1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicsRISCV.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "riscv-lower"
45 
46 STATISTIC(NumTailCalls, "Number of tail calls");
47 
48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
49                                          const RISCVSubtarget &STI)
50     : TargetLowering(TM), Subtarget(STI) {
51 
52   if (Subtarget.isRV32E())
53     report_fatal_error("Codegen not yet implemented for RV32E");
54 
55   RISCVABI::ABI ABI = Subtarget.getTargetABI();
56   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
57 
58   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
59       !Subtarget.hasStdExtF()) {
60     errs() << "Hard-float 'f' ABI can't be used for a target that "
61                 "doesn't support the F instruction set extension (ignoring "
62                           "target-abi)\n";
63     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
64   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
65              !Subtarget.hasStdExtD()) {
66     errs() << "Hard-float 'd' ABI can't be used for a target that "
67               "doesn't support the D instruction set extension (ignoring "
68               "target-abi)\n";
69     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
70   }
71 
72   switch (ABI) {
73   default:
74     report_fatal_error("Don't know how to lower this ABI");
75   case RISCVABI::ABI_ILP32:
76   case RISCVABI::ABI_ILP32F:
77   case RISCVABI::ABI_ILP32D:
78   case RISCVABI::ABI_LP64:
79   case RISCVABI::ABI_LP64F:
80   case RISCVABI::ABI_LP64D:
81     break;
82   }
83 
84   MVT XLenVT = Subtarget.getXLenVT();
85 
86   // Set up the register classes.
87   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
88 
89   if (Subtarget.hasStdExtZfh())
90     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
91   if (Subtarget.hasStdExtF())
92     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
93   if (Subtarget.hasStdExtD())
94     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
95 
96   static const MVT::SimpleValueType BoolVecVTs[] = {
97       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
98       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
99   static const MVT::SimpleValueType IntVecVTs[] = {
100       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
101       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
102       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
103       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
104       MVT::nxv4i64, MVT::nxv8i64};
105   static const MVT::SimpleValueType F16VecVTs[] = {
106       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
107       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
108   static const MVT::SimpleValueType F32VecVTs[] = {
109       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
110   static const MVT::SimpleValueType F64VecVTs[] = {
111       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
112 
113   if (Subtarget.hasVInstructions()) {
114     auto addRegClassForRVV = [this](MVT VT) {
115       unsigned Size = VT.getSizeInBits().getKnownMinValue();
116       assert(Size <= 512 && isPowerOf2_32(Size));
117       const TargetRegisterClass *RC;
118       if (Size <= 64)
119         RC = &RISCV::VRRegClass;
120       else if (Size == 128)
121         RC = &RISCV::VRM2RegClass;
122       else if (Size == 256)
123         RC = &RISCV::VRM4RegClass;
124       else
125         RC = &RISCV::VRM8RegClass;
126 
127       addRegisterClass(VT, RC);
128     };
129 
130     for (MVT VT : BoolVecVTs)
131       addRegClassForRVV(VT);
132     for (MVT VT : IntVecVTs) {
133       if (VT.getVectorElementType() == MVT::i64 &&
134           !Subtarget.hasVInstructionsI64())
135         continue;
136       addRegClassForRVV(VT);
137     }
138 
139     if (Subtarget.hasVInstructionsF16())
140       for (MVT VT : F16VecVTs)
141         addRegClassForRVV(VT);
142 
143     if (Subtarget.hasVInstructionsF32())
144       for (MVT VT : F32VecVTs)
145         addRegClassForRVV(VT);
146 
147     if (Subtarget.hasVInstructionsF64())
148       for (MVT VT : F64VecVTs)
149         addRegClassForRVV(VT);
150 
151     if (Subtarget.useRVVForFixedLengthVectors()) {
152       auto addRegClassForFixedVectors = [this](MVT VT) {
153         MVT ContainerVT = getContainerForFixedLengthVector(VT);
154         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
155         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
156         addRegisterClass(VT, TRI.getRegClass(RCID));
157       };
158       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
159         if (useRVVForFixedLengthVectorVT(VT))
160           addRegClassForFixedVectors(VT);
161 
162       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
163         if (useRVVForFixedLengthVectorVT(VT))
164           addRegClassForFixedVectors(VT);
165     }
166   }
167 
168   // Compute derived properties from the register classes.
169   computeRegisterProperties(STI.getRegisterInfo());
170 
171   setStackPointerRegisterToSaveRestore(RISCV::X2);
172 
173   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
174     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
175 
176   // TODO: add all necessary setOperationAction calls.
177   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
178 
179   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
180   setOperationAction(ISD::BR_CC, XLenVT, Expand);
181   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
182   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
183 
184   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
185   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
186 
187   setOperationAction(ISD::VASTART, MVT::Other, Custom);
188   setOperationAction(ISD::VAARG, MVT::Other, Expand);
189   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
190   setOperationAction(ISD::VAEND, MVT::Other, Expand);
191 
192   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
193   if (!Subtarget.hasStdExtZbb()) {
194     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
195     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
196   }
197 
198   if (Subtarget.is64Bit()) {
199     setOperationAction(ISD::ADD, MVT::i32, Custom);
200     setOperationAction(ISD::SUB, MVT::i32, Custom);
201     setOperationAction(ISD::SHL, MVT::i32, Custom);
202     setOperationAction(ISD::SRA, MVT::i32, Custom);
203     setOperationAction(ISD::SRL, MVT::i32, Custom);
204 
205     setOperationAction(ISD::UADDO, MVT::i32, Custom);
206     setOperationAction(ISD::USUBO, MVT::i32, Custom);
207     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
208     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
209   } else {
210     setLibcallName(RTLIB::SHL_I128, nullptr);
211     setLibcallName(RTLIB::SRL_I128, nullptr);
212     setLibcallName(RTLIB::SRA_I128, nullptr);
213     setLibcallName(RTLIB::MUL_I128, nullptr);
214     setLibcallName(RTLIB::MULO_I64, nullptr);
215   }
216 
217   if (!Subtarget.hasStdExtM()) {
218     setOperationAction(ISD::MUL, XLenVT, Expand);
219     setOperationAction(ISD::MULHS, XLenVT, Expand);
220     setOperationAction(ISD::MULHU, XLenVT, Expand);
221     setOperationAction(ISD::SDIV, XLenVT, Expand);
222     setOperationAction(ISD::UDIV, XLenVT, Expand);
223     setOperationAction(ISD::SREM, XLenVT, Expand);
224     setOperationAction(ISD::UREM, XLenVT, Expand);
225   } else {
226     if (Subtarget.is64Bit()) {
227       setOperationAction(ISD::MUL, MVT::i32, Custom);
228       setOperationAction(ISD::MUL, MVT::i128, Custom);
229 
230       setOperationAction(ISD::SDIV, MVT::i8, Custom);
231       setOperationAction(ISD::UDIV, MVT::i8, Custom);
232       setOperationAction(ISD::UREM, MVT::i8, Custom);
233       setOperationAction(ISD::SDIV, MVT::i16, Custom);
234       setOperationAction(ISD::UDIV, MVT::i16, Custom);
235       setOperationAction(ISD::UREM, MVT::i16, Custom);
236       setOperationAction(ISD::SDIV, MVT::i32, Custom);
237       setOperationAction(ISD::UDIV, MVT::i32, Custom);
238       setOperationAction(ISD::UREM, MVT::i32, Custom);
239     } else {
240       setOperationAction(ISD::MUL, MVT::i64, Custom);
241     }
242   }
243 
244   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
245   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
246   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
247   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
248 
249   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
250   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
251   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
252 
253   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
254     if (Subtarget.is64Bit()) {
255       setOperationAction(ISD::ROTL, MVT::i32, Custom);
256       setOperationAction(ISD::ROTR, MVT::i32, Custom);
257     }
258   } else {
259     setOperationAction(ISD::ROTL, XLenVT, Expand);
260     setOperationAction(ISD::ROTR, XLenVT, Expand);
261   }
262 
263   if (Subtarget.hasStdExtZbp()) {
264     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
265     // more combining.
266     setOperationAction(ISD::BITREVERSE, XLenVT,   Custom);
267     setOperationAction(ISD::BSWAP,      XLenVT,   Custom);
268     setOperationAction(ISD::BITREVERSE, MVT::i8,  Custom);
269     // BSWAP i8 doesn't exist.
270     setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
271     setOperationAction(ISD::BSWAP,      MVT::i16, Custom);
272 
273     if (Subtarget.is64Bit()) {
274       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
275       setOperationAction(ISD::BSWAP,      MVT::i32, Custom);
276     }
277   } else {
278     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
279     // pattern match it directly in isel.
280     setOperationAction(ISD::BSWAP, XLenVT,
281                        Subtarget.hasStdExtZbb() ? Legal : Expand);
282   }
283 
284   if (Subtarget.hasStdExtZbb()) {
285     setOperationAction(ISD::SMIN, XLenVT, Legal);
286     setOperationAction(ISD::SMAX, XLenVT, Legal);
287     setOperationAction(ISD::UMIN, XLenVT, Legal);
288     setOperationAction(ISD::UMAX, XLenVT, Legal);
289 
290     if (Subtarget.is64Bit()) {
291       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
292       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
293       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
294       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
295     }
296   } else {
297     setOperationAction(ISD::CTTZ, XLenVT, Expand);
298     setOperationAction(ISD::CTLZ, XLenVT, Expand);
299     setOperationAction(ISD::CTPOP, XLenVT, Expand);
300   }
301 
302   if (Subtarget.hasStdExtZbt()) {
303     setOperationAction(ISD::FSHL, XLenVT, Custom);
304     setOperationAction(ISD::FSHR, XLenVT, Custom);
305     setOperationAction(ISD::SELECT, XLenVT, Legal);
306 
307     if (Subtarget.is64Bit()) {
308       setOperationAction(ISD::FSHL, MVT::i32, Custom);
309       setOperationAction(ISD::FSHR, MVT::i32, Custom);
310     }
311   } else {
312     setOperationAction(ISD::SELECT, XLenVT, Custom);
313   }
314 
315   static const ISD::CondCode FPCCToExpand[] = {
316       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
317       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
318       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
319 
320   static const ISD::NodeType FPOpToExpand[] = {
321       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
322       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
323 
324   if (Subtarget.hasStdExtZfh())
325     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
326 
327   if (Subtarget.hasStdExtZfh()) {
328     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
329     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
330     setOperationAction(ISD::LRINT, MVT::f16, Legal);
331     setOperationAction(ISD::LLRINT, MVT::f16, Legal);
332     setOperationAction(ISD::LROUND, MVT::f16, Legal);
333     setOperationAction(ISD::LLROUND, MVT::f16, Legal);
334     setOperationAction(ISD::STRICT_LRINT, MVT::f16, Legal);
335     setOperationAction(ISD::STRICT_LLRINT, MVT::f16, Legal);
336     setOperationAction(ISD::STRICT_LROUND, MVT::f16, Legal);
337     setOperationAction(ISD::STRICT_LLROUND, MVT::f16, Legal);
338     setOperationAction(ISD::STRICT_FADD, MVT::f16, Legal);
339     setOperationAction(ISD::STRICT_FMA, MVT::f16, Legal);
340     setOperationAction(ISD::STRICT_FSUB, MVT::f16, Legal);
341     setOperationAction(ISD::STRICT_FMUL, MVT::f16, Legal);
342     setOperationAction(ISD::STRICT_FDIV, MVT::f16, Legal);
343     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
344     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
345     setOperationAction(ISD::STRICT_FSQRT, MVT::f16, Legal);
346     setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Legal);
347     setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Legal);
348     for (auto CC : FPCCToExpand)
349       setCondCodeAction(CC, MVT::f16, Expand);
350     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
351     setOperationAction(ISD::SELECT, MVT::f16, Custom);
352     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
353 
354     setOperationAction(ISD::FREM,       MVT::f16, Promote);
355     setOperationAction(ISD::FCEIL,      MVT::f16, Promote);
356     setOperationAction(ISD::FFLOOR,     MVT::f16, Promote);
357     setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
358     setOperationAction(ISD::FRINT,      MVT::f16, Promote);
359     setOperationAction(ISD::FROUND,     MVT::f16, Promote);
360     setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote);
361     setOperationAction(ISD::FTRUNC,     MVT::f16, Promote);
362     setOperationAction(ISD::FPOW,       MVT::f16, Promote);
363     setOperationAction(ISD::FPOWI,      MVT::f16, Promote);
364     setOperationAction(ISD::FCOS,       MVT::f16, Promote);
365     setOperationAction(ISD::FSIN,       MVT::f16, Promote);
366     setOperationAction(ISD::FSINCOS,    MVT::f16, Promote);
367     setOperationAction(ISD::FEXP,       MVT::f16, Promote);
368     setOperationAction(ISD::FEXP2,      MVT::f16, Promote);
369     setOperationAction(ISD::FLOG,       MVT::f16, Promote);
370     setOperationAction(ISD::FLOG2,      MVT::f16, Promote);
371     setOperationAction(ISD::FLOG10,     MVT::f16, Promote);
372 
373     // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
374     // complete support for all operations in LegalizeDAG.
375 
376     // We need to custom promote this.
377     if (Subtarget.is64Bit())
378       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
379   }
380 
381   if (Subtarget.hasStdExtF()) {
382     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
383     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
384     setOperationAction(ISD::LRINT, MVT::f32, Legal);
385     setOperationAction(ISD::LLRINT, MVT::f32, Legal);
386     setOperationAction(ISD::LROUND, MVT::f32, Legal);
387     setOperationAction(ISD::LLROUND, MVT::f32, Legal);
388     setOperationAction(ISD::STRICT_LRINT, MVT::f32, Legal);
389     setOperationAction(ISD::STRICT_LLRINT, MVT::f32, Legal);
390     setOperationAction(ISD::STRICT_LROUND, MVT::f32, Legal);
391     setOperationAction(ISD::STRICT_LLROUND, MVT::f32, Legal);
392     setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
393     setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
394     setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
395     setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
396     setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
397     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
398     setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
399     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
400     for (auto CC : FPCCToExpand)
401       setCondCodeAction(CC, MVT::f32, Expand);
402     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
403     setOperationAction(ISD::SELECT, MVT::f32, Custom);
404     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
405     for (auto Op : FPOpToExpand)
406       setOperationAction(Op, MVT::f32, Expand);
407     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
408     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
409   }
410 
411   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
412     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
413 
414   if (Subtarget.hasStdExtD()) {
415     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
416     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
417     setOperationAction(ISD::LRINT, MVT::f64, Legal);
418     setOperationAction(ISD::LLRINT, MVT::f64, Legal);
419     setOperationAction(ISD::LROUND, MVT::f64, Legal);
420     setOperationAction(ISD::LLROUND, MVT::f64, Legal);
421     setOperationAction(ISD::STRICT_LRINT, MVT::f64, Legal);
422     setOperationAction(ISD::STRICT_LLRINT, MVT::f64, Legal);
423     setOperationAction(ISD::STRICT_LROUND, MVT::f64, Legal);
424     setOperationAction(ISD::STRICT_LLROUND, MVT::f64, Legal);
425     setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
426     setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
427     setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
428     setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
429     setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
430     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
431     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
432     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
433     setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
434     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
435     for (auto CC : FPCCToExpand)
436       setCondCodeAction(CC, MVT::f64, Expand);
437     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
438     setOperationAction(ISD::SELECT, MVT::f64, Custom);
439     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
440     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
441     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
442     for (auto Op : FPOpToExpand)
443       setOperationAction(Op, MVT::f64, Expand);
444     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
445     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
446   }
447 
448   if (Subtarget.is64Bit()) {
449     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
450     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
451     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
452     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
453   }
454 
455   if (Subtarget.hasStdExtF()) {
456     setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom);
457     setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom);
458 
459     setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal);
460     setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal);
461     setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal);
462     setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal);
463 
464     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
465     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
466   }
467 
468   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
469   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
470   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
471   setOperationAction(ISD::JumpTable, XLenVT, Custom);
472 
473   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
474 
475   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
476   // Unfortunately this can't be determined just from the ISA naming string.
477   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
478                      Subtarget.is64Bit() ? Legal : Custom);
479 
480   setOperationAction(ISD::TRAP, MVT::Other, Legal);
481   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
482   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
483   if (Subtarget.is64Bit())
484     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
485 
486   if (Subtarget.hasStdExtA()) {
487     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
488     setMinCmpXchgSizeInBits(32);
489   } else {
490     setMaxAtomicSizeInBitsSupported(0);
491   }
492 
493   setBooleanContents(ZeroOrOneBooleanContent);
494 
495   if (Subtarget.hasVInstructions()) {
496     setBooleanVectorContents(ZeroOrOneBooleanContent);
497 
498     setOperationAction(ISD::VSCALE, XLenVT, Custom);
499 
500     // RVV intrinsics may have illegal operands.
501     // We also need to custom legalize vmv.x.s.
502     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
503     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
504     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
505     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
506     if (Subtarget.is64Bit()) {
507       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
508     } else {
509       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
510       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
511     }
512 
513     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
514     setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
515 
516     static const unsigned IntegerVPOps[] = {
517         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
518         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
519         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
520         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
521         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
522         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
523         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
524         ISD::VP_SELECT};
525 
526     static const unsigned FloatingPointVPOps[] = {
527         ISD::VP_FADD,        ISD::VP_FSUB,        ISD::VP_FMUL,
528         ISD::VP_FDIV,        ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD,
529         ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_SELECT};
530 
531     if (!Subtarget.is64Bit()) {
532       // We must custom-lower certain vXi64 operations on RV32 due to the vector
533       // element type being illegal.
534       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
535       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
536 
537       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
538       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
539       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
540       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
541       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
542       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
543       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
544       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
545 
546       setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom);
547       setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom);
548       setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom);
549       setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom);
550       setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom);
551       setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom);
552       setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom);
553       setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom);
554     }
555 
556     for (MVT VT : BoolVecVTs) {
557       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
558 
559       // Mask VTs are custom-expanded into a series of standard nodes
560       setOperationAction(ISD::TRUNCATE, VT, Custom);
561       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
562       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
563       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
564 
565       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
566       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
567 
568       setOperationAction(ISD::SELECT, VT, Custom);
569       setOperationAction(ISD::SELECT_CC, VT, Expand);
570       setOperationAction(ISD::VSELECT, VT, Expand);
571       setOperationAction(ISD::VP_SELECT, VT, Expand);
572 
573       setOperationAction(ISD::VP_AND, VT, Custom);
574       setOperationAction(ISD::VP_OR, VT, Custom);
575       setOperationAction(ISD::VP_XOR, VT, Custom);
576 
577       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
578       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
579       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
580 
581       setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
582       setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
583       setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
584 
585       // RVV has native int->float & float->int conversions where the
586       // element type sizes are within one power-of-two of each other. Any
587       // wider distances between type sizes have to be lowered as sequences
588       // which progressively narrow the gap in stages.
589       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
590       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
591       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
592       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
593 
594       // Expand all extending loads to types larger than this, and truncating
595       // stores from types larger than this.
596       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
597         setTruncStoreAction(OtherVT, VT, Expand);
598         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
599         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
600         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
601       }
602     }
603 
604     for (MVT VT : IntVecVTs) {
605       if (VT.getVectorElementType() == MVT::i64 &&
606           !Subtarget.hasVInstructionsI64())
607         continue;
608 
609       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
610       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
611 
612       // Vectors implement MULHS/MULHU.
613       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
614       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
615 
616       setOperationAction(ISD::SMIN, VT, Legal);
617       setOperationAction(ISD::SMAX, VT, Legal);
618       setOperationAction(ISD::UMIN, VT, Legal);
619       setOperationAction(ISD::UMAX, VT, Legal);
620 
621       setOperationAction(ISD::ROTL, VT, Expand);
622       setOperationAction(ISD::ROTR, VT, Expand);
623 
624       setOperationAction(ISD::CTTZ, VT, Expand);
625       setOperationAction(ISD::CTLZ, VT, Expand);
626       setOperationAction(ISD::CTPOP, VT, Expand);
627 
628       setOperationAction(ISD::BSWAP, VT, Expand);
629 
630       // Custom-lower extensions and truncations from/to mask types.
631       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
632       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
633       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
634 
635       // RVV has native int->float & float->int conversions where the
636       // element type sizes are within one power-of-two of each other. Any
637       // wider distances between type sizes have to be lowered as sequences
638       // which progressively narrow the gap in stages.
639       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
640       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
641       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
642       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
643 
644       setOperationAction(ISD::SADDSAT, VT, Legal);
645       setOperationAction(ISD::UADDSAT, VT, Legal);
646       setOperationAction(ISD::SSUBSAT, VT, Legal);
647       setOperationAction(ISD::USUBSAT, VT, Legal);
648 
649       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
650       // nodes which truncate by one power of two at a time.
651       setOperationAction(ISD::TRUNCATE, VT, Custom);
652 
653       // Custom-lower insert/extract operations to simplify patterns.
654       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
655       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
656 
657       // Custom-lower reduction operations to set up the corresponding custom
658       // nodes' operands.
659       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
660       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
661       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
662       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
663       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
664       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
665       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
666       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
667 
668       for (unsigned VPOpc : IntegerVPOps)
669         setOperationAction(VPOpc, VT, Custom);
670 
671       setOperationAction(ISD::LOAD, VT, Custom);
672       setOperationAction(ISD::STORE, VT, Custom);
673 
674       setOperationAction(ISD::MLOAD, VT, Custom);
675       setOperationAction(ISD::MSTORE, VT, Custom);
676       setOperationAction(ISD::MGATHER, VT, Custom);
677       setOperationAction(ISD::MSCATTER, VT, Custom);
678 
679       setOperationAction(ISD::VP_LOAD, VT, Custom);
680       setOperationAction(ISD::VP_STORE, VT, Custom);
681       setOperationAction(ISD::VP_GATHER, VT, Custom);
682       setOperationAction(ISD::VP_SCATTER, VT, Custom);
683 
684       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
685       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
686       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
687 
688       setOperationAction(ISD::SELECT, VT, Custom);
689       setOperationAction(ISD::SELECT_CC, VT, Expand);
690 
691       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
692       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
693 
694       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
695         setTruncStoreAction(VT, OtherVT, Expand);
696         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
697         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
698         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
699       }
700 
701       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
702       // type that can represent the value exactly.
703       if (VT.getVectorElementType() != MVT::i64) {
704         MVT FloatEltVT =
705             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
706         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
707         if (isTypeLegal(FloatVT)) {
708           setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
709           setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
710         }
711       }
712     }
713 
714     // Expand various CCs to best match the RVV ISA, which natively supports UNE
715     // but no other unordered comparisons, and supports all ordered comparisons
716     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
717     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
718     // and we pattern-match those back to the "original", swapping operands once
719     // more. This way we catch both operations and both "vf" and "fv" forms with
720     // fewer patterns.
721     static const ISD::CondCode VFPCCToExpand[] = {
722         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
723         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
724         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
725     };
726 
727     // Sets common operation actions on RVV floating-point vector types.
728     const auto SetCommonVFPActions = [&](MVT VT) {
729       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
730       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
731       // sizes are within one power-of-two of each other. Therefore conversions
732       // between vXf16 and vXf64 must be lowered as sequences which convert via
733       // vXf32.
734       setOperationAction(ISD::FP_ROUND, VT, Custom);
735       setOperationAction(ISD::FP_EXTEND, VT, Custom);
736       // Custom-lower insert/extract operations to simplify patterns.
737       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
738       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
739       // Expand various condition codes (explained above).
740       for (auto CC : VFPCCToExpand)
741         setCondCodeAction(CC, VT, Expand);
742 
743       setOperationAction(ISD::FMINNUM, VT, Legal);
744       setOperationAction(ISD::FMAXNUM, VT, Legal);
745 
746       setOperationAction(ISD::FTRUNC, VT, Custom);
747       setOperationAction(ISD::FCEIL, VT, Custom);
748       setOperationAction(ISD::FFLOOR, VT, Custom);
749 
750       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
751       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
752       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
753       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
754 
755       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
756 
757       setOperationAction(ISD::LOAD, VT, Custom);
758       setOperationAction(ISD::STORE, VT, Custom);
759 
760       setOperationAction(ISD::MLOAD, VT, Custom);
761       setOperationAction(ISD::MSTORE, VT, Custom);
762       setOperationAction(ISD::MGATHER, VT, Custom);
763       setOperationAction(ISD::MSCATTER, VT, Custom);
764 
765       setOperationAction(ISD::VP_LOAD, VT, Custom);
766       setOperationAction(ISD::VP_STORE, VT, Custom);
767       setOperationAction(ISD::VP_GATHER, VT, Custom);
768       setOperationAction(ISD::VP_SCATTER, VT, Custom);
769 
770       setOperationAction(ISD::SELECT, VT, Custom);
771       setOperationAction(ISD::SELECT_CC, VT, Expand);
772 
773       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
774       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
775       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
776 
777       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
778 
779       for (unsigned VPOpc : FloatingPointVPOps)
780         setOperationAction(VPOpc, VT, Custom);
781     };
782 
783     // Sets common extload/truncstore actions on RVV floating-point vector
784     // types.
785     const auto SetCommonVFPExtLoadTruncStoreActions =
786         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
787           for (auto SmallVT : SmallerVTs) {
788             setTruncStoreAction(VT, SmallVT, Expand);
789             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
790           }
791         };
792 
793     if (Subtarget.hasVInstructionsF16())
794       for (MVT VT : F16VecVTs)
795         SetCommonVFPActions(VT);
796 
797     for (MVT VT : F32VecVTs) {
798       if (Subtarget.hasVInstructionsF32())
799         SetCommonVFPActions(VT);
800       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
801     }
802 
803     for (MVT VT : F64VecVTs) {
804       if (Subtarget.hasVInstructionsF64())
805         SetCommonVFPActions(VT);
806       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
807       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
808     }
809 
810     if (Subtarget.useRVVForFixedLengthVectors()) {
811       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
812         if (!useRVVForFixedLengthVectorVT(VT))
813           continue;
814 
815         // By default everything must be expanded.
816         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
817           setOperationAction(Op, VT, Expand);
818         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
819           setTruncStoreAction(VT, OtherVT, Expand);
820           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
821           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
822           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
823         }
824 
825         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
826         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
827         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
828 
829         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
830         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
831 
832         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
833         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
834 
835         setOperationAction(ISD::LOAD, VT, Custom);
836         setOperationAction(ISD::STORE, VT, Custom);
837 
838         setOperationAction(ISD::SETCC, VT, Custom);
839 
840         setOperationAction(ISD::SELECT, VT, Custom);
841 
842         setOperationAction(ISD::TRUNCATE, VT, Custom);
843 
844         setOperationAction(ISD::BITCAST, VT, Custom);
845 
846         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
847         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
848         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
849 
850         setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
851         setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
852         setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
853 
854         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
855         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
856         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
857         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
858 
859         // Operations below are different for between masks and other vectors.
860         if (VT.getVectorElementType() == MVT::i1) {
861           setOperationAction(ISD::VP_AND, VT, Custom);
862           setOperationAction(ISD::VP_OR, VT, Custom);
863           setOperationAction(ISD::VP_XOR, VT, Custom);
864           setOperationAction(ISD::AND, VT, Custom);
865           setOperationAction(ISD::OR, VT, Custom);
866           setOperationAction(ISD::XOR, VT, Custom);
867           continue;
868         }
869 
870         // Use SPLAT_VECTOR to prevent type legalization from destroying the
871         // splats when type legalizing i64 scalar on RV32.
872         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
873         // improvements first.
874         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
875           setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
876           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
877         }
878 
879         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
880         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
881 
882         setOperationAction(ISD::MLOAD, VT, Custom);
883         setOperationAction(ISD::MSTORE, VT, Custom);
884         setOperationAction(ISD::MGATHER, VT, Custom);
885         setOperationAction(ISD::MSCATTER, VT, Custom);
886 
887         setOperationAction(ISD::VP_LOAD, VT, Custom);
888         setOperationAction(ISD::VP_STORE, VT, Custom);
889         setOperationAction(ISD::VP_GATHER, VT, Custom);
890         setOperationAction(ISD::VP_SCATTER, VT, Custom);
891 
892         setOperationAction(ISD::ADD, VT, Custom);
893         setOperationAction(ISD::MUL, VT, Custom);
894         setOperationAction(ISD::SUB, VT, Custom);
895         setOperationAction(ISD::AND, VT, Custom);
896         setOperationAction(ISD::OR, VT, Custom);
897         setOperationAction(ISD::XOR, VT, Custom);
898         setOperationAction(ISD::SDIV, VT, Custom);
899         setOperationAction(ISD::SREM, VT, Custom);
900         setOperationAction(ISD::UDIV, VT, Custom);
901         setOperationAction(ISD::UREM, VT, Custom);
902         setOperationAction(ISD::SHL, VT, Custom);
903         setOperationAction(ISD::SRA, VT, Custom);
904         setOperationAction(ISD::SRL, VT, Custom);
905 
906         setOperationAction(ISD::SMIN, VT, Custom);
907         setOperationAction(ISD::SMAX, VT, Custom);
908         setOperationAction(ISD::UMIN, VT, Custom);
909         setOperationAction(ISD::UMAX, VT, Custom);
910         setOperationAction(ISD::ABS,  VT, Custom);
911 
912         setOperationAction(ISD::MULHS, VT, Custom);
913         setOperationAction(ISD::MULHU, VT, Custom);
914 
915         setOperationAction(ISD::SADDSAT, VT, Custom);
916         setOperationAction(ISD::UADDSAT, VT, Custom);
917         setOperationAction(ISD::SSUBSAT, VT, Custom);
918         setOperationAction(ISD::USUBSAT, VT, Custom);
919 
920         setOperationAction(ISD::VSELECT, VT, Custom);
921         setOperationAction(ISD::SELECT_CC, VT, Expand);
922 
923         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
924         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
925         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
926 
927         // Custom-lower reduction operations to set up the corresponding custom
928         // nodes' operands.
929         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
930         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
931         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
932         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
933         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
934 
935         for (unsigned VPOpc : IntegerVPOps)
936           setOperationAction(VPOpc, VT, Custom);
937 
938         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
939         // type that can represent the value exactly.
940         if (VT.getVectorElementType() != MVT::i64) {
941           MVT FloatEltVT =
942               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
943           EVT FloatVT =
944               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
945           if (isTypeLegal(FloatVT)) {
946             setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
947             setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
948           }
949         }
950       }
951 
952       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
953         if (!useRVVForFixedLengthVectorVT(VT))
954           continue;
955 
956         // By default everything must be expanded.
957         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
958           setOperationAction(Op, VT, Expand);
959         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
960           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
961           setTruncStoreAction(VT, OtherVT, Expand);
962         }
963 
964         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
965         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
966         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
967 
968         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
969         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
970         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
971         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
972         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
973 
974         setOperationAction(ISD::LOAD, VT, Custom);
975         setOperationAction(ISD::STORE, VT, Custom);
976         setOperationAction(ISD::MLOAD, VT, Custom);
977         setOperationAction(ISD::MSTORE, VT, Custom);
978         setOperationAction(ISD::MGATHER, VT, Custom);
979         setOperationAction(ISD::MSCATTER, VT, Custom);
980 
981         setOperationAction(ISD::VP_LOAD, VT, Custom);
982         setOperationAction(ISD::VP_STORE, VT, Custom);
983         setOperationAction(ISD::VP_GATHER, VT, Custom);
984         setOperationAction(ISD::VP_SCATTER, VT, Custom);
985 
986         setOperationAction(ISD::FADD, VT, Custom);
987         setOperationAction(ISD::FSUB, VT, Custom);
988         setOperationAction(ISD::FMUL, VT, Custom);
989         setOperationAction(ISD::FDIV, VT, Custom);
990         setOperationAction(ISD::FNEG, VT, Custom);
991         setOperationAction(ISD::FABS, VT, Custom);
992         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
993         setOperationAction(ISD::FSQRT, VT, Custom);
994         setOperationAction(ISD::FMA, VT, Custom);
995         setOperationAction(ISD::FMINNUM, VT, Custom);
996         setOperationAction(ISD::FMAXNUM, VT, Custom);
997 
998         setOperationAction(ISD::FP_ROUND, VT, Custom);
999         setOperationAction(ISD::FP_EXTEND, VT, Custom);
1000 
1001         setOperationAction(ISD::FTRUNC, VT, Custom);
1002         setOperationAction(ISD::FCEIL, VT, Custom);
1003         setOperationAction(ISD::FFLOOR, VT, Custom);
1004 
1005         for (auto CC : VFPCCToExpand)
1006           setCondCodeAction(CC, VT, Expand);
1007 
1008         setOperationAction(ISD::VSELECT, VT, Custom);
1009         setOperationAction(ISD::SELECT, VT, Custom);
1010         setOperationAction(ISD::SELECT_CC, VT, Expand);
1011 
1012         setOperationAction(ISD::BITCAST, VT, Custom);
1013 
1014         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
1015         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
1016         setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
1017         setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
1018 
1019         for (unsigned VPOpc : FloatingPointVPOps)
1020           setOperationAction(VPOpc, VT, Custom);
1021       }
1022 
1023       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
1024       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
1025       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
1026       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
1027       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1028       setOperationAction(ISD::BITCAST, MVT::f16, Custom);
1029       setOperationAction(ISD::BITCAST, MVT::f32, Custom);
1030       setOperationAction(ISD::BITCAST, MVT::f64, Custom);
1031     }
1032   }
1033 
1034   // Function alignments.
1035   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
1036   setMinFunctionAlignment(FunctionAlignment);
1037   setPrefFunctionAlignment(FunctionAlignment);
1038 
1039   setMinimumJumpTableEntries(5);
1040 
1041   // Jumps are expensive, compared to logic
1042   setJumpIsExpensive();
1043 
1044   setTargetDAGCombine(ISD::ADD);
1045   setTargetDAGCombine(ISD::SUB);
1046   setTargetDAGCombine(ISD::AND);
1047   setTargetDAGCombine(ISD::OR);
1048   setTargetDAGCombine(ISD::XOR);
1049   setTargetDAGCombine(ISD::ANY_EXTEND);
1050   if (Subtarget.hasStdExtF()) {
1051     setTargetDAGCombine(ISD::ZERO_EXTEND);
1052     setTargetDAGCombine(ISD::FP_TO_SINT);
1053     setTargetDAGCombine(ISD::FP_TO_UINT);
1054   }
1055   if (Subtarget.hasVInstructions()) {
1056     setTargetDAGCombine(ISD::FCOPYSIGN);
1057     setTargetDAGCombine(ISD::MGATHER);
1058     setTargetDAGCombine(ISD::MSCATTER);
1059     setTargetDAGCombine(ISD::VP_GATHER);
1060     setTargetDAGCombine(ISD::VP_SCATTER);
1061     setTargetDAGCombine(ISD::SRA);
1062     setTargetDAGCombine(ISD::SRL);
1063     setTargetDAGCombine(ISD::SHL);
1064     setTargetDAGCombine(ISD::STORE);
1065   }
1066 }
1067 
1068 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
1069                                             LLVMContext &Context,
1070                                             EVT VT) const {
1071   if (!VT.isVector())
1072     return getPointerTy(DL);
1073   if (Subtarget.hasVInstructions() &&
1074       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
1075     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
1076   return VT.changeVectorElementTypeToInteger();
1077 }
1078 
1079 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
1080   return Subtarget.getXLenVT();
1081 }
1082 
1083 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1084                                              const CallInst &I,
1085                                              MachineFunction &MF,
1086                                              unsigned Intrinsic) const {
1087   auto &DL = I.getModule()->getDataLayout();
1088   switch (Intrinsic) {
1089   default:
1090     return false;
1091   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
1092   case Intrinsic::riscv_masked_atomicrmw_add_i32:
1093   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
1094   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
1095   case Intrinsic::riscv_masked_atomicrmw_max_i32:
1096   case Intrinsic::riscv_masked_atomicrmw_min_i32:
1097   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
1098   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
1099   case Intrinsic::riscv_masked_cmpxchg_i32: {
1100     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
1101     Info.opc = ISD::INTRINSIC_W_CHAIN;
1102     Info.memVT = MVT::getVT(PtrTy->getElementType());
1103     Info.ptrVal = I.getArgOperand(0);
1104     Info.offset = 0;
1105     Info.align = Align(4);
1106     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1107                  MachineMemOperand::MOVolatile;
1108     return true;
1109   }
1110   case Intrinsic::riscv_masked_strided_load:
1111     Info.opc = ISD::INTRINSIC_W_CHAIN;
1112     Info.ptrVal = I.getArgOperand(1);
1113     Info.memVT = getValueType(DL, I.getType()->getScalarType());
1114     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
1115     Info.size = MemoryLocation::UnknownSize;
1116     Info.flags |= MachineMemOperand::MOLoad;
1117     return true;
1118   case Intrinsic::riscv_masked_strided_store:
1119     Info.opc = ISD::INTRINSIC_VOID;
1120     Info.ptrVal = I.getArgOperand(1);
1121     Info.memVT =
1122         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
1123     Info.align = Align(
1124         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
1125         8);
1126     Info.size = MemoryLocation::UnknownSize;
1127     Info.flags |= MachineMemOperand::MOStore;
1128     return true;
1129   }
1130 }
1131 
1132 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1133                                                 const AddrMode &AM, Type *Ty,
1134                                                 unsigned AS,
1135                                                 Instruction *I) const {
1136   // No global is ever allowed as a base.
1137   if (AM.BaseGV)
1138     return false;
1139 
1140   // Require a 12-bit signed offset.
1141   if (!isInt<12>(AM.BaseOffs))
1142     return false;
1143 
1144   switch (AM.Scale) {
1145   case 0: // "r+i" or just "i", depending on HasBaseReg.
1146     break;
1147   case 1:
1148     if (!AM.HasBaseReg) // allow "r+i".
1149       break;
1150     return false; // disallow "r+r" or "r+r+i".
1151   default:
1152     return false;
1153   }
1154 
1155   return true;
1156 }
1157 
1158 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1159   return isInt<12>(Imm);
1160 }
1161 
1162 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1163   return isInt<12>(Imm);
1164 }
1165 
1166 // On RV32, 64-bit integers are split into their high and low parts and held
1167 // in two different registers, so the trunc is free since the low register can
1168 // just be used.
1169 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1170   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1171     return false;
1172   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1173   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1174   return (SrcBits == 64 && DestBits == 32);
1175 }
1176 
1177 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1178   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1179       !SrcVT.isInteger() || !DstVT.isInteger())
1180     return false;
1181   unsigned SrcBits = SrcVT.getSizeInBits();
1182   unsigned DestBits = DstVT.getSizeInBits();
1183   return (SrcBits == 64 && DestBits == 32);
1184 }
1185 
1186 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1187   // Zexts are free if they can be combined with a load.
1188   // Don't advertise i32->i64 zextload as being free for RV64. It interacts
1189   // poorly with type legalization of compares preferring sext.
1190   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1191     EVT MemVT = LD->getMemoryVT();
1192     if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1193         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1194          LD->getExtensionType() == ISD::ZEXTLOAD))
1195       return true;
1196   }
1197 
1198   return TargetLowering::isZExtFree(Val, VT2);
1199 }
1200 
1201 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1202   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1203 }
1204 
1205 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1206   return Subtarget.hasStdExtZbb();
1207 }
1208 
1209 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1210   return Subtarget.hasStdExtZbb();
1211 }
1212 
1213 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1214   EVT VT = Y.getValueType();
1215 
1216   // FIXME: Support vectors once we have tests.
1217   if (VT.isVector())
1218     return false;
1219 
1220   return Subtarget.hasStdExtZbb() && !isa<ConstantSDNode>(Y);
1221 }
1222 
1223 /// Check if sinking \p I's operands to I's basic block is profitable, because
1224 /// the operands can be folded into a target instruction, e.g.
1225 /// splats of scalars can fold into vector instructions.
1226 bool RISCVTargetLowering::shouldSinkOperands(
1227     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1228   using namespace llvm::PatternMatch;
1229 
1230   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1231     return false;
1232 
1233   auto IsSinker = [&](Instruction *I, int Operand) {
1234     switch (I->getOpcode()) {
1235     case Instruction::Add:
1236     case Instruction::Sub:
1237     case Instruction::Mul:
1238     case Instruction::And:
1239     case Instruction::Or:
1240     case Instruction::Xor:
1241     case Instruction::FAdd:
1242     case Instruction::FSub:
1243     case Instruction::FMul:
1244     case Instruction::FDiv:
1245     case Instruction::ICmp:
1246     case Instruction::FCmp:
1247       return true;
1248     case Instruction::Shl:
1249     case Instruction::LShr:
1250     case Instruction::AShr:
1251     case Instruction::UDiv:
1252     case Instruction::SDiv:
1253     case Instruction::URem:
1254     case Instruction::SRem:
1255       return Operand == 1;
1256     case Instruction::Call:
1257       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1258         switch (II->getIntrinsicID()) {
1259         case Intrinsic::fma:
1260           return Operand == 0 || Operand == 1;
1261         default:
1262           return false;
1263         }
1264       }
1265       return false;
1266     default:
1267       return false;
1268     }
1269   };
1270 
1271   for (auto OpIdx : enumerate(I->operands())) {
1272     if (!IsSinker(I, OpIdx.index()))
1273       continue;
1274 
1275     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1276     // Make sure we are not already sinking this operand
1277     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1278       continue;
1279 
1280     // We are looking for a splat that can be sunk.
1281     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1282                              m_Undef(), m_ZeroMask())))
1283       continue;
1284 
1285     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1286     // and vector registers
1287     for (Use &U : Op->uses()) {
1288       Instruction *Insn = cast<Instruction>(U.getUser());
1289       if (!IsSinker(Insn, U.getOperandNo()))
1290         return false;
1291     }
1292 
1293     Ops.push_back(&Op->getOperandUse(0));
1294     Ops.push_back(&OpIdx.value());
1295   }
1296   return true;
1297 }
1298 
1299 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1300                                        bool ForCodeSize) const {
1301   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1302   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1303     return false;
1304   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1305     return false;
1306   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1307     return false;
1308   if (Imm.isNegZero())
1309     return false;
1310   return Imm.isZero();
1311 }
1312 
1313 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1314   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1315          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1316          (VT == MVT::f64 && Subtarget.hasStdExtD());
1317 }
1318 
1319 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1320                                                       CallingConv::ID CC,
1321                                                       EVT VT) const {
1322   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1323   // We might still end up using a GPR but that will be decided based on ABI.
1324   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1325   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1326     return MVT::f32;
1327 
1328   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1329 }
1330 
1331 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1332                                                            CallingConv::ID CC,
1333                                                            EVT VT) const {
1334   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1335   // We might still end up using a GPR but that will be decided based on ABI.
1336   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1337   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1338     return 1;
1339 
1340   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1341 }
1342 
1343 // Changes the condition code and swaps operands if necessary, so the SetCC
1344 // operation matches one of the comparisons supported directly by branches
1345 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1346 // with 1/-1.
