL},
5819       Store->getMemoryVT(), Store->getMemOperand());
5820 }
5821 
5822 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5823                                              SelectionDAG &DAG) const {
5824   SDLoc DL(Op);
5825   MVT VT = Op.getSimpleValueType();
5826 
5827   const auto *MemSD = cast<MemSDNode>(Op);
5828   EVT MemVT = MemSD->getMemoryVT();
5829   MachineMemOperand *MMO = MemSD->getMemOperand();
5830   SDValue Chain = MemSD->getChain();
5831   SDValue BasePtr = MemSD->getBasePtr();
5832 
5833   SDValue Mask, PassThru, VL;
5834   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5835     Mask = VPLoad->getMask();
5836     PassThru = DAG.getUNDEF(VT);
5837     VL = VPLoad->getVectorLength();
5838   } else {
5839     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5840     Mask = MLoad->getMask();
5841     PassThru = MLoad->getPassThru();
5842   }
5843 
5844   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5845 
5846   MVT XLenVT = Subtarget.getXLenVT();
5847 
5848   MVT ContainerVT = VT;
5849   if (VT.isFixedLengthVector()) {
5850     ContainerVT = getContainerForFixedLengthVector(VT);
5851     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5852     if (!IsUnmasked) {
5853       MVT MaskVT =
5854           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5855       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5856     }
5857   }
5858 
5859   if (!VL)
5860     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5861 
5862   unsigned IntID =
5863       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5864   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5865   if (IsUnmasked)
5866     Ops.push_back(DAG.getUNDEF(ContainerVT));
5867   else
5868     Ops.push_back(PassThru);
5869   Ops.push_back(BasePtr);
5870   if (!IsUnmasked)
5871     Ops.push_back(Mask);
5872   Ops.push_back(VL);
5873   if (!IsUnmasked)
5874     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5875 
5876   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5877 
5878   SDValue Result =
5879       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5880   Chain = Result.getValue(1);
5881 
5882   if (VT.isFixedLengthVector())
5883     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5884 
5885   return DAG.getMergeValues({Result, Chain}, DL);
5886 }
5887 
5888 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5889                                               SelectionDAG &DAG) const {
5890   SDLoc DL(Op);
5891 
5892   const auto *MemSD = cast<MemSDNode>(Op);
5893   EVT MemVT = MemSD->getMemoryVT();
5894   MachineMemOperand *MMO = MemSD->getMemOperand();
5895   SDValue Chain = MemSD->getChain();
5896   SDValue BasePtr = MemSD->getBasePtr();
5897   SDValue Val, Mask, VL;
5898 
5899   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5900     Val = VPStore->getValue();
5901     Mask = VPStore->getMask();
5902     VL = VPStore->getVectorLength();
5903   } else {
5904     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5905     Val = MStore->getValue();
5906     Mask = MStore->getMask();
5907   }
5908 
5909   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5910 
5911   MVT VT = Val.getSimpleValueType();
5912   MVT XLenVT = Subtarget.getXLenVT();
5913 
5914   MVT ContainerVT = VT;
5915   if (VT.isFixedLengthVector()) {
5916     ContainerVT = getContainerForFixedLengthVector(VT);
5917 
5918     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5919     if (!IsUnmasked) {
5920       MVT MaskVT =
5921           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5922       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5923     }
5924   }
5925 
5926   if (!VL)
5927     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5928 
5929   unsigned IntID =
5930       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5931   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5932   Ops.push_back(Val);
5933   Ops.push_back(BasePtr);
5934   if (!IsUnmasked)
5935     Ops.push_back(Mask);
5936   Ops.push_back(VL);
5937 
5938   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5939                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5940 }
5941 
5942 SDValue
5943 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
5944                                                       SelectionDAG &DAG) const {
5945   MVT InVT = Op.getOperand(0).getSimpleValueType();
5946   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
5947 
5948   MVT VT = Op.getSimpleValueType();
5949 
5950   SDValue Op1 =
5951       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
5952   SDValue Op2 =
5953       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5954 
5955   SDLoc DL(Op);
5956   SDValue VL =
5957       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5958 
5959   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5960   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5961 
5962   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
5963                             Op.getOperand(2), Mask, VL);
5964 
5965   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
5966 }
5967 
5968 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
5969     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
5970   MVT VT = Op.getSimpleValueType();
5971 
5972   if (VT.getVectorElementType() == MVT::i1)
5973     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
5974 
5975   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
5976 }
5977 
5978 SDValue
5979 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
5980                                                       SelectionDAG &DAG) const {
5981   unsigned Opc;
5982   switch (Op.getOpcode()) {
5983   default: llvm_unreachable("Unexpected opcode!");
5984   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
5985   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
5986   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
5987   }
5988 
5989   return lowerToScalableOp(Op, DAG, Opc);
5990 }
5991 
5992 // Lower vector ABS to smax(X, sub(0, X)).
5993 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
5994   SDLoc DL(Op);
5995   MVT VT = Op.getSimpleValueType();
5996   SDValue X = Op.getOperand(0);
5997 
5998   assert(VT.isFixedLengthVector() && "Unexpected type");
5999 
6000   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6001   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
6002 
6003   SDValue Mask, VL;
6004   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6005 
6006   SDValue SplatZero = DAG.getNode(
6007       RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
6008       DAG.getConstant(0, DL, Subtarget.getXLenVT()));
6009   SDValue NegX =
6010       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
6011   SDValue Max =
6012       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
6013 
6014   return convertFromScalableVector(VT, Max, DAG, Subtarget);
6015 }
6016 
6017 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
6018     SDValue Op, SelectionDAG &DAG) const {
6019   SDLoc DL(Op);
6020   MVT VT = Op.getSimpleValueType();
6021   SDValue Mag = Op.getOperand(0);
6022   SDValue Sign = Op.getOperand(1);
6023   assert(Mag.getValueType() == Sign.getValueType() &&
6024          "Can only handle COPYSIGN with matching types.");
6025 
6026   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6027   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
6028   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
6029 
6030   SDValue Mask, VL;
6031   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6032 
6033   SDValue CopySign =
6034       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
6035 
6036   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
6037 }
6038 
6039 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
6040     SDValue Op, SelectionDAG &DAG) const {
6041   MVT VT = Op.getSimpleValueType();
6042   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6043 
6044   MVT I1ContainerVT =
6045       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6046 
6047   SDValue CC =
6048       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
6049   SDValue Op1 =
6050       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
6051   SDValue Op2 =
6052       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
6053 
6054   SDLoc DL(Op);
6055   SDValue Mask, VL;
6056   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6057 
6058   SDValue Select =
6059       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
6060 
6061   return convertFromScalableVector(VT, Select, DAG, Subtarget);
6062 }
6063 
6064 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
6065                                                unsigned NewOpc,
6066                                                bool HasMask) const {
6067   MVT VT = Op.getSimpleValueType();
6068   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6069 
6070   // Create list of operands by converting existing ones to scalable types.
6071   SmallVector<SDValue, 6> Ops;
6072   for (const SDValue &V : Op->op_values()) {
6073     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6074 
6075     // Pass through non-vector operands.
6076     if (!V.getValueType().isVector()) {
6077       Ops.push_back(V);
6078       continue;
6079     }
6080 
6081     // "cast" fixed length vector to a scalable vector.
6082     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
6083            "Only fixed length vectors are supported!");
6084     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6085   }
6086 
6087   SDLoc DL(Op);
6088   SDValue Mask, VL;
6089   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6090   if (HasMask)
6091     Ops.push_back(Mask);
6092   Ops.push_back(VL);
6093 
6094   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
6095   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
6096 }
6097 
6098 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
6099 // * Operands of each node are assumed to be in the same order.
6100 // * The EVL operand is promoted from i32 to i64 on RV64.
6101 // * Fixed-length vectors are converted to their scalable-vector container
6102 //   types.
6103 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
6104                                        unsigned RISCVISDOpc) const {
6105   SDLoc DL(Op);
6106   MVT VT = Op.getSimpleValueType();
6107   SmallVector<SDValue, 4> Ops;
6108 
6109   for (const auto &OpIdx : enumerate(Op->ops())) {
6110     SDValue V = OpIdx.value();
6111     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6112     // Pass through operands which aren't fixed-length vectors.
6113     if (!V.getValueType().isFixedLengthVector()) {
6114       Ops.push_back(V);
6115       continue;
6116     }
6117     // "cast" fixed length vector to a scalable vector.
6118     MVT OpVT = V.getSimpleValueType();
6119     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
6120     assert(useRVVForFixedLengthVectorVT(OpVT) &&
6121            "Only fixed length vectors are supported!");
6122     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6123   }
6124 
6125   if (!VT.isFixedLengthVector())
6126     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
6127 
6128   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6129 
6130   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
6131 
6132   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
6133 }
6134 
6135 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
6136                                             unsigned MaskOpc,
6137                                             unsigned VecOpc) const {
6138   MVT VT = Op.getSimpleValueType();
6139   if (VT.getVectorElementType() != MVT::i1)
6140     return lowerVPOp(Op, DAG, VecOpc);
6141 
6142   // It is safe to drop mask parameter as masked-off elements are undef.
6143   SDValue Op1 = Op->getOperand(0);
6144   SDValue Op2 = Op->getOperand(1);
6145   SDValue VL = Op->getOperand(3);
6146 
6147   MVT ContainerVT = VT;
6148   const bool IsFixed = VT.isFixedLengthVector();
6149   if (IsFixed) {
6150     ContainerVT = getContainerForFixedLengthVector(VT);
6151     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6152     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6153   }
6154 
6155   SDLoc DL(Op);
6156   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
6157   if (!IsFixed)
6158     return Val;
6159   return convertFromScalableVector(VT, Val, DAG, Subtarget);
6160 }
6161 
6162 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
6163 // matched to a RVV indexed load. The RVV indexed load instructions only
6164 // support the "unsigned unscaled" addressing mode; indices are implicitly
6165 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6166 // signed or scaled indexing is extended to the XLEN value type and scaled
6167 // accordingly.
6168 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
6169                                                SelectionDAG &DAG) const {
6170   SDLoc DL(Op);
6171   MVT VT = Op.getSimpleValueType();
6172 
6173   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6174   EVT MemVT = MemSD->getMemoryVT();
6175   MachineMemOperand *MMO = MemSD->getMemOperand();
6176   SDValue Chain = MemSD->getChain();
6177   SDValue BasePtr = MemSD->getBasePtr();
6178 
6179   ISD::LoadExtType LoadExtType;
6180   SDValue Index, Mask, PassThru, VL;
6181 
6182   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
6183     Index = VPGN->getIndex();
6184     Mask = VPGN->getMask();
6185     PassThru = DAG.getUNDEF(VT);
6186     VL = VPGN->getVectorLength();
6187     // VP doesn't support extending loads.
6188     LoadExtType = ISD::NON_EXTLOAD;
6189   } else {
6190     // Else it must be a MGATHER.
6191     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
6192     Index = MGN->getIndex();
6193     Mask = MGN->getMask();
6194     PassThru = MGN->getPassThru();
6195     LoadExtType = MGN->getExtensionType();
6196   }
6197 
6198   MVT IndexVT = Index.getSimpleValueType();
6199   MVT XLenVT = Subtarget.getXLenVT();
6200 
6201   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6202          "Unexpected VTs!");
6203   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6204   // Targets have to explicitly opt-in for extending vector loads.
6205   assert(LoadExtType == ISD::NON_EXTLOAD &&
6206          "Unexpected extending MGATHER/VP_GATHER");
6207   (void)LoadExtType;
6208 
6209   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6210   // the selection of the masked intrinsics doesn't do this for us.
6211   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6212 
6213   MVT ContainerVT = VT;
6214   if (VT.isFixedLengthVector()) {
6215     // We need to use the larger of the result and index type to determine the
6216     // scalable type to use so we don't increase LMUL for any operand/result.
6217     if (VT.bitsGE(IndexVT)) {
6218       ContainerVT = getContainerForFixedLengthVector(VT);
6219       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6220                                  ContainerVT.getVectorElementCount());
6221     } else {
6222       IndexVT = getContainerForFixedLengthVector(IndexVT);
6223       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
6224                                      IndexVT.getVectorElementCount());
6225     }
6226 
6227     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6228 
6229     if (!IsUnmasked) {
6230       MVT MaskVT =
6231           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6232       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6233       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
6234     }
6235   }
6236 
6237   if (!VL)
6238     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6239 
6240   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6241     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6242     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6243                                    VL);
6244     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6245                         TrueMask, VL);
6246   }
6247 
6248   unsigned IntID =
6249       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
6250   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6251   if (IsUnmasked)
6252     Ops.push_back(DAG.getUNDEF(ContainerVT));
6253   else
6254     Ops.push_back(PassThru);
6255   Ops.push_back(BasePtr);
6256   Ops.push_back(Index);
6257   if (!IsUnmasked)
6258     Ops.push_back(Mask);
6259   Ops.push_back(VL);
6260   if (!IsUnmasked)
6261     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
6262 
6263   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
6264   SDValue Result =
6265       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
6266   Chain = Result.getValue(1);
6267 
6268   if (VT.isFixedLengthVector())
6269     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
6270 
6271   return DAG.getMergeValues({Result, Chain}, DL);
6272 }
6273 
6274 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
6275 // matched to a RVV indexed store. The RVV indexed store instructions only
6276 // support the "unsigned unscaled" addressing mode; indices are implicitly
6277 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6278 // signed or scaled indexing is extended to the XLEN value type and scaled
6279 // accordingly.
6280 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
6281                                                 SelectionDAG &DAG) const {
6282   SDLoc DL(Op);
6283   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6284   EVT MemVT = MemSD->getMemoryVT();
6285   MachineMemOperand *MMO = MemSD->getMemOperand();
6286   SDValue Chain = MemSD->getChain();
6287   SDValue BasePtr = MemSD->getBasePtr();
6288 
6289   bool IsTruncatingStore = false;
6290   SDValue Index, Mask, Val, VL;
6291 
6292   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
6293     Index = VPSN->getIndex();
6294     Mask = VPSN->getMask();
6295     Val = VPSN->getValue();
6296     VL = VPSN->getVectorLength();
6297     // VP doesn't support truncating stores.
6298     IsTruncatingStore = false;
6299   } else {
6300     // Else it must be a MSCATTER.
6301     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
6302     Index = MSN->getIndex();
6303     Mask = MSN->getMask();
6304     Val = MSN->getValue();
6305     IsTruncatingStore = MSN->isTruncatingStore();
6306   }
6307 
6308   MVT VT = Val.getSimpleValueType();
6309   MVT IndexVT = Index.getSimpleValueType();
6310   MVT XLenVT = Subtarget.getXLenVT();
6311 
6312   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6313          "Unexpected VTs!");
6314   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6315   // Targets have to explicitly opt-in for extending vector loads and
6316   // truncating vector stores.
6317   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
6318   (void)IsTruncatingStore;
6319 
6320   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6321   // the selection of the masked intrinsics doesn't do this for us.
6322   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6323 
6324   MVT ContainerVT = VT;
6325   if (VT.isFixedLengthVector()) {
6326     // We need to use the larger of the value and index type to determine the
6327     // scalable type to use so we don't increase LMUL for any operand/result.
6328     if (VT.bitsGE(IndexVT)) {
6329       ContainerVT = getContainerForFixedLengthVector(VT);
6330       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6331                                  ContainerVT.getVectorElementCount());
6332     } else {
6333       IndexVT = getContainerForFixedLengthVector(IndexVT);
6334       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
6335                                      IndexVT.getVectorElementCount());
6336     }
6337 
6338     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6339     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
6340 
6341     if (!IsUnmasked) {
6342       MVT MaskVT =
6343           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6344       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6345     }
6346   }
6347 
6348   if (!VL)
6349     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6350 
6351   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6352     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6353     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6354                                    VL);
6355     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6356                         TrueMask, VL);
6357   }
6358 
6359   unsigned IntID =
6360       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
6361   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6362   Ops.push_back(Val);
6363   Ops.push_back(BasePtr);
6364   Ops.push_back(Index);
6365   if (!IsUnmasked)
6366     Ops.push_back(Mask);
6367   Ops.push_back(VL);
6368 
6369   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
6370                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
6371 }
6372 
6373 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
6374                                                SelectionDAG &DAG) const {
6375   const MVT XLenVT = Subtarget.getXLenVT();
6376   SDLoc DL(Op);
6377   SDValue Chain = Op->getOperand(0);
6378   SDValue SysRegNo = DAG.getTargetConstant(
6379       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6380   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
6381   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
6382 
6383   // Encoding used for rounding mode in RISCV differs from that used in
6384   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
6385   // table, which consists of a sequence of 4-bit fields, each representing
6386   // corresponding FLT_ROUNDS mode.
6387   static const int Table =
6388       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
6389       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
6390       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
6391       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
6392       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
6393 
6394   SDValue Shift =
6395       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
6396   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6397                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6398   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6399                                DAG.getConstant(7, DL, XLenVT));
6400 
6401   return DAG.getMergeValues({Masked, Chain}, DL);
6402 }
6403 
6404 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
6405                                                SelectionDAG &DAG) const {
6406   const MVT XLenVT = Subtarget.getXLenVT();
6407   SDLoc DL(Op);
6408   SDValue Chain = Op->getOperand(0);
6409   SDValue RMValue = Op->getOperand(1);
6410   SDValue SysRegNo = DAG.getTargetConstant(
6411       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6412 
6413   // Encoding used for rounding mode in RISCV differs from that used in
6414   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
6415   // a table, which consists of a sequence of 4-bit fields, each representing
6416   // corresponding RISCV mode.
6417   static const unsigned Table =
6418       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
6419       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
6420       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
6421       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
6422       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
6423 
6424   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
6425                               DAG.getConstant(2, DL, XLenVT));
6426   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6427                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6428   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6429                         DAG.getConstant(0x7, DL, XLenVT));
6430   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
6431                      RMValue);
6432 }
6433 
6434 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) {
6435   switch (IntNo) {
6436   default:
6437     llvm_unreachable("Unexpected Intrinsic");
6438   case Intrinsic::riscv_bcompress:
6439     return RISCVISD::BCOMPRESSW;
6440   case Intrinsic::riscv_bdecompress:
6441     return RISCVISD::BDECOMPRESSW;
6442   case Intrinsic::riscv_bfp:
6443     return RISCVISD::BFPW;
6444   case Intrinsic::riscv_fsl:
6445     return RISCVISD::FSLW;
6446   case Intrinsic::riscv_fsr:
6447     return RISCVISD::FSRW;
6448   }
6449 }
6450 
6451 // Converts the given intrinsic to a i64 operation with any extension.
6452 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG,
6453                                          unsigned IntNo) {
6454   SDLoc DL(N);
6455   RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo);
6456   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6457   SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6458   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2);
6459   // ReplaceNodeResults requires we maintain the same type for the return value.
6460   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6461 }
6462 
6463 // Returns the opcode of the target-specific SDNode that implements the 32-bit
6464 // form of the given Opcode.
6465 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
6466   switch (Opcode) {
6467   default:
6468     llvm_unreachable("Unexpected opcode");
6469   case ISD::SHL:
6470     return RISCVISD::SLLW;
6471   case ISD::SRA:
6472     return RISCVISD::SRAW;
6473   case ISD::SRL:
6474     return RISCVISD::SRLW;
6475   case ISD::SDIV:
6476     return RISCVISD::DIVW;
6477   case ISD::UDIV:
6478     return RISCVISD::DIVUW;
6479   case ISD::UREM:
6480     return RISCVISD::REMUW;
6481   case ISD::ROTL:
6482     return RISCVISD::ROLW;
6483   case ISD::ROTR:
6484     return RISCVISD::RORW;
6485   }
6486 }
6487 
6488 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
6489 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
6490 // otherwise be promoted to i64, making it difficult to select the
6491 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
6492 // type i8/i16/i32 is lost.
6493 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
6494                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
6495   SDLoc DL(N);
6496   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6497   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
6498   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
6499   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6500   // ReplaceNodeResults requires we maintain the same type for the return value.
6501   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6502 }
6503 
6504 // Converts the given 32-bit operation to a i64 operation with signed extension
6505 // semantic to reduce the signed extension instructions.
6506 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
6507   SDLoc DL(N);
6508   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6509   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6510   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
6511   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6512                                DAG.getValueType(MVT::i32));
6513   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
6514 }
6515 
6516 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
6517                                              SmallVectorImpl<SDValue> &Results,
6518                                              SelectionDAG &DAG) const {
6519   SDLoc DL(N);
6520   switch (N->getOpcode()) {
6521   default:
6522     llvm_unreachable("Don't know how to custom type legalize this operation!");
6523   case ISD::STRICT_FP_TO_SINT:
6524   case ISD::STRICT_FP_TO_UINT:
6525   case ISD::FP_TO_SINT:
6526   case ISD::FP_TO_UINT: {
6527     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6528            "Unexpected custom legalisation");
6529     bool IsStrict = N->isStrictFPOpcode();
6530     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
6531                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
6532     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
6533     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
6534         TargetLowering::TypeSoftenFloat) {
6535       if (!isTypeLegal(Op0.getValueType()))
6536         return;
6537       if (IsStrict) {
6538         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
6539                                 : RISCVISD::STRICT_FCVT_WU_RV64;
6540         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
6541         SDValue Res = DAG.getNode(
6542             Opc, DL, VTs, N->getOperand(0), Op0,
6543             DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6544         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6545         Results.push_back(Res.getValue(1));
6546         return;
6547       }
6548       unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
6549       SDValue Res =
6550           DAG.getNode(Opc, DL, MVT::i64, Op0,
6551                       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6552       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6553       return;
6554     }
6555     // If the FP type needs to be softened, emit a library call using the 'si'
6556     // version. If we left it to default legalization we'd end up with 'di'. If
6557     // the FP type doesn't need to be softened just let generic type
6558     // legalization promote the result type.
6559     RTLIB::Libcall LC;
6560     if (IsSigned)
6561       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
6562     else
6563       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
6564     MakeLibCallOptions CallOptions;
6565     EVT OpVT = Op0.getValueType();
6566     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
6567     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
6568     SDValue Result;
6569     std::tie(Result, Chain) =
6570         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
6571     Results.push_back(Result);
6572     if (IsStrict)
6573       Results.push_back(Chain);
6574     break;
6575   }
6576   case ISD::READCYCLECOUNTER: {
6577     assert(!Subtarget.is64Bit() &&
6578            "READCYCLECOUNTER only has custom type legalization on riscv32");
6579 
6580     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6581     SDValue RCW =
6582         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
6583 
6584     Results.push_back(
6585         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
6586     Results.push_back(RCW.getValue(2));
6587     break;
6588   }
6589   case ISD::MUL: {
6590     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
6591     unsigned XLen = Subtarget.getXLen();
6592     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
6593     if (Size > XLen) {
6594       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
6595       SDValue LHS = N->getOperand(0);
6596       SDValue RHS = N->getOperand(1);
6597       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
6598 
6599       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
6600       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
6601       // We need exactly one side to be unsigned.
6602       if (LHSIsU == RHSIsU)
6603         return;
6604 
6605       auto MakeMULPair = [&](SDValue S, SDValue U) {
6606         MVT XLenVT = Subtarget.getXLenVT();
6607         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
6608         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
6609         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
6610         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
6611         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
6612       };
6613 
6614       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
6615       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
6616 
6617       // The other operand should be signed, but still prefer MULH when
6618       // possible.
6619       if (RHSIsU && LHSIsS && !RHSIsS)
6620         Results.push_back(MakeMULPair(LHS, RHS));
6621       else if (LHSIsU && RHSIsS && !LHSIsS)
6622         Results.push_back(MakeMULPair(RHS, LHS));
6623 
6624       return;
6625     }
6626     LLVM_FALLTHROUGH;
6627   }
6628   case ISD::ADD:
6629   case ISD::SUB:
6630     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6631            "Unexpected custom legalisation");
6632     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
6633     break;
6634   case ISD::SHL:
6635   case ISD::SRA:
6636   case ISD::SRL:
6637     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6638            "Unexpected custom legalisation");
6639     if (N->getOperand(1).getOpcode() != ISD::Constant) {
6640       Results.push_back(customLegalizeToWOp(N, DAG));
6641       break;
6642     }
6643 
6644     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
6645     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
6646     // shift amount.
