1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/CodeGen/ValueTypes.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
32 #include "llvm/IR/IntrinsicsRISCV.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "riscv-lower"
42 
43 STATISTIC(NumTailCalls, "Number of tail calls");
44 
45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
46                                          const RISCVSubtarget &STI)
47     : TargetLowering(TM), Subtarget(STI) {
48 
49   if (Subtarget.isRV32E())
50     report_fatal_error("Codegen not yet implemented for RV32E");
51 
52   RISCVABI::ABI ABI = Subtarget.getTargetABI();
53   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
54 
55   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
56       !Subtarget.hasStdExtF()) {
57     errs() << "Hard-float 'f' ABI can't be used for a target that "
58                 "doesn't support the F instruction set extension (ignoring "
59                           "target-abi)\n";
60     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
61   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
62              !Subtarget.hasStdExtD()) {
63     errs() << "Hard-float 'd' ABI can't be used for a target that "
64               "doesn't support the D instruction set extension (ignoring "
65               "target-abi)\n";
66     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
67   }
68 
69   switch (ABI) {
70   default:
71     report_fatal_error("Don't know how to lower this ABI");
72   case RISCVABI::ABI_ILP32:
73   case RISCVABI::ABI_ILP32F:
74   case RISCVABI::ABI_ILP32D:
75   case RISCVABI::ABI_LP64:
76   case RISCVABI::ABI_LP64F:
77   case RISCVABI::ABI_LP64D:
78     break;
79   }
80 
81   MVT XLenVT = Subtarget.getXLenVT();
82 
83   // Set up the register classes.
84   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
85 
86   if (Subtarget.hasStdExtZfh())
87     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
88   if (Subtarget.hasStdExtF())
89     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
90   if (Subtarget.hasStdExtD())
91     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
92 
93   static const MVT::SimpleValueType BoolVecVTs[] = {
94       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
95       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
96   static const MVT::SimpleValueType IntVecVTs[] = {
97       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
98       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
99       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
100       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
101       MVT::nxv4i64, MVT::nxv8i64};
102   static const MVT::SimpleValueType F16VecVTs[] = {
103       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
104       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
105   static const MVT::SimpleValueType F32VecVTs[] = {
106       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
107   static const MVT::SimpleValueType F64VecVTs[] = {
108       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
109 
110   if (Subtarget.hasStdExtV()) {
111     auto addRegClassForRVV = [this](MVT VT) {
112       unsigned Size = VT.getSizeInBits().getKnownMinValue();
113       assert(Size <= 512 && isPowerOf2_32(Size));
114       const TargetRegisterClass *RC;
115       if (Size <= 64)
116         RC = &RISCV::VRRegClass;
117       else if (Size == 128)
118         RC = &RISCV::VRM2RegClass;
119       else if (Size == 256)
120         RC = &RISCV::VRM4RegClass;
121       else
122         RC = &RISCV::VRM8RegClass;
123 
124       addRegisterClass(VT, RC);
125     };
126 
127     for (MVT VT : BoolVecVTs)
128       addRegClassForRVV(VT);
129     for (MVT VT : IntVecVTs)
130       addRegClassForRVV(VT);
131 
132     if (Subtarget.hasStdExtZfh())
133       for (MVT VT : F16VecVTs)
134         addRegClassForRVV(VT);
135 
136     if (Subtarget.hasStdExtF())
137       for (MVT VT : F32VecVTs)
138         addRegClassForRVV(VT);
139 
140     if (Subtarget.hasStdExtD())
141       for (MVT VT : F64VecVTs)
142         addRegClassForRVV(VT);
143 
144     if (Subtarget.useRVVForFixedLengthVectors()) {
145       auto addRegClassForFixedVectors = [this](MVT VT) {
146         unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT);
147         const TargetRegisterClass *RC;
148         if (LMul == 1 || VT.getVectorElementType() == MVT::i1)
149           RC = &RISCV::VRRegClass;
150         else if (LMul == 2)
151           RC = &RISCV::VRM2RegClass;
152         else if (LMul == 4)
153           RC = &RISCV::VRM4RegClass;
154         else if (LMul == 8)
155           RC = &RISCV::VRM8RegClass;
156         else
157           llvm_unreachable("Unexpected LMul!");
158 
159         addRegisterClass(VT, RC);
160       };
161       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
162         if (useRVVForFixedLengthVectorVT(VT))
163           addRegClassForFixedVectors(VT);
164 
165       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
166         if (useRVVForFixedLengthVectorVT(VT))
167           addRegClassForFixedVectors(VT);
168     }
169   }
170 
171   // Compute derived properties from the register classes.
172   computeRegisterProperties(STI.getRegisterInfo());
173 
174   setStackPointerRegisterToSaveRestore(RISCV::X2);
175 
176   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
177     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
178 
179   // TODO: add all necessary setOperationAction calls.
180   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
181 
182   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
183   setOperationAction(ISD::BR_CC, XLenVT, Expand);
184   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
185   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
186 
187   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
188   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
189 
190   setOperationAction(ISD::VASTART, MVT::Other, Custom);
191   setOperationAction(ISD::VAARG, MVT::Other, Expand);
192   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
193   setOperationAction(ISD::VAEND, MVT::Other, Expand);
194 
195   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
196   if (!Subtarget.hasStdExtZbb()) {
197     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
198     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
199   }
200 
201   if (Subtarget.is64Bit()) {
202     setOperationAction(ISD::ADD, MVT::i32, Custom);
203     setOperationAction(ISD::SUB, MVT::i32, Custom);
204     setOperationAction(ISD::SHL, MVT::i32, Custom);
205     setOperationAction(ISD::SRA, MVT::i32, Custom);
206     setOperationAction(ISD::SRL, MVT::i32, Custom);
207 
208     setOperationAction(ISD::UADDO, MVT::i32, Custom);
209     setOperationAction(ISD::USUBO, MVT::i32, Custom);
210     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
211     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
212   }
213 
214   if (!Subtarget.hasStdExtM()) {
215     setOperationAction(ISD::MUL, XLenVT, Expand);
216     setOperationAction(ISD::MULHS, XLenVT, Expand);
217     setOperationAction(ISD::MULHU, XLenVT, Expand);
218     setOperationAction(ISD::SDIV, XLenVT, Expand);
219     setOperationAction(ISD::UDIV, XLenVT, Expand);
220     setOperationAction(ISD::SREM, XLenVT, Expand);
221     setOperationAction(ISD::UREM, XLenVT, Expand);
222   }
223 
224   if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) {
225     setOperationAction(ISD::MUL, MVT::i32, Custom);
226 
227     setOperationAction(ISD::SDIV, MVT::i8, Custom);
228     setOperationAction(ISD::UDIV, MVT::i8, Custom);
229     setOperationAction(ISD::UREM, MVT::i8, Custom);
230     setOperationAction(ISD::SDIV, MVT::i16, Custom);
231     setOperationAction(ISD::UDIV, MVT::i16, Custom);
232     setOperationAction(ISD::UREM, MVT::i16, Custom);
233     setOperationAction(ISD::SDIV, MVT::i32, Custom);
234     setOperationAction(ISD::UDIV, MVT::i32, Custom);
235     setOperationAction(ISD::UREM, MVT::i32, Custom);
236   }
237 
238   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
239   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
240   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
241   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
242 
243   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
244   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
245   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
246 
247   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
248     if (Subtarget.is64Bit()) {
249       setOperationAction(ISD::ROTL, MVT::i32, Custom);
250       setOperationAction(ISD::ROTR, MVT::i32, Custom);
251     }
252   } else {
253     setOperationAction(ISD::ROTL, XLenVT, Expand);
254     setOperationAction(ISD::ROTR, XLenVT, Expand);
255   }
256 
257   if (Subtarget.hasStdExtZbp()) {
258     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
259     // more combining.
260     setOperationAction(ISD::BITREVERSE, XLenVT, Custom);
261     setOperationAction(ISD::BSWAP, XLenVT, Custom);
262 
263     if (Subtarget.is64Bit()) {
264       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
265       setOperationAction(ISD::BSWAP, MVT::i32, Custom);
266     }
267   } else {
268     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
269     // pattern match it directly in isel.
270     setOperationAction(ISD::BSWAP, XLenVT,
271                        Subtarget.hasStdExtZbb() ? Legal : Expand);
272   }
273 
274   if (Subtarget.hasStdExtZbb()) {
275     setOperationAction(ISD::SMIN, XLenVT, Legal);
276     setOperationAction(ISD::SMAX, XLenVT, Legal);
277     setOperationAction(ISD::UMIN, XLenVT, Legal);
278     setOperationAction(ISD::UMAX, XLenVT, Legal);
279   } else {
280     setOperationAction(ISD::CTTZ, XLenVT, Expand);
281     setOperationAction(ISD::CTLZ, XLenVT, Expand);
282     setOperationAction(ISD::CTPOP, XLenVT, Expand);
283   }
284 
285   if (Subtarget.hasStdExtZbt()) {
286     setOperationAction(ISD::FSHL, XLenVT, Custom);
287     setOperationAction(ISD::FSHR, XLenVT, Custom);
288     setOperationAction(ISD::SELECT, XLenVT, Legal);
289 
290     if (Subtarget.is64Bit()) {
291       setOperationAction(ISD::FSHL, MVT::i32, Custom);
292       setOperationAction(ISD::FSHR, MVT::i32, Custom);
293     }
294   } else {
295     setOperationAction(ISD::SELECT, XLenVT, Custom);
296   }
297 
298   ISD::CondCode FPCCToExpand[] = {
299       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
300       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
301       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
302 
303   ISD::NodeType FPOpToExpand[] = {
304       ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP,
305       ISD::FP_TO_FP16};
306 
307   if (Subtarget.hasStdExtZfh())
308     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
309 
310   if (Subtarget.hasStdExtZfh()) {
311     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
312     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
313     for (auto CC : FPCCToExpand)
314       setCondCodeAction(CC, MVT::f16, Expand);
315     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
316     setOperationAction(ISD::SELECT, MVT::f16, Custom);
317     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
318     for (auto Op : FPOpToExpand)
319       setOperationAction(Op, MVT::f16, Expand);
320   }
321 
322   if (Subtarget.hasStdExtF()) {
323     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
324     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
325     for (auto CC : FPCCToExpand)
326       setCondCodeAction(CC, MVT::f32, Expand);
327     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
328     setOperationAction(ISD::SELECT, MVT::f32, Custom);
329     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
330     for (auto Op : FPOpToExpand)
331       setOperationAction(Op, MVT::f32, Expand);
332     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
333     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
334   }
335 
336   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
337     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
338 
339   if (Subtarget.hasStdExtD()) {
340     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
341     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
342     for (auto CC : FPCCToExpand)
343       setCondCodeAction(CC, MVT::f64, Expand);
344     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
345     setOperationAction(ISD::SELECT, MVT::f64, Custom);
346     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
347     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
348     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
349     for (auto Op : FPOpToExpand)
350       setOperationAction(Op, MVT::f64, Expand);
351     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
352     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
353   }
354 
355   if (Subtarget.is64Bit()) {
356     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
357     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
358     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
359     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
360   }
361 
362   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
363   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
364   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
365   setOperationAction(ISD::JumpTable, XLenVT, Custom);
366 
367   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
368 
369   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
370   // Unfortunately this can't be determined just from the ISA naming string.
371   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
372                      Subtarget.is64Bit() ? Legal : Custom);
373 
374   setOperationAction(ISD::TRAP, MVT::Other, Legal);
375   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
376   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
377 
378   if (Subtarget.hasStdExtA()) {
379     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
380     setMinCmpXchgSizeInBits(32);
381   } else {
382     setMaxAtomicSizeInBitsSupported(0);
383   }
384 
385   setBooleanContents(ZeroOrOneBooleanContent);
386 
387   if (Subtarget.hasStdExtV()) {
388     setBooleanVectorContents(ZeroOrOneBooleanContent);
389 
390     setOperationAction(ISD::VSCALE, XLenVT, Custom);
391 
392     // RVV intrinsics may have illegal operands.
393     // We also need to custom legalize vmv.x.s.
394     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
395     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
396     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
397     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
398     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
399     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
400     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
401     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
402 
403     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
404 
405     if (!Subtarget.is64Bit()) {
406       // We must custom-lower certain vXi64 operations on RV32 due to the vector
407       // element type being illegal.
408       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
409       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
410 
411       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
412       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
413       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
414       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
415       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
416       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
417       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
418       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
419     }
420 
421     for (MVT VT : BoolVecVTs) {
422       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
423 
424       // Mask VTs are custom-expanded into a series of standard nodes
425       setOperationAction(ISD::TRUNCATE, VT, Custom);
426       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
427       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
428 
429       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
430     }
431 
432     for (MVT VT : IntVecVTs) {
433       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
434       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
435 
436       setOperationAction(ISD::SMIN, VT, Legal);
437       setOperationAction(ISD::SMAX, VT, Legal);
438       setOperationAction(ISD::UMIN, VT, Legal);
439       setOperationAction(ISD::UMAX, VT, Legal);
440 
441       setOperationAction(ISD::ROTL, VT, Expand);
442       setOperationAction(ISD::ROTR, VT, Expand);
443 
444       // Custom-lower extensions and truncations from/to mask types.