1347 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1348                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1349   // Convert X > -1 to X >= 0.
1350   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1351     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1352     CC = ISD::SETGE;
1353     return;
1354   }
1355   // Convert X < 1 to 0 >= X.
1356   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1357     RHS = LHS;
1358     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1359     CC = ISD::SETGE;
1360     return;
1361   }
1362 
1363   switch (CC) {
1364   default:
1365     break;
1366   case ISD::SETGT:
1367   case ISD::SETLE:
1368   case ISD::SETUGT:
1369   case ISD::SETULE:
1370     CC = ISD::getSetCCSwappedOperands(CC);
1371     std::swap(LHS, RHS);
1372     break;
1373   }
1374 }
1375 
1376 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1377   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1378   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1379   if (VT.getVectorElementType() == MVT::i1)
1380     KnownSize *= 8;
1381 
1382   switch (KnownSize) {
1383   default:
1384     llvm_unreachable("Invalid LMUL.");
1385   case 8:
1386     return RISCVII::VLMUL::LMUL_F8;
1387   case 16:
1388     return RISCVII::VLMUL::LMUL_F4;
1389   case 32:
1390     return RISCVII::VLMUL::LMUL_F2;
1391   case 64:
1392     return RISCVII::VLMUL::LMUL_1;
1393   case 128:
1394     return RISCVII::VLMUL::LMUL_2;
1395   case 256:
1396     return RISCVII::VLMUL::LMUL_4;
1397   case 512:
1398     return RISCVII::VLMUL::LMUL_8;
1399   }
1400 }
1401 
1402 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1403   switch (LMul) {
1404   default:
1405     llvm_unreachable("Invalid LMUL.");
1406   case RISCVII::VLMUL::LMUL_F8:
1407   case RISCVII::VLMUL::LMUL_F4:
1408   case RISCVII::VLMUL::LMUL_F2:
1409   case RISCVII::VLMUL::LMUL_1:
1410     return RISCV::VRRegClassID;
1411   case RISCVII::VLMUL::LMUL_2:
1412     return RISCV::VRM2RegClassID;
1413   case RISCVII::VLMUL::LMUL_4:
1414     return RISCV::VRM4RegClassID;
1415   case RISCVII::VLMUL::LMUL_8:
1416     return RISCV::VRM8RegClassID;
1417   }
1418 }
1419 
1420 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1421   RISCVII::VLMUL LMUL = getLMUL(VT);
1422   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1423       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1424       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1425       LMUL == RISCVII::VLMUL::LMUL_1) {
1426     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1427                   "Unexpected subreg numbering");
1428     return RISCV::sub_vrm1_0 + Index;
1429   }
1430   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1431     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1432                   "Unexpected subreg numbering");
1433     return RISCV::sub_vrm2_0 + Index;
1434   }
1435   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1436     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1437                   "Unexpected subreg numbering");
1438     return RISCV::sub_vrm4_0 + Index;
1439   }
1440   llvm_unreachable("Invalid vector type.");
1441 }
1442 
1443 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1444   if (VT.getVectorElementType() == MVT::i1)
1445     return RISCV::VRRegClassID;
1446   return getRegClassIDForLMUL(getLMUL(VT));
1447 }
1448 
1449 // Attempt to decompose a subvector insert/extract between VecVT and
1450 // SubVecVT via subregister indices. Returns the subregister index that
1451 // can perform the subvector insert/extract with the given element index, as
1452 // well as the index corresponding to any leftover subvectors that must be
1453 // further inserted/extracted within the register class for SubVecVT.
1454 std::pair<unsigned, unsigned>
1455 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1456     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1457     const RISCVRegisterInfo *TRI) {
1458   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1459                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1460                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1461                 "Register classes not ordered");
1462   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1463   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1464   // Try to compose a subregister index that takes us from the incoming
1465   // LMUL>1 register class down to the outgoing one. At each step we half
1466   // the LMUL:
1467   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1468   // Note that this is not guaranteed to find a subregister index, such as
1469   // when we are extracting from one VR type to another.
1470   unsigned SubRegIdx = RISCV::NoSubRegister;
1471   for (const unsigned RCID :
1472        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1473     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1474       VecVT = VecVT.getHalfNumVectorElementsVT();
1475       bool IsHi =
1476           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1477       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1478                                             getSubregIndexByMVT(VecVT, IsHi));
1479       if (IsHi)
1480         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1481     }
1482   return {SubRegIdx, InsertExtractIdx};
1483 }
1484 
1485 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1486 // stores for those types.
1487 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1488   return !Subtarget.useRVVForFixedLengthVectors() ||
1489          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1490 }
1491 
1492 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1493   if (ScalarTy->isPointerTy())
1494     return true;
1495 
1496   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1497       ScalarTy->isIntegerTy(32))
1498     return true;
1499 
1500   if (ScalarTy->isIntegerTy(64))
1501     return Subtarget.hasVInstructionsI64();
1502 
1503   if (ScalarTy->isHalfTy())
1504     return Subtarget.hasVInstructionsF16();
1505   if (ScalarTy->isFloatTy())
1506     return Subtarget.hasVInstructionsF32();
1507   if (ScalarTy->isDoubleTy())
1508     return Subtarget.hasVInstructionsF64();
1509 
1510   return false;
1511 }
1512 
1513 static bool useRVVForFixedLengthVectorVT(MVT VT,
1514                                          const RISCVSubtarget &Subtarget) {
1515   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1516   if (!Subtarget.useRVVForFixedLengthVectors())
1517     return false;
1518 
1519   // We only support a set of vector types with a consistent maximum fixed size
1520   // across all supported vector element types to avoid legalization issues.
1521   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1522   // fixed-length vector type we support is 1024 bytes.
1523   if (VT.getFixedSizeInBits() > 1024 * 8)
1524     return false;
1525 
1526   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1527 
1528   MVT EltVT = VT.getVectorElementType();
1529 
1530   // Don't use RVV for vectors we cannot scalarize if required.
1531   switch (EltVT.SimpleTy) {
1532   // i1 is supported but has different rules.
1533   default:
1534     return false;
1535   case MVT::i1:
1536     // Masks can only use a single register.
1537     if (VT.getVectorNumElements() > MinVLen)
1538       return false;
1539     MinVLen /= 8;
1540     break;
1541   case MVT::i8:
1542   case MVT::i16:
1543   case MVT::i32:
1544     break;
1545   case MVT::i64:
1546     if (!Subtarget.hasVInstructionsI64())
1547       return false;
1548     break;
1549   case MVT::f16:
1550     if (!Subtarget.hasVInstructionsF16())
1551       return false;
1552     break;
1553   case MVT::f32:
1554     if (!Subtarget.hasVInstructionsF32())
1555       return false;
1556     break;
1557   case MVT::f64:
1558     if (!Subtarget.hasVInstructionsF64())
1559       return false;
1560     break;
1561   }
1562 
1563   // Reject elements larger than ELEN.
1564   if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors())
1565     return false;
1566 
1567   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1568   // Don't use RVV for types that don't fit.
1569   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1570     return false;
1571 
1572   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1573   // the base fixed length RVV support in place.
1574   if (!VT.isPow2VectorType())
1575     return false;
1576 
1577   return true;
1578 }
1579 
1580 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1581   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1582 }
1583 
1584 // Return the largest legal scalable vector type that matches VT's element type.
1585 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1586                                             const RISCVSubtarget &Subtarget) {
1587   // This may be called before legal types are setup.
1588   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1589           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1590          "Expected legal fixed length vector!");
1591 
1592   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1593   unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors();
1594 
1595   MVT EltVT = VT.getVectorElementType();
1596   switch (EltVT.SimpleTy) {
1597   default:
1598     llvm_unreachable("unexpected element type for RVV container");
1599   case MVT::i1:
1600   case MVT::i8:
1601   case MVT::i16:
1602   case MVT::i32:
1603   case MVT::i64:
1604   case MVT::f16:
1605   case MVT::f32:
1606   case MVT::f64: {
1607     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1608     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1609     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1610     unsigned NumElts =
1611         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1612     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1613     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1614     return MVT::getScalableVectorVT(EltVT, NumElts);
1615   }
1616   }
1617 }
1618 
1619 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1620                                             const RISCVSubtarget &Subtarget) {
1621   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1622                                           Subtarget);
1623 }
1624 
1625 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1626   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1627 }
1628 
1629 // Grow V to consume an entire RVV register.
1630 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1631                                        const RISCVSubtarget &Subtarget) {
1632   assert(VT.isScalableVector() &&
1633          "Expected to convert into a scalable vector!");
1634   assert(V.getValueType().isFixedLengthVector() &&
1635          "Expected a fixed length vector operand!");
1636   SDLoc DL(V);
1637   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1638   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1639 }
1640 
1641 // Shrink V so it's just big enough to maintain a VT's worth of data.
1642 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1643                                          const RISCVSubtarget &Subtarget) {
1644   assert(VT.isFixedLengthVector() &&
1645          "Expected to convert into a fixed length vector!");
1646   assert(V.getValueType().isScalableVector() &&
1647          "Expected a scalable vector operand!");
1648   SDLoc DL(V);
1649   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1650   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1651 }
1652 
1653 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1654 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1655 // the vector type that it is contained in.
1656 static std::pair<SDValue, SDValue>
1657 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1658                 const RISCVSubtarget &Subtarget) {
1659   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1660   MVT XLenVT = Subtarget.getXLenVT();
1661   SDValue VL = VecVT.isFixedLengthVector()
1662                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1663                    : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT);
1664   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1665   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1666   return {Mask, VL};
1667 }
1668 
1669 // As above but assuming the given type is a scalable vector type.
1670 static std::pair<SDValue, SDValue>
1671 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1672                         const RISCVSubtarget &Subtarget) {
1673   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1674   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1675 }
1676 
1677 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1678 // of either is (currently) supported. This can get us into an infinite loop
1679 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1680 // as a ..., etc.
1681 // Until either (or both) of these can reliably lower any node, reporting that
1682 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1683 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1684 // which is not desirable.
1685 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1686     EVT VT, unsigned DefinedValues) const {
1687   return false;
1688 }
1689 
1690 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
1691   // Only splats are currently supported.
1692   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
1693     return true;
1694 
1695   return false;
1696 }
1697 
1698 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
1699                                   const RISCVSubtarget &Subtarget) {
1700   // RISCV FP-to-int conversions saturate to the destination register size, but
1701   // don't produce 0 for nan. We can use a conversion instruction and fix the
1702   // nan case with a compare and a select.
1703   SDValue Src = Op.getOperand(0);
1704 
1705   EVT DstVT = Op.getValueType();
1706   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1707 
1708   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1709   unsigned Opc;
1710   if (SatVT == DstVT)
1711     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
1712   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1713     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
1714   else
1715     return SDValue();
1716   // FIXME: Support other SatVTs by clamping before or after the conversion.
1717 
1718   SDLoc DL(Op);
1719   SDValue FpToInt = DAG.getNode(
1720       Opc, DL, DstVT, Src,
1721       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
1722 
1723   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1724   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1725 }
1726 
1727 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1728 // and back. Taking care to avoid converting values that are nan or already
1729 // correct.
1730 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1731 // have FRM dependencies modeled yet.
1732 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1733   MVT VT = Op.getSimpleValueType();
1734   assert(VT.isVector() && "Unexpected type");
1735 
1736   SDLoc DL(Op);
1737 
1738   // Freeze the source since we are increasing the number of uses.
1739   SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0));
1740 
1741   // Truncate to integer and convert back to FP.
1742   MVT IntVT = VT.changeVectorElementTypeToInteger();
1743   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1744   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1745 
1746   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1747 
1748   if (Op.getOpcode() == ISD::FCEIL) {
1749     // If the truncated value is the greater than or equal to the original
1750     // value, we've computed the ceil. Otherwise, we went the wrong way and
1751     // need to increase by 1.
1752     // FIXME: This should use a masked operation. Handle here or in isel?
1753     SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1754                                  DAG.getConstantFP(1.0, DL, VT));
1755     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1756     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1757   } else if (Op.getOpcode() == ISD::FFLOOR) {
1758     // If the truncated value is the less than or equal to the original value,
1759     // we've computed the floor. Otherwise, we went the wrong way and need to
1760     // decrease by 1.
1761     // FIXME: This should use a masked operation. Handle here or in isel?
1762     SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1763                                  DAG.getConstantFP(1.0, DL, VT));
1764     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1765     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1766   }
1767 
1768   // Restore the original sign so that -0.0 is preserved.
1769   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1770 
1771   // Determine the largest integer that can be represented exactly. This and
1772   // values larger than it don't have any fractional bits so don't need to
1773   // be converted.
1774   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1775   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1776   APFloat MaxVal = APFloat(FltSem);
1777   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1778                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1779   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1780 
1781   // If abs(Src) was larger than MaxVal or nan, keep it.
1782   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1783   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1784   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1785 }
1786 
1787 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG,
1788                                  const RISCVSubtarget &Subtarget) {
1789   MVT VT = Op.getSimpleValueType();
1790   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1791 
1792   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1793 
1794   SDLoc DL(Op);
1795   SDValue Mask, VL;
1796   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1797 
1798   unsigned Opc =
1799       VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1800   SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL);
1801   return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1802 }
1803 
1804 struct VIDSequence {
1805   int64_t StepNumerator;
1806   unsigned StepDenominator;
1807   int64_t Addend;
1808 };
1809 
1810 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1811 // to the (non-zero) step S and start value X. This can be then lowered as the
1812 // RVV sequence (VID * S) + X, for example.
1813 // The step S is represented as an integer numerator divided by a positive
1814 // denominator. Note that the implementation currently only identifies
1815 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1816 // cannot detect 2/3, for example.
1817 // Note that this method will also match potentially unappealing index
1818 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1819 // determine whether this is worth generating code for.
1820 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1821   unsigned NumElts = Op.getNumOperands();
1822   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1823   if (!Op.getValueType().isInteger())
1824     return None;
1825 
1826   Optional<unsigned> SeqStepDenom;
1827   Optional<int64_t> SeqStepNum, SeqAddend;
1828   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1829   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1830   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1831     // Assume undef elements match the sequence; we just have to be careful
1832     // when interpolating across them.
1833     if (Op.getOperand(Idx).isUndef())
1834       continue;
1835     // The BUILD_VECTOR must be all constants.
1836     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1837       return None;
1838 
1839     uint64_t Val = Op.getConstantOperandVal(Idx) &
1840                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1841 
1842     if (PrevElt) {
1843       // Calculate the step since the last non-undef element, and ensure
1844       // it's consistent across the entire sequence.
1845       unsigned IdxDiff = Idx - PrevElt->second;
1846       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1847 
1848       // A zero-value value difference means that we're somewhere in the middle
1849       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1850       // step change before evaluating the sequence.
1851       if (ValDiff != 0) {
1852         int64_t Remainder = ValDiff % IdxDiff;
1853         // Normalize the step if it's greater than 1.
1854         if (Remainder != ValDiff) {
1855           // The difference must cleanly divide the element span.
1856           if (Remainder != 0)
1857             return None;
1858           ValDiff /= IdxDiff;
1859           IdxDiff = 1;
1860         }
1861 
1862         if (!SeqStepNum)
1863           SeqStepNum = ValDiff;
1864         else if (ValDiff != SeqStepNum)
1865           return None;
1866 
1867         if (!SeqStepDenom)
1868           SeqStepDenom = IdxDiff;
1869         else if (IdxDiff != *SeqStepDenom)
1870           return None;
1871       }
1872     }
1873 
1874     // Record and/or check any addend.
1875     if (SeqStepNum && SeqStepDenom) {
1876       uint64_t ExpectedVal =
1877           (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1878       int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1879       if (!SeqAddend)
1880         SeqAddend = Addend;
1881       else if (SeqAddend != Addend)
1882         return None;
1883     }
1884 
1885     // Record this non-undef element for later.
1886     if (!PrevElt || PrevElt->first != Val)
1887       PrevElt = std::make_pair(Val, Idx);
1888   }
1889   // We need to have logged both a step and an addend for this to count as
1890   // a legal index sequence.
1891   if (!SeqStepNum || !SeqStepDenom || !SeqAddend)
1892     return None;
1893 
1894   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1895 }
1896 
1897 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1898                                  const RISCVSubtarget &Subtarget) {
1899   MVT VT = Op.getSimpleValueType();
1900   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1901 
1902   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1903 
1904   SDLoc DL(Op);
1905   SDValue Mask, VL;
1906   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1907 
1908   MVT XLenVT = Subtarget.getXLenVT();
1909   unsigned NumElts = Op.getNumOperands();
1910 
1911   if (VT.getVectorElementType() == MVT::i1) {
1912     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1913       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1914       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1915     }
1916 
1917     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1918       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1919       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1920     }
1921 
1922     // Lower constant mask BUILD_VECTORs via an integer vector type, in
1923     // scalar integer chunks whose bit-width depends on the number of mask
1924     // bits and XLEN.
1925     // First, determine the most appropriate scalar integer type to use. This
1926     // is at most XLenVT, but may be shrunk to a smaller vector element type
1927     // according to the size of the final vector - use i8 chunks rather than
1928     // XLenVT if we're producing a v8i1. This results in more consistent
1929     // codegen across RV32 and RV64.
1930     unsigned NumViaIntegerBits =
1931         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
1932     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
1933       // If we have to use more than one INSERT_VECTOR_ELT then this
1934       // optimization is likely to increase code size; avoid peforming it in
1935       // such a case. We can use a load from a constant pool in this case.
1936       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
1937         return SDValue();
1938       // Now we can create our integer vector type. Note that it may be larger
1939       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
1940       MVT IntegerViaVecVT =
1941           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
1942                            divideCeil(NumElts, NumViaIntegerBits));
1943 
1944       uint64_t Bits = 0;
1945       unsigned BitPos = 0, IntegerEltIdx = 0;
1946       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
1947 
1948       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
1949         // Once we accumulate enough bits to fill our scalar type, insert into
1950         // our vector and clear our accumulated data.
1951         if (I != 0 && I % NumViaIntegerBits == 0) {
1952           if (NumViaIntegerBits <= 32)
1953             Bits = SignExtend64(Bits, 32);
1954           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1955           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
1956                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1957           Bits = 0;
1958           BitPos = 0;
1959           IntegerEltIdx++;
1960         }
1961         SDValue V = Op.getOperand(I);
1962         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
1963         Bits |= ((uint64_t)BitValue << BitPos);
1964       }
1965 
1966       // Insert the (remaining) scalar value into position in our integer
1967       // vector type.
1968       if (NumViaIntegerBits <= 32)
1969         Bits = SignExtend64(Bits, 32);
1970       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1971       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
1972                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1973 
1974       if (NumElts < NumViaIntegerBits) {
1975         // If we're producing a smaller vector than our minimum legal integer
1976         // type, bitcast to the equivalent (known-legal) mask type, and extract
1977         // our final mask.
1978         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
1979         Vec = DAG.getBitcast(MVT::v8i1, Vec);
1980         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
1981                           DAG.getConstant(0, DL, XLenVT));
1982       } else {
1983         // Else we must have produced an integer type with the same size as the
1984         // mask type; bitcast for the final result.
1985         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
1986         Vec = DAG.getBitcast(VT, Vec);
1987       }
1988 
1989       return Vec;
1990     }
1991 
1992     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
1993     // vector type, we have a legal equivalently-sized i8 type, so we can use
1994     // that.
1995     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
1996     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
1997 
1998     SDValue WideVec;
1999     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2000       // For a splat, perform a scalar truncate before creating the wider
2001       // vector.
2002       assert(Splat.getValueType() == XLenVT &&
2003              "Unexpected type for i1 splat value");
2004       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
2005                           DAG.getConstant(1, DL, XLenVT));
2006       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
2007     } else {
2008       SmallVector<SDValue, 8> Ops(Op->op_values());
2009       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
2010       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
2011       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
2012     }
2013 
2014     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
2015   }
2016 
2017   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2018     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2019                                         : RISCVISD::VMV_V_X_VL;
2020     Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL);
2021     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2022   }
2023 
2024   // Try and match index sequences, which we can lower to the vid instruction
2025   // with optional modifications. An all-undef vector is matched by
2026   // getSplatValue, above.
2027   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2028     int64_t StepNumerator = SimpleVID->StepNumerator;
2029     unsigned StepDenominator = SimpleVID->StepDenominator;
2030     int64_t Addend = SimpleVID->Addend;
2031 
2032     assert(StepNumerator != 0 && "Invalid step");
2033     bool Negate = false;
2034     int64_t SplatStepVal = StepNumerator;
2035     unsigned StepOpcode = ISD::MUL;
2036     if (StepNumerator != 1) {
2037       if (isPowerOf2_64(std::abs(StepNumerator))) {
2038         Negate = StepNumerator < 0;
2039         StepOpcode = ISD::SHL;
2040         SplatStepVal = Log2_64(std::abs(StepNumerator));
2041       }
2042     }
2043 
2044     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2045     // threshold since it's the immediate value many RVV instructions accept.
2046     // There is no vmul.vi instruction so ensure multiply constant can fit in
2047     // a single addi instruction.
2048     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2049          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2050         isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) {
2051       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2052       // Convert right out of the scalable type so we can use standard ISD
2053       // nodes for the rest of the computation. If we used scalable types with
2054       // these, we'd lose the fixed-length vector info and generate worse
2055       // vsetvli code.
2056       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2057       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2058           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2059         SDValue SplatStep = DAG.getSplatVector(
2060             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2061         VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2062       }
2063       if (StepDenominator != 1) {
2064         SDValue SplatStep = DAG.getSplatVector(
2065             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2066         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2067       }
2068       if (Addend != 0 || Negate) {
2069         SDValue SplatAddend =
2070             DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2071         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2072       }
2073       return VID;
2074     }
2075   }
2076 
2077   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2078   // when re-interpreted as a vector with a larger element type. For example,
2079   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2080   // could be instead splat as
2081   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2082   // TODO: This optimization could also work on non-constant splats, but it
2083   // would require bit-manipulation instructions to construct the splat value.
2084   SmallVector<SDValue> Sequence;
2085   unsigned EltBitSize = VT.getScalarSizeInBits();
2086   const auto *BV = cast<BuildVectorSDNode>(Op);
2087   if (VT.isInteger() && EltBitSize < 64 &&
2088       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2089       BV->getRepeatedSequence(Sequence) &&
2090       (Sequence.size() * EltBitSize) <= 64) {
2091     unsigned SeqLen = Sequence.size();
2092     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2093     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2094     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2095             ViaIntVT == MVT::i64) &&
2096            "Unexpected sequence type");
2097 
2098     unsigned EltIdx = 0;
2099     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2100     uint64_t SplatValue = 0;
2101     // Construct the amalgamated value which can be splatted as this larger
2102     // vector type.
2103     for (const auto &SeqV : Sequence) {
2104       if (!SeqV.isUndef())
2105         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2106                        << (EltIdx * EltBitSize));
2107       EltIdx++;
2108     }
2109 
2110     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2111     // achieve better constant materializion.
2112     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2113       SplatValue = SignExtend64(SplatValue, 32);
2114 
2115     // Since we can't introduce illegal i64 types at this stage, we can only
2116     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2117     // way we can use RVV instructions to splat.
2118     assert((ViaIntVT.bitsLE(XLenVT) ||
2119             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2120            "Unexpected bitcast sequence");
2121     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2122       SDValue ViaVL =
2123           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2124       MVT ViaContainerVT =
2125           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2126       SDValue Splat =
2127           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2128                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2129       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2130       return DAG.getBitcast(VT, Splat);
2131     }
2132   }
2133 
2134   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2135   // which constitute a large proportion of the elements. In such cases we can
2136   // splat a vector with the dominant element and make up the shortfall with
2137   // INSERT_VECTOR_ELTs.
2138   // Note that this includes vectors of 2 elements by association. The
2139   // upper-most element is the "dominant" one, allowing us to use a splat to
2140   // "insert" the upper element, and an insert of the lower element at position
2141   // 0, which improves codegen.
2142   SDValue DominantValue;
2143   unsigned MostCommonCount = 0;
2144   DenseMap<SDValue, unsigned> ValueCounts;
2145   unsigned NumUndefElts =
2146       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2147 
2148   // Track the number of scalar loads we know we'd be inserting, estimated as
2149   // any non-zero floating-point constant. Other kinds of element are either
2150   // already in registers or are materialized on demand. The threshold at which
2151   // a vector load is more desirable than several scalar materializion and
2152   // vector-insertion instructions is not known.
2153   unsigned NumScalarLoads = 0;
2154 
2155   for (SDValue V : Op->op_values()) {
2156     if (V.isUndef())
2157       continue;
2158 
2159     ValueCounts.insert(std::make_pair(V, 0));
2160     unsigned &Count = ValueCounts[V];
2161 
2162     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2163       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2164 
2165     // Is this value dominant? In case of a tie, prefer the highest element as
2166     // it's cheaper to insert near the beginning of a vector than it is at the
2167     // end.
2168     if (++Count >= MostCommonCount) {
2169       DominantValue = V;
2170       MostCommonCount = Count;
2171     }
2172   }
2173 
2174   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2175   unsigned NumDefElts = NumElts - NumUndefElts;
2176   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2177 
2178   // Don't perform this optimization when optimizing for size, since
2179   // materializing elements and inserting them tends to cause code bloat.
2180   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2181       ((MostCommonCount > DominantValueCountThreshold) ||
2182        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2183     // Start by splatting the most common element.
2184     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2185 
2186     DenseSet<SDValue> Processed{DominantValue};
2187     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2188     for (const auto &OpIdx : enumerate(Op->ops())) {
2189       const SDValue &V = OpIdx.value();
2190       if (V.isUndef() || !Processed.insert(V).second)
2191         continue;
2192       if (ValueCounts[V] == 1) {
2193         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2194                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2195       } else {
2196         // Blend in all instances of this value using a VSELECT, using a
2197         // mask where each bit signals whether that element is the one
2198         // we're after.
2199         SmallVector<SDValue> Ops;
2200         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2201           return DAG.getConstant(V == V1, DL, XLenVT);
2202         });
2203         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2204                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2205                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2206       }
2207     }
2208 
2209     return Vec;
2210   }
2211 
2212   return SDValue();
2213 }
2214 
2215 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo,
2216                                    SDValue Hi, SDValue VL, SelectionDAG &DAG) {
2217   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2218     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2219     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2220     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2221     // node in order to try and match RVV vector/scalar instructions.
2222     if ((LoC >> 31) == HiC)
2223       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL);
2224 
2225     // If vl is equal to VLMax and Hi constant is equal to Lo, we could use
2226     // vmv.v.x whose EEW = 32 to lower it.
2227     auto *Const = dyn_cast<ConstantSDNode>(VL);
2228     if (LoC == HiC && Const && Const->getSExtValue() == RISCV::VLMaxSentinel) {
2229       MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
2230       // TODO: if vl <= min(VLMAX), we can also do this. But we could not
2231       // access the subtarget here now.
2232       auto InterVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterVT, Lo, VL);
2233       return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
2234     }
2235   }
2236 
2237   // Fall back to a stack store and stride x0 vector load.
2238   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL);
2239 }
2240 
2241 // Called by type legalization to handle splat of i64 on RV32.
2242 // FIXME: We can optimize this when the type has sign or zero bits in one
2243 // of the halves.
2244 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar,
2245                                    SDValue VL, SelectionDAG &DAG) {
2246   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2247   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2248                            DAG.getConstant(0, DL, MVT::i32));
2249   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2250                            DAG.getConstant(1, DL, MVT::i32));
2251   return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG);
2252 }
2253 
2254 // This function lowers a splat of a scalar operand Splat with the vector
2255 // length VL. It ensures the final sequence is type legal, which is useful when
2256 // lowering a splat after type legalization.
2257 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL,
2258                                 SelectionDAG &DAG,
2259                                 const RISCVSubtarget &Subtarget) {
2260   if (VT.isFloatingPoint()) {
2261     // If VL is 1, we could use vfmv.s.f.
2262     if (isOneConstant(VL))
2263       return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, DAG.getUNDEF(VT),
2264                          Scalar, VL);
2265     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL);
2266   }
2267 
2268   MVT XLenVT = Subtarget.getXLenVT();
2269 
2270   // Simplest case is that the operand needs to be promoted to XLenVT.
2271   if (Scalar.getValueType().bitsLE(XLenVT)) {
2272     // If the operand is a constant, sign extend to increase our chances
2273     // of being able to use a .vi instruction. ANY_EXTEND would become a
2274     // a zero extend and the simm5 check in isel would fail.
2275     // FIXME: Should we ignore the upper bits in isel instead?
2276     unsigned ExtOpc =
2277         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2278     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2279     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
2280     // If VL is 1 and the scalar value won't benefit from immediate, we could
2281     // use vmv.s.x.
2282     if (isOneConstant(VL) &&
2283         (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
2284       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), Scalar,
2285                          VL);
2286     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL);
2287   }
2288 
2289   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2290          "Unexpected scalar for splat lowering!");
2291 
2292   if (isOneConstant(VL) && isNullConstant(Scalar))
2293     return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT),
2294                        DAG.getConstant(0, DL, XLenVT), VL);
2295 
2296   // Otherwise use the more complicated splatting algorithm.
2297   return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
2298 }
2299 
2300 // Is the mask a slidedown that shifts in undefs.
2301 static int matchShuffleAsSlideDown(ArrayRef<int> Mask) {
2302   int Size = Mask.size();
2303 
2304   // Elements shifted in should be undef.
2305   auto CheckUndefs = [&](int Shift) {
2306     for (int i = Size - Shift; i != Size; ++i)
2307       if (Mask[i] >= 0)
2308         return false;
2309     return true;
2310   };
2311 
2312   // Elements should be shifted or undef.
2313   auto MatchShift = [&](int Shift) {
2314     for (int i = 0; i != Size - Shift; ++i)
2315        if (Mask[i] >= 0 && Mask[i] != Shift + i)
2316          return false;
2317     return true;
2318   };
2319 
2320   // Try all possible shifts.
2321   for (int Shift = 1; Shift != Size; ++Shift)
2322     if (CheckUndefs(Shift) && MatchShift(Shift))
2323       return Shift;
2324 
2325   // No match.
2326   return -1;
2327 }
2328 
2329 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2330                                    const RISCVSubtarget &Subtarget) {
2331   SDValue V1 = Op.getOperand(0);
2332   SDValue V2 = Op.getOperand(1);
2333   SDLoc DL(Op);
2334   MVT XLenVT = Subtarget.getXLenVT();
2335   MVT VT = Op.getSimpleValueType();
2336   unsigned NumElts = VT.getVectorNumElements();
2337   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2338 
2339   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2340 
2341   SDValue TrueMask, VL;
2342   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2343 
2344   if (SVN->isSplat()) {
2345     const int Lane = SVN->getSplatIndex();
2346     if (Lane >= 0) {
2347       MVT SVT = VT.getVectorElementType();
2348 
2349       // Turn splatted vector load into a strided load with an X0 stride.
2350       SDValue V = V1;
2351       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2352       // with undef.
2353       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2354       int Offset = Lane;
2355       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2356         int OpElements =
2357             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2358         V = V.getOperand(Offset / OpElements);
2359         Offset %= OpElements;
2360       }
2361 
2362       // We need to ensure the load isn't atomic or volatile.
2363       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2364         auto *Ld = cast<LoadSDNode>(V);
2365         Offset *= SVT.getStoreSize();
2366         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2367                                                    TypeSize::Fixed(Offset), DL);
2368 
2369         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2370         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2371           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2372           SDValue IntID =
2373               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2374           SDValue Ops[] = {Ld->getChain(), IntID, NewAddr,
2375                            DAG.getRegister(RISCV::X0, XLenVT), VL};
2376           SDValue NewLoad = DAG.getMemIntrinsicNode(
2377               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2378               DAG.getMachineFunction().getMachineMemOperand(
2379                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2380           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2381           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2382         }
2383 
2384         // Otherwise use a scalar load and splat. This will give the best
2385         // opportunity to fold a splat into the operation. ISel can turn it into
2386         // the x0 strided load if we aren't able to fold away the select.
2387         if (SVT.isFloatingPoint())
2388           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2389                           Ld->getPointerInfo().getWithOffset(Offset),
2390                           Ld->getOriginalAlign(),
2391                           Ld->getMemOperand()->getFlags());
2392         else
2393           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2394                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2395                              Ld->getOriginalAlign(),
2396                              Ld->getMemOperand()->getFlags());
2397         DAG.makeEquivalentMemoryOrdering(Ld, V);
2398 
2399         unsigned Opc =
2400             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2401         SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL);
2402         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2403       }
2404 
2405       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2406       assert(Lane < (int)NumElts && "Unexpected lane!");
2407       SDValue Gather =
2408           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
2409                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
2410       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2411     }
2412   }
2413 
2414   // Try to match as a slidedown.
2415   int SlideAmt = matchShuffleAsSlideDown(SVN->getMask());
2416   if (SlideAmt >= 0) {
2417     // TODO: Should we reduce the VL to account for the upper undef elements?
2418     // Requires additional vsetvlis, but might be faster to execute.
2419     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2420     SDValue SlideDown =
2421         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
2422                     DAG.getUNDEF(ContainerVT), V1,
2423                     DAG.getConstant(SlideAmt, DL, XLenVT),
2424                     TrueMask, VL);
2425     return convertFromScalableVector(VT, SlideDown, DAG, Subtarget);
2426   }
2427 
2428   // Detect shuffles which can be re-expressed as vector selects; these are
2429   // shuffles in which each element in the destination is taken from an element
2430   // at the corresponding index in either source vectors.
2431   bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) {
2432     int MaskIndex = MaskIdx.value();
2433     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2434   });
2435 
2436   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2437 
2438   SmallVector<SDValue> MaskVals;
2439   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2440   // merged with a second vrgather.
2441   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2442 
2443   // By default we preserve the original operand order, and use a mask to
2444   // select LHS as true and RHS as false. However, since RVV vector selects may
2445   // feature splats but only on the LHS, we may choose to invert our mask and
2446   // instead select between RHS and LHS.
2447   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2448   bool InvertMask = IsSelect == SwapOps;
2449 
2450   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2451   // half.
2452   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2453 
2454   // Now construct the mask that will be used by the vselect or blended
2455   // vrgather operation. For vrgathers, construct the appropriate indices into
2456   // each vector.
2457   for (int MaskIndex : SVN->getMask()) {
2458     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2459     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2460     if (!IsSelect) {
2461       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2462       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2463                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2464                                      : DAG.getUNDEF(XLenVT));
2465       GatherIndicesRHS.push_back(
2466           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2467                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2468       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2469         ++LHSIndexCounts[MaskIndex];
2470       if (!IsLHSOrUndefIndex)
2471         ++RHSIndexCounts[MaskIndex - NumElts];
2472     }
2473   }
2474 
2475   if (SwapOps) {
2476     std::swap(V1, V2);
2477     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2478   }
2479 
2480   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2481   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2482   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2483 
2484   if (IsSelect)
2485     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2486 
2487   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2488     // On such a large vector we're unable to use i8 as the index type.
2489     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2490     // may involve vector splitting if we're already at LMUL=8, or our
2491     // user-supplied maximum fixed-length LMUL.
2492     return SDValue();
2493   }
2494 
2495   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2496   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2497   MVT IndexVT = VT.changeTypeToInteger();
2498   // Since we can't introduce illegal index types at this stage, use i16 and
2499   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2500   // than XLenVT.
2501   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2502     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2503     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2504   }
2505 
2506   MVT IndexContainerVT =
2507       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2508 
2509   SDValue Gather;
2510   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2511   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2512   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2513     Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget);
2514   } else {
2515     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2516     // If only one index is used, we can use a "splat" vrgather.
2517     // TODO: We can splat the most-common index and fix-up any stragglers, if
2518     // that's beneficial.
2519     if (LHSIndexCounts.size() == 1) {
2520       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2521       Gather =
2522           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2523                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2524     } else {
2525       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2526       LHSIndices =
2527           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2528 
2529       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2530                            TrueMask, VL);
2531     }
2532   }
2533 
2534   // If a second vector operand is used by this shuffle, blend it in with an
2535   // additional vrgather.
2536   if (!V2.isUndef()) {
2537     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2538     // If only one index is used, we can use a "splat" vrgather.
2539     // TODO: We can splat the most-common index and fix-up any stragglers, if
2540     // that's beneficial.
2541     if (RHSIndexCounts.size() == 1) {
2542       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2543       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2544                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2545     } else {
2546       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2547       RHSIndices =
2548           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2549       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2550                        VL);
2551     }
2552 
2553     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2554     SelectMask =
2555         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2556 
2557     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2558                          Gather, VL);
2559   }
2560 
2561   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2562 }
2563 
2564 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
2565                                      SDLoc DL, SelectionDAG &DAG,
2566                                      const RISCVSubtarget &Subtarget) {
2567   if (VT.isScalableVector())
2568     return DAG.getFPExtendOrRound(Op, DL, VT);
2569   assert(VT.isFixedLengthVector() &&
2570          "Unexpected value type for RVV FP extend/round lowering");
2571   SDValue Mask, VL;
2572   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2573   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
2574                         ? RISCVISD::FP_EXTEND_VL
2575                         : RISCVISD::FP_ROUND_VL;
2576   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
2577 }
2578 
2579 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2580 // the exponent.
2581 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2582   MVT VT = Op.getSimpleValueType();
2583   unsigned EltSize = VT.getScalarSizeInBits();
2584   SDValue Src = Op.getOperand(0);
2585   SDLoc DL(Op);
2586 
2587   // We need a FP type that can represent the value.
2588   // TODO: Use f16 for i8 when possible?
2589   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2590   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2591 
2592   // Legal types should have been checked in the RISCVTargetLowering
2593   // constructor.
2594   // TODO: Splitting may make sense in some cases.
2595   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2596          "Expected legal float type!");
2597 
2598   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2599   // The trailing zero count is equal to log2 of this single bit value.
2600   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2601     SDValue Neg =
2602         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2603     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2604   }
2605 
2606   // We have a legal FP type, convert to it.
2607   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2608   // Bitcast to integer and shift the exponent to the LSB.
2609   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2610   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2611   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2612   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2613                               DAG.getConstant(ShiftAmt, DL, IntVT));
2614   // Truncate back to original type to allow vnsrl.
2615   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2616   // The exponent contains log2 of the value in biased form.
2617   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2618 
2619   // For trailing zeros, we just need to subtract the bias.
2620   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2621     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2622                        DAG.getConstant(ExponentBias, DL, VT));
2623 
2624   // For leading zeros, we need to remove the bias and convert from log2 to
2625   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2626   unsigned Adjust = ExponentBias + (EltSize - 1);
2627   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2628 }
2629 
2630 // While RVV has alignment restrictions, we should always be able to load as a
2631 // legal equivalently-sized byte-typed vector instead. This method is
2632 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2633 // the load is already correctly-aligned, it returns SDValue().
2634 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2635                                                     SelectionDAG &DAG) const {
2636   auto *Load = cast<LoadSDNode>(Op);
2637   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2638 
2639   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2640                                      Load->getMemoryVT(),
2641                                      *Load->getMemOperand()))
2642     return SDValue();
2643 
2644   SDLoc DL(Op);
2645   MVT VT = Op.getSimpleValueType();
2646   unsigned EltSizeBits = VT.getScalarSizeInBits();
2647   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2648          "Unexpected unaligned RVV load type");
2649   MVT NewVT =
2650       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2651   assert(NewVT.isValid() &&
2652          "Expecting equally-sized RVV vector types to be legal");
2653   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2654                           Load->getPointerInfo(), Load->getOriginalAlign(),
2655                           Load->getMemOperand()->getFlags());
2656   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2657 }
2658 
2659 // While RVV has alignment restrictions, we should always be able to store as a
2660 // legal equivalently-sized byte-typed vector instead. This method is
2661 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
2662 // returns SDValue() if the store is already correctly aligned.
2663 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
2664                                                      SelectionDAG &DAG) const {
2665   auto *Store = cast<StoreSDNode>(Op);
2666   assert(Store && Store->getValue().getValueType().isVector() &&
2667          "Expected vector store");
2668 
2669   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2670                                      Store->getMemoryVT(),
2671                                      *Store->getMemOperand()))
2672     return SDValue();
2673 
2674   SDLoc DL(Op);
2675   SDValue StoredVal = Store->getValue();
2676   MVT VT = StoredVal.getSimpleValueType();
2677   unsigned EltSizeBits = VT.getScalarSizeInBits();
2678   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2679          "Unexpected unaligned RVV store type");
2680   MVT NewVT =
2681       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2682   assert(NewVT.isValid() &&
2683          "Expecting equally-sized RVV vector types to be legal");
2684   StoredVal = DAG.getBitcast(NewVT, StoredVal);
2685   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
2686                       Store->getPointerInfo(), Store->getOriginalAlign(),
2687                       Store->getMemOperand()->getFlags());
2688 }
2689 
2690 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
2691                                             SelectionDAG &DAG) const {
2692   switch (Op.getOpcode()) {
2693   default:
2694     report_fatal_error("unimplemented operand");
2695   case ISD::GlobalAddress:
2696     return lowerGlobalAddress(Op, DAG);
2697   case ISD::BlockAddress:
2698     return lowerBlockAddress(Op, DAG);
2699   case ISD::ConstantPool:
2700     return lowerConstantPool(Op, DAG);
2701   case ISD::JumpTable:
2702     return lowerJumpTable(Op, DAG);
2703   case ISD::GlobalTLSAddress:
2704     return lowerGlobalTLSAddress(Op, DAG);
2705   case ISD::SELECT:
2706     return lowerSELECT(Op, DAG);
2707   case ISD::BRCOND:
2708     return lowerBRCOND(Op, DAG);
2709   case ISD::VASTART:
2710     return lowerVASTART(Op, DAG);
2711   case ISD::FRAMEADDR:
2712     return lowerFRAMEADDR(Op, DAG);
2713   case ISD::RETURNADDR:
2714     return lowerRETURNADDR(Op, DAG);
2715   case ISD::SHL_PARTS:
2716     return lowerShiftLeftParts(Op, DAG);
2717   case ISD::SRA_PARTS:
2718     return lowerShiftRightParts(Op, DAG, true);
2719   case ISD::SRL_PARTS:
2720     return lowerShiftRightParts(Op, DAG, false);
2721   case ISD::BITCAST: {
2722     SDLoc DL(Op);
2723     EVT VT = Op.getValueType();
2724     SDValue Op0 = Op.getOperand(0);
2725     EVT Op0VT = Op0.getValueType();
2726     MVT XLenVT = Subtarget.getXLenVT();
2727     if (VT.isFixedLengthVector()) {
2728       // We can handle fixed length vector bitcasts with a simple replacement
2729       // in isel.
2730       if (Op0VT.isFixedLengthVector())
2731         return Op;
2732       // When bitcasting from scalar to fixed-length vector, insert the scalar
2733       // into a one-element vector of the result type, and perform a vector
2734       // bitcast.