6647     if (N->getOpcode() == ISD::SHL) {
6648       SDLoc DL(N);
6649       SDValue NewOp0 =
6650           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6651       SDValue NewOp1 =
6652           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
6653       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
6654       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6655                                    DAG.getValueType(MVT::i32));
6656       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6657     }
6658 
6659     break;
6660   case ISD::ROTL:
6661   case ISD::ROTR:
6662     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6663            "Unexpected custom legalisation");
6664     Results.push_back(customLegalizeToWOp(N, DAG));
6665     break;
6666   case ISD::CTTZ:
6667   case ISD::CTTZ_ZERO_UNDEF:
6668   case ISD::CTLZ:
6669   case ISD::CTLZ_ZERO_UNDEF: {
6670     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6671            "Unexpected custom legalisation");
6672 
6673     SDValue NewOp0 =
6674         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6675     bool IsCTZ =
6676         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
6677     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
6678     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
6679     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6680     return;
6681   }
6682   case ISD::SDIV:
6683   case ISD::UDIV:
6684   case ISD::UREM: {
6685     MVT VT = N->getSimpleValueType(0);
6686     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
6687            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
6688            "Unexpected custom legalisation");
6689     // Don't promote division/remainder by constant since we should expand those
6690     // to multiply by magic constant.
6691     // FIXME: What if the expansion is disabled for minsize.
6692     if (N->getOperand(1).getOpcode() == ISD::Constant)
6693       return;
6694 
6695     // If the input is i32, use ANY_EXTEND since the W instructions don't read
6696     // the upper 32 bits. For other types we need to sign or zero extend
6697     // based on the opcode.
6698     unsigned ExtOpc = ISD::ANY_EXTEND;
6699     if (VT != MVT::i32)
6700       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
6701                                            : ISD::ZERO_EXTEND;
6702 
6703     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
6704     break;
6705   }
6706   case ISD::UADDO:
6707   case ISD::USUBO: {
6708     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6709            "Unexpected custom legalisation");
6710     bool IsAdd = N->getOpcode() == ISD::UADDO;
6711     // Create an ADDW or SUBW.
6712     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6713     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6714     SDValue Res =
6715         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
6716     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
6717                       DAG.getValueType(MVT::i32));
6718 
6719     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
6720     // Since the inputs are sign extended from i32, this is equivalent to
6721     // comparing the lower 32 bits.
6722     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6723     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
6724                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
6725 
6726     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6727     Results.push_back(Overflow);
6728     return;
6729   }
6730   case ISD::UADDSAT:
6731   case ISD::USUBSAT: {
6732     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6733            "Unexpected custom legalisation");
6734     if (Subtarget.hasStdExtZbb()) {
6735       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
6736       // sign extend allows overflow of the lower 32 bits to be detected on
6737       // the promoted size.
6738       SDValue LHS =
6739           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6740       SDValue RHS =
6741           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
6742       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
6743       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6744       return;
6745     }
6746 
6747     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
6748     // promotion for UADDO/USUBO.
6749     Results.push_back(expandAddSubSat(N, DAG));
6750     return;
6751   }
6752   case ISD::ABS: {
6753     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6754            "Unexpected custom legalisation");
6755           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6756 
6757     // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y)
6758 
6759     SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6760 
6761     // Freeze the source so we can increase it's use count.
6762     Src = DAG.getFreeze(Src);
6763 
6764     // Copy sign bit to all bits using the sraiw pattern.
6765     SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src,
6766                                    DAG.getValueType(MVT::i32));
6767     SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill,
6768                            DAG.getConstant(31, DL, MVT::i64));
6769 
6770     SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill);
6771     NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill);
6772 
6773     // NOTE: The result is only required to be anyextended, but sext is
6774     // consistent with type legalization of sub.
6775     NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes,
6776                          DAG.getValueType(MVT::i32));
6777     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6778     return;
6779   }
6780   case ISD::BITCAST: {
6781     EVT VT = N->getValueType(0);
6782     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
6783     SDValue Op0 = N->getOperand(0);
6784     EVT Op0VT = Op0.getValueType();
6785     MVT XLenVT = Subtarget.getXLenVT();
6786     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
6787       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
6788       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
6789     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
6790                Subtarget.hasStdExtF()) {
6791       SDValue FPConv =
6792           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
6793       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
6794     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
6795                isTypeLegal(Op0VT)) {
6796       // Custom-legalize bitcasts from fixed-length vector types to illegal
6797       // scalar types in order to improve codegen. Bitcast the vector to a
6798       // one-element vector type whose element type is the same as the result
6799       // type, and extract the first element.
6800       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
6801       if (isTypeLegal(BVT)) {
6802         SDValue BVec = DAG.getBitcast(BVT, Op0);
6803         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
6804                                       DAG.getConstant(0, DL, XLenVT)));
6805       }
6806     }
6807     break;
6808   }
6809   case RISCVISD::GREV:
6810   case RISCVISD::GORC:
6811   case RISCVISD::SHFL: {
6812     MVT VT = N->getSimpleValueType(0);
6813     MVT XLenVT = Subtarget.getXLenVT();
6814     assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
6815            "Unexpected custom legalisation");
6816     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6817     assert((Subtarget.hasStdExtZbp() ||
6818             (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV &&
6819              N->getConstantOperandVal(1) == 7)) &&
6820            "Unexpected extension");
6821     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
6822     SDValue NewOp1 =
6823         DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1));
6824     SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1);
6825     // ReplaceNodeResults requires we maintain the same type for the return
6826     // value.
6827     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes));
6828     break;
6829   }
6830   case ISD::BSWAP:
6831   case ISD::BITREVERSE: {
6832     MVT VT = N->getSimpleValueType(0);
6833     MVT XLenVT = Subtarget.getXLenVT();
6834     assert((VT == MVT::i8 || VT == MVT::i16 ||
6835             (VT == MVT::i32 && Subtarget.is64Bit())) &&
6836            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
6837     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
6838     unsigned Imm = VT.getSizeInBits() - 1;
6839     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
6840     if (N->getOpcode() == ISD::BSWAP)
6841       Imm &= ~0x7U;
6842     SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0,
6843                                 DAG.getConstant(Imm, DL, XLenVT));
6844     // ReplaceNodeResults requires we maintain the same type for the return
6845     // value.
6846     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
6847     break;
6848   }
6849   case ISD::FSHL:
6850   case ISD::FSHR: {
6851     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6852            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
6853     SDValue NewOp0 =
6854         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6855     SDValue NewOp1 =
6856         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6857     SDValue NewShAmt =
6858         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6859     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
6860     // Mask the shift amount to 5 bits to prevent accidentally setting bit 5.
6861     NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt,
6862                            DAG.getConstant(0x1f, DL, MVT::i64));
6863     // fshl and fshr concatenate their operands in the same order. fsrw and fslw
6864     // instruction use different orders. fshl will return its first operand for
6865     // shift of zero, fshr will return its second operand. fsl and fsr both
6866     // return rs1 so the ISD nodes need to have different operand orders.
6867     // Shift amount is in rs2.
6868     unsigned Opc = RISCVISD::FSLW;
6869     if (N->getOpcode() == ISD::FSHR) {
6870       std::swap(NewOp0, NewOp1);
6871       Opc = RISCVISD::FSRW;
6872     }
6873     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt);
6874     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
6875     break;
6876   }
6877   case ISD::EXTRACT_VECTOR_ELT: {
6878     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
6879     // type is illegal (currently only vXi64 RV32).
6880     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
6881     // transferred to the destination register. We issue two of these from the
6882     // upper- and lower- halves of the SEW-bit vector element, slid down to the
6883     // first element.
6884     SDValue Vec = N->getOperand(0);
6885     SDValue Idx = N->getOperand(1);
6886 
6887     // The vector type hasn't been legalized yet so we can't issue target
6888     // specific nodes if it needs legalization.
6889     // FIXME: We would manually legalize if it's important.
6890     if (!isTypeLegal(Vec.getValueType()))
6891       return;
6892 
6893     MVT VecVT = Vec.getSimpleValueType();
6894 
6895     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
6896            VecVT.getVectorElementType() == MVT::i64 &&
6897            "Unexpected EXTRACT_VECTOR_ELT legalization");
6898 
6899     // If this is a fixed vector, we need to convert it to a scalable vector.
6900     MVT ContainerVT = VecVT;
6901     if (VecVT.isFixedLengthVector()) {
6902       ContainerVT = getContainerForFixedLengthVector(VecVT);
6903       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
6904     }
6905 
6906     MVT XLenVT = Subtarget.getXLenVT();
6907 
6908     // Use a VL of 1 to avoid processing more elements than we need.
6909     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6910     SDValue VL = DAG.getConstant(1, DL, XLenVT);
6911     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6912 
6913     // Unless the index is known to be 0, we must slide the vector down to get
6914     // the desired element into index 0.
6915     if (!isNullConstant(Idx)) {
6916       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
6917                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
6918     }
6919 
6920     // Extract the lower XLEN bits of the correct vector element.
6921     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
6922 
6923     // To extract the upper XLEN bits of the vector element, shift the first
6924     // element right by 32 bits and re-extract the lower XLEN bits.
6925     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6926                                      DAG.getUNDEF(ContainerVT),
6927                                      DAG.getConstant(32, DL, XLenVT), VL);
6928     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
6929                                  ThirtyTwoV, Mask, VL);
6930 
6931     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
6932 
6933     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
6934     break;
6935   }
6936   case ISD::INTRINSIC_WO_CHAIN: {
6937     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
6938     switch (IntNo) {
6939     default:
6940       llvm_unreachable(
6941           "Don't know how to custom type legalize this intrinsic!");
6942     case Intrinsic::riscv_grev:
6943     case Intrinsic::riscv_gorc: {
6944       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6945              "Unexpected custom legalisation");
6946       SDValue NewOp1 =
6947           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6948       SDValue NewOp2 =
6949           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6950       unsigned Opc =
6951           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
6952       // If the control is a constant, promote the node by clearing any extra
6953       // bits bits in the control. isel will form greviw/gorciw if the result is
6954       // sign extended.
6955       if (isa<ConstantSDNode>(NewOp2)) {
6956         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
6957                              DAG.getConstant(0x1f, DL, MVT::i64));
6958         Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
6959       }
6960       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
6961       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6962       break;
6963     }
6964     case Intrinsic::riscv_bcompress:
6965     case Intrinsic::riscv_bdecompress:
6966     case Intrinsic::riscv_bfp: {
6967       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6968              "Unexpected custom legalisation");
6969       Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo));
6970       break;
6971     }
6972     case Intrinsic::riscv_fsl:
6973     case Intrinsic::riscv_fsr: {
6974       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6975              "Unexpected custom legalisation");
6976       SDValue NewOp1 =
6977           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6978       SDValue NewOp2 =
6979           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6980       SDValue NewOp3 =
6981           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3));
6982       unsigned Opc = getRISCVWOpcodeByIntr(IntNo);
6983       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3);
6984       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6985       break;
6986     }
6987     case Intrinsic::riscv_orc_b: {
6988       // Lower to the GORCI encoding for orc.b with the operand extended.
6989       SDValue NewOp =
6990           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6991       SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp,
6992                                 DAG.getConstant(7, DL, MVT::i64));
6993       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6994       return;
6995     }
6996     case Intrinsic::riscv_shfl:
6997     case Intrinsic::riscv_unshfl: {
6998       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6999              "Unexpected custom legalisation");
7000       SDValue NewOp1 =
7001           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7002       SDValue NewOp2 =
7003           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7004       unsigned Opc =
7005           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
7006       // There is no (UN)SHFLIW. If the control word is a constant, we can use
7007       // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half
7008       // will be shuffled the same way as the lower 32 bit half, but the two
7009       // halves won't cross.
7010       if (isa<ConstantSDNode>(NewOp2)) {
7011         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7012                              DAG.getConstant(0xf, DL, MVT::i64));
7013         Opc =
7014             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
7015       }
7016       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7017       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7018       break;
7019     }
7020     case Intrinsic::riscv_vmv_x_s: {
7021       EVT VT = N->getValueType(0);
7022       MVT XLenVT = Subtarget.getXLenVT();
7023       if (VT.bitsLT(XLenVT)) {
7024         // Simple case just extract using vmv.x.s and truncate.
7025         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
7026                                       Subtarget.getXLenVT(), N->getOperand(1));
7027         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
7028         return;
7029       }
7030 
7031       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
7032              "Unexpected custom legalization");
7033 
7034       // We need to do the move in two steps.
7035       SDValue Vec = N->getOperand(1);
7036       MVT VecVT = Vec.getSimpleValueType();
7037 
7038       // First extract the lower XLEN bits of the element.
7039       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7040 
7041       // To extract the upper XLEN bits of the vector element, shift the first
7042       // element right by 32 bits and re-extract the lower XLEN bits.
7043       SDValue VL = DAG.getConstant(1, DL, XLenVT);
7044       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
7045       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
7046       SDValue ThirtyTwoV =
7047           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
7048                       DAG.getConstant(32, DL, XLenVT), VL);
7049       SDValue LShr32 =
7050           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
7051       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7052 
7053       Results.push_back(
7054           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7055       break;
7056     }
7057     }
7058     break;
7059   }
7060   case ISD::VECREDUCE_ADD:
7061   case ISD::VECREDUCE_AND:
7062   case ISD::VECREDUCE_OR:
7063   case ISD::VECREDUCE_XOR:
7064   case ISD::VECREDUCE_SMAX:
7065   case ISD::VECREDUCE_UMAX:
7066   case ISD::VECREDUCE_SMIN:
7067   case ISD::VECREDUCE_UMIN:
7068     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
7069       Results.push_back(V);
7070     break;
7071   case ISD::VP_REDUCE_ADD:
7072   case ISD::VP_REDUCE_AND:
7073   case ISD::VP_REDUCE_OR:
7074   case ISD::VP_REDUCE_XOR:
7075   case ISD::VP_REDUCE_SMAX:
7076   case ISD::VP_REDUCE_UMAX:
7077   case ISD::VP_REDUCE_SMIN:
7078   case ISD::VP_REDUCE_UMIN:
7079     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
7080       Results.push_back(V);
7081     break;
7082   case ISD::FLT_ROUNDS_: {
7083     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
7084     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
7085     Results.push_back(Res.getValue(0));
7086     Results.push_back(Res.getValue(1));
7087     break;
7088   }
7089   }
7090 }
7091 
7092 // A structure to hold one of the bit-manipulation patterns below. Together, a
7093 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
7094 //   (or (and (shl x, 1), 0xAAAAAAAA),
7095 //       (and (srl x, 1), 0x55555555))
7096 struct RISCVBitmanipPat {
7097   SDValue Op;
7098   unsigned ShAmt;
7099   bool IsSHL;
7100 
7101   bool formsPairWith(const RISCVBitmanipPat &Other) const {
7102     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
7103   }
7104 };
7105 
7106 // Matches patterns of the form
7107 //   (and (shl x, C2), (C1 << C2))
7108 //   (and (srl x, C2), C1)
7109 //   (shl (and x, C1), C2)
7110 //   (srl (and x, (C1 << C2)), C2)
7111 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
7112 // The expected masks for each shift amount are specified in BitmanipMasks where
7113 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
7114 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
7115 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
7116 // XLen is 64.
7117 static Optional<RISCVBitmanipPat>
7118 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
7119   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
7120          "Unexpected number of masks");
7121   Optional<uint64_t> Mask;
7122   // Optionally consume a mask around the shift operation.
7123   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
7124     Mask = Op.getConstantOperandVal(1);
7125     Op = Op.getOperand(0);
7126   }
7127   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
7128     return None;
7129   bool IsSHL = Op.getOpcode() == ISD::SHL;
7130 
7131   if (!isa<ConstantSDNode>(Op.getOperand(1)))
7132     return None;
7133   uint64_t ShAmt = Op.getConstantOperandVal(1);
7134 
7135   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7136   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
7137     return None;
7138   // If we don't have enough masks for 64 bit, then we must be trying to
7139   // match SHFL so we're only allowed to shift 1/4 of the width.
7140   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
7141     return None;
7142 
7143   SDValue Src = Op.getOperand(0);
7144 
7145   // The expected mask is shifted left when the AND is found around SHL
7146   // patterns.
7147   //   ((x >> 1) & 0x55555555)
7148   //   ((x << 1) & 0xAAAAAAAA)
7149   bool SHLExpMask = IsSHL;
7150 
7151   if (!Mask) {
7152     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
7153     // the mask is all ones: consume that now.
7154     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
7155       Mask = Src.getConstantOperandVal(1);
7156       Src = Src.getOperand(0);
7157       // The expected mask is now in fact shifted left for SRL, so reverse the
7158       // decision.
7159       //   ((x & 0xAAAAAAAA) >> 1)
7160       //   ((x & 0x55555555) << 1)
7161       SHLExpMask = !SHLExpMask;
7162     } else {
7163       // Use a default shifted mask of all-ones if there's no AND, truncated
7164       // down to the expected width. This simplifies the logic later on.
7165       Mask = maskTrailingOnes<uint64_t>(Width);
7166       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
7167     }
7168   }
7169 
7170   unsigned MaskIdx = Log2_32(ShAmt);
7171   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7172 
7173   if (SHLExpMask)
7174     ExpMask <<= ShAmt;
7175 
7176   if (Mask != ExpMask)
7177     return None;
7178 
7179   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
7180 }
7181 
7182 // Matches any of the following bit-manipulation patterns:
7183 //   (and (shl x, 1), (0x55555555 << 1))
7184 //   (and (srl x, 1), 0x55555555)
7185 //   (shl (and x, 0x55555555), 1)
7186 //   (srl (and x, (0x55555555 << 1)), 1)
7187 // where the shift amount and mask may vary thus:
7188 //   [1]  = 0x55555555 / 0xAAAAAAAA
7189 //   [2]  = 0x33333333 / 0xCCCCCCCC
7190 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
7191 //   [8]  = 0x00FF00FF / 0xFF00FF00
7192 //   [16] = 0x0000FFFF / 0xFFFFFFFF
7193 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
7194 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
7195   // These are the unshifted masks which we use to match bit-manipulation
7196   // patterns. They may be shifted left in certain circumstances.
7197   static const uint64_t BitmanipMasks[] = {
7198       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
7199       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
7200 
7201   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7202 }
7203 
7204 // Match the following pattern as a GREVI(W) operation
7205 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
7206 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
7207                                const RISCVSubtarget &Subtarget) {
7208   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7209   EVT VT = Op.getValueType();
7210 
7211   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7212     auto LHS = matchGREVIPat(Op.getOperand(0));
7213     auto RHS = matchGREVIPat(Op.getOperand(1));
7214     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
7215       SDLoc DL(Op);
7216       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
7217                          DAG.getConstant(LHS->ShAmt, DL, VT));
7218     }
7219   }
7220   return SDValue();
7221 }
7222 
7223 // Matches any the following pattern as a GORCI(W) operation
7224 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
7225 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
7226 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
7227 // Note that with the variant of 3.,
7228 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
7229 // the inner pattern will first be matched as GREVI and then the outer
7230 // pattern will be matched to GORC via the first rule above.
7231 // 4.  (or (rotl/rotr x, bitwidth/2), x)
7232 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
7233                                const RISCVSubtarget &Subtarget) {
7234   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7235   EVT VT = Op.getValueType();
7236 
7237   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7238     SDLoc DL(Op);
7239     SDValue Op0 = Op.getOperand(0);
7240     SDValue Op1 = Op.getOperand(1);
7241 
7242     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
7243       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
7244           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
7245           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
7246         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
7247       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
7248       if ((Reverse.getOpcode() == ISD::ROTL ||
7249            Reverse.getOpcode() == ISD::ROTR) &&
7250           Reverse.getOperand(0) == X &&
7251           isa<ConstantSDNode>(Reverse.getOperand(1))) {
7252         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
7253         if (RotAmt == (VT.getSizeInBits() / 2))
7254           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
7255                              DAG.getConstant(RotAmt, DL, VT));
7256       }
7257       return SDValue();
7258     };
7259 
7260     // Check for either commutable permutation of (or (GREVI x, shamt), x)
7261     if (SDValue V = MatchOROfReverse(Op0, Op1))
7262       return V;
7263     if (SDValue V = MatchOROfReverse(Op1, Op0))
7264       return V;
7265 
7266     // OR is commutable so canonicalize its OR operand to the left
7267     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
7268       std::swap(Op0, Op1);
7269     if (Op0.getOpcode() != ISD::OR)
7270       return SDValue();
7271     SDValue OrOp0 = Op0.getOperand(0);
7272     SDValue OrOp1 = Op0.getOperand(1);
7273     auto LHS = matchGREVIPat(OrOp0);
7274     // OR is commutable so swap the operands and try again: x might have been
7275     // on the left
7276     if (!LHS) {
7277       std::swap(OrOp0, OrOp1);
7278       LHS = matchGREVIPat(OrOp0);
7279     }
7280     auto RHS = matchGREVIPat(Op1);
7281     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
7282       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
7283                          DAG.getConstant(LHS->ShAmt, DL, VT));
7284     }
7285   }
7286   return SDValue();
7287 }
7288 
7289 // Matches any of the following bit-manipulation patterns:
7290 //   (and (shl x, 1), (0x22222222 << 1))
7291 //   (and (srl x, 1), 0x22222222)
7292 //   (shl (and x, 0x22222222), 1)
7293 //   (srl (and x, (0x22222222 << 1)), 1)
7294 // where the shift amount and mask may vary thus:
7295 //   [1]  = 0x22222222 / 0x44444444
7296 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
7297 //   [4]  = 0x00F000F0 / 0x0F000F00
7298 //   [8]  = 0x0000FF00 / 0x00FF0000
7299 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
7300 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
7301   // These are the unshifted masks which we use to match bit-manipulation
7302   // patterns. They may be shifted left in certain circumstances.
7303   static const uint64_t BitmanipMasks[] = {
7304       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
7305       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
7306 
7307   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7308 }
7309 
7310 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
7311 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
7312                                const RISCVSubtarget &Subtarget) {
7313   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7314   EVT VT = Op.getValueType();
7315 
7316   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
7317     return SDValue();
7318 
7319   SDValue Op0 = Op.getOperand(0);
7320   SDValue Op1 = Op.getOperand(1);
7321 
7322   // Or is commutable so canonicalize the second OR to the LHS.
7323   if (Op0.getOpcode() != ISD::OR)
7324     std::swap(Op0, Op1);
7325   if (Op0.getOpcode() != ISD::OR)
7326     return SDValue();
7327 
7328   // We found an inner OR, so our operands are the operands of the inner OR
7329   // and the other operand of the outer OR.
7330   SDValue A = Op0.getOperand(0);
7331   SDValue B = Op0.getOperand(1);
7332   SDValue C = Op1;
7333 
7334   auto Match1 = matchSHFLPat(A);
7335   auto Match2 = matchSHFLPat(B);
7336 
7337   // If neither matched, we failed.
7338   if (!Match1 && !Match2)
7339     return SDValue();
7340 
7341   // We had at least one match. if one failed, try the remaining C operand.
7342   if (!Match1) {
7343     std::swap(A, C);
7344     Match1 = matchSHFLPat(A);
7345     if (!Match1)
7346       return SDValue();
7347   } else if (!Match2) {
7348     std::swap(B, C);
7349     Match2 = matchSHFLPat(B);
7350     if (!Match2)
7351       return SDValue();
7352   }
7353   assert(Match1 && Match2);
7354 
7355   // Make sure our matches pair up.