445       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
446       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
447       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
448 
449       // RVV has native int->float & float->int conversions where the
450       // element type sizes are within one power-of-two of each other. Any
451       // wider distances between type sizes have to be lowered as sequences
452       // which progressively narrow the gap in stages.
453       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
454       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
455       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
456       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
457 
458       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
459       // nodes which truncate by one power of two at a time.
460       setOperationAction(ISD::TRUNCATE, VT, Custom);
461 
462       // Custom-lower insert/extract operations to simplify patterns.
463       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
464       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
465 
466       // Custom-lower reduction operations to set up the corresponding custom
467       // nodes' operands.
468       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
469       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
470       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
471       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
472       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
473       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
474       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
475       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
476 
477       setOperationAction(ISD::MGATHER, VT, Custom);
478       setOperationAction(ISD::MSCATTER, VT, Custom);
479 
480       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
481       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
482       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
483 
484       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
485     }
486 
487     // Expand various CCs to best match the RVV ISA, which natively supports UNE
488     // but no other unordered comparisons, and supports all ordered comparisons
489     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
490     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
491     // and we pattern-match those back to the "original", swapping operands once
492     // more. This way we catch both operations and both "vf" and "fv" forms with
493     // fewer patterns.
494     ISD::CondCode VFPCCToExpand[] = {
495         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
496         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
497         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
498     };
499 
500     // Sets common operation actions on RVV floating-point vector types.
501     const auto SetCommonVFPActions = [&](MVT VT) {
502       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
503       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
504       // sizes are within one power-of-two of each other. Therefore conversions
505       // between vXf16 and vXf64 must be lowered as sequences which convert via
506       // vXf32.
507       setOperationAction(ISD::FP_ROUND, VT, Custom);
508       setOperationAction(ISD::FP_EXTEND, VT, Custom);
509       // Custom-lower insert/extract operations to simplify patterns.
510       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
511       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
512       // Expand various condition codes (explained above).
513       for (auto CC : VFPCCToExpand)
514         setCondCodeAction(CC, VT, Expand);
515 
516       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
517       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
518       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
519 
520       setOperationAction(ISD::MGATHER, VT, Custom);
521       setOperationAction(ISD::MSCATTER, VT, Custom);
522 
523       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
524       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
525       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
526 
527       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
528     };
529 
530     if (Subtarget.hasStdExtZfh())
531       for (MVT VT : F16VecVTs)
532         SetCommonVFPActions(VT);
533 
534     if (Subtarget.hasStdExtF())
535       for (MVT VT : F32VecVTs)
536         SetCommonVFPActions(VT);
537 
538     if (Subtarget.hasStdExtD())
539       for (MVT VT : F64VecVTs)
540         SetCommonVFPActions(VT);
541 
542     if (Subtarget.useRVVForFixedLengthVectors()) {
543       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
544         if (!useRVVForFixedLengthVectorVT(VT))
545           continue;
546 
547         // By default everything must be expanded.
548         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
549           setOperationAction(Op, VT, Expand);
550         for (MVT OtherVT : MVT::fixedlen_vector_valuetypes())
551           setTruncStoreAction(VT, OtherVT, Expand);
552 
553         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
554         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
555         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
556 
557         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
558         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
559 
560         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
561 
562         setOperationAction(ISD::LOAD, VT, Custom);
563         setOperationAction(ISD::STORE, VT, Custom);
564 
565         setOperationAction(ISD::SETCC, VT, Custom);
566 
567         setOperationAction(ISD::TRUNCATE, VT, Custom);
568 
569         setOperationAction(ISD::BITCAST, VT, Custom);
570 
571         // Operations below are different for between masks and other vectors.
572         if (VT.getVectorElementType() == MVT::i1) {
573           setOperationAction(ISD::AND, VT, Custom);
574           setOperationAction(ISD::OR, VT, Custom);
575           setOperationAction(ISD::XOR, VT, Custom);
576           continue;
577         }
578 
579         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
580         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
581 
582         setOperationAction(ISD::MLOAD, VT, Custom);
583         setOperationAction(ISD::MSTORE, VT, Custom);
584         setOperationAction(ISD::ADD, VT, Custom);
585         setOperationAction(ISD::MUL, VT, Custom);
586         setOperationAction(ISD::SUB, VT, Custom);
587         setOperationAction(ISD::AND, VT, Custom);
588         setOperationAction(ISD::OR, VT, Custom);
589         setOperationAction(ISD::XOR, VT, Custom);
590         setOperationAction(ISD::SDIV, VT, Custom);
591         setOperationAction(ISD::SREM, VT, Custom);
592         setOperationAction(ISD::UDIV, VT, Custom);
593         setOperationAction(ISD::UREM, VT, Custom);
594         setOperationAction(ISD::SHL, VT, Custom);
595         setOperationAction(ISD::SRA, VT, Custom);
596         setOperationAction(ISD::SRL, VT, Custom);
597 
598         setOperationAction(ISD::SMIN, VT, Custom);
599         setOperationAction(ISD::SMAX, VT, Custom);
600         setOperationAction(ISD::UMIN, VT, Custom);
601         setOperationAction(ISD::UMAX, VT, Custom);
602         setOperationAction(ISD::ABS,  VT, Custom);
603 
604         setOperationAction(ISD::MULHS, VT, Custom);
605         setOperationAction(ISD::MULHU, VT, Custom);
606 
607         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
608         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
609         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
610         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
611 
612         setOperationAction(ISD::VSELECT, VT, Custom);
613 
614         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
615         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
616         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
617 
618         // Custom-lower reduction operations to set up the corresponding custom
619         // nodes' operands.
620         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
621         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
622         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
623         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
624         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
625         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
626         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
627         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
628       }
629 
630       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
631         if (!useRVVForFixedLengthVectorVT(VT))
632           continue;
633 
634         // By default everything must be expanded.
635         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
636           setOperationAction(Op, VT, Expand);
637         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
638           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
639           setTruncStoreAction(VT, OtherVT, Expand);
640         }
641 
642         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
643         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
644         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
645 
646         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
647         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
648         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
649         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
650 
651         setOperationAction(ISD::LOAD, VT, Custom);
652         setOperationAction(ISD::STORE, VT, Custom);
653         setOperationAction(ISD::MLOAD, VT, Custom);
654         setOperationAction(ISD::MSTORE, VT, Custom);
655         setOperationAction(ISD::FADD, VT, Custom);
656         setOperationAction(ISD::FSUB, VT, Custom);
657         setOperationAction(ISD::FMUL, VT, Custom);
658         setOperationAction(ISD::FDIV, VT, Custom);
659         setOperationAction(ISD::FNEG, VT, Custom);
660         setOperationAction(ISD::FABS, VT, Custom);
661         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
662         setOperationAction(ISD::FSQRT, VT, Custom);
663         setOperationAction(ISD::FMA, VT, Custom);
664 
665         setOperationAction(ISD::FP_ROUND, VT, Custom);
666         setOperationAction(ISD::FP_EXTEND, VT, Custom);
667 
668         for (auto CC : VFPCCToExpand)
669           setCondCodeAction(CC, VT, Expand);
670 
671         setOperationAction(ISD::VSELECT, VT, Custom);
672 
673         setOperationAction(ISD::BITCAST, VT, Custom);
674 
675         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
676         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
677       }
678     }
679   }
680 
681   // Function alignments.
682   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
683   setMinFunctionAlignment(FunctionAlignment);
684   setPrefFunctionAlignment(FunctionAlignment);
685 
686   setMinimumJumpTableEntries(5);
687 
688   // Jumps are expensive, compared to logic
689   setJumpIsExpensive();
690 
691   // We can use any register for comparisons
692   setHasMultipleConditionRegisters();
693 
694   if (Subtarget.hasStdExtZbp()) {
695     setTargetDAGCombine(ISD::OR);
696   }
697   if (Subtarget.hasStdExtV()) {
698     setTargetDAGCombine(ISD::FCOPYSIGN);
699     setTargetDAGCombine(ISD::MGATHER);
700     setTargetDAGCombine(ISD::MSCATTER);
701   }
702 }
703 
704 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
705                                             LLVMContext &Context,
706                                             EVT VT) const {
707   if (!VT.isVector())
708     return getPointerTy(DL);
709   if (Subtarget.hasStdExtV() &&
710       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
711     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
712   return VT.changeVectorElementTypeToInteger();
713 }
714 
715 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
716                                              const CallInst &I,
717                                              MachineFunction &MF,
718                                              unsigned Intrinsic) const {
719   switch (Intrinsic) {
720   default:
721     return false;
722   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
723   case Intrinsic::riscv_masked_atomicrmw_add_i32:
724   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
725   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
726   case Intrinsic::riscv_masked_atomicrmw_max_i32:
727   case Intrinsic::riscv_masked_atomicrmw_min_i32:
728   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
729   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
730   case Intrinsic::riscv_masked_cmpxchg_i32:
731     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
732     Info.opc = ISD::INTRINSIC_W_CHAIN;
733     Info.memVT = MVT::getVT(PtrTy->getElementType());
734     Info.ptrVal = I.getArgOperand(0);
735     Info.offset = 0;
736     Info.align = Align(4);
737     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
738                  MachineMemOperand::MOVolatile;
739     return true;
740   }
741 }
742 
743 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
744                                                 const AddrMode &AM, Type *Ty,
745                                                 unsigned AS,
746                                                 Instruction *I) const {
747   // No global is ever allowed as a base.
748   if (AM.BaseGV)
749     return false;
750 
751   // Require a 12-bit signed offset.
752   if (!isInt<12>(AM.BaseOffs))
753     return false;
754 
755   switch (AM.Scale) {
756   case 0: // "r+i" or just "i", depending on HasBaseReg.
757     break;
758   case 1:
759     if (!AM.HasBaseReg) // allow "r+i".
760       break;
761     return false; // disallow "r+r" or "r+r+i".
762   default:
763     return false;
764   }
765 
766   return true;
767 }
768 
769 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
770   return isInt<12>(Imm);
771 }
772 
773 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
774   return isInt<12>(Imm);
775 }
776 
777 // On RV32, 64-bit integers are split into their high and low parts and held
778 // in two different registers, so the trunc is free since the low register can
779 // just be used.
780 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
781   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
782     return false;
783   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
784   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
785   return (SrcBits == 64 && DestBits == 32);
786 }
787 
788 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
789   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
790       !SrcVT.isInteger() || !DstVT.isInteger())
791     return false;
792   unsigned SrcBits = SrcVT.getSizeInBits();
793   unsigned DestBits = DstVT.getSizeInBits();
794   return (SrcBits == 64 && DestBits == 32);
795 }
796 
797 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
798   // Zexts are free if they can be combined with a load.
799   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
800     EVT MemVT = LD->getMemoryVT();
801     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
802          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
803         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
804          LD->getExtensionType() == ISD::ZEXTLOAD))
805       return true;
806   }
807 
808   return TargetLowering::isZExtFree(Val, VT2);
809 }
810 
811 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
812   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
813 }
814 
815 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
816   return Subtarget.hasStdExtZbb();
817 }
818 
819 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
820   return Subtarget.hasStdExtZbb();
821 }
822 
823 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
824                                        bool ForCodeSize) const {
825   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
826     return false;
827   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
828     return false;
829   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
830     return false;
831   if (Imm.isNegZero())
832     return false;
833   return Imm.isZero();
834 }
835 
836 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
837   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
838          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
839          (VT == MVT::f64 && Subtarget.hasStdExtD());
840 }
841 
842 // Changes the condition code and swaps operands if necessary, so the SetCC
843 // operation matches one of the comparisons supported directly by branches
844 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
845 // with 1/-1.
846 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
847                                     ISD::CondCode &CC, SelectionDAG &DAG) {
848   // Convert X > -1 to X >= 0.
849   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
850     RHS = DAG.getConstant(0, DL, RHS.getValueType());
851     CC = ISD::SETGE;
852     return;
853   }
854   // Convert X < 1 to 0 >= X.
855   if (CC == ISD::SETLT && isOneConstant(RHS)) {
856     RHS = LHS;
857     LHS = DAG.getConstant(0, DL, RHS.getValueType());
858     CC = ISD::SETGE;
859     return;
860   }
861 
862   switch (CC) {
863   default:
864     break;
865   case ISD::SETGT:
866   case ISD::SETLE:
867   case ISD::SETUGT:
868   case ISD::SETULE:
869     CC = ISD::getSetCCSwappedOperands(CC);
870     std::swap(LHS, RHS);
871     break;
872   }
873 }
874 
875 // Return the RISC-V branch opcode that matches the given DAG integer
876 // condition code. The CondCode must be one of those supported by the RISC-V
877 // ISA (see translateSetCCForBranch).