2735       if (!Op0VT.isVector()) {
2736         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
2737         if (!isTypeLegal(BVT))
2738           return SDValue();
2739         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
2740                                               DAG.getUNDEF(BVT), Op0,
2741                                               DAG.getConstant(0, DL, XLenVT)));
2742       }
2743       return SDValue();
2744     }
2745     // Custom-legalize bitcasts from fixed-length vector types to scalar types
2746     // thus: bitcast the vector to a one-element vector type whose element type
2747     // is the same as the result type, and extract the first element.
2748     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
2749       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
2750       if (!isTypeLegal(BVT))
2751         return SDValue();
2752       SDValue BVec = DAG.getBitcast(BVT, Op0);
2753       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
2754                          DAG.getConstant(0, DL, XLenVT));
2755     }
2756     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
2757       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
2758       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
2759       return FPConv;
2760     }
2761     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
2762         Subtarget.hasStdExtF()) {
2763       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
2764       SDValue FPConv =
2765           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
2766       return FPConv;
2767     }
2768     return SDValue();
2769   }
2770   case ISD::INTRINSIC_WO_CHAIN:
2771     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2772   case ISD::INTRINSIC_W_CHAIN:
2773     return LowerINTRINSIC_W_CHAIN(Op, DAG);
2774   case ISD::INTRINSIC_VOID:
2775     return LowerINTRINSIC_VOID(Op, DAG);
2776   case ISD::BSWAP:
2777   case ISD::BITREVERSE: {
2778     // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
2779     assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
2780     MVT VT = Op.getSimpleValueType();
2781     SDLoc DL(Op);
2782     // Start with the maximum immediate value which is the bitwidth - 1.
2783     unsigned Imm = VT.getSizeInBits() - 1;
2784     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
2785     if (Op.getOpcode() == ISD::BSWAP)
2786       Imm &= ~0x7U;
2787     return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
2788                        DAG.getConstant(Imm, DL, VT));
2789   }
2790   case ISD::FSHL:
2791   case ISD::FSHR: {
2792     MVT VT = Op.getSimpleValueType();
2793     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
2794     SDLoc DL(Op);
2795     if (Op.getOperand(2).getOpcode() == ISD::Constant)
2796       return Op;
2797     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
2798     // use log(XLen) bits. Mask the shift amount accordingly.
2799     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
2800     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
2801                                 DAG.getConstant(ShAmtWidth, DL, VT));
2802     unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR;
2803     return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt);
2804   }
2805   case ISD::TRUNCATE: {
2806     SDLoc DL(Op);
2807     MVT VT = Op.getSimpleValueType();
2808     // Only custom-lower vector truncates
2809     if (!VT.isVector())
2810       return Op;
2811 
2812     // Truncates to mask types are handled differently
2813     if (VT.getVectorElementType() == MVT::i1)
2814       return lowerVectorMaskTrunc(Op, DAG);
2815 
2816     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
2817     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
2818     // truncate by one power of two at a time.
2819     MVT DstEltVT = VT.getVectorElementType();
2820 
2821     SDValue Src = Op.getOperand(0);
2822     MVT SrcVT = Src.getSimpleValueType();
2823     MVT SrcEltVT = SrcVT.getVectorElementType();
2824 
2825     assert(DstEltVT.bitsLT(SrcEltVT) &&
2826            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
2827            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
2828            "Unexpected vector truncate lowering");
2829 
2830     MVT ContainerVT = SrcVT;
2831     if (SrcVT.isFixedLengthVector()) {
2832       ContainerVT = getContainerForFixedLengthVector(SrcVT);
2833       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
2834     }
2835 
2836     SDValue Result = Src;
2837     SDValue Mask, VL;
2838     std::tie(Mask, VL) =
2839         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
2840     LLVMContext &Context = *DAG.getContext();
2841     const ElementCount Count = ContainerVT.getVectorElementCount();
2842     do {
2843       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
2844       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
2845       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
2846                            Mask, VL);
2847     } while (SrcEltVT != DstEltVT);
2848 
2849     if (SrcVT.isFixedLengthVector())
2850       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
2851 
2852     return Result;
2853   }
2854   case ISD::ANY_EXTEND:
2855   case ISD::ZERO_EXTEND:
2856     if (Op.getOperand(0).getValueType().isVector() &&
2857         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2858       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
2859     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
2860   case ISD::SIGN_EXTEND:
2861     if (Op.getOperand(0).getValueType().isVector() &&
2862         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2863       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
2864     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
2865   case ISD::SPLAT_VECTOR_PARTS:
2866     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
2867   case ISD::INSERT_VECTOR_ELT:
2868     return lowerINSERT_VECTOR_ELT(Op, DAG);
2869   case ISD::EXTRACT_VECTOR_ELT:
2870     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
2871   case ISD::VSCALE: {
2872     MVT VT = Op.getSimpleValueType();
2873     SDLoc DL(Op);
2874     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
2875     // We define our scalable vector types for lmul=1 to use a 64 bit known
2876     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
2877     // vscale as VLENB / 8.
2878     static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
2879     if (isa<ConstantSDNode>(Op.getOperand(0))) {
2880       // We assume VLENB is a multiple of 8. We manually choose the best shift
2881       // here because SimplifyDemandedBits isn't always able to simplify it.
2882       uint64_t Val = Op.getConstantOperandVal(0);
2883       if (isPowerOf2_64(Val)) {
2884         uint64_t Log2 = Log2_64(Val);
2885         if (Log2 < 3)
2886           return DAG.getNode(ISD::SRL, DL, VT, VLENB,
2887                              DAG.getConstant(3 - Log2, DL, VT));
2888         if (Log2 > 3)
2889           return DAG.getNode(ISD::SHL, DL, VT, VLENB,
2890                              DAG.getConstant(Log2 - 3, DL, VT));
2891         return VLENB;
2892       }
2893       // If the multiplier is a multiple of 8, scale it down to avoid needing
2894       // to shift the VLENB value.
2895       if ((Val % 8) == 0)
2896         return DAG.getNode(ISD::MUL, DL, VT, VLENB,
2897                            DAG.getConstant(Val / 8, DL, VT));
2898     }
2899 
2900     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
2901                                  DAG.getConstant(3, DL, VT));
2902     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
2903   }
2904   case ISD::FPOWI: {
2905     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
2906     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
2907     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
2908         Op.getOperand(1).getValueType() == MVT::i32) {
2909       SDLoc DL(Op);
2910       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
2911       SDValue Powi =
2912           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
2913       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
2914                          DAG.getIntPtrConstant(0, DL));
2915     }
2916     return SDValue();
2917   }
2918   case ISD::FP_EXTEND: {
2919     // RVV can only do fp_extend to types double the size as the source. We
2920     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
2921     // via f32.
2922     SDLoc DL(Op);
2923     MVT VT = Op.getSimpleValueType();
2924     SDValue Src = Op.getOperand(0);
2925     MVT SrcVT = Src.getSimpleValueType();
2926 
2927     // Prepare any fixed-length vector operands.
2928     MVT ContainerVT = VT;
2929     if (SrcVT.isFixedLengthVector()) {
2930       ContainerVT = getContainerForFixedLengthVector(VT);
2931       MVT SrcContainerVT =
2932           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
2933       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2934     }
2935 
2936     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
2937         SrcVT.getVectorElementType() != MVT::f16) {
2938       // For scalable vectors, we only need to close the gap between
2939       // vXf16->vXf64.
2940       if (!VT.isFixedLengthVector())
2941         return Op;
2942       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
2943       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2944       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2945     }
2946 
2947     MVT InterVT = VT.changeVectorElementType(MVT::f32);
2948     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
2949     SDValue IntermediateExtend = getRVVFPExtendOrRound(
2950         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
2951 
2952     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
2953                                            DL, DAG, Subtarget);
2954     if (VT.isFixedLengthVector())
2955       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
2956     return Extend;
2957   }
2958   case ISD::FP_ROUND: {
2959     // RVV can only do fp_round to types half the size as the source. We
2960     // custom-lower f64->f16 rounds via RVV's round-to-odd float
2961     // conversion instruction.
2962     SDLoc DL(Op);
2963     MVT VT = Op.getSimpleValueType();
2964     SDValue Src = Op.getOperand(0);
2965     MVT SrcVT = Src.getSimpleValueType();
2966 
2967     // Prepare any fixed-length vector operands.
2968     MVT ContainerVT = VT;
2969     if (VT.isFixedLengthVector()) {
2970       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2971       ContainerVT =
2972           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2973       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2974     }
2975 
2976     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
2977         SrcVT.getVectorElementType() != MVT::f64) {
2978       // For scalable vectors, we only need to close the gap between
2979       // vXf64<->vXf16.
2980       if (!VT.isFixedLengthVector())
2981         return Op;
2982       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
2983       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2984       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2985     }
2986 
2987     SDValue Mask, VL;
2988     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2989 
2990     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
2991     SDValue IntermediateRound =
2992         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
2993     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
2994                                           DL, DAG, Subtarget);
2995 
2996     if (VT.isFixedLengthVector())
2997       return convertFromScalableVector(VT, Round, DAG, Subtarget);
2998     return Round;
2999   }
3000   case ISD::FP_TO_SINT:
3001   case ISD::FP_TO_UINT:
3002   case ISD::SINT_TO_FP:
3003   case ISD::UINT_TO_FP: {
3004     // RVV can only do fp<->int conversions to types half/double the size as
3005     // the source. We custom-lower any conversions that do two hops into
3006     // sequences.
3007     MVT VT = Op.getSimpleValueType();
3008     if (!VT.isVector())
3009       return Op;
3010     SDLoc DL(Op);
3011     SDValue Src = Op.getOperand(0);
3012     MVT EltVT = VT.getVectorElementType();
3013     MVT SrcVT = Src.getSimpleValueType();
3014     MVT SrcEltVT = SrcVT.getVectorElementType();
3015     unsigned EltSize = EltVT.getSizeInBits();
3016     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
3017     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
3018            "Unexpected vector element types");
3019 
3020     bool IsInt2FP = SrcEltVT.isInteger();
3021     // Widening conversions
3022     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
3023       if (IsInt2FP) {
3024         // Do a regular integer sign/zero extension then convert to float.
3025         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
3026                                       VT.getVectorElementCount());
3027         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
3028                                  ? ISD::ZERO_EXTEND
3029                                  : ISD::SIGN_EXTEND;
3030         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
3031         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
3032       }
3033       // FP2Int
3034       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
3035       // Do one doubling fp_extend then complete the operation by converting
3036       // to int.
3037       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3038       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
3039       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
3040     }
3041 
3042     // Narrowing conversions
3043     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
3044       if (IsInt2FP) {
3045         // One narrowing int_to_fp, then an fp_round.
3046         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
3047         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3048         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
3049         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
3050       }
3051       // FP2Int
3052       // One narrowing fp_to_int, then truncate the integer. If the float isn't
3053       // representable by the integer, the result is poison.
3054       MVT IVecVT =
3055           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
3056                            VT.getVectorElementCount());
3057       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
3058       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
3059     }
3060 
3061     // Scalable vectors can exit here. Patterns will handle equally-sized
3062     // conversions halving/doubling ones.
3063     if (!VT.isFixedLengthVector())
3064       return Op;
3065 
3066     // For fixed-length vectors we lower to a custom "VL" node.
3067     unsigned RVVOpc = 0;
3068     switch (Op.getOpcode()) {
3069     default:
3070       llvm_unreachable("Impossible opcode");
3071     case ISD::FP_TO_SINT:
3072       RVVOpc = RISCVISD::FP_TO_SINT_VL;
3073       break;
3074     case ISD::FP_TO_UINT:
3075       RVVOpc = RISCVISD::FP_TO_UINT_VL;
3076       break;
3077     case ISD::SINT_TO_FP:
3078       RVVOpc = RISCVISD::SINT_TO_FP_VL;
3079       break;
3080     case ISD::UINT_TO_FP:
3081       RVVOpc = RISCVISD::UINT_TO_FP_VL;
3082       break;
3083     }
3084 
3085     MVT ContainerVT, SrcContainerVT;
3086     // Derive the reference container type from the larger vector type.
3087     if (SrcEltSize > EltSize) {
3088       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3089       ContainerVT =
3090           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3091     } else {
3092       ContainerVT = getContainerForFixedLengthVector(VT);
3093       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
3094     }
3095 
3096     SDValue Mask, VL;
3097     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3098 
3099     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3100     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3101     return convertFromScalableVector(VT, Src, DAG, Subtarget);
3102   }
3103   case ISD::FP_TO_SINT_SAT:
3104   case ISD::FP_TO_UINT_SAT:
3105     return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
3106   case ISD::FTRUNC:
3107   case ISD::FCEIL:
3108   case ISD::FFLOOR:
3109     return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3110   case ISD::VECREDUCE_ADD:
3111   case ISD::VECREDUCE_UMAX:
3112   case ISD::VECREDUCE_SMAX:
3113   case ISD::VECREDUCE_UMIN:
3114   case ISD::VECREDUCE_SMIN:
3115     return lowerVECREDUCE(Op, DAG);
3116   case ISD::VECREDUCE_AND:
3117   case ISD::VECREDUCE_OR:
3118   case ISD::VECREDUCE_XOR:
3119     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3120       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3121     return lowerVECREDUCE(Op, DAG);
3122   case ISD::VECREDUCE_FADD:
3123   case ISD::VECREDUCE_SEQ_FADD:
3124   case ISD::VECREDUCE_FMIN:
3125   case ISD::VECREDUCE_FMAX:
3126     return lowerFPVECREDUCE(Op, DAG);
3127   case ISD::VP_REDUCE_ADD:
3128   case ISD::VP_REDUCE_UMAX:
3129   case ISD::VP_REDUCE_SMAX:
3130   case ISD::VP_REDUCE_UMIN:
3131   case ISD::VP_REDUCE_SMIN:
3132   case ISD::VP_REDUCE_FADD:
3133   case ISD::VP_REDUCE_SEQ_FADD:
3134   case ISD::VP_REDUCE_FMIN:
3135   case ISD::VP_REDUCE_FMAX:
3136     return lowerVPREDUCE(Op, DAG);
3137   case ISD::VP_REDUCE_AND:
3138   case ISD::VP_REDUCE_OR:
3139   case ISD::VP_REDUCE_XOR:
3140     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3141       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3142     return lowerVPREDUCE(Op, DAG);
3143   case ISD::INSERT_SUBVECTOR:
3144     return lowerINSERT_SUBVECTOR(Op, DAG);
3145   case ISD::EXTRACT_SUBVECTOR:
3146     return lowerEXTRACT_SUBVECTOR(Op, DAG);
3147   case ISD::STEP_VECTOR:
3148     return lowerSTEP_VECTOR(Op, DAG);
3149   case ISD::VECTOR_REVERSE:
3150     return lowerVECTOR_REVERSE(Op, DAG);
3151   case ISD::BUILD_VECTOR:
3152     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3153   case ISD::SPLAT_VECTOR:
3154     if (Op.getValueType().getVectorElementType() == MVT::i1)
3155       return lowerVectorMaskSplat(Op, DAG);
3156     return lowerSPLAT_VECTOR(Op, DAG, Subtarget);
3157   case ISD::VECTOR_SHUFFLE:
3158     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3159   case ISD::CONCAT_VECTORS: {
3160     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3161     // better than going through the stack, as the default expansion does.
3162     SDLoc DL(Op);
3163     MVT VT = Op.getSimpleValueType();
3164     unsigned NumOpElts =
3165         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3166     SDValue Vec = DAG.getUNDEF(VT);
3167     for (const auto &OpIdx : enumerate(Op->ops())) {
3168       SDValue SubVec = OpIdx.value();
3169       // Don't insert undef subvectors.
3170       if (SubVec.isUndef())
3171         continue;
3172       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
3173                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3174     }
3175     return Vec;
3176   }
3177   case ISD::LOAD:
3178     if (auto V = expandUnalignedRVVLoad(Op, DAG))
3179       return V;
3180     if (Op.getValueType().isFixedLengthVector())
3181       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3182     return Op;
3183   case ISD::STORE:
3184     if (auto V = expandUnalignedRVVStore(Op, DAG))
3185       return V;
3186     if (Op.getOperand(1).getValueType().isFixedLengthVector())
3187       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3188     return Op;
3189   case ISD::MLOAD:
3190   case ISD::VP_LOAD:
3191     return lowerMaskedLoad(Op, DAG);
3192   case ISD::MSTORE:
3193   case ISD::VP_STORE:
3194     return lowerMaskedStore(Op, DAG);
3195   case ISD::SETCC:
3196     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3197   case ISD::ADD:
3198     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3199   case ISD::SUB:
3200     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3201   case ISD::MUL:
3202     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3203   case ISD::MULHS:
3204     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3205   case ISD::MULHU:
3206     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3207   case ISD::AND:
3208     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3209                                               RISCVISD::AND_VL);
3210   case ISD::OR:
3211     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3212                                               RISCVISD::OR_VL);
3213   case ISD::XOR:
3214     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3215                                               RISCVISD::XOR_VL);
3216   case ISD::SDIV:
3217     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3218   case ISD::SREM:
3219     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3220   case ISD::UDIV:
3221     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3222   case ISD::UREM:
3223     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3224   case ISD::SHL:
3225   case ISD::SRA:
3226   case ISD::SRL:
3227     if (Op.getSimpleValueType().isFixedLengthVector())
3228       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3229     // This can be called for an i32 shift amount that needs to be promoted.
3230     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3231            "Unexpected custom legalisation");
3232     return SDValue();
3233   case ISD::SADDSAT:
3234     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3235   case ISD::UADDSAT:
3236     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3237   case ISD::SSUBSAT:
3238     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3239   case ISD::USUBSAT:
3240     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3241   case ISD::FADD:
3242     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3243   case ISD::FSUB:
3244     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3245   case ISD::FMUL:
3246     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3247   case ISD::FDIV:
3248     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3249   case ISD::FNEG:
3250     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3251   case ISD::FABS:
3252     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3253   case ISD::FSQRT:
3254     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3255   case ISD::FMA:
3256     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
3257   case ISD::SMIN:
3258     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3259   case ISD::SMAX:
3260     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3261   case ISD::UMIN:
3262     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3263   case ISD::UMAX:
3264     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3265   case ISD::FMINNUM:
3266     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3267   case ISD::FMAXNUM:
3268     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3269   case ISD::ABS:
3270     return lowerABS(Op, DAG);
3271   case ISD::CTLZ_ZERO_UNDEF:
3272   case ISD::CTTZ_ZERO_UNDEF:
3273     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3274   case ISD::VSELECT:
3275     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3276   case ISD::FCOPYSIGN:
3277     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3278   case ISD::MGATHER:
3279   case ISD::VP_GATHER:
3280     return lowerMaskedGather(Op, DAG);
3281   case ISD::MSCATTER:
3282   case ISD::VP_SCATTER:
3283     return lowerMaskedScatter(Op, DAG);
3284   case ISD::FLT_ROUNDS_:
3285     return lowerGET_ROUNDING(Op, DAG);
3286   case ISD::SET_ROUNDING:
3287     return lowerSET_ROUNDING(Op, DAG);
3288   case ISD::VP_SELECT:
3289     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3290   case ISD::VP_ADD:
3291     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3292   case ISD::VP_SUB:
3293     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3294   case ISD::VP_MUL:
3295     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3296   case ISD::VP_SDIV:
3297     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3298   case ISD::VP_UDIV:
3299     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3300   case ISD::VP_SREM:
3301     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3302   case ISD::VP_UREM:
3303     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3304   case ISD::VP_AND:
3305     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3306   case ISD::VP_OR:
3307     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3308   case ISD::VP_XOR:
3309     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3310   case ISD::VP_ASHR:
3311     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3312   case ISD::VP_LSHR:
3313     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3314   case ISD::VP_SHL:
3315     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3316   case ISD::VP_FADD:
3317     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3318   case ISD::VP_FSUB:
3319     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3320   case ISD::VP_FMUL:
3321     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3322   case ISD::VP_FDIV:
3323     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3324   }
3325 }
3326 
3327 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3328                              SelectionDAG &DAG, unsigned Flags) {
3329   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3330 }
3331 
3332 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3333                              SelectionDAG &DAG, unsigned Flags) {
3334   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3335                                    Flags);
3336 }
3337 
3338 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3339                              SelectionDAG &DAG, unsigned Flags) {
3340   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3341                                    N->getOffset(), Flags);
3342 }
3343 
3344 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3345                              SelectionDAG &DAG, unsigned Flags) {
3346   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3347 }
3348 
3349 template <class NodeTy>
3350 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3351                                      bool IsLocal) const {
3352   SDLoc DL(N);
3353   EVT Ty = getPointerTy(DAG.getDataLayout());
3354 
3355   if (isPositionIndependent()) {
3356     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3357     if (IsLocal)
3358       // Use PC-relative addressing to access the symbol. This generates the
3359       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3360       // %pcrel_lo(auipc)).
3361       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3362 
3363     // Use PC-relative addressing to access the GOT for this symbol, then load
3364     // the address from the GOT. This generates the pattern (PseudoLA sym),
3365     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3366     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
3367   }
3368 
3369   switch (getTargetMachine().getCodeModel()) {
3370   default:
3371     report_fatal_error("Unsupported code model for lowering");
3372   case CodeModel::Small: {
3373     // Generate a sequence for accessing addresses within the first 2 GiB of
3374     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3375     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3376     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3377     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3378     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
3379   }
3380   case CodeModel::Medium: {
3381     // Generate a sequence for accessing addresses within any 2GiB range within
3382     // the address space. This generates the pattern (PseudoLLA sym), which
3383     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3384     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3385     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3386   }
3387   }
3388 }
3389 
3390 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3391                                                 SelectionDAG &DAG) const {
3392   SDLoc DL(Op);
3393   EVT Ty = Op.getValueType();
3394   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3395   int64_t Offset = N->getOffset();
3396   MVT XLenVT = Subtarget.getXLenVT();
3397 
3398   const GlobalValue *GV = N->getGlobal();
3399   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3400   SDValue Addr = getAddr(N, DAG, IsLocal);
3401 
3402   // In order to maximise the opportunity for common subexpression elimination,
3403   // emit a separate ADD node for the global address offset instead of folding
3404   // it in the global address node. Later peephole optimisations may choose to
3405   // fold it back in when profitable.
3406   if (Offset != 0)
3407     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3408                        DAG.getConstant(Offset, DL, XLenVT));
3409   return Addr;
3410 }
3411 
3412 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3413                                                SelectionDAG &DAG) const {
3414   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3415 
3416   return getAddr(N, DAG);
3417 }
3418 
3419 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3420                                                SelectionDAG &DAG) const {
3421   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3422 
3423   return getAddr(N, DAG);
3424 }
3425 
3426 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3427                                             SelectionDAG &DAG) const {
3428   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3429 
3430   return getAddr(N, DAG);
3431 }
3432 
3433 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3434                                               SelectionDAG &DAG,
3435                                               bool UseGOT) const {
3436   SDLoc DL(N);
3437   EVT Ty = getPointerTy(DAG.getDataLayout());
3438   const GlobalValue *GV = N->getGlobal();
3439   MVT XLenVT = Subtarget.getXLenVT();
3440 
3441   if (UseGOT) {
3442     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3443     // load the address from the GOT and add the thread pointer. This generates
3444     // the pattern (PseudoLA_TLS_IE sym), which expands to
3445     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3446     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3447     SDValue Load =
3448         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
3449 
3450     // Add the thread pointer.
3451     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3452     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3453   }
3454 
3455   // Generate a sequence for accessing the address relative to the thread
3456   // pointer, with the appropriate adjustment for the thread pointer offset.
3457   // This generates the pattern
3458   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3459   SDValue AddrHi =
3460       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3461   SDValue AddrAdd =
3462       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3463   SDValue AddrLo =
3464       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3465 
3466   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3467   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3468   SDValue MNAdd = SDValue(
3469       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
3470       0);
3471   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
3472 }
3473 
3474 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3475                                                SelectionDAG &DAG) const {
3476   SDLoc DL(N);
3477   EVT Ty = getPointerTy(DAG.getDataLayout());
3478   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3479   const GlobalValue *GV = N->getGlobal();
3480 
3481   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3482   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3483   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3484   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3485   SDValue Load =
3486       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
3487 
3488   // Prepare argument list to generate call.
3489   ArgListTy Args;
3490   ArgListEntry Entry;
3491   Entry.Node = Load;
3492   Entry.Ty = CallTy;
3493   Args.push_back(Entry);
3494 
3495   // Setup call to __tls_get_addr.
3496   TargetLowering::CallLoweringInfo CLI(DAG);
3497   CLI.setDebugLoc(DL)
3498       .setChain(DAG.getEntryNode())
3499       .setLibCallee(CallingConv::C, CallTy,
3500                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3501                     std::move(Args));
3502 
3503   return LowerCallTo(CLI).first;
3504 }
3505 
3506 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3507                                                    SelectionDAG &DAG) const {
3508   SDLoc DL(Op);
3509   EVT Ty = Op.getValueType();
3510   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3511   int64_t Offset = N->getOffset();
3512   MVT XLenVT = Subtarget.getXLenVT();
3513 
3514   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3515 
3516   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3517       CallingConv::GHC)
3518     report_fatal_error("In GHC calling convention TLS is not supported");
3519 
3520   SDValue Addr;
3521   switch (Model) {
3522   case TLSModel::LocalExec:
3523     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3524     break;
3525   case TLSModel::InitialExec:
3526     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3527     break;
3528   case TLSModel::LocalDynamic:
3529   case TLSModel::GeneralDynamic:
3530     Addr = getDynamicTLSAddr(N, DAG);
3531     break;
3532   }
3533 
3534   // In order to maximise the opportunity for common subexpression elimination,
3535   // emit a separate ADD node for the global address offset instead of folding
3536   // it in the global address node. Later peephole optimisations may choose to
3537   // fold it back in when profitable.
3538   if (Offset != 0)
3539     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3540                        DAG.getConstant(Offset, DL, XLenVT));
3541   return Addr;
3542 }
3543 
3544 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3545   SDValue CondV = Op.getOperand(0);
3546   SDValue TrueV = Op.getOperand(1);
3547   SDValue FalseV = Op.getOperand(2);
3548   SDLoc DL(Op);
3549   MVT VT = Op.getSimpleValueType();
3550   MVT XLenVT = Subtarget.getXLenVT();
3551 
3552   // Lower vector SELECTs to VSELECTs by splatting the condition.
3553   if (VT.isVector()) {
3554     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3555     SDValue CondSplat = VT.isScalableVector()
3556                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3557                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3558     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3559   }
3560 
3561   // If the result type is XLenVT and CondV is the output of a SETCC node
3562   // which also operated on XLenVT inputs, then merge the SETCC node into the
3563   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3564   // compare+branch instructions. i.e.:
3565   // (select (setcc lhs, rhs, cc), truev, falsev)
3566   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3567   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3568       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3569     SDValue LHS = CondV.getOperand(0);
3570     SDValue RHS = CondV.getOperand(1);
3571     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3572     ISD::CondCode CCVal = CC->get();
3573 
3574     // Special case for a select of 2 constants that have a diffence of 1.
3575     // Normally this is done by DAGCombine, but if the select is introduced by
3576     // type legalization or op legalization, we miss it. Restricting to SETLT
3577     // case for now because that is what signed saturating add/sub need.
3578     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3579     // but we would probably want to swap the true/false values if the condition
3580     // is SETGE/SETLE to avoid an XORI.
3581     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3582         CCVal == ISD::SETLT) {
3583       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3584       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3585       if (TrueVal - 1 == FalseVal)
3586         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3587       if (TrueVal + 1 == FalseVal)
3588         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3589     }
3590 
3591     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3592 
3593     SDValue TargetCC = DAG.getCondCode(CCVal);
3594     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3595     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3596   }
3597 
3598   // Otherwise:
3599   // (select condv, truev, falsev)
3600   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3601   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3602   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3603 
3604   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3605 
3606   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3607 }
3608 
3609 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3610   SDValue CondV = Op.getOperand(1);
3611   SDLoc DL(Op);
3612   MVT XLenVT = Subtarget.getXLenVT();
3613 
3614   if (CondV.getOpcode() == ISD::SETCC &&
3615       CondV.getOperand(0).getValueType() == XLenVT) {
3616     SDValue LHS = CondV.getOperand(0);
3617     SDValue RHS = CondV.getOperand(1);
3618     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3619 
3620     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3621 
3622     SDValue TargetCC = DAG.getCondCode(CCVal);
3623     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3624                        LHS, RHS, TargetCC, Op.getOperand(2));
3625   }
3626 
3627   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3628                      CondV, DAG.getConstant(0, DL, XLenVT),
3629                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
3630 }
3631 
3632 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3633   MachineFunction &MF = DAG.getMachineFunction();
3634   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
3635 
3636   SDLoc DL(Op);
3637   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3638                                  getPointerTy(MF.getDataLayout()));
3639 
3640   // vastart just stores the address of the VarArgsFrameIndex slot into the
3641   // memory location argument.
3642   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3643   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
3644                       MachinePointerInfo(SV));
3645 }
3646 
3647 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
3648                                             SelectionDAG &DAG) const {
3649   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3650   MachineFunction &MF = DAG.getMachineFunction();
3651   MachineFrameInfo &MFI = MF.getFrameInfo();
3652   MFI.setFrameAddressIsTaken(true);
3653   Register FrameReg = RI.getFrameRegister(MF);
3654   int XLenInBytes = Subtarget.getXLen() / 8;
3655 
3656   EVT VT = Op.getValueType();
3657   SDLoc DL(Op);
3658   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
3659   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3660   while (Depth--) {
3661     int Offset = -(XLenInBytes * 2);
3662     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
3663                               DAG.getIntPtrConstant(Offset, DL));
3664     FrameAddr =
3665         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
3666   }
3667   return FrameAddr;
3668 }
3669 
3670 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
3671                                              SelectionDAG &DAG) const {
3672   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3673   MachineFunction &MF = DAG.getMachineFunction();
3674   MachineFrameInfo &MFI = MF.getFrameInfo();
3675   MFI.setReturnAddressIsTaken(true);
3676   MVT XLenVT = Subtarget.getXLenVT();
3677   int XLenInBytes = Subtarget.getXLen() / 8;
3678 
3679   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3680     return SDValue();
3681 
3682   EVT VT = Op.getValueType();
3683   SDLoc DL(Op);
3684   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3685   if (Depth) {
3686     int Off = -XLenInBytes;
3687     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3688     SDValue Offset = DAG.getConstant(Off, DL, VT);
3689     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
3690                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
3691                        MachinePointerInfo());
3692   }
3693 
3694   // Return the value of the return address register, marking it an implicit
3695   // live-in.
3696   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
3697   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
3698 }
3699 
3700 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
3701                                                  SelectionDAG &DAG) const {
3702   SDLoc DL(Op);
3703   SDValue Lo = Op.getOperand(0);
3704   SDValue Hi = Op.getOperand(1);
3705   SDValue Shamt = Op.getOperand(2);
3706   EVT VT = Lo.getValueType();
3707 
3708   // if Shamt-XLEN < 0: // Shamt < XLEN
3709   //   Lo = Lo << Shamt
3710   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
3711   // else:
3712   //   Lo = 0
3713   //   Hi = Lo << (Shamt-XLEN)
3714 
3715   SDValue Zero = DAG.getConstant(0, DL, VT);
3716   SDValue One = DAG.getConstant(1, DL, VT);
3717   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3718   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3719   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3720   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3721 
3722   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
3723   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
3724   SDValue ShiftRightLo =
3725       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
3726   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
3727   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
3728   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
3729 
3730   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3731 
3732   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
3733   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3734 
3735   SDValue Parts[2] = {Lo, Hi};
3736   return DAG.getMergeValues(Parts, DL);
3737 }
3738 
3739 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
3740                                                   bool IsSRA) const {
3741   SDLoc DL(Op);
3742   SDValue Lo = Op.getOperand(0);
3743   SDValue Hi = Op.getOperand(1);
3744   SDValue Shamt = Op.getOperand(2);
3745   EVT VT = Lo.getValueType();
3746 
3747   // SRA expansion:
3748   //   if Shamt-XLEN < 0: // Shamt < XLEN
3749   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3750   //     Hi = Hi >>s Shamt
3751   //   else:
3752   //     Lo = Hi >>s (Shamt-XLEN);
3753   //     Hi = Hi >>s (XLEN-1)
3754   //
3755   // SRL expansion:
3756   //   if Shamt-XLEN < 0: // Shamt < XLEN
3757   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3758   //     Hi = Hi >>u Shamt
3759   //   else:
3760   //     Lo = Hi >>u (Shamt-XLEN);
3761   //     Hi = 0;
3762 
3763   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
3764 
3765   SDValue Zero = DAG.getConstant(0, DL, VT);
3766   SDValue One = DAG.getConstant(1, DL, VT);
3767   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3768   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3769   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3770   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3771 
3772   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
3773   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
3774   SDValue ShiftLeftHi =
3775       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
3776   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
3777   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
3778   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
3779   SDValue HiFalse =
3780       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
3781 
3782   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3783 
3784   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
3785   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3786 
3787   SDValue Parts[2] = {Lo, Hi};
3788   return DAG.getMergeValues(Parts, DL);
3789 }
3790 
3791 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
3792 // legal equivalently-sized i8 type, so we can use that as a go-between.
3793 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
3794                                                   SelectionDAG &DAG) const {
3795   SDLoc DL(Op);
3796   MVT VT = Op.getSimpleValueType();
3797   SDValue SplatVal = Op.getOperand(0);
3798   // All-zeros or all-ones splats are handled specially.
3799   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
3800     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
3801     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
3802   }
3803   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
3804     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
3805     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
3806   }
3807   MVT XLenVT = Subtarget.getXLenVT();
3808   assert(SplatVal.getValueType() == XLenVT &&
3809          "Unexpected type for i1 splat value");
3810   MVT InterVT = VT.changeVectorElementType(MVT::i8);
3811   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
3812                          DAG.getConstant(1, DL, XLenVT));
3813   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
3814   SDValue Zero = DAG.getConstant(0, DL, InterVT);
3815   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
3816 }
3817 
3818 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
3819 // illegal (currently only vXi64 RV32).
3820 // FIXME: We could also catch non-constant sign-extended i32 values and lower
3821 // them to SPLAT_VECTOR_I64
3822 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
3823                                                      SelectionDAG &DAG) const {
3824   SDLoc DL(Op);
3825   MVT VecVT = Op.getSimpleValueType();
3826   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
3827          "Unexpected SPLAT_VECTOR_PARTS lowering");
3828 
3829   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
3830   SDValue Lo = Op.getOperand(0);
3831   SDValue Hi = Op.getOperand(1);
3832 
3833   if (VecVT.isFixedLengthVector()) {
3834     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
3835     SDLoc DL(Op);
3836     SDValue Mask, VL;
3837     std::tie(Mask, VL) =
3838         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3839 
3840     SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG);
3841     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
3842   }
3843 
3844   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
3845     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
3846     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
3847     // If Hi constant is all the same sign bit as Lo, lower this as a custom
3848     // node in order to try and match RVV vector/scalar instructions.
3849     if ((LoC >> 31) == HiC)
3850       return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
3851   }
3852 
3853   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
3854   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
3855       isa<ConstantSDNode>(Hi.getOperand(1)) &&
3856       Hi.getConstantOperandVal(1) == 31)
3857     return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
3858 
3859   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
3860   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi,
3861                      DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64));
3862 }
3863 
3864 // Custom-lower extensions from mask vectors by using a vselect either with 1
3865 // for zero/any-extension or -1 for sign-extension:
3866 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
3867 // Note that any-extension is lowered identically to zero-extension.
3868 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
3869                                                 int64_t ExtTrueVal) const {
3870   SDLoc DL(Op);
3871   MVT VecVT = Op.getSimpleValueType();
3872   SDValue Src = Op.getOperand(0);
3873   // Only custom-lower extensions from mask types
3874   assert(Src.getValueType().isVector() &&
3875          Src.getValueType().getVectorElementType() == MVT::i1);
3876 
3877   MVT XLenVT = Subtarget.getXLenVT();
3878   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
3879   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
3880 
3881   if (VecVT.isScalableVector()) {
3882     // Be careful not to introduce illegal scalar types at this stage, and be
3883     // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
3884     // illegal and must be expanded. Since we know that the constants are
3885     // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly.
3886     bool IsRV32E64 =
3887         !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
3888 
3889     if (!IsRV32E64) {
3890       SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
3891       SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
3892     } else {
3893       SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero);
3894       SplatTrueVal =
3895           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal);
3896     }
3897 
3898     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
3899   }
3900 
3901   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
3902   MVT I1ContainerVT =
3903       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3904 
3905   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
3906 
3907   SDValue Mask, VL;
3908   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3909 
3910   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL);
3911   SplatTrueVal =
3912       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL);
3913   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
3914                                SplatTrueVal, SplatZero, VL);
3915 
3916   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
3917 }
3918 
3919 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
3920     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
3921   MVT ExtVT = Op.getSimpleValueType();
3922   // Only custom-lower extensions from fixed-length vector types.
3923   if (!ExtVT.isFixedLengthVector())
3924     return Op;
3925   MVT VT = Op.getOperand(0).getSimpleValueType();
3926   // Grab the canonical container type for the extended type. Infer the smaller
3927   // type from that to ensure the same number of vector elements, as we know
3928   // the LMUL will be sufficient to hold the smaller type.
3929   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
3930   // Get the extended container type manually to ensure the same number of
3931   // vector elements between source and dest.
3932   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
3933                                      ContainerExtVT.getVectorElementCount());
3934 
3935   SDValue Op1 =
3936       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
3937 
3938   SDLoc DL(Op);
3939   SDValue Mask, VL;
3940   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3941 
3942   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
3943 
3944   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
3945 }
3946 
3947 // Custom-lower truncations from vectors to mask vectors by using a mask and a
3948 // setcc operation:
3949 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
3950 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
3951                                                   SelectionDAG &DAG) const {
3952   SDLoc DL(Op);
3953   EVT MaskVT = Op.getValueType();
3954   // Only expect to custom-lower truncations to mask types
3955   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
3956          "Unexpected type for vector mask lowering");
3957   SDValue Src = Op.getOperand(0);
3958   MVT VecVT = Src.getSimpleValueType();
3959 
3960   // If this is a fixed vector, we need to convert it to a scalable vector.
3961   MVT ContainerVT = VecVT;
3962   if (VecVT.isFixedLengthVector()) {
3963     ContainerVT = getContainerForFixedLengthVector(VecVT);
3964     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3965   }
3966 
3967   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
3968   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
3969 
3970   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne);
3971   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero);
3972 
3973   if (VecVT.isScalableVector()) {
3974     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
3975     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
3976   }
3977 
3978   SDValue Mask, VL;
3979   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3980 
3981   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
3982   SDValue Trunc =
3983       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
3984   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
3985                       DAG.getCondCode(ISD::SETNE), Mask, VL);
3986   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
3987 }
3988 
3989 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
3990 // first position of a vector, and that vector is slid up to the insert index.
3991 // By limiting the active vector length to index+1 and merging with the
3992 // original vector (with an undisturbed tail policy for elements >= VL), we
3993 // achieve the desired result of leaving all elements untouched except the one
3994 // at VL-1, which is replaced with the desired value.
3995 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
3996                                                     SelectionDAG &DAG) const {
3997   SDLoc DL(Op);
3998   MVT VecVT = Op.getSimpleValueType();
3999   SDValue Vec = Op.getOperand(0);
4000   SDValue Val = Op.getOperand(1);
4001   SDValue Idx = Op.getOperand(2);
4002 
4003   if (VecVT.getVectorElementType() == MVT::i1) {
4004     // FIXME: For now we just promote to an i8 vector and insert into that,
4005     // but this is probably not optimal.
4006     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4007     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4008     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
4009     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
4010   }
4011 
4012   MVT ContainerVT = VecVT;
4013   // If the operand is a fixed-length vector, convert to a scalable one.
4014   if (VecVT.isFixedLengthVector()) {
4015     ContainerVT = getContainerForFixedLengthVector(VecVT);
4016     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4017   }
4018 
4019   MVT XLenVT = Subtarget.getXLenVT();
4020 
4021   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4022   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
4023   // Even i64-element vectors on RV32 can be lowered without scalar
4024   // legalization if the most-significant 32 bits of the value are not affected
4025   // by the sign-extension of the lower 32 bits.
4026   // TODO: We could also catch sign extensions of a 32-bit value.
4027   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
4028     const auto *CVal = cast<ConstantSDNode>(Val);
4029     if (isInt<32>(CVal->getSExtValue())) {
4030       IsLegalInsert = true;
4031       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4032     }
4033   }
4034 
4035   SDValue Mask, VL;
4036   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4037 
4038   SDValue ValInVec;
4039 
4040   if (IsLegalInsert) {
4041     unsigned Opc =
4042         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
4043     if (isNullConstant(Idx)) {
4044       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
4045       if (!VecVT.isFixedLengthVector())
4046         return Vec;
4047       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
4048     }
4049     ValInVec =
4050         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
4051   } else {
4052     // On RV32, i64-element vectors must be specially handled to place the
4053     // value at element 0, by using two vslide1up instructions in sequence on
4054     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
4055     // this.
4056     SDValue One = DAG.getConstant(1, DL, XLenVT);
4057     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
4058     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
4059     MVT I32ContainerVT =
4060         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
4061     SDValue I32Mask =
4062         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
4063     // Limit the active VL to two.
4064     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
4065     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
4066     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
4067     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero,
4068                            InsertI64VL);
4069     // First slide in the hi value, then the lo in underneath it.
4070     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
4071                            ValHi, I32Mask, InsertI64VL);
4072     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
4073                            ValLo, I32Mask, InsertI64VL);
4074     // Bitcast back to the right container type.
4075     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
4076   }
4077 
4078   // Now that the value is in a vector, slide it into position.
4079   SDValue InsertVL =
4080       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
4081   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4082                                 ValInVec, Idx, Mask, InsertVL);
4083   if (!VecVT.isFixedLengthVector())
4084     return Slideup;
4085   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4086 }
4087 
4088 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
4089 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
4090 // types this is done using VMV_X_S to allow us to glean information about the
4091 // sign bits of the result.
4092 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4093                                                      SelectionDAG &DAG) const {
4094   SDLoc DL(Op);
4095   SDValue Idx = Op.getOperand(1);
4096   SDValue Vec = Op.getOperand(0);
4097   EVT EltVT = Op.getValueType();
4098   MVT VecVT = Vec.getSimpleValueType();
4099   MVT XLenVT = Subtarget.getXLenVT();
4100 
4101   if (VecVT.getVectorElementType() == MVT::i1) {
4102     // FIXME: For now we just promote to an i8 vector and extract from that,
4103     // but this is probably not optimal.
4104     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4105     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4106     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4107   }
4108 
4109   // If this is a fixed vector, we need to convert it to a scalable vector.