7356   if (!Match1->formsPairWith(*Match2))
7357     return SDValue();
7358 
7359   // All the remains is to make sure C is an AND with the same input, that masks
7360   // out the bits that are being shuffled.
7361   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
7362       C.getOperand(0) != Match1->Op)
7363     return SDValue();
7364 
7365   uint64_t Mask = C.getConstantOperandVal(1);
7366 
7367   static const uint64_t BitmanipMasks[] = {
7368       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
7369       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
7370   };
7371 
7372   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7373   unsigned MaskIdx = Log2_32(Match1->ShAmt);
7374   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7375 
7376   if (Mask != ExpMask)
7377     return SDValue();
7378 
7379   SDLoc DL(Op);
7380   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
7381                      DAG.getConstant(Match1->ShAmt, DL, VT));
7382 }
7383 
7384 // Optimize (add (shl x, c0), (shl y, c1)) ->
7385 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
7386 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
7387                                   const RISCVSubtarget &Subtarget) {
7388   // Perform this optimization only in the zba extension.
7389   if (!Subtarget.hasStdExtZba())
7390     return SDValue();
7391 
7392   // Skip for vector types and larger types.
7393   EVT VT = N->getValueType(0);
7394   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7395     return SDValue();
7396 
7397   // The two operand nodes must be SHL and have no other use.
7398   SDValue N0 = N->getOperand(0);
7399   SDValue N1 = N->getOperand(1);
7400   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
7401       !N0->hasOneUse() || !N1->hasOneUse())
7402     return SDValue();
7403 
7404   // Check c0 and c1.
7405   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7406   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
7407   if (!N0C || !N1C)
7408     return SDValue();
7409   int64_t C0 = N0C->getSExtValue();
7410   int64_t C1 = N1C->getSExtValue();
7411   if (C0 <= 0 || C1 <= 0)
7412     return SDValue();
7413 
7414   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
7415   int64_t Bits = std::min(C0, C1);
7416   int64_t Diff = std::abs(C0 - C1);
7417   if (Diff != 1 && Diff != 2 && Diff != 3)
7418     return SDValue();
7419 
7420   // Build nodes.
7421   SDLoc DL(N);
7422   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
7423   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
7424   SDValue NA0 =
7425       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
7426   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
7427   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
7428 }
7429 
7430 // Combine
7431 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7432 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7433 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7434 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7435 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7436 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7437 // The grev patterns represents BSWAP.
7438 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB
7439 // off the grev.
7440 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG,
7441                                           const RISCVSubtarget &Subtarget) {
7442   bool IsWInstruction =
7443       N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW;
7444   assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL ||
7445           IsWInstruction) &&
7446          "Unexpected opcode!");
7447   SDValue Src = N->getOperand(0);
7448   EVT VT = N->getValueType(0);
7449   SDLoc DL(N);
7450 
7451   if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV)
7452     return SDValue();
7453 
7454   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7455       !isa<ConstantSDNode>(Src.getOperand(1)))
7456     return SDValue();
7457 
7458   unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits();
7459   assert(isPowerOf2_32(BitWidth) && "Expected a power of 2");
7460 
7461   // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for
7462   // RORW/ROLW. And the grev should be the encoding for bswap for this width.
7463   unsigned ShAmt1 = N->getConstantOperandVal(1);
7464   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7465   if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8))
7466     return SDValue();
7467 
7468   Src = Src.getOperand(0);
7469 
7470   // Toggle bit the MSB of the shift.
7471   unsigned CombinedShAmt = ShAmt1 ^ ShAmt2;
7472   if (CombinedShAmt == 0)
7473     return Src;
7474 
7475   SDValue Res = DAG.getNode(
7476       RISCVISD::GREV, DL, VT, Src,
7477       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7478   if (!IsWInstruction)
7479     return Res;
7480 
7481   // Sign extend the result to match the behavior of the rotate. This will be
7482   // selected to GREVIW in isel.
7483   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res,
7484                      DAG.getValueType(MVT::i32));
7485 }
7486 
7487 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
7488 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
7489 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
7490 // not undo itself, but they are redundant.
7491 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
7492   bool IsGORC = N->getOpcode() == RISCVISD::GORC;
7493   assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode");
7494   SDValue Src = N->getOperand(0);
7495 
7496   if (Src.getOpcode() != N->getOpcode())
7497     return SDValue();
7498 
7499   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7500       !isa<ConstantSDNode>(Src.getOperand(1)))
7501     return SDValue();
7502 
7503   unsigned ShAmt1 = N->getConstantOperandVal(1);
7504   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7505   Src = Src.getOperand(0);
7506 
7507   unsigned CombinedShAmt;
7508   if (IsGORC)
7509     CombinedShAmt = ShAmt1 | ShAmt2;
7510   else
7511     CombinedShAmt = ShAmt1 ^ ShAmt2;
7512 
7513   if (CombinedShAmt == 0)
7514     return Src;
7515 
7516   SDLoc DL(N);
7517   return DAG.getNode(
7518       N->getOpcode(), DL, N->getValueType(0), Src,
7519       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7520 }
7521 
7522 // Combine a constant select operand into its use:
7523 //
7524 // (and (select cond, -1, c), x)
7525 //   -> (select cond, x, (and x, c))  [AllOnes=1]
7526 // (or  (select cond, 0, c), x)
7527 //   -> (select cond, x, (or x, c))  [AllOnes=0]
7528 // (xor (select cond, 0, c), x)
7529 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
7530 // (add (select cond, 0, c), x)
7531 //   -> (select cond, x, (add x, c))  [AllOnes=0]
7532 // (sub x, (select cond, 0, c))
7533 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
7534 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7535                                    SelectionDAG &DAG, bool AllOnes) {
7536   EVT VT = N->getValueType(0);
7537 
7538   // Skip vectors.
7539   if (VT.isVector())
7540     return SDValue();
7541 
7542   if ((Slct.getOpcode() != ISD::SELECT &&
7543        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
7544       !Slct.hasOneUse())
7545     return SDValue();
7546 
7547   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
7548     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
7549   };
7550 
7551   bool SwapSelectOps;
7552   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
7553   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
7554   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
7555   SDValue NonConstantVal;
7556   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
7557     SwapSelectOps = false;
7558     NonConstantVal = FalseVal;
7559   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
7560     SwapSelectOps = true;
7561     NonConstantVal = TrueVal;
7562   } else
7563     return SDValue();
7564 
7565   // Slct is now know to be the desired identity constant when CC is true.
7566   TrueVal = OtherOp;
7567   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
7568   // Unless SwapSelectOps says the condition should be false.
7569   if (SwapSelectOps)
7570     std::swap(TrueVal, FalseVal);
7571 
7572   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
7573     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
7574                        {Slct.getOperand(0), Slct.getOperand(1),
7575                         Slct.getOperand(2), TrueVal, FalseVal});
7576 
7577   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
7578                      {Slct.getOperand(0), TrueVal, FalseVal});
7579 }
7580 
7581 // Attempt combineSelectAndUse on each operand of a commutative operator N.
7582 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
7583                                               bool AllOnes) {
7584   SDValue N0 = N->getOperand(0);
7585   SDValue N1 = N->getOperand(1);
7586   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
7587     return Result;
7588   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
7589     return Result;
7590   return SDValue();
7591 }
7592 
7593 // Transform (add (mul x, c0), c1) ->
7594 //           (add (mul (add x, c1/c0), c0), c1%c0).
7595 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
7596 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
7597 // to an infinite loop in DAGCombine if transformed.
7598 // Or transform (add (mul x, c0), c1) ->
7599 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
7600 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
7601 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
7602 // lead to an infinite loop in DAGCombine if transformed.
7603 // Or transform (add (mul x, c0), c1) ->
7604 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
7605 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
7606 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
7607 // lead to an infinite loop in DAGCombine if transformed.
7608 // Or transform (add (mul x, c0), c1) ->
7609 //              (mul (add x, c1/c0), c0).
7610 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
7611 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
7612                                      const RISCVSubtarget &Subtarget) {
7613   // Skip for vector types and larger types.
7614   EVT VT = N->getValueType(0);
7615   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7616     return SDValue();
7617   // The first operand node must be a MUL and has no other use.
7618   SDValue N0 = N->getOperand(0);
7619   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
7620     return SDValue();
7621   // Check if c0 and c1 match above conditions.
7622   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7623   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
7624   if (!N0C || !N1C)
7625     return SDValue();
7626   // If N0C has multiple uses it's possible one of the cases in
7627   // DAGCombiner::isMulAddWithConstProfitable will be true, which would result
7628   // in an infinite loop.
7629   if (!N0C->hasOneUse())
7630     return SDValue();
7631   int64_t C0 = N0C->getSExtValue();
7632   int64_t C1 = N1C->getSExtValue();
7633   int64_t CA, CB;
7634   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
7635     return SDValue();
7636   // Search for proper CA (non-zero) and CB that both are simm12.
7637   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
7638       !isInt<12>(C0 * (C1 / C0))) {
7639     CA = C1 / C0;
7640     CB = C1 % C0;
7641   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
7642              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
7643     CA = C1 / C0 + 1;
7644     CB = C1 % C0 - C0;
7645   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
7646              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
7647     CA = C1 / C0 - 1;
7648     CB = C1 % C0 + C0;
7649   } else
7650     return SDValue();
7651   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
7652   SDLoc DL(N);
7653   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
7654                              DAG.getConstant(CA, DL, VT));
7655   SDValue New1 =
7656       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
7657   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
7658 }
7659 
7660 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
7661                                  const RISCVSubtarget &Subtarget) {
7662   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
7663     return V;
7664   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
7665     return V;
7666   // fold (add (select lhs, rhs, cc, 0, y), x) ->
7667   //      (select lhs, rhs, cc, x, (add x, y))
7668   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7669 }
7670 
7671 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
7672   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
7673   //      (select lhs, rhs, cc, x, (sub x, y))
7674   SDValue N0 = N->getOperand(0);
7675   SDValue N1 = N->getOperand(1);
7676   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
7677 }
7678 
7679 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) {
7680   // fold (and (select lhs, rhs, cc, -1, y), x) ->
7681   //      (select lhs, rhs, cc, x, (and x, y))
7682   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
7683 }
7684 
7685 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
7686                                 const RISCVSubtarget &Subtarget) {
7687   if (Subtarget.hasStdExtZbp()) {
7688     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
7689       return GREV;
7690     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
7691       return GORC;
7692     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
7693       return SHFL;
7694   }
7695 
7696   // fold (or (select cond, 0, y), x) ->
7697   //      (select cond, x, (or x, y))
7698   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7699 }
7700 
7701 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
7702   // fold (xor (select cond, 0, y), x) ->
7703   //      (select cond, x, (xor x, y))
7704   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7705 }
7706 
7707 static SDValue
7708 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
7709                                 const RISCVSubtarget &Subtarget) {
7710   SDValue Src = N->getOperand(0);
7711   EVT VT = N->getValueType(0);
7712 
7713   // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X)
7714   if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
7715       cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16))
7716     return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT,
7717                        Src.getOperand(0));
7718 
7719   // Fold (i64 (sext_inreg (abs X), i32)) ->
7720   // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits.
7721   // The (sext_inreg (neg X), i32) will be selected to negw by isel. This
7722   // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user
7723   // of the (i32 (abs X)) is a sext or setcc or something else that causes type
7724   // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have
7725   // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg
7726   // may get combined into an earlier operation so we need to use
7727   // ComputeNumSignBits.
7728   // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for
7729   // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so
7730   // we can't assume that X has 33 sign bits. We must check.
7731   if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() &&
7732       Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 &&
7733       cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 &&
7734       DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) {
7735     SDLoc DL(N);
7736     SDValue Freeze = DAG.getFreeze(Src.getOperand(0));
7737     SDValue Neg =
7738         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze);
7739     Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg,
7740                       DAG.getValueType(MVT::i32));
7741     return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg);
7742   }
7743 
7744   return SDValue();
7745 }
7746 
7747 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to
7748 // vwadd(u).vv/vx or vwsub(u).vv/vx.
7749 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG,
7750                                              bool Commute = false) {
7751   assert((N->getOpcode() == RISCVISD::ADD_VL ||
7752           N->getOpcode() == RISCVISD::SUB_VL) &&
7753          "Unexpected opcode");
7754   bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL;
7755   SDValue Op0 = N->getOperand(0);
7756   SDValue Op1 = N->getOperand(1);
7757   if (Commute)
7758     std::swap(Op0, Op1);
7759 
7760   MVT VT = N->getSimpleValueType(0);
7761 
7762   // Determine the narrow size for a widening add/sub.
7763   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
7764   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
7765                                   VT.getVectorElementCount());
7766 
7767   SDValue Mask = N->getOperand(2);
7768   SDValue VL = N->getOperand(3);
7769 
7770   SDLoc DL(N);
7771 
7772   // If the RHS is a sext or zext, we can form a widening op.
7773   if ((Op1.getOpcode() == RISCVISD::VZEXT_VL ||
7774        Op1.getOpcode() == RISCVISD::VSEXT_VL) &&
7775       Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) {
7776     unsigned ExtOpc = Op1.getOpcode();
7777     Op1 = Op1.getOperand(0);
7778     // Re-introduce narrower extends if needed.
7779     if (Op1.getValueType() != NarrowVT)
7780       Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
7781 
7782     unsigned WOpc;
7783     if (ExtOpc == RISCVISD::VSEXT_VL)
7784       WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL;
7785     else
7786       WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL;
7787 
7788     return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL);
7789   }
7790 
7791   // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar
7792   // sext/zext?
7793 
7794   return SDValue();
7795 }
7796 
7797 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or
7798 // vwsub(u).vv/vx.
7799 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) {
7800   SDValue Op0 = N->getOperand(0);
7801   SDValue Op1 = N->getOperand(1);
7802   SDValue Mask = N->getOperand(2);
7803   SDValue VL = N->getOperand(3);
7804 
7805   MVT VT = N->getSimpleValueType(0);
7806   MVT NarrowVT = Op1.getSimpleValueType();
7807   unsigned NarrowSize = NarrowVT.getScalarSizeInBits();
7808 
7809   unsigned VOpc;
7810   switch (N->getOpcode()) {
7811   default: llvm_unreachable("Unexpected opcode");
7812   case RISCVISD::VWADD_W_VL:  VOpc = RISCVISD::VWADD_VL;  break;
7813   case RISCVISD::VWSUB_W_VL:  VOpc = RISCVISD::VWSUB_VL;  break;
7814   case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break;
7815   case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break;
7816   }
7817 
7818   bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL ||
7819                   N->getOpcode() == RISCVISD::VWSUB_W_VL;
7820 
7821   SDLoc DL(N);
7822 
7823   // If the LHS is a sext or zext, we can narrow this op to the same size as
7824   // the RHS.
7825   if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) ||
7826        (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) &&
7827       Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) {
7828     unsigned ExtOpc = Op0.getOpcode();
7829     Op0 = Op0.getOperand(0);
7830     // Re-introduce narrower extends if needed.
7831     if (Op0.getValueType() != NarrowVT)
7832       Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
7833     return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL);
7834   }
7835 
7836   bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL ||
7837                N->getOpcode() == RISCVISD::VWADDU_W_VL;
7838 
7839   // Look for splats on the left hand side of a vwadd(u).wv. We might be able
7840   // to commute and use a vwadd(u).vx instead.
7841   if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL &&
7842       Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) {
7843     Op0 = Op0.getOperand(1);
7844 
7845     // See if have enough sign bits or zero bits in the scalar to use a
7846     // widening add/sub by splatting to smaller element size.
7847     unsigned EltBits = VT.getScalarSizeInBits();
7848     unsigned ScalarBits = Op0.getValueSizeInBits();
7849     // Make sure we're getting all element bits from the scalar register.
7850     // FIXME: Support implicit sign extension of vmv.v.x?
7851     if (ScalarBits < EltBits)
7852       return SDValue();
7853 
7854     if (IsSigned) {
7855       if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize))
7856         return SDValue();
7857     } else {
7858       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
7859       if (!DAG.MaskedValueIsZero(Op0, Mask))
7860         return SDValue();
7861     }
7862 
7863     Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
7864                       DAG.getUNDEF(NarrowVT), Op0, VL);
7865     return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL);
7866   }
7867 
7868   return SDValue();
7869 }
7870 
7871 // Try to form VWMUL, VWMULU or VWMULSU.
7872 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op.
7873 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG,
7874                                        bool Commute) {
7875   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
7876   SDValue Op0 = N->getOperand(0);
7877   SDValue Op1 = N->getOperand(1);
7878   if (Commute)
7879     std::swap(Op0, Op1);
7880 
7881   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
7882   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
7883   bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL;
7884   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
7885     return SDValue();
7886 
7887   SDValue Mask = N->getOperand(2);
7888   SDValue VL = N->getOperand(3);
7889 
7890   // Make sure the mask and VL match.
7891   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
7892     return SDValue();
7893 
7894   MVT VT = N->getSimpleValueType(0);
7895 
7896   // Determine the narrow size for a widening multiply.
7897   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
7898   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
7899                                   VT.getVectorElementCount());
7900 
7901   SDLoc DL(N);
7902 
7903   // See if the other operand is the same opcode.
7904   if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) {
7905     if (!Op1.hasOneUse())
7906       return SDValue();
7907 
7908     // Make sure the mask and VL match.
7909     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
7910       return SDValue();
7911 
7912     Op1 = Op1.getOperand(0);
7913   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
7914     // The operand is a splat of a scalar.
7915 
7916     // The pasthru must be undef for tail agnostic
7917     if (!Op1.getOperand(0).isUndef())
7918       return SDValue();
7919     // The VL must be the same.
7920     if (Op1.getOperand(2) != VL)
7921       return SDValue();
7922 
7923     // Get the scalar value.
7924     Op1 = Op1.getOperand(1);
7925 
7926     // See if have enough sign bits or zero bits in the scalar to use a
7927     // widening multiply by splatting to smaller element size.
7928     unsigned EltBits = VT.getScalarSizeInBits();
7929     unsigned ScalarBits = Op1.getValueSizeInBits();
7930     // Make sure we're getting all element bits from the scalar register.
7931     // FIXME: Support implicit sign extension of vmv.v.x?
7932     if (ScalarBits < EltBits)
7933       return SDValue();
7934 
7935     // If the LHS is a sign extend, try to use vwmul.
7936     if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) {
7937       // Can use vwmul.
7938     } else {
7939       // Otherwise try to use vwmulu or vwmulsu.
7940       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
7941       if (DAG.MaskedValueIsZero(Op1, Mask))
7942         IsVWMULSU = IsSignExt;
7943       else
7944         return SDValue();
7945     }
7946 
7947     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
7948                       DAG.getUNDEF(NarrowVT), Op1, VL);
7949   } else
7950     return SDValue();
7951 
7952   Op0 = Op0.getOperand(0);
7953 
7954   // Re-introduce narrower extends if needed.
7955   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
7956   if (Op0.getValueType() != NarrowVT)
7957     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
7958   // vwmulsu requires second operand to be zero extended.
7959   ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc;
7960   if (Op1.getValueType() != NarrowVT)
7961     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
7962 
7963   unsigned WMulOpc = RISCVISD::VWMULSU_VL;
7964   if (!IsVWMULSU)
7965     WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
7966   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
7967 }
7968 
7969 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) {
7970   switch (Op.getOpcode()) {
7971   case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE;
7972   case ISD::FTRUNC:     return RISCVFPRndMode::RTZ;
7973   case ISD::FFLOOR:     return RISCVFPRndMode::RDN;
7974   case ISD::FCEIL:      return RISCVFPRndMode::RUP;
7975   case ISD::FROUND:     return RISCVFPRndMode::RMM;
7976   }
7977 
7978   return RISCVFPRndMode::Invalid;
7979 }
7980 
7981 // Fold
7982 //   (fp_to_int (froundeven X)) -> fcvt X, rne
7983 //   (fp_to_int (ftrunc X))     -> fcvt X, rtz
7984 //   (fp_to_int (ffloor X))     -> fcvt X, rdn
7985 //   (fp_to_int (fceil X))      -> fcvt X, rup
7986 //   (fp_to_int (fround X))     -> fcvt X, rmm
7987 static SDValue performFP_TO_INTCombine(SDNode *N,
7988                                        TargetLowering::DAGCombinerInfo &DCI,
7989                                        const RISCVSubtarget &Subtarget) {
7990   SelectionDAG &DAG = DCI.DAG;
7991   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7992   MVT XLenVT = Subtarget.getXLenVT();
7993 
7994   // Only handle XLen or i32 types. Other types narrower than XLen will
7995   // eventually be legalized to XLenVT.
7996   EVT VT = N->getValueType(0);
7997   if (VT != MVT::i32 && VT != XLenVT)
7998     return SDValue();
7999 
8000   SDValue Src = N->getOperand(0);
8001 
8002   // Ensure the FP type is also legal.
8003   if (!TLI.isTypeLegal(Src.getValueType()))
8004     return SDValue();
8005 
8006   // Don't do this for f16 with Zfhmin and not Zfh.
8007   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8008     return SDValue();
8009 
8010   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8011   if (FRM == RISCVFPRndMode::Invalid)
8012     return SDValue();
8013 
8014   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
8015 
8016   unsigned Opc;
8017   if (VT == XLenVT)
8018     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8019   else
8020     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8021 
8022   SDLoc DL(N);
8023   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
8024                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8025   return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
8026 }
8027 
8028 // Fold
8029 //   (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
8030 //   (fp_to_int_sat (ftrunc X))     -> (select X == nan, 0, (fcvt X, rtz))
8031 //   (fp_to_int_sat (ffloor X))     -> (select X == nan, 0, (fcvt X, rdn))
8032 //   (fp_to_int_sat (fceil X))      -> (select X == nan, 0, (fcvt X, rup))
8033 //   (fp_to_int_sat (fround X))     -> (select X == nan, 0, (fcvt X, rmm))
8034 static SDValue performFP_TO_INT_SATCombine(SDNode *N,
8035                                        TargetLowering::DAGCombinerInfo &DCI,
8036                                        const RISCVSubtarget &Subtarget) {
8037   SelectionDAG &DAG = DCI.DAG;
8038   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8039   MVT XLenVT = Subtarget.getXLenVT();
8040 
8041   // Only handle XLen types. Other types narrower than XLen will eventually be
8042   // legalized to XLenVT.
8043   EVT DstVT = N->getValueType(0);
8044   if (DstVT != XLenVT)
8045     return SDValue();
8046 
8047   SDValue Src = N->getOperand(0);
8048 
8049   // Ensure the FP type is also legal.
8050   if (!TLI.isTypeLegal(Src.getValueType()))
8051     return SDValue();
8052 
8053   // Don't do this for f16 with Zfhmin and not Zfh.
8054   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8055     return SDValue();
8056 
8057   EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
8058 
8059   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8060   if (FRM == RISCVFPRndMode::Invalid)
8061     return SDValue();
8062 
8063   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
8064 
8065   unsigned Opc;
8066   if (SatVT == DstVT)
8067     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8068   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
8069     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8070   else
8071     return SDValue();
8072   // FIXME: Support other SatVTs by clamping before or after the conversion.
8073 
8074   Src = Src.getOperand(0);
8075 
8076   SDLoc DL(N);
8077   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
8078                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8079 
8080   // RISCV FP-to-int conversions saturate to the destination register size, but
8081   // don't produce 0 for nan.
8082   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
8083   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
8084 }
8085 
8086 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is
8087 // smaller than XLenVT.