878 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
879   switch (CC) {
880   default:
881     llvm_unreachable("Unsupported CondCode");
882   case ISD::SETEQ:
883     return RISCV::BEQ;
884   case ISD::SETNE:
885     return RISCV::BNE;
886   case ISD::SETLT:
887     return RISCV::BLT;
888   case ISD::SETGE:
889     return RISCV::BGE;
890   case ISD::SETULT:
891     return RISCV::BLTU;
892   case ISD::SETUGE:
893     return RISCV::BGEU;
894   }
895 }
896 
897 RISCVVLMUL RISCVTargetLowering::getLMUL(MVT VT) {
898   assert(VT.isScalableVector() && "Expecting a scalable vector type");
899   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
900   if (VT.getVectorElementType() == MVT::i1)
901     KnownSize *= 8;
902 
903   switch (KnownSize) {
904   default:
905     llvm_unreachable("Invalid LMUL.");
906   case 8:
907     return RISCVVLMUL::LMUL_F8;
908   case 16:
909     return RISCVVLMUL::LMUL_F4;
910   case 32:
911     return RISCVVLMUL::LMUL_F2;
912   case 64:
913     return RISCVVLMUL::LMUL_1;
914   case 128:
915     return RISCVVLMUL::LMUL_2;
916   case 256:
917     return RISCVVLMUL::LMUL_4;
918   case 512:
919     return RISCVVLMUL::LMUL_8;
920   }
921 }
922 
923 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVVLMUL LMul) {
924   switch (LMul) {
925   default:
926     llvm_unreachable("Invalid LMUL.");
927   case RISCVVLMUL::LMUL_F8:
928   case RISCVVLMUL::LMUL_F4:
929   case RISCVVLMUL::LMUL_F2:
930   case RISCVVLMUL::LMUL_1:
931     return RISCV::VRRegClassID;
932   case RISCVVLMUL::LMUL_2:
933     return RISCV::VRM2RegClassID;
934   case RISCVVLMUL::LMUL_4:
935     return RISCV::VRM4RegClassID;
936   case RISCVVLMUL::LMUL_8:
937     return RISCV::VRM8RegClassID;
938   }
939 }
940 
941 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
942   RISCVVLMUL LMUL = getLMUL(VT);
943   if (LMUL == RISCVVLMUL::LMUL_F8 || LMUL == RISCVVLMUL::LMUL_F4 ||
944       LMUL == RISCVVLMUL::LMUL_F2 || LMUL == RISCVVLMUL::LMUL_1) {
945     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
946                   "Unexpected subreg numbering");
947     return RISCV::sub_vrm1_0 + Index;
948   }
949   if (LMUL == RISCVVLMUL::LMUL_2) {
950     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
951                   "Unexpected subreg numbering");
952     return RISCV::sub_vrm2_0 + Index;
953   }
954   if (LMUL == RISCVVLMUL::LMUL_4) {
955     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
956                   "Unexpected subreg numbering");
957     return RISCV::sub_vrm4_0 + Index;
958   }
959   llvm_unreachable("Invalid vector type.");
960 }
961 
962 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
963   if (VT.getVectorElementType() == MVT::i1)
964     return RISCV::VRRegClassID;
965   return getRegClassIDForLMUL(getLMUL(VT));
966 }
967 
968 // Attempt to decompose a subvector insert/extract between VecVT and
969 // SubVecVT via subregister indices. Returns the subregister index that
970 // can perform the subvector insert/extract with the given element index, as
971 // well as the index corresponding to any leftover subvectors that must be
972 // further inserted/extracted within the register class for SubVecVT.
973 std::pair<unsigned, unsigned>
974 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
975     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
976     const RISCVRegisterInfo *TRI) {
977   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
978                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
979                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
980                 "Register classes not ordered");
981   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
982   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
983   // Try to compose a subregister index that takes us from the incoming
984   // LMUL>1 register class down to the outgoing one. At each step we half
985   // the LMUL:
986   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
987   // Note that this is not guaranteed to find a subregister index, such as
988   // when we are extracting from one VR type to another.
989   unsigned SubRegIdx = RISCV::NoSubRegister;
990   for (const unsigned RCID :
991        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
992     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
993       VecVT = VecVT.getHalfNumVectorElementsVT();
994       bool IsHi =
995           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
996       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
997                                             getSubregIndexByMVT(VecVT, IsHi));
998       if (IsHi)
999         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1000     }
1001   return {SubRegIdx, InsertExtractIdx};
1002 }
1003 
1004 // Return the largest legal scalable vector type that matches VT's element type.
1005 MVT RISCVTargetLowering::getContainerForFixedLengthVector(
1006     const TargetLowering &TLI, MVT VT, const RISCVSubtarget &Subtarget) {
1007   assert(VT.isFixedLengthVector() && TLI.isTypeLegal(VT) &&
1008          "Expected legal fixed length vector!");
1009 
1010   unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT);
1011   assert(LMul <= 8 && isPowerOf2_32(LMul) && "Unexpected LMUL!");
1012 
1013   MVT EltVT = VT.getVectorElementType();
1014   switch (EltVT.SimpleTy) {
1015   default:
1016     llvm_unreachable("unexpected element type for RVV container");
1017   case MVT::i1: {
1018     // Masks are calculated assuming 8-bit elements since that's when we need
1019     // the most elements.
1020     unsigned EltsPerBlock = RISCV::RVVBitsPerBlock / 8;
1021     return MVT::getScalableVectorVT(MVT::i1, LMul * EltsPerBlock);
1022   }
1023   case MVT::i8:
1024   case MVT::i16:
1025   case MVT::i32:
1026   case MVT::i64:
1027   case MVT::f16:
1028   case MVT::f32:
1029   case MVT::f64: {
1030     unsigned EltsPerBlock = RISCV::RVVBitsPerBlock / EltVT.getSizeInBits();
1031     return MVT::getScalableVectorVT(EltVT, LMul * EltsPerBlock);
1032   }
1033   }
1034 }
1035 
1036 MVT RISCVTargetLowering::getContainerForFixedLengthVector(
1037     SelectionDAG &DAG, MVT VT, const RISCVSubtarget &Subtarget) {
1038   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1039                                           Subtarget);
1040 }
1041 
1042 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1043   return getContainerForFixedLengthVector(*this, VT, getSubtarget());
1044 }
1045 
1046 // Grow V to consume an entire RVV register.
1047 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1048                                        const RISCVSubtarget &Subtarget) {
1049   assert(VT.isScalableVector() &&
1050          "Expected to convert into a scalable vector!");
1051   assert(V.getValueType().isFixedLengthVector() &&
1052          "Expected a fixed length vector operand!");
1053   SDLoc DL(V);
1054   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1055   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1056 }
1057 
1058 // Shrink V so it's just big enough to maintain a VT's worth of data.
1059 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1060                                          const RISCVSubtarget &Subtarget) {
1061   assert(VT.isFixedLengthVector() &&
1062          "Expected to convert into a fixed length vector!");
1063   assert(V.getValueType().isScalableVector() &&
1064          "Expected a scalable vector operand!");
1065   SDLoc DL(V);
1066   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1067   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1068 }
1069 
1070 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1071 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1072 // the vector type that it is contained in.
1073 static std::pair<SDValue, SDValue>
1074 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1075                 const RISCVSubtarget &Subtarget) {
1076   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1077   MVT XLenVT = Subtarget.getXLenVT();
1078   SDValue VL = VecVT.isFixedLengthVector()
1079                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1080                    : DAG.getRegister(RISCV::X0, XLenVT);
1081   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1082   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1083   return {Mask, VL};
1084 }
1085 
1086 // As above but assuming the given type is a scalable vector type.
1087 static std::pair<SDValue, SDValue>
1088 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1089                         const RISCVSubtarget &Subtarget) {
1090   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1091   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1092 }
1093 
1094 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1095 // of either is (currently) supported. This can get us into an infinite loop
1096 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1097 // as a ..., etc.
1098 // Until either (or both) of these can reliably lower any node, reporting that
1099 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1100 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1101 // which is not desirable.
1102 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1103     EVT VT, unsigned DefinedValues) const {
1104   return false;
1105 }
1106 
1107 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
1108   // Only splats are currently supported.
1109   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
1110     return true;
1111 
1112   return false;
1113 }
1114 
1115 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1116                                  const RISCVSubtarget &Subtarget) {
1117   MVT VT = Op.getSimpleValueType();
1118   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1119 
1120   MVT ContainerVT =
1121       RISCVTargetLowering::getContainerForFixedLengthVector(DAG, VT, Subtarget);
1122 
1123   SDLoc DL(Op);
1124   SDValue Mask, VL;
1125   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1126 
1127   if (VT.getVectorElementType() == MVT::i1) {
1128     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1129       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1130       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1131     }
1132 
1133     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1134       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1135       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1136     }
1137 
1138     return SDValue();
1139   }
1140 
1141   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1142     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
1143                                         : RISCVISD::VMV_V_X_VL;
1144     Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL);
1145     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1146   }
1147 
1148   unsigned NumElts = Op.getNumOperands();
1149 
1150   // Try and match an index sequence, which we can lower directly to the vid
1151   // instruction. An all-undef vector is matched by getSplatValue, above.
1152   if (VT.isInteger()) {
1153     bool IsVID = true;
1154     for (unsigned I = 0; I < NumElts && IsVID; I++)
1155       IsVID &= Op.getOperand(I).isUndef() ||
1156                (isa<ConstantSDNode>(Op.getOperand(I)) &&
1157                 Op.getConstantOperandVal(I) == I);
1158 
1159     if (IsVID) {
1160       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
1161       return convertFromScalableVector(VT, VID, DAG, Subtarget);
1162     }
1163   }
1164 
1165   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
1166   // which constitute a large proportion of the elements. In such cases we can
1167   // splat a vector with the dominant element and make up the shortfall with
1168   // INSERT_VECTOR_ELTs.
1169   // Note that this includes vectors of 2 elements by association. The
1170   // upper-most element is the "dominant" one, allowing us to use a splat to
1171   // "insert" the upper element, and an insert of the lower element at position
1172   // 0, which improves codegen.
1173   SDValue DominantValue;
1174   DenseMap<SDValue, unsigned> ValueCounts;
1175   // Use a fairly conservative threshold. A future optimization could be to use
1176   // multiple vmerge.vi/vmerge.vx instructions on "partially-dominant"
1177   // elements with more relaxed thresholds.
1178   unsigned NumUndefElts =
1179       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
1180   unsigned NumDefElts = NumElts - NumUndefElts;
1181   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
1182 
1183   for (SDValue V : Op->op_values()) {
1184     if (V.isUndef())
1185       continue;
1186 
1187     ValueCounts.insert(std::make_pair(V, 0));
1188     unsigned &Count = ValueCounts[V];
1189 
1190     // Is this value dominant?
1191     if (++Count > DominantValueCountThreshold)
1192       DominantValue = V;
1193   }
1194 
1195   // Don't perform this optimization when optimizing for size, since
1196   // materializing elements and inserting them tends to cause code bloat.