4110   MVT ContainerVT = VecVT;
4111   if (VecVT.isFixedLengthVector()) {
4112     ContainerVT = getContainerForFixedLengthVector(VecVT);
4113     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4114   }
4115 
4116   // If the index is 0, the vector is already in the right position.
4117   if (!isNullConstant(Idx)) {
4118     // Use a VL of 1 to avoid processing more elements than we need.
4119     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4120     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4121     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4122     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4123                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4124   }
4125 
4126   if (!EltVT.isInteger()) {
4127     // Floating-point extracts are handled in TableGen.
4128     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4129                        DAG.getConstant(0, DL, XLenVT));
4130   }
4131 
4132   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4133   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4134 }
4135 
4136 // Some RVV intrinsics may claim that they want an integer operand to be
4137 // promoted or expanded.
4138 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG,
4139                                           const RISCVSubtarget &Subtarget) {
4140   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4141           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4142          "Unexpected opcode");
4143 
4144   if (!Subtarget.hasVInstructions())
4145     return SDValue();
4146 
4147   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4148   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4149   SDLoc DL(Op);
4150 
4151   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4152       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4153   if (!II || !II->hasSplatOperand())
4154     return SDValue();
4155 
4156   unsigned SplatOp = II->SplatOperand + 1 + HasChain;
4157   assert(SplatOp < Op.getNumOperands());
4158 
4159   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4160   SDValue &ScalarOp = Operands[SplatOp];
4161   MVT OpVT = ScalarOp.getSimpleValueType();
4162   MVT XLenVT = Subtarget.getXLenVT();
4163 
4164   // If this isn't a scalar, or its type is XLenVT we're done.
4165   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4166     return SDValue();
4167 
4168   // Simplest case is that the operand needs to be promoted to XLenVT.
4169   if (OpVT.bitsLT(XLenVT)) {
4170     // If the operand is a constant, sign extend to increase our chances
4171     // of being able to use a .vi instruction. ANY_EXTEND would become a
4172     // a zero extend and the simm5 check in isel would fail.
4173     // FIXME: Should we ignore the upper bits in isel instead?
4174     unsigned ExtOpc =
4175         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4176     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4177     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4178   }
4179 
4180   // Use the previous operand to get the vXi64 VT. The result might be a mask
4181   // VT for compares. Using the previous operand assumes that the previous
4182   // operand will never have a smaller element size than a scalar operand and
4183   // that a widening operation never uses SEW=64.
4184   // NOTE: If this fails the below assert, we can probably just find the
4185   // element count from any operand or result and use it to construct the VT.
4186   assert(II->SplatOperand > 0 && "Unexpected splat operand!");
4187   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4188 
4189   // The more complex case is when the scalar is larger than XLenVT.
4190   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4191          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4192 
4193   // If this is a sign-extended 32-bit constant, we can truncate it and rely
4194   // on the instruction to sign-extend since SEW>XLEN.
4195   if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
4196     if (isInt<32>(CVal->getSExtValue())) {
4197       ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4198       return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4199     }
4200   }
4201 
4202   // We need to convert the scalar to a splat vector.
4203   // FIXME: Can we implicitly truncate the scalar if it is known to
4204   // be sign extended?
4205   SDValue VL = Op.getOperand(II->VLOperand + 1 + HasChain);
4206   assert(VL.getValueType() == XLenVT);
4207   ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG);
4208   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4209 }
4210 
4211 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4212                                                      SelectionDAG &DAG) const {
4213   unsigned IntNo = Op.getConstantOperandVal(0);
4214   SDLoc DL(Op);
4215   MVT XLenVT = Subtarget.getXLenVT();
4216 
4217   switch (IntNo) {
4218   default:
4219     break; // Don't custom lower most intrinsics.
4220   case Intrinsic::thread_pointer: {
4221     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4222     return DAG.getRegister(RISCV::X4, PtrVT);
4223   }
4224   case Intrinsic::riscv_orc_b:
4225     // Lower to the GORCI encoding for orc.b.
4226     return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1),
4227                        DAG.getConstant(7, DL, XLenVT));
4228   case Intrinsic::riscv_grev:
4229   case Intrinsic::riscv_gorc: {
4230     unsigned Opc =
4231         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4232     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4233   }
4234   case Intrinsic::riscv_shfl:
4235   case Intrinsic::riscv_unshfl: {
4236     unsigned Opc =
4237         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4238     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4239   }
4240   case Intrinsic::riscv_bcompress:
4241   case Intrinsic::riscv_bdecompress: {
4242     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4243                                                        : RISCVISD::BDECOMPRESS;
4244     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4245   }
4246   case Intrinsic::riscv_bfp:
4247     return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1),
4248                        Op.getOperand(2));
4249   case Intrinsic::riscv_vmv_x_s:
4250     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4251     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4252                        Op.getOperand(1));
4253   case Intrinsic::riscv_vmv_v_x:
4254     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4255                             Op.getSimpleValueType(), DL, DAG, Subtarget);
4256   case Intrinsic::riscv_vfmv_v_f:
4257     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4258                        Op.getOperand(1), Op.getOperand(2));
4259   case Intrinsic::riscv_vmv_s_x: {
4260     SDValue Scalar = Op.getOperand(2);
4261 
4262     if (Scalar.getValueType().bitsLE(XLenVT)) {
4263       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4264       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4265                          Op.getOperand(1), Scalar, Op.getOperand(3));
4266     }
4267 
4268     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4269 
4270     // This is an i64 value that lives in two scalar registers. We have to
4271     // insert this in a convoluted way. First we build vXi64 splat containing
4272     // the/ two values that we assemble using some bit math. Next we'll use
4273     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4274     // to merge element 0 from our splat into the source vector.
4275     // FIXME: This is probably not the best way to do this, but it is
4276     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4277     // point.
4278     //   sw lo, (a0)
4279     //   sw hi, 4(a0)
4280     //   vlse vX, (a0)
4281     //
4282     //   vid.v      vVid
4283     //   vmseq.vx   mMask, vVid, 0
4284     //   vmerge.vvm vDest, vSrc, vVal, mMask
4285     MVT VT = Op.getSimpleValueType();
4286     SDValue Vec = Op.getOperand(1);
4287     SDValue VL = Op.getOperand(3);
4288 
4289     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
4290     SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
4291                                       DAG.getConstant(0, DL, MVT::i32), VL);
4292 
4293     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
4294     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4295     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4296     SDValue SelectCond =
4297         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4298                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4299     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4300                        Vec, VL);
4301   }
4302   case Intrinsic::riscv_vslide1up:
4303   case Intrinsic::riscv_vslide1down:
4304   case Intrinsic::riscv_vslide1up_mask:
4305   case Intrinsic::riscv_vslide1down_mask: {
4306     // We need to special case these when the scalar is larger than XLen.
4307     unsigned NumOps = Op.getNumOperands();
4308     bool IsMasked = NumOps == 7;
4309     unsigned OpOffset = IsMasked ? 1 : 0;
4310     SDValue Scalar = Op.getOperand(2 + OpOffset);
4311     if (Scalar.getValueType().bitsLE(XLenVT))
4312       break;
4313 
4314     // Splatting a sign extended constant is fine.
4315     if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar))
4316       if (isInt<32>(CVal->getSExtValue()))
4317         break;
4318 
4319     MVT VT = Op.getSimpleValueType();
4320     assert(VT.getVectorElementType() == MVT::i64 &&
4321            Scalar.getValueType() == MVT::i64 && "Unexpected VTs");
4322 
4323     // Convert the vector source to the equivalent nxvXi32 vector.
4324     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4325     SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset));
4326 
4327     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
4328                                    DAG.getConstant(0, DL, XLenVT));
4329     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
4330                                    DAG.getConstant(1, DL, XLenVT));
4331 
4332     // Double the VL since we halved SEW.
4333     SDValue VL = Op.getOperand(NumOps - (1 + OpOffset));
4334     SDValue I32VL =
4335         DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4336 
4337     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
4338     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL);
4339 
4340     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4341     // instructions.
4342     if (IntNo == Intrinsic::riscv_vslide1up ||
4343         IntNo == Intrinsic::riscv_vslide1up_mask) {
4344       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi,
4345                         I32Mask, I32VL);
4346       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo,
4347                         I32Mask, I32VL);
4348     } else {
4349       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo,
4350                         I32Mask, I32VL);
4351       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi,
4352                         I32Mask, I32VL);
4353     }
4354 
4355     // Convert back to nxvXi64.
4356     Vec = DAG.getBitcast(VT, Vec);
4357 
4358     if (!IsMasked)
4359       return Vec;
4360 
4361     // Apply mask after the operation.
4362     SDValue Mask = Op.getOperand(NumOps - 3);
4363     SDValue MaskedOff = Op.getOperand(1);
4364     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL);
4365   }
4366   }
4367 
4368   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
4369 }
4370 
4371 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4372                                                     SelectionDAG &DAG) const {
4373   unsigned IntNo = Op.getConstantOperandVal(1);
4374   switch (IntNo) {
4375   default:
4376     break;
4377   case Intrinsic::riscv_masked_strided_load: {
4378     SDLoc DL(Op);
4379     MVT XLenVT = Subtarget.getXLenVT();
4380 
4381     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4382     // the selection of the masked intrinsics doesn't do this for us.
4383     SDValue Mask = Op.getOperand(5);
4384     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4385 
4386     MVT VT = Op->getSimpleValueType(0);
4387     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4388 
4389     SDValue PassThru = Op.getOperand(2);
4390     if (!IsUnmasked) {
4391       MVT MaskVT =
4392           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4393       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4394       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4395     }
4396 
4397     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4398 
4399     SDValue IntID = DAG.getTargetConstant(
4400         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4401         XLenVT);
4402 
4403     auto *Load = cast<MemIntrinsicSDNode>(Op);
4404     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4405     if (!IsUnmasked)
4406       Ops.push_back(PassThru);
4407     Ops.push_back(Op.getOperand(3)); // Ptr
4408     Ops.push_back(Op.getOperand(4)); // Stride
4409     if (!IsUnmasked)
4410       Ops.push_back(Mask);
4411     Ops.push_back(VL);
4412     if (!IsUnmasked) {
4413       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4414       Ops.push_back(Policy);
4415     }
4416 
4417     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4418     SDValue Result =
4419         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4420                                 Load->getMemoryVT(), Load->getMemOperand());
4421     SDValue Chain = Result.getValue(1);
4422     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4423     return DAG.getMergeValues({Result, Chain}, DL);
4424   }
4425   }
4426 
4427   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
4428 }
4429 
4430 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4431                                                  SelectionDAG &DAG) const {
4432   unsigned IntNo = Op.getConstantOperandVal(1);
4433   switch (IntNo) {
4434   default:
4435     break;
4436   case Intrinsic::riscv_masked_strided_store: {
4437     SDLoc DL(Op);
4438     MVT XLenVT = Subtarget.getXLenVT();
4439 
4440     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4441     // the selection of the masked intrinsics doesn't do this for us.
4442     SDValue Mask = Op.getOperand(5);
4443     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4444 
4445     SDValue Val = Op.getOperand(2);
4446     MVT VT = Val.getSimpleValueType();
4447     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4448 
4449     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4450     if (!IsUnmasked) {
4451       MVT MaskVT =
4452           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4453       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4454     }
4455 
4456     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4457 
4458     SDValue IntID = DAG.getTargetConstant(
4459         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
4460         XLenVT);
4461 
4462     auto *Store = cast<MemIntrinsicSDNode>(Op);
4463     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
4464     Ops.push_back(Val);
4465     Ops.push_back(Op.getOperand(3)); // Ptr
4466     Ops.push_back(Op.getOperand(4)); // Stride
4467     if (!IsUnmasked)
4468       Ops.push_back(Mask);
4469     Ops.push_back(VL);
4470 
4471     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
4472                                    Ops, Store->getMemoryVT(),
4473                                    Store->getMemOperand());
4474   }
4475   }
4476 
4477   return SDValue();
4478 }
4479 
4480 static MVT getLMUL1VT(MVT VT) {
4481   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
4482          "Unexpected vector MVT");
4483   return MVT::getScalableVectorVT(
4484       VT.getVectorElementType(),
4485       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
4486 }
4487 
4488 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
4489   switch (ISDOpcode) {
4490   default:
4491     llvm_unreachable("Unhandled reduction");
4492   case ISD::VECREDUCE_ADD:
4493     return RISCVISD::VECREDUCE_ADD_VL;
4494   case ISD::VECREDUCE_UMAX:
4495     return RISCVISD::VECREDUCE_UMAX_VL;
4496   case ISD::VECREDUCE_SMAX:
4497     return RISCVISD::VECREDUCE_SMAX_VL;
4498   case ISD::VECREDUCE_UMIN:
4499     return RISCVISD::VECREDUCE_UMIN_VL;
4500   case ISD::VECREDUCE_SMIN:
4501     return RISCVISD::VECREDUCE_SMIN_VL;
4502   case ISD::VECREDUCE_AND:
4503     return RISCVISD::VECREDUCE_AND_VL;
4504   case ISD::VECREDUCE_OR:
4505     return RISCVISD::VECREDUCE_OR_VL;
4506   case ISD::VECREDUCE_XOR:
4507     return RISCVISD::VECREDUCE_XOR_VL;
4508   }
4509 }
4510 
4511 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
4512                                                          SelectionDAG &DAG,
4513                                                          bool IsVP) const {
4514   SDLoc DL(Op);
4515   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
4516   MVT VecVT = Vec.getSimpleValueType();
4517   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
4518           Op.getOpcode() == ISD::VECREDUCE_OR ||
4519           Op.getOpcode() == ISD::VECREDUCE_XOR ||
4520           Op.getOpcode() == ISD::VP_REDUCE_AND ||
4521           Op.getOpcode() == ISD::VP_REDUCE_OR ||
4522           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
4523          "Unexpected reduction lowering");
4524 
4525   MVT XLenVT = Subtarget.getXLenVT();
4526   assert(Op.getValueType() == XLenVT &&
4527          "Expected reduction output to be legalized to XLenVT");
4528 
4529   MVT ContainerVT = VecVT;
4530   if (VecVT.isFixedLengthVector()) {
4531     ContainerVT = getContainerForFixedLengthVector(VecVT);
4532     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4533   }
4534 
4535   SDValue Mask, VL;
4536   if (IsVP) {
4537     Mask = Op.getOperand(2);
4538     VL = Op.getOperand(3);
4539   } else {
4540     std::tie(Mask, VL) =
4541         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4542   }
4543 
4544   unsigned BaseOpc;
4545   ISD::CondCode CC;
4546   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4547 
4548   switch (Op.getOpcode()) {
4549   default:
4550     llvm_unreachable("Unhandled reduction");
4551   case ISD::VECREDUCE_AND:
4552   case ISD::VP_REDUCE_AND: {
4553     // vcpop ~x == 0
4554     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
4555     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
4556     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
4557     CC = ISD::SETEQ;
4558     BaseOpc = ISD::AND;
4559     break;
4560   }
4561   case ISD::VECREDUCE_OR:
4562   case ISD::VP_REDUCE_OR:
4563     // vcpop x != 0
4564     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
4565     CC = ISD::SETNE;
4566     BaseOpc = ISD::OR;
4567     break;
4568   case ISD::VECREDUCE_XOR:
4569   case ISD::VP_REDUCE_XOR: {
4570     // ((vcpop x) & 1) != 0
4571     SDValue One = DAG.getConstant(1, DL, XLenVT);
4572     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
4573     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
4574     CC = ISD::SETNE;
4575     BaseOpc = ISD::XOR;
4576     break;
4577   }
4578   }
4579 
4580   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
4581 
4582   if (!IsVP)
4583     return SetCC;
4584 
4585   // Now include the start value in the operation.
4586   // Note that we must return the start value when no elements are operated
4587   // upon. The vcpop instructions we've emitted in each case above will return
4588   // 0 for an inactive vector, and so we've already received the neutral value:
4589   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
4590   // can simply include the start value.
4591   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
4592 }
4593 
4594 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
4595                                             SelectionDAG &DAG) const {
4596   SDLoc DL(Op);
4597   SDValue Vec = Op.getOperand(0);
4598   EVT VecEVT = Vec.getValueType();
4599 
4600   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
4601 
4602   // Due to ordering in legalize types we may have a vector type that needs to
4603   // be split. Do that manually so we can get down to a legal type.
4604   while (getTypeAction(*DAG.getContext(), VecEVT) ==
4605          TargetLowering::TypeSplitVector) {
4606     SDValue Lo, Hi;
4607     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
4608     VecEVT = Lo.getValueType();
4609     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
4610   }
4611 
4612   // TODO: The type may need to be widened rather than split. Or widened before
4613   // it can be split.
4614   if (!isTypeLegal(VecEVT))
4615     return SDValue();
4616 
4617   MVT VecVT = VecEVT.getSimpleVT();
4618   MVT VecEltVT = VecVT.getVectorElementType();
4619   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
4620 
4621   MVT ContainerVT = VecVT;
4622   if (VecVT.isFixedLengthVector()) {
4623     ContainerVT = getContainerForFixedLengthVector(VecVT);
4624     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4625   }
4626 
4627   MVT M1VT = getLMUL1VT(ContainerVT);
4628   MVT XLenVT = Subtarget.getXLenVT();
4629 
4630   SDValue Mask, VL;
4631   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4632 
4633   SDValue NeutralElem =
4634       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
4635   SDValue IdentitySplat = lowerScalarSplat(
4636       NeutralElem, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget);
4637   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
4638                                   IdentitySplat, Mask, VL);
4639   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
4640                              DAG.getConstant(0, DL, XLenVT));
4641   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
4642 }
4643 
4644 // Given a reduction op, this function returns the matching reduction opcode,
4645 // the vector SDValue and the scalar SDValue required to lower this to a
4646 // RISCVISD node.
4647 static std::tuple<unsigned, SDValue, SDValue>
4648 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
4649   SDLoc DL(Op);
4650   auto Flags = Op->getFlags();
4651   unsigned Opcode = Op.getOpcode();
4652   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
4653   switch (Opcode) {
4654   default:
4655     llvm_unreachable("Unhandled reduction");
4656   case ISD::VECREDUCE_FADD: {
4657     // Use positive zero if we can. It is cheaper to materialize.
4658     SDValue Zero =
4659         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
4660     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
4661   }
4662   case ISD::VECREDUCE_SEQ_FADD:
4663     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
4664                            Op.getOperand(0));
4665   case ISD::VECREDUCE_FMIN:
4666     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
4667                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
4668   case ISD::VECREDUCE_FMAX:
4669     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
4670                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
4671   }
4672 }
4673 
4674 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
4675                                               SelectionDAG &DAG) const {
4676   SDLoc DL(Op);
4677   MVT VecEltVT = Op.getSimpleValueType();
4678 
4679   unsigned RVVOpcode;
4680   SDValue VectorVal, ScalarVal;
4681   std::tie(RVVOpcode, VectorVal, ScalarVal) =
4682       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
4683   MVT VecVT = VectorVal.getSimpleValueType();
4684 
4685   MVT ContainerVT = VecVT;
4686   if (VecVT.isFixedLengthVector()) {
4687     ContainerVT = getContainerForFixedLengthVector(VecVT);
4688     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
4689   }
4690 
4691   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
4692   MVT XLenVT = Subtarget.getXLenVT();
4693 
4694   SDValue Mask, VL;
4695   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4696 
4697   SDValue ScalarSplat = lowerScalarSplat(
4698       ScalarVal, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget);
4699   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
4700                                   VectorVal, ScalarSplat, Mask, VL);
4701   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
4702                      DAG.getConstant(0, DL, XLenVT));
4703 }
4704 
4705 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
4706   switch (ISDOpcode) {
4707   default:
4708     llvm_unreachable("Unhandled reduction");
4709   case ISD::VP_REDUCE_ADD:
4710     return RISCVISD::VECREDUCE_ADD_VL;
4711   case ISD::VP_REDUCE_UMAX:
4712     return RISCVISD::VECREDUCE_UMAX_VL;
4713   case ISD::VP_REDUCE_SMAX:
4714     return RISCVISD::VECREDUCE_SMAX_VL;
4715   case ISD::VP_REDUCE_UMIN:
4716     return RISCVISD::VECREDUCE_UMIN_VL;
4717   case ISD::VP_REDUCE_SMIN:
4718     return RISCVISD::VECREDUCE_SMIN_VL;
4719   case ISD::VP_REDUCE_AND:
4720     return RISCVISD::VECREDUCE_AND_VL;
4721   case ISD::VP_REDUCE_OR:
4722     return RISCVISD::VECREDUCE_OR_VL;
4723   case ISD::VP_REDUCE_XOR:
4724     return RISCVISD::VECREDUCE_XOR_VL;
4725   case ISD::VP_REDUCE_FADD:
4726     return RISCVISD::VECREDUCE_FADD_VL;
4727   case ISD::VP_REDUCE_SEQ_FADD:
4728     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
4729   case ISD::VP_REDUCE_FMAX:
4730     return RISCVISD::VECREDUCE_FMAX_VL;
4731   case ISD::VP_REDUCE_FMIN:
4732     return RISCVISD::VECREDUCE_FMIN_VL;
4733   }
4734 }
4735 
4736 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
4737                                            SelectionDAG &DAG) const {
4738   SDLoc DL(Op);
4739   SDValue Vec = Op.getOperand(1);
4740   EVT VecEVT = Vec.getValueType();
4741 
4742   // TODO: The type may need to be widened rather than split. Or widened before
4743   // it can be split.
4744   if (!isTypeLegal(VecEVT))
4745     return SDValue();
4746 
4747   MVT VecVT = VecEVT.getSimpleVT();
4748   MVT VecEltVT = VecVT.getVectorElementType();
4749   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
4750 
4751   MVT ContainerVT = VecVT;
4752   if (VecVT.isFixedLengthVector()) {
4753     ContainerVT = getContainerForFixedLengthVector(VecVT);
4754     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4755   }
4756 
4757   SDValue VL = Op.getOperand(3);
4758   SDValue Mask = Op.getOperand(2);
4759 
4760   MVT M1VT = getLMUL1VT(ContainerVT);
4761   MVT XLenVT = Subtarget.getXLenVT();
4762   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
4763 
4764   SDValue StartSplat =
4765       lowerScalarSplat(Op.getOperand(0), DAG.getConstant(1, DL, XLenVT), M1VT,
4766                        DL, DAG, Subtarget);
4767   SDValue Reduction =
4768       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
4769   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
4770                              DAG.getConstant(0, DL, XLenVT));
4771   if (!VecVT.isInteger())
4772     return Elt0;
4773   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
4774 }
4775 
4776 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
4777                                                    SelectionDAG &DAG) const {
4778   SDValue Vec = Op.getOperand(0);
4779   SDValue SubVec = Op.getOperand(1);
4780   MVT VecVT = Vec.getSimpleValueType();
4781   MVT SubVecVT = SubVec.getSimpleValueType();
4782 
4783   SDLoc DL(Op);
4784   MVT XLenVT = Subtarget.getXLenVT();
4785   unsigned OrigIdx = Op.getConstantOperandVal(2);
4786   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
4787 
4788   // We don't have the ability to slide mask vectors up indexed by their i1
4789   // elements; the smallest we can do is i8. Often we are able to bitcast to
4790   // equivalent i8 vectors. Note that when inserting a fixed-length vector
4791   // into a scalable one, we might not necessarily have enough scalable
4792   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
4793   if (SubVecVT.getVectorElementType() == MVT::i1 &&
4794       (OrigIdx != 0 || !Vec.isUndef())) {
4795     if (VecVT.getVectorMinNumElements() >= 8 &&
4796         SubVecVT.getVectorMinNumElements() >= 8) {
4797       assert(OrigIdx % 8 == 0 && "Invalid index");
4798       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
4799              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
4800              "Unexpected mask vector lowering");
4801       OrigIdx /= 8;
4802       SubVecVT =
4803           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
4804                            SubVecVT.isScalableVector());
4805       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
4806                                VecVT.isScalableVector());
4807       Vec = DAG.getBitcast(VecVT, Vec);
4808       SubVec = DAG.getBitcast(SubVecVT, SubVec);
4809     } else {
4810       // We can't slide this mask vector up indexed by its i1 elements.
4811       // This poses a problem when we wish to insert a scalable vector which
4812       // can't be re-expressed as a larger type. Just choose the slow path and
4813       // extend to a larger type, then truncate back down.
4814       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
4815       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
4816       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
4817       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
4818       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
4819                         Op.getOperand(2));
4820       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
4821       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
4822     }
4823   }
4824 
4825   // If the subvector vector is a fixed-length type, we cannot use subregister
4826   // manipulation to simplify the codegen; we don't know which register of a
4827   // LMUL group contains the specific subvector as we only know the minimum
4828   // register size. Therefore we must slide the vector group up the full
4829   // amount.
4830   if (SubVecVT.isFixedLengthVector()) {
4831     if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
4832       return Op;
4833     MVT ContainerVT = VecVT;
4834     if (VecVT.isFixedLengthVector()) {
4835       ContainerVT = getContainerForFixedLengthVector(VecVT);
4836       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4837     }
4838     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
4839                          DAG.getUNDEF(ContainerVT), SubVec,
4840                          DAG.getConstant(0, DL, XLenVT));
4841     if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
4842       SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
4843       return DAG.getBitcast(Op.getValueType(), SubVec);
4844     }
4845     SDValue Mask =
4846         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
4847     // Set the vector length to only the number of elements we care about. Note
4848     // that for slideup this includes the offset.
4849     SDValue VL =
4850         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
4851     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
4852     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4853                                   SubVec, SlideupAmt, Mask, VL);
4854     if (VecVT.isFixedLengthVector())
4855       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4856     return DAG.getBitcast(Op.getValueType(), Slideup);
4857   }
4858 
4859   unsigned SubRegIdx, RemIdx;
4860   std::tie(SubRegIdx, RemIdx) =
4861       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
4862           VecVT, SubVecVT, OrigIdx, TRI);
4863 
4864   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
4865   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
4866                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
4867                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
4868 
4869   // 1. If the Idx has been completely eliminated and this subvector's size is
4870   // a vector register or a multiple thereof, or the surrounding elements are
4871   // undef, then this is a subvector insert which naturally aligns to a vector
4872   // register. These can easily be handled using subregister manipulation.
4873   // 2. If the subvector is smaller than a vector register, then the insertion
4874   // must preserve the undisturbed elements of the register. We do this by
4875   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
4876   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
4877   // subvector within the vector register, and an INSERT_SUBVECTOR of that
4878   // LMUL=1 type back into the larger vector (resolving to another subregister
4879   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
4880   // to avoid allocating a large register group to hold our subvector.
4881   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
4882     return Op;
4883 
4884   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
4885   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
4886   // (in our case undisturbed). This means we can set up a subvector insertion
4887   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
4888   // size of the subvector.
4889   MVT InterSubVT = VecVT;
4890   SDValue AlignedExtract = Vec;
4891   unsigned AlignedIdx = OrigIdx - RemIdx;
4892   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
4893     InterSubVT = getLMUL1VT(VecVT);
4894     // Extract a subvector equal to the nearest full vector register type. This
4895     // should resolve to a EXTRACT_SUBREG instruction.
4896     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
4897                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
4898   }
4899 
4900   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
4901   // For scalable vectors this must be further multiplied by vscale.
4902   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
4903 
4904   SDValue Mask, VL;
4905   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
4906 
4907   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
4908   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
4909   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
4910   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
4911 
4912   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
4913                        DAG.getUNDEF(InterSubVT), SubVec,
4914                        DAG.getConstant(0, DL, XLenVT));
4915 
4916   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
4917                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
4918 
4919   // If required, insert this subvector back into the correct vector register.
4920   // This should resolve to an INSERT_SUBREG instruction.
4921   if (VecVT.bitsGT(InterSubVT))
4922     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
4923                           DAG.getConstant(AlignedIdx, DL, XLenVT));
4924 
4925   // We might have bitcast from a mask type: cast back to the original type if
4926   // required.
4927   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
4928 }
4929 
4930 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
4931                                                     SelectionDAG &DAG) const {
4932   SDValue Vec = Op.getOperand(0);
4933   MVT SubVecVT = Op.getSimpleValueType();
4934   MVT VecVT = Vec.getSimpleValueType();
4935 
4936   SDLoc DL(Op);
4937   MVT XLenVT = Subtarget.getXLenVT();
4938   unsigned OrigIdx = Op.getConstantOperandVal(1);
4939   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
4940 
4941   // We don't have the ability to slide mask vectors down indexed by their i1
4942   // elements; the smallest we can do is i8. Often we are able to bitcast to
4943   // equivalent i8 vectors. Note that when extracting a fixed-length vector
4944   // from a scalable one, we might not necessarily have enough scalable
4945   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
4946   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
4947     if (VecVT.getVectorMinNumElements() >= 8 &&
4948         SubVecVT.getVectorMinNumElements() >= 8) {
4949       assert(OrigIdx % 8 == 0 && "Invalid index");
4950       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
4951              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
4952              "Unexpected mask vector lowering");
4953       OrigIdx /= 8;
4954       SubVecVT =
4955           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
4956                            SubVecVT.isScalableVector());
4957       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
4958                                VecVT.isScalableVector());
4959       Vec = DAG.getBitcast(VecVT, Vec);
4960     } else {
4961       // We can't slide this mask vector down, indexed by its i1 elements.
4962       // This poses a problem when we wish to extract a scalable vector which
4963       // can't be re-expressed as a larger type. Just choose the slow path and
4964       // extend to a larger type, then truncate back down.
4965       // TODO: We could probably improve this when extracting certain fixed
4966       // from fixed, where we can extract as i8 and shift the correct element
4967       // right to reach the desired subvector?
4968       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
4969       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
4970       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
4971       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
4972                         Op.getOperand(1));
4973       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
4974       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
4975     }
4976   }
4977 
4978   // If the subvector vector is a fixed-length type, we cannot use subregister
4979   // manipulation to simplify the codegen; we don't know which register of a
4980   // LMUL group contains the specific subvector as we only know the minimum
4981   // register size. Therefore we must slide the vector group down the full
4982   // amount.
4983   if (SubVecVT.isFixedLengthVector()) {
4984     // With an index of 0 this is a cast-like subvector, which can be performed
4985     // with subregister operations.
4986     if (OrigIdx == 0)
4987       return Op;
4988     MVT ContainerVT = VecVT;
4989     if (VecVT.isFixedLengthVector()) {
4990       ContainerVT = getContainerForFixedLengthVector(VecVT);
4991       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4992     }
4993     SDValue Mask =
4994         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
4995     // Set the vector length to only the number of elements we care about. This
4996     // avoids sliding down elements we're going to discard straight away.
4997     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
4998     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
4999     SDValue Slidedown =
5000         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5001                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
5002     // Now we can use a cast-like subvector extract to get the result.
5003     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5004                             DAG.getConstant(0, DL, XLenVT));
5005     return DAG.getBitcast(Op.getValueType(), Slidedown);
5006   }
5007 
5008   unsigned SubRegIdx, RemIdx;
5009   std::tie(SubRegIdx, RemIdx) =
5010       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5011           VecVT, SubVecVT, OrigIdx, TRI);
5012 
5013   // If the Idx has been completely eliminated then this is a subvector extract
5014   // which naturally aligns to a vector register. These can easily be handled
5015   // using subregister manipulation.
5016   if (RemIdx == 0)
5017     return Op;
5018 
5019   // Else we must shift our vector register directly to extract the subvector.
5020   // Do this using VSLIDEDOWN.
5021 
5022   // If the vector type is an LMUL-group type, extract a subvector equal to the
5023   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
5024   // instruction.
5025   MVT InterSubVT = VecVT;
5026   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5027     InterSubVT = getLMUL1VT(VecVT);
5028     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5029                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
5030   }
5031 
5032   // Slide this vector register down by the desired number of elements in order
5033   // to place the desired subvector starting at element 0.
5034   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5035   // For scalable vectors this must be further multiplied by vscale.
5036   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
5037 
5038   SDValue Mask, VL;
5039   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
5040   SDValue Slidedown =
5041       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
5042                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
5043 
5044   // Now the vector is in the right position, extract our final subvector. This
5045   // should resolve to a COPY.
5046   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5047                           DAG.getConstant(0, DL, XLenVT));
5048 
5049   // We might have bitcast from a mask type: cast back to the original type if
5050   // required.
5051   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
5052 }
5053 
5054 // Lower step_vector to the vid instruction. Any non-identity step value must
5055 // be accounted for my manual expansion.
5056 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
5057                                               SelectionDAG &DAG) const {
5058   SDLoc DL(Op);
5059   MVT VT = Op.getSimpleValueType();
5060   MVT XLenVT = Subtarget.getXLenVT();
5061   SDValue Mask, VL;
5062   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
5063   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
5064   uint64_t StepValImm = Op.getConstantOperandVal(0);
5065   if (StepValImm != 1) {
5066     if (isPowerOf2_64(StepValImm)) {
5067       SDValue StepVal =
5068           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
5069                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
5070       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
5071     } else {
5072       SDValue StepVal = lowerScalarSplat(
5073           DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT,
5074           DL, DAG, Subtarget);
5075       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
5076     }
5077   }
5078   return StepVec;
5079 }
5080 
5081 // Implement vector_reverse using vrgather.vv with indices determined by
5082 // subtracting the id of each element from (VLMAX-1). This will convert
5083 // the indices like so:
5084 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
5085 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
5086 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
5087                                                  SelectionDAG &DAG) const {
5088   SDLoc DL(Op);
5089   MVT VecVT = Op.getSimpleValueType();
5090   unsigned EltSize = VecVT.getScalarSizeInBits();
5091   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
5092 
5093   unsigned MaxVLMAX = 0;
5094   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
5095   if (VectorBitsMax != 0)
5096     MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock;
5097 
5098   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
5099   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
5100 
5101   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
5102   // to use vrgatherei16.vv.
5103   // TODO: It's also possible to use vrgatherei16.vv for other types to
5104   // decrease register width for the index calculation.
5105   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
5106     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
5107     // Reverse each half, then reassemble them in reverse order.
5108     // NOTE: It's also possible that after splitting that VLMAX no longer
5109     // requires vrgatherei16.vv.
5110     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
5111       SDValue Lo, Hi;
5112       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5113       EVT LoVT, HiVT;
5114       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5115       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5116       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5117       // Reassemble the low and high pieces reversed.
5118       // FIXME: This is a CONCAT_VECTORS.
5119       SDValue Res =
5120           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5121                       DAG.getIntPtrConstant(0, DL));
5122       return DAG.getNode(
5123           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5124           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5125     }
5126 
5127     // Just promote the int type to i16 which will double the LMUL.
5128     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5129     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5130   }
5131 
5132   MVT XLenVT = Subtarget.getXLenVT();
5133   SDValue Mask, VL;
5134   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5135 
5136   // Calculate VLMAX-1 for the desired SEW.
5137   unsigned MinElts = VecVT.getVectorMinNumElements();
5138   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5139                               DAG.getConstant(MinElts, DL, XLenVT));
5140   SDValue VLMinus1 =
5141       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5142 
5143   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5144   bool IsRV32E64 =
5145       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5146   SDValue SplatVL;
5147   if (!IsRV32E64)
5148     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5149   else
5150     SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1);
5151 
5152   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5153   SDValue Indices =
5154       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5155 
5156   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
5157 }
5158 
5159 SDValue
5160 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5161                                                      SelectionDAG &DAG) const {
5162   SDLoc DL(Op);
5163   auto *Load = cast<LoadSDNode>(Op);
5164 
5165   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5166                                         Load->getMemoryVT(),
5167                                         *Load->getMemOperand()) &&
5168          "Expecting a correctly-aligned load");
5169 
5170   MVT VT = Op.getSimpleValueType();
5171   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5172 
5173   SDValue VL =
5174       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5175 
5176   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5177   SDValue NewLoad = DAG.getMemIntrinsicNode(
5178       RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
5179       Load->getMemoryVT(), Load->getMemOperand());
5180 
5181   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5182   return DAG.getMergeValues({Result, Load->getChain()}, DL);
5183 }
5184 
5185 SDValue
5186 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5187                                                       SelectionDAG &DAG) const {
5188   SDLoc DL(Op);
5189   auto *Store = cast<StoreSDNode>(Op);
5190 
5191   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5192                                         Store->getMemoryVT(),
5193                                         *Store->getMemOperand()) &&
5194          "Expecting a correctly-aligned store");
5195 
5196   SDValue StoreVal = Store->getValue();
5197   MVT VT = StoreVal.getSimpleValueType();
5198 
5199   // If the size less than a byte, we need to pad with zeros to make a byte.
5200   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5201     VT = MVT::v8i1;
5202     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5203                            DAG.getConstant(0, DL, VT), StoreVal,
5204                            DAG.getIntPtrConstant(0, DL));
5205   }
5206 
5207   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5208 
5209   SDValue VL =
5210       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5211 
5212   SDValue NewValue =
5213       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5214   return DAG.getMemIntrinsicNode(
5215       RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
5216       {Store->getChain(), NewValue, Store->getBasePtr(), VL},
5217       Store->getMemoryVT(), Store->getMemOperand());
5218 }
5219 
5220 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5221                                              SelectionDAG &DAG) const {
5222   SDLoc DL(Op);
5223   MVT VT = Op.getSimpleValueType();
5224 
5225   const auto *MemSD = cast<MemSDNode>(Op);
5226   EVT MemVT = MemSD->getMemoryVT();
5227   MachineMemOperand *MMO = MemSD->getMemOperand();
5228   SDValue Chain = MemSD->getChain();
5229   SDValue BasePtr = MemSD->getBasePtr();
5230 
5231   SDValue Mask, PassThru, VL;
5232   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5233     Mask = VPLoad->getMask();
5234     PassThru = DAG.getUNDEF(VT);
5235     VL = VPLoad->getVectorLength();
5236   } else {
5237     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5238     Mask = MLoad->getMask();
5239     PassThru = MLoad->getPassThru();
5240   }
5241 
5242   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5243 
5244   MVT XLenVT = Subtarget.getXLenVT();
5245 
5246   MVT ContainerVT = VT;
5247   if (VT.isFixedLengthVector()) {
5248     ContainerVT = getContainerForFixedLengthVector(VT);
5249     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5250     if (!IsUnmasked) {
5251       MVT MaskVT =
5252           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5253       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5254     }
5255   }
5256 
5257   if (!VL)
5258     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5259 
5260   unsigned IntID =
5261       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5262   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5263   if (!IsUnmasked)
5264     Ops.push_back(PassThru);
5265   Ops.push_back(BasePtr);
5266   if (!IsUnmasked)
5267     Ops.push_back(Mask);
5268   Ops.push_back(VL);
5269   if (!IsUnmasked)
5270     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5271 
5272   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5273 
5274   SDValue Result =
5275       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5276   Chain = Result.getValue(1);
5277 
5278   if (VT.isFixedLengthVector())
5279     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5280 
5281   return DAG.getMergeValues({Result, Chain}, DL);
5282 }
5283 
5284 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5285                                               SelectionDAG &DAG) const {
5286   SDLoc DL(Op);
5287 
5288   const auto *MemSD = cast<MemSDNode>(Op);
5289   EVT MemVT = MemSD->getMemoryVT();
5290   MachineMemOperand *MMO = MemSD->getMemOperand();
5291   SDValue Chain = MemSD->getChain();
5292   SDValue BasePtr = MemSD->getBasePtr();
5293   SDValue Val, Mask, VL;
5294 
5295   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5296     Val = VPStore->getValue();
5297     Mask = VPStore->getMask();
5298     VL = VPStore->getVectorLength();
5299   } else {
5300     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5301     Val = MStore->getValue();
5302     Mask = MStore->getMask();
5303   }
5304 
5305   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5306 
5307   MVT VT = Val.getSimpleValueType();
5308   MVT XLenVT = Subtarget.getXLenVT();
5309 
5310   MVT ContainerVT = VT;
5311   if (VT.isFixedLengthVector()) {
5312     ContainerVT = getContainerForFixedLengthVector(VT);
5313 
5314     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5315     if (!IsUnmasked) {
5316       MVT MaskVT =
5317           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5318       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5319     }
5320   }
5321 
5322   if (!VL)
5323     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5324 
5325   unsigned IntID =
5326       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5327   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5328   Ops.push_back(Val);
5329   Ops.push_back(BasePtr);
5330   if (!IsUnmasked)
5331     Ops.push_back(Mask);
5332   Ops.push_back(VL);
5333 
5334   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5335                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5336 }
5337 
5338 SDValue
5339 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
5340                                                       SelectionDAG &DAG) const {
5341   MVT InVT = Op.getOperand(0).getSimpleValueType();
5342   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
5343 
5344   MVT VT = Op.getSimpleValueType();
5345 
5346   SDValue Op1 =
5347       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
5348   SDValue Op2 =
5349       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5350 
5351   SDLoc DL(Op);
5352   SDValue VL =
5353       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5354 
5355   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5356   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5357 
5358   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
5359                             Op.getOperand(2), Mask, VL);
5360 
5361   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
5362 }
5363 
5364 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
5365     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
5366   MVT VT = Op.getSimpleValueType();
5367 
5368   if (VT.getVectorElementType() == MVT::i1)
5369     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
5370 
5371   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
5372 }
5373 
5374 SDValue
5375 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
5376                                                       SelectionDAG &DAG) const {
5377   unsigned Opc;
5378   switch (Op.getOpcode()) {
5379   default: llvm_unreachable("Unexpected opcode!");
5380   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
5381   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
5382   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
5383   }
5384 
5385   return lowerToScalableOp(Op, DAG, Opc);
5386 }
5387 
5388 // Lower vector ABS to smax(X, sub(0, X)).
5389 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
5390   SDLoc DL(Op);
5391   MVT VT = Op.getSimpleValueType();
5392   SDValue X = Op.getOperand(0);
5393 
5394   assert(VT.isFixedLengthVector() && "Unexpected type");
5395 
5396   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5397   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
5398 
5399   SDValue Mask, VL;
5400   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5401 
5402   SDValue SplatZero =
5403       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
5404                   DAG.getConstant(0, DL, Subtarget.getXLenVT()));
5405   SDValue NegX =
5406       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
5407   SDValue Max =
5408       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
5409 
5410   return convertFromScalableVector(VT, Max, DAG, Subtarget);
5411 }
5412 
5413 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
5414     SDValue Op, SelectionDAG &DAG) const {
5415   SDLoc DL(Op);
5416   MVT VT = Op.getSimpleValueType();
5417   SDValue Mag = Op.getOperand(0);
5418   SDValue Sign = Op.getOperand(1);
5419   assert(Mag.getValueType() == Sign.getValueType() &&
5420          "Can only handle COPYSIGN with matching types.");
5421 
5422   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5423   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
5424   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
5425 
5426   SDValue Mask, VL;
5427   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5428 
5429   SDValue CopySign =
5430       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
5431 
5432   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
5433 }
5434 
5435 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
5436     SDValue Op, SelectionDAG &DAG) const {
5437   MVT VT = Op.getSimpleValueType();
5438   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5439 
5440   MVT I1ContainerVT =
5441       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5442 
5443   SDValue CC =
5444       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
5445   SDValue Op1 =
5446       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5447   SDValue Op2 =
5448       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
5449 
5450   SDLoc DL(Op);
5451   SDValue Mask, VL;
5452   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5453 
5454   SDValue Select =
5455       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
5456 
5457   return convertFromScalableVector(VT, Select, DAG, Subtarget);
5458 }
5459 
5460 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
5461                                                unsigned NewOpc,
5462                                                bool HasMask) const {
5463   MVT VT = Op.getSimpleValueType();
5464   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5465 
5466   // Create list of operands by converting existing ones to scalable types.