8088 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG,
8089                                         const RISCVSubtarget &Subtarget) {
8090   assert(Subtarget.hasStdExtZbkb() && "Unexpected extension");
8091 
8092   SDValue Src = N->getOperand(0);
8093   if (Src.getOpcode() != ISD::BSWAP)
8094     return SDValue();
8095 
8096   EVT VT = N->getValueType(0);
8097   if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() ||
8098       !isPowerOf2_32(VT.getSizeInBits()))
8099     return SDValue();
8100 
8101   SDLoc DL(N);
8102   return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0),
8103                      DAG.getConstant(7, DL, VT));
8104 }
8105 
8106 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
8107                                                DAGCombinerInfo &DCI) const {
8108   SelectionDAG &DAG = DCI.DAG;
8109 
8110   // Helper to call SimplifyDemandedBits on an operand of N where only some low
8111   // bits are demanded. N will be added to the Worklist if it was not deleted.
8112   // Caller should return SDValue(N, 0) if this returns true.
8113   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
8114     SDValue Op = N->getOperand(OpNo);
8115     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
8116     if (!SimplifyDemandedBits(Op, Mask, DCI))
8117       return false;
8118 
8119     if (N->getOpcode() != ISD::DELETED_NODE)
8120       DCI.AddToWorklist(N);
8121     return true;
8122   };
8123 
8124   switch (N->getOpcode()) {
8125   default:
8126     break;
8127   case RISCVISD::SplitF64: {
8128     SDValue Op0 = N->getOperand(0);
8129     // If the input to SplitF64 is just BuildPairF64 then the operation is
8130     // redundant. Instead, use BuildPairF64's operands directly.
8131     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
8132       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
8133 
8134     if (Op0->isUndef()) {
8135       SDValue Lo = DAG.getUNDEF(MVT::i32);
8136       SDValue Hi = DAG.getUNDEF(MVT::i32);
8137       return DCI.CombineTo(N, Lo, Hi);
8138     }
8139 
8140     SDLoc DL(N);
8141 
8142     // It's cheaper to materialise two 32-bit integers than to load a double
8143     // from the constant pool and transfer it to integer registers through the
8144     // stack.
8145     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
8146       APInt V = C->getValueAPF().bitcastToAPInt();
8147       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
8148       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
8149       return DCI.CombineTo(N, Lo, Hi);
8150     }
8151 
8152     // This is a target-specific version of a DAGCombine performed in
8153     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8154     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8155     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8156     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8157         !Op0.getNode()->hasOneUse())
8158       break;
8159     SDValue NewSplitF64 =
8160         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
8161                     Op0.getOperand(0));
8162     SDValue Lo = NewSplitF64.getValue(0);
8163     SDValue Hi = NewSplitF64.getValue(1);
8164     APInt SignBit = APInt::getSignMask(32);
8165     if (Op0.getOpcode() == ISD::FNEG) {
8166       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
8167                                   DAG.getConstant(SignBit, DL, MVT::i32));
8168       return DCI.CombineTo(N, Lo, NewHi);
8169     }
8170     assert(Op0.getOpcode() == ISD::FABS);
8171     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
8172                                 DAG.getConstant(~SignBit, DL, MVT::i32));
8173     return DCI.CombineTo(N, Lo, NewHi);
8174   }
8175   case RISCVISD::SLLW:
8176   case RISCVISD::SRAW:
8177   case RISCVISD::SRLW: {
8178     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8179     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8180         SimplifyDemandedLowBitsHelper(1, 5))
8181       return SDValue(N, 0);
8182 
8183     break;
8184   }
8185   case ISD::ROTR:
8186   case ISD::ROTL:
8187   case RISCVISD::RORW:
8188   case RISCVISD::ROLW: {
8189     if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) {
8190       // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8191       if (SimplifyDemandedLowBitsHelper(0, 32) ||
8192           SimplifyDemandedLowBitsHelper(1, 5))
8193         return SDValue(N, 0);
8194     }
8195 
8196     return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget);
8197   }
8198   case RISCVISD::CLZW:
8199   case RISCVISD::CTZW: {
8200     // Only the lower 32 bits of the first operand are read
8201     if (SimplifyDemandedLowBitsHelper(0, 32))
8202       return SDValue(N, 0);
8203     break;
8204   }
8205   case RISCVISD::GREV:
8206   case RISCVISD::GORC: {
8207     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
8208     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8209     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8210     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
8211       return SDValue(N, 0);
8212 
8213     return combineGREVI_GORCI(N, DAG);
8214   }
8215   case RISCVISD::GREVW:
8216   case RISCVISD::GORCW: {
8217     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8218     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8219         SimplifyDemandedLowBitsHelper(1, 5))
8220       return SDValue(N, 0);
8221 
8222     break;
8223   }
8224   case RISCVISD::SHFL:
8225   case RISCVISD::UNSHFL: {
8226     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
8227     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8228     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8229     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
8230       return SDValue(N, 0);
8231 
8232     break;
8233   }
8234   case RISCVISD::SHFLW:
8235   case RISCVISD::UNSHFLW: {
8236     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
8237     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8238         SimplifyDemandedLowBitsHelper(1, 4))
8239       return SDValue(N, 0);
8240 
8241     break;
8242   }
8243   case RISCVISD::BCOMPRESSW:
8244   case RISCVISD::BDECOMPRESSW: {
8245     // Only the lower 32 bits of LHS and RHS are read.
8246     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8247         SimplifyDemandedLowBitsHelper(1, 32))
8248       return SDValue(N, 0);
8249 
8250     break;
8251   }
8252   case RISCVISD::FSR:
8253   case RISCVISD::FSL:
8254   case RISCVISD::FSRW:
8255   case RISCVISD::FSLW: {
8256     bool IsWInstruction =
8257         N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW;
8258     unsigned BitWidth =
8259         IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits();
8260     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8261     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
8262     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1))
8263       return SDValue(N, 0);
8264 
8265     break;
8266   }
8267   case RISCVISD::FMV_X_ANYEXTH:
8268   case RISCVISD::FMV_X_ANYEXTW_RV64: {
8269     SDLoc DL(N);
8270     SDValue Op0 = N->getOperand(0);
8271     MVT VT = N->getSimpleValueType(0);
8272     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
8273     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
8274     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
8275     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
8276          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
8277         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8278          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
8279       assert(Op0.getOperand(0).getValueType() == VT &&
8280              "Unexpected value type!");
8281       return Op0.getOperand(0);
8282     }
8283 
8284     // This is a target-specific version of a DAGCombine performed in
8285     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8286     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8287     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8288     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8289         !Op0.getNode()->hasOneUse())
8290       break;
8291     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
8292     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
8293     APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits());
8294     if (Op0.getOpcode() == ISD::FNEG)
8295       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
8296                          DAG.getConstant(SignBit, DL, VT));
8297 
8298     assert(Op0.getOpcode() == ISD::FABS);
8299     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
8300                        DAG.getConstant(~SignBit, DL, VT));
8301   }
8302   case ISD::ADD:
8303     return performADDCombine(N, DAG, Subtarget);
8304   case ISD::SUB:
8305     return performSUBCombine(N, DAG);
8306   case ISD::AND:
8307     return performANDCombine(N, DAG);
8308   case ISD::OR:
8309     return performORCombine(N, DAG, Subtarget);
8310   case ISD::XOR:
8311     return performXORCombine(N, DAG);
8312   case ISD::SIGN_EXTEND_INREG:
8313     return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
8314   case ISD::ZERO_EXTEND:
8315     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
8316     // type legalization. This is safe because fp_to_uint produces poison if
8317     // it overflows.
8318     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
8319       SDValue Src = N->getOperand(0);
8320       if (Src.getOpcode() == ISD::FP_TO_UINT &&
8321           isTypeLegal(Src.getOperand(0).getValueType()))
8322         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
8323                            Src.getOperand(0));
8324       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
8325           isTypeLegal(Src.getOperand(1).getValueType())) {
8326         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
8327         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
8328                                   Src.getOperand(0), Src.getOperand(1));
8329         DCI.CombineTo(N, Res);
8330         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
8331         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
8332         return SDValue(N, 0); // Return N so it doesn't get rechecked.
8333       }
8334     }
8335     return SDValue();
8336   case RISCVISD::SELECT_CC: {
8337     // Transform
8338     SDValue LHS = N->getOperand(0);
8339     SDValue RHS = N->getOperand(1);
8340     SDValue TrueV = N->getOperand(3);
8341     SDValue FalseV = N->getOperand(4);
8342 
8343     // If the True and False values are the same, we don't need a select_cc.
8344     if (TrueV == FalseV)
8345       return TrueV;
8346 
8347     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
8348     if (!ISD::isIntEqualitySetCC(CCVal))
8349       break;
8350 
8351     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
8352     //      (select_cc X, Y, lt, trueV, falseV)
8353     // Sometimes the setcc is introduced after select_cc has been formed.
8354     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8355         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8356       // If we're looking for eq 0 instead of ne 0, we need to invert the
8357       // condition.
8358       bool Invert = CCVal == ISD::SETEQ;
8359       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8360       if (Invert)
8361         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8362 
8363       SDLoc DL(N);
8364       RHS = LHS.getOperand(1);
8365       LHS = LHS.getOperand(0);
8366       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8367 
8368       SDValue TargetCC = DAG.getCondCode(CCVal);
8369       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8370                          {LHS, RHS, TargetCC, TrueV, FalseV});
8371     }
8372 
8373     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
8374     //      (select_cc X, Y, eq/ne, trueV, falseV)
8375     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8376       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
8377                          {LHS.getOperand(0), LHS.getOperand(1),
8378                           N->getOperand(2), TrueV, FalseV});
8379     // (select_cc X, 1, setne, trueV, falseV) ->
8380     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
8381     // This can occur when legalizing some floating point comparisons.
8382     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8383     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8384       SDLoc DL(N);
8385       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8386       SDValue TargetCC = DAG.getCondCode(CCVal);
8387       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8388       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8389                          {LHS, RHS, TargetCC, TrueV, FalseV});
8390     }
8391 
8392     break;
8393   }
8394   case RISCVISD::BR_CC: {
8395     SDValue LHS = N->getOperand(1);
8396     SDValue RHS = N->getOperand(2);
8397     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
8398     if (!ISD::isIntEqualitySetCC(CCVal))
8399       break;
8400 
8401     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
8402     //      (br_cc X, Y, lt, dest)
8403     // Sometimes the setcc is introduced after br_cc has been formed.
8404     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8405         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8406       // If we're looking for eq 0 instead of ne 0, we need to invert the
8407       // condition.
8408       bool Invert = CCVal == ISD::SETEQ;
8409       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8410       if (Invert)
8411         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8412 
8413       SDLoc DL(N);
8414       RHS = LHS.getOperand(1);
8415       LHS = LHS.getOperand(0);
8416       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8417 
8418       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8419                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
8420                          N->getOperand(4));
8421     }
8422 
8423     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
8424     //      (br_cc X, Y, eq/ne, trueV, falseV)
8425     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8426       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
8427                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
8428                          N->getOperand(3), N->getOperand(4));
8429 
8430     // (br_cc X, 1, setne, br_cc) ->
8431     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
8432     // This can occur when legalizing some floating point comparisons.
8433     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8434     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8435       SDLoc DL(N);
8436       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8437       SDValue TargetCC = DAG.getCondCode(CCVal);
8438       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8439       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8440                          N->getOperand(0), LHS, RHS, TargetCC,
8441                          N->getOperand(4));
8442     }
8443     break;
8444   }
8445   case ISD::BITREVERSE:
8446     return performBITREVERSECombine(N, DAG, Subtarget);
8447   case ISD::FP_TO_SINT:
8448   case ISD::FP_TO_UINT:
8449     return performFP_TO_INTCombine(N, DCI, Subtarget);
8450   case ISD::FP_TO_SINT_SAT:
8451   case ISD::FP_TO_UINT_SAT:
8452     return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
8453   case ISD::FCOPYSIGN: {
8454     EVT VT = N->getValueType(0);
8455     if (!VT.isVector())
8456       break;
8457     // There is a form of VFSGNJ which injects the negated sign of its second
8458     // operand. Try and bubble any FNEG up after the extend/round to produce
8459     // this optimized pattern. Avoid modifying cases where FP_ROUND and
8460     // TRUNC=1.
8461     SDValue In2 = N->getOperand(1);
8462     // Avoid cases where the extend/round has multiple uses, as duplicating
8463     // those is typically more expensive than removing a fneg.
8464     if (!In2.hasOneUse())
8465       break;
8466     if (In2.getOpcode() != ISD::FP_EXTEND &&
8467         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
8468       break;
8469     In2 = In2.getOperand(0);
8470     if (In2.getOpcode() != ISD::FNEG)
8471       break;
8472     SDLoc DL(N);
8473     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
8474     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
8475                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
8476   }
8477   case ISD::MGATHER:
8478   case ISD::MSCATTER:
8479   case ISD::VP_GATHER:
8480   case ISD::VP_SCATTER: {
8481     if (!DCI.isBeforeLegalize())
8482       break;
8483     SDValue Index, ScaleOp;
8484     bool IsIndexScaled = false;
8485     bool IsIndexSigned = false;
8486     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
8487       Index = VPGSN->getIndex();
8488       ScaleOp = VPGSN->getScale();
8489       IsIndexScaled = VPGSN->isIndexScaled();
8490       IsIndexSigned = VPGSN->isIndexSigned();
8491     } else {
8492       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
8493       Index = MGSN->getIndex();
8494       ScaleOp = MGSN->getScale();
8495       IsIndexScaled = MGSN->isIndexScaled();
8496       IsIndexSigned = MGSN->isIndexSigned();
8497     }
8498     EVT IndexVT = Index.getValueType();
8499     MVT XLenVT = Subtarget.getXLenVT();
8500     // RISCV indexed loads only support the "unsigned unscaled" addressing
8501     // mode, so anything else must be manually legalized.
8502     bool NeedsIdxLegalization =
8503         IsIndexScaled ||
8504         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
8505     if (!NeedsIdxLegalization)
8506       break;
8507 
8508     SDLoc DL(N);
8509 
8510     // Any index legalization should first promote to XLenVT, so we don't lose
8511     // bits when scaling. This may create an illegal index type so we let
8512     // LLVM's legalization take care of the splitting.
8513     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
8514     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
8515       IndexVT = IndexVT.changeVectorElementType(XLenVT);
8516       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
8517                           DL, IndexVT, Index);
8518     }
8519 
8520     unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
8521     if (IsIndexScaled && Scale != 1) {
8522       // Manually scale the indices by the element size.
8523       // TODO: Sanitize the scale operand here?
8524       // TODO: For VP nodes, should we use VP_SHL here?
8525       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
8526       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
8527       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
8528     }
8529 
8530     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
8531     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
8532       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
8533                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
8534                               VPGN->getScale(), VPGN->getMask(),
8535                               VPGN->getVectorLength()},
8536                              VPGN->getMemOperand(), NewIndexTy);
8537     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
8538       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
8539                               {VPSN->getChain(), VPSN->getValue(),
8540                                VPSN->getBasePtr(), Index, VPSN->getScale(),
8541                                VPSN->getMask(), VPSN->getVectorLength()},
8542                               VPSN->getMemOperand(), NewIndexTy);
8543     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
8544       return DAG.getMaskedGather(
8545           N->getVTList(), MGN->getMemoryVT(), DL,
8546           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
8547            MGN->getBasePtr(), Index, MGN->getScale()},
8548           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
8549     const auto *MSN = cast<MaskedScatterSDNode>(N);
8550     return DAG.getMaskedScatter(
8551         N->getVTList(), MSN->getMemoryVT(), DL,
8552         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
8553          Index, MSN->getScale()},
8554         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
8555   }
8556   case RISCVISD::SRA_VL:
8557   case RISCVISD::SRL_VL:
8558   case RISCVISD::SHL_VL: {
8559     SDValue ShAmt = N->getOperand(1);
8560     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8561       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8562       SDLoc DL(N);
8563       SDValue VL = N->getOperand(3);
8564       EVT VT = N->getValueType(0);
8565       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8566                           ShAmt.getOperand(1), VL);
8567       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
8568                          N->getOperand(2), N->getOperand(3));
8569     }
8570     break;
8571   }
8572   case ISD::SRA:
8573   case ISD::SRL:
8574   case ISD::SHL: {
8575     SDValue ShAmt = N->getOperand(1);
8576     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8577       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8578       SDLoc DL(N);
8579       EVT VT = N->getValueType(0);
8580       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8581                           ShAmt.getOperand(1),
8582                           DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()));
8583       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
8584     }
8585     break;
8586   }
8587   case RISCVISD::ADD_VL:
8588     if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false))
8589       return V;
8590     return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true);
8591   case RISCVISD::SUB_VL:
8592     return combineADDSUB_VLToVWADDSUB_VL(N, DAG);
8593   case RISCVISD::VWADD_W_VL:
8594   case RISCVISD::VWADDU_W_VL:
8595   case RISCVISD::VWSUB_W_VL:
8596   case RISCVISD::VWSUBU_W_VL:
8597     return combineVWADD_W_VL_VWSUB_W_VL(N, DAG);
8598   case RISCVISD::MUL_VL:
8599     if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false))
8600       return V;
8601     // Mul is commutative.
8602     return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true);
8603   case ISD::STORE: {
8604     auto *Store = cast<StoreSDNode>(N);
8605     SDValue Val = Store->getValue();
8606     // Combine store of vmv.x.s to vse with VL of 1.
8607     // FIXME: Support FP.
8608     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
8609       SDValue Src = Val.getOperand(0);
8610       EVT VecVT = Src.getValueType();
8611       EVT MemVT = Store->getMemoryVT();
8612       // The memory VT and the element type must match.
8613       if (VecVT.getVectorElementType() == MemVT) {
8614         SDLoc DL(N);
8615         MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
8616         return DAG.getStoreVP(
8617             Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
8618             DAG.getConstant(1, DL, MaskVT),
8619             DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
8620             Store->getMemOperand(), Store->getAddressingMode(),
8621             Store->isTruncatingStore(), /*IsCompress*/ false);
8622       }
8623     }
8624 
8625     break;
8626   }
8627   case ISD::SPLAT_VECTOR: {
8628     EVT VT = N->getValueType(0);
8629     // Only perform this combine on legal MVT types.
8630     if (!isTypeLegal(VT))
8631       break;
8632     if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N,
8633                                          DAG, Subtarget))
8634       return Gather;
8635     break;
8636   }
8637   case RISCVISD::VMV_V_X_VL: {
8638     // Tail agnostic VMV.V.X only demands the vector element bitwidth from the
8639     // scalar input.
8640     unsigned ScalarSize = N->getOperand(1).getValueSizeInBits();
8641     unsigned EltWidth = N->getValueType(0).getScalarSizeInBits();
8642     if (ScalarSize > EltWidth && N->getOperand(0).isUndef())
8643       if (SimplifyDemandedLowBitsHelper(1, EltWidth))
8644         return SDValue(N, 0);
8645 
8646     break;
8647   }
8648   case ISD::INTRINSIC_WO_CHAIN: {
8649     unsigned IntNo = N->getConstantOperandVal(0);
8650     switch (IntNo) {
8651       // By default we do not combine any intrinsic.
8652     default:
8653       return SDValue();
8654     case Intrinsic::riscv_vcpop:
8655     case Intrinsic::riscv_vcpop_mask:
8656     case Intrinsic::riscv_vfirst:
8657     case Intrinsic::riscv_vfirst_mask: {
8658       SDValue VL = N->getOperand(2);
8659       if (IntNo == Intrinsic::riscv_vcpop_mask ||
8660           IntNo == Intrinsic::riscv_vfirst_mask)
8661         VL = N->getOperand(3);
8662       if (!isNullConstant(VL))
8663         return SDValue();
8664       // If VL is 0, vcpop -> li 0, vfirst -> li -1.
8665       SDLoc DL(N);
8666       EVT VT = N->getValueType(0);
8667       if (IntNo == Intrinsic::riscv_vfirst ||
8668           IntNo == Intrinsic::riscv_vfirst_mask)
8669         return DAG.getConstant(-1, DL, VT);
8670       return DAG.getConstant(0, DL, VT);
8671     }
8672     }
8673   }
8674   }
8675 
8676   return SDValue();
8677 }
8678 
8679 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
8680     const SDNode *N, CombineLevel Level) const {
8681   // The following folds are only desirable if `(OP _, c1 << c2)` can be
8682   // materialised in fewer instructions than `(OP _, c1)`:
8683   //
8684   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
8685   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
8686   SDValue N0 = N->getOperand(0);
8687   EVT Ty = N0.getValueType();
8688   if (Ty.isScalarInteger() &&
8689       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
8690     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
8691     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
8692     if (C1 && C2) {
8693       const APInt &C1Int = C1->getAPIntValue();
8694       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
8695 
8696       // We can materialise `c1 << c2` into an add immediate, so it's "free",
8697       // and the combine should happen, to potentially allow further combines
8698       // later.
8699       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
8700           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
8701         return true;
8702 
8703       // We can materialise `c1` in an add immediate, so it's "free", and the
8704       // combine should be prevented.
8705       if (C1Int.getMinSignedBits() <= 64 &&
8706           isLegalAddImmediate(C1Int.getSExtValue()))
8707         return false;
8708 
8709       // Neither constant will fit into an immediate, so find materialisation
8710       // costs.
8711       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
8712                                               Subtarget.getFeatureBits(),
8713                                               /*CompressionCost*/true);
8714       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
8715           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
8716           /*CompressionCost*/true);
8717 
8718       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
8719       // combine should be prevented.
8720       if (C1Cost < ShiftedC1Cost)
8721         return false;
8722     }
8723   }
8724   return true;
8725 }
8726 
8727 bool RISCVTargetLowering::targetShrinkDemandedConstant(
8728     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
8729     TargetLoweringOpt &TLO) const {
8730   // Delay this optimization as late as possible.
8731   if (!TLO.LegalOps)
8732     return false;
8733 
8734   EVT VT = Op.getValueType();
8735   if (VT.isVector())
8736     return false;
8737 
8738   // Only handle AND for now.
8739   if (Op.getOpcode() != ISD::AND)
8740     return false;
8741 
8742   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8743   if (!C)
8744     return false;
8745 
8746   const APInt &Mask = C->getAPIntValue();
8747 
8748   // Clear all non-demanded bits initially.
8749   APInt ShrunkMask = Mask & DemandedBits;
8750 
8751   // Try to make a smaller immediate by setting undemanded bits.
8752 
8753   APInt ExpandedMask = Mask | ~DemandedBits;
8754 
8755   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
8756     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
8757   };
8758   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
8759     if (NewMask == Mask)
8760       return true;
8761     SDLoc DL(Op);
8762     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
8763     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
8764     return TLO.CombineTo(Op, NewOp);
8765   };
8766 
8767   // If the shrunk mask fits in sign extended 12 bits, let the target
8768   // independent code apply it.
8769   if (ShrunkMask.isSignedIntN(12))
8770     return false;
8771 
8772   // Preserve (and X, 0xffff) when zext.h is supported.
8773   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
8774     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
8775     if (IsLegalMask(NewMask))
8776       return UseMask(NewMask);
8777   }
8778 
8779   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
8780   if (VT == MVT::i64) {
8781     APInt NewMask = APInt(64, 0xffffffff);
8782     if (IsLegalMask(NewMask))
8783       return UseMask(NewMask);
8784   }
8785 
8786   // For the remaining optimizations, we need to be able to make a negative
8787   // number through a combination of mask and undemanded bits.
8788   if (!ExpandedMask.isNegative())
8789     return false;
8790 
8791   // What is the fewest number of bits we need to represent the negative number.
8792   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
8793 
8794   // Try to make a 12 bit negative immediate. If that fails try to make a 32
8795   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
8796   APInt NewMask = ShrunkMask;
8797   if (MinSignedBits <= 12)
8798     NewMask.setBitsFrom(11);
8799   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
8800     NewMask.setBitsFrom(31);
8801   else
8802     return false;
8803 
8804   // Check that our new mask is a subset of the demanded mask.