1197   if (DominantValue && !DAG.shouldOptForSize()) {
1198     unsigned Opc =
1199         VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1200     SDValue Vec = DAG.getNode(Opc, DL, ContainerVT, DominantValue, VL);
1201 
1202     if (ValueCounts.size() != 1) {
1203       MVT XLenVT = Subtarget.getXLenVT();
1204       for (unsigned I = 0; I < NumElts; ++I) {
1205         if (!Op.getOperand(I).isUndef() && Op.getOperand(I) != DominantValue)
1206           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ContainerVT, Vec,
1207                             Op.getOperand(I), DAG.getConstant(I, DL, XLenVT));
1208       }
1209     }
1210 
1211     return convertFromScalableVector(VT, Vec, DAG, Subtarget);
1212   }
1213 
1214   return SDValue();
1215 }
1216 
1217 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
1218                                    const RISCVSubtarget &Subtarget) {
1219   SDValue V1 = Op.getOperand(0);
1220   SDLoc DL(Op);
1221   MVT VT = Op.getSimpleValueType();
1222   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
1223 
1224   if (SVN->isSplat()) {
1225     int Lane = SVN->getSplatIndex();
1226     if (Lane >= 0) {
1227       MVT ContainerVT = RISCVTargetLowering::getContainerForFixedLengthVector(
1228           DAG, VT, Subtarget);
1229 
1230       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
1231       assert(Lane < (int)VT.getVectorNumElements() && "Unexpected lane!");
1232 
1233       SDValue Mask, VL;
1234       std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1235       MVT XLenVT = Subtarget.getXLenVT();
1236       SDValue Gather =
1237           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
1238                       DAG.getConstant(Lane, DL, XLenVT), Mask, VL);
1239       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
1240     }
1241   }
1242 
1243   return SDValue();
1244 }
1245 
1246 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
1247                                      SDLoc DL, SelectionDAG &DAG,
1248                                      const RISCVSubtarget &Subtarget) {
1249   if (VT.isScalableVector())
1250     return DAG.getFPExtendOrRound(Op, DL, VT);
1251   assert(VT.isFixedLengthVector() &&
1252          "Unexpected value type for RVV FP extend/round lowering");
1253   SDValue Mask, VL;
1254   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1255   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
1256                         ? RISCVISD::FP_EXTEND_VL
1257                         : RISCVISD::FP_ROUND_VL;
1258   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
1259 }
1260 
1261 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
1262                                             SelectionDAG &DAG) const {
1263   switch (Op.getOpcode()) {
1264   default:
1265     report_fatal_error("unimplemented operand");
1266   case ISD::GlobalAddress:
1267     return lowerGlobalAddress(Op, DAG);
1268   case ISD::BlockAddress:
1269     return lowerBlockAddress(Op, DAG);
1270   case ISD::ConstantPool:
1271     return lowerConstantPool(Op, DAG);
1272   case ISD::JumpTable:
1273     return lowerJumpTable(Op, DAG);
1274   case ISD::GlobalTLSAddress:
1275     return lowerGlobalTLSAddress(Op, DAG);
1276   case ISD::SELECT:
1277     return lowerSELECT(Op, DAG);
1278   case ISD::BRCOND:
1279     return lowerBRCOND(Op, DAG);
1280   case ISD::VASTART:
1281     return lowerVASTART(Op, DAG);
1282   case ISD::FRAMEADDR:
1283     return lowerFRAMEADDR(Op, DAG);
1284   case ISD::RETURNADDR:
1285     return lowerRETURNADDR(Op, DAG);
1286   case ISD::SHL_PARTS:
1287     return lowerShiftLeftParts(Op, DAG);
1288   case ISD::SRA_PARTS:
1289     return lowerShiftRightParts(Op, DAG, true);
1290   case ISD::SRL_PARTS:
1291     return lowerShiftRightParts(Op, DAG, false);
1292   case ISD::BITCAST: {
1293     SDValue Op0 = Op.getOperand(0);
1294     // We can handle fixed length vector bitcasts with a simple replacement
1295     // in isel.
1296     if (Op.getValueType().isFixedLengthVector()) {
1297       if (Op0.getValueType().isFixedLengthVector())
1298         return Op;
1299       return SDValue();
1300     }
1301     assert(((Subtarget.is64Bit() && Subtarget.hasStdExtF()) ||
1302             Subtarget.hasStdExtZfh()) &&
1303            "Unexpected custom legalisation");
1304     SDLoc DL(Op);
1305     if (Op.getValueType() == MVT::f16 && Subtarget.hasStdExtZfh()) {
1306       if (Op0.getValueType() != MVT::i16)
1307         return SDValue();
1308       SDValue NewOp0 =
1309           DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), Op0);
1310       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
1311       return FPConv;
1312     } else if (Op.getValueType() == MVT::f32 && Subtarget.is64Bit() &&
1313                Subtarget.hasStdExtF()) {
1314       if (Op0.getValueType() != MVT::i32)
1315         return SDValue();
1316       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
1317       SDValue FPConv =
1318           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
1319       return FPConv;
1320     }
1321     return SDValue();
1322   }
1323   case ISD::INTRINSIC_WO_CHAIN:
1324     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1325   case ISD::INTRINSIC_W_CHAIN:
1326     return LowerINTRINSIC_W_CHAIN(Op, DAG);
1327   case ISD::BSWAP:
1328   case ISD::BITREVERSE: {
1329     // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
1330     assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
1331     MVT VT = Op.getSimpleValueType();
1332     SDLoc DL(Op);
1333     // Start with the maximum immediate value which is the bitwidth - 1.
1334     unsigned Imm = VT.getSizeInBits() - 1;
1335     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
1336     if (Op.getOpcode() == ISD::BSWAP)
1337       Imm &= ~0x7U;
1338     return DAG.getNode(RISCVISD::GREVI, DL, VT, Op.getOperand(0),
1339                        DAG.getTargetConstant(Imm, DL, Subtarget.getXLenVT()));
1340   }
1341   case ISD::FSHL:
1342   case ISD::FSHR: {
1343     MVT VT = Op.getSimpleValueType();
1344     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
1345     SDLoc DL(Op);
1346     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
1347     // use log(XLen) bits. Mask the shift amount accordingly.
1348     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
1349     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
1350                                 DAG.getConstant(ShAmtWidth, DL, VT));
1351     unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR;
1352     return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt);
1353   }
1354   case ISD::TRUNCATE: {
1355     SDLoc DL(Op);
1356     MVT VT = Op.getSimpleValueType();
1357     // Only custom-lower vector truncates
1358     if (!VT.isVector())
1359       return Op;
1360 
1361     // Truncates to mask types are handled differently
1362     if (VT.getVectorElementType() == MVT::i1)
1363       return lowerVectorMaskTrunc(Op, DAG);
1364 
1365     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
1366     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
1367     // truncate by one power of two at a time.
1368     MVT DstEltVT = VT.getVectorElementType();
1369 
1370     SDValue Src = Op.getOperand(0);
1371     MVT SrcVT = Src.getSimpleValueType();
1372     MVT SrcEltVT = SrcVT.getVectorElementType();
1373 
1374     assert(DstEltVT.bitsLT(SrcEltVT) &&
1375            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
1376            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
1377            "Unexpected vector truncate lowering");
1378 
1379     MVT ContainerVT = SrcVT;
1380     if (SrcVT.isFixedLengthVector()) {
1381       ContainerVT = getContainerForFixedLengthVector(SrcVT);
1382       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
1383     }
1384 
1385     SDValue Result = Src;
1386     SDValue Mask, VL;
1387     std::tie(Mask, VL) =
1388         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
1389     LLVMContext &Context = *DAG.getContext();
1390     const ElementCount Count = ContainerVT.getVectorElementCount();
1391     do {
1392       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
1393       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
1394       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
1395                            Mask, VL);
1396     } while (SrcEltVT != DstEltVT);
1397 
1398     if (SrcVT.isFixedLengthVector())
1399       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
1400 
1401     return Result;
1402   }
1403   case ISD::ANY_EXTEND:
1404   case ISD::ZERO_EXTEND:
1405     if (Op.getOperand(0).getValueType().isVector() &&
1406         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
1407       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
1408     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
1409   case ISD::SIGN_EXTEND:
1410     if (Op.getOperand(0).getValueType().isVector() &&
1411         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
1412       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
1413     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
1414   case ISD::SPLAT_VECTOR_PARTS:
1415     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
1416   case ISD::INSERT_VECTOR_ELT:
1417     return lowerINSERT_VECTOR_ELT(Op, DAG);
1418   case ISD::EXTRACT_VECTOR_ELT:
1419     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
1420   case ISD::VSCALE: {
1421     MVT VT = Op.getSimpleValueType();
1422     SDLoc DL(Op);
1423     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
1424     // We define our scalable vector types for lmul=1 to use a 64 bit known
1425     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
1426     // vscale as VLENB / 8.
1427     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
1428                                  DAG.getConstant(3, DL, VT));
1429     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
1430   }
1431   case ISD::FP_EXTEND: {
1432     // RVV can only do fp_extend to types double the size as the source. We
1433     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
1434     // via f32.
1435     SDLoc DL(Op);
1436     MVT VT = Op.getSimpleValueType();
1437     SDValue Src = Op.getOperand(0);
1438     MVT SrcVT = Src.getSimpleValueType();
1439 
1440     // Prepare any fixed-length vector operands.
1441     MVT ContainerVT = VT;
1442     if (SrcVT.isFixedLengthVector()) {
1443       ContainerVT = getContainerForFixedLengthVector(VT);
1444       MVT SrcContainerVT =
1445           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
1446       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
1447     }
1448 
1449     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
1450         SrcVT.getVectorElementType() != MVT::f16) {
1451       // For scalable vectors, we only need to close the gap between
1452       // vXf16->vXf64.
1453       if (!VT.isFixedLengthVector())
1454         return Op;
1455       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
1456       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
1457       return convertFromScalableVector(VT, Src, DAG, Subtarget);
1458     }
1459 
1460     MVT InterVT = VT.changeVectorElementType(MVT::f32);
1461     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
1462     SDValue IntermediateExtend = getRVVFPExtendOrRound(
1463         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
1464 
1465     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
1466                                            DL, DAG, Subtarget);
1467     if (VT.isFixedLengthVector())
1468       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
1469     return Extend;
1470   }
1471   case ISD::FP_ROUND: {
1472     // RVV can only do fp_round to types half the size as the source. We
1473     // custom-lower f64->f16 rounds via RVV's round-to-odd float
1474     // conversion instruction.
1475     SDLoc DL(Op);
1476     MVT VT = Op.getSimpleValueType();
1477     SDValue Src = Op.getOperand(0);
1478     MVT SrcVT = Src.getSimpleValueType();
1479 
1480     // Prepare any fixed-length vector operands.
1481     MVT ContainerVT = VT;
1482     if (VT.isFixedLengthVector()) {
1483       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
1484       ContainerVT =
1485           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
1486       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
1487     }
1488 
1489     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
1490         SrcVT.getVectorElementType() != MVT::f64) {
1491       // For scalable vectors, we only need to close the gap between
1492       // vXf64<->vXf16.
1493       if (!VT.isFixedLengthVector())
1494         return Op;
1495       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
1496       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
1497       return convertFromScalableVector(VT, Src, DAG, Subtarget);
1498     }
1499 
1500     SDValue Mask, VL;
1501     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1502 
1503     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
1504     SDValue IntermediateRound =
1505         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
1506     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
1507                                           DL, DAG, Subtarget);
1508 
1509     if (VT.isFixedLengthVector())
1510       return convertFromScalableVector(VT, Round, DAG, Subtarget);
1511     return Round;
1512   }
1513   case ISD::FP_TO_SINT:
1514   case ISD::FP_TO_UINT:
1515   case ISD::SINT_TO_FP:
1516   case ISD::UINT_TO_FP: {
1517     // RVV can only do fp<->int conversions to types half/double the size as
1518     // the source. We custom-lower any conversions that do two hops into
1519     // sequences.
1520     MVT VT = Op.getSimpleValueType();
1521     if (!VT.isVector())
1522       return Op;
1523     SDLoc DL(Op);
1524     SDValue Src = Op.getOperand(0);
1525     MVT EltVT = VT.getVectorElementType();
1526     MVT SrcVT = Src.getSimpleValueType();
1527     MVT SrcEltVT = SrcVT.getVectorElementType();
1528     unsigned EltSize = EltVT.getSizeInBits();
1529     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
1530     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
1531            "Unexpected vector element types");
1532 
1533     bool IsInt2FP = SrcEltVT.isInteger();
1534     // Widening conversions
1535     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
1536       if (IsInt2FP) {
1537         // Do a regular integer sign/zero extension then convert to float.
1538         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
1539                                       VT.getVectorElementCount());
1540         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
1541                                  ? ISD::ZERO_EXTEND
1542                                  : ISD::SIGN_EXTEND;
1543         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
1544         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
1545       }
1546       // FP2Int
1547       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
1548       // Do one doubling fp_extend then complete the operation by converting
1549       // to int.
1550       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
1551       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
1552       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
1553     }
1554 
1555     // Narrowing conversions
1556     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
1557       if (IsInt2FP) {
1558         // One narrowing int_to_fp, then an fp_round.
1559         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
1560         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
1561         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
1562         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
1563       }
1564       // FP2Int
1565       // One narrowing fp_to_int, then truncate the integer. If the float isn't
1566       // representable by the integer, the result is poison.
1567       MVT IVecVT =
1568           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
1569                            VT.getVectorElementCount());
1570       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
1571       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
1572     }
1573 
1574     // Scalable vectors can exit here. Patterns will handle equally-sized
1575     // conversions halving/doubling ones.
1576     if (!VT.isFixedLengthVector())
1577       return Op;
1578 
1579     // For fixed-length vectors we lower to a custom "VL" node.
1580     unsigned RVVOpc = 0;
1581     switch (Op.getOpcode()) {
1582     default:
1583       llvm_unreachable("Impossible opcode");
1584     case ISD::FP_TO_SINT:
1585       RVVOpc = RISCVISD::FP_TO_SINT_VL;
1586       break;
1587     case ISD::FP_TO_UINT:
1588       RVVOpc = RISCVISD::FP_TO_UINT_VL;
1589       break;
1590     case ISD::SINT_TO_FP:
1591       RVVOpc = RISCVISD::SINT_TO_FP_VL;
1592       break;
1593     case ISD::UINT_TO_FP:
1594       RVVOpc = RISCVISD::UINT_TO_FP_VL;
1595       break;
1596     }
1597 
1598     MVT ContainerVT, SrcContainerVT;
1599     // Derive the reference container type from the larger vector type.