5467   SmallVector<SDValue, 6> Ops;
5468   for (const SDValue &V : Op->op_values()) {
5469     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5470 
5471     // Pass through non-vector operands.
5472     if (!V.getValueType().isVector()) {
5473       Ops.push_back(V);
5474       continue;
5475     }
5476 
5477     // "cast" fixed length vector to a scalable vector.
5478     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
5479            "Only fixed length vectors are supported!");
5480     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5481   }
5482 
5483   SDLoc DL(Op);
5484   SDValue Mask, VL;
5485   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5486   if (HasMask)
5487     Ops.push_back(Mask);
5488   Ops.push_back(VL);
5489 
5490   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
5491   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
5492 }
5493 
5494 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
5495 // * Operands of each node are assumed to be in the same order.
5496 // * The EVL operand is promoted from i32 to i64 on RV64.
5497 // * Fixed-length vectors are converted to their scalable-vector container
5498 //   types.
5499 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
5500                                        unsigned RISCVISDOpc) const {
5501   SDLoc DL(Op);
5502   MVT VT = Op.getSimpleValueType();
5503   SmallVector<SDValue, 4> Ops;
5504 
5505   for (const auto &OpIdx : enumerate(Op->ops())) {
5506     SDValue V = OpIdx.value();
5507     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5508     // Pass through operands which aren't fixed-length vectors.
5509     if (!V.getValueType().isFixedLengthVector()) {
5510       Ops.push_back(V);
5511       continue;
5512     }
5513     // "cast" fixed length vector to a scalable vector.
5514     MVT OpVT = V.getSimpleValueType();
5515     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
5516     assert(useRVVForFixedLengthVectorVT(OpVT) &&
5517            "Only fixed length vectors are supported!");
5518     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5519   }
5520 
5521   if (!VT.isFixedLengthVector())
5522     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
5523 
5524   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5525 
5526   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
5527 
5528   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
5529 }
5530 
5531 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
5532                                             unsigned MaskOpc,
5533                                             unsigned VecOpc) const {
5534   MVT VT = Op.getSimpleValueType();
5535   if (VT.getVectorElementType() != MVT::i1)
5536     return lowerVPOp(Op, DAG, VecOpc);
5537 
5538   // It is safe to drop mask parameter as masked-off elements are undef.
5539   SDValue Op1 = Op->getOperand(0);
5540   SDValue Op2 = Op->getOperand(1);
5541   SDValue VL = Op->getOperand(3);
5542 
5543   MVT ContainerVT = VT;
5544   const bool IsFixed = VT.isFixedLengthVector();
5545   if (IsFixed) {
5546     ContainerVT = getContainerForFixedLengthVector(VT);
5547     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
5548     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
5549   }
5550 
5551   SDLoc DL(Op);
5552   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
5553   if (!IsFixed)
5554     return Val;
5555   return convertFromScalableVector(VT, Val, DAG, Subtarget);
5556 }
5557 
5558 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
5559 // matched to a RVV indexed load. The RVV indexed load instructions only
5560 // support the "unsigned unscaled" addressing mode; indices are implicitly
5561 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
5562 // signed or scaled indexing is extended to the XLEN value type and scaled
5563 // accordingly.
5564 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
5565                                                SelectionDAG &DAG) const {
5566   SDLoc DL(Op);
5567   MVT VT = Op.getSimpleValueType();
5568 
5569   const auto *MemSD = cast<MemSDNode>(Op.getNode());
5570   EVT MemVT = MemSD->getMemoryVT();
5571   MachineMemOperand *MMO = MemSD->getMemOperand();
5572   SDValue Chain = MemSD->getChain();
5573   SDValue BasePtr = MemSD->getBasePtr();
5574 
5575   ISD::LoadExtType LoadExtType;
5576   SDValue Index, Mask, PassThru, VL;
5577 
5578   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
5579     Index = VPGN->getIndex();
5580     Mask = VPGN->getMask();
5581     PassThru = DAG.getUNDEF(VT);
5582     VL = VPGN->getVectorLength();
5583     // VP doesn't support extending loads.
5584     LoadExtType = ISD::NON_EXTLOAD;
5585   } else {
5586     // Else it must be a MGATHER.
5587     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
5588     Index = MGN->getIndex();
5589     Mask = MGN->getMask();
5590     PassThru = MGN->getPassThru();
5591     LoadExtType = MGN->getExtensionType();
5592   }
5593 
5594   MVT IndexVT = Index.getSimpleValueType();
5595   MVT XLenVT = Subtarget.getXLenVT();
5596 
5597   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
5598          "Unexpected VTs!");
5599   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
5600   // Targets have to explicitly opt-in for extending vector loads.
5601   assert(LoadExtType == ISD::NON_EXTLOAD &&
5602          "Unexpected extending MGATHER/VP_GATHER");
5603   (void)LoadExtType;
5604 
5605   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5606   // the selection of the masked intrinsics doesn't do this for us.
5607   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5608 
5609   MVT ContainerVT = VT;
5610   if (VT.isFixedLengthVector()) {
5611     // We need to use the larger of the result and index type to determine the
5612     // scalable type to use so we don't increase LMUL for any operand/result.
5613     if (VT.bitsGE(IndexVT)) {
5614       ContainerVT = getContainerForFixedLengthVector(VT);
5615       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
5616                                  ContainerVT.getVectorElementCount());
5617     } else {
5618       IndexVT = getContainerForFixedLengthVector(IndexVT);
5619       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
5620                                      IndexVT.getVectorElementCount());
5621     }
5622 
5623     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
5624 
5625     if (!IsUnmasked) {
5626       MVT MaskVT =
5627           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5628       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5629       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5630     }
5631   }
5632 
5633   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
5634       IndexVT = IndexVT.changeVectorElementType(XLenVT);
5635       Index = DAG.getNode(ISD::TRUNCATE, DL, IndexVT, Index);
5636   }
5637 
5638   if (!VL)
5639     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5640 
5641   unsigned IntID =
5642       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
5643   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5644   if (!IsUnmasked)
5645     Ops.push_back(PassThru);
5646   Ops.push_back(BasePtr);
5647   Ops.push_back(Index);
5648   if (!IsUnmasked)
5649     Ops.push_back(Mask);
5650   Ops.push_back(VL);
5651   if (!IsUnmasked)
5652     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5653 
5654   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5655   SDValue Result =
5656       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5657   Chain = Result.getValue(1);
5658 
5659   if (VT.isFixedLengthVector())
5660     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5661 
5662   return DAG.getMergeValues({Result, Chain}, DL);
5663 }
5664 
5665 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
5666 // matched to a RVV indexed store. The RVV indexed store instructions only
5667 // support the "unsigned unscaled" addressing mode; indices are implicitly
5668 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
5669 // signed or scaled indexing is extended to the XLEN value type and scaled
5670 // accordingly.
5671 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
5672                                                 SelectionDAG &DAG) const {
5673   SDLoc DL(Op);
5674   const auto *MemSD = cast<MemSDNode>(Op.getNode());
5675   EVT MemVT = MemSD->getMemoryVT();
5676   MachineMemOperand *MMO = MemSD->getMemOperand();
5677   SDValue Chain = MemSD->getChain();
5678   SDValue BasePtr = MemSD->getBasePtr();
5679 
5680   bool IsTruncatingStore = false;
5681   SDValue Index, Mask, Val, VL;
5682 
5683   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
5684     Index = VPSN->getIndex();
5685     Mask = VPSN->getMask();
5686     Val = VPSN->getValue();
5687     VL = VPSN->getVectorLength();
5688     // VP doesn't support truncating stores.
5689     IsTruncatingStore = false;
5690   } else {
5691     // Else it must be a MSCATTER.
5692     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
5693     Index = MSN->getIndex();
5694     Mask = MSN->getMask();
5695     Val = MSN->getValue();
5696     IsTruncatingStore = MSN->isTruncatingStore();
5697   }
5698 
5699   MVT VT = Val.getSimpleValueType();
5700   MVT IndexVT = Index.getSimpleValueType();
5701   MVT XLenVT = Subtarget.getXLenVT();
5702 
5703   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
5704          "Unexpected VTs!");
5705   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
5706   // Targets have to explicitly opt-in for extending vector loads and
5707   // truncating vector stores.
5708   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
5709   (void)IsTruncatingStore;
5710 
5711   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5712   // the selection of the masked intrinsics doesn't do this for us.
5713   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5714 
5715   MVT ContainerVT = VT;
5716   if (VT.isFixedLengthVector()) {
5717     // We need to use the larger of the value and index type to determine the
5718     // scalable type to use so we don't increase LMUL for any operand/result.
5719     if (VT.bitsGE(IndexVT)) {
5720       ContainerVT = getContainerForFixedLengthVector(VT);
5721       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
5722                                  ContainerVT.getVectorElementCount());
5723     } else {
5724       IndexVT = getContainerForFixedLengthVector(IndexVT);
5725       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
5726                                      IndexVT.getVectorElementCount());
5727     }
5728 
5729     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
5730     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5731 
5732     if (!IsUnmasked) {
5733       MVT MaskVT =
5734           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5735       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5736     }
5737   }
5738 
5739   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
5740       IndexVT = IndexVT.changeVectorElementType(XLenVT);
5741       Index = DAG.getNode(ISD::TRUNCATE, DL, IndexVT, Index);
5742   }
5743 
5744   if (!VL)
5745     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5746 
5747   unsigned IntID =
5748       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
5749   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5750   Ops.push_back(Val);
5751   Ops.push_back(BasePtr);
5752   Ops.push_back(Index);
5753   if (!IsUnmasked)
5754     Ops.push_back(Mask);
5755   Ops.push_back(VL);
5756 
5757   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5758                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5759 }
5760 
5761 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
5762                                                SelectionDAG &DAG) const {
5763   const MVT XLenVT = Subtarget.getXLenVT();
5764   SDLoc DL(Op);
5765   SDValue Chain = Op->getOperand(0);
5766   SDValue SysRegNo = DAG.getTargetConstant(
5767       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
5768   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
5769   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
5770 
5771   // Encoding used for rounding mode in RISCV differs from that used in
5772   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
5773   // table, which consists of a sequence of 4-bit fields, each representing
5774   // corresponding FLT_ROUNDS mode.
5775   static const int Table =
5776       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
5777       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
5778       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
5779       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
5780       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
5781 
5782   SDValue Shift =
5783       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
5784   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
5785                                 DAG.getConstant(Table, DL, XLenVT), Shift);
5786   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
5787                                DAG.getConstant(7, DL, XLenVT));
5788 
5789   return DAG.getMergeValues({Masked, Chain}, DL);
5790 }
5791 
5792 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
5793                                                SelectionDAG &DAG) const {
5794   const MVT XLenVT = Subtarget.getXLenVT();
5795   SDLoc DL(Op);
5796   SDValue Chain = Op->getOperand(0);
5797   SDValue RMValue = Op->getOperand(1);
5798   SDValue SysRegNo = DAG.getTargetConstant(
5799       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
5800 
5801   // Encoding used for rounding mode in RISCV differs from that used in
5802   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
5803   // a table, which consists of a sequence of 4-bit fields, each representing
5804   // corresponding RISCV mode.
5805   static const unsigned Table =
5806       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
5807       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
5808       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
5809       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
5810       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
5811 
5812   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
5813                               DAG.getConstant(2, DL, XLenVT));
5814   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
5815                                 DAG.getConstant(Table, DL, XLenVT), Shift);
5816   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
5817                         DAG.getConstant(0x7, DL, XLenVT));
5818   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
5819                      RMValue);
5820 }
5821 
5822 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) {
5823   switch (IntNo) {
5824   default:
5825     llvm_unreachable("Unexpected Intrinsic");
5826   case Intrinsic::riscv_grev:
5827     return RISCVISD::GREVW;
5828   case Intrinsic::riscv_gorc:
5829     return RISCVISD::GORCW;
5830   case Intrinsic::riscv_bcompress:
5831     return RISCVISD::BCOMPRESSW;
5832   case Intrinsic::riscv_bdecompress:
5833     return RISCVISD::BDECOMPRESSW;
5834   case Intrinsic::riscv_bfp:
5835     return RISCVISD::BFPW;
5836   }
5837 }
5838 
5839 // Converts the given intrinsic to a i64 operation with any extension.
5840 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG,
5841                                          unsigned IntNo) {
5842   SDLoc DL(N);
5843   RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo);
5844   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5845   SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5846   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2);
5847   // ReplaceNodeResults requires we maintain the same type for the return value.
5848   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
5849 }
5850 
5851 // Returns the opcode of the target-specific SDNode that implements the 32-bit
5852 // form of the given Opcode.
5853 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
5854   switch (Opcode) {
5855   default:
5856     llvm_unreachable("Unexpected opcode");
5857   case ISD::SHL:
5858     return RISCVISD::SLLW;
5859   case ISD::SRA:
5860     return RISCVISD::SRAW;
5861   case ISD::SRL:
5862     return RISCVISD::SRLW;
5863   case ISD::SDIV:
5864     return RISCVISD::DIVW;
5865   case ISD::UDIV:
5866     return RISCVISD::DIVUW;
5867   case ISD::UREM:
5868     return RISCVISD::REMUW;
5869   case ISD::ROTL:
5870     return RISCVISD::ROLW;
5871   case ISD::ROTR:
5872     return RISCVISD::RORW;
5873   case RISCVISD::GREV:
5874     return RISCVISD::GREVW;
5875   case RISCVISD::GORC:
5876     return RISCVISD::GORCW;
5877   }
5878 }
5879 
5880 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
5881 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
5882 // otherwise be promoted to i64, making it difficult to select the
5883 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
5884 // type i8/i16/i32 is lost.
5885 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
5886                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
5887   SDLoc DL(N);
5888   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
5889   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
5890   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
5891   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
5892   // ReplaceNodeResults requires we maintain the same type for the return value.
5893   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
5894 }
5895 
5896 // Converts the given 32-bit operation to a i64 operation with signed extension
5897 // semantic to reduce the signed extension instructions.
5898 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
5899   SDLoc DL(N);
5900   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5901   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5902   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
5903   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
5904                                DAG.getValueType(MVT::i32));
5905   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
5906 }
5907 
5908 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
5909                                              SmallVectorImpl<SDValue> &Results,
5910                                              SelectionDAG &DAG) const {
5911   SDLoc DL(N);
5912   switch (N->getOpcode()) {
5913   default:
5914     llvm_unreachable("Don't know how to custom type legalize this operation!");
5915   case ISD::STRICT_FP_TO_SINT:
5916   case ISD::STRICT_FP_TO_UINT:
5917   case ISD::FP_TO_SINT:
5918   case ISD::FP_TO_UINT: {
5919     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5920            "Unexpected custom legalisation");
5921     bool IsStrict = N->isStrictFPOpcode();
5922     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
5923                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
5924     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
5925     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
5926         TargetLowering::TypeSoftenFloat) {
5927       if (!isTypeLegal(Op0.getValueType()))
5928         return;
5929       if (IsStrict) {
5930         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
5931                                 : RISCVISD::STRICT_FCVT_WU_RV64;
5932         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
5933         SDValue Res = DAG.getNode(
5934             Opc, DL, VTs, N->getOperand(0), Op0,
5935             DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
5936         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5937         Results.push_back(Res.getValue(1));
5938         return;
5939       }
5940       unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
5941       SDValue Res =
5942           DAG.getNode(Opc, DL, MVT::i64, Op0,
5943                       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
5944       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5945       return;
5946     }
5947     // If the FP type needs to be softened, emit a library call using the 'si'
5948     // version. If we left it to default legalization we'd end up with 'di'. If
5949     // the FP type doesn't need to be softened just let generic type
5950     // legalization promote the result type.
5951     RTLIB::Libcall LC;
5952     if (IsSigned)
5953       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
5954     else
5955       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
5956     MakeLibCallOptions CallOptions;
5957     EVT OpVT = Op0.getValueType();
5958     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
5959     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
5960     SDValue Result;
5961     std::tie(Result, Chain) =
5962         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
5963     Results.push_back(Result);
5964     if (IsStrict)
5965       Results.push_back(Chain);
5966     break;
5967   }
5968   case ISD::READCYCLECOUNTER: {
5969     assert(!Subtarget.is64Bit() &&
5970            "READCYCLECOUNTER only has custom type legalization on riscv32");
5971 
5972     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
5973     SDValue RCW =
5974         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
5975 
5976     Results.push_back(
5977         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
5978     Results.push_back(RCW.getValue(2));
5979     break;
5980   }
5981   case ISD::MUL: {
5982     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
5983     unsigned XLen = Subtarget.getXLen();
5984     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
5985     if (Size > XLen) {
5986       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
5987       SDValue LHS = N->getOperand(0);
5988       SDValue RHS = N->getOperand(1);
5989       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
5990 
5991       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
5992       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
5993       // We need exactly one side to be unsigned.
5994       if (LHSIsU == RHSIsU)
5995         return;
5996 
5997       auto MakeMULPair = [&](SDValue S, SDValue U) {
5998         MVT XLenVT = Subtarget.getXLenVT();
5999         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
6000         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
6001         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
6002         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
6003         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
6004       };
6005 
6006       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
6007       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
6008 
6009       // The other operand should be signed, but still prefer MULH when
6010       // possible.
6011       if (RHSIsU && LHSIsS && !RHSIsS)
6012         Results.push_back(MakeMULPair(LHS, RHS));
6013       else if (LHSIsU && RHSIsS && !LHSIsS)
6014         Results.push_back(MakeMULPair(RHS, LHS));
6015 
6016       return;
6017     }
6018     LLVM_FALLTHROUGH;
6019   }
6020   case ISD::ADD:
6021   case ISD::SUB:
6022     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6023            "Unexpected custom legalisation");
6024     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
6025     break;
6026   case ISD::SHL:
6027   case ISD::SRA:
6028   case ISD::SRL:
6029     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6030            "Unexpected custom legalisation");
6031     if (N->getOperand(1).getOpcode() != ISD::Constant) {
6032       Results.push_back(customLegalizeToWOp(N, DAG));
6033       break;
6034     }
6035 
6036     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
6037     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
6038     // shift amount.
6039     if (N->getOpcode() == ISD::SHL) {
6040       SDLoc DL(N);
6041       SDValue NewOp0 =
6042           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6043       SDValue NewOp1 =
6044           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
6045       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
6046       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6047                                    DAG.getValueType(MVT::i32));
6048       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6049     }
6050 
6051     break;
6052   case ISD::ROTL:
6053   case ISD::ROTR:
6054     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6055            "Unexpected custom legalisation");
6056     Results.push_back(customLegalizeToWOp(N, DAG));
6057     break;
6058   case ISD::CTTZ:
6059   case ISD::CTTZ_ZERO_UNDEF:
6060   case ISD::CTLZ:
6061   case ISD::CTLZ_ZERO_UNDEF: {
6062     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6063            "Unexpected custom legalisation");
6064 
6065     SDValue NewOp0 =
6066         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6067     bool IsCTZ =
6068         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
6069     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
6070     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
6071     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6072     return;
6073   }
6074   case ISD::SDIV:
6075   case ISD::UDIV:
6076   case ISD::UREM: {
6077     MVT VT = N->getSimpleValueType(0);
6078     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
6079            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
6080            "Unexpected custom legalisation");
6081     // Don't promote division/remainder by constant since we should expand those
6082     // to multiply by magic constant.
6083     // FIXME: What if the expansion is disabled for minsize.
6084     if (N->getOperand(1).getOpcode() == ISD::Constant)
6085       return;
6086 
6087     // If the input is i32, use ANY_EXTEND since the W instructions don't read
6088     // the upper 32 bits. For other types we need to sign or zero extend
6089     // based on the opcode.
6090     unsigned ExtOpc = ISD::ANY_EXTEND;
6091     if (VT != MVT::i32)
6092       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
6093                                            : ISD::ZERO_EXTEND;
6094 
6095     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
6096     break;
6097   }
6098   case ISD::UADDO:
6099   case ISD::USUBO: {
6100     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6101            "Unexpected custom legalisation");
6102     bool IsAdd = N->getOpcode() == ISD::UADDO;
6103     // Create an ADDW or SUBW.
6104     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6105     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6106     SDValue Res =
6107         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
6108     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
6109                       DAG.getValueType(MVT::i32));
6110 
6111     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
6112     // Since the inputs are sign extended from i32, this is equivalent to
6113     // comparing the lower 32 bits.
6114     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6115     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
6116                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
6117 
6118     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6119     Results.push_back(Overflow);
6120     return;
6121   }
6122   case ISD::UADDSAT:
6123   case ISD::USUBSAT: {
6124     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6125            "Unexpected custom legalisation");
6126     if (Subtarget.hasStdExtZbb()) {
6127       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
6128       // sign extend allows overflow of the lower 32 bits to be detected on
6129       // the promoted size.
6130       SDValue LHS =
6131           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6132       SDValue RHS =
6133           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
6134       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
6135       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6136       return;
6137     }
6138 
6139     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
6140     // promotion for UADDO/USUBO.
6141     Results.push_back(expandAddSubSat(N, DAG));
6142     return;
6143   }
6144   case ISD::BITCAST: {
6145     EVT VT = N->getValueType(0);
6146     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
6147     SDValue Op0 = N->getOperand(0);
6148     EVT Op0VT = Op0.getValueType();
6149     MVT XLenVT = Subtarget.getXLenVT();
6150     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
6151       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
6152       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
6153     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
6154                Subtarget.hasStdExtF()) {
6155       SDValue FPConv =
6156           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
6157       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
6158     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
6159                isTypeLegal(Op0VT)) {
6160       // Custom-legalize bitcasts from fixed-length vector types to illegal
6161       // scalar types in order to improve codegen. Bitcast the vector to a
6162       // one-element vector type whose element type is the same as the result
6163       // type, and extract the first element.
6164       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
6165       if (isTypeLegal(BVT)) {
6166         SDValue BVec = DAG.getBitcast(BVT, Op0);
6167         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
6168                                       DAG.getConstant(0, DL, XLenVT)));
6169       }
6170     }
6171     break;
6172   }
6173   case RISCVISD::GREV:
6174   case RISCVISD::GORC: {
6175     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6176            "Unexpected custom legalisation");
6177     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6178     // This is similar to customLegalizeToWOp, except that we pass the second
6179     // operand (a TargetConstant) straight through: it is already of type
6180     // XLenVT.
6181     RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6182     SDValue NewOp0 =
6183         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6184     SDValue NewOp1 =
6185         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6186     SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6187     // ReplaceNodeResults requires we maintain the same type for the return
6188     // value.
6189     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6190     break;
6191   }
6192   case RISCVISD::SHFL: {
6193     // There is no SHFLIW instruction, but we can just promote the operation.
6194     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6195            "Unexpected custom legalisation");
6196     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6197     SDValue NewOp0 =
6198         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6199     SDValue NewOp1 =
6200         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6201     SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1);
6202     // ReplaceNodeResults requires we maintain the same type for the return
6203     // value.
6204     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6205     break;
6206   }
6207   case ISD::BSWAP:
6208   case ISD::BITREVERSE: {
6209     MVT VT = N->getSimpleValueType(0);
6210     MVT XLenVT = Subtarget.getXLenVT();
6211     assert((VT == MVT::i8 || VT == MVT::i16 ||
6212             (VT == MVT::i32 && Subtarget.is64Bit())) &&
6213            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
6214     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
6215     unsigned Imm = VT.getSizeInBits() - 1;
6216     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
6217     if (N->getOpcode() == ISD::BSWAP)
6218       Imm &= ~0x7U;
6219     unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV;
6220     SDValue GREVI =
6221         DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT));
6222     // ReplaceNodeResults requires we maintain the same type for the return
6223     // value.
6224     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
6225     break;
6226   }
6227   case ISD::FSHL:
6228   case ISD::FSHR: {
6229     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6230            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
6231     SDValue NewOp0 =
6232         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6233     SDValue NewOp1 =
6234         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6235     SDValue NewOp2 =
6236         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6237     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
6238     // Mask the shift amount to 5 bits.
6239     NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
6240                          DAG.getConstant(0x1f, DL, MVT::i64));
6241     unsigned Opc =
6242         N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW;
6243     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2);
6244     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
6245     break;
6246   }
6247   case ISD::EXTRACT_VECTOR_ELT: {
6248     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
6249     // type is illegal (currently only vXi64 RV32).
6250     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
6251     // transferred to the destination register. We issue two of these from the
6252     // upper- and lower- halves of the SEW-bit vector element, slid down to the
6253     // first element.
6254     SDValue Vec = N->getOperand(0);
6255     SDValue Idx = N->getOperand(1);
6256 
6257     // The vector type hasn't been legalized yet so we can't issue target
6258     // specific nodes if it needs legalization.
6259     // FIXME: We would manually legalize if it's important.
6260     if (!isTypeLegal(Vec.getValueType()))
6261       return;
6262 
6263     MVT VecVT = Vec.getSimpleValueType();
6264 
6265     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
6266            VecVT.getVectorElementType() == MVT::i64 &&
6267            "Unexpected EXTRACT_VECTOR_ELT legalization");
6268 
6269     // If this is a fixed vector, we need to convert it to a scalable vector.
6270     MVT ContainerVT = VecVT;
6271     if (VecVT.isFixedLengthVector()) {
6272       ContainerVT = getContainerForFixedLengthVector(VecVT);
6273       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
6274     }
6275 
6276     MVT XLenVT = Subtarget.getXLenVT();
6277 
6278     // Use a VL of 1 to avoid processing more elements than we need.
6279     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6280     SDValue VL = DAG.getConstant(1, DL, XLenVT);
6281     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6282 
6283     // Unless the index is known to be 0, we must slide the vector down to get
6284     // the desired element into index 0.
6285     if (!isNullConstant(Idx)) {
6286       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
6287                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
6288     }
6289 
6290     // Extract the lower XLEN bits of the correct vector element.
6291     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
6292 
6293     // To extract the upper XLEN bits of the vector element, shift the first
6294     // element right by 32 bits and re-extract the lower XLEN bits.
6295     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6296                                      DAG.getConstant(32, DL, XLenVT), VL);
6297     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
6298                                  ThirtyTwoV, Mask, VL);
6299 
6300     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
6301 
6302     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
6303     break;
6304   }
6305   case ISD::INTRINSIC_WO_CHAIN: {
6306     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
6307     switch (IntNo) {
6308     default:
6309       llvm_unreachable(
6310           "Don't know how to custom type legalize this intrinsic!");
6311     case Intrinsic::riscv_grev:
6312     case Intrinsic::riscv_gorc:
6313     case Intrinsic::riscv_bcompress:
6314     case Intrinsic::riscv_bdecompress:
6315     case Intrinsic::riscv_bfp: {
6316       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6317              "Unexpected custom legalisation");
6318       Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo));
6319       break;
6320     }
6321     case Intrinsic::riscv_orc_b: {
6322       // Lower to the GORCI encoding for orc.b with the operand extended.
6323       SDValue NewOp =
6324           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6325       // If Zbp is enabled, use GORCIW which will sign extend the result.
6326       unsigned Opc =
6327           Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC;
6328       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp,
6329                                 DAG.getConstant(7, DL, MVT::i64));
6330       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6331       return;
6332     }
6333     case Intrinsic::riscv_shfl:
6334     case Intrinsic::riscv_unshfl: {
6335       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6336              "Unexpected custom legalisation");
6337       SDValue NewOp1 =
6338           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6339       SDValue NewOp2 =
6340           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6341       unsigned Opc =
6342           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
6343       if (isa<ConstantSDNode>(N->getOperand(2))) {
6344         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
6345                              DAG.getConstant(0xf, DL, MVT::i64));
6346         Opc =
6347             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
6348       }
6349       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
6350       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6351       break;
6352     }
6353     case Intrinsic::riscv_vmv_x_s: {
6354       EVT VT = N->getValueType(0);
6355       MVT XLenVT = Subtarget.getXLenVT();
6356       if (VT.bitsLT(XLenVT)) {
6357         // Simple case just extract using vmv.x.s and truncate.
6358         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
6359                                       Subtarget.getXLenVT(), N->getOperand(1));
6360         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
6361         return;
6362       }
6363 
6364       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
6365              "Unexpected custom legalization");
6366 
6367       // We need to do the move in two steps.
6368       SDValue Vec = N->getOperand(1);
6369       MVT VecVT = Vec.getSimpleValueType();
6370 
6371       // First extract the lower XLEN bits of the element.
6372       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
6373 
6374       // To extract the upper XLEN bits of the vector element, shift the first
6375       // element right by 32 bits and re-extract the lower XLEN bits.
6376       SDValue VL = DAG.getConstant(1, DL, XLenVT);
6377       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
6378       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6379       SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT,
6380                                        DAG.getConstant(32, DL, XLenVT), VL);
6381       SDValue LShr32 =
6382           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
6383       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
6384 
6385       Results.push_back(
6386           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
6387       break;
6388     }
6389     }
6390     break;
6391   }
6392   case ISD::VECREDUCE_ADD:
6393   case ISD::VECREDUCE_AND:
6394   case ISD::VECREDUCE_OR:
6395   case ISD::VECREDUCE_XOR:
6396   case ISD::VECREDUCE_SMAX:
6397   case ISD::VECREDUCE_UMAX:
6398   case ISD::VECREDUCE_SMIN:
6399   case ISD::VECREDUCE_UMIN:
6400     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
6401       Results.push_back(V);
6402     break;
6403   case ISD::VP_REDUCE_ADD:
6404   case ISD::VP_REDUCE_AND:
6405   case ISD::VP_REDUCE_OR:
6406   case ISD::VP_REDUCE_XOR:
6407   case ISD::VP_REDUCE_SMAX:
6408   case ISD::VP_REDUCE_UMAX:
6409   case ISD::VP_REDUCE_SMIN:
6410   case ISD::VP_REDUCE_UMIN:
6411     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
6412       Results.push_back(V);
6413     break;
6414   case ISD::FLT_ROUNDS_: {
6415     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
6416     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
6417     Results.push_back(Res.getValue(0));
6418     Results.push_back(Res.getValue(1));
6419     break;
6420   }
6421   }
6422 }
6423 
6424 // A structure to hold one of the bit-manipulation patterns below. Together, a
6425 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
6426 //   (or (and (shl x, 1), 0xAAAAAAAA),
6427 //       (and (srl x, 1), 0x55555555))
6428 struct RISCVBitmanipPat {
6429   SDValue Op;
6430   unsigned ShAmt;
6431   bool IsSHL;
6432 
6433   bool formsPairWith(const RISCVBitmanipPat &Other) const {
6434     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
6435   }
6436 };
6437 
6438 // Matches patterns of the form
6439 //   (and (shl x, C2), (C1 << C2))
6440 //   (and (srl x, C2), C1)
6441 //   (shl (and x, C1), C2)
6442 //   (srl (and x, (C1 << C2)), C2)
6443 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
6444 // The expected masks for each shift amount are specified in BitmanipMasks where
6445 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
6446 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
6447 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
6448 // XLen is 64.
6449 static Optional<RISCVBitmanipPat>
6450 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
6451   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
6452          "Unexpected number of masks");
6453   Optional<uint64_t> Mask;
6454   // Optionally consume a mask around the shift operation.
6455   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
6456     Mask = Op.getConstantOperandVal(1);
6457     Op = Op.getOperand(0);
6458   }
6459   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
6460     return None;
6461   bool IsSHL = Op.getOpcode() == ISD::SHL;
6462 
6463   if (!isa<ConstantSDNode>(Op.getOperand(1)))
6464     return None;
6465   uint64_t ShAmt = Op.getConstantOperandVal(1);
6466 
6467   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
6468   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
6469     return None;
6470   // If we don't have enough masks for 64 bit, then we must be trying to
6471   // match SHFL so we're only allowed to shift 1/4 of the width.
6472   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
6473     return None;
6474 
6475   SDValue Src = Op.getOperand(0);
6476 
6477   // The expected mask is shifted left when the AND is found around SHL
6478   // patterns.
6479   //   ((x >> 1) & 0x55555555)
6480   //   ((x << 1) & 0xAAAAAAAA)
6481   bool SHLExpMask = IsSHL;
6482 
6483   if (!Mask) {
6484     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
6485     // the mask is all ones: consume that now.
6486     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
6487       Mask = Src.getConstantOperandVal(1);
6488       Src = Src.getOperand(0);
6489       // The expected mask is now in fact shifted left for SRL, so reverse the
6490       // decision.
6491       //   ((x & 0xAAAAAAAA) >> 1)
6492       //   ((x & 0x55555555) << 1)
6493       SHLExpMask = !SHLExpMask;
6494     } else {
6495       // Use a default shifted mask of all-ones if there's no AND, truncated
6496       // down to the expected width. This simplifies the logic later on.
6497       Mask = maskTrailingOnes<uint64_t>(Width);
6498       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
6499     }
6500   }
6501 
6502   unsigned MaskIdx = Log2_32(ShAmt);
6503   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
6504 
6505   if (SHLExpMask)
6506     ExpMask <<= ShAmt;
6507 
6508   if (Mask != ExpMask)
6509     return None;
6510 
6511   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
6512 }
6513 
6514 // Matches any of the following bit-manipulation patterns:
6515 //   (and (shl x, 1), (0x55555555 << 1))
6516 //   (and (srl x, 1), 0x55555555)
6517 //   (shl (and x, 0x55555555), 1)
6518 //   (srl (and x, (0x55555555 << 1)), 1)
6519 // where the shift amount and mask may vary thus:
6520 //   [1]  = 0x55555555 / 0xAAAAAAAA
6521 //   [2]  = 0x33333333 / 0xCCCCCCCC
6522 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
6523 //   [8]  = 0x00FF00FF / 0xFF00FF00
6524 //   [16] = 0x0000FFFF / 0xFFFFFFFF
6525 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
6526 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
6527   // These are the unshifted masks which we use to match bit-manipulation
6528   // patterns. They may be shifted left in certain circumstances.
6529   static const uint64_t BitmanipMasks[] = {
6530       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
6531       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
6532 
6533   return matchRISCVBitmanipPat(Op, BitmanipMasks);
6534 }
6535 
6536 // Match the following pattern as a GREVI(W) operation
6537 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
6538 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
6539                                const RISCVSubtarget &Subtarget) {
6540   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6541   EVT VT = Op.getValueType();
6542 
6543   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
6544     auto LHS = matchGREVIPat(Op.getOperand(0));
6545     auto RHS = matchGREVIPat(Op.getOperand(1));
6546     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
6547       SDLoc DL(Op);
6548       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
6549                          DAG.getConstant(LHS->ShAmt, DL, VT));
6550     }
6551   }
6552   return SDValue();
6553 }
6554 
6555 // Matches any the following pattern as a GORCI(W) operation
6556 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
6557 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
6558 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
6559 // Note that with the variant of 3.,
6560 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
6561 // the inner pattern will first be matched as GREVI and then the outer
6562 // pattern will be matched to GORC via the first rule above.
6563 // 4.  (or (rotl/rotr x, bitwidth/2), x)
6564 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
6565                                const RISCVSubtarget &Subtarget) {
6566   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6567   EVT VT = Op.getValueType();
6568 
6569   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
6570     SDLoc DL(Op);
6571     SDValue Op0 = Op.getOperand(0);
6572     SDValue Op1 = Op.getOperand(1);
6573 
6574     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
6575       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
6576           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
6577           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
6578         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
6579       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
6580       if ((Reverse.getOpcode() == ISD::ROTL ||
6581            Reverse.getOpcode() == ISD::ROTR) &&
6582           Reverse.getOperand(0) == X &&
6583           isa<ConstantSDNode>(Reverse.getOperand(1))) {
6584         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
6585         if (RotAmt == (VT.getSizeInBits() / 2))
6586           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
6587                              DAG.getConstant(RotAmt, DL, VT));
6588       }
6589       return SDValue();
6590     };
6591 
6592     // Check for either commutable permutation of (or (GREVI x, shamt), x)
6593     if (SDValue V = MatchOROfReverse(Op0, Op1))
6594       return V;
6595     if (SDValue V = MatchOROfReverse(Op1, Op0))
6596       return V;
6597 
6598     // OR is commutable so canonicalize its OR operand to the left
6599     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
6600       std::swap(Op0, Op1);
6601     if (Op0.getOpcode() != ISD::OR)
6602       return SDValue();
6603     SDValue OrOp0 = Op0.getOperand(0);
6604     SDValue OrOp1 = Op0.getOperand(1);
6605     auto LHS = matchGREVIPat(OrOp0);
6606     // OR is commutable so swap the operands and try again: x might have been
6607     // on the left
6608     if (!LHS) {
6609       std::swap(OrOp0, OrOp1);
6610       LHS = matchGREVIPat(OrOp0);
6611     }
6612     auto RHS = matchGREVIPat(Op1);
6613     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
6614       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
6615                          DAG.getConstant(LHS->ShAmt, DL, VT));
6616     }
6617   }
6618   return SDValue();
6619 }
6620 
6621 // Matches any of the following bit-manipulation patterns:
6622 //   (and (shl x, 1), (0x22222222 << 1))
6623 //   (and (srl x, 1), 0x22222222)
6624 //   (shl (and x, 0x22222222), 1)
6625 //   (srl (and x, (0x22222222 << 1)), 1)
6626 // where the shift amount and mask may vary thus:
6627 //   [1]  = 0x22222222 / 0x44444444
6628 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
6629 //   [4]  = 0x00F000F0 / 0x0F000F00
6630 //   [8]  = 0x0000FF00 / 0x00FF0000
6631 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
6632 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
6633   // These are the unshifted masks which we use to match bit-manipulation
6634   // patterns. They may be shifted left in certain circumstances.
6635   static const uint64_t BitmanipMasks[] = {
6636       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
6637       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
6638 
6639   return matchRISCVBitmanipPat(Op, BitmanipMasks);
6640 }
6641 
6642 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
6643 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
6644                                const RISCVSubtarget &Subtarget) {
6645   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6646   EVT VT = Op.getValueType();
6647 
6648   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
6649     return SDValue();
6650 
6651   SDValue Op0 = Op.getOperand(0);
6652   SDValue Op1 = Op.getOperand(1);
6653 
6654   // Or is commutable so canonicalize the second OR to the LHS.
6655   if (Op0.getOpcode() != ISD::OR)
6656     std::swap(Op0, Op1);
6657   if (Op0.getOpcode() != ISD::OR)
6658     return SDValue();
6659 
6660   // We found an inner OR, so our operands are the operands of the inner OR
6661   // and the other operand of the outer OR.
6662   SDValue A = Op0.getOperand(0);
6663   SDValue B = Op0.getOperand(1);
6664   SDValue C = Op1;
6665 
6666   auto Match1 = matchSHFLPat(A);
6667   auto Match2 = matchSHFLPat(B);
6668 
6669   // If neither matched, we failed.
6670   if (!Match1 && !Match2)
6671     return SDValue();
6672 
6673   // We had at least one match. if one failed, try the remaining C operand.
6674   if (!Match1) {
6675     std::swap(A, C);
6676     Match1 = matchSHFLPat(A);
6677     if (!Match1)
6678       return SDValue();
6679   } else if (!Match2) {
6680     std::swap(B, C);
6681     Match2 = matchSHFLPat(B);
6682     if (!Match2)
6683       return SDValue();
6684   }
6685   assert(Match1 && Match2);
6686 
6687   // Make sure our matches pair up.
6688   if (!Match1->formsPairWith(*Match2))
6689     return SDValue();
6690 
6691   // All the remains is to make sure C is an AND with the same input, that masks
6692   // out the bits that are being shuffled.
6693   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
6694       C.getOperand(0) != Match1->Op)
6695     return SDValue();
6696 
6697   uint64_t Mask = C.getConstantOperandVal(1);
6698 
6699   static const uint64_t BitmanipMasks[] = {
6700       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
6701       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
6702   };
6703 
6704   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
6705   unsigned MaskIdx = Log2_32(Match1->ShAmt);
6706   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
6707 
6708   if (Mask != ExpMask)
6709     return SDValue();
6710 
6711   SDLoc DL(Op);
6712   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
6713                      DAG.getConstant(Match1->ShAmt, DL, VT));
6714 }
6715 
6716 // Optimize (add (shl x, c0), (shl y, c1)) ->
6717 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
6718 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
6719                                   const RISCVSubtarget &Subtarget) {
6720   // Perform this optimization only in the zba extension.
6721   if (!Subtarget.hasStdExtZba())
6722     return SDValue();
6723 
6724   // Skip for vector types and larger types.
6725   EVT VT = N->getValueType(0);
6726   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
6727     return SDValue();
6728 
6729   // The two operand nodes must be SHL and have no other use.
6730   SDValue N0 = N->getOperand(0);
6731   SDValue N1 = N->getOperand(1);
6732   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
6733       !N0->hasOneUse() || !N1->hasOneUse())
6734     return SDValue();
6735 
6736   // Check c0 and c1.
6737   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
6738   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
6739   if (!N0C || !N1C)
6740     return SDValue();
6741   int64_t C0 = N0C->getSExtValue();
6742   int64_t C1 = N1C->getSExtValue();
6743   if (C0 <= 0 || C1 <= 0)
6744     return SDValue();
6745 
6746   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
6747   int64_t Bits = std::min(C0, C1);
6748   int64_t Diff = std::abs(C0 - C1);
6749   if (Diff != 1 && Diff != 2 && Diff != 3)
6750     return SDValue();
6751 
6752   // Build nodes.
6753   SDLoc DL(N);
6754   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
6755   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
6756   SDValue NA0 =
6757       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
6758   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
6759   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
6760 }
6761 
6762 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
6763 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
6764 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
6765 // not undo itself, but they are redundant.