8805   assert(IsLegalMask(NewMask));
8806   return UseMask(NewMask);
8807 }
8808 
8809 static void computeGREV(APInt &Src, unsigned ShAmt) {
8810   ShAmt &= Src.getBitWidth() - 1;
8811   uint64_t x = Src.getZExtValue();
8812   if (ShAmt & 1)
8813     x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
8814   if (ShAmt & 2)
8815     x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
8816   if (ShAmt & 4)
8817     x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
8818   if (ShAmt & 8)
8819     x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8);
8820   if (ShAmt & 16)
8821     x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16);
8822   if (ShAmt & 32)
8823     x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32);
8824   Src = x;
8825 }
8826 
8827 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
8828                                                         KnownBits &Known,
8829                                                         const APInt &DemandedElts,
8830                                                         const SelectionDAG &DAG,
8831                                                         unsigned Depth) const {
8832   unsigned BitWidth = Known.getBitWidth();
8833   unsigned Opc = Op.getOpcode();
8834   assert((Opc >= ISD::BUILTIN_OP_END ||
8835           Opc == ISD::INTRINSIC_WO_CHAIN ||
8836           Opc == ISD::INTRINSIC_W_CHAIN ||
8837           Opc == ISD::INTRINSIC_VOID) &&
8838          "Should use MaskedValueIsZero if you don't know whether Op"
8839          " is a target node!");
8840 
8841   Known.resetAll();
8842   switch (Opc) {
8843   default: break;
8844   case RISCVISD::SELECT_CC: {
8845     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
8846     // If we don't know any bits, early out.
8847     if (Known.isUnknown())
8848       break;
8849     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
8850 
8851     // Only known if known in both the LHS and RHS.
8852     Known = KnownBits::commonBits(Known, Known2);
8853     break;
8854   }
8855   case RISCVISD::REMUW: {
8856     KnownBits Known2;
8857     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
8858     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
8859     // We only care about the lower 32 bits.
8860     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
8861     // Restore the original width by sign extending.
8862     Known = Known.sext(BitWidth);
8863     break;
8864   }
8865   case RISCVISD::DIVUW: {
8866     KnownBits Known2;
8867     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
8868     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
8869     // We only care about the lower 32 bits.
8870     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
8871     // Restore the original width by sign extending.
8872     Known = Known.sext(BitWidth);
8873     break;
8874   }
8875   case RISCVISD::CTZW: {
8876     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8877     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
8878     unsigned LowBits = Log2_32(PossibleTZ) + 1;
8879     Known.Zero.setBitsFrom(LowBits);
8880     break;
8881   }
8882   case RISCVISD::CLZW: {
8883     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8884     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
8885     unsigned LowBits = Log2_32(PossibleLZ) + 1;
8886     Known.Zero.setBitsFrom(LowBits);
8887     break;
8888   }
8889   case RISCVISD::GREV: {
8890     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8891       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8892       unsigned ShAmt = C->getZExtValue();
8893       computeGREV(Known.Zero, ShAmt);
8894       computeGREV(Known.One, ShAmt);
8895     }
8896     break;
8897   }
8898   case RISCVISD::READ_VLENB: {
8899     // If we know the minimum VLen from Zvl extensions, we can use that to
8900     // determine the trailing zeros of VLENB.
8901     // FIXME: Limit to 128 bit vectors until we have more testing.
8902     unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8;
8903     if (MinVLenB > 0)
8904       Known.Zero.setLowBits(Log2_32(MinVLenB));
8905     // We assume VLENB is no more than 65536 / 8 bytes.
8906     Known.Zero.setBitsFrom(14);
8907     break;
8908   }
8909   case ISD::INTRINSIC_W_CHAIN:
8910   case ISD::INTRINSIC_WO_CHAIN: {
8911     unsigned IntNo =
8912         Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
8913     switch (IntNo) {
8914     default:
8915       // We can't do anything for most intrinsics.
8916       break;
8917     case Intrinsic::riscv_vsetvli:
8918     case Intrinsic::riscv_vsetvlimax:
8919     case Intrinsic::riscv_vsetvli_opt:
8920     case Intrinsic::riscv_vsetvlimax_opt:
8921       // Assume that VL output is positive and would fit in an int32_t.
8922       // TODO: VLEN might be capped at 16 bits in a future V spec update.
8923       if (BitWidth >= 32)
8924         Known.Zero.setBitsFrom(31);
8925       break;
8926     }
8927     break;
8928   }
8929   }
8930 }
8931 
8932 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
8933     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
8934     unsigned Depth) const {
8935   switch (Op.getOpcode()) {
8936   default:
8937     break;
8938   case RISCVISD::SELECT_CC: {
8939     unsigned Tmp =
8940         DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
8941     if (Tmp == 1) return 1;  // Early out.
8942     unsigned Tmp2 =
8943         DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
8944     return std::min(Tmp, Tmp2);
8945   }
8946   case RISCVISD::SLLW:
8947   case RISCVISD::SRAW:
8948   case RISCVISD::SRLW:
8949   case RISCVISD::DIVW:
8950   case RISCVISD::DIVUW:
8951   case RISCVISD::REMUW:
8952   case RISCVISD::ROLW:
8953   case RISCVISD::RORW:
8954   case RISCVISD::GREVW:
8955   case RISCVISD::GORCW:
8956   case RISCVISD::FSLW:
8957   case RISCVISD::FSRW:
8958   case RISCVISD::SHFLW:
8959   case RISCVISD::UNSHFLW:
8960   case RISCVISD::BCOMPRESSW:
8961   case RISCVISD::BDECOMPRESSW:
8962   case RISCVISD::BFPW:
8963   case RISCVISD::FCVT_W_RV64:
8964   case RISCVISD::FCVT_WU_RV64:
8965   case RISCVISD::STRICT_FCVT_W_RV64:
8966   case RISCVISD::STRICT_FCVT_WU_RV64:
8967     // TODO: As the result is sign-extended, this is conservatively correct. A
8968     // more precise answer could be calculated for SRAW depending on known
8969     // bits in the shift amount.
8970     return 33;
8971   case RISCVISD::SHFL:
8972   case RISCVISD::UNSHFL: {
8973     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
8974     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
8975     // will stay within the upper 32 bits. If there were more than 32 sign bits
8976     // before there will be at least 33 sign bits after.
8977     if (Op.getValueType() == MVT::i64 &&
8978         isa<ConstantSDNode>(Op.getOperand(1)) &&
8979         (Op.getConstantOperandVal(1) & 0x10) == 0) {
8980       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
8981       if (Tmp > 32)
8982         return 33;
8983     }
8984     break;
8985   }
8986   case RISCVISD::VMV_X_S: {
8987     // The number of sign bits of the scalar result is computed by obtaining the
8988     // element type of the input vector operand, subtracting its width from the
8989     // XLEN, and then adding one (sign bit within the element type). If the
8990     // element type is wider than XLen, the least-significant XLEN bits are
8991     // taken.
8992     unsigned XLen = Subtarget.getXLen();
8993     unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits();
8994     if (EltBits <= XLen)
8995       return XLen - EltBits + 1;
8996     break;
8997   }
8998   }
8999 
9000   return 1;
9001 }
9002 
9003 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
9004                                                   MachineBasicBlock *BB) {
9005   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
9006 
9007   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
9008   // Should the count have wrapped while it was being read, we need to try
9009   // again.
9010   // ...
9011   // read:
9012   // rdcycleh x3 # load high word of cycle
9013   // rdcycle  x2 # load low word of cycle
9014   // rdcycleh x4 # load high word of cycle
9015   // bne x3, x4, read # check if high word reads match, otherwise try again
9016   // ...
9017 
9018   MachineFunction &MF = *BB->getParent();
9019   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9020   MachineFunction::iterator It = ++BB->getIterator();
9021 
9022   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9023   MF.insert(It, LoopMBB);
9024 
9025   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9026   MF.insert(It, DoneMBB);
9027 
9028   // Transfer the remainder of BB and its successor edges to DoneMBB.
9029   DoneMBB->splice(DoneMBB->begin(), BB,
9030                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9031   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
9032 
9033   BB->addSuccessor(LoopMBB);
9034 
9035   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9036   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9037   Register LoReg = MI.getOperand(0).getReg();
9038   Register HiReg = MI.getOperand(1).getReg();
9039   DebugLoc DL = MI.getDebugLoc();
9040 
9041   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
9042   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
9043       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9044       .addReg(RISCV::X0);
9045   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
9046       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
9047       .addReg(RISCV::X0);
9048   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
9049       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9050       .addReg(RISCV::X0);
9051 
9052   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
9053       .addReg(HiReg)
9054       .addReg(ReadAgainReg)
9055       .addMBB(LoopMBB);
9056 
9057   LoopMBB->addSuccessor(LoopMBB);
9058   LoopMBB->addSuccessor(DoneMBB);
9059 
9060   MI.eraseFromParent();
9061 
9062   return DoneMBB;
9063 }
9064 
9065 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
9066                                              MachineBasicBlock *BB) {
9067   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
9068 
9069   MachineFunction &MF = *BB->getParent();
9070   DebugLoc DL = MI.getDebugLoc();
9071   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9072   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9073   Register LoReg = MI.getOperand(0).getReg();
9074   Register HiReg = MI.getOperand(1).getReg();
9075   Register SrcReg = MI.getOperand(2).getReg();
9076   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
9077   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9078 
9079   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
9080                           RI);
9081   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9082   MachineMemOperand *MMOLo =
9083       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
9084   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9085       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
9086   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
9087       .addFrameIndex(FI)
9088       .addImm(0)
9089       .addMemOperand(MMOLo);
9090   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
9091       .addFrameIndex(FI)
9092       .addImm(4)
9093       .addMemOperand(MMOHi);
9094   MI.eraseFromParent(); // The pseudo instruction is gone now.
9095   return BB;
9096 }
9097 
9098 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
9099                                                  MachineBasicBlock *BB) {
9100   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
9101          "Unexpected instruction");
9102 
9103   MachineFunction &MF = *BB->getParent();
9104   DebugLoc DL = MI.getDebugLoc();
9105   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9106   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9107   Register DstReg = MI.getOperand(0).getReg();
9108   Register LoReg = MI.getOperand(1).getReg();
9109   Register HiReg = MI.getOperand(2).getReg();
9110   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
9111   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9112 
9113   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9114   MachineMemOperand *MMOLo =
9115       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
9116   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9117       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
9118   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9119       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
9120       .addFrameIndex(FI)
9121       .addImm(0)
9122       .addMemOperand(MMOLo);
9123   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9124       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
9125       .addFrameIndex(FI)
9126       .addImm(4)
9127       .addMemOperand(MMOHi);
9128   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
9129   MI.eraseFromParent(); // The pseudo instruction is gone now.
9130   return BB;
9131 }
9132 
9133 static bool isSelectPseudo(MachineInstr &MI) {
9134   switch (MI.getOpcode()) {
9135   default:
9136     return false;
9137   case RISCV::Select_GPR_Using_CC_GPR:
9138   case RISCV::Select_FPR16_Using_CC_GPR:
9139   case RISCV::Select_FPR32_Using_CC_GPR:
9140   case RISCV::Select_FPR64_Using_CC_GPR:
9141     return true;
9142   }
9143 }
9144 
9145 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
9146                                         unsigned RelOpcode, unsigned EqOpcode,
9147                                         const RISCVSubtarget &Subtarget) {
9148   DebugLoc DL = MI.getDebugLoc();
9149   Register DstReg = MI.getOperand(0).getReg();
9150   Register Src1Reg = MI.getOperand(1).getReg();
9151   Register Src2Reg = MI.getOperand(2).getReg();
9152   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
9153   Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
9154   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
9155 
9156   // Save the current FFLAGS.
9157   BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
9158 
9159   auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
9160                  .addReg(Src1Reg)
9161                  .addReg(Src2Reg);
9162   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9163     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
9164 
9165   // Restore the FFLAGS.
9166   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
9167       .addReg(SavedFFlags, RegState::Kill);
9168 
9169   // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
9170   auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
9171                   .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
9172                   .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
9173   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9174     MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
9175 
9176   // Erase the pseudoinstruction.
9177   MI.eraseFromParent();
9178   return BB;
9179 }
9180 
9181 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
9182                                            MachineBasicBlock *BB,
9183                                            const RISCVSubtarget &Subtarget) {
9184   // To "insert" Select_* instructions, we actually have to insert the triangle
9185   // control-flow pattern.  The incoming instructions know the destination vreg
9186   // to set, the condition code register to branch on, the true/false values to
9187   // select between, and the condcode to use to select the appropriate branch.
9188   //
9189   // We produce the following control flow:
9190   //     HeadMBB
9191   //     |  \
9192   //     |  IfFalseMBB
9193   //     | /
9194   //    TailMBB
9195   //
9196   // When we find a sequence of selects we attempt to optimize their emission
9197   // by sharing the control flow. Currently we only handle cases where we have
9198   // multiple selects with the exact same condition (same LHS, RHS and CC).
9199   // The selects may be interleaved with other instructions if the other
9200   // instructions meet some requirements we deem safe:
9201   // - They are debug instructions. Otherwise,
9202   // - They do not have side-effects, do not access memory and their inputs do
9203   //   not depend on the results of the select pseudo-instructions.
9204   // The TrueV/FalseV operands of the selects cannot depend on the result of
9205   // previous selects in the sequence.
9206   // These conditions could be further relaxed. See the X86 target for a
9207   // related approach and more information.
9208   Register LHS = MI.getOperand(1).getReg();
9209   Register RHS = MI.getOperand(2).getReg();
9210   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
9211 
9212   SmallVector<MachineInstr *, 4> SelectDebugValues;
9213   SmallSet<Register, 4> SelectDests;
9214   SelectDests.insert(MI.getOperand(0).getReg());
9215 
9216   MachineInstr *LastSelectPseudo = &MI;
9217 
9218   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
9219        SequenceMBBI != E; ++SequenceMBBI) {
9220     if (SequenceMBBI->isDebugInstr())
9221       continue;
9222     else if (isSelectPseudo(*SequenceMBBI)) {
9223       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
9224           SequenceMBBI->getOperand(2).getReg() != RHS ||
9225           SequenceMBBI->getOperand(3).getImm() != CC ||
9226           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
9227           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
9228         break;
9229       LastSelectPseudo = &*SequenceMBBI;
9230       SequenceMBBI->collectDebugValues(SelectDebugValues);
9231       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
9232     } else {
9233       if (SequenceMBBI->hasUnmodeledSideEffects() ||
9234           SequenceMBBI->mayLoadOrStore())
9235         break;
9236       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
9237             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
9238           }))
9239         break;
9240     }
9241   }
9242 
9243   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
9244   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9245   DebugLoc DL = MI.getDebugLoc();
9246   MachineFunction::iterator I = ++BB->getIterator();
9247 
9248   MachineBasicBlock *HeadMBB = BB;
9249   MachineFunction *F = BB->getParent();
9250   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
9251   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
9252 
9253   F->insert(I, IfFalseMBB);
9254   F->insert(I, TailMBB);
9255 
9256   // Transfer debug instructions associated with the selects to TailMBB.
9257   for (MachineInstr *DebugInstr : SelectDebugValues) {
9258     TailMBB->push_back(DebugInstr->removeFromParent());
9259   }
9260 
9261   // Move all instructions after the sequence to TailMBB.
9262   TailMBB->splice(TailMBB->end(), HeadMBB,
9263                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
9264   // Update machine-CFG edges by transferring all successors of the current
9265   // block to the new block which will contain the Phi nodes for the selects.
9266   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
9267   // Set the successors for HeadMBB.
9268   HeadMBB->addSuccessor(IfFalseMBB);
9269   HeadMBB->addSuccessor(TailMBB);
9270 
9271   // Insert appropriate branch.
9272   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
9273     .addReg(LHS)
9274     .addReg(RHS)
9275     .addMBB(TailMBB);
9276 
9277   // IfFalseMBB just falls through to TailMBB.
9278   IfFalseMBB->addSuccessor(TailMBB);
9279 
9280   // Create PHIs for all of the select pseudo-instructions.
9281   auto SelectMBBI = MI.getIterator();
9282   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
9283   auto InsertionPoint = TailMBB->begin();
9284   while (SelectMBBI != SelectEnd) {
9285     auto Next = std::next(SelectMBBI);
9286     if (isSelectPseudo(*SelectMBBI)) {
9287       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
9288       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
9289               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
9290           .addReg(SelectMBBI->getOperand(4).getReg())
9291           .addMBB(HeadMBB)
9292           .addReg(SelectMBBI->getOperand(5).getReg())
9293           .addMBB(IfFalseMBB);
9294       SelectMBBI->eraseFromParent();
9295     }
9296     SelectMBBI = Next;
9297   }
9298 
9299   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
9300   return TailMBB;
9301 }
9302 
9303 MachineBasicBlock *
9304 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9305                                                  MachineBasicBlock *BB) const {
9306   switch (MI.getOpcode()) {
9307   default:
9308     llvm_unreachable("Unexpected instr type to insert");
9309   case RISCV::ReadCycleWide:
9310     assert(!Subtarget.is64Bit() &&
9311            "ReadCycleWrite is only to be used on riscv32");
9312     return emitReadCycleWidePseudo(MI, BB);
9313   case RISCV::Select_GPR_Using_CC_GPR:
9314   case RISCV::Select_FPR16_Using_CC_GPR:
9315   case RISCV::Select_FPR32_Using_CC_GPR:
9316   case RISCV::Select_FPR64_Using_CC_GPR:
9317     return emitSelectPseudo(MI, BB, Subtarget);
9318   case RISCV::BuildPairF64Pseudo:
9319     return emitBuildPairF64Pseudo(MI, BB);
9320   case RISCV::SplitF64Pseudo:
9321     return emitSplitF64Pseudo(MI, BB);
9322   case RISCV::PseudoQuietFLE_H:
9323     return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
9324   case RISCV::PseudoQuietFLT_H:
9325     return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
9326   case RISCV::PseudoQuietFLE_S:
9327     return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
9328   case RISCV::PseudoQuietFLT_S:
9329     return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
9330   case RISCV::PseudoQuietFLE_D:
9331     return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
9332   case RISCV::PseudoQuietFLT_D:
9333     return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
9334   }
9335 }
9336 
9337 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
9338                                                         SDNode *Node) const {
9339   // Add FRM dependency to any instructions with dynamic rounding mode.
9340   unsigned Opc = MI.getOpcode();
9341   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
9342   if (Idx < 0)
9343     return;
9344   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
9345     return;
9346   // If the instruction already reads FRM, don't add another read.
9347   if (MI.readsRegister(RISCV::FRM))
9348     return;
9349   MI.addOperand(
9350       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
9351 }
9352 
9353 // Calling Convention Implementation.
9354 // The expectations for frontend ABI lowering vary from target to target.
9355 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
9356 // details, but this is a longer term goal. For now, we simply try to keep the
9357 // role of the frontend as simple and well-defined as possible. The rules can
9358 // be summarised as:
9359 // * Never split up large scalar arguments. We handle them here.
9360 // * If a hardfloat calling convention is being used, and the struct may be
9361 // passed in a pair of registers (fp+fp, int+fp), and both registers are
9362 // available, then pass as two separate arguments. If either the GPRs or FPRs
9363 // are exhausted, then pass according to the rule below.
9364 // * If a struct could never be passed in registers or directly in a stack
9365 // slot (as it is larger than 2*XLEN and the floating point rules don't
9366 // apply), then pass it using a pointer with the byval attribute.
9367 // * If a struct is less than 2*XLEN, then coerce to either a two-element
9368 // word-sized array or a 2*XLEN scalar (depending on alignment).
9369 // * The frontend can determine whether a struct is returned by reference or
9370 // not based on its size and fields. If it will be returned by reference, the
9371 // frontend must modify the prototype so a pointer with the sret annotation is
9372 // passed as the first argument. This is not necessary for large scalar
9373 // returns.
9374 // * Struct return values and varargs should be coerced to structs containing
9375 // register-size fields in the same situations they would be for fixed
9376 // arguments.
9377 
9378 static const MCPhysReg ArgGPRs[] = {
9379   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
9380   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
9381 };
9382 static const MCPhysReg ArgFPR16s[] = {
9383   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
9384   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
9385 };
9386 static const MCPhysReg ArgFPR32s[] = {
9387   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
9388   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
9389 };
9390 static const MCPhysReg ArgFPR64s[] = {
9391   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
9392   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
9393 };
9394 // This is an interim calling convention and it may be changed in the future.
9395 static const MCPhysReg ArgVRs[] = {
9396     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
9397     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
9398     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
9399 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
9400                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
9401                                      RISCV::V20M2, RISCV::V22M2};
9402 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
9403                                      RISCV::V20M4};
9404 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
9405 
9406 // Pass a 2*XLEN argument that has been split into two XLEN values through
9407 // registers or the stack as necessary.
9408 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
9409                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
9410                                 MVT ValVT2, MVT LocVT2,
9411                                 ISD::ArgFlagsTy ArgFlags2) {
9412   unsigned XLenInBytes = XLen / 8;
9413   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9414     // At least one half can be passed via register.
9415     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
9416                                      VA1.getLocVT(), CCValAssign::Full));
9417   } else {
9418     // Both halves must be passed on the stack, with proper alignment.
9419     Align StackAlign =
9420         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
9421     State.addLoc(
9422         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
9423                             State.AllocateStack(XLenInBytes, StackAlign),
9424                             VA1.getLocVT(), CCValAssign::Full));
9425     State.addLoc(CCValAssign::getMem(
9426         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9427         LocVT2, CCValAssign::Full));
9428     return false;
9429   }
9430 
9431   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9432     // The second half can also be passed via register.
9433     State.addLoc(
9434         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
9435   } else {
9436     // The second half is passed via the stack, without additional alignment.
9437     State.addLoc(CCValAssign::getMem(
9438         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9439         LocVT2, CCValAssign::Full));
9440   }
9441 
9442   return false;
9443 }
9444 
9445 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
9446                                Optional<unsigned> FirstMaskArgument,
9447                                CCState &State, const RISCVTargetLowering &TLI) {
9448   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
9449   if (RC == &RISCV::VRRegClass) {
9450     // Assign the first mask argument to V0.
9451     // This is an interim calling convention and it may be changed in the
9452     // future.
9453     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
9454       return State.AllocateReg(RISCV::V0);
9455     return State.AllocateReg(ArgVRs);
9456   }
9457   if (RC == &RISCV::VRM2RegClass)
9458     return State.AllocateReg(ArgVRM2s);
9459   if (RC == &RISCV::VRM4RegClass)
9460     return State.AllocateReg(ArgVRM4s);
9461   if (RC == &RISCV::VRM8RegClass)
9462     return State.AllocateReg(ArgVRM8s);
9463   llvm_unreachable("Unhandled register class for ValueType");
9464 }
9465 
9466 // Implements the RISC-V calling convention. Returns true upon failure.
9467 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
9468                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
9469                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
9470                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
9471                      Optional<unsigned> FirstMaskArgument) {
9472   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
9473   assert(XLen == 32 || XLen == 64);
9474   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
9475 
9476   // Any return value split in to more than two values can't be returned
9477   // directly. Vectors are returned via the available vector registers.
9478   if (!LocVT.isVector() && IsRet && ValNo > 1)
9479     return true;
9480 
9481   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
9482   // variadic argument, or if no F16/F32 argument registers are available.
9483   bool UseGPRForF16_F32 = true;
9484   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
9485   // variadic argument, or if no F64 argument registers are available.
9486   bool UseGPRForF64 = true;
9487 
9488   switch (ABI) {
9489   default:
9490     llvm_unreachable("Unexpected ABI");
9491   case RISCVABI::ABI_ILP32:
9492   case RISCVABI::ABI_LP64:
9493     break;
9494   case RISCVABI::ABI_ILP32F:
9495   case RISCVABI::ABI_LP64F:
9496     UseGPRForF16_F32 = !IsFixed;
9497     break;
9498   case RISCVABI::ABI_ILP32D:
9499   case RISCVABI::ABI_LP64D:
9500     UseGPRForF16_F32 = !IsFixed;
9501     UseGPRForF64 = !IsFixed;
9502     break;
9503   }
9504 
9505   // FPR16, FPR32, and FPR64 alias each other.