1600     if (SrcEltSize > EltSize) {
1601       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
1602       ContainerVT =
1603           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
1604     } else {
1605       ContainerVT = getContainerForFixedLengthVector(VT);
1606       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
1607     }
1608 
1609     SDValue Mask, VL;
1610     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1611 
1612     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
1613     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
1614     return convertFromScalableVector(VT, Src, DAG, Subtarget);
1615   }
1616   case ISD::VECREDUCE_ADD:
1617   case ISD::VECREDUCE_UMAX:
1618   case ISD::VECREDUCE_SMAX:
1619   case ISD::VECREDUCE_UMIN:
1620   case ISD::VECREDUCE_SMIN:
1621   case ISD::VECREDUCE_AND:
1622   case ISD::VECREDUCE_OR:
1623   case ISD::VECREDUCE_XOR:
1624     return lowerVECREDUCE(Op, DAG);
1625   case ISD::VECREDUCE_FADD:
1626   case ISD::VECREDUCE_SEQ_FADD:
1627     return lowerFPVECREDUCE(Op, DAG);
1628   case ISD::INSERT_SUBVECTOR:
1629     return lowerINSERT_SUBVECTOR(Op, DAG);
1630   case ISD::EXTRACT_SUBVECTOR:
1631     return lowerEXTRACT_SUBVECTOR(Op, DAG);
1632   case ISD::VECTOR_REVERSE:
1633     return lowerVECTOR_REVERSE(Op, DAG);
1634   case ISD::BUILD_VECTOR:
1635     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
1636   case ISD::VECTOR_SHUFFLE:
1637     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
1638   case ISD::CONCAT_VECTORS: {
1639     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
1640     // better than going through the stack, as the default expansion does.
1641     SDLoc DL(Op);
1642     MVT VT = Op.getSimpleValueType();
1643     unsigned NumOpElts =
1644         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
1645     SDValue Vec = DAG.getUNDEF(VT);
1646     for (const auto &OpIdx : enumerate(Op->ops()))
1647       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(),
1648                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
1649     return Vec;
1650   }
1651   case ISD::LOAD:
1652     return lowerFixedLengthVectorLoadToRVV(Op, DAG);
1653   case ISD::STORE:
1654     return lowerFixedLengthVectorStoreToRVV(Op, DAG);
1655   case ISD::MLOAD:
1656     return lowerFixedLengthVectorMaskedLoadToRVV(Op, DAG);
1657   case ISD::MSTORE:
1658     return lowerFixedLengthVectorMaskedStoreToRVV(Op, DAG);
1659   case ISD::SETCC:
1660     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
1661   case ISD::ADD:
1662     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
1663   case ISD::SUB:
1664     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
1665   case ISD::MUL:
1666     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
1667   case ISD::MULHS:
1668     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
1669   case ISD::MULHU:
1670     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
1671   case ISD::AND:
1672     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
1673                                               RISCVISD::AND_VL);
1674   case ISD::OR:
1675     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
1676                                               RISCVISD::OR_VL);
1677   case ISD::XOR:
1678     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
1679                                               RISCVISD::XOR_VL);
1680   case ISD::SDIV:
1681     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
1682   case ISD::SREM:
1683     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
1684   case ISD::UDIV:
1685     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
1686   case ISD::UREM:
1687     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
1688   case ISD::SHL:
1689     return lowerToScalableOp(Op, DAG, RISCVISD::SHL_VL);
1690   case ISD::SRA:
1691     return lowerToScalableOp(Op, DAG, RISCVISD::SRA_VL);
1692   case ISD::SRL:
1693     return lowerToScalableOp(Op, DAG, RISCVISD::SRL_VL);
1694   case ISD::FADD:
1695     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
1696   case ISD::FSUB:
1697     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
1698   case ISD::FMUL:
1699     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
1700   case ISD::FDIV:
1701     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
1702   case ISD::FNEG:
1703     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
1704   case ISD::FABS:
1705     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
1706   case ISD::FSQRT:
1707     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
1708   case ISD::FMA:
1709     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
1710   case ISD::SMIN:
1711     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
1712   case ISD::SMAX:
1713     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
1714   case ISD::UMIN:
1715     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
1716   case ISD::UMAX:
1717     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
1718   case ISD::ABS:
1719     return lowerABS(Op, DAG);
1720   case ISD::VSELECT:
1721     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
1722   case ISD::FCOPYSIGN:
1723     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
1724   case ISD::MGATHER:
1725   case ISD::MSCATTER:
1726     return lowerMGATHERMSCATTER(Op, DAG);
1727   }
1728 }
1729 
1730 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
1731                              SelectionDAG &DAG, unsigned Flags) {
1732   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
1733 }
1734 
1735 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
1736                              SelectionDAG &DAG, unsigned Flags) {
1737   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
1738                                    Flags);
1739 }
1740 
1741 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
1742                              SelectionDAG &DAG, unsigned Flags) {
1743   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
1744                                    N->getOffset(), Flags);
1745 }
1746 
1747 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
1748                              SelectionDAG &DAG, unsigned Flags) {
1749   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
1750 }
1751 
1752 template <class NodeTy>
1753 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
1754                                      bool IsLocal) const {
1755   SDLoc DL(N);
1756   EVT Ty = getPointerTy(DAG.getDataLayout());
1757 
1758   if (isPositionIndependent()) {
1759     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
1760     if (IsLocal)
1761       // Use PC-relative addressing to access the symbol. This generates the
1762       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
1763       // %pcrel_lo(auipc)).
1764       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
1765 
1766     // Use PC-relative addressing to access the GOT for this symbol, then load
1767     // the address from the GOT. This generates the pattern (PseudoLA sym),
1768     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
1769     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
1770   }
1771 
1772   switch (getTargetMachine().getCodeModel()) {
1773   default:
1774     report_fatal_error("Unsupported code model for lowering");
1775   case CodeModel::Small: {
1776     // Generate a sequence for accessing addresses within the first 2 GiB of
1777     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
1778     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
1779     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
1780     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
1781     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
1782   }
1783   case CodeModel::Medium: {
1784     // Generate a sequence for accessing addresses within any 2GiB range within
1785     // the address space. This generates the pattern (PseudoLLA sym), which
1786     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
1787     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
1788     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
1789   }
1790   }
1791 }
1792 
1793 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
1794                                                 SelectionDAG &DAG) const {
1795   SDLoc DL(Op);
1796   EVT Ty = Op.getValueType();
1797   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
1798   int64_t Offset = N->getOffset();
1799   MVT XLenVT = Subtarget.getXLenVT();
1800 
1801   const GlobalValue *GV = N->getGlobal();
1802   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
1803   SDValue Addr = getAddr(N, DAG, IsLocal);
1804 
1805   // In order to maximise the opportunity for common subexpression elimination,
1806   // emit a separate ADD node for the global address offset instead of folding
1807   // it in the global address node. Later peephole optimisations may choose to
1808   // fold it back in when profitable.
1809   if (Offset != 0)
1810     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
1811                        DAG.getConstant(Offset, DL, XLenVT));
1812   return Addr;
1813 }
1814 
1815 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
1816                                                SelectionDAG &DAG) const {
1817   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
1818 
1819   return getAddr(N, DAG);
1820 }
1821 
1822 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
1823                                                SelectionDAG &DAG) const {
1824   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1825 
1826   return getAddr(N, DAG);
1827 }
1828 
1829 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
1830                                             SelectionDAG &DAG) const {
1831   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
1832 
1833   return getAddr(N, DAG);
1834 }
1835 
1836 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
1837                                               SelectionDAG &DAG,
1838                                               bool UseGOT) const {
1839   SDLoc DL(N);
1840   EVT Ty = getPointerTy(DAG.getDataLayout());
1841   const GlobalValue *GV = N->getGlobal();
1842   MVT XLenVT = Subtarget.getXLenVT();
1843 
1844   if (UseGOT) {
1845     // Use PC-relative addressing to access the GOT for this TLS symbol, then
1846     // load the address from the GOT and add the thread pointer. This generates
1847     // the pattern (PseudoLA_TLS_IE sym), which expands to
1848     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
1849     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
1850     SDValue Load =
1851         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
1852 
1853     // Add the thread pointer.
1854     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
1855     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
1856   }
1857 
1858   // Generate a sequence for accessing the address relative to the thread
1859   // pointer, with the appropriate adjustment for the thread pointer offset.
1860   // This generates the pattern
1861   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
1862   SDValue AddrHi =
1863       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
1864   SDValue AddrAdd =
1865       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
1866   SDValue AddrLo =
1867       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
1868 
1869   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
1870   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
1871   SDValue MNAdd = SDValue(
1872       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
1873       0);
1874   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
1875 }
1876 
1877 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
1878                                                SelectionDAG &DAG) const {
1879   SDLoc DL(N);
1880   EVT Ty = getPointerTy(DAG.getDataLayout());
1881   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
1882   const GlobalValue *GV = N->getGlobal();
1883 
1884   // Use a PC-relative addressing mode to access the global dynamic GOT address.
1885   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
1886   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
1887   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
1888   SDValue Load =
1889       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
1890 
1891   // Prepare argument list to generate call.
1892   ArgListTy Args;
1893   ArgListEntry Entry;
1894   Entry.Node = Load;
1895   Entry.Ty = CallTy;
1896   Args.push_back(Entry);
1897 
1898   // Setup call to __tls_get_addr.
1899   TargetLowering::CallLoweringInfo CLI(DAG);
1900   CLI.setDebugLoc(DL)
1901       .setChain(DAG.getEntryNode())
1902       .setLibCallee(CallingConv::C, CallTy,
1903                     DAG.getExternalSymbol("__tls_get_addr", Ty),
1904                     std::move(Args));
1905 
1906   return LowerCallTo(CLI).first;
1907 }
1908 
1909 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
1910                                                    SelectionDAG &DAG) const {
1911   SDLoc DL(Op);
1912   EVT Ty = Op.getValueType();
1913   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
1914   int64_t Offset = N->getOffset();
1915   MVT XLenVT = Subtarget.getXLenVT();
1916 
1917   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
1918 
1919   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
1920       CallingConv::GHC)
1921     report_fatal_error("In GHC calling convention TLS is not supported");
1922 
1923   SDValue Addr;
1924   switch (Model) {
1925   case TLSModel::LocalExec:
1926     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
1927     break;
1928   case TLSModel::InitialExec:
1929     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
1930     break;
1931   case TLSModel::LocalDynamic:
1932   case TLSModel::GeneralDynamic:
1933     Addr = getDynamicTLSAddr(N, DAG);
1934     break;
1935   }
1936 
1937   // In order to maximise the opportunity for common subexpression elimination,
1938   // emit a separate ADD node for the global address offset instead of folding
1939   // it in the global address node. Later peephole optimisations may choose to
1940   // fold it back in when profitable.
1941   if (Offset != 0)
1942     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
1943                        DAG.getConstant(Offset, DL, XLenVT));
1944   return Addr;
1945 }
1946 
1947 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
1948   SDValue CondV = Op.getOperand(0);
1949   SDValue TrueV = Op.getOperand(1);
1950   SDValue FalseV = Op.getOperand(2);
1951   SDLoc DL(Op);
1952   MVT XLenVT = Subtarget.getXLenVT();
1953 
1954   // If the result type is XLenVT and CondV is the output of a SETCC node
1955   // which also operated on XLenVT inputs, then merge the SETCC node into the
1956   // lowered RISCVISD::SELECT_CC to take advantage of the integer
1957   // compare+branch instructions. i.e.:
1958   // (select (setcc lhs, rhs, cc), truev, falsev)
1959   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
1960   if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
1961       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
1962     SDValue LHS = CondV.getOperand(0);
1963     SDValue RHS = CondV.getOperand(1);
1964     auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
1965     ISD::CondCode CCVal = CC->get();
1966 
1967     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
1968 
1969     SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT);
1970     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
1971     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
1972   }
1973 
1974   // Otherwise:
1975   // (select condv, truev, falsev)
1976   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
1977   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
1978   SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT);
1979 
1980   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
1981 
1982   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
1983 }
1984 
1985 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1986   SDValue CondV = Op.getOperand(1);
1987   SDLoc DL(Op);
1988   MVT XLenVT = Subtarget.getXLenVT();
1989 
1990   if (CondV.getOpcode() == ISD::SETCC &&
1991       CondV.getOperand(0).getValueType() == XLenVT) {
1992     SDValue LHS = CondV.getOperand(0);
1993     SDValue RHS = CondV.getOperand(1);
1994     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
1995 
1996     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
1997 
1998     SDValue TargetCC = DAG.getCondCode(CCVal);
1999     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
2000                        LHS, RHS, TargetCC, Op.getOperand(2));
2001   }
2002 
2003   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
2004                      CondV, DAG.getConstant(0, DL, XLenVT),
2005                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
2006 }
2007 
2008 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2009   MachineFunction &MF = DAG.getMachineFunction();
2010   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
2011 
2012   SDLoc DL(Op);
2013   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2014                                  getPointerTy(MF.getDataLayout()));
2015 
2016   // vastart just stores the address of the VarArgsFrameIndex slot into the
2017   // memory location argument.