6766 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
6767   SDValue Src = N->getOperand(0);
6768 
6769   if (Src.getOpcode() != N->getOpcode())
6770     return SDValue();
6771 
6772   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
6773       !isa<ConstantSDNode>(Src.getOperand(1)))
6774     return SDValue();
6775 
6776   unsigned ShAmt1 = N->getConstantOperandVal(1);
6777   unsigned ShAmt2 = Src.getConstantOperandVal(1);
6778   Src = Src.getOperand(0);
6779 
6780   unsigned CombinedShAmt;
6781   if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW)
6782     CombinedShAmt = ShAmt1 | ShAmt2;
6783   else
6784     CombinedShAmt = ShAmt1 ^ ShAmt2;
6785 
6786   if (CombinedShAmt == 0)
6787     return Src;
6788 
6789   SDLoc DL(N);
6790   return DAG.getNode(
6791       N->getOpcode(), DL, N->getValueType(0), Src,
6792       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
6793 }
6794 
6795 // Combine a constant select operand into its use:
6796 //
6797 // (and (select cond, -1, c), x)
6798 //   -> (select cond, x, (and x, c))  [AllOnes=1]
6799 // (or  (select cond, 0, c), x)
6800 //   -> (select cond, x, (or x, c))  [AllOnes=0]
6801 // (xor (select cond, 0, c), x)
6802 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
6803 // (add (select cond, 0, c), x)
6804 //   -> (select cond, x, (add x, c))  [AllOnes=0]
6805 // (sub x, (select cond, 0, c))
6806 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
6807 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
6808                                    SelectionDAG &DAG, bool AllOnes) {
6809   EVT VT = N->getValueType(0);
6810 
6811   // Skip vectors.
6812   if (VT.isVector())
6813     return SDValue();
6814 
6815   if ((Slct.getOpcode() != ISD::SELECT &&
6816        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
6817       !Slct.hasOneUse())
6818     return SDValue();
6819 
6820   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
6821     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
6822   };
6823 
6824   bool SwapSelectOps;
6825   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
6826   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
6827   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
6828   SDValue NonConstantVal;
6829   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
6830     SwapSelectOps = false;
6831     NonConstantVal = FalseVal;
6832   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
6833     SwapSelectOps = true;
6834     NonConstantVal = TrueVal;
6835   } else
6836     return SDValue();
6837 
6838   // Slct is now know to be the desired identity constant when CC is true.
6839   TrueVal = OtherOp;
6840   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
6841   // Unless SwapSelectOps says the condition should be false.
6842   if (SwapSelectOps)
6843     std::swap(TrueVal, FalseVal);
6844 
6845   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
6846     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
6847                        {Slct.getOperand(0), Slct.getOperand(1),
6848                         Slct.getOperand(2), TrueVal, FalseVal});
6849 
6850   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
6851                      {Slct.getOperand(0), TrueVal, FalseVal});
6852 }
6853 
6854 // Attempt combineSelectAndUse on each operand of a commutative operator N.
6855 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
6856                                               bool AllOnes) {
6857   SDValue N0 = N->getOperand(0);
6858   SDValue N1 = N->getOperand(1);
6859   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
6860     return Result;
6861   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
6862     return Result;
6863   return SDValue();
6864 }
6865 
6866 // Transform (add (mul x, c0), c1) ->
6867 //           (add (mul (add x, c1/c0), c0), c1%c0).
6868 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
6869 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
6870 // to an infinite loop in DAGCombine if transformed.
6871 // Or transform (add (mul x, c0), c1) ->
6872 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
6873 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
6874 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
6875 // lead to an infinite loop in DAGCombine if transformed.
6876 // Or transform (add (mul x, c0), c1) ->
6877 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
6878 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
6879 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
6880 // lead to an infinite loop in DAGCombine if transformed.
6881 // Or transform (add (mul x, c0), c1) ->
6882 //              (mul (add x, c1/c0), c0).
6883 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
6884 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
6885                                      const RISCVSubtarget &Subtarget) {
6886   // Skip for vector types and larger types.
6887   EVT VT = N->getValueType(0);
6888   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
6889     return SDValue();
6890   // The first operand node must be a MUL and has no other use.
6891   SDValue N0 = N->getOperand(0);
6892   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
6893     return SDValue();
6894   // Check if c0 and c1 match above conditions.
6895   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
6896   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
6897   if (!N0C || !N1C)
6898     return SDValue();
6899   int64_t C0 = N0C->getSExtValue();
6900   int64_t C1 = N1C->getSExtValue();
6901   int64_t CA, CB;
6902   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
6903     return SDValue();
6904   // Search for proper CA (non-zero) and CB that both are simm12.
6905   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
6906       !isInt<12>(C0 * (C1 / C0))) {
6907     CA = C1 / C0;
6908     CB = C1 % C0;
6909   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
6910              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
6911     CA = C1 / C0 + 1;
6912     CB = C1 % C0 - C0;
6913   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
6914              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
6915     CA = C1 / C0 - 1;
6916     CB = C1 % C0 + C0;
6917   } else
6918     return SDValue();
6919   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
6920   SDLoc DL(N);
6921   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
6922                              DAG.getConstant(CA, DL, VT));
6923   SDValue New1 =
6924       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
6925   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
6926 }
6927 
6928 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
6929                                  const RISCVSubtarget &Subtarget) {
6930   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
6931     return V;
6932   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
6933     return V;
6934   // fold (add (select lhs, rhs, cc, 0, y), x) ->
6935   //      (select lhs, rhs, cc, x, (add x, y))
6936   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
6937 }
6938 
6939 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
6940   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
6941   //      (select lhs, rhs, cc, x, (sub x, y))
6942   SDValue N0 = N->getOperand(0);
6943   SDValue N1 = N->getOperand(1);
6944   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
6945 }
6946 
6947 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) {
6948   // fold (and (select lhs, rhs, cc, -1, y), x) ->
6949   //      (select lhs, rhs, cc, x, (and x, y))
6950   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
6951 }
6952 
6953 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
6954                                 const RISCVSubtarget &Subtarget) {
6955   if (Subtarget.hasStdExtZbp()) {
6956     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
6957       return GREV;
6958     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
6959       return GORC;
6960     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
6961       return SHFL;
6962   }
6963 
6964   // fold (or (select cond, 0, y), x) ->
6965   //      (select cond, x, (or x, y))
6966   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
6967 }
6968 
6969 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
6970   // fold (xor (select cond, 0, y), x) ->
6971   //      (select cond, x, (xor x, y))
6972   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
6973 }
6974 
6975 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND
6976 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free
6977 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be
6978 // removed during type legalization leaving an ADD/SUB/MUL use that won't use
6979 // ADDW/SUBW/MULW.
6980 static SDValue performANY_EXTENDCombine(SDNode *N,
6981                                         TargetLowering::DAGCombinerInfo &DCI,
6982                                         const RISCVSubtarget &Subtarget) {
6983   if (!Subtarget.is64Bit())
6984     return SDValue();
6985 
6986   SelectionDAG &DAG = DCI.DAG;
6987 
6988   SDValue Src = N->getOperand(0);
6989   EVT VT = N->getValueType(0);
6990   if (VT != MVT::i64 || Src.getValueType() != MVT::i32)
6991     return SDValue();
6992 
6993   // The opcode must be one that can implicitly sign_extend.
6994   // FIXME: Additional opcodes.
6995   switch (Src.getOpcode()) {
6996   default:
6997     return SDValue();
6998   case ISD::MUL:
6999     if (!Subtarget.hasStdExtM())
7000       return SDValue();
7001     LLVM_FALLTHROUGH;
7002   case ISD::ADD:
7003   case ISD::SUB:
7004     break;
7005   }
7006 
7007   // Only handle cases where the result is used by a CopyToReg. That likely
7008   // means the value is a liveout of the basic block. This helps prevent
7009   // infinite combine loops like PR51206.
7010   if (none_of(N->uses(),
7011               [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; }))
7012     return SDValue();
7013 
7014   SmallVector<SDNode *, 4> SetCCs;
7015   for (SDNode::use_iterator UI = Src.getNode()->use_begin(),
7016                             UE = Src.getNode()->use_end();
7017        UI != UE; ++UI) {
7018     SDNode *User = *UI;
7019     if (User == N)
7020       continue;
7021     if (UI.getUse().getResNo() != Src.getResNo())
7022       continue;
7023     // All i32 setccs are legalized by sign extending operands.
7024     if (User->getOpcode() == ISD::SETCC) {
7025       SetCCs.push_back(User);
7026       continue;
7027     }
7028     // We don't know if we can extend this user.
7029     break;
7030   }
7031 
7032   // If we don't have any SetCCs, this isn't worthwhile.
7033   if (SetCCs.empty())
7034     return SDValue();
7035 
7036   SDLoc DL(N);
7037   SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src);
7038   DCI.CombineTo(N, SExt);
7039 
7040   // Promote all the setccs.
7041   for (SDNode *SetCC : SetCCs) {
7042     SmallVector<SDValue, 4> Ops;
7043 
7044     for (unsigned j = 0; j != 2; ++j) {
7045       SDValue SOp = SetCC->getOperand(j);
7046       if (SOp == Src)
7047         Ops.push_back(SExt);
7048       else
7049         Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp));
7050     }
7051 
7052     Ops.push_back(SetCC->getOperand(2));
7053     DCI.CombineTo(SetCC,
7054                   DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
7055   }
7056   return SDValue(N, 0);
7057 }
7058 
7059 // Try to form VWMUL or VWMULU.
7060 // FIXME: Support VWMULSU.
7061 static SDValue combineMUL_VLToVWMUL(SDNode *N, SDValue Op0, SDValue Op1,
7062                                     SelectionDAG &DAG) {
7063   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
7064   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
7065   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
7066   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
7067     return SDValue();
7068 
7069   SDValue Mask = N->getOperand(2);
7070   SDValue VL = N->getOperand(3);
7071 
7072   // Make sure the mask and VL match.
7073   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
7074     return SDValue();
7075 
7076   MVT VT = N->getSimpleValueType(0);
7077 
7078   // Determine the narrow size for a widening multiply.
7079   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
7080   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
7081                                   VT.getVectorElementCount());
7082 
7083   SDLoc DL(N);
7084 
7085   // See if the other operand is the same opcode.
7086   if (Op0.getOpcode() == Op1.getOpcode()) {
7087     if (!Op1.hasOneUse())
7088       return SDValue();
7089 
7090     // Make sure the mask and VL match.
7091     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
7092       return SDValue();
7093 
7094     Op1 = Op1.getOperand(0);
7095   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
7096     // The operand is a splat of a scalar.
7097 
7098     // The VL must be the same.
7099     if (Op1.getOperand(1) != VL)
7100       return SDValue();
7101 
7102     // Get the scalar value.
7103     Op1 = Op1.getOperand(0);
7104 
7105     // See if have enough sign bits or zero bits in the scalar to use a
7106     // widening multiply by splatting to smaller element size.
7107     unsigned EltBits = VT.getScalarSizeInBits();
7108     unsigned ScalarBits = Op1.getValueSizeInBits();
7109     // Make sure we're getting all element bits from the scalar register.
7110     // FIXME: Support implicit sign extension of vmv.v.x?
7111     if (ScalarBits < EltBits)
7112       return SDValue();
7113 
7114     if (IsSignExt) {
7115       if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize))
7116         return SDValue();
7117     } else {
7118       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
7119       if (!DAG.MaskedValueIsZero(Op1, Mask))
7120         return SDValue();
7121     }
7122 
7123     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL);
7124   } else
7125     return SDValue();
7126 
7127   Op0 = Op0.getOperand(0);
7128 
7129   // Re-introduce narrower extends if needed.
7130   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
7131   if (Op0.getValueType() != NarrowVT)
7132     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
7133   if (Op1.getValueType() != NarrowVT)
7134     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
7135 
7136   unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
7137   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
7138 }
7139 
7140 // Fold
7141 //   (fp_to_int (froundeven X)) -> fcvt X, rne
7142 //   (fp_to_int (ftrunc X))     -> fcvt X, rtz
7143 //   (fp_to_int (ffloor X))     -> fcvt X, rdn
7144 //   (fp_to_int (fceil X))      -> fcvt X, rup
7145 //   (fp_to_int (fround X))     -> fcvt X, rmm
7146 // FIXME: We should also do this for fp_to_int_sat.
7147 static SDValue performFP_TO_INTCombine(SDNode *N,
7148                                        TargetLowering::DAGCombinerInfo &DCI,
7149                                        const RISCVSubtarget &Subtarget) {
7150   SelectionDAG &DAG = DCI.DAG;
7151   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7152   MVT XLenVT = Subtarget.getXLenVT();
7153 
7154   // Only handle XLen or i32 types. Other types narrower than XLen will
7155   // eventually be legalized to XLenVT.
7156   EVT VT = N->getValueType(0);
7157   if (VT != MVT::i32 && VT != XLenVT)
7158     return SDValue();
7159 
7160   SDValue Src = N->getOperand(0);
7161 
7162   // Ensure the FP type is also legal.
7163   if (!TLI.isTypeLegal(Src.getValueType()))
7164     return SDValue();
7165 
7166   // Don't do this for f16 with Zfhmin and not Zfh.
7167   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
7168     return SDValue();
7169 
7170   RISCVFPRndMode::RoundingMode FRM;
7171   switch (Src->getOpcode()) {
7172   default:
7173     return SDValue();
7174   case ISD::FROUNDEVEN: FRM = RISCVFPRndMode::RNE; break;
7175   case ISD::FTRUNC:     FRM = RISCVFPRndMode::RTZ; break;
7176   case ISD::FFLOOR:     FRM = RISCVFPRndMode::RDN; break;
7177   case ISD::FCEIL:      FRM = RISCVFPRndMode::RUP; break;
7178   case ISD::FROUND:     FRM = RISCVFPRndMode::RMM; break;
7179   }
7180 
7181   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
7182 
7183   unsigned Opc;
7184   if (VT == XLenVT)
7185     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
7186   else
7187     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
7188 
7189   SDLoc DL(N);
7190   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
7191                                 DAG.getTargetConstant(FRM, DL, XLenVT));
7192   return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
7193 }
7194 
7195 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
7196                                                DAGCombinerInfo &DCI) const {
7197   SelectionDAG &DAG = DCI.DAG;
7198 
7199   // Helper to call SimplifyDemandedBits on an operand of N where only some low
7200   // bits are demanded. N will be added to the Worklist if it was not deleted.
7201   // Caller should return SDValue(N, 0) if this returns true.
7202   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
7203     SDValue Op = N->getOperand(OpNo);
7204     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
7205     if (!SimplifyDemandedBits(Op, Mask, DCI))
7206       return false;
7207 
7208     if (N->getOpcode() != ISD::DELETED_NODE)
7209       DCI.AddToWorklist(N);
7210     return true;
7211   };
7212 
7213   switch (N->getOpcode()) {
7214   default:
7215     break;
7216   case RISCVISD::SplitF64: {
7217     SDValue Op0 = N->getOperand(0);
7218     // If the input to SplitF64 is just BuildPairF64 then the operation is
7219     // redundant. Instead, use BuildPairF64's operands directly.
7220     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
7221       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
7222 
7223     SDLoc DL(N);
7224 
7225     // It's cheaper to materialise two 32-bit integers than to load a double
7226     // from the constant pool and transfer it to integer registers through the
7227     // stack.
7228     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
7229       APInt V = C->getValueAPF().bitcastToAPInt();
7230       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
7231       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
7232       return DCI.CombineTo(N, Lo, Hi);
7233     }
7234 
7235     // This is a target-specific version of a DAGCombine performed in
7236     // DAGCombiner::visitBITCAST. It performs the equivalent of:
7237     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
7238     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
7239     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
7240         !Op0.getNode()->hasOneUse())
7241       break;
7242     SDValue NewSplitF64 =
7243         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
7244                     Op0.getOperand(0));
7245     SDValue Lo = NewSplitF64.getValue(0);
7246     SDValue Hi = NewSplitF64.getValue(1);
7247     APInt SignBit = APInt::getSignMask(32);
7248     if (Op0.getOpcode() == ISD::FNEG) {
7249       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
7250                                   DAG.getConstant(SignBit, DL, MVT::i32));
7251       return DCI.CombineTo(N, Lo, NewHi);
7252     }
7253     assert(Op0.getOpcode() == ISD::FABS);
7254     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
7255                                 DAG.getConstant(~SignBit, DL, MVT::i32));
7256     return DCI.CombineTo(N, Lo, NewHi);
7257   }
7258   case RISCVISD::SLLW:
7259   case RISCVISD::SRAW:
7260   case RISCVISD::SRLW:
7261   case RISCVISD::ROLW:
7262   case RISCVISD::RORW: {
7263     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
7264     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7265         SimplifyDemandedLowBitsHelper(1, 5))
7266       return SDValue(N, 0);
7267     break;
7268   }
7269   case RISCVISD::CLZW:
7270   case RISCVISD::CTZW: {
7271     // Only the lower 32 bits of the first operand are read
7272     if (SimplifyDemandedLowBitsHelper(0, 32))
7273       return SDValue(N, 0);
7274     break;
7275   }
7276   case RISCVISD::FSL:
7277   case RISCVISD::FSR: {
7278     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
7279     unsigned BitWidth = N->getOperand(2).getValueSizeInBits();
7280     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
7281     if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1))
7282       return SDValue(N, 0);
7283     break;
7284   }
7285   case RISCVISD::FSLW:
7286   case RISCVISD::FSRW: {
7287     // Only the lower 32 bits of Values and lower 6 bits of shift amount are
7288     // read.
7289     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7290         SimplifyDemandedLowBitsHelper(1, 32) ||
7291         SimplifyDemandedLowBitsHelper(2, 6))
7292       return SDValue(N, 0);
7293     break;
7294   }
7295   case RISCVISD::GREV:
7296   case RISCVISD::GORC: {
7297     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
7298     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
7299     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
7300     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
7301       return SDValue(N, 0);
7302 
7303     return combineGREVI_GORCI(N, DAG);
7304   }
7305   case RISCVISD::GREVW:
7306   case RISCVISD::GORCW: {
7307     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
7308     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7309         SimplifyDemandedLowBitsHelper(1, 5))
7310       return SDValue(N, 0);
7311 
7312     return combineGREVI_GORCI(N, DAG);
7313   }
7314   case RISCVISD::SHFL:
7315   case RISCVISD::UNSHFL: {
7316     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
7317     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
7318     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
7319     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
7320       return SDValue(N, 0);
7321 
7322     break;
7323   }
7324   case RISCVISD::SHFLW:
7325   case RISCVISD::UNSHFLW: {
7326     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
7327     SDValue LHS = N->getOperand(0);
7328     SDValue RHS = N->getOperand(1);
7329     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
7330     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4);
7331     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7332         SimplifyDemandedLowBitsHelper(1, 4))
7333       return SDValue(N, 0);
7334 
7335     break;
7336   }
7337   case RISCVISD::BCOMPRESSW:
7338   case RISCVISD::BDECOMPRESSW: {
7339     // Only the lower 32 bits of LHS and RHS are read.
7340     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7341         SimplifyDemandedLowBitsHelper(1, 32))
7342       return SDValue(N, 0);
7343 
7344     break;
7345   }
7346   case RISCVISD::FMV_X_ANYEXTH:
7347   case RISCVISD::FMV_X_ANYEXTW_RV64: {
7348     SDLoc DL(N);
7349     SDValue Op0 = N->getOperand(0);
7350     MVT VT = N->getSimpleValueType(0);
7351     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
7352     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
7353     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
7354     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
7355          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
7356         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
7357          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
7358       assert(Op0.getOperand(0).getValueType() == VT &&
7359              "Unexpected value type!");
7360       return Op0.getOperand(0);
7361     }
7362 
7363     // This is a target-specific version of a DAGCombine performed in
7364     // DAGCombiner::visitBITCAST. It performs the equivalent of:
7365     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
7366     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
7367     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
7368         !Op0.getNode()->hasOneUse())
7369       break;
7370     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
7371     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
7372     APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits());
7373     if (Op0.getOpcode() == ISD::FNEG)
7374       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
7375                          DAG.getConstant(SignBit, DL, VT));
7376 
7377     assert(Op0.getOpcode() == ISD::FABS);
7378     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
7379                        DAG.getConstant(~SignBit, DL, VT));
7380   }
7381   case ISD::ADD:
7382     return performADDCombine(N, DAG, Subtarget);
7383   case ISD::SUB:
7384     return performSUBCombine(N, DAG);
7385   case ISD::AND:
7386     return performANDCombine(N, DAG);
7387   case ISD::OR:
7388     return performORCombine(N, DAG, Subtarget);
7389   case ISD::XOR:
7390     return performXORCombine(N, DAG);
7391   case ISD::ANY_EXTEND:
7392     return performANY_EXTENDCombine(N, DCI, Subtarget);
7393   case ISD::ZERO_EXTEND:
7394     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
7395     // type legalization. This is safe because fp_to_uint produces poison if
7396     // it overflows.
7397     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
7398       SDValue Src = N->getOperand(0);
7399       if (Src.getOpcode() == ISD::FP_TO_UINT &&
7400           isTypeLegal(Src.getOperand(0).getValueType()))
7401         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
7402                            Src.getOperand(0));
7403       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
7404           isTypeLegal(Src.getOperand(1).getValueType())) {
7405         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
7406         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
7407                                   Src.getOperand(0), Src.getOperand(1));
7408         DCI.CombineTo(N, Res);
7409         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
7410         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
7411         return SDValue(N, 0); // Return N so it doesn't get rechecked.
7412       }
7413     }
7414     return SDValue();
7415   case RISCVISD::SELECT_CC: {
7416     // Transform
7417     SDValue LHS = N->getOperand(0);
7418     SDValue RHS = N->getOperand(1);
7419     SDValue TrueV = N->getOperand(3);
7420     SDValue FalseV = N->getOperand(4);
7421 
7422     // If the True and False values are the same, we don't need a select_cc.
7423     if (TrueV == FalseV)
7424       return TrueV;
7425 
7426     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
7427     if (!ISD::isIntEqualitySetCC(CCVal))
7428       break;
7429 
7430     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
7431     //      (select_cc X, Y, lt, trueV, falseV)
7432     // Sometimes the setcc is introduced after select_cc has been formed.
7433     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
7434         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
7435       // If we're looking for eq 0 instead of ne 0, we need to invert the
7436       // condition.
7437       bool Invert = CCVal == ISD::SETEQ;
7438       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
7439       if (Invert)
7440         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7441 
7442       SDLoc DL(N);
7443       RHS = LHS.getOperand(1);
7444       LHS = LHS.getOperand(0);
7445       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
7446 
7447       SDValue TargetCC = DAG.getCondCode(CCVal);
7448       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
7449                          {LHS, RHS, TargetCC, TrueV, FalseV});
7450     }
7451 
7452     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
7453     //      (select_cc X, Y, eq/ne, trueV, falseV)
7454     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
7455       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
7456                          {LHS.getOperand(0), LHS.getOperand(1),
7457                           N->getOperand(2), TrueV, FalseV});
7458     // (select_cc X, 1, setne, trueV, falseV) ->
7459     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
7460     // This can occur when legalizing some floating point comparisons.
7461     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
7462     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
7463       SDLoc DL(N);
7464       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7465       SDValue TargetCC = DAG.getCondCode(CCVal);
7466       RHS = DAG.getConstant(0, DL, LHS.getValueType());
7467       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
7468                          {LHS, RHS, TargetCC, TrueV, FalseV});
7469     }
7470 
7471     break;
7472   }
7473   case RISCVISD::BR_CC: {
7474     SDValue LHS = N->getOperand(1);
7475     SDValue RHS = N->getOperand(2);
7476     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
7477     if (!ISD::isIntEqualitySetCC(CCVal))
7478       break;
7479 
7480     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
7481     //      (br_cc X, Y, lt, dest)
7482     // Sometimes the setcc is introduced after br_cc has been formed.
7483     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
7484         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
7485       // If we're looking for eq 0 instead of ne 0, we need to invert the
7486       // condition.
7487       bool Invert = CCVal == ISD::SETEQ;
7488       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
7489       if (Invert)
7490         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7491 
7492       SDLoc DL(N);
7493       RHS = LHS.getOperand(1);
7494       LHS = LHS.getOperand(0);
7495       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
7496 
7497       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
7498                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
7499                          N->getOperand(4));
7500     }
7501 
7502     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
7503     //      (br_cc X, Y, eq/ne, trueV, falseV)
7504     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
7505       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
7506                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
7507                          N->getOperand(3), N->getOperand(4));
7508 
7509     // (br_cc X, 1, setne, br_cc) ->
7510     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
7511     // This can occur when legalizing some floating point comparisons.
7512     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
7513     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
7514       SDLoc DL(N);
7515       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7516       SDValue TargetCC = DAG.getCondCode(CCVal);
7517       RHS = DAG.getConstant(0, DL, LHS.getValueType());
7518       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
7519                          N->getOperand(0), LHS, RHS, TargetCC,
7520                          N->getOperand(4));
7521     }
7522     break;
7523   }
7524   case ISD::FP_TO_SINT:
7525   case ISD::FP_TO_UINT:
7526     return performFP_TO_INTCombine(N, DCI, Subtarget);
7527   case ISD::FCOPYSIGN: {
7528     EVT VT = N->getValueType(0);
7529     if (!VT.isVector())
7530       break;
7531     // There is a form of VFSGNJ which injects the negated sign of its second
7532     // operand. Try and bubble any FNEG up after the extend/round to produce
7533     // this optimized pattern. Avoid modifying cases where FP_ROUND and
7534     // TRUNC=1.
7535     SDValue In2 = N->getOperand(1);
7536     // Avoid cases where the extend/round has multiple uses, as duplicating
7537     // those is typically more expensive than removing a fneg.
7538     if (!In2.hasOneUse())
7539       break;
7540     if (In2.getOpcode() != ISD::FP_EXTEND &&
7541         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
7542       break;
7543     In2 = In2.getOperand(0);
7544     if (In2.getOpcode() != ISD::FNEG)
7545       break;
7546     SDLoc DL(N);
7547     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
7548     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
7549                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
7550   }
7551   case ISD::MGATHER:
7552   case ISD::MSCATTER:
7553   case ISD::VP_GATHER:
7554   case ISD::VP_SCATTER: {
7555     if (!DCI.isBeforeLegalize())
7556       break;
7557     SDValue Index, ScaleOp;
7558     bool IsIndexScaled = false;
7559     bool IsIndexSigned = false;
7560     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
7561       Index = VPGSN->getIndex();
7562       ScaleOp = VPGSN->getScale();
7563       IsIndexScaled = VPGSN->isIndexScaled();
7564       IsIndexSigned = VPGSN->isIndexSigned();
7565     } else {
7566       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
7567       Index = MGSN->getIndex();
7568       ScaleOp = MGSN->getScale();
7569       IsIndexScaled = MGSN->isIndexScaled();
7570       IsIndexSigned = MGSN->isIndexSigned();
7571     }
7572     EVT IndexVT = Index.getValueType();
7573     MVT XLenVT = Subtarget.getXLenVT();
7574     // RISCV indexed loads only support the "unsigned unscaled" addressing
7575     // mode, so anything else must be manually legalized.
7576     bool NeedsIdxLegalization =
7577         IsIndexScaled ||
7578         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
7579     if (!NeedsIdxLegalization)
7580       break;
7581 
7582     SDLoc DL(N);
7583 
7584     // Any index legalization should first promote to XLenVT, so we don't lose
7585     // bits when scaling. This may create an illegal index type so we let
7586     // LLVM's legalization take care of the splitting.
7587     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
7588     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
7589       IndexVT = IndexVT.changeVectorElementType(XLenVT);
7590       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
7591                           DL, IndexVT, Index);
7592     }
7593 
7594     unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
7595     if (IsIndexScaled && Scale != 1) {
7596       // Manually scale the indices by the element size.
7597       // TODO: Sanitize the scale operand here?
7598       // TODO: For VP nodes, should we use VP_SHL here?
7599       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
7600       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
7601       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
7602     }
7603 
7604     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
7605     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
7606       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
7607                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
7608                               VPGN->getScale(), VPGN->getMask(),
7609                               VPGN->getVectorLength()},
7610                              VPGN->getMemOperand(), NewIndexTy);
7611     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
7612       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
7613                               {VPSN->getChain(), VPSN->getValue(),
7614                                VPSN->getBasePtr(), Index, VPSN->getScale(),
7615                                VPSN->getMask(), VPSN->getVectorLength()},
7616                               VPSN->getMemOperand(), NewIndexTy);
7617     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
7618       return DAG.getMaskedGather(
7619           N->getVTList(), MGN->getMemoryVT(), DL,
7620           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
7621            MGN->getBasePtr(), Index, MGN->getScale()},
7622           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
7623     const auto *MSN = cast<MaskedScatterSDNode>(N);
7624     return DAG.getMaskedScatter(
7625         N->getVTList(), MSN->getMemoryVT(), DL,
7626         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
7627          Index, MSN->getScale()},
7628         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
7629   }
7630   case RISCVISD::SRA_VL:
7631   case RISCVISD::SRL_VL:
7632   case RISCVISD::SHL_VL: {
7633     SDValue ShAmt = N->getOperand(1);
7634     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
7635       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
7636       SDLoc DL(N);
7637       SDValue VL = N->getOperand(3);
7638       EVT VT = N->getValueType(0);
7639       ShAmt =
7640           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL);
7641       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
7642                          N->getOperand(2), N->getOperand(3));
7643     }
7644     break;
7645   }
7646   case ISD::SRA:
7647   case ISD::SRL:
7648   case ISD::SHL: {
7649     SDValue ShAmt = N->getOperand(1);
7650     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
7651       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
7652       SDLoc DL(N);
7653       EVT VT = N->getValueType(0);
7654       ShAmt =
7655           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0));
7656       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
7657     }
7658     break;
7659   }
7660   case RISCVISD::MUL_VL: {
7661     SDValue Op0 = N->getOperand(0);
7662     SDValue Op1 = N->getOperand(1);
7663     if (SDValue V = combineMUL_VLToVWMUL(N, Op0, Op1, DAG))
7664       return V;
7665     if (SDValue V = combineMUL_VLToVWMUL(N, Op1, Op0, DAG))
7666       return V;
7667     return SDValue();
7668   }
7669   case ISD::STORE: {
7670     auto *Store = cast<StoreSDNode>(N);
7671     SDValue Val = Store->getValue();
7672     // Combine store of vmv.x.s to vse with VL of 1.
7673     // FIXME: Support FP.
7674     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
7675       SDValue Src = Val.getOperand(0);
7676       EVT VecVT = Src.getValueType();
7677       EVT MemVT = Store->getMemoryVT();
7678       // The memory VT and the element type must match.
7679       if (VecVT.getVectorElementType() == MemVT) {
7680         SDLoc DL(N);
7681         MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
7682         return DAG.getStoreVP(
7683             Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
7684             DAG.getConstant(1, DL, MaskVT),
7685             DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
7686             Store->getMemOperand(), Store->getAddressingMode(),
7687             Store->isTruncatingStore(), /*IsCompress*/ false);
7688       }
7689     }
7690 
7691     break;
7692   }
7693   }
7694 
7695   return SDValue();
7696 }
7697 
7698 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
7699     const SDNode *N, CombineLevel Level) const {
7700   // The following folds are only desirable if `(OP _, c1 << c2)` can be
7701   // materialised in fewer instructions than `(OP _, c1)`:
7702   //
7703   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
7704   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
7705   SDValue N0 = N->getOperand(0);
7706   EVT Ty = N0.getValueType();
7707   if (Ty.isScalarInteger() &&
7708       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
7709     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7710     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
7711     if (C1 && C2) {
7712       const APInt &C1Int = C1->getAPIntValue();
7713       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
7714 
7715       // We can materialise `c1 << c2` into an add immediate, so it's "free",
7716       // and the combine should happen, to potentially allow further combines
7717       // later.
7718       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
7719           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
7720         return true;
7721 
7722       // We can materialise `c1` in an add immediate, so it's "free", and the
7723       // combine should be prevented.
7724       if (C1Int.getMinSignedBits() <= 64 &&
7725           isLegalAddImmediate(C1Int.getSExtValue()))
7726         return false;
7727 
7728       // Neither constant will fit into an immediate, so find materialisation
7729       // costs.
7730       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
7731                                               Subtarget.getFeatureBits(),
7732                                               /*CompressionCost*/true);
7733       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
7734           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
7735           /*CompressionCost*/true);
7736 
7737       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
7738       // combine should be prevented.
7739       if (C1Cost < ShiftedC1Cost)
7740         return false;
7741     }
7742   }
7743   return true;
7744 }
7745 
7746 bool RISCVTargetLowering::targetShrinkDemandedConstant(
7747     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
7748     TargetLoweringOpt &TLO) const {
7749   // Delay this optimization as late as possible.
7750   if (!TLO.LegalOps)
7751     return false;
7752 
7753   EVT VT = Op.getValueType();
7754   if (VT.isVector())
7755     return false;
7756 
7757   // Only handle AND for now.
7758   if (Op.getOpcode() != ISD::AND)
7759     return false;
7760 
7761   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7762   if (!C)
7763     return false;
7764 
7765   const APInt &Mask = C->getAPIntValue();
7766 
7767   // Clear all non-demanded bits initially.
7768   APInt ShrunkMask = Mask & DemandedBits;
7769 
7770   // Try to make a smaller immediate by setting undemanded bits.
7771 
7772   APInt ExpandedMask = Mask | ~DemandedBits;
7773 
7774   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
7775     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
7776   };
7777   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
7778     if (NewMask == Mask)
7779       return true;
7780     SDLoc DL(Op);
7781     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
7782     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
7783     return TLO.CombineTo(Op, NewOp);
7784   };
7785 
7786   // If the shrunk mask fits in sign extended 12 bits, let the target
7787   // independent code apply it.
7788   if (ShrunkMask.isSignedIntN(12))
7789     return false;
7790 
7791   // Preserve (and X, 0xffff) when zext.h is supported.
7792   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
7793     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
7794     if (IsLegalMask(NewMask))
7795       return UseMask(NewMask);
7796   }
7797 
7798   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
7799   if (VT == MVT::i64) {
7800     APInt NewMask = APInt(64, 0xffffffff);
7801     if (IsLegalMask(NewMask))
7802       return UseMask(NewMask);
7803   }
7804 
7805   // For the remaining optimizations, we need to be able to make a negative
7806   // number through a combination of mask and undemanded bits.
7807   if (!ExpandedMask.isNegative())
7808     return false;
7809 
7810   // What is the fewest number of bits we need to represent the negative number.
7811   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
7812 
7813   // Try to make a 12 bit negative immediate. If that fails try to make a 32
7814   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
7815   APInt NewMask = ShrunkMask;
7816   if (MinSignedBits <= 12)
7817     NewMask.setBitsFrom(11);
7818   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
7819     NewMask.setBitsFrom(31);
7820   else
7821     return false;
7822 
7823   // Check that our new mask is a subset of the demanded mask.
7824   assert(IsLegalMask(NewMask));
7825   return UseMask(NewMask);
7826 }
7827 
7828 static void computeGREV(APInt &Src, unsigned ShAmt) {
7829   ShAmt &= Src.getBitWidth() - 1;
7830   uint64_t x = Src.getZExtValue();
7831   if (ShAmt & 1)
7832     x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
7833   if (ShAmt & 2)
7834     x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
7835   if (ShAmt & 4)
7836     x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
7837   if (ShAmt & 8)
7838     x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8);
7839   if (ShAmt & 16)
7840     x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16);
7841   if (ShAmt & 32)
7842     x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32);
7843   Src = x;
7844 }
7845 
7846 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
7847                                                         KnownBits &Known,
7848                                                         const APInt &DemandedElts,
7849                                                         const SelectionDAG &DAG,
7850                                                         unsigned Depth) const {
7851   unsigned BitWidth = Known.getBitWidth();
7852   unsigned Opc = Op.getOpcode();
7853   assert((Opc >= ISD::BUILTIN_OP_END ||
7854           Opc == ISD::INTRINSIC_WO_CHAIN ||
7855           Opc == ISD::INTRINSIC_W_CHAIN ||
7856           Opc == ISD::INTRINSIC_VOID) &&
7857          "Should use MaskedValueIsZero if you don't know whether Op"
7858          " is a target node!");
7859 
7860   Known.resetAll();
7861   switch (Opc) {
7862   default: break;
7863   case RISCVISD::SELECT_CC: {
7864     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
7865     // If we don't know any bits, early out.
7866     if (Known.isUnknown())
7867       break;
7868     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
7869 
7870     // Only known if known in both the LHS and RHS.
7871     Known = KnownBits::commonBits(Known, Known2);
7872     break;
7873   }
7874   case RISCVISD::REMUW: {
7875     KnownBits Known2;
7876     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
7877     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
7878     // We only care about the lower 32 bits.
7879     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
7880     // Restore the original width by sign extending.
7881     Known = Known.sext(BitWidth);
7882     break;
7883   }
7884   case RISCVISD::DIVUW: {
7885     KnownBits Known2;
7886     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
7887     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
7888     // We only care about the lower 32 bits.
7889     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
7890     // Restore the original width by sign extending.
7891     Known = Known.sext(BitWidth);
7892     break;
7893   }
7894   case RISCVISD::CTZW: {
7895     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
7896     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
7897     unsigned LowBits = Log2_32(PossibleTZ) + 1;
7898     Known.Zero.setBitsFrom(LowBits);
7899     break;
7900   }
7901   case RISCVISD::CLZW: {
7902     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
7903     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
7904     unsigned LowBits = Log2_32(PossibleLZ) + 1;
7905     Known.Zero.setBitsFrom(LowBits);
7906     break;
7907   }
7908   case RISCVISD::GREV:
7909   case RISCVISD::GREVW: {
7910     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7911       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
7912       if (Opc == RISCVISD::GREVW)
7913         Known = Known.trunc(32);
7914       unsigned ShAmt = C->getZExtValue();
7915       computeGREV(Known.Zero, ShAmt);
7916       computeGREV(Known.One, ShAmt);
7917       if (Opc == RISCVISD::GREVW)
7918         Known = Known.sext(BitWidth);
7919     }
7920     break;
7921   }
7922   case RISCVISD::READ_VLENB:
7923     // We assume VLENB is at least 16 bytes.
7924     Known.Zero.setLowBits(4);
7925     // We assume VLENB is no more than 65536 / 8 bytes.
7926     Known.Zero.setBitsFrom(14);
7927     break;
7928   case ISD::INTRINSIC_W_CHAIN: {
7929     unsigned IntNo = Op.getConstantOperandVal(1);
7930     switch (IntNo) {
7931     default:
7932       // We can't do anything for most intrinsics.
7933       break;
7934     case Intrinsic::riscv_vsetvli:
7935     case Intrinsic::riscv_vsetvlimax:
7936       // Assume that VL output is positive and would fit in an int32_t.
7937       // TODO: VLEN might be capped at 16 bits in a future V spec update.
7938       if (BitWidth >= 32)
7939         Known.Zero.setBitsFrom(31);
7940       break;
7941     }
7942     break;
7943   }
7944   }
7945 }
7946 
7947 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
7948     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
7949     unsigned Depth) const {
7950   switch (Op.getOpcode()) {
7951   default:
7952     break;
7953   case RISCVISD::SELECT_CC: {
7954     unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
7955     if (Tmp == 1) return 1;  // Early out.
7956     unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
7957     return std::min(Tmp, Tmp2);
7958   }
7959   case RISCVISD::SLLW:
7960   case RISCVISD::SRAW:
7961   case RISCVISD::SRLW:
7962   case RISCVISD::DIVW:
7963   case RISCVISD::DIVUW:
7964   case RISCVISD::REMUW:
7965   case RISCVISD::ROLW:
7966   case RISCVISD::RORW:
7967   case RISCVISD::GREVW:
7968   case RISCVISD::GORCW:
7969   case RISCVISD::FSLW:
7970   case RISCVISD::FSRW:
7971   case RISCVISD::SHFLW:
7972   case RISCVISD::UNSHFLW:
7973   case RISCVISD::BCOMPRESSW:
7974   case RISCVISD::BDECOMPRESSW:
7975   case RISCVISD::BFPW:
7976   case RISCVISD::FCVT_W_RV64:
7977   case RISCVISD::FCVT_WU_RV64:
7978   case RISCVISD::STRICT_FCVT_W_RV64:
7979   case RISCVISD::STRICT_FCVT_WU_RV64:
7980     // TODO: As the result is sign-extended, this is conservatively correct. A
7981     // more precise answer could be calculated for SRAW depending on known
7982     // bits in the shift amount.
7983     return 33;
7984   case RISCVISD::SHFL:
7985   case RISCVISD::UNSHFL: {
7986     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
7987     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
7988     // will stay within the upper 32 bits. If there were more than 32 sign bits
7989     // before there will be at least 33 sign bits after.
7990     if (Op.getValueType() == MVT::i64 &&
7991         isa<ConstantSDNode>(Op.getOperand(1)) &&
7992         (Op.getConstantOperandVal(1) & 0x10) == 0) {
7993       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
7994       if (Tmp > 32)
7995         return 33;
7996     }
7997     break;
7998   }
7999   case RISCVISD::VMV_X_S:
8000     // The number of sign bits of the scalar result is computed by obtaining the
8001     // element type of the input vector operand, subtracting its width from the
8002     // XLEN, and then adding one (sign bit within the element type). If the
8003     // element type is wider than XLen, the least-significant XLEN bits are
8004     // taken.
8005     if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen())
8006       return 1;
8007     return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1;
8008   }
8009 
8010   return 1;
8011 }
8012 
8013 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
8014                                                   MachineBasicBlock *BB) {
8015   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
8016 
8017   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
8018   // Should the count have wrapped while it was being read, we need to try
8019   // again.
8020   // ...
8021   // read:
8022   // rdcycleh x3 # load high word of cycle
8023   // rdcycle  x2 # load low word of cycle
8024   // rdcycleh x4 # load high word of cycle
8025   // bne x3, x4, read # check if high word reads match, otherwise try again
8026   // ...
8027 
8028   MachineFunction &MF = *BB->getParent();
8029   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8030   MachineFunction::iterator It = ++BB->getIterator();
8031 
8032   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
8033   MF.insert(It, LoopMBB);
8034 
8035   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
8036   MF.insert(It, DoneMBB);
8037 
8038   // Transfer the remainder of BB and its successor edges to DoneMBB.