9506   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
9507     UseGPRForF16_F32 = true;
9508     UseGPRForF64 = true;
9509   }
9510 
9511   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
9512   // similar local variables rather than directly checking against the target
9513   // ABI.
9514 
9515   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
9516     LocVT = XLenVT;
9517     LocInfo = CCValAssign::BCvt;
9518   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
9519     LocVT = MVT::i64;
9520     LocInfo = CCValAssign::BCvt;
9521   }
9522 
9523   // If this is a variadic argument, the RISC-V calling convention requires
9524   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
9525   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
9526   // be used regardless of whether the original argument was split during
9527   // legalisation or not. The argument will not be passed by registers if the
9528   // original type is larger than 2*XLEN, so the register alignment rule does
9529   // not apply.
9530   unsigned TwoXLenInBytes = (2 * XLen) / 8;
9531   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
9532       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
9533     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
9534     // Skip 'odd' register if necessary.
9535     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
9536       State.AllocateReg(ArgGPRs);
9537   }
9538 
9539   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
9540   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
9541       State.getPendingArgFlags();
9542 
9543   assert(PendingLocs.size() == PendingArgFlags.size() &&
9544          "PendingLocs and PendingArgFlags out of sync");
9545 
9546   // Handle passing f64 on RV32D with a soft float ABI or when floating point
9547   // registers are exhausted.
9548   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
9549     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
9550            "Can't lower f64 if it is split");
9551     // Depending on available argument GPRS, f64 may be passed in a pair of
9552     // GPRs, split between a GPR and the stack, or passed completely on the
9553     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
9554     // cases.
9555     Register Reg = State.AllocateReg(ArgGPRs);
9556     LocVT = MVT::i32;
9557     if (!Reg) {
9558       unsigned StackOffset = State.AllocateStack(8, Align(8));
9559       State.addLoc(
9560           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9561       return false;
9562     }
9563     if (!State.AllocateReg(ArgGPRs))
9564       State.AllocateStack(4, Align(4));
9565     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9566     return false;
9567   }
9568 
9569   // Fixed-length vectors are located in the corresponding scalable-vector
9570   // container types.
9571   if (ValVT.isFixedLengthVector())
9572     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9573 
9574   // Split arguments might be passed indirectly, so keep track of the pending
9575   // values. Split vectors are passed via a mix of registers and indirectly, so
9576   // treat them as we would any other argument.
9577   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
9578     LocVT = XLenVT;
9579     LocInfo = CCValAssign::Indirect;
9580     PendingLocs.push_back(
9581         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
9582     PendingArgFlags.push_back(ArgFlags);
9583     if (!ArgFlags.isSplitEnd()) {
9584       return false;
9585     }
9586   }
9587 
9588   // If the split argument only had two elements, it should be passed directly
9589   // in registers or on the stack.
9590   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
9591       PendingLocs.size() <= 2) {
9592     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
9593     // Apply the normal calling convention rules to the first half of the
9594     // split argument.
9595     CCValAssign VA = PendingLocs[0];
9596     ISD::ArgFlagsTy AF = PendingArgFlags[0];
9597     PendingLocs.clear();
9598     PendingArgFlags.clear();
9599     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
9600                                ArgFlags);
9601   }
9602 
9603   // Allocate to a register if possible, or else a stack slot.
9604   Register Reg;
9605   unsigned StoreSizeBytes = XLen / 8;
9606   Align StackAlign = Align(XLen / 8);
9607 
9608   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
9609     Reg = State.AllocateReg(ArgFPR16s);
9610   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
9611     Reg = State.AllocateReg(ArgFPR32s);
9612   else if (ValVT == MVT::f64 && !UseGPRForF64)
9613     Reg = State.AllocateReg(ArgFPR64s);
9614   else if (ValVT.isVector()) {
9615     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
9616     if (!Reg) {
9617       // For return values, the vector must be passed fully via registers or
9618       // via the stack.
9619       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
9620       // but we're using all of them.
9621       if (IsRet)
9622         return true;
9623       // Try using a GPR to pass the address
9624       if ((Reg = State.AllocateReg(ArgGPRs))) {
9625         LocVT = XLenVT;
9626         LocInfo = CCValAssign::Indirect;
9627       } else if (ValVT.isScalableVector()) {
9628         LocVT = XLenVT;
9629         LocInfo = CCValAssign::Indirect;
9630       } else {
9631         // Pass fixed-length vectors on the stack.
9632         LocVT = ValVT;
9633         StoreSizeBytes = ValVT.getStoreSize();
9634         // Align vectors to their element sizes, being careful for vXi1
9635         // vectors.
9636         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9637       }
9638     }
9639   } else {
9640     Reg = State.AllocateReg(ArgGPRs);
9641   }
9642 
9643   unsigned StackOffset =
9644       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
9645 
9646   // If we reach this point and PendingLocs is non-empty, we must be at the
9647   // end of a split argument that must be passed indirectly.
9648   if (!PendingLocs.empty()) {
9649     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
9650     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
9651 
9652     for (auto &It : PendingLocs) {
9653       if (Reg)
9654         It.convertToReg(Reg);
9655       else
9656         It.convertToMem(StackOffset);
9657       State.addLoc(It);
9658     }
9659     PendingLocs.clear();
9660     PendingArgFlags.clear();
9661     return false;
9662   }
9663 
9664   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
9665           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
9666          "Expected an XLenVT or vector types at this stage");
9667 
9668   if (Reg) {
9669     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9670     return false;
9671   }
9672 
9673   // When a floating-point value is passed on the stack, no bit-conversion is
9674   // needed.
9675   if (ValVT.isFloatingPoint()) {
9676     LocVT = ValVT;
9677     LocInfo = CCValAssign::Full;
9678   }
9679   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9680   return false;
9681 }
9682 
9683 template <typename ArgTy>
9684 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
9685   for (const auto &ArgIdx : enumerate(Args)) {
9686     MVT ArgVT = ArgIdx.value().VT;
9687     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
9688       return ArgIdx.index();
9689   }
9690   return None;
9691 }
9692 
9693 void RISCVTargetLowering::analyzeInputArgs(
9694     MachineFunction &MF, CCState &CCInfo,
9695     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
9696     RISCVCCAssignFn Fn) const {
9697   unsigned NumArgs = Ins.size();
9698   FunctionType *FType = MF.getFunction().getFunctionType();
9699 
9700   Optional<unsigned> FirstMaskArgument;
9701   if (Subtarget.hasVInstructions())
9702     FirstMaskArgument = preAssignMask(Ins);
9703 
9704   for (unsigned i = 0; i != NumArgs; ++i) {
9705     MVT ArgVT = Ins[i].VT;
9706     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
9707 
9708     Type *ArgTy = nullptr;
9709     if (IsRet)
9710       ArgTy = FType->getReturnType();
9711     else if (Ins[i].isOrigArg())
9712       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
9713 
9714     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9715     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
9716            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
9717            FirstMaskArgument)) {
9718       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
9719                         << EVT(ArgVT).getEVTString() << '\n');
9720       llvm_unreachable(nullptr);
9721     }
9722   }
9723 }
9724 
9725 void RISCVTargetLowering::analyzeOutputArgs(
9726     MachineFunction &MF, CCState &CCInfo,
9727     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
9728     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
9729   unsigned NumArgs = Outs.size();
9730 
9731   Optional<unsigned> FirstMaskArgument;
9732   if (Subtarget.hasVInstructions())
9733     FirstMaskArgument = preAssignMask(Outs);
9734 
9735   for (unsigned i = 0; i != NumArgs; i++) {
9736     MVT ArgVT = Outs[i].VT;
9737     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
9738     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
9739 
9740     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9741     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
9742            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
9743            FirstMaskArgument)) {
9744       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
9745                         << EVT(ArgVT).getEVTString() << "\n");
9746       llvm_unreachable(nullptr);
9747     }
9748   }
9749 }
9750 
9751 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
9752 // values.
9753 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
9754                                    const CCValAssign &VA, const SDLoc &DL,
9755                                    const RISCVSubtarget &Subtarget) {
9756   switch (VA.getLocInfo()) {
9757   default:
9758     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9759   case CCValAssign::Full:
9760     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
9761       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
9762     break;
9763   case CCValAssign::BCvt:
9764     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
9765       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
9766     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
9767       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
9768     else
9769       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
9770     break;
9771   }
9772   return Val;
9773 }
9774 
9775 // The caller is responsible for loading the full value if the argument is
9776 // passed with CCValAssign::Indirect.
9777 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
9778                                 const CCValAssign &VA, const SDLoc &DL,
9779                                 const RISCVTargetLowering &TLI) {
9780   MachineFunction &MF = DAG.getMachineFunction();
9781   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9782   EVT LocVT = VA.getLocVT();
9783   SDValue Val;
9784   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
9785   Register VReg = RegInfo.createVirtualRegister(RC);
9786   RegInfo.addLiveIn(VA.getLocReg(), VReg);
9787   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
9788 
9789   if (VA.getLocInfo() == CCValAssign::Indirect)
9790     return Val;
9791 
9792   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
9793 }
9794 
9795 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
9796                                    const CCValAssign &VA, const SDLoc &DL,
9797                                    const RISCVSubtarget &Subtarget) {
9798   EVT LocVT = VA.getLocVT();
9799 
9800   switch (VA.getLocInfo()) {
9801   default:
9802     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9803   case CCValAssign::Full:
9804     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
9805       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
9806     break;
9807   case CCValAssign::BCvt:
9808     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
9809       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
9810     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
9811       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
9812     else
9813       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
9814     break;
9815   }
9816   return Val;
9817 }
9818 
9819 // The caller is responsible for loading the full value if the argument is
9820 // passed with CCValAssign::Indirect.
9821 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
9822                                 const CCValAssign &VA, const SDLoc &DL) {
9823   MachineFunction &MF = DAG.getMachineFunction();
9824   MachineFrameInfo &MFI = MF.getFrameInfo();
9825   EVT LocVT = VA.getLocVT();
9826   EVT ValVT = VA.getValVT();
9827   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
9828   if (ValVT.isScalableVector()) {
9829     // When the value is a scalable vector, we save the pointer which points to
9830     // the scalable vector value in the stack. The ValVT will be the pointer
9831     // type, instead of the scalable vector type.
9832     ValVT = LocVT;
9833   }
9834   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
9835                                  /*IsImmutable=*/true);
9836   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
9837   SDValue Val;
9838 
9839   ISD::LoadExtType ExtType;
9840   switch (VA.getLocInfo()) {
9841   default:
9842     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9843   case CCValAssign::Full:
9844   case CCValAssign::Indirect:
9845   case CCValAssign::BCvt:
9846     ExtType = ISD::NON_EXTLOAD;
9847     break;
9848   }
9849   Val = DAG.getExtLoad(
9850       ExtType, DL, LocVT, Chain, FIN,
9851       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
9852   return Val;
9853 }
9854 
9855 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
9856                                        const CCValAssign &VA, const SDLoc &DL) {
9857   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
9858          "Unexpected VA");
9859   MachineFunction &MF = DAG.getMachineFunction();
9860   MachineFrameInfo &MFI = MF.getFrameInfo();
9861   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9862 
9863   if (VA.isMemLoc()) {
9864     // f64 is passed on the stack.
9865     int FI =
9866         MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
9867     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
9868     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
9869                        MachinePointerInfo::getFixedStack(MF, FI));
9870   }
9871 
9872   assert(VA.isRegLoc() && "Expected register VA assignment");
9873 
9874   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9875   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
9876   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
9877   SDValue Hi;
9878   if (VA.getLocReg() == RISCV::X17) {
9879     // Second half of f64 is passed on the stack.
9880     int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
9881     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
9882     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
9883                      MachinePointerInfo::getFixedStack(MF, FI));
9884   } else {
9885     // Second half of f64 is passed in another GPR.
9886     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9887     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
9888     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
9889   }
9890   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
9891 }
9892 
9893 // FastCC has less than 1% performance improvement for some particular
9894 // benchmark. But theoretically, it may has benenfit for some cases.
9895 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
9896                             unsigned ValNo, MVT ValVT, MVT LocVT,
9897                             CCValAssign::LocInfo LocInfo,
9898                             ISD::ArgFlagsTy ArgFlags, CCState &State,
9899                             bool IsFixed, bool IsRet, Type *OrigTy,
9900                             const RISCVTargetLowering &TLI,
9901                             Optional<unsigned> FirstMaskArgument) {
9902 
9903   // X5 and X6 might be used for save-restore libcall.
9904   static const MCPhysReg GPRList[] = {
9905       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
9906       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
9907       RISCV::X29, RISCV::X30, RISCV::X31};
9908 
9909   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
9910     if (unsigned Reg = State.AllocateReg(GPRList)) {
9911       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9912       return false;
9913     }
9914   }
9915 
9916   if (LocVT == MVT::f16) {
9917     static const MCPhysReg FPR16List[] = {
9918         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
9919         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
9920         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
9921         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
9922     if (unsigned Reg = State.AllocateReg(FPR16List)) {
9923       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9924       return false;
9925     }
9926   }
9927 
9928   if (LocVT == MVT::f32) {
9929     static const MCPhysReg FPR32List[] = {
9930         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
9931         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
9932         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
9933         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
9934     if (unsigned Reg = State.AllocateReg(FPR32List)) {
9935       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9936       return false;
9937     }
9938   }
9939 
9940   if (LocVT == MVT::f64) {
9941     static const MCPhysReg FPR64List[] = {
9942         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
9943         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
9944         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
9945         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
9946     if (unsigned Reg = State.AllocateReg(FPR64List)) {
9947       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9948       return false;
9949     }
9950   }
9951 
9952   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
9953     unsigned Offset4 = State.AllocateStack(4, Align(4));
9954     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
9955     return false;
9956   }
9957 
9958   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
9959     unsigned Offset5 = State.AllocateStack(8, Align(8));
9960     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
9961     return false;
9962   }
9963 
9964   if (LocVT.isVector()) {
9965     if (unsigned Reg =
9966             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
9967       // Fixed-length vectors are located in the corresponding scalable-vector
9968       // container types.
9969       if (ValVT.isFixedLengthVector())
9970         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9971       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9972     } else {
9973       // Try and pass the address via a "fast" GPR.
9974       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
9975         LocInfo = CCValAssign::Indirect;
9976         LocVT = TLI.getSubtarget().getXLenVT();
9977         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
9978       } else if (ValVT.isFixedLengthVector()) {
9979         auto StackAlign =
9980             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9981         unsigned StackOffset =
9982             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
9983         State.addLoc(
9984             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9985       } else {
9986         // Can't pass scalable vectors on the stack.
9987         return true;
9988       }
9989     }
9990 
9991     return false;
9992   }
9993 
9994   return true; // CC didn't match.
9995 }
9996 
9997 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
9998                          CCValAssign::LocInfo LocInfo,
9999                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
10000 
10001   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10002     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
10003     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
10004     static const MCPhysReg GPRList[] = {
10005         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
10006         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
10007     if (unsigned Reg = State.AllocateReg(GPRList)) {
10008       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10009       return false;
10010     }
10011   }
10012 
10013   if (LocVT == MVT::f32) {
10014     // Pass in STG registers: F1, ..., F6
10015     //                        fs0 ... fs5
10016     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
10017                                           RISCV::F18_F, RISCV::F19_F,
10018                                           RISCV::F20_F, RISCV::F21_F};
10019     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10020       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10021       return false;
10022     }
10023   }
10024 
10025   if (LocVT == MVT::f64) {
10026     // Pass in STG registers: D1, ..., D6
10027     //                        fs6 ... fs11
10028     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
10029                                           RISCV::F24_D, RISCV::F25_D,
10030                                           RISCV::F26_D, RISCV::F27_D};
10031     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10032       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10033       return false;
10034     }
10035   }
10036 
10037   report_fatal_error("No registers left in GHC calling convention");
10038   return true;
10039 }
10040 
10041 // Transform physical registers into virtual registers.
10042 SDValue RISCVTargetLowering::LowerFormalArguments(
10043     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
10044     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
10045     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
10046 
10047   MachineFunction &MF = DAG.getMachineFunction();
10048 
10049   switch (CallConv) {
10050   default:
10051     report_fatal_error("Unsupported calling convention");
10052   case CallingConv::C:
10053   case CallingConv::Fast:
10054     break;
10055   case CallingConv::GHC:
10056     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
10057         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
10058       report_fatal_error(
10059         "GHC calling convention requires the F and D instruction set extensions");
10060   }
10061 
10062   const Function &Func = MF.getFunction();
10063   if (Func.hasFnAttribute("interrupt")) {
10064     if (!Func.arg_empty())
10065       report_fatal_error(
10066         "Functions with the interrupt attribute cannot have arguments!");
10067 
10068     StringRef Kind =
10069       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10070 
10071     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
10072       report_fatal_error(
10073         "Function interrupt attribute argument not supported!");
10074   }
10075 
10076   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10077   MVT XLenVT = Subtarget.getXLenVT();
10078   unsigned XLenInBytes = Subtarget.getXLen() / 8;
10079   // Used with vargs to acumulate store chains.
10080   std::vector<SDValue> OutChains;
10081 
10082   // Assign locations to all of the incoming arguments.
10083   SmallVector<CCValAssign, 16> ArgLocs;
10084   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10085 
10086   if (CallConv == CallingConv::GHC)
10087     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
10088   else
10089     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
10090                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10091                                                    : CC_RISCV);
10092 
10093   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
10094     CCValAssign &VA = ArgLocs[i];
10095     SDValue ArgValue;
10096     // Passing f64 on RV32D with a soft float ABI must be handled as a special
10097     // case.
10098     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
10099       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
10100     else if (VA.isRegLoc())
10101       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
10102     else
10103       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
10104 
10105     if (VA.getLocInfo() == CCValAssign::Indirect) {
10106       // If the original argument was split and passed by reference (e.g. i128
10107       // on RV32), we need to load all parts of it here (using the same
10108       // address). Vectors may be partly split to registers and partly to the
10109       // stack, in which case the base address is partly offset and subsequent
10110       // stores are relative to that.
10111       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
10112                                    MachinePointerInfo()));
10113       unsigned ArgIndex = Ins[i].OrigArgIndex;
10114       unsigned ArgPartOffset = Ins[i].PartOffset;
10115       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10116       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
10117         CCValAssign &PartVA = ArgLocs[i + 1];
10118         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
10119         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10120         if (PartVA.getValVT().isScalableVector())
10121           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10122         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
10123         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
10124                                      MachinePointerInfo()));
10125         ++i;
10126       }
10127       continue;
10128     }
10129     InVals.push_back(ArgValue);
10130   }
10131 
10132   if (IsVarArg) {
10133     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
10134     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
10135     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
10136     MachineFrameInfo &MFI = MF.getFrameInfo();
10137     MachineRegisterInfo &RegInfo = MF.getRegInfo();
10138     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
10139 
10140     // Offset of the first variable argument from stack pointer, and size of
10141     // the vararg save area. For now, the varargs save area is either zero or
10142     // large enough to hold a0-a7.
10143     int VaArgOffset, VarArgsSaveSize;
10144 
10145     // If all registers are allocated, then all varargs must be passed on the
10146     // stack and we don't need to save any argregs.
10147     if (ArgRegs.size() == Idx) {
10148       VaArgOffset = CCInfo.getNextStackOffset();
10149       VarArgsSaveSize = 0;
10150     } else {
10151       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
10152       VaArgOffset = -VarArgsSaveSize;
10153     }
10154 
10155     // Record the frame index of the first variable argument
10156     // which is a value necessary to VASTART.
10157     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10158     RVFI->setVarArgsFrameIndex(FI);
10159 
10160     // If saving an odd number of registers then create an extra stack slot to
10161     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
10162     // offsets to even-numbered registered remain 2*XLEN-aligned.
10163     if (Idx % 2) {
10164       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
10165       VarArgsSaveSize += XLenInBytes;
10166     }
10167 
10168     // Copy the integer registers that may have been used for passing varargs
10169     // to the vararg save area.
10170     for (unsigned I = Idx; I < ArgRegs.size();
10171          ++I, VaArgOffset += XLenInBytes) {
10172       const Register Reg = RegInfo.createVirtualRegister(RC);
10173       RegInfo.addLiveIn(ArgRegs[I], Reg);
10174       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
10175       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10176       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10177       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
10178                                    MachinePointerInfo::getFixedStack(MF, FI));
10179       cast<StoreSDNode>(Store.getNode())
10180           ->getMemOperand()
10181           ->setValue((Value *)nullptr);
10182       OutChains.push_back(Store);
10183     }
10184     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
10185   }
10186 
10187   // All stores are grouped in one node to allow the matching between
10188   // the size of Ins and InVals. This only happens for vararg functions.
10189   if (!OutChains.empty()) {
10190     OutChains.push_back(Chain);
10191     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
10192   }
10193 
10194   return Chain;
10195 }
10196 
10197 /// isEligibleForTailCallOptimization - Check whether the call is eligible
10198 /// for tail call optimization.
10199 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
10200 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
10201     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
10202     const SmallVector<CCValAssign, 16> &ArgLocs) const {
10203 
10204   auto &Callee = CLI.Callee;
10205   auto CalleeCC = CLI.CallConv;
10206   auto &Outs = CLI.Outs;
10207   auto &Caller = MF.getFunction();
10208   auto CallerCC = Caller.getCallingConv();
10209 
10210   // Exception-handling functions need a special set of instructions to
10211   // indicate a return to the hardware. Tail-calling another function would
10212   // probably break this.
10213   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
10214   // should be expanded as new function attributes are introduced.
10215   if (Caller.hasFnAttribute("interrupt"))
10216     return false;
10217 
10218   // Do not tail call opt if the stack is used to pass parameters.
10219   if (CCInfo.getNextStackOffset() != 0)
10220     return false;
10221 
10222   // Do not tail call opt if any parameters need to be passed indirectly.
10223   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
10224   // passed indirectly. So the address of the value will be passed in a
10225   // register, or if not available, then the address is put on the stack. In
10226   // order to pass indirectly, space on the stack often needs to be allocated
10227   // in order to store the value. In this case the CCInfo.getNextStackOffset()
10228   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
10229   // are passed CCValAssign::Indirect.
10230   for (auto &VA : ArgLocs)
10231     if (VA.getLocInfo() == CCValAssign::Indirect)
10232       return false;
10233 
10234   // Do not tail call opt if either caller or callee uses struct return
10235   // semantics.
10236   auto IsCallerStructRet = Caller.hasStructRetAttr();
10237   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
10238   if (IsCallerStructRet || IsCalleeStructRet)
10239     return false;
10240 
10241   // Externally-defined functions with weak linkage should not be
10242   // tail-called. The behaviour of branch instructions in this situation (as
10243   // used for tail calls) is implementation-defined, so we cannot rely on the
10244   // linker replacing the tail call with a return.
10245   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
10246     const GlobalValue *GV = G->getGlobal();
10247     if (GV->hasExternalWeakLinkage())
10248       return false;
10249   }
10250 
10251   // The callee has to preserve all registers the caller needs to preserve.
10252   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
10253   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
10254   if (CalleeCC != CallerCC) {
10255     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
10256     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
10257       return false;
10258   }
10259 
10260   // Byval parameters hand the function a pointer directly into the stack area
10261   // we want to reuse during a tail call. Working around this *is* possible
10262   // but less efficient and uglier in LowerCall.
10263   for (auto &Arg : Outs)
10264     if (Arg.Flags.isByVal())
10265       return false;
10266 
10267   return true;
10268 }
10269 
10270 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
10271   return DAG.getDataLayout().getPrefTypeAlign(
10272       VT.getTypeForEVT(*DAG.getContext()));
10273 }
10274 
10275 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
10276 // and output parameter nodes.