2018   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2019   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
2020                       MachinePointerInfo(SV));
2021 }
2022 
2023 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
2024                                             SelectionDAG &DAG) const {
2025   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
2026   MachineFunction &MF = DAG.getMachineFunction();
2027   MachineFrameInfo &MFI = MF.getFrameInfo();
2028   MFI.setFrameAddressIsTaken(true);
2029   Register FrameReg = RI.getFrameRegister(MF);
2030   int XLenInBytes = Subtarget.getXLen() / 8;
2031 
2032   EVT VT = Op.getValueType();
2033   SDLoc DL(Op);
2034   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
2035   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2036   while (Depth--) {
2037     int Offset = -(XLenInBytes * 2);
2038     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
2039                               DAG.getIntPtrConstant(Offset, DL));
2040     FrameAddr =
2041         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2042   }
2043   return FrameAddr;
2044 }
2045 
2046 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
2047                                              SelectionDAG &DAG) const {
2048   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
2049   MachineFunction &MF = DAG.getMachineFunction();
2050   MachineFrameInfo &MFI = MF.getFrameInfo();
2051   MFI.setReturnAddressIsTaken(true);
2052   MVT XLenVT = Subtarget.getXLenVT();
2053   int XLenInBytes = Subtarget.getXLen() / 8;
2054 
2055   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2056     return SDValue();
2057 
2058   EVT VT = Op.getValueType();
2059   SDLoc DL(Op);
2060   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2061   if (Depth) {
2062     int Off = -XLenInBytes;
2063     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
2064     SDValue Offset = DAG.getConstant(Off, DL, VT);
2065     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
2066                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
2067                        MachinePointerInfo());
2068   }
2069 
2070   // Return the value of the return address register, marking it an implicit
2071   // live-in.
2072   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
2073   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
2074 }
2075 
2076 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
2077                                                  SelectionDAG &DAG) const {
2078   SDLoc DL(Op);
2079   SDValue Lo = Op.getOperand(0);
2080   SDValue Hi = Op.getOperand(1);
2081   SDValue Shamt = Op.getOperand(2);
2082   EVT VT = Lo.getValueType();
2083 
2084   // if Shamt-XLEN < 0: // Shamt < XLEN
2085   //   Lo = Lo << Shamt
2086   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
2087   // else:
2088   //   Lo = 0
2089   //   Hi = Lo << (Shamt-XLEN)
2090 
2091   SDValue Zero = DAG.getConstant(0, DL, VT);
2092   SDValue One = DAG.getConstant(1, DL, VT);
2093   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
2094   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
2095   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
2096   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
2097 
2098   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
2099   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
2100   SDValue ShiftRightLo =
2101       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
2102   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
2103   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2104   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
2105 
2106   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
2107 
2108   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
2109   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
2110 
2111   SDValue Parts[2] = {Lo, Hi};
2112   return DAG.getMergeValues(Parts, DL);
2113 }
2114 
2115 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2116                                                   bool IsSRA) const {
2117   SDLoc DL(Op);
2118   SDValue Lo = Op.getOperand(0);
2119   SDValue Hi = Op.getOperand(1);
2120   SDValue Shamt = Op.getOperand(2);
2121   EVT VT = Lo.getValueType();
2122 
2123   // SRA expansion:
2124   //   if Shamt-XLEN < 0: // Shamt < XLEN
2125   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
2126   //     Hi = Hi >>s Shamt
2127   //   else:
2128   //     Lo = Hi >>s (Shamt-XLEN);
2129   //     Hi = Hi >>s (XLEN-1)
2130   //
2131   // SRL expansion:
2132   //   if Shamt-XLEN < 0: // Shamt < XLEN
2133   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
2134   //     Hi = Hi >>u Shamt
2135   //   else:
2136   //     Lo = Hi >>u (Shamt-XLEN);
2137   //     Hi = 0;
2138 
2139   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
2140 
2141   SDValue Zero = DAG.getConstant(0, DL, VT);
2142   SDValue One = DAG.getConstant(1, DL, VT);
2143   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
2144   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
2145   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
2146   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
2147 
2148   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
2149   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
2150   SDValue ShiftLeftHi =
2151       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
2152   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
2153   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
2154   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
2155   SDValue HiFalse =
2156       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
2157 
2158   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
2159 
2160   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
2161   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
2162 
2163   SDValue Parts[2] = {Lo, Hi};
2164   return DAG.getMergeValues(Parts, DL);
2165 }
2166 
2167 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
2168 // illegal (currently only vXi64 RV32).
2169 // FIXME: We could also catch non-constant sign-extended i32 values and lower
2170 // them to SPLAT_VECTOR_I64
2171 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
2172                                                      SelectionDAG &DAG) const {
2173   SDLoc DL(Op);
2174   EVT VecVT = Op.getValueType();
2175   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
2176          "Unexpected SPLAT_VECTOR_PARTS lowering");
2177 
2178   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
2179   SDValue Lo = Op.getOperand(0);
2180   SDValue Hi = Op.getOperand(1);
2181 
2182   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2183     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2184     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2185     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2186     // node in order to try and match RVV vector/scalar instructions.
2187     if ((LoC >> 31) == HiC)
2188       return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
2189   }
2190 
2191   // Else, on RV32 we lower an i64-element SPLAT_VECTOR thus, being careful not
2192   // to accidentally sign-extend the 32-bit halves to the e64 SEW:
2193   // vmv.v.x vX, hi
2194   // vsll.vx vX, vX, /*32*/
2195   // vmv.v.x vY, lo
2196   // vsll.vx vY, vY, /*32*/
2197   // vsrl.vx vY, vY, /*32*/
2198   // vor.vv vX, vX, vY
2199   SDValue ThirtyTwoV = DAG.getConstant(32, DL, VecVT);
2200 
2201   Lo = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
2202   Lo = DAG.getNode(ISD::SHL, DL, VecVT, Lo, ThirtyTwoV);
2203   Lo = DAG.getNode(ISD::SRL, DL, VecVT, Lo, ThirtyTwoV);
2204 
2205   if (isNullConstant(Hi))
2206     return Lo;
2207 
2208   Hi = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Hi);
2209   Hi = DAG.getNode(ISD::SHL, DL, VecVT, Hi, ThirtyTwoV);
2210 
2211   return DAG.getNode(ISD::OR, DL, VecVT, Lo, Hi);
2212 }
2213 
2214 // Custom-lower extensions from mask vectors by using a vselect either with 1
2215 // for zero/any-extension or -1 for sign-extension:
2216 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
2217 // Note that any-extension is lowered identically to zero-extension.
2218 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
2219                                                 int64_t ExtTrueVal) const {
2220   SDLoc DL(Op);
2221   MVT VecVT = Op.getSimpleValueType();
2222   SDValue Src = Op.getOperand(0);
2223   // Only custom-lower extensions from mask types
2224   assert(Src.getValueType().isVector() &&
2225          Src.getValueType().getVectorElementType() == MVT::i1);
2226 
2227   MVT XLenVT = Subtarget.getXLenVT();
2228   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
2229   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
2230 
2231   if (VecVT.isScalableVector()) {
2232     // Be careful not to introduce illegal scalar types at this stage, and be
2233     // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
2234     // illegal and must be expanded. Since we know that the constants are
2235     // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly.
2236     bool IsRV32E64 =
2237         !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
2238 
2239     if (!IsRV32E64) {
2240       SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
2241       SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
2242     } else {
2243       SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero);
2244       SplatTrueVal =
2245           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal);
2246     }
2247 
2248     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
2249   }
2250 
2251   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
2252   MVT I1ContainerVT =
2253       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
2254 
2255   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
2256 
2257   SDValue Mask, VL;
2258   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
2259 
2260   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL);
2261   SplatTrueVal =
2262       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL);
2263   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
2264                                SplatTrueVal, SplatZero, VL);
2265 
2266   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
2267 }
2268 
2269 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
2270     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
2271   MVT ExtVT = Op.getSimpleValueType();
2272   // Only custom-lower extensions from fixed-length vector types.
2273   if (!ExtVT.isFixedLengthVector())
2274     return Op;
2275   MVT VT = Op.getOperand(0).getSimpleValueType();
2276   // Grab the canonical container type for the extended type. Infer the smaller
2277   // type from that to ensure the same number of vector elements, as we know
2278   // the LMUL will be sufficient to hold the smaller type.
2279   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
2280   // Get the extended container type manually to ensure the same number of
2281   // vector elements between source and dest.
2282   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
2283                                      ContainerExtVT.getVectorElementCount());
2284 
2285   SDValue Op1 =
2286       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
2287 
2288   SDLoc DL(Op);
2289   SDValue Mask, VL;
2290   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2291 
2292   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
2293 
2294   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
2295 }
2296 
2297 // Custom-lower truncations from vectors to mask vectors by using a mask and a
2298 // setcc operation:
2299 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
2300 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
2301                                                   SelectionDAG &DAG) const {
2302   SDLoc DL(Op);
2303   EVT MaskVT = Op.getValueType();
2304   // Only expect to custom-lower truncations to mask types
2305   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
2306          "Unexpected type for vector mask lowering");
2307   SDValue Src = Op.getOperand(0);
2308   MVT VecVT = Src.getSimpleValueType();
2309 
2310   // If this is a fixed vector, we need to convert it to a scalable vector.
2311   MVT ContainerVT = VecVT;
2312   if (VecVT.isFixedLengthVector()) {
2313     ContainerVT = getContainerForFixedLengthVector(VecVT);
2314     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
2315   }
2316 
2317   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
2318   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
2319 
2320   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne);
2321   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero);
2322 
2323   if (VecVT.isScalableVector()) {
2324     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
2325     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
2326   }
2327 
2328   SDValue Mask, VL;
2329   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
2330 
2331   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2332   SDValue Trunc =
2333       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
2334   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
2335                       DAG.getCondCode(ISD::SETNE), Mask, VL);
2336   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
2337 }
2338 
2339 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
2340 // first position of a vector, and that vector is slid up to the insert index.
2341 // By limiting the active vector length to index+1 and merging with the
2342 // original vector (with an undisturbed tail policy for elements >= VL), we
2343 // achieve the desired result of leaving all elements untouched except the one
2344 // at VL-1, which is replaced with the desired value.
2345 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
2346                                                     SelectionDAG &DAG) const {
2347   SDLoc DL(Op);
2348   MVT VecVT = Op.getSimpleValueType();
2349   SDValue Vec = Op.getOperand(0);
2350   SDValue Val = Op.getOperand(1);
2351   SDValue Idx = Op.getOperand(2);
2352 
2353   MVT ContainerVT = VecVT;
2354   // If the operand is a fixed-length vector, convert to a scalable one.
2355   if (VecVT.isFixedLengthVector()) {
2356     ContainerVT = getContainerForFixedLengthVector(VecVT);
2357     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2358   }
2359 
2360   MVT XLenVT = Subtarget.getXLenVT();
2361 
2362   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
2363   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
2364   // Even i64-element vectors on RV32 can be lowered without scalar
2365   // legalization if the most-significant 32 bits of the value are not affected
2366   // by the sign-extension of the lower 32 bits.
2367   // TODO: We could also catch sign extensions of a 32-bit value.
2368   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
2369     const auto *CVal = cast<ConstantSDNode>(Val);
2370     if (isInt<32>(CVal->getSExtValue())) {
2371       IsLegalInsert = true;
2372       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
2373     }
2374   }
2375 
2376   SDValue Mask, VL;
2377   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
2378 
2379   SDValue ValInVec;
2380 
2381   if (IsLegalInsert) {
2382     if (isNullConstant(Idx))
2383       return DAG.getNode(RISCVISD::VMV_S_XF_VL, DL, ContainerVT, Vec, Val, VL);
2384     ValInVec = DAG.getNode(RISCVISD::VMV_S_XF_VL, DL, ContainerVT,
2385                            DAG.getUNDEF(ContainerVT), Val, VL);
2386   } else {
2387     // On RV32, i64-element vectors must be specially handled to place the
2388     // value at element 0, by using two vslide1up instructions in sequence on
2389     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
2390     // this.
2391     SDValue One = DAG.getConstant(1, DL, XLenVT);
2392     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
2393     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
2394     MVT I32ContainerVT =
2395         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
2396     SDValue I32Mask =
2397         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
2398     // Limit the active VL to two.
2399     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
2400     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
2401     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
2402     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero,
2403                            InsertI64VL);
2404     // First slide in the hi value, then the lo in underneath it.
2405     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
2406                            ValHi, I32Mask, InsertI64VL);
2407     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
2408                            ValLo, I32Mask, InsertI64VL);
2409     // Bitcast back to the right container type.
2410     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
2411   }
2412 
2413   // Now that the value is in a vector, slide it into position.
2414   SDValue InsertVL =
2415       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
2416   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
2417                                 ValInVec, Idx, Mask, InsertVL);
2418   if (!VecVT.isFixedLengthVector())
2419     return Slideup;
2420   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
2421 }
2422 
2423 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
2424 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
2425 // types this is done using VMV_X_S to allow us to glean information about the
2426 // sign bits of the result.