8039   DoneMBB->splice(DoneMBB->begin(), BB,
8040                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
8041   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
8042 
8043   BB->addSuccessor(LoopMBB);
8044 
8045   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8046   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
8047   Register LoReg = MI.getOperand(0).getReg();
8048   Register HiReg = MI.getOperand(1).getReg();
8049   DebugLoc DL = MI.getDebugLoc();
8050 
8051   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
8052   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
8053       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
8054       .addReg(RISCV::X0);
8055   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
8056       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
8057       .addReg(RISCV::X0);
8058   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
8059       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
8060       .addReg(RISCV::X0);
8061 
8062   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
8063       .addReg(HiReg)
8064       .addReg(ReadAgainReg)
8065       .addMBB(LoopMBB);
8066 
8067   LoopMBB->addSuccessor(LoopMBB);
8068   LoopMBB->addSuccessor(DoneMBB);
8069 
8070   MI.eraseFromParent();
8071 
8072   return DoneMBB;
8073 }
8074 
8075 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
8076                                              MachineBasicBlock *BB) {
8077   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
8078 
8079   MachineFunction &MF = *BB->getParent();
8080   DebugLoc DL = MI.getDebugLoc();
8081   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
8082   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
8083   Register LoReg = MI.getOperand(0).getReg();
8084   Register HiReg = MI.getOperand(1).getReg();
8085   Register SrcReg = MI.getOperand(2).getReg();
8086   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
8087   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
8088 
8089   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
8090                           RI);
8091   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
8092   MachineMemOperand *MMOLo =
8093       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
8094   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
8095       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
8096   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
8097       .addFrameIndex(FI)
8098       .addImm(0)
8099       .addMemOperand(MMOLo);
8100   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
8101       .addFrameIndex(FI)
8102       .addImm(4)
8103       .addMemOperand(MMOHi);
8104   MI.eraseFromParent(); // The pseudo instruction is gone now.
8105   return BB;
8106 }
8107 
8108 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
8109                                                  MachineBasicBlock *BB) {
8110   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
8111          "Unexpected instruction");
8112 
8113   MachineFunction &MF = *BB->getParent();
8114   DebugLoc DL = MI.getDebugLoc();
8115   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
8116   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
8117   Register DstReg = MI.getOperand(0).getReg();
8118   Register LoReg = MI.getOperand(1).getReg();
8119   Register HiReg = MI.getOperand(2).getReg();
8120   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
8121   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
8122 
8123   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
8124   MachineMemOperand *MMOLo =
8125       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
8126   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
8127       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
8128   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
8129       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
8130       .addFrameIndex(FI)
8131       .addImm(0)
8132       .addMemOperand(MMOLo);
8133   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
8134       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
8135       .addFrameIndex(FI)
8136       .addImm(4)
8137       .addMemOperand(MMOHi);
8138   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
8139   MI.eraseFromParent(); // The pseudo instruction is gone now.
8140   return BB;
8141 }
8142 
8143 static bool isSelectPseudo(MachineInstr &MI) {
8144   switch (MI.getOpcode()) {
8145   default:
8146     return false;
8147   case RISCV::Select_GPR_Using_CC_GPR:
8148   case RISCV::Select_FPR16_Using_CC_GPR:
8149   case RISCV::Select_FPR32_Using_CC_GPR:
8150   case RISCV::Select_FPR64_Using_CC_GPR:
8151     return true;
8152   }
8153 }
8154 
8155 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
8156                                         unsigned RelOpcode, unsigned EqOpcode,
8157                                         const RISCVSubtarget &Subtarget) {
8158   DebugLoc DL = MI.getDebugLoc();
8159   Register DstReg = MI.getOperand(0).getReg();
8160   Register Src1Reg = MI.getOperand(1).getReg();
8161   Register Src2Reg = MI.getOperand(2).getReg();
8162   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
8163   Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
8164   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
8165 
8166   // Save the current FFLAGS.
8167   BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
8168 
8169   auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
8170                  .addReg(Src1Reg)
8171                  .addReg(Src2Reg);
8172   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
8173     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
8174 
8175   // Restore the FFLAGS.
8176   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
8177       .addReg(SavedFFlags, RegState::Kill);
8178 
8179   // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
8180   auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
8181                   .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
8182                   .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
8183   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
8184     MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
8185 
8186   // Erase the pseudoinstruction.
8187   MI.eraseFromParent();
8188   return BB;
8189 }
8190 
8191 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
8192                                            MachineBasicBlock *BB,
8193                                            const RISCVSubtarget &Subtarget) {
8194   // To "insert" Select_* instructions, we actually have to insert the triangle
8195   // control-flow pattern.  The incoming instructions know the destination vreg
8196   // to set, the condition code register to branch on, the true/false values to
8197   // select between, and the condcode to use to select the appropriate branch.
8198   //
8199   // We produce the following control flow:
8200   //     HeadMBB
8201   //     |  \
8202   //     |  IfFalseMBB
8203   //     | /
8204   //    TailMBB
8205   //
8206   // When we find a sequence of selects we attempt to optimize their emission
8207   // by sharing the control flow. Currently we only handle cases where we have
8208   // multiple selects with the exact same condition (same LHS, RHS and CC).
8209   // The selects may be interleaved with other instructions if the other
8210   // instructions meet some requirements we deem safe:
8211   // - They are debug instructions. Otherwise,
8212   // - They do not have side-effects, do not access memory and their inputs do
8213   //   not depend on the results of the select pseudo-instructions.
8214   // The TrueV/FalseV operands of the selects cannot depend on the result of
8215   // previous selects in the sequence.
8216   // These conditions could be further relaxed. See the X86 target for a
8217   // related approach and more information.
8218   Register LHS = MI.getOperand(1).getReg();
8219   Register RHS = MI.getOperand(2).getReg();
8220   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
8221 
8222   SmallVector<MachineInstr *, 4> SelectDebugValues;
8223   SmallSet<Register, 4> SelectDests;
8224   SelectDests.insert(MI.getOperand(0).getReg());
8225 
8226   MachineInstr *LastSelectPseudo = &MI;
8227 
8228   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
8229        SequenceMBBI != E; ++SequenceMBBI) {
8230     if (SequenceMBBI->isDebugInstr())
8231       continue;
8232     else if (isSelectPseudo(*SequenceMBBI)) {
8233       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
8234           SequenceMBBI->getOperand(2).getReg() != RHS ||
8235           SequenceMBBI->getOperand(3).getImm() != CC ||
8236           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
8237           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
8238         break;
8239       LastSelectPseudo = &*SequenceMBBI;
8240       SequenceMBBI->collectDebugValues(SelectDebugValues);
8241       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
8242     } else {
8243       if (SequenceMBBI->hasUnmodeledSideEffects() ||
8244           SequenceMBBI->mayLoadOrStore())
8245         break;
8246       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
8247             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
8248           }))
8249         break;
8250     }
8251   }
8252 
8253   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
8254   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8255   DebugLoc DL = MI.getDebugLoc();
8256   MachineFunction::iterator I = ++BB->getIterator();
8257 
8258   MachineBasicBlock *HeadMBB = BB;
8259   MachineFunction *F = BB->getParent();
8260   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
8261   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
8262 
8263   F->insert(I, IfFalseMBB);
8264   F->insert(I, TailMBB);
8265 
8266   // Transfer debug instructions associated with the selects to TailMBB.
8267   for (MachineInstr *DebugInstr : SelectDebugValues) {
8268     TailMBB->push_back(DebugInstr->removeFromParent());
8269   }
8270 
8271   // Move all instructions after the sequence to TailMBB.
8272   TailMBB->splice(TailMBB->end(), HeadMBB,
8273                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
8274   // Update machine-CFG edges by transferring all successors of the current
8275   // block to the new block which will contain the Phi nodes for the selects.
8276   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
8277   // Set the successors for HeadMBB.
8278   HeadMBB->addSuccessor(IfFalseMBB);
8279   HeadMBB->addSuccessor(TailMBB);
8280 
8281   // Insert appropriate branch.
8282   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
8283     .addReg(LHS)
8284     .addReg(RHS)
8285     .addMBB(TailMBB);
8286 
8287   // IfFalseMBB just falls through to TailMBB.
8288   IfFalseMBB->addSuccessor(TailMBB);
8289 
8290   // Create PHIs for all of the select pseudo-instructions.
8291   auto SelectMBBI = MI.getIterator();
8292   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
8293   auto InsertionPoint = TailMBB->begin();
8294   while (SelectMBBI != SelectEnd) {
8295     auto Next = std::next(SelectMBBI);
8296     if (isSelectPseudo(*SelectMBBI)) {
8297       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
8298       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
8299               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
8300           .addReg(SelectMBBI->getOperand(4).getReg())
8301           .addMBB(HeadMBB)
8302           .addReg(SelectMBBI->getOperand(5).getReg())
8303           .addMBB(IfFalseMBB);
8304       SelectMBBI->eraseFromParent();
8305     }
8306     SelectMBBI = Next;
8307   }
8308 
8309   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
8310   return TailMBB;
8311 }
8312 
8313 MachineBasicBlock *
8314 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
8315                                                  MachineBasicBlock *BB) const {
8316   switch (MI.getOpcode()) {
8317   default:
8318     llvm_unreachable("Unexpected instr type to insert");
8319   case RISCV::ReadCycleWide:
8320     assert(!Subtarget.is64Bit() &&
8321            "ReadCycleWrite is only to be used on riscv32");
8322     return emitReadCycleWidePseudo(MI, BB);
8323   case RISCV::Select_GPR_Using_CC_GPR:
8324   case RISCV::Select_FPR16_Using_CC_GPR:
8325   case RISCV::Select_FPR32_Using_CC_GPR:
8326   case RISCV::Select_FPR64_Using_CC_GPR:
8327     return emitSelectPseudo(MI, BB, Subtarget);
8328   case RISCV::BuildPairF64Pseudo:
8329     return emitBuildPairF64Pseudo(MI, BB);
8330   case RISCV::SplitF64Pseudo:
8331     return emitSplitF64Pseudo(MI, BB);
8332   case RISCV::PseudoQuietFLE_H:
8333     return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
8334   case RISCV::PseudoQuietFLT_H:
8335     return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
8336   case RISCV::PseudoQuietFLE_S:
8337     return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
8338   case RISCV::PseudoQuietFLT_S:
8339     return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
8340   case RISCV::PseudoQuietFLE_D:
8341     return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
8342   case RISCV::PseudoQuietFLT_D:
8343     return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
8344   }
8345 }
8346 
8347 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
8348                                                         SDNode *Node) const {
8349   // Add FRM dependency to any instructions with dynamic rounding mode.
8350   unsigned Opc = MI.getOpcode();
8351   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
8352   if (Idx < 0)
8353     return;
8354   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
8355     return;
8356   // If the instruction already reads FRM, don't add another read.
8357   if (MI.readsRegister(RISCV::FRM))
8358     return;
8359   MI.addOperand(
8360       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
8361 }
8362 
8363 // Calling Convention Implementation.
8364 // The expectations for frontend ABI lowering vary from target to target.
8365 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
8366 // details, but this is a longer term goal. For now, we simply try to keep the
8367 // role of the frontend as simple and well-defined as possible. The rules can
8368 // be summarised as:
8369 // * Never split up large scalar arguments. We handle them here.
8370 // * If a hardfloat calling convention is being used, and the struct may be
8371 // passed in a pair of registers (fp+fp, int+fp), and both registers are
8372 // available, then pass as two separate arguments. If either the GPRs or FPRs
8373 // are exhausted, then pass according to the rule below.
8374 // * If a struct could never be passed in registers or directly in a stack
8375 // slot (as it is larger than 2*XLEN and the floating point rules don't
8376 // apply), then pass it using a pointer with the byval attribute.
8377 // * If a struct is less than 2*XLEN, then coerce to either a two-element
8378 // word-sized array or a 2*XLEN scalar (depending on alignment).
8379 // * The frontend can determine whether a struct is returned by reference or
8380 // not based on its size and fields. If it will be returned by reference, the
8381 // frontend must modify the prototype so a pointer with the sret annotation is
8382 // passed as the first argument. This is not necessary for large scalar
8383 // returns.
8384 // * Struct return values and varargs should be coerced to structs containing
8385 // register-size fields in the same situations they would be for fixed
8386 // arguments.
8387 
8388 static const MCPhysReg ArgGPRs[] = {
8389   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
8390   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
8391 };
8392 static const MCPhysReg ArgFPR16s[] = {
8393   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
8394   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
8395 };
8396 static const MCPhysReg ArgFPR32s[] = {
8397   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
8398   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
8399 };
8400 static const MCPhysReg ArgFPR64s[] = {
8401   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
8402   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
8403 };
8404 // This is an interim calling convention and it may be changed in the future.
8405 static const MCPhysReg ArgVRs[] = {
8406     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
8407     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
8408     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
8409 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
8410                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
8411                                      RISCV::V20M2, RISCV::V22M2};
8412 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
8413                                      RISCV::V20M4};
8414 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
8415 
8416 // Pass a 2*XLEN argument that has been split into two XLEN values through
8417 // registers or the stack as necessary.
8418 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
8419                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
8420                                 MVT ValVT2, MVT LocVT2,
8421                                 ISD::ArgFlagsTy ArgFlags2) {
8422   unsigned XLenInBytes = XLen / 8;
8423   if (Register Reg = State.AllocateReg(ArgGPRs)) {
8424     // At least one half can be passed via register.
8425     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
8426                                      VA1.getLocVT(), CCValAssign::Full));
8427   } else {
8428     // Both halves must be passed on the stack, with proper alignment.
8429     Align StackAlign =
8430         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
8431     State.addLoc(
8432         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
8433                             State.AllocateStack(XLenInBytes, StackAlign),
8434                             VA1.getLocVT(), CCValAssign::Full));
8435     State.addLoc(CCValAssign::getMem(
8436         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
8437         LocVT2, CCValAssign::Full));
8438     return false;
8439   }
8440 
8441   if (Register Reg = State.AllocateReg(ArgGPRs)) {
8442     // The second half can also be passed via register.
8443     State.addLoc(
8444         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
8445   } else {
8446     // The second half is passed via the stack, without additional alignment.
8447     State.addLoc(CCValAssign::getMem(
8448         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
8449         LocVT2, CCValAssign::Full));
8450   }
8451 
8452   return false;
8453 }
8454 
8455 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
8456                                Optional<unsigned> FirstMaskArgument,
8457                                CCState &State, const RISCVTargetLowering &TLI) {
8458   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
8459   if (RC == &RISCV::VRRegClass) {
8460     // Assign the first mask argument to V0.
8461     // This is an interim calling convention and it may be changed in the
8462     // future.
8463     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
8464       return State.AllocateReg(RISCV::V0);
8465     return State.AllocateReg(ArgVRs);
8466   }
8467   if (RC == &RISCV::VRM2RegClass)
8468     return State.AllocateReg(ArgVRM2s);
8469   if (RC == &RISCV::VRM4RegClass)
8470     return State.AllocateReg(ArgVRM4s);
8471   if (RC == &RISCV::VRM8RegClass)
8472     return State.AllocateReg(ArgVRM8s);
8473   llvm_unreachable("Unhandled register class for ValueType");
8474 }
8475 
8476 // Implements the RISC-V calling convention. Returns true upon failure.
8477 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
8478                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
8479                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
8480                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
8481                      Optional<unsigned> FirstMaskArgument) {
8482   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
8483   assert(XLen == 32 || XLen == 64);
8484   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
8485 
8486   // Any return value split in to more than two values can't be returned
8487   // directly. Vectors are returned via the available vector registers.
8488   if (!LocVT.isVector() && IsRet && ValNo > 1)
8489     return true;
8490 
8491   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
8492   // variadic argument, or if no F16/F32 argument registers are available.
8493   bool UseGPRForF16_F32 = true;
8494   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
8495   // variadic argument, or if no F64 argument registers are available.
8496   bool UseGPRForF64 = true;
8497 
8498   switch (ABI) {
8499   default:
8500     llvm_unreachable("Unexpected ABI");
8501   case RISCVABI::ABI_ILP32:
8502   case RISCVABI::ABI_LP64:
8503     break;
8504   case RISCVABI::ABI_ILP32F:
8505   case RISCVABI::ABI_LP64F:
8506     UseGPRForF16_F32 = !IsFixed;
8507     break;
8508   case RISCVABI::ABI_ILP32D:
8509   case RISCVABI::ABI_LP64D:
8510     UseGPRForF16_F32 = !IsFixed;
8511     UseGPRForF64 = !IsFixed;
8512     break;
8513   }
8514 
8515   // FPR16, FPR32, and FPR64 alias each other.
8516   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
8517     UseGPRForF16_F32 = true;
8518     UseGPRForF64 = true;
8519   }
8520 
8521   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
8522   // similar local variables rather than directly checking against the target
8523   // ABI.
8524 
8525   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
8526     LocVT = XLenVT;
8527     LocInfo = CCValAssign::BCvt;
8528   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
8529     LocVT = MVT::i64;
8530     LocInfo = CCValAssign::BCvt;
8531   }
8532 
8533   // If this is a variadic argument, the RISC-V calling convention requires
8534   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
8535   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
8536   // be used regardless of whether the original argument was split during
8537   // legalisation or not. The argument will not be passed by registers if the
8538   // original type is larger than 2*XLEN, so the register alignment rule does
8539   // not apply.
8540   unsigned TwoXLenInBytes = (2 * XLen) / 8;
8541   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
8542       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
8543     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
8544     // Skip 'odd' register if necessary.
8545     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
8546       State.AllocateReg(ArgGPRs);
8547   }
8548 
8549   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
8550   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
8551       State.getPendingArgFlags();
8552 
8553   assert(PendingLocs.size() == PendingArgFlags.size() &&
8554          "PendingLocs and PendingArgFlags out of sync");
8555 
8556   // Handle passing f64 on RV32D with a soft float ABI or when floating point
8557   // registers are exhausted.
8558   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
8559     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
8560            "Can't lower f64 if it is split");
8561     // Depending on available argument GPRS, f64 may be passed in a pair of
8562     // GPRs, split between a GPR and the stack, or passed completely on the
8563     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
8564     // cases.
8565     Register Reg = State.AllocateReg(ArgGPRs);
8566     LocVT = MVT::i32;
8567     if (!Reg) {
8568       unsigned StackOffset = State.AllocateStack(8, Align(8));
8569       State.addLoc(
8570           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
8571       return false;
8572     }
8573     if (!State.AllocateReg(ArgGPRs))
8574       State.AllocateStack(4, Align(4));
8575     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8576     return false;
8577   }
8578 
8579   // Fixed-length vectors are located in the corresponding scalable-vector
8580   // container types.
8581   if (ValVT.isFixedLengthVector())
8582     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
8583 
8584   // Split arguments might be passed indirectly, so keep track of the pending
8585   // values. Split vectors are passed via a mix of registers and indirectly, so
8586   // treat them as we would any other argument.
8587   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
8588     LocVT = XLenVT;
8589     LocInfo = CCValAssign::Indirect;
8590     PendingLocs.push_back(
8591         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
8592     PendingArgFlags.push_back(ArgFlags);
8593     if (!ArgFlags.isSplitEnd()) {
8594       return false;
8595     }
8596   }
8597 
8598   // If the split argument only had two elements, it should be passed directly
8599   // in registers or on the stack.
8600   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
8601       PendingLocs.size() <= 2) {
8602     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
8603     // Apply the normal calling convention rules to the first half of the
8604     // split argument.
8605     CCValAssign VA = PendingLocs[0];
8606     ISD::ArgFlagsTy AF = PendingArgFlags[0];
8607     PendingLocs.clear();
8608     PendingArgFlags.clear();
8609     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
8610                                ArgFlags);
8611   }
8612 
8613   // Allocate to a register if possible, or else a stack slot.
8614   Register Reg;
8615   unsigned StoreSizeBytes = XLen / 8;
8616   Align StackAlign = Align(XLen / 8);
8617 
8618   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
8619     Reg = State.AllocateReg(ArgFPR16s);
8620   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
8621     Reg = State.AllocateReg(ArgFPR32s);
8622   else if (ValVT == MVT::f64 && !UseGPRForF64)
8623     Reg = State.AllocateReg(ArgFPR64s);
8624   else if (ValVT.isVector()) {
8625     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
8626     if (!Reg) {
8627       // For return values, the vector must be passed fully via registers or
8628       // via the stack.
8629       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
8630       // but we're using all of them.
8631       if (IsRet)
8632         return true;
8633       // Try using a GPR to pass the address
8634       if ((Reg = State.AllocateReg(ArgGPRs))) {
8635         LocVT = XLenVT;
8636         LocInfo = CCValAssign::Indirect;
8637       } else if (ValVT.isScalableVector()) {
8638         LocVT = XLenVT;
8639         LocInfo = CCValAssign::Indirect;
8640       } else {
8641         // Pass fixed-length vectors on the stack.
8642         LocVT = ValVT;
8643         StoreSizeBytes = ValVT.getStoreSize();
8644         // Align vectors to their element sizes, being careful for vXi1
8645         // vectors.
8646         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
8647       }
8648     }
8649   } else {
8650     Reg = State.AllocateReg(ArgGPRs);
8651   }
8652 
8653   unsigned StackOffset =
8654       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
8655 
8656   // If we reach this point and PendingLocs is non-empty, we must be at the
8657   // end of a split argument that must be passed indirectly.
8658   if (!PendingLocs.empty()) {
8659     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
8660     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
8661 
8662     for (auto &It : PendingLocs) {
8663       if (Reg)
8664         It.convertToReg(Reg);
8665       else
8666         It.convertToMem(StackOffset);
8667       State.addLoc(It);
8668     }
8669     PendingLocs.clear();
8670     PendingArgFlags.clear();
8671     return false;
8672   }
8673 
8674   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
8675           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
8676          "Expected an XLenVT or vector types at this stage");
8677 
8678   if (Reg) {
8679     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8680     return false;
8681   }
8682 
8683   // When a floating-point value is passed on the stack, no bit-conversion is
8684   // needed.
8685   if (ValVT.isFloatingPoint()) {
8686     LocVT = ValVT;
8687     LocInfo = CCValAssign::Full;
8688   }
8689   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
8690   return false;
8691 }
8692 
8693 template <typename ArgTy>
8694 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
8695   for (const auto &ArgIdx : enumerate(Args)) {
8696     MVT ArgVT = ArgIdx.value().VT;
8697     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
8698       return ArgIdx.index();
8699   }
8700   return None;
8701 }
8702 
8703 void RISCVTargetLowering::analyzeInputArgs(
8704     MachineFunction &MF, CCState &CCInfo,
8705     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
8706     RISCVCCAssignFn Fn) const {
8707   unsigned NumArgs = Ins.size();
8708   FunctionType *FType = MF.getFunction().getFunctionType();
8709 
8710   Optional<unsigned> FirstMaskArgument;
8711   if (Subtarget.hasVInstructions())
8712     FirstMaskArgument = preAssignMask(Ins);
8713 
8714   for (unsigned i = 0; i != NumArgs; ++i) {
8715     MVT ArgVT = Ins[i].VT;
8716     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
8717 
8718     Type *ArgTy = nullptr;
8719     if (IsRet)
8720       ArgTy = FType->getReturnType();
8721     else if (Ins[i].isOrigArg())
8722       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
8723 
8724     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
8725     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
8726            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
8727            FirstMaskArgument)) {
8728       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
8729                         << EVT(ArgVT).getEVTString() << '\n');
8730       llvm_unreachable(nullptr);
8731     }
8732   }
8733 }
8734 
8735 void RISCVTargetLowering::analyzeOutputArgs(
8736     MachineFunction &MF, CCState &CCInfo,
8737     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
8738     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
8739   unsigned NumArgs = Outs.size();
8740 
8741   Optional<unsigned> FirstMaskArgument;
8742   if (Subtarget.hasVInstructions())
8743     FirstMaskArgument = preAssignMask(Outs);
8744 
8745   for (unsigned i = 0; i != NumArgs; i++) {
8746     MVT ArgVT = Outs[i].VT;
8747     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
8748     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
8749 
8750     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
8751     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
8752            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
8753            FirstMaskArgument)) {
8754       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
8755                         << EVT(ArgVT).getEVTString() << "\n");
8756       llvm_unreachable(nullptr);
8757     }
8758   }
8759 }
8760 
8761 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
8762 // values.
8763 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
8764                                    const CCValAssign &VA, const SDLoc &DL,
8765                                    const RISCVSubtarget &Subtarget) {
8766   switch (VA.getLocInfo()) {
8767   default:
8768     llvm_unreachable("Unexpected CCValAssign::LocInfo");
8769   case CCValAssign::Full:
8770     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
8771       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
8772     break;
8773   case CCValAssign::BCvt:
8774     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
8775       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
8776     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
8777       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
8778     else
8779       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
8780     break;
8781   }
8782   return Val;
8783 }
8784 
8785 // The caller is responsible for loading the full value if the argument is
8786 // passed with CCValAssign::Indirect.
8787 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
8788                                 const CCValAssign &VA, const SDLoc &DL,
8789                                 const RISCVTargetLowering &TLI) {
8790   MachineFunction &MF = DAG.getMachineFunction();
8791   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8792   EVT LocVT = VA.getLocVT();
8793   SDValue Val;
8794   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
8795   Register VReg = RegInfo.createVirtualRegister(RC);
8796   RegInfo.addLiveIn(VA.getLocReg(), VReg);
8797   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
8798 
8799   if (VA.getLocInfo() == CCValAssign::Indirect)
8800     return Val;
8801 
8802   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
8803 }
8804 
8805 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
8806                                    const CCValAssign &VA, const SDLoc &DL,
8807                                    const RISCVSubtarget &Subtarget) {
8808   EVT LocVT = VA.getLocVT();
8809 
8810   switch (VA.getLocInfo()) {
8811   default:
8812     llvm_unreachable("Unexpected CCValAssign::LocInfo");
8813   case CCValAssign::Full:
8814     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
8815       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
8816     break;
8817   case CCValAssign::BCvt:
8818     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
8819       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
8820     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
8821       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
8822     else
8823       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
8824     break;
8825   }
8826   return Val;
8827 }
8828 
8829 // The caller is responsible for loading the full value if the argument is
8830 // passed with CCValAssign::Indirect.
8831 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
8832                                 const CCValAssign &VA, const SDLoc &DL) {
8833   MachineFunction &MF = DAG.getMachineFunction();
8834   MachineFrameInfo &MFI = MF.getFrameInfo();
8835   EVT LocVT = VA.getLocVT();
8836   EVT ValVT = VA.getValVT();
8837   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
8838   if (ValVT.isScalableVector()) {
8839     // When the value is a scalable vector, we save the pointer which points to
8840     // the scalable vector value in the stack. The ValVT will be the pointer
8841     // type, instead of the scalable vector type.
8842     ValVT = LocVT;
8843   }
8844   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
8845                                  /*IsImmutable=*/true);
8846   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
8847   SDValue Val;
8848 
8849   ISD::LoadExtType ExtType;
8850   switch (VA.getLocInfo()) {
8851   default:
8852     llvm_unreachable("Unexpected CCValAssign::LocInfo");
8853   case CCValAssign::Full:
8854   case CCValAssign::Indirect:
8855   case CCValAssign::BCvt:
8856     ExtType = ISD::NON_EXTLOAD;
8857     break;
8858   }
8859   Val = DAG.getExtLoad(
8860       ExtType, DL, LocVT, Chain, FIN,
8861       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
8862   return Val;
8863 }
8864 
8865 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
8866                                        const CCValAssign &VA, const SDLoc &DL) {
8867   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
8868          "Unexpected VA");
8869   MachineFunction &MF = DAG.getMachineFunction();
8870   MachineFrameInfo &MFI = MF.getFrameInfo();
8871   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8872 
8873   if (VA.isMemLoc()) {
8874     // f64 is passed on the stack.
8875     int FI =
8876         MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
8877     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
8878     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
8879                        MachinePointerInfo::getFixedStack(MF, FI));
8880   }
8881 
8882   assert(VA.isRegLoc() && "Expected register VA assignment");
8883 
8884   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
8885   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
8886   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
8887   SDValue Hi;
8888   if (VA.getLocReg() == RISCV::X17) {
8889     // Second half of f64 is passed on the stack.
8890     int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
8891     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
8892     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
8893                      MachinePointerInfo::getFixedStack(MF, FI));
8894   } else {
8895     // Second half of f64 is passed in another GPR.
8896     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
8897     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
8898     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
8899   }
8900   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
8901 }
8902 
8903 // FastCC has less than 1% performance improvement for some particular
8904 // benchmark. But theoretically, it may has benenfit for some cases.
8905 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
8906                             unsigned ValNo, MVT ValVT, MVT LocVT,
8907                             CCValAssign::LocInfo LocInfo,
8908                             ISD::ArgFlagsTy ArgFlags, CCState &State,
8909                             bool IsFixed, bool IsRet, Type *OrigTy,
8910                             const RISCVTargetLowering &TLI,
8911                             Optional<unsigned> FirstMaskArgument) {
8912 
8913   // X5 and X6 might be used for save-restore libcall.
8914   static const MCPhysReg GPRList[] = {
8915       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
8916       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
8917       RISCV::X29, RISCV::X30, RISCV::X31};
8918 
8919   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
8920     if (unsigned Reg = State.AllocateReg(GPRList)) {
8921       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8922       return false;
8923     }
8924   }
8925 
8926   if (LocVT == MVT::f16) {
8927     static const MCPhysReg FPR16List[] = {
8928         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
8929         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
8930         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
8931         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
8932     if (unsigned Reg = State.AllocateReg(FPR16List)) {
8933       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8934       return false;
8935     }
8936   }
8937 
8938   if (LocVT == MVT::f32) {
8939     static const MCPhysReg FPR32List[] = {
8940         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
8941         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
8942         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
8943         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
8944     if (unsigned Reg = State.AllocateReg(FPR32List)) {
8945       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8946       return false;
8947     }
8948   }
8949 
8950   if (LocVT == MVT::f64) {
8951     static const MCPhysReg FPR64List[] = {
8952         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
8953         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
8954         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
8955         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
8956     if (unsigned Reg = State.AllocateReg(FPR64List)) {
8957       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8958       return false;
8959     }
8960   }
8961 
8962   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
8963     unsigned Offset4 = State.AllocateStack(4, Align(4));
8964     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
8965     return false;
8966   }
8967 
8968   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
8969     unsigned Offset5 = State.AllocateStack(8, Align(8));
8970     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
8971     return false;
8972   }
8973 
8974   if (LocVT.isVector()) {
8975     if (unsigned Reg =
8976             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
8977       // Fixed-length vectors are located in the corresponding scalable-vector
8978       // container types.
8979       if (ValVT.isFixedLengthVector())
8980         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
8981       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8982     } else {
8983       // Try and pass the address via a "fast" GPR.
8984       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
8985         LocInfo = CCValAssign::Indirect;
8986         LocVT = TLI.getSubtarget().getXLenVT();
8987         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
8988       } else if (ValVT.isFixedLengthVector()) {
8989         auto StackAlign =
8990             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
8991         unsigned StackOffset =
8992             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
8993         State.addLoc(
8994             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
8995       } else {
8996         // Can't pass scalable vectors on the stack.
8997         return true;
8998       }
8999     }
9000 
9001     return false;
9002   }
9003 
9004   return true; // CC didn't match.
9005 }
9006 
9007 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
9008                          CCValAssign::LocInfo LocInfo,
9009                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
9010 
9011   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
9012     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
9013     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
9014     static const MCPhysReg GPRList[] = {
9015         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
9016         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
9017     if (unsigned Reg = State.AllocateReg(GPRList)) {
9018       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9019       return false;
9020     }
9021   }
9022 
9023   if (LocVT == MVT::f32) {
9024     // Pass in STG registers: F1, ..., F6
9025     //                        fs0 ... fs5
9026     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
9027                                           RISCV::F18_F, RISCV::F19_F,
9028                                           RISCV::F20_F, RISCV::F21_F};
9029     if (unsigned Reg = State.AllocateReg(FPR32List)) {
9030       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9031       return false;
9032     }
9033   }
9034 
9035   if (LocVT == MVT::f64) {
9036     // Pass in STG registers: D1, ..., D6
9037     //                        fs6 ... fs11
9038     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
9039                                           RISCV::F24_D, RISCV::F25_D,
9040                                           RISCV::F26_D, RISCV::F27_D};
9041     if (unsigned Reg = State.AllocateReg(FPR64List)) {
9042       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9043       return false;
9044     }
9045   }
9046 
9047   report_fatal_error("No registers left in GHC calling convention");
9048   return true;
9049 }
9050 
9051 // Transform physical registers into virtual registers.
9052 SDValue RISCVTargetLowering::LowerFormalArguments(
9053     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
9054     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
9055     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
9056 
9057   MachineFunction &MF = DAG.getMachineFunction();
9058 
9059   switch (CallConv) {
9060   default:
9061     report_fatal_error("Unsupported calling convention");
9062   case CallingConv::C:
9063   case CallingConv::Fast:
9064     break;
9065   case CallingConv::GHC:
9066     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
9067         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
9068       report_fatal_error(
9069         "GHC calling convention requires the F and D instruction set extensions");
9070   }
9071 
9072   const Function &Func = MF.getFunction();
9073   if (Func.hasFnAttribute("interrupt")) {
9074     if (!Func.arg_empty())
9075       report_fatal_error(
9076         "Functions with the interrupt attribute cannot have arguments!");
9077 
9078     StringRef Kind =
9079       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
9080 
9081     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
9082       report_fatal_error(
9083         "Function interrupt attribute argument not supported!");
9084   }
9085 
9086   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9087   MVT XLenVT = Subtarget.getXLenVT();
9088   unsigned XLenInBytes = Subtarget.getXLen() / 8;
9089   // Used with vargs to acumulate store chains.
9090   std::vector<SDValue> OutChains;
9091 
9092   // Assign locations to all of the incoming arguments.
9093   SmallVector<CCValAssign, 16> ArgLocs;
9094   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
9095 
9096   if (CallConv == CallingConv::GHC)
9097     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
9098   else
9099     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
9100                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
9101                                                    : CC_RISCV);
9102 
9103   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
9104     CCValAssign &VA = ArgLocs[i];
9105     SDValue ArgValue;
9106     // Passing f64 on RV32D with a soft float ABI must be handled as a special
9107     // case.
9108     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
9109       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
9110     else if (VA.isRegLoc())
9111       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
9112     else
9113       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
9114 
9115     if (VA.getLocInfo() == CCValAssign::Indirect) {
9116       // If the original argument was split and passed by reference (e.g. i128
9117       // on RV32), we need to load all parts of it here (using the same
9118       // address). Vectors may be partly split to registers and partly to the
9119       // stack, in which case the base address is partly offset and subsequent
9120       // stores are relative to that.
9121       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
9122                                    MachinePointerInfo()));
9123       unsigned ArgIndex = Ins[i].OrigArgIndex;
9124       unsigned ArgPartOffset = Ins[i].PartOffset;
9125       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
9126       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
9127         CCValAssign &PartVA = ArgLocs[i + 1];
9128         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
9129         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
9130         if (PartVA.getValVT().isScalableVector())
9131           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
9132         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
9133         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
9134                                      MachinePointerInfo()));
9135         ++i;
9136       }
9137       continue;
9138     }
9139     InVals.push_back(ArgValue);
9140   }
9141 
9142   if (IsVarArg) {
9143     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
9144     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
9145     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
9146     MachineFrameInfo &MFI = MF.getFrameInfo();
9147     MachineRegisterInfo &RegInfo = MF.getRegInfo();
9148     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
9149 
9150     // Offset of the first variable argument from stack pointer, and size of
9151     // the vararg save area. For now, the varargs save area is either zero or
9152     // large enough to hold a0-a7.
9153     int VaArgOffset, VarArgsSaveSize;
9154 
9155     // If all registers are allocated, then all varargs must be passed on the
9156     // stack and we don't need to save any argregs.
9157     if (ArgRegs.size() == Idx) {
9158       VaArgOffset = CCInfo.getNextStackOffset();
9159       VarArgsSaveSize = 0;
9160     } else {
9161       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
9162       VaArgOffset = -VarArgsSaveSize;
9163     }
9164 
9165     // Record the frame index of the first variable argument
9166     // which is a value necessary to VASTART.
9167     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
9168     RVFI->setVarArgsFrameIndex(FI);
9169 
9170     // If saving an odd number of registers then create an extra stack slot to
9171     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
9172     // offsets to even-numbered registered remain 2*XLEN-aligned.
9173     if (Idx % 2) {
9174       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
9175       VarArgsSaveSize += XLenInBytes;
9176     }
9177 
9178     // Copy the integer registers that may have been used for passing varargs
9179     // to the vararg save area.
9180     for (unsigned I = Idx; I < ArgRegs.size();
9181          ++I, VaArgOffset += XLenInBytes) {
9182       const Register Reg = RegInfo.createVirtualRegister(RC);
9183       RegInfo.addLiveIn(ArgRegs[I], Reg);
9184       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
9185       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
9186       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
9187       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
9188                                    MachinePointerInfo::getFixedStack(MF, FI));
9189       cast<StoreSDNode>(Store.getNode())
9190           ->getMemOperand()
9191           ->setValue((Value *)nullptr);
9192       OutChains.push_back(Store);
9193     }
9194     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
9195   }
9196 
9197   // All stores are grouped in one node to allow the matching between
9198   // the size of Ins and InVals. This only happens for vararg functions.
9199   if (!OutChains.empty()) {
9200     OutChains.push_back(Chain);
9201     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
9202   }
9203 
9204   return Chain;
9205 }
9206 
9207 /// isEligibleForTailCallOptimization - Check whether the call is eligible
9208 /// for tail call optimization.
9209 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
9210 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
9211     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
9212     const SmallVector<CCValAssign, 16> &ArgLocs) const {
9213 
9214   auto &Callee = CLI.Callee;
9215   auto CalleeCC = CLI.CallConv;
9216   auto &Outs = CLI.Outs;
9217   auto &Caller = MF.getFunction();
9218   auto CallerCC = Caller.getCallingConv();
9219 
9220   // Exception-handling functions need a special set of instructions to
9221   // indicate a return to the hardware. Tail-calling another function would
9222   // probably break this.
9223   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
9224   // should be expanded as new function attributes are introduced.
9225   if (Caller.hasFnAttribute("interrupt"))
9226     return false;
9227 
9228   // Do not tail call opt if the stack is used to pass parameters.
9229   if (CCInfo.getNextStackOffset() != 0)
9230     return false;
9231 
9232   // Do not tail call opt if any parameters need to be passed indirectly.
9233   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
9234   // passed indirectly. So the address of the value will be passed in a
9235   // register, or if not available, then the address is put on the stack. In
9236   // order to pass indirectly, space on the stack often needs to be allocated
9237   // in order to store the value. In this case the CCInfo.getNextStackOffset()
9238   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
9239   // are passed CCValAssign::Indirect.
9240   for (auto &VA : ArgLocs)
9241     if (VA.getLocInfo() == CCValAssign::Indirect)
9242       return false;
9243 
9244   // Do not tail call opt if either caller or callee uses struct return
9245   // semantics.
9246   auto IsCallerStructRet = Caller.hasStructRetAttr();
9247   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
9248   if (IsCallerStructRet || IsCalleeStructRet)
9249     return false;
9250 
9251   // Externally-defined functions with weak linkage should not be
9252   // tail-called. The behaviour of branch instructions in this situation (as
9253   // used for tail calls) is implementation-defined, so we cannot rely on the
9254   // linker replacing the tail call with a return.
9255   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
9256     const GlobalValue *GV = G->getGlobal();
9257     if (GV->hasExternalWeakLinkage())
9258       return false;
9259   }
9260 
9261   // The callee has to preserve all registers the caller needs to preserve.
9262   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
9263   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
9264   if (CalleeCC != CallerCC) {
9265     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
9266     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
9267       return false;
9268   }
9269 
9270   // Byval parameters hand the function a pointer directly into the stack area
9271   // we want to reuse during a tail call. Working around this *is* possible
9272   // but less efficient and uglier in LowerCall.
9273   for (auto &Arg : Outs)
9274     if (Arg.Flags.isByVal())
9275       return false;
9276 
9277   return true;
9278 }
9279 
9280 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
9281   return DAG.getDataLayout().getPrefTypeAlign(
9282       VT.getTypeForEVT(*DAG.getContext()));
9283 }
9284 
9285 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
9286 // and output parameter nodes.
9287 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
9288                                        SmallVectorImpl<SDValue> &InVals) const {
9289   SelectionDAG &DAG = CLI.DAG;
9290   SDLoc &DL = CLI.DL;
9291   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
9292   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
9293   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
9294   SDValue Chain = CLI.Chain;
9295   SDValue Callee = CLI.Callee;
9296   bool &IsTailCall = CLI.IsTailCall;
9297   CallingConv::ID CallConv = CLI.CallConv;
9298   bool IsVarArg = CLI.IsVarArg;
9299   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9300   MVT XLenVT = Subtarget.getXLenVT();
9301 
9302   MachineFunction &MF = DAG.getMachineFunction();
9303 
9304   // Analyze the operands of the call, assigning locations to each operand.
9305   SmallVector<CCValAssign, 16> ArgLocs;
9306   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
9307 
9308   if (CallConv == CallingConv::GHC)
9309     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
9310   else
9311     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
9312                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
9313                                                     : CC_RISCV);
9314 
9315   // Check if it's really possible to do a tail call.
9316   if (IsTailCall)
9317     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
9318 
9319   if (IsTailCall)
9320     ++NumTailCalls;
9321   else if (CLI.CB && CLI.CB->isMustTailCall())
9322     report_fatal_error("failed to perform tail call elimination on a call "
9323                        "site marked musttail");
9324 
9325   // Get a count of how many bytes are to be pushed on the stack.
9326   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
9327 
9328   // Create local copies for byval args
9329   SmallVector<SDValue, 8> ByValArgs;
9330   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
9331     ISD::ArgFlagsTy Flags = Outs[i].Flags;
9332     if (!Flags.isByVal())
9333       continue;
9334 
9335     SDValue Arg = OutVals[i];
9336     unsigned Size = Flags.getByValSize();
9337     Align Alignment = Flags.getNonZeroByValAlign();
9338 
9339     int FI =
9340         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
9341     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
9342     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
9343 
9344     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
9345                           /*IsVolatile=*/false,
9346                           /*AlwaysInline=*/false, IsTailCall,
9347                           MachinePointerInfo(), MachinePointerInfo());
9348     ByValArgs.push_back(FIPtr);
9349   }
9350 
9351   if (!IsTailCall)
9352     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
9353 
9354   // Copy argument values to their designated locations.
9355   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
9356   SmallVector<SDValue, 8> MemOpChains;
9357   SDValue StackPtr;
9358   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
9359     CCValAssign &VA = ArgLocs[i];
9360     SDValue ArgValue = OutVals[i];
9361     ISD::ArgFlagsTy Flags = Outs[i].Flags;
9362 
9363     // Handle passing f64 on RV32D with a soft float ABI as a special case.
9364     bool IsF64OnRV32DSoftABI =
9365         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
9366     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
9367       SDValue SplitF64 = DAG.getNode(
9368           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
9369       SDValue Lo = SplitF64.getValue(0);
9370       SDValue Hi = SplitF64.getValue(1);
9371 
9372       Register RegLo = VA.getLocReg();
9373       RegsToPass.push_back(std::make_pair(RegLo, Lo));
9374 
9375       if (RegLo == RISCV::X17) {
9376         // Second half of f64 is passed on the stack.
9377         // Work out the address of the stack slot.
9378         if (!StackPtr.getNode())
9379           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
9380         // Emit the store.
9381         MemOpChains.push_back(
9382             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
9383       } else {
9384         // Second half of f64 is passed in another GPR.
9385         assert(RegLo < RISCV::X31 && "Invalid register pair");
9386         Register RegHigh = RegLo + 1;
9387         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
9388       }
9389       continue;
9390     }
9391 
9392     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
9393     // as any other MemLoc.
9394 
9395     // Promote the value if needed.
9396     // For now, only handle fully promoted and indirect arguments.
9397     if (VA.getLocInfo() == CCValAssign::Indirect) {
9398       // Store the argument in a stack slot and pass its address.