10277 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
10278                                        SmallVectorImpl<SDValue> &InVals) const {
10279   SelectionDAG &DAG = CLI.DAG;
10280   SDLoc &DL = CLI.DL;
10281   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
10282   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
10283   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
10284   SDValue Chain = CLI.Chain;
10285   SDValue Callee = CLI.Callee;
10286   bool &IsTailCall = CLI.IsTailCall;
10287   CallingConv::ID CallConv = CLI.CallConv;
10288   bool IsVarArg = CLI.IsVarArg;
10289   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10290   MVT XLenVT = Subtarget.getXLenVT();
10291 
10292   MachineFunction &MF = DAG.getMachineFunction();
10293 
10294   // Analyze the operands of the call, assigning locations to each operand.
10295   SmallVector<CCValAssign, 16> ArgLocs;
10296   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10297 
10298   if (CallConv == CallingConv::GHC)
10299     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
10300   else
10301     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
10302                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10303                                                     : CC_RISCV);
10304 
10305   // Check if it's really possible to do a tail call.
10306   if (IsTailCall)
10307     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
10308 
10309   if (IsTailCall)
10310     ++NumTailCalls;
10311   else if (CLI.CB && CLI.CB->isMustTailCall())
10312     report_fatal_error("failed to perform tail call elimination on a call "
10313                        "site marked musttail");
10314 
10315   // Get a count of how many bytes are to be pushed on the stack.
10316   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
10317 
10318   // Create local copies for byval args
10319   SmallVector<SDValue, 8> ByValArgs;
10320   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10321     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10322     if (!Flags.isByVal())
10323       continue;
10324 
10325     SDValue Arg = OutVals[i];
10326     unsigned Size = Flags.getByValSize();
10327     Align Alignment = Flags.getNonZeroByValAlign();
10328 
10329     int FI =
10330         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
10331     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10332     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
10333 
10334     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
10335                           /*IsVolatile=*/false,
10336                           /*AlwaysInline=*/false, IsTailCall,
10337                           MachinePointerInfo(), MachinePointerInfo());
10338     ByValArgs.push_back(FIPtr);
10339   }
10340 
10341   if (!IsTailCall)
10342     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
10343 
10344   // Copy argument values to their designated locations.
10345   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
10346   SmallVector<SDValue, 8> MemOpChains;
10347   SDValue StackPtr;
10348   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
10349     CCValAssign &VA = ArgLocs[i];
10350     SDValue ArgValue = OutVals[i];
10351     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10352 
10353     // Handle passing f64 on RV32D with a soft float ABI as a special case.
10354     bool IsF64OnRV32DSoftABI =
10355         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
10356     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
10357       SDValue SplitF64 = DAG.getNode(
10358           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
10359       SDValue Lo = SplitF64.getValue(0);
10360       SDValue Hi = SplitF64.getValue(1);
10361 
10362       Register RegLo = VA.getLocReg();
10363       RegsToPass.push_back(std::make_pair(RegLo, Lo));
10364 
10365       if (RegLo == RISCV::X17) {
10366         // Second half of f64 is passed on the stack.
10367         // Work out the address of the stack slot.
10368         if (!StackPtr.getNode())
10369           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10370         // Emit the store.
10371         MemOpChains.push_back(
10372             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
10373       } else {
10374         // Second half of f64 is passed in another GPR.
10375         assert(RegLo < RISCV::X31 && "Invalid register pair");
10376         Register RegHigh = RegLo + 1;
10377         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
10378       }
10379       continue;
10380     }
10381 
10382     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
10383     // as any other MemLoc.
10384 
10385     // Promote the value if needed.
10386     // For now, only handle fully promoted and indirect arguments.
10387     if (VA.getLocInfo() == CCValAssign::Indirect) {
10388       // Store the argument in a stack slot and pass its address.
10389       Align StackAlign =
10390           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
10391                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
10392       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
10393       // If the original argument was split (e.g. i128), we need
10394       // to store the required parts of it here (and pass just one address).
10395       // Vectors may be partly split to registers and partly to the stack, in
10396       // which case the base address is partly offset and subsequent stores are
10397       // relative to that.
10398       unsigned ArgIndex = Outs[i].OrigArgIndex;
10399       unsigned ArgPartOffset = Outs[i].PartOffset;
10400       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10401       // Calculate the total size to store. We don't have access to what we're
10402       // actually storing other than performing the loop and collecting the
10403       // info.
10404       SmallVector<std::pair<SDValue, SDValue>> Parts;
10405       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
10406         SDValue PartValue = OutVals[i + 1];
10407         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
10408         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10409         EVT PartVT = PartValue.getValueType();
10410         if (PartVT.isScalableVector())
10411           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10412         StoredSize += PartVT.getStoreSize();
10413         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
10414         Parts.push_back(std::make_pair(PartValue, Offset));
10415         ++i;
10416       }
10417       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
10418       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
10419       MemOpChains.push_back(
10420           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
10421                        MachinePointerInfo::getFixedStack(MF, FI)));
10422       for (const auto &Part : Parts) {
10423         SDValue PartValue = Part.first;
10424         SDValue PartOffset = Part.second;
10425         SDValue Address =
10426             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
10427         MemOpChains.push_back(
10428             DAG.getStore(Chain, DL, PartValue, Address,
10429                          MachinePointerInfo::getFixedStack(MF, FI)));
10430       }
10431       ArgValue = SpillSlot;
10432     } else {
10433       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
10434     }
10435 
10436     // Use local copy if it is a byval arg.
10437     if (Flags.isByVal())
10438       ArgValue = ByValArgs[j++];
10439 
10440     if (VA.isRegLoc()) {
10441       // Queue up the argument copies and emit them at the end.
10442       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
10443     } else {
10444       assert(VA.isMemLoc() && "Argument not register or memory");
10445       assert(!IsTailCall && "Tail call not allowed if stack is used "
10446                             "for passing parameters");
10447 
10448       // Work out the address of the stack slot.
10449       if (!StackPtr.getNode())
10450         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10451       SDValue Address =
10452           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
10453                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
10454 
10455       // Emit the store.
10456       MemOpChains.push_back(
10457           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
10458     }
10459   }
10460 
10461   // Join the stores, which are independent of one another.
10462   if (!MemOpChains.empty())
10463     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
10464 
10465   SDValue Glue;
10466 
10467   // Build a sequence of copy-to-reg nodes, chained and glued together.
10468   for (auto &Reg : RegsToPass) {
10469     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
10470     Glue = Chain.getValue(1);
10471   }
10472 
10473   // Validate that none of the argument registers have been marked as
10474   // reserved, if so report an error. Do the same for the return address if this
10475   // is not a tailcall.
10476   validateCCReservedRegs(RegsToPass, MF);
10477   if (!IsTailCall &&
10478       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
10479     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10480         MF.getFunction(),
10481         "Return address register required, but has been reserved."});
10482 
10483   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
10484   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
10485   // split it and then direct call can be matched by PseudoCALL.
10486   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
10487     const GlobalValue *GV = S->getGlobal();
10488 
10489     unsigned OpFlags = RISCVII::MO_CALL;
10490     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
10491       OpFlags = RISCVII::MO_PLT;
10492 
10493     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
10494   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
10495     unsigned OpFlags = RISCVII::MO_CALL;
10496 
10497     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
10498                                                  nullptr))
10499       OpFlags = RISCVII::MO_PLT;
10500 
10501     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
10502   }
10503 
10504   // The first call operand is the chain and the second is the target address.
10505   SmallVector<SDValue, 8> Ops;
10506   Ops.push_back(Chain);
10507   Ops.push_back(Callee);
10508 
10509   // Add argument registers to the end of the list so that they are
10510   // known live into the call.
10511   for (auto &Reg : RegsToPass)
10512     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
10513 
10514   if (!IsTailCall) {
10515     // Add a register mask operand representing the call-preserved registers.
10516     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
10517     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
10518     assert(Mask && "Missing call preserved mask for calling convention");
10519     Ops.push_back(DAG.getRegisterMask(Mask));
10520   }
10521 
10522   // Glue the call to the argument copies, if any.
10523   if (Glue.getNode())
10524     Ops.push_back(Glue);
10525 
10526   // Emit the call.
10527   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10528 
10529   if (IsTailCall) {
10530     MF.getFrameInfo().setHasTailCall();
10531     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
10532   }
10533 
10534   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
10535   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
10536   Glue = Chain.getValue(1);
10537 
10538   // Mark the end of the call, which is glued to the call itself.
10539   Chain = DAG.getCALLSEQ_END(Chain,
10540                              DAG.getConstant(NumBytes, DL, PtrVT, true),
10541                              DAG.getConstant(0, DL, PtrVT, true),
10542                              Glue, DL);
10543   Glue = Chain.getValue(1);
10544 
10545   // Assign locations to each value returned by this call.
10546   SmallVector<CCValAssign, 16> RVLocs;
10547   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
10548   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
10549 
10550   // Copy all of the result registers out of their specified physreg.
10551   for (auto &VA : RVLocs) {
10552     // Copy the value out
10553     SDValue RetValue =
10554         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
10555     // Glue the RetValue to the end of the call sequence
10556     Chain = RetValue.getValue(1);
10557     Glue = RetValue.getValue(2);
10558 
10559     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10560       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
10561       SDValue RetValue2 =
10562           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
10563       Chain = RetValue2.getValue(1);
10564       Glue = RetValue2.getValue(2);
10565       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
10566                              RetValue2);
10567     }
10568 
10569     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
10570 
10571     InVals.push_back(RetValue);
10572   }
10573 
10574   return Chain;
10575 }
10576 
10577 bool RISCVTargetLowering::CanLowerReturn(
10578     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
10579     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
10580   SmallVector<CCValAssign, 16> RVLocs;
10581   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
10582 
10583   Optional<unsigned> FirstMaskArgument;
10584   if (Subtarget.hasVInstructions())
10585     FirstMaskArgument = preAssignMask(Outs);
10586 
10587   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10588     MVT VT = Outs[i].VT;
10589     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10590     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10591     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
10592                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
10593                  *this, FirstMaskArgument))
10594       return false;
10595   }
10596   return true;
10597 }
10598 
10599 SDValue
10600 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
10601                                  bool IsVarArg,
10602                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
10603                                  const SmallVectorImpl<SDValue> &OutVals,
10604                                  const SDLoc &DL, SelectionDAG &DAG) const {
10605   const MachineFunction &MF = DAG.getMachineFunction();
10606   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10607 
10608   // Stores the assignment of the return value to a location.
10609   SmallVector<CCValAssign, 16> RVLocs;
10610 
10611   // Info about the registers and stack slot.
10612   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
10613                  *DAG.getContext());
10614 
10615   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
10616                     nullptr, CC_RISCV);
10617 
10618   if (CallConv == CallingConv::GHC && !RVLocs.empty())
10619     report_fatal_error("GHC functions return void only");
10620 
10621   SDValue Glue;
10622   SmallVector<SDValue, 4> RetOps(1, Chain);
10623 
10624   // Copy the result values into the output registers.
10625   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
10626     SDValue Val = OutVals[i];
10627     CCValAssign &VA = RVLocs[i];
10628     assert(VA.isRegLoc() && "Can only return in registers!");
10629 
10630     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10631       // Handle returning f64 on RV32D with a soft float ABI.
10632       assert(VA.isRegLoc() && "Expected return via registers");
10633       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
10634                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
10635       SDValue Lo = SplitF64.getValue(0);
10636       SDValue Hi = SplitF64.getValue(1);
10637       Register RegLo = VA.getLocReg();
10638       assert(RegLo < RISCV::X31 && "Invalid register pair");
10639       Register RegHi = RegLo + 1;
10640 
10641       if (STI.isRegisterReservedByUser(RegLo) ||
10642           STI.isRegisterReservedByUser(RegHi))
10643         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10644             MF.getFunction(),
10645             "Return value register required, but has been reserved."});
10646 
10647       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
10648       Glue = Chain.getValue(1);
10649       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
10650       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
10651       Glue = Chain.getValue(1);
10652       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
10653     } else {
10654       // Handle a 'normal' return.
10655       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
10656       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
10657 
10658       if (STI.isRegisterReservedByUser(VA.getLocReg()))
10659         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10660             MF.getFunction(),
10661             "Return value register required, but has been reserved."});
10662 
10663       // Guarantee that all emitted copies are stuck together.
10664       Glue = Chain.getValue(1);
10665       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
10666     }
10667   }
10668 
10669   RetOps[0] = Chain; // Update chain.
10670 
10671   // Add the glue node if we have it.
10672   if (Glue.getNode()) {
10673     RetOps.push_back(Glue);
10674   }
10675 
10676   unsigned RetOpc = RISCVISD::RET_FLAG;
10677   // Interrupt service routines use different return instructions.
10678   const Function &Func = DAG.getMachineFunction().getFunction();
10679   if (Func.hasFnAttribute("interrupt")) {
10680     if (!Func.getReturnType()->isVoidTy())
10681       report_fatal_error(
10682           "Functions with the interrupt attribute must have void return type!");
10683 
10684     MachineFunction &MF = DAG.getMachineFunction();
10685     StringRef Kind =
10686       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10687 
10688     if (Kind == "user")
10689       RetOpc = RISCVISD::URET_FLAG;
10690     else if (Kind == "supervisor")
10691       RetOpc = RISCVISD::SRET_FLAG;
10692     else
10693       RetOpc = RISCVISD::MRET_FLAG;
10694   }
10695 
10696   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
10697 }
10698 
10699 void RISCVTargetLowering::validateCCReservedRegs(
10700     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
10701     MachineFunction &MF) const {
10702   const Function &F = MF.getFunction();
10703   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10704 
10705   if (llvm::any_of(Regs, [&STI](auto Reg) {
10706         return STI.isRegisterReservedByUser(Reg.first);
10707       }))
10708     F.getContext().diagnose(DiagnosticInfoUnsupported{
10709         F, "Argument register required, but has been reserved."});
10710 }
10711 
10712 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
10713   return CI->isTailCall();
10714 }
10715 
10716 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
10717 #define NODE_NAME_CASE(NODE)                                                   \
10718   case RISCVISD::NODE:                                                         \
10719     return "RISCVISD::" #NODE;
10720   // clang-format off
10721   switch ((RISCVISD::NodeType)Opcode) {
10722   case RISCVISD::FIRST_NUMBER:
10723     break;
10724   NODE_NAME_CASE(RET_FLAG)
10725   NODE_NAME_CASE(URET_FLAG)
10726   NODE_NAME_CASE(SRET_FLAG)
10727   NODE_NAME_CASE(MRET_FLAG)
10728   NODE_NAME_CASE(CALL)
10729   NODE_NAME_CASE(SELECT_CC)
10730   NODE_NAME_CASE(BR_CC)
10731   NODE_NAME_CASE(BuildPairF64)
10732   NODE_NAME_CASE(SplitF64)
10733   NODE_NAME_CASE(TAIL)
10734   NODE_NAME_CASE(MULHSU)
10735   NODE_NAME_CASE(SLLW)
10736   NODE_NAME_CASE(SRAW)
10737   NODE_NAME_CASE(SRLW)
10738   NODE_NAME_CASE(DIVW)
10739   NODE_NAME_CASE(DIVUW)
10740   NODE_NAME_CASE(REMUW)
10741   NODE_NAME_CASE(ROLW)
10742   NODE_NAME_CASE(RORW)
10743   NODE_NAME_CASE(CLZW)
10744   NODE_NAME_CASE(CTZW)
10745   NODE_NAME_CASE(FSLW)
10746   NODE_NAME_CASE(FSRW)
10747   NODE_NAME_CASE(FSL)
10748   NODE_NAME_CASE(FSR)
10749   NODE_NAME_CASE(FMV_H_X)
10750   NODE_NAME_CASE(FMV_X_ANYEXTH)
10751   NODE_NAME_CASE(FMV_X_SIGNEXTH)
10752   NODE_NAME_CASE(FMV_W_X_RV64)
10753   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
10754   NODE_NAME_CASE(FCVT_X)
10755   NODE_NAME_CASE(FCVT_XU)
10756   NODE_NAME_CASE(FCVT_W_RV64)
10757   NODE_NAME_CASE(FCVT_WU_RV64)
10758   NODE_NAME_CASE(STRICT_FCVT_W_RV64)
10759   NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
10760   NODE_NAME_CASE(READ_CYCLE_WIDE)
10761   NODE_NAME_CASE(GREV)
10762   NODE_NAME_CASE(GREVW)
10763   NODE_NAME_CASE(GORC)
10764   NODE_NAME_CASE(GORCW)
10765   NODE_NAME_CASE(SHFL)
10766   NODE_NAME_CASE(SHFLW)
10767   NODE_NAME_CASE(UNSHFL)
10768   NODE_NAME_CASE(UNSHFLW)
10769   NODE_NAME_CASE(BFP)
10770   NODE_NAME_CASE(BFPW)
10771   NODE_NAME_CASE(BCOMPRESS)
10772   NODE_NAME_CASE(BCOMPRESSW)
10773   NODE_NAME_CASE(BDECOMPRESS)
10774   NODE_NAME_CASE(BDECOMPRESSW)
10775   NODE_NAME_CASE(VMV_V_X_VL)
10776   NODE_NAME_CASE(VFMV_V_F_VL)
10777   NODE_NAME_CASE(VMV_X_S)
10778   NODE_NAME_CASE(VMV_S_X_VL)
10779   NODE_NAME_CASE(VFMV_S_F_VL)
10780   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
10781   NODE_NAME_CASE(READ_VLENB)
10782   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
10783   NODE_NAME_CASE(VSLIDEUP_VL)
10784   NODE_NAME_CASE(VSLIDE1UP_VL)
10785   NODE_NAME_CASE(VSLIDEDOWN_VL)
10786   NODE_NAME_CASE(VSLIDE1DOWN_VL)
10787   NODE_NAME_CASE(VID_VL)
10788   NODE_NAME_CASE(VFNCVT_ROD_VL)
10789   NODE_NAME_CASE(VECREDUCE_ADD_VL)
10790   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
10791   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
10792   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
10793   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
10794   NODE_NAME_CASE(VECREDUCE_AND_VL)
10795   NODE_NAME_CASE(VECREDUCE_OR_VL)
10796   NODE_NAME_CASE(VECREDUCE_XOR_VL)
10797   NODE_NAME_CASE(VECREDUCE_FADD_VL)
10798   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
10799   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
10800   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
10801   NODE_NAME_CASE(ADD_VL)
10802   NODE_NAME_CASE(AND_VL)
10803   NODE_NAME_CASE(MUL_VL)
10804   NODE_NAME_CASE(OR_VL)
10805   NODE_NAME_CASE(SDIV_VL)
10806   NODE_NAME_CASE(SHL_VL)
10807   NODE_NAME_CASE(SREM_VL)
10808   NODE_NAME_CASE(SRA_VL)
10809   NODE_NAME_CASE(SRL_VL)
10810   NODE_NAME_CASE(SUB_VL)
10811   NODE_NAME_CASE(UDIV_VL)
10812   NODE_NAME_CASE(UREM_VL)
10813   NODE_NAME_CASE(XOR_VL)
10814   NODE_NAME_CASE(SADDSAT_VL)
10815   NODE_NAME_CASE(UADDSAT_VL)
10816   NODE_NAME_CASE(SSUBSAT_VL)
10817   NODE_NAME_CASE(USUBSAT_VL)
10818   NODE_NAME_CASE(FADD_VL)
10819   NODE_NAME_CASE(FSUB_VL)
10820   NODE_NAME_CASE(FMUL_VL)
10821   NODE_NAME_CASE(FDIV_VL)
10822   NODE_NAME_CASE(FNEG_VL)
10823   NODE_NAME_CASE(FABS_VL)
10824   NODE_NAME_CASE(FSQRT_VL)
10825   NODE_NAME_CASE(FMA_VL)
10826   NODE_NAME_CASE(FCOPYSIGN_VL)
10827   NODE_NAME_CASE(SMIN_VL)
10828   NODE_NAME_CASE(SMAX_VL)
10829   NODE_NAME_CASE(UMIN_VL)
10830   NODE_NAME_CASE(UMAX_VL)
10831   NODE_NAME_CASE(FMINNUM_VL)
10832   NODE_NAME_CASE(FMAXNUM_VL)
10833   NODE_NAME_CASE(MULHS_VL)
10834   NODE_NAME_CASE(MULHU_VL)
10835   NODE_NAME_CASE(FP_TO_SINT_VL)
10836   NODE_NAME_CASE(FP_TO_UINT_VL)
10837   NODE_NAME_CASE(SINT_TO_FP_VL)
10838   NODE_NAME_CASE(UINT_TO_FP_VL)
10839   NODE_NAME_CASE(FP_EXTEND_VL)
10840   NODE_NAME_CASE(FP_ROUND_VL)
10841   NODE_NAME_CASE(VWMUL_VL)
10842   NODE_NAME_CASE(VWMULU_VL)
10843   NODE_NAME_CASE(VWMULSU_VL)
10844   NODE_NAME_CASE(VWADD_VL)
10845   NODE_NAME_CASE(VWADDU_VL)
10846   NODE_NAME_CASE(VWSUB_VL)
10847   NODE_NAME_CASE(VWSUBU_VL)
10848   NODE_NAME_CASE(VWADD_W_VL)
10849   NODE_NAME_CASE(VWADDU_W_VL)
10850   NODE_NAME_CASE(VWSUB_W_VL)
10851   NODE_NAME_CASE(VWSUBU_W_VL)
10852   NODE_NAME_CASE(SETCC_VL)
10853   NODE_NAME_CASE(VSELECT_VL)
10854   NODE_NAME_CASE(VP_MERGE_VL)
10855   NODE_NAME_CASE(VMAND_VL)
10856   NODE_NAME_CASE(VMOR_VL)
10857   NODE_NAME_CASE(VMXOR_VL)
10858   NODE_NAME_CASE(VMCLR_VL)
10859   NODE_NAME_CASE(VMSET_VL)
10860   NODE_NAME_CASE(VRGATHER_VX_VL)
10861   NODE_NAME_CASE(VRGATHER_VV_VL)
10862   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
10863   NODE_NAME_CASE(VSEXT_VL)
10864   NODE_NAME_CASE(VZEXT_VL)
10865   NODE_NAME_CASE(VCPOP_VL)
10866   NODE_NAME_CASE(READ_CSR)
10867   NODE_NAME_CASE(WRITE_CSR)
10868   NODE_NAME_CASE(SWAP_CSR)
10869   }
10870   // clang-format on
10871   return nullptr;
10872 #undef NODE_NAME_CASE
10873 }
10874 
10875 /// getConstraintType - Given a constraint letter, return the type of
10876 /// constraint it is for this target.
10877 RISCVTargetLowering::ConstraintType
10878 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
10879   if (Constraint.size() == 1) {
10880     switch (Constraint[0]) {
10881     default:
10882       break;
10883     case 'f':
10884       return C_RegisterClass;
10885     case 'I':
10886     case 'J':
10887     case 'K':
10888       return C_Immediate;
10889     case 'A':
10890       return C_Memory;
10891     case 'S': // A symbolic address
10892       return C_Other;
10893     }
10894   } else {
10895     if (Constraint == "vr" || Constraint == "vm")
10896       return C_RegisterClass;
10897   }
10898   return TargetLowering::getConstraintType(Constraint);
10899 }
10900 
10901 std::pair<unsigned, const TargetRegisterClass *>
10902 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
10903                                                   StringRef Constraint,
10904                                                   MVT VT) const {
10905   // First, see if this is a constraint that directly corresponds to a
10906   // RISCV register class.
10907   if (Constraint.size() == 1) {
10908     switch (Constraint[0]) {
10909     case 'r':
10910       // TODO: Support fixed vectors up to XLen for P extension?