2427 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
2428                                                      SelectionDAG &DAG) const {
2429   SDLoc DL(Op);
2430   SDValue Idx = Op.getOperand(1);
2431   SDValue Vec = Op.getOperand(0);
2432   EVT EltVT = Op.getValueType();
2433   MVT VecVT = Vec.getSimpleValueType();
2434   MVT XLenVT = Subtarget.getXLenVT();
2435 
2436   if (VecVT.getVectorElementType() == MVT::i1) {
2437     // FIXME: For now we just promote to an i8 vector and extract from that,
2438     // but this is probably not optimal.
2439     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
2440     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
2441     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
2442   }
2443 
2444   // If this is a fixed vector, we need to convert it to a scalable vector.
2445   MVT ContainerVT = VecVT;
2446   if (VecVT.isFixedLengthVector()) {
2447     ContainerVT = getContainerForFixedLengthVector(VecVT);
2448     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2449   }
2450 
2451   // If the index is 0, the vector is already in the right position.
2452   if (!isNullConstant(Idx)) {
2453     // Use a VL of 1 to avoid processing more elements than we need.
2454     SDValue VL = DAG.getConstant(1, DL, XLenVT);
2455     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
2456     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
2457     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
2458                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
2459   }
2460 
2461   if (!EltVT.isInteger()) {
2462     // Floating-point extracts are handled in TableGen.
2463     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
2464                        DAG.getConstant(0, DL, XLenVT));
2465   }
2466 
2467   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
2468   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
2469 }
2470 
2471 // Called by type legalization to handle splat of i64 on RV32.
2472 // FIXME: We can optimize this when the type has sign or zero bits in one
2473 // of the halves.
2474 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar,
2475                                    SDValue VL, SelectionDAG &DAG) {
2476   SDValue ThirtyTwoV = DAG.getConstant(32, DL, VT);
2477   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2478                            DAG.getConstant(0, DL, MVT::i32));
2479   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2480                            DAG.getConstant(1, DL, MVT::i32));
2481 
2482   // vmv.v.x vX, hi
2483   // vsll.vx vX, vX, /*32*/
2484   // vmv.v.x vY, lo
2485   // vsll.vx vY, vY, /*32*/
2486   // vsrl.vx vY, vY, /*32*/
2487   // vor.vv vX, vX, vY
2488   MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
2489   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
2490   Lo = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL);
2491   Lo = DAG.getNode(RISCVISD::SHL_VL, DL, VT, Lo, ThirtyTwoV, Mask, VL);
2492   Lo = DAG.getNode(RISCVISD::SRL_VL, DL, VT, Lo, ThirtyTwoV, Mask, VL);
2493 
2494   Hi = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Hi, VL);
2495   Hi = DAG.getNode(RISCVISD::SHL_VL, DL, VT, Hi, ThirtyTwoV, Mask, VL);
2496 
2497   return DAG.getNode(RISCVISD::OR_VL, DL, VT, Lo, Hi, Mask, VL);
2498 }
2499 
2500 // Some RVV intrinsics may claim that they want an integer operand to be
2501 // promoted or expanded.
2502 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG,
2503                                           const RISCVSubtarget &Subtarget) {
2504   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2505           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
2506          "Unexpected opcode");
2507 
2508   if (!Subtarget.hasStdExtV())
2509     return SDValue();
2510 
2511   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
2512   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
2513   SDLoc DL(Op);
2514 
2515   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
2516       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
2517   if (!II || !II->SplatOperand)
2518     return SDValue();
2519 
2520   unsigned SplatOp = II->SplatOperand + HasChain;
2521   assert(SplatOp < Op.getNumOperands());
2522 
2523   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
2524   SDValue &ScalarOp = Operands[SplatOp];
2525   MVT OpVT = ScalarOp.getSimpleValueType();
2526   MVT VT = Op.getSimpleValueType();
2527   MVT XLenVT = Subtarget.getXLenVT();
2528 
2529   // If this isn't a scalar, or its type is XLenVT we're done.
2530   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
2531     return SDValue();
2532 
2533   // Simplest case is that the operand needs to be promoted to XLenVT.
2534   if (OpVT.bitsLT(XLenVT)) {
2535     // If the operand is a constant, sign extend to increase our chances
2536     // of being able to use a .vi instruction. ANY_EXTEND would become a
2537     // a zero extend and the simm5 check in isel would fail.
2538     // FIXME: Should we ignore the upper bits in isel instead?
2539     unsigned ExtOpc =
2540         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2541     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
2542     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
2543   }
2544 
2545   // The more complex case is when the scalar is larger than XLenVT.
2546   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
2547          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
2548 
2549   // If this is a sign-extended 32-bit constant, we can truncate it and rely
2550   // on the instruction to sign-extend since SEW>XLEN.
2551   if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
2552     if (isInt<32>(CVal->getSExtValue())) {
2553       ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
2554       return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
2555     }
2556   }
2557 
2558   // We need to convert the scalar to a splat vector.
2559   // FIXME: Can we implicitly truncate the scalar if it is known to
2560   // be sign extended?
2561   // VL should be the last operand.
2562   SDValue VL = Op.getOperand(Op.getNumOperands() - 1);
2563   assert(VL.getValueType() == XLenVT);
2564   ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG);
2565   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
2566 }
2567 
2568 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2569                                                      SelectionDAG &DAG) const {
2570   unsigned IntNo = Op.getConstantOperandVal(0);
2571   SDLoc DL(Op);
2572   MVT XLenVT = Subtarget.getXLenVT();
2573 
2574   switch (IntNo) {
2575   default:
2576     break; // Don't custom lower most intrinsics.
2577   case Intrinsic::thread_pointer: {
2578     EVT PtrVT = getPointerTy(DAG.getDataLayout());
2579     return DAG.getRegister(RISCV::X4, PtrVT);
2580   }
2581   case Intrinsic::riscv_vmv_x_s:
2582     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
2583     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
2584                        Op.getOperand(1));
2585   case Intrinsic::riscv_vmv_v_x: {
2586     SDValue Scalar = Op.getOperand(1);
2587     if (Scalar.getValueType().bitsLE(XLenVT)) {
2588       unsigned ExtOpc =
2589           isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2590       Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2591       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, Op.getValueType(), Scalar,
2592                          Op.getOperand(2));
2593     }
2594 
2595     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
2596 
2597     // If this is a sign-extended 32-bit constant, we can truncate it and rely
2598     // on the instruction to sign-extend since SEW>XLEN.
2599     if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) {
2600       if (isInt<32>(CVal->getSExtValue()))
2601         return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, Op.getValueType(),
2602                            DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32),
2603                            Op.getOperand(2));
2604     }
2605 
2606     // Otherwise use the more complicated splatting algorithm.
2607     return splatSplitI64WithVL(DL, Op.getSimpleValueType(), Scalar,
2608                                Op.getOperand(2), DAG);
2609   }
2610   case Intrinsic::riscv_vfmv_v_f:
2611     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
2612                        Op.getOperand(1), Op.getOperand(2));
2613   case Intrinsic::riscv_vmv_s_x: {
2614     SDValue Scalar = Op.getOperand(2);
2615 
2616     if (Scalar.getValueType().bitsLE(XLenVT)) {
2617       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
2618       return DAG.getNode(RISCVISD::VMV_S_XF_VL, DL, Op.getValueType(),
2619                          Op.getOperand(1), Scalar, Op.getOperand(3));
2620     }
2621 
2622     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
2623 
2624     // This is an i64 value that lives in two scalar registers. We have to
2625     // insert this in a convoluted way. First we build vXi64 splat containing
2626     // the/ two values that we assemble using some bit math. Next we'll use
2627     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
2628     // to merge element 0 from our splat into the source vector.
2629     // FIXME: This is probably not the best way to do this, but it is
2630     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
2631     // point.
2632     //   vmv.v.x vX, hi
2633     //   vsll.vx vX, vX, /*32*/
2634     //   vmv.v.x vY, lo
2635     //   vsll.vx vY, vY, /*32*/
2636     //   vsrl.vx vY, vY, /*32*/
2637     //   vor.vv vX, vX, vY
2638     //
2639     //   vid.v      vVid
2640     //   vmseq.vx   mMask, vVid, 0
2641     //   vmerge.vvm vDest, vSrc, vVal, mMask
2642     MVT VT = Op.getSimpleValueType();
2643     SDValue Vec = Op.getOperand(1);
2644     SDValue VL = Op.getOperand(3);
2645 
2646     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
2647     SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
2648                                       DAG.getConstant(0, DL, MVT::i32), VL);
2649 
2650     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
2651     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
2652     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
2653     SDValue SelectCond =
2654         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
2655                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
2656     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
2657                        Vec, VL);
2658   }
2659   }
2660 
2661   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
2662 }
2663 
2664 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
2665                                                     SelectionDAG &DAG) const {
2666   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
2667 }
2668 
2669 static MVT getLMUL1VT(MVT VT) {
2670   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
2671          "Unexpected vector MVT");
2672   return MVT::getScalableVectorVT(
2673       VT.getVectorElementType(),
2674       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
2675 }
2676 
2677 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
2678   switch (ISDOpcode) {
2679   default:
2680     llvm_unreachable("Unhandled reduction");
2681   case ISD::VECREDUCE_ADD:
2682     return RISCVISD::VECREDUCE_ADD_VL;
2683   case ISD::VECREDUCE_UMAX:
2684     return RISCVISD::VECREDUCE_UMAX_VL;
2685   case ISD::VECREDUCE_SMAX:
2686     return RISCVISD::VECREDUCE_SMAX_VL;
2687   case ISD::VECREDUCE_UMIN:
2688     return RISCVISD::VECREDUCE_UMIN_VL;
2689   case ISD::VECREDUCE_SMIN:
2690     return RISCVISD::VECREDUCE_SMIN_VL;
2691   case ISD::VECREDUCE_AND:
2692     return RISCVISD::VECREDUCE_AND_VL;
2693   case ISD::VECREDUCE_OR:
2694     return RISCVISD::VECREDUCE_OR_VL;
2695   case ISD::VECREDUCE_XOR:
2696     return RISCVISD::VECREDUCE_XOR_VL;
2697   }
2698 }
2699 
2700 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
2701                                             SelectionDAG &DAG) const {
2702   SDLoc DL(Op);
2703   SDValue Vec = Op.getOperand(0);
2704   EVT VecEVT = Vec.getValueType();
2705 
2706   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
2707 
2708   // Due to ordering in legalize types we may have a vector type that needs to
2709   // be split. Do that manually so we can get down to a legal type.
2710   while (getTypeAction(*DAG.getContext(), VecEVT) ==
2711          TargetLowering::TypeSplitVector) {
2712     SDValue Lo, Hi;
2713     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
2714     VecEVT = Lo.getValueType();
2715     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
2716   }
2717 
2718   // TODO: The type may need to be widened rather than split. Or widened before
2719   // it can be split.
2720   if (!isTypeLegal(VecEVT))
2721     return SDValue();
2722 
2723   MVT VecVT = VecEVT.getSimpleVT();
2724   MVT VecEltVT = VecVT.getVectorElementType();
2725   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
2726 
2727   MVT ContainerVT = VecVT;
2728   if (VecVT.isFixedLengthVector()) {
2729     ContainerVT = getContainerForFixedLengthVector(VecVT);
2730     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2731   }
2732 
2733   MVT M1VT = getLMUL1VT(ContainerVT);
2734 
2735   SDValue Mask, VL;
2736   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
2737 
2738   // FIXME: This is a VLMAX splat which might be too large and can prevent
2739   // vsetvli removal.
2740   SDValue NeutralElem =
2741       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
2742   SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem);
2743   SDValue Reduction =
2744       DAG.getNode(RVVOpcode, DL, M1VT, Vec, IdentitySplat, Mask, VL);
2745   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
2746                              DAG.getConstant(0, DL, Subtarget.getXLenVT()));
2747   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
2748 }
2749 
2750 // Given a reduction op, this function returns the matching reduction opcode,
2751 // the vector SDValue and the scalar SDValue required to lower this to a
2752 // RISCVISD node.
2753 static std::tuple<unsigned, SDValue, SDValue>
2754 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
2755   SDLoc DL(Op);
2756   switch (Op.getOpcode()) {
2757   default:
2758     llvm_unreachable("Unhandled reduction");
2759   case ISD::VECREDUCE_FADD:
2760     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0),
2761                            DAG.getConstantFP(0.0, DL, EltVT));
2762   case ISD::VECREDUCE_SEQ_FADD:
2763     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
2764                            Op.getOperand(0));
2765   }
2766 }
2767 
2768 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
2769                                               SelectionDAG &DAG) const {
2770   SDLoc DL(Op);
2771   MVT VecEltVT = Op.getSimpleValueType();
2772 
2773   unsigned RVVOpcode;
2774   SDValue VectorVal, ScalarVal;
2775   std::tie(RVVOpcode, VectorVal, ScalarVal) =
2776       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
2777   MVT VecVT = VectorVal.getSimpleValueType();
2778 
2779   MVT ContainerVT = VecVT;
2780   if (VecVT.isFixedLengthVector()) {
2781     ContainerVT = getContainerForFixedLengthVector(VecVT);
2782     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
2783   }
2784 
2785   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
2786 
2787   SDValue Mask, VL;
2788   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
2789 
2790   // FIXME: This is a VLMAX splat which might be too large and can prevent
2791   // vsetvli removal.
2792   SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal);
2793   SDValue Reduction =
2794       DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat, Mask, VL);
2795   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
2796                      DAG.getConstant(0, DL, Subtarget.getXLenVT()));
2797 }
2798 
2799 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
2800                                                    SelectionDAG &DAG) const {
2801   SDValue Vec = Op.getOperand(0);
2802   SDValue SubVec = Op.getOperand(1);
2803   MVT VecVT = Vec.getSimpleValueType();
2804   MVT SubVecVT = SubVec.getSimpleValueType();
2805 
2806   SDLoc DL(Op);
2807   MVT XLenVT = Subtarget.getXLenVT();
2808   unsigned OrigIdx = Op.getConstantOperandVal(2);
2809   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
2810 
2811   // We don't have the ability to slide mask vectors up indexed by their i1
2812   // elements; the smallest we can do is i8. Often we are able to bitcast to
2813   // equivalent i8 vectors. Note that when inserting a fixed-length vector
2814   // into a scalable one, we might not necessarily have enough scalable
2815   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
2816   if (SubVecVT.getVectorElementType() == MVT::i1 &&
2817       (OrigIdx != 0 || !Vec.isUndef())) {
2818     if (VecVT.getVectorMinNumElements() >= 8 &&
2819         SubVecVT.getVectorMinNumElements() >= 8) {
2820       assert(OrigIdx % 8 == 0 && "Invalid index");
2821       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
2822              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
2823              "Unexpected mask vector lowering");
2824       OrigIdx /= 8;
2825       SubVecVT =
2826           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
2827                            SubVecVT.isScalableVector());
2828       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
2829                                VecVT.isScalableVector());
2830       Vec = DAG.getBitcast(VecVT, Vec);
2831       SubVec = DAG.getBitcast(SubVecVT, SubVec);
2832     } else {
2833       // We can't slide this mask vector up indexed by its i1 elements.
2834       // This poses a problem when we wish to insert a scalable vector which
2835       // can't be re-expressed as a larger type. Just choose the slow path and
2836       // extend to a larger type, then truncate back down.
2837       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
2838       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
2839       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
2840       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
2841       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
2842                         Op.getOperand(2));
2843       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
2844       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
2845     }
2846   }
2847 
2848   // If the subvector vector is a fixed-length type, we cannot use subregister
2849   // manipulation to simplify the codegen; we don't know which register of a
2850   // LMUL group contains the specific subvector as we only know the minimum
2851   // register size. Therefore we must slide the vector group up the full
2852   // amount.
2853   if (SubVecVT.isFixedLengthVector()) {
2854     if (OrigIdx == 0 && Vec.isUndef())
2855       return Op;
2856     MVT ContainerVT = VecVT;
2857     if (VecVT.isFixedLengthVector()) {
2858       ContainerVT = getContainerForFixedLengthVector(VecVT);
2859       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2860     }
2861     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
2862                          DAG.getUNDEF(ContainerVT), SubVec,
2863                          DAG.getConstant(0, DL, XLenVT));
2864     SDValue Mask =
2865         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
2866     // Set the vector length to only the number of elements we care about. Note
2867     // that for slideup this includes the offset.
2868     SDValue VL =
2869         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
2870     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
2871     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
2872                                   SubVec, SlideupAmt, Mask, VL);
2873     if (!VecVT.isFixedLengthVector())
2874       return Slideup;
2875     return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
2876   }
2877 
2878   unsigned SubRegIdx, RemIdx;
2879   std::tie(SubRegIdx, RemIdx) =
2880       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
2881           VecVT, SubVecVT, OrigIdx, TRI);
2882 
2883   RISCVVLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
2884   bool IsSubVecPartReg = SubVecLMUL == RISCVVLMUL::LMUL_F2 ||
2885                          SubVecLMUL == RISCVVLMUL::LMUL_F4 ||
2886                          SubVecLMUL == RISCVVLMUL::LMUL_F8;
2887 
2888   // 1. If the Idx has been completely eliminated and this subvector's size is
2889   // a vector register or a multiple thereof, or the surrounding elements are
2890   // undef, then this is a subvector insert which naturally aligns to a vector
2891   // register. These can easily be handled using subregister manipulation.
2892   // 2. If the subvector is smaller than a vector register, then the insertion
2893   // must preserve the undisturbed elements of the register. We do this by
2894   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
2895   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
2896   // subvector within the vector register, and an INSERT_SUBVECTOR of that
2897   // LMUL=1 type back into the larger vector (resolving to another subregister
2898   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
2899   // to avoid allocating a large register group to hold our subvector.
2900   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
2901     return Op;
2902 
2903   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
2904   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
2905   // (in our case undisturbed). This means we can set up a subvector insertion
2906   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
2907   // size of the subvector.
2908   MVT InterSubVT = VecVT;
2909   SDValue AlignedExtract = Vec;
2910   unsigned AlignedIdx = OrigIdx - RemIdx;
2911   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
2912     InterSubVT = getLMUL1VT(VecVT);
2913     // Extract a subvector equal to the nearest full vector register type. This
2914     // should resolve to a EXTRACT_SUBREG instruction.
2915     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
2916                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
2917   }
2918 
2919   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
2920   // For scalable vectors this must be further multiplied by vscale.
2921   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
2922 
2923   SDValue Mask, VL;
2924   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
2925 
2926   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
2927   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
2928   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
2929   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
2930 
2931   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
2932                        DAG.getUNDEF(InterSubVT), SubVec,
2933                        DAG.getConstant(0, DL, XLenVT));
2934 
2935   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
2936                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
2937 
2938   // If required, insert this subvector back into the correct vector register.
2939   // This should resolve to an INSERT_SUBREG instruction.
2940   if (VecVT.bitsGT(InterSubVT))
2941     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
2942                           DAG.getConstant(AlignedIdx, DL, XLenVT));
2943 
2944   // We might have bitcast from a mask type: cast back to the original type if
2945   // required.
2946   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
2947 }
2948 
2949 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
2950                                                     SelectionDAG &DAG) const {
2951   SDValue Vec = Op.getOperand(0);
2952   MVT SubVecVT = Op.getSimpleValueType();
2953   MVT VecVT = Vec.getSimpleValueType();
2954 
2955   SDLoc DL(Op);
2956   MVT XLenVT = Subtarget.getXLenVT();
2957   unsigned OrigIdx = Op.getConstantOperandVal(1);
2958   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
2959 
2960   // We don't have the ability to slide mask vectors down indexed by their i1
2961   // elements; the smallest we can do is i8. Often we are able to bitcast to
2962   // equivalent i8 vectors. Note that when extracting a fixed-length vector
2963   // from a scalable one, we might not necessarily have enough scalable
2964   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
2965   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
2966     if (VecVT.getVectorMinNumElements() >= 8 &&
2967         SubVecVT.getVectorMinNumElements() >= 8) {
2968       assert(OrigIdx % 8 == 0 && "Invalid index");
2969       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
2970              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
2971              "Unexpected mask vector lowering");
2972       OrigIdx /= 8;
2973       SubVecVT =
2974           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
2975                            SubVecVT.isScalableVector());
2976       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
2977                                VecVT.isScalableVector());
2978       Vec = DAG.getBitcast(VecVT, Vec);
2979     } else {
2980       // We can't slide this mask vector down, indexed by its i1 elements.
2981       // This poses a problem when we wish to extract a scalable vector which
2982       // can't be re-expressed as a larger type. Just choose the slow path and
2983       // extend to a larger type, then truncate back down.
2984       // TODO: We could probably improve this when extracting certain fixed
2985       // from fixed, where we can extract as i8 and shift the correct element
2986       // right to reach the desired subvector?
2987       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
2988       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
2989       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
2990       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
2991                         Op.getOperand(1));
2992       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
2993       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
2994     }
2995   }
2996 
2997   // If the subvector vector is a fixed-length type, we cannot use subregister
2998   // manipulation to simplify the codegen; we don't know which register of a
2999   // LMUL group contains the specific subvector as we only know the minimum
3000   // register size. Therefore we must slide the vector group down the full
3001   // amount.
3002   if (SubVecVT.isFixedLengthVector()) {
3003     // With an index of 0 this is a cast-like subvector, which can be performed
3004     // with subregister operations.
3005     if (OrigIdx == 0)
3006       return Op;
3007     MVT ContainerVT = VecVT;
3008     if (VecVT.isFixedLengthVector()) {
3009       ContainerVT = getContainerForFixedLengthVector(VecVT);
3010       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3011     }
3012     SDValue Mask =
3013         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
3014     // Set the vector length to only the number of elements we care about. This
3015     // avoids sliding down elements we're going to discard straight away.
3016     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
3017     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
3018     SDValue Slidedown =
3019         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
3020                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
3021     // Now we can use a cast-like subvector extract to get the result.
3022     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
3023                        DAG.getConstant(0, DL, XLenVT));
3024   }
3025 
3026   unsigned SubRegIdx, RemIdx;
3027   std::tie(SubRegIdx, RemIdx) =
3028       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
3029           VecVT, SubVecVT, OrigIdx, TRI);
3030 
3031   // If the Idx has been completely eliminated then this is a subvector extract
3032   // which naturally aligns to a vector register. These can easily be handled
3033   // using subregister manipulation.
3034   if (RemIdx == 0)
3035     return Op;
3036 
3037   // Else we must shift our vector register directly to extract the subvector.
3038   // Do this using VSLIDEDOWN.
3039 
3040   // If the vector type is an LMUL-group type, extract a subvector equal to the
3041   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
3042   // instruction.
3043   MVT InterSubVT = VecVT;
3044   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
3045     InterSubVT = getLMUL1VT(VecVT);
3046     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
3047                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
3048   }
3049 
3050   // Slide this vector register down by the desired number of elements in order
3051   // to place the desired subvector starting at element 0.
3052   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
3053   // For scalable vectors this must be further multiplied by vscale.
3054   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
3055 
3056   SDValue Mask, VL;
3057   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
3058   SDValue Slidedown =
3059       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
3060                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
3061 
3062   // Now the vector is in the right position, extract our final subvector. This
3063   // should resolve to a COPY.
3064   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
3065                           DAG.getConstant(0, DL, XLenVT));
3066 
3067   // We might have bitcast from a mask type: cast back to the original type if
3068   // required.
3069   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
3070 }
3071 
3072 // Implement vector_reverse using vrgather.vv with indices determined by
3073 // subtracting the id of each element from (VLMAX-1). This will convert
3074 // the indices like so:
3075 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
3076 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
3077 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
3078                                                  SelectionDAG &DAG) const {
3079   SDLoc DL(Op);
3080   MVT VecVT = Op.getSimpleValueType();
3081   unsigned EltSize = VecVT.getScalarSizeInBits();
3082   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
3083 
3084   unsigned MaxVLMAX = 0;
3085   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
3086   if (VectorBitsMax != 0)
3087     MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock;
3088 
3089   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
3090   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
3091 
3092   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
3093   // to use vrgatherei16.vv.
3094   // TODO: It's also possible to use vrgatherei16.vv for other types to
3095   // decrease register width for the index calculation.
3096   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
3097     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
3098     // Reverse each half, then reassemble them in reverse order.
3099     // NOTE: It's also possible that after splitting that VLMAX no longer
3100     // requires vrgatherei16.vv.
3101     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
3102       SDValue Lo, Hi;
3103       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
3104       EVT LoVT, HiVT;
3105       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
3106       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
3107       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
3108       // Reassemble the low and high pieces reversed.
3109       // FIXME: This is a CONCAT_VECTORS.
3110       SDValue Res =
3111           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
3112                       DAG.getIntPtrConstant(0, DL));
3113       return DAG.getNode(
3114           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
3115           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
3116     }
3117 
3118     // Just promote the int type to i16 which will double the LMUL.
3119     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
3120     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
3121   }
3122 
3123   MVT XLenVT = Subtarget.getXLenVT();
3124   SDValue Mask, VL;
3125   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
3126 
3127   // Calculate VLMAX-1 for the desired SEW.
3128   unsigned MinElts = VecVT.getVectorMinNumElements();
3129   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
3130                               DAG.getConstant(MinElts, DL, XLenVT));
3131   SDValue VLMinus1 =
3132       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
3133 
3134   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
3135   bool IsRV32E64 =
3136       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
3137   SDValue SplatVL;
3138   if (!IsRV32E64)
3139     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
3140   else
3141     SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1);
3142 
3143   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
3144   SDValue Indices =
3145       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
3146 
3147   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
3148 }
3149 
3150 SDValue