9399       Align StackAlign =
9400           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
9401                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
9402       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
9403       // If the original argument was split (e.g. i128), we need
9404       // to store the required parts of it here (and pass just one address).
9405       // Vectors may be partly split to registers and partly to the stack, in
9406       // which case the base address is partly offset and subsequent stores are
9407       // relative to that.
9408       unsigned ArgIndex = Outs[i].OrigArgIndex;
9409       unsigned ArgPartOffset = Outs[i].PartOffset;
9410       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
9411       // Calculate the total size to store. We don't have access to what we're
9412       // actually storing other than performing the loop and collecting the
9413       // info.
9414       SmallVector<std::pair<SDValue, SDValue>> Parts;
9415       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
9416         SDValue PartValue = OutVals[i + 1];
9417         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
9418         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
9419         EVT PartVT = PartValue.getValueType();
9420         if (PartVT.isScalableVector())
9421           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
9422         StoredSize += PartVT.getStoreSize();
9423         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
9424         Parts.push_back(std::make_pair(PartValue, Offset));
9425         ++i;
9426       }
9427       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
9428       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
9429       MemOpChains.push_back(
9430           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
9431                        MachinePointerInfo::getFixedStack(MF, FI)));
9432       for (const auto &Part : Parts) {
9433         SDValue PartValue = Part.first;
9434         SDValue PartOffset = Part.second;
9435         SDValue Address =
9436             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
9437         MemOpChains.push_back(
9438             DAG.getStore(Chain, DL, PartValue, Address,
9439                          MachinePointerInfo::getFixedStack(MF, FI)));
9440       }
9441       ArgValue = SpillSlot;
9442     } else {
9443       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
9444     }
9445 
9446     // Use local copy if it is a byval arg.
9447     if (Flags.isByVal())
9448       ArgValue = ByValArgs[j++];
9449 
9450     if (VA.isRegLoc()) {
9451       // Queue up the argument copies and emit them at the end.
9452       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
9453     } else {
9454       assert(VA.isMemLoc() && "Argument not register or memory");
9455       assert(!IsTailCall && "Tail call not allowed if stack is used "
9456                             "for passing parameters");
9457 
9458       // Work out the address of the stack slot.
9459       if (!StackPtr.getNode())
9460         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
9461       SDValue Address =
9462           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
9463                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
9464 
9465       // Emit the store.
9466       MemOpChains.push_back(
9467           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
9468     }
9469   }
9470 
9471   // Join the stores, which are independent of one another.
9472   if (!MemOpChains.empty())
9473     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
9474 
9475   SDValue Glue;
9476 
9477   // Build a sequence of copy-to-reg nodes, chained and glued together.
9478   for (auto &Reg : RegsToPass) {
9479     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
9480     Glue = Chain.getValue(1);
9481   }
9482 
9483   // Validate that none of the argument registers have been marked as
9484   // reserved, if so report an error. Do the same for the return address if this
9485   // is not a tailcall.
9486   validateCCReservedRegs(RegsToPass, MF);
9487   if (!IsTailCall &&
9488       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
9489     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
9490         MF.getFunction(),
9491         "Return address register required, but has been reserved."});
9492 
9493   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
9494   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
9495   // split it and then direct call can be matched by PseudoCALL.
9496   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
9497     const GlobalValue *GV = S->getGlobal();
9498 
9499     unsigned OpFlags = RISCVII::MO_CALL;
9500     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
9501       OpFlags = RISCVII::MO_PLT;
9502 
9503     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
9504   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
9505     unsigned OpFlags = RISCVII::MO_CALL;
9506 
9507     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
9508                                                  nullptr))
9509       OpFlags = RISCVII::MO_PLT;
9510 
9511     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
9512   }
9513 
9514   // The first call operand is the chain and the second is the target address.
9515   SmallVector<SDValue, 8> Ops;
9516   Ops.push_back(Chain);
9517   Ops.push_back(Callee);
9518 
9519   // Add argument registers to the end of the list so that they are
9520   // known live into the call.
9521   for (auto &Reg : RegsToPass)
9522     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
9523 
9524   if (!IsTailCall) {
9525     // Add a register mask operand representing the call-preserved registers.
9526     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
9527     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
9528     assert(Mask && "Missing call preserved mask for calling convention");
9529     Ops.push_back(DAG.getRegisterMask(Mask));
9530   }
9531 
9532   // Glue the call to the argument copies, if any.
9533   if (Glue.getNode())
9534     Ops.push_back(Glue);
9535 
9536   // Emit the call.
9537   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9538 
9539   if (IsTailCall) {
9540     MF.getFrameInfo().setHasTailCall();
9541     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
9542   }
9543 
9544   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
9545   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
9546   Glue = Chain.getValue(1);
9547 
9548   // Mark the end of the call, which is glued to the call itself.
9549   Chain = DAG.getCALLSEQ_END(Chain,
9550                              DAG.getConstant(NumBytes, DL, PtrVT, true),
9551                              DAG.getConstant(0, DL, PtrVT, true),
9552                              Glue, DL);
9553   Glue = Chain.getValue(1);
9554 
9555   // Assign locations to each value returned by this call.
9556   SmallVector<CCValAssign, 16> RVLocs;
9557   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
9558   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
9559 
9560   // Copy all of the result registers out of their specified physreg.
9561   for (auto &VA : RVLocs) {
9562     // Copy the value out
9563     SDValue RetValue =
9564         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
9565     // Glue the RetValue to the end of the call sequence
9566     Chain = RetValue.getValue(1);
9567     Glue = RetValue.getValue(2);
9568 
9569     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
9570       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
9571       SDValue RetValue2 =
9572           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
9573       Chain = RetValue2.getValue(1);
9574       Glue = RetValue2.getValue(2);
9575       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
9576                              RetValue2);
9577     }
9578 
9579     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
9580 
9581     InVals.push_back(RetValue);
9582   }
9583 
9584   return Chain;
9585 }
9586 
9587 bool RISCVTargetLowering::CanLowerReturn(
9588     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
9589     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
9590   SmallVector<CCValAssign, 16> RVLocs;
9591   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
9592 
9593   Optional<unsigned> FirstMaskArgument;
9594   if (Subtarget.hasVInstructions())
9595     FirstMaskArgument = preAssignMask(Outs);
9596 
9597   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
9598     MVT VT = Outs[i].VT;
9599     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
9600     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9601     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
9602                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
9603                  *this, FirstMaskArgument))
9604       return false;
9605   }
9606   return true;
9607 }
9608 
9609 SDValue
9610 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
9611                                  bool IsVarArg,
9612                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
9613                                  const SmallVectorImpl<SDValue> &OutVals,
9614                                  const SDLoc &DL, SelectionDAG &DAG) const {
9615   const MachineFunction &MF = DAG.getMachineFunction();
9616   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
9617 
9618   // Stores the assignment of the return value to a location.
9619   SmallVector<CCValAssign, 16> RVLocs;
9620 
9621   // Info about the registers and stack slot.
9622   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
9623                  *DAG.getContext());
9624 
9625   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
9626                     nullptr, CC_RISCV);
9627 
9628   if (CallConv == CallingConv::GHC && !RVLocs.empty())
9629     report_fatal_error("GHC functions return void only");
9630 
9631   SDValue Glue;
9632   SmallVector<SDValue, 4> RetOps(1, Chain);
9633 
9634   // Copy the result values into the output registers.
9635   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
9636     SDValue Val = OutVals[i];
9637     CCValAssign &VA = RVLocs[i];
9638     assert(VA.isRegLoc() && "Can only return in registers!");
9639 
9640     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
9641       // Handle returning f64 on RV32D with a soft float ABI.
9642       assert(VA.isRegLoc() && "Expected return via registers");
9643       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
9644                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
9645       SDValue Lo = SplitF64.getValue(0);
9646       SDValue Hi = SplitF64.getValue(1);
9647       Register RegLo = VA.getLocReg();
9648       assert(RegLo < RISCV::X31 && "Invalid register pair");
9649       Register RegHi = RegLo + 1;
9650 
9651       if (STI.isRegisterReservedByUser(RegLo) ||
9652           STI.isRegisterReservedByUser(RegHi))
9653         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
9654             MF.getFunction(),
9655             "Return value register required, but has been reserved."});
9656 
9657       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
9658       Glue = Chain.getValue(1);
9659       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
9660       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
9661       Glue = Chain.getValue(1);
9662       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
9663     } else {
9664       // Handle a 'normal' return.
9665       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
9666       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
9667 
9668       if (STI.isRegisterReservedByUser(VA.getLocReg()))
9669         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
9670             MF.getFunction(),
9671             "Return value register required, but has been reserved."});
9672 
9673       // Guarantee that all emitted copies are stuck together.
9674       Glue = Chain.getValue(1);
9675       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
9676     }
9677   }
9678 
9679   RetOps[0] = Chain; // Update chain.
9680 
9681   // Add the glue node if we have it.
9682   if (Glue.getNode()) {
9683     RetOps.push_back(Glue);
9684   }
9685 
9686   unsigned RetOpc = RISCVISD::RET_FLAG;
9687   // Interrupt service routines use different return instructions.
9688   const Function &Func = DAG.getMachineFunction().getFunction();
9689   if (Func.hasFnAttribute("interrupt")) {
9690     if (!Func.getReturnType()->isVoidTy())
9691       report_fatal_error(
9692           "Functions with the interrupt attribute must have void return type!");
9693 
9694     MachineFunction &MF = DAG.getMachineFunction();
9695     StringRef Kind =
9696       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
9697 
9698     if (Kind == "user")
9699       RetOpc = RISCVISD::URET_FLAG;
9700     else if (Kind == "supervisor")
9701       RetOpc = RISCVISD::SRET_FLAG;
9702     else
9703       RetOpc = RISCVISD::MRET_FLAG;
9704   }
9705 
9706   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
9707 }
9708 
9709 void RISCVTargetLowering::validateCCReservedRegs(
9710     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
9711     MachineFunction &MF) const {
9712   const Function &F = MF.getFunction();
9713   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
9714 
9715   if (llvm::any_of(Regs, [&STI](auto Reg) {
9716         return STI.isRegisterReservedByUser(Reg.first);
9717       }))
9718     F.getContext().diagnose(DiagnosticInfoUnsupported{
9719         F, "Argument register required, but has been reserved."});
9720 }
9721 
9722 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
9723   return CI->isTailCall();
9724 }
9725 
9726 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
9727 #define NODE_NAME_CASE(NODE)                                                   \
9728   case RISCVISD::NODE:                                                         \
9729     return "RISCVISD::" #NODE;
9730   // clang-format off
9731   switch ((RISCVISD::NodeType)Opcode) {
9732   case RISCVISD::FIRST_NUMBER:
9733     break;
9734   NODE_NAME_CASE(RET_FLAG)
9735   NODE_NAME_CASE(URET_FLAG)
9736   NODE_NAME_CASE(SRET_FLAG)
9737   NODE_NAME_CASE(MRET_FLAG)
9738   NODE_NAME_CASE(CALL)
9739   NODE_NAME_CASE(SELECT_CC)
9740   NODE_NAME_CASE(BR_CC)
9741   NODE_NAME_CASE(BuildPairF64)
9742   NODE_NAME_CASE(SplitF64)
9743   NODE_NAME_CASE(TAIL)
9744   NODE_NAME_CASE(MULHSU)
9745   NODE_NAME_CASE(SLLW)
9746   NODE_NAME_CASE(SRAW)
9747   NODE_NAME_CASE(SRLW)
9748   NODE_NAME_CASE(DIVW)
9749   NODE_NAME_CASE(DIVUW)
9750   NODE_NAME_CASE(REMUW)
9751   NODE_NAME_CASE(ROLW)
9752   NODE_NAME_CASE(RORW)
9753   NODE_NAME_CASE(CLZW)
9754   NODE_NAME_CASE(CTZW)
9755   NODE_NAME_CASE(FSLW)
9756   NODE_NAME_CASE(FSRW)
9757   NODE_NAME_CASE(FSL)
9758   NODE_NAME_CASE(FSR)
9759   NODE_NAME_CASE(FMV_H_X)
9760   NODE_NAME_CASE(FMV_X_ANYEXTH)
9761   NODE_NAME_CASE(FMV_W_X_RV64)
9762   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
9763   NODE_NAME_CASE(FCVT_X)
9764   NODE_NAME_CASE(FCVT_XU)
9765   NODE_NAME_CASE(FCVT_W_RV64)
9766   NODE_NAME_CASE(FCVT_WU_RV64)
9767   NODE_NAME_CASE(STRICT_FCVT_W_RV64)
9768   NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
9769   NODE_NAME_CASE(READ_CYCLE_WIDE)
9770   NODE_NAME_CASE(GREV)
9771   NODE_NAME_CASE(GREVW)
9772   NODE_NAME_CASE(GORC)
9773   NODE_NAME_CASE(GORCW)
9774   NODE_NAME_CASE(SHFL)
9775   NODE_NAME_CASE(SHFLW)
9776   NODE_NAME_CASE(UNSHFL)
9777   NODE_NAME_CASE(UNSHFLW)
9778   NODE_NAME_CASE(BFP)
9779   NODE_NAME_CASE(BFPW)
9780   NODE_NAME_CASE(BCOMPRESS)
9781   NODE_NAME_CASE(BCOMPRESSW)
9782   NODE_NAME_CASE(BDECOMPRESS)
9783   NODE_NAME_CASE(BDECOMPRESSW)
9784   NODE_NAME_CASE(VMV_V_X_VL)
9785   NODE_NAME_CASE(VFMV_V_F_VL)
9786   NODE_NAME_CASE(VMV_X_S)
9787   NODE_NAME_CASE(VMV_S_X_VL)
9788   NODE_NAME_CASE(VFMV_S_F_VL)
9789   NODE_NAME_CASE(SPLAT_VECTOR_I64)
9790   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
9791   NODE_NAME_CASE(READ_VLENB)
9792   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
9793   NODE_NAME_CASE(VSLIDEUP_VL)
9794   NODE_NAME_CASE(VSLIDE1UP_VL)
9795   NODE_NAME_CASE(VSLIDEDOWN_VL)
9796   NODE_NAME_CASE(VSLIDE1DOWN_VL)
9797   NODE_NAME_CASE(VID_VL)
9798   NODE_NAME_CASE(VFNCVT_ROD_VL)
9799   NODE_NAME_CASE(VECREDUCE_ADD_VL)
9800   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
9801   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
9802   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
9803   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
9804   NODE_NAME_CASE(VECREDUCE_AND_VL)
9805   NODE_NAME_CASE(VECREDUCE_OR_VL)
9806   NODE_NAME_CASE(VECREDUCE_XOR_VL)
9807   NODE_NAME_CASE(VECREDUCE_FADD_VL)
9808   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
9809   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
9810   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
9811   NODE_NAME_CASE(ADD_VL)
9812   NODE_NAME_CASE(AND_VL)
9813   NODE_NAME_CASE(MUL_VL)
9814   NODE_NAME_CASE(OR_VL)
9815   NODE_NAME_CASE(SDIV_VL)
9816   NODE_NAME_CASE(SHL_VL)
9817   NODE_NAME_CASE(SREM_VL)
9818   NODE_NAME_CASE(SRA_VL)
9819   NODE_NAME_CASE(SRL_VL)
9820   NODE_NAME_CASE(SUB_VL)
9821   NODE_NAME_CASE(UDIV_VL)
9822   NODE_NAME_CASE(UREM_VL)
9823   NODE_NAME_CASE(XOR_VL)
9824   NODE_NAME_CASE(SADDSAT_VL)
9825   NODE_NAME_CASE(UADDSAT_VL)
9826   NODE_NAME_CASE(SSUBSAT_VL)
9827   NODE_NAME_CASE(USUBSAT_VL)
9828   NODE_NAME_CASE(FADD_VL)
9829   NODE_NAME_CASE(FSUB_VL)
9830   NODE_NAME_CASE(FMUL_VL)
9831   NODE_NAME_CASE(FDIV_VL)
9832   NODE_NAME_CASE(FNEG_VL)
9833   NODE_NAME_CASE(FABS_VL)
9834   NODE_NAME_CASE(FSQRT_VL)
9835   NODE_NAME_CASE(FMA_VL)
9836   NODE_NAME_CASE(FCOPYSIGN_VL)
9837   NODE_NAME_CASE(SMIN_VL)
9838   NODE_NAME_CASE(SMAX_VL)
9839   NODE_NAME_CASE(UMIN_VL)
9840   NODE_NAME_CASE(UMAX_VL)
9841   NODE_NAME_CASE(FMINNUM_VL)
9842   NODE_NAME_CASE(FMAXNUM_VL)
9843   NODE_NAME_CASE(MULHS_VL)
9844   NODE_NAME_CASE(MULHU_VL)
9845   NODE_NAME_CASE(FP_TO_SINT_VL)
9846   NODE_NAME_CASE(FP_TO_UINT_VL)
9847   NODE_NAME_CASE(SINT_TO_FP_VL)
9848   NODE_NAME_CASE(UINT_TO_FP_VL)
9849   NODE_NAME_CASE(FP_EXTEND_VL)
9850   NODE_NAME_CASE(FP_ROUND_VL)
9851   NODE_NAME_CASE(VWMUL_VL)
9852   NODE_NAME_CASE(VWMULU_VL)
9853   NODE_NAME_CASE(SETCC_VL)
9854   NODE_NAME_CASE(VSELECT_VL)
9855   NODE_NAME_CASE(VMAND_VL)
9856   NODE_NAME_CASE(VMOR_VL)
9857   NODE_NAME_CASE(VMXOR_VL)
9858   NODE_NAME_CASE(VMCLR_VL)
9859   NODE_NAME_CASE(VMSET_VL)
9860   NODE_NAME_CASE(VRGATHER_VX_VL)
9861   NODE_NAME_CASE(VRGATHER_VV_VL)
9862   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
9863   NODE_NAME_CASE(VSEXT_VL)
9864   NODE_NAME_CASE(VZEXT_VL)
9865   NODE_NAME_CASE(VCPOP_VL)
9866   NODE_NAME_CASE(VLE_VL)
9867   NODE_NAME_CASE(VSE_VL)
9868   NODE_NAME_CASE(READ_CSR)
9869   NODE_NAME_CASE(WRITE_CSR)
9870   NODE_NAME_CASE(SWAP_CSR)
9871   }
9872   // clang-format on
9873   return nullptr;
9874 #undef NODE_NAME_CASE
9875 }
9876 
9877 /// getConstraintType - Given a constraint letter, return the type of
9878 /// constraint it is for this target.
9879 RISCVTargetLowering::ConstraintType
9880 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
9881   if (Constraint.size() == 1) {
9882     switch (Constraint[0]) {
9883     default:
9884       break;
9885     case 'f':
9886       return C_RegisterClass;
9887     case 'I':
9888     case 'J':
9889     case 'K':
9890       return C_Immediate;
9891     case 'A':
9892       return C_Memory;
9893     case 'S': // A symbolic address
9894       return C_Other;
9895     }
9896   } else {
9897     if (Constraint == "vr" || Constraint == "vm")
9898       return C_RegisterClass;
9899   }
9900   return TargetLowering::getConstraintType(Constraint);
9901 }
9902 
9903 std::pair<unsigned, const TargetRegisterClass *>
9904 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
9905                                                   StringRef Constraint,
9906                                                   MVT VT) const {
9907   // First, see if this is a constraint that directly corresponds to a
9908   // RISCV register class.
9909   if (Constraint.size() == 1) {
9910     switch (Constraint[0]) {
9911     case 'r':
9912       // TODO: Support fixed vectors up to XLen for P extension?
9913       if (VT.isVector())
9914         break;
9915       return std::make_pair(0U, &RISCV::GPRRegClass);
9916     case 'f':
9917       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
9918         return std::make_pair(0U, &RISCV::FPR16RegClass);
9919       if (Subtarget.hasStdExtF() && VT == MVT::f32)
9920         return std::make_pair(0U, &RISCV::FPR32RegClass);
9921       if (Subtarget.hasStdExtD() && VT == MVT::f64)
9922         return std::make_pair(0U, &RISCV::FPR64RegClass);
9923       break;
9924     default:
9925       break;
9926     }
9927   } else if (Constraint == "vr") {
9928     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
9929                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
9930       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
9931         return std::make_pair(0U, RC);
9932     }
9933   } else if (Constraint == "vm") {
9934     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
9935       return std::make_pair(0U, &RISCV::VMV0RegClass);
9936   }
9937 
9938   // Clang will correctly decode the usage of register name aliases into their
9939   // official names. However, other frontends like `rustc` do not. This allows
9940   // users of these frontends to use the ABI names for registers in LLVM-style
9941   // register constraints.
9942   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
9943                                .Case("{zero}", RISCV::X0)
9944                                .Case("{ra}", RISCV::X1)
9945                                .Case("{sp}", RISCV::X2)
9946                                .Case("{gp}", RISCV::X3)
9947                                .Case("{tp}", RISCV::X4)
9948                                .Case("{t0}", RISCV::X5)
9949                                .Case("{t1}", RISCV::X6)
9950                                .Case("{t2}", RISCV::X7)
9951                                .Cases("{s0}", "{fp}", RISCV::X8)
9952                                .Case("{s1}", RISCV::X9)
9953                                .Case("{a0}", RISCV::X10)
9954                                .Case("{a1}", RISCV::X11)
9955                                .Case("{a2}", RISCV::X12)
9956                                .Case("{a3}", RISCV::X13)
9957                                .Case("{a4}", RISCV::X14)
9958                                .Case("{a5}", RISCV::X15)
9959                                .Case("{a6}", RISCV::X16)
9960                                .Case("{a7}", RISCV::X17)
9961                                .Case("{s2}", RISCV::X18)
9962                                .Case("{s3}", RISCV::X19)
9963                                .Case("{s4}", RISCV::X20)
9964                                .Case("{s5}", RISCV::X21)
9965                                .Case("{s6}", RISCV::X22)
9966                                .Case("{s7}", RISCV::X23)
9967                                .Case("{s8}", RISCV::X24)
9968                                .Case("{s9}", RISCV::X25)
9969                                .Case("{s10}", RISCV::X26)
9970                                .Case("{s11}", RISCV::X27)
9971                                .Case("{t3}", RISCV::X28)
9972                                .Case("{t4}", RISCV::X29)
9973                                .Case("{t5}", RISCV::X30)
9974                                .Case("{t6}", RISCV::X31)
9975                                .Default(RISCV::NoRegister);
9976   if (XRegFromAlias != RISCV::NoRegister)
9977     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
9978 
9979   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
9980   // TableGen record rather than the AsmName to choose registers for InlineAsm
9981   // constraints, plus we want to match those names to the widest floating point
9982   // register type available, manually select floating point registers here.
9983   //
9984   // The second case is the ABI name of the register, so that frontends can also
9985   // use the ABI names in register constraint lists.
9986   if (Subtarget.hasStdExtF()) {
9987     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
9988                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
9989                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
9990                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
9991                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
9992                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
9993                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
9994                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
9995                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
9996                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
9997                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
9998                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
9999                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
10000                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
10001                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
10002                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
10003                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
10004                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
10005                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
10006                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
10007                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
10008                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
10009                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
10010                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
10011                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
10012                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
10013                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
10014                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
10015                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
10016                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
10017                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
10018                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
10019                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
10020                         .Default(RISCV::NoRegister);
10021     if (FReg != RISCV::NoRegister) {
10022       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
10023       if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
10024         unsigned RegNo = FReg - RISCV::F0_F;
10025         unsigned DReg = RISCV::F0_D + RegNo;
10026         return std::make_pair(DReg, &RISCV::FPR64RegClass);
10027       }
10028       if (VT == MVT::f32 || VT == MVT::Other)
10029         return std::make_pair(FReg, &RISCV::FPR32RegClass);
10030       if (Subtarget.hasStdExtZfh() && VT == MVT::f16) {
10031         unsigned RegNo = FReg - RISCV::F0_F;
10032         unsigned HReg = RISCV::F0_H + RegNo;
10033         return std::make_pair(HReg, &RISCV::FPR16RegClass);
10034       }
10035     }
10036   }
10037 
10038   if (Subtarget.hasVInstructions()) {
10039     Register VReg = StringSwitch<Register>(Constraint.lower())
10040                         .Case("{v0}", RISCV::V0)
10041                         .Case("{v1}", RISCV::V1)
10042                         .Case("{v2}", RISCV::V2)
10043                         .Case("{v3}", RISCV::V3)
10044                         .Case("{v4}", RISCV::V4)
10045                         .Case("{v5}", RISCV::V5)
10046                         .Case("{v6}", RISCV::V6)
10047                         .Case("{v7}", RISCV::V7)
10048                         .Case("{v8}", RISCV::V8)
10049                         .Case("{v9}", RISCV::V9)
10050                         .Case("{v10}", RISCV::V10)
10051                         .Case("{v11}", RISCV::V11)
10052                         .Case("{v12}", RISCV::V12)
10053                         .Case("{v13}", RISCV::V13)
10054                         .Case("{v14}", RISCV::V14)
10055                         .Case("{v15}", RISCV::V15)
10056                         .Case("{v16}", RISCV::V16)
10057                         .Case("{v17}", RISCV::V17)
10058                         .Case("{v18}", RISCV::V18)
10059                         .Case("{v19}", RISCV::V19)
10060                         .Case("{v20}", RISCV::V20)
10061                         .Case("{v21}", RISCV::V21)
10062                         .Case("{v22}", RISCV::V22)
10063                         .Case("{v23}", RISCV::V23)
10064                         .Case("{v24}", RISCV::V24)
10065                         .Case("{v25}", RISCV::V25)
10066                         .Case("{v26}", RISCV::V26)
10067                         .Case("{v27}", RISCV::V27)
10068                         .Case("{v28}", RISCV::V28)
10069                         .Case("{v29}", RISCV::V29)
10070                         .Case("{v30}", RISCV::V30)
10071                         .Case("{v31}", RISCV::V31)
10072                         .Default(RISCV::NoRegister);
10073     if (VReg != RISCV::NoRegister) {
10074       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
10075         return std::make_pair(VReg, &RISCV::VMRegClass);
10076       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
10077         return std::make_pair(VReg, &RISCV::VRRegClass);
10078       for (const auto *RC :
10079            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
10080         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
10081           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
10082           return std::make_pair(VReg, RC);
10083         }
10084       }
10085     }
10086   }
10087 
10088   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
10089 }
10090 
10091 unsigned
10092 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
10093   // Currently only support length 1 constraints.
10094   if (ConstraintCode.size() == 1) {
10095     switch (ConstraintCode[0]) {
10096     case 'A':
10097       return InlineAsm::Constraint_A;
10098     default:
10099       break;
10100     }
10101   }
10102 
10103   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
10104 }
10105 
10106 void RISCVTargetLowering::LowerAsmOperandForConstraint(
10107     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
10108     SelectionDAG &DAG) const {
10109   // Currently only support length 1 constraints.
10110   if (Constraint.length() == 1) {
10111     switch (Constraint[0]) {
10112     case 'I':
10113       // Validate & create a 12-bit signed immediate operand.
10114       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
10115         uint64_t CVal = C->getSExtValue();
10116         if (isInt<12>(CVal))
10117           Ops.push_back(
10118               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
10119       }
10120       return;
10121     case 'J':
10122       // Validate & create an integer zero operand.
10123       if (auto *C = dyn_cast<ConstantSDNode>(Op))
10124         if (C->getZExtValue() == 0)
10125           Ops.push_back(
10126               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
10127       return;
10128     case 'K':
10129       // Validate & create a 5-bit unsigned immediate operand.
10130       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
10131         uint64_t CVal = C->getZExtValue();
10132         if (isUInt<5>(CVal))
10133           Ops.push_back(
10134               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
10135       }
10136       return;
10137     case 'S':
10138       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
10139         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
10140                                                  GA->getValueType(0)));
10141       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
10142         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
10143                                                 BA->getValueType(0)));
10144       }
10145       return;
10146     default:
10147       break;
10148     }
10149   }
10150   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
10151 }
10152 
10153 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
10154                                                    Instruction *Inst,
10155                                                    AtomicOrdering Ord) const {
10156   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
10157     return Builder.CreateFence(Ord);
10158   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
10159     return Builder.CreateFence(AtomicOrdering::Release);
10160   return nullptr;
10161 }
10162 
10163 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
10164                                                     Instruction *Inst,
10165                                                     AtomicOrdering Ord) const {
10166   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
10167     return Builder.CreateFence(AtomicOrdering::Acquire);
10168   return nullptr;
10169 }
10170 
10171 TargetLowering::AtomicExpansionKind
10172 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
10173   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
10174   // point operations can't be used in an lr/sc sequence without breaking the
10175   // forward-progress guarantee.
10176   if (AI->isFloatingPointOperation())
10177     return AtomicExpansionKind::CmpXChg;
10178 
10179   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
10180   if (Size == 8 || Size == 16)
10181     return AtomicExpansionKind::MaskedIntrinsic;
10182   return AtomicExpansionKind::None;
10183 }
10184 
10185 static Intrinsic::ID
10186 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
10187   if (XLen == 32) {
10188     switch (BinOp) {
10189     default:
10190       llvm_unreachable("Unexpected AtomicRMW BinOp");
10191     case AtomicRMWInst::Xchg:
10192       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
10193     case AtomicRMWInst::Add:
10194       return Intrinsic::riscv_masked_atomicrmw_add_i32;
10195     case AtomicRMWInst::Sub:
10196       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
10197     case AtomicRMWInst::Nand:
10198       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
10199     case AtomicRMWInst::Max:
10200       return Intrinsic::riscv_masked_atomicrmw_max_i32;
10201     case AtomicRMWInst::Min:
10202       return Intrinsic::riscv_masked_atomicrmw_min_i32;
10203     case AtomicRMWInst::UMax:
10204       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
10205     case AtomicRMWInst::UMin:
10206       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
10207     }
10208   }
10209 
10210   if (XLen == 64) {
10211     switch (BinOp) {
10212     default:
10213       llvm_unreachable("Unexpected AtomicRMW BinOp");
10214     case AtomicRMWInst::Xchg:
10215       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
10216     case AtomicRMWInst::Add:
10217       return Intrinsic::riscv_masked_atomicrmw_add_i64;
10218     case AtomicRMWInst::Sub:
10219       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
10220     case AtomicRMWInst::Nand:
10221       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
10222     case AtomicRMWInst::Max:
10223       return Intrinsic::riscv_masked_atomicrmw_max_i64;
10224     case AtomicRMWInst::Min:
10225       return Intrinsic::riscv_masked_atomicrmw_min_i64;
10226     case AtomicRMWInst::UMax:
10227       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
10228     case AtomicRMWInst::UMin:
10229       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
10230     }
10231   }
10232 
10233   llvm_unreachable("Unexpected XLen\n");
10234 }
10235 
10236 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
10237     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
10238     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
10239   unsigned XLen = Subtarget.getXLen();
10240   Value *Ordering =
10241       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
10242   Type *Tys[] = {AlignedAddr->getType()};
10243   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
10244       AI->getModule(),
10245       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
10246 
10247   if (XLen == 64) {
10248     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
10249     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
10250     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
10251   }
10252 
10253   Value *Result;
10254 
10255   // Must pass the shift amount needed to sign extend the loaded value prior
10256   // to performing a signed comparison for min/max. ShiftAmt is the number of
10257   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
10258   // is the number of bits to left+right shift the value in order to
10259   // sign-extend.
10260   if (AI->getOperation() == AtomicRMWInst::Min ||
10261       AI->getOperation() == AtomicRMWInst::Max) {
10262     const DataLayout &DL = AI->getModule()->getDataLayout();
10263     unsigned ValWidth =
10264         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
10265     Value *SextShamt =
10266         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
10267     Result = Builder.CreateCall(LrwOpScwLoop,
10268                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
10269   } else {
10270     Result =
10271         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
10272   }
10273 
10274   if (XLen == 64)
10275     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
10276   return Result;
10277 }
10278 
10279 TargetLowering::AtomicExpansionKind
10280 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
10281     AtomicCmpXchgInst *CI) const {
10282   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
10283   if (Size == 8 || Size == 16)
10284     return AtomicExpansionKind::MaskedIntrinsic;
10285   return AtomicExpansionKind::None;
10286 }
10287 
10288 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
10289     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
10290     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
10291   unsigned XLen = Subtarget.getXLen();
10292   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
10293   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
10294   if (XLen == 64) {
10295     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
10296     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
10297     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
10298     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
10299   }
10300   Type *Tys[] = {AlignedAddr->getType()};
10301   Function *MaskedCmpXchg =
10302       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
10303   Value *Result = Builder.CreateCall(
10304       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
10305   if (XLen == 64)
10306     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
10307   return Result;
10308 }
10309 
10310 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
10311   return false;
10312 }
10313 
10314 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
10315                                                EVT VT) const {
10316   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
10317     return false;
10318 
10319   switch (FPVT.getSimpleVT().SimpleTy) {
10320   case MVT::f16:
10321     return Subtarget.hasStdExtZfh();
10322   case MVT::f32:
10323     return Subtarget.hasStdExtF();
10324   case MVT::f64:
10325     return Subtarget.hasStdExtD();
10326   default:
10327     return false;
10328   }
10329 }
10330 
10331 unsigned RISCVTargetLowering::getJumpTableEncoding() const {
10332   // If we are using the small code model, we can reduce size of jump table
10333   // entry to 4 bytes.
10334   if (Subtarget.is64Bit() && !isPositionIndependent() &&
10335       getTargetMachine().getCodeModel() == CodeModel::Small) {
10336     return MachineJumpTableInfo::EK_Custom32;
10337   }
10338   return TargetLowering::getJumpTableEncoding();
10339 }
10340 
10341 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
10342     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
10343     unsigned uid, MCContext &Ctx) const {
10344   assert(Subtarget.is64Bit() && !isPositionIndependent() &&
10345          getTargetMachine().getCodeModel() == CodeModel::Small);
10346   return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
10347 }
10348 
10349 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
10350                                                      EVT VT) const {
10351   VT = VT.getScalarType();
10352 
10353   if (!VT.isSimple())
10354     return false;
10355 
10356   switch (VT.getSimpleVT().SimpleTy) {
10357   case MVT::f16:
10358     return Subtarget.hasStdExtZfh();
10359   case MVT::f32:
10360     return Subtarget.hasStdExtF();
10361   case MVT::f64:
10362     return Subtarget.hasStdExtD();
10363   default:
10364     break;
10365   }
10366 
10367   return false;
10368 }
10369 
10370 Register RISCVTargetLowering::getExceptionPointerRegister(
10371     const Constant *PersonalityFn) const {
10372   return RISCV::X10;
10373 }
10374 
10375 Register RISCVTargetLowering::getExceptionSelectorRegister(
10376     const Constant *PersonalityFn) const {
10377   return RISCV::X11;
10378 }
10379 
10380 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
10381   // Return false to suppress the unnecessary extensions if the LibCall
10382   // arguments or return value is f32 type for LP64 ABI.
10383   RISCVABI::ABI ABI = Subtarget.getTargetABI();
10384   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
10385     return false;
10386 
10387   return true;
10388 }
10389 
10390 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
10391   if (Subtarget.is64Bit() && Type == MVT::i32)
10392     return true;
10393 
10394   return IsSigned;
10395 }
10396 
10397 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
10398                                                  SDValue C) const {
10399   // Check integral scalar types.
10400   if (VT.isScalarInteger()) {
10401     // Omit the optimization if the sub target has the M extension and the data
10402     // size exceeds XLen.
10403     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
10404       return false;
10405     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
10406       // Break the MUL to a SLLI and an ADD/SUB.
10407       const APInt &Imm = ConstNode->getAPIntValue();
10408       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
10409           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
10410         return true;
10411       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
10412       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
10413           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
10414            (Imm - 8).isPowerOf2()))
10415         return true;
10416       // Omit the following optimization if the sub target has the M extension
10417       // and the data size >= XLen.
10418       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
10419         return false;
10420       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
10421       // a pair of LUI/ADDI.
10422       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
10423         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
10424         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
10425             (1 - ImmS).isPowerOf2())
10426         return true;
10427       }
10428     }
10429   }
10430 
10431   return false;
10432 }
10433 
10434 bool RISCVTargetLowering::isMulAddWithConstProfitable(
10435     const SDValue &AddNode, const SDValue &ConstNode) const {
10436   // Let the DAGCombiner decide for vectors.
10437   EVT VT = AddNode.getValueType();
10438   if (VT.isVector())
10439     return true;
10440 
10441   // Let the DAGCombiner decide for larger types.
10442   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
10443     return true;
10444 
10445   // It is worse if c1 is simm12 while c1*c2 is not.
10446   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
10447   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
10448   const APInt &C1 = C1Node->getAPIntValue();
10449   const APInt &C2 = C2Node->getAPIntValue();
10450   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
10451     return false;
10452 
10453   // Default to true and let the DAGCombiner decide.
10454   return true;
10455 }
10456 
10457 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
10458     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
10459     bool *Fast) const {
10460   if (!VT.isVector())
10461     return false;
10462 
10463   EVT ElemVT = VT.getVectorElementType();
10464   if (Alignment >= ElemVT.getStoreSize()) {
10465     if (Fast)
10466       *Fast = true;
10467     return true;
10468   }
10469 
10470   return false;
10471 }
10472 
10473 bool RISCVTargetLowering::splitValueIntoRegisterParts(
10474     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
10475     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
10476   bool IsABIRegCopy = CC.hasValue();
10477   EVT ValueVT = Val.getValueType();
10478   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
10479     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
10480     // and cast to f32.
10481     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
10482     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
10483     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
10484                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
10485     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
10486     Parts[0] = Val;
10487     return true;
10488   }
10489 
10490   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
10491     LLVMContext &Context = *DAG.getContext();
10492     EVT ValueEltVT = ValueVT.getVectorElementType();
10493     EVT PartEltVT = PartVT.getVectorElementType();
10494     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
10495     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
10496     if (PartVTBitSize % ValueVTBitSize == 0) {
10497       assert(PartVTBitSize >= ValueVTBitSize);
10498       // If the element types are different, bitcast to the same element type of
10499       // PartVT first.
10500       // Give an example here, we want copy a <vscale x 1 x i8> value to
10501       // <vscale x 4 x i16>.
10502       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
10503       // subvector, then we can bitcast to <vscale x 4 x i16>.
10504       if (ValueEltVT != PartEltVT) {
10505         if (PartVTBitSize > ValueVTBitSize) {
10506           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
10507           assert(Count != 0 && "The number of element should not be zero.");
10508           EVT SameEltTypeVT =
10509               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
10510           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
10511                             DAG.getUNDEF(SameEltTypeVT), Val,
10512                             DAG.getVectorIdxConstant(0, DL));
10513         }
10514         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
10515       } else {
10516         Val =
10517             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
10518                         Val, DAG.getVectorIdxConstant(0, DL));
10519       }
10520       Parts[0] = Val;
10521       return true;
10522     }
10523   }
10524   return false;
10525 }
10526 
10527 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
10528     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
10529     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
10530   bool IsABIRegCopy = CC.hasValue();
10531   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
10532     SDValue Val = Parts[0];
10533 
10534     // Cast the f32 to i32, truncate to i16, and cast back to f16.
10535     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
10536     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
10537     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
10538     return Val;
10539   }
10540 
10541   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
10542     LLVMContext &Context = *DAG.getContext();
10543     SDValue Val = Parts[0];
10544     EVT ValueEltVT = ValueVT.getVectorElementType();
10545     EVT PartEltVT = PartVT.getVectorElementType();
10546     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
10547     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
10548     if (PartVTBitSize % ValueVTBitSize == 0) {
10549       assert(PartVTBitSize >= ValueVTBitSize);
10550       EVT SameEltTypeVT = ValueVT;
10551       // If the element types are different, convert it to the same element type
10552       // of PartVT.
10553       // Give an example here, we want copy a <vscale x 1 x i8> value from
10554       // <vscale x 4 x i16>.
10555       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
10556       // then we can extract <vscale x 1 x i8>.
10557       if (ValueEltVT != PartEltVT) {
10558         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
10559         assert(Count != 0 && "The number of element should not be zero.");
10560         SameEltTypeVT =
10561             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
10562         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
10563       }
10564       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
10565                         DAG.getVectorIdxConstant(0, DL));
10566       return Val;
10567     }
10568   }
10569   return SDValue();
10570 }
10571 
10572 SDValue
10573 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
10574                                    SelectionDAG &DAG,
10575                                    SmallVectorImpl<SDNode *> &Created) const {
10576   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
10577   if (isIntDivCheap(N->getValueType(0), Attr))
10578     return SDValue(N, 0); // Lower SDIV as SDIV
10579 
10580   assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) &&
10581          "Unexpected divisor!");
10582 
10583   // Conditional move is needed, so do the transformation iff Zbt is enabled.
10584   if (!Subtarget.hasStdExtZbt())
10585     return SDValue();
10586 
10587   // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation.
10588   // Besides, more critical path instructions will be generated when dividing
10589   // by 2. So we keep using the original DAGs for these cases.
10590   unsigned Lg2 = Divisor.countTrailingZeros();
10591   if (Lg2 == 1 || Lg2 >= 12)
10592     return SDValue();
10593 
10594   // fold (sdiv X, pow2)
10595   EVT VT = N->getValueType(0);
10596   if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64))
10597     return SDValue();
10598 
10599   SDLoc DL(N);
10600   SDValue N0 = N->getOperand(0);
10601   SDValue Zero = DAG.getConstant(0, DL, VT);
10602   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
10603 
10604   // Add (N0 < 0) ? Pow2 - 1 : 0;
10605   SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT);
10606   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
10607   SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
10608 
10609   Created.push_back(Cmp.getNode());
10610   Created.push_back(Add.getNode());
10611   Created.push_back(Sel.getNode());
10612 
10613   // Divide by pow2.
10614   SDValue SRA =
10615       DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT));
10616 
10617   // If we're dividing by a positive value, we're done.  Otherwise, we must
10618   // negate the result.
10619   if (Divisor.isNonNegative())
10620     return SRA;
10621 
10622   Created.push_back(SRA.getNode());
10623   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
10624 }
10625 
10626 #define GET_REGISTER_MATCHER
10627 #include "RISCVGenAsmMatcher.inc"
10628 
10629 Register
10630 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
10631                                        const MachineFunction &MF) const {
10632   Register Reg = MatchRegisterAltName(RegName);
10633   if (Reg == RISCV::NoRegister)
10634     Reg = MatchRegisterName(RegName);
10635   if (Reg == RISCV::NoRegister)
10636     report_fatal_error(
10637         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
10638   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
10639   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
10640     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
10641                              StringRef(RegName) + "\"."));
10642   return Reg;
10643 }
10644 
10645 namespace llvm {
10646 namespace RISCVVIntrinsicsTable {
10647 
10648 #define GET_RISCVVIntrinsicsTable_IMPL
10649 #include "RISCVGenSearchableTables.inc"
10650 
10651 } // namespace RISCVVIntrinsicsTable
10652 
10653 } // namespace llvm
10654