10911       if (VT.isVector())
10912         break;
10913       return std::make_pair(0U, &RISCV::GPRRegClass);
10914     case 'f':
10915       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
10916         return std::make_pair(0U, &RISCV::FPR16RegClass);
10917       if (Subtarget.hasStdExtF() && VT == MVT::f32)
10918         return std::make_pair(0U, &RISCV::FPR32RegClass);
10919       if (Subtarget.hasStdExtD() && VT == MVT::f64)
10920         return std::make_pair(0U, &RISCV::FPR64RegClass);
10921       break;
10922     default:
10923       break;
10924     }
10925   } else if (Constraint == "vr") {
10926     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
10927                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
10928       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
10929         return std::make_pair(0U, RC);
10930     }
10931   } else if (Constraint == "vm") {
10932     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
10933       return std::make_pair(0U, &RISCV::VMV0RegClass);
10934   }
10935 
10936   // Clang will correctly decode the usage of register name aliases into their
10937   // official names. However, other frontends like `rustc` do not. This allows
10938   // users of these frontends to use the ABI names for registers in LLVM-style
10939   // register constraints.
10940   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
10941                                .Case("{zero}", RISCV::X0)
10942                                .Case("{ra}", RISCV::X1)
10943                                .Case("{sp}", RISCV::X2)
10944                                .Case("{gp}", RISCV::X3)
10945                                .Case("{tp}", RISCV::X4)
10946                                .Case("{t0}", RISCV::X5)
10947                                .Case("{t1}", RISCV::X6)
10948                                .Case("{t2}", RISCV::X7)
10949                                .Cases("{s0}", "{fp}", RISCV::X8)
10950                                .Case("{s1}", RISCV::X9)
10951                                .Case("{a0}", RISCV::X10)
10952                                .Case("{a1}", RISCV::X11)
10953                                .Case("{a2}", RISCV::X12)
10954                                .Case("{a3}", RISCV::X13)
10955                                .Case("{a4}", RISCV::X14)
10956                                .Case("{a5}", RISCV::X15)
10957                                .Case("{a6}", RISCV::X16)
10958                                .Case("{a7}", RISCV::X17)
10959                                .Case("{s2}", RISCV::X18)
10960                                .Case("{s3}", RISCV::X19)
10961                                .Case("{s4}", RISCV::X20)
10962                                .Case("{s5}", RISCV::X21)
10963                                .Case("{s6}", RISCV::X22)
10964                                .Case("{s7}", RISCV::X23)
10965                                .Case("{s8}", RISCV::X24)
10966                                .Case("{s9}", RISCV::X25)
10967                                .Case("{s10}", RISCV::X26)
10968                                .Case("{s11}", RISCV::X27)
10969                                .Case("{t3}", RISCV::X28)
10970                                .Case("{t4}", RISCV::X29)
10971                                .Case("{t5}", RISCV::X30)
10972                                .Case("{t6}", RISCV::X31)
10973                                .Default(RISCV::NoRegister);
10974   if (XRegFromAlias != RISCV::NoRegister)
10975     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
10976 
10977   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
10978   // TableGen record rather than the AsmName to choose registers for InlineAsm
10979   // constraints, plus we want to match those names to the widest floating point
10980   // register type available, manually select floating point registers here.
10981   //
10982   // The second case is the ABI name of the register, so that frontends can also
10983   // use the ABI names in register constraint lists.
10984   if (Subtarget.hasStdExtF()) {
10985     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
10986                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
10987                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
10988                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
10989                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
10990                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
10991                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
10992                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
10993                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
10994                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
10995                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
10996                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
10997                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
10998                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
10999                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
11000                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
11001                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
11002                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
11003                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
11004                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
11005                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
11006                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
11007                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
11008                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
11009                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
11010                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
11011                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
11012                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
11013                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
11014                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
11015                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
11016                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
11017                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
11018                         .Default(RISCV::NoRegister);
11019     if (FReg != RISCV::NoRegister) {
11020       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
11021       if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
11022         unsigned RegNo = FReg - RISCV::F0_F;
11023         unsigned DReg = RISCV::F0_D + RegNo;
11024         return std::make_pair(DReg, &RISCV::FPR64RegClass);
11025       }
11026       if (VT == MVT::f32 || VT == MVT::Other)
11027         return std::make_pair(FReg, &RISCV::FPR32RegClass);
11028       if (Subtarget.hasStdExtZfh() && VT == MVT::f16) {
11029         unsigned RegNo = FReg - RISCV::F0_F;
11030         unsigned HReg = RISCV::F0_H + RegNo;
11031         return std::make_pair(HReg, &RISCV::FPR16RegClass);
11032       }
11033     }
11034   }
11035 
11036   if (Subtarget.hasVInstructions()) {
11037     Register VReg = StringSwitch<Register>(Constraint.lower())
11038                         .Case("{v0}", RISCV::V0)
11039                         .Case("{v1}", RISCV::V1)
11040                         .Case("{v2}", RISCV::V2)
11041                         .Case("{v3}", RISCV::V3)
11042                         .Case("{v4}", RISCV::V4)
11043                         .Case("{v5}", RISCV::V5)
11044                         .Case("{v6}", RISCV::V6)
11045                         .Case("{v7}", RISCV::V7)
11046                         .Case("{v8}", RISCV::V8)
11047                         .Case("{v9}", RISCV::V9)
11048                         .Case("{v10}", RISCV::V10)
11049                         .Case("{v11}", RISCV::V11)
11050                         .Case("{v12}", RISCV::V12)
11051                         .Case("{v13}", RISCV::V13)
11052                         .Case("{v14}", RISCV::V14)
11053                         .Case("{v15}", RISCV::V15)
11054                         .Case("{v16}", RISCV::V16)
11055                         .Case("{v17}", RISCV::V17)
11056                         .Case("{v18}", RISCV::V18)
11057                         .Case("{v19}", RISCV::V19)
11058                         .Case("{v20}", RISCV::V20)
11059                         .Case("{v21}", RISCV::V21)
11060                         .Case("{v22}", RISCV::V22)
11061                         .Case("{v23}", RISCV::V23)
11062                         .Case("{v24}", RISCV::V24)
11063                         .Case("{v25}", RISCV::V25)
11064                         .Case("{v26}", RISCV::V26)
11065                         .Case("{v27}", RISCV::V27)
11066                         .Case("{v28}", RISCV::V28)
11067                         .Case("{v29}", RISCV::V29)
11068                         .Case("{v30}", RISCV::V30)
11069                         .Case("{v31}", RISCV::V31)
11070                         .Default(RISCV::NoRegister);
11071     if (VReg != RISCV::NoRegister) {
11072       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
11073         return std::make_pair(VReg, &RISCV::VMRegClass);
11074       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
11075         return std::make_pair(VReg, &RISCV::VRRegClass);
11076       for (const auto *RC :
11077            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11078         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
11079           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
11080           return std::make_pair(VReg, RC);
11081         }
11082       }
11083     }
11084   }
11085 
11086   std::pair<Register, const TargetRegisterClass *> Res =
11087       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11088 
11089   // If we picked one of the Zfinx register classes, remap it to the GPR class.
11090   // FIXME: When Zfinx is supported in CodeGen this will need to take the
11091   // Subtarget into account.
11092   if (Res.second == &RISCV::GPRF16RegClass ||
11093       Res.second == &RISCV::GPRF32RegClass ||
11094       Res.second == &RISCV::GPRF64RegClass)
11095     return std::make_pair(Res.first, &RISCV::GPRRegClass);
11096 
11097   return Res;
11098 }
11099 
11100 unsigned
11101 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
11102   // Currently only support length 1 constraints.
11103   if (ConstraintCode.size() == 1) {
11104     switch (ConstraintCode[0]) {
11105     case 'A':
11106       return InlineAsm::Constraint_A;
11107     default:
11108       break;
11109     }
11110   }
11111 
11112   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
11113 }
11114 
11115 void RISCVTargetLowering::LowerAsmOperandForConstraint(
11116     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
11117     SelectionDAG &DAG) const {
11118   // Currently only support length 1 constraints.
11119   if (Constraint.length() == 1) {
11120     switch (Constraint[0]) {
11121     case 'I':
11122       // Validate & create a 12-bit signed immediate operand.
11123       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11124         uint64_t CVal = C->getSExtValue();
11125         if (isInt<12>(CVal))
11126           Ops.push_back(
11127               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11128       }
11129       return;
11130     case 'J':
11131       // Validate & create an integer zero operand.
11132       if (auto *C = dyn_cast<ConstantSDNode>(Op))
11133         if (C->getZExtValue() == 0)
11134           Ops.push_back(
11135               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
11136       return;
11137     case 'K':
11138       // Validate & create a 5-bit unsigned immediate operand.
11139       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11140         uint64_t CVal = C->getZExtValue();
11141         if (isUInt<5>(CVal))
11142           Ops.push_back(
11143               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11144       }
11145       return;
11146     case 'S':
11147       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
11148         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
11149                                                  GA->getValueType(0)));
11150       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
11151         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
11152                                                 BA->getValueType(0)));
11153       }
11154       return;
11155     default:
11156       break;
11157     }
11158   }
11159   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11160 }
11161 
11162 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
11163                                                    Instruction *Inst,
11164                                                    AtomicOrdering Ord) const {
11165   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
11166     return Builder.CreateFence(Ord);
11167   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
11168     return Builder.CreateFence(AtomicOrdering::Release);
11169   return nullptr;
11170 }
11171 
11172 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
11173                                                     Instruction *Inst,
11174                                                     AtomicOrdering Ord) const {
11175   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
11176     return Builder.CreateFence(AtomicOrdering::Acquire);
11177   return nullptr;
11178 }
11179 
11180 TargetLowering::AtomicExpansionKind
11181 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
11182   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
11183   // point operations can't be used in an lr/sc sequence without breaking the
11184   // forward-progress guarantee.
11185   if (AI->isFloatingPointOperation())
11186     return AtomicExpansionKind::CmpXChg;
11187 
11188   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
11189   if (Size == 8 || Size == 16)
11190     return AtomicExpansionKind::MaskedIntrinsic;
11191   return AtomicExpansionKind::None;
11192 }
11193 
11194 static Intrinsic::ID
11195 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
11196   if (XLen == 32) {
11197     switch (BinOp) {
11198     default:
11199       llvm_unreachable("Unexpected AtomicRMW BinOp");
11200     case AtomicRMWInst::Xchg:
11201       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
11202     case AtomicRMWInst::Add:
11203       return Intrinsic::riscv_masked_atomicrmw_add_i32;
11204     case AtomicRMWInst::Sub:
11205       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
11206     case AtomicRMWInst::Nand:
11207       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
11208     case AtomicRMWInst::Max:
11209       return Intrinsic::riscv_masked_atomicrmw_max_i32;
11210     case AtomicRMWInst::Min:
11211       return Intrinsic::riscv_masked_atomicrmw_min_i32;
11212     case AtomicRMWInst::UMax:
11213       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
11214     case AtomicRMWInst::UMin:
11215       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
11216     }
11217   }
11218 
11219   if (XLen == 64) {
11220     switch (BinOp) {
11221     default:
11222       llvm_unreachable("Unexpected AtomicRMW BinOp");
11223     case AtomicRMWInst::Xchg:
11224       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
11225     case AtomicRMWInst::Add:
11226       return Intrinsic::riscv_masked_atomicrmw_add_i64;
11227     case AtomicRMWInst::Sub:
11228       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
11229     case AtomicRMWInst::Nand:
11230       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
11231     case AtomicRMWInst::Max:
11232       return Intrinsic::riscv_masked_atomicrmw_max_i64;
11233     case AtomicRMWInst::Min:
11234       return Intrinsic::riscv_masked_atomicrmw_min_i64;
11235     case AtomicRMWInst::UMax:
11236       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
11237     case AtomicRMWInst::UMin:
11238       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
11239     }
11240   }
11241 
11242   llvm_unreachable("Unexpected XLen\n");
11243 }
11244 
11245 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
11246     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
11247     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
11248   unsigned XLen = Subtarget.getXLen();
11249   Value *Ordering =
11250       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
11251   Type *Tys[] = {AlignedAddr->getType()};
11252   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
11253       AI->getModule(),
11254       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
11255 
11256   if (XLen == 64) {
11257     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
11258     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11259     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
11260   }
11261 
11262   Value *Result;
11263 
11264   // Must pass the shift amount needed to sign extend the loaded value prior
11265   // to performing a signed comparison for min/max. ShiftAmt is the number of
11266   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
11267   // is the number of bits to left+right shift the value in order to
11268   // sign-extend.
11269   if (AI->getOperation() == AtomicRMWInst::Min ||
11270       AI->getOperation() == AtomicRMWInst::Max) {
11271     const DataLayout &DL = AI->getModule()->getDataLayout();
11272     unsigned ValWidth =
11273         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
11274     Value *SextShamt =
11275         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
11276     Result = Builder.CreateCall(LrwOpScwLoop,
11277                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
11278   } else {
11279     Result =
11280         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
11281   }
11282 
11283   if (XLen == 64)
11284     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11285   return Result;
11286 }
11287 
11288 TargetLowering::AtomicExpansionKind
11289 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
11290     AtomicCmpXchgInst *CI) const {
11291   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
11292   if (Size == 8 || Size == 16)
11293     return AtomicExpansionKind::MaskedIntrinsic;
11294   return AtomicExpansionKind::None;
11295 }
11296 
11297 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
11298     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
11299     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
11300   unsigned XLen = Subtarget.getXLen();
11301   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
11302   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
11303   if (XLen == 64) {
11304     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
11305     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
11306     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11307     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
11308   }
11309   Type *Tys[] = {AlignedAddr->getType()};
11310   Function *MaskedCmpXchg =
11311       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
11312   Value *Result = Builder.CreateCall(
11313       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
11314   if (XLen == 64)
11315     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11316   return Result;
11317 }
11318 
11319 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
11320   return false;
11321 }
11322 
11323 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
11324                                                EVT VT) const {
11325   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
11326     return false;
11327 
11328   switch (FPVT.getSimpleVT().SimpleTy) {
11329   case MVT::f16:
11330     return Subtarget.hasStdExtZfh();
11331   case MVT::f32:
11332     return Subtarget.hasStdExtF();
11333   case MVT::f64:
11334     return Subtarget.hasStdExtD();
11335   default:
11336     return false;
11337   }
11338 }
11339 
11340 unsigned RISCVTargetLowering::getJumpTableEncoding() const {
11341   // If we are using the small code model, we can reduce size of jump table
11342   // entry to 4 bytes.
11343   if (Subtarget.is64Bit() && !isPositionIndependent() &&
11344       getTargetMachine().getCodeModel() == CodeModel::Small) {
11345     return MachineJumpTableInfo::EK_Custom32;
11346   }
11347   return TargetLowering::getJumpTableEncoding();
11348 }
11349 
11350 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
11351     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
11352     unsigned uid, MCContext &Ctx) const {
11353   assert(Subtarget.is64Bit() && !isPositionIndependent() &&
11354          getTargetMachine().getCodeModel() == CodeModel::Small);
11355   return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
11356 }
11357 
11358 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
11359                                                      EVT VT) const {
11360   VT = VT.getScalarType();
11361 
11362   if (!VT.isSimple())
11363     return false;
11364 
11365   switch (VT.getSimpleVT().SimpleTy) {
11366   case MVT::f16:
11367     return Subtarget.hasStdExtZfh();
11368   case MVT::f32:
11369     return Subtarget.hasStdExtF();
11370   case MVT::f64:
11371     return Subtarget.hasStdExtD();
11372   default:
11373     break;
11374   }
11375 
11376   return false;
11377 }
11378 
11379 Register RISCVTargetLowering::getExceptionPointerRegister(
11380     const Constant *PersonalityFn) const {
11381   return RISCV::X10;
11382 }
11383 
11384 Register RISCVTargetLowering::getExceptionSelectorRegister(
11385     const Constant *PersonalityFn) const {
11386   return RISCV::X11;
11387 }
11388 
11389 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
11390   // Return false to suppress the unnecessary extensions if the LibCall
11391   // arguments or return value is f32 type for LP64 ABI.
11392   RISCVABI::ABI ABI = Subtarget.getTargetABI();
11393   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
11394     return false;
11395 
11396   return true;
11397 }
11398 
11399 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
11400   if (Subtarget.is64Bit() && Type == MVT::i32)
11401     return true;
11402 
11403   return IsSigned;
11404 }
11405 
11406 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
11407                                                  SDValue C) const {
11408   // Check integral scalar types.
11409   if (VT.isScalarInteger()) {
11410     // Omit the optimization if the sub target has the M extension and the data
11411     // size exceeds XLen.
11412     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
11413       return false;
11414     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
11415       // Break the MUL to a SLLI and an ADD/SUB.
11416       const APInt &Imm = ConstNode->getAPIntValue();
11417       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
11418           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
11419         return true;
11420       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
11421       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
11422           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
11423            (Imm - 8).isPowerOf2()))
11424         return true;
11425       // Omit the following optimization if the sub target has the M extension
11426       // and the data size >= XLen.
11427       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
11428         return false;
11429       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
11430       // a pair of LUI/ADDI.
11431       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
11432         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
11433         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
11434             (1 - ImmS).isPowerOf2())
11435         return true;
11436       }
11437     }
11438   }
11439 
11440   return false;
11441 }
11442 
11443 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
11444                                                       SDValue ConstNode) const {
11445   // Let the DAGCombiner decide for vectors.
11446   EVT VT = AddNode.getValueType();
11447   if (VT.isVector())
11448     return true;
11449 
11450   // Let the DAGCombiner decide for larger types.
11451   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
11452     return true;
11453 
11454   // It is worse if c1 is simm12 while c1*c2 is not.
11455   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
11456   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
11457   const APInt &C1 = C1Node->getAPIntValue();
11458   const APInt &C2 = C2Node->getAPIntValue();
11459   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
11460     return false;
11461 
11462   // Default to true and let the DAGCombiner decide.
11463   return true;
11464 }
11465 
11466 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
11467     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
11468     bool *Fast) const {
11469   if (!VT.isVector())
11470     return false;
11471 
11472   EVT ElemVT = VT.getVectorElementType();
11473   if (Alignment >= ElemVT.getStoreSize()) {
11474     if (Fast)
11475       *Fast = true;
11476     return true;
11477   }
11478 
11479   return false;
11480 }
11481 
11482 bool RISCVTargetLowering::splitValueIntoRegisterParts(
11483     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
11484     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
11485   bool IsABIRegCopy = CC.hasValue();
11486   EVT ValueVT = Val.getValueType();
11487   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11488     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
11489     // and cast to f32.
11490     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
11491     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
11492     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
11493                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
11494     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
11495     Parts[0] = Val;
11496     return true;
11497   }
11498 
11499   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11500     LLVMContext &Context = *DAG.getContext();
11501     EVT ValueEltVT = ValueVT.getVectorElementType();
11502     EVT PartEltVT = PartVT.getVectorElementType();
11503     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11504     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11505     if (PartVTBitSize % ValueVTBitSize == 0) {
11506       assert(PartVTBitSize >= ValueVTBitSize);
11507       // If the element types are different, bitcast to the same element type of
11508       // PartVT first.
11509       // Give an example here, we want copy a <vscale x 1 x i8> value to
11510       // <vscale x 4 x i16>.
11511       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
11512       // subvector, then we can bitcast to <vscale x 4 x i16>.
11513       if (ValueEltVT != PartEltVT) {
11514         if (PartVTBitSize > ValueVTBitSize) {
11515           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11516           assert(Count != 0 && "The number of element should not be zero.");
11517           EVT SameEltTypeVT =
11518               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11519           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
11520                             DAG.getUNDEF(SameEltTypeVT), Val,
11521                             DAG.getVectorIdxConstant(0, DL));
11522         }
11523         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
11524       } else {
11525         Val =
11526             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
11527                         Val, DAG.getVectorIdxConstant(0, DL));
11528       }
11529       Parts[0] = Val;
11530       return true;
11531     }
11532   }
11533   return false;
11534 }
11535 
11536 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
11537     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
11538     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
11539   bool IsABIRegCopy = CC.hasValue();
11540   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11541     SDValue Val = Parts[0];
11542 
11543     // Cast the f32 to i32, truncate to i16, and cast back to f16.
11544     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
11545     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
11546     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
11547     return Val;
11548   }
11549 
11550   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11551     LLVMContext &Context = *DAG.getContext();
11552     SDValue Val = Parts[0];
11553     EVT ValueEltVT = ValueVT.getVectorElementType();
11554     EVT PartEltVT = PartVT.getVectorElementType();
11555     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11556     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11557     if (PartVTBitSize % ValueVTBitSize == 0) {
11558       assert(PartVTBitSize >= ValueVTBitSize);
11559       EVT SameEltTypeVT = ValueVT;
11560       // If the element types are different, convert it to the same element type
11561       // of PartVT.
11562       // Give an example here, we want copy a <vscale x 1 x i8> value from
11563       // <vscale x 4 x i16>.
11564       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
11565       // then we can extract <vscale x 1 x i8>.
11566       if (ValueEltVT != PartEltVT) {
11567         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11568         assert(Count != 0 && "The number of element should not be zero.");
11569         SameEltTypeVT =
11570             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11571         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
11572       }
11573       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
11574                         DAG.getVectorIdxConstant(0, DL));
11575       return Val;
11576     }
11577   }
11578   return SDValue();
11579 }
11580 
11581 SDValue
11582 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
11583                                    SelectionDAG &DAG,
11584                                    SmallVectorImpl<SDNode *> &Created) const {
11585   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
11586   if (isIntDivCheap(N->getValueType(0), Attr))
11587     return SDValue(N, 0); // Lower SDIV as SDIV
11588 
11589   assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) &&
11590          "Unexpected divisor!");
11591 
11592   // Conditional move is needed, so do the transformation iff Zbt is enabled.
11593   if (!Subtarget.hasStdExtZbt())
11594     return SDValue();
11595 
11596   // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation.
11597   // Besides, more critical path instructions will be generated when dividing
11598   // by 2. So we keep using the original DAGs for these cases.
11599   unsigned Lg2 = Divisor.countTrailingZeros();
11600   if (Lg2 == 1 || Lg2 >= 12)
11601     return SDValue();
11602 
11603   // fold (sdiv X, pow2)
11604   EVT VT = N->getValueType(0);
11605   if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64))
11606     return SDValue();
11607 
11608   SDLoc DL(N);
11609   SDValue N0 = N->getOperand(0);
11610   SDValue Zero = DAG.getConstant(0, DL, VT);
11611   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
11612 
11613   // Add (N0 < 0) ? Pow2 - 1 : 0;
11614   SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT);
11615   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
11616   SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
11617 
11618   Created.push_back(Cmp.getNode());
11619   Created.push_back(Add.getNode());
11620   Created.push_back(Sel.getNode());
11621 
11622   // Divide by pow2.
11623   SDValue SRA =
11624       DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT));
11625 
11626   // If we're dividing by a positive value, we're done.  Otherwise, we must
11627   // negate the result.
11628   if (Divisor.isNonNegative())
11629     return SRA;
11630 
11631   Created.push_back(SRA.getNode());
11632   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
11633 }
11634 
11635 #define GET_REGISTER_MATCHER
11636 #include "RISCVGenAsmMatcher.inc"
11637 
11638 Register
11639 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
11640                                        const MachineFunction &MF) const {
11641   Register Reg = MatchRegisterAltName(RegName);
11642   if (Reg == RISCV::NoRegister)
11643     Reg = MatchRegisterName(RegName);
11644   if (Reg == RISCV::NoRegister)
11645     report_fatal_error(
11646         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
11647   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
11648   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
11649     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
11650                              StringRef(RegName) + "\"."));
11651   return Reg;
11652 }
11653 
11654 namespace llvm {
11655 namespace RISCVVIntrinsicsTable {
11656 
11657 #define GET_RISCVVIntrinsicsTable_IMPL
11658 #include "RISCVGenSearchableTables.inc"
11659 
11660 } // namespace RISCVVIntrinsicsTable
11661 
11662 } // namespace llvm
11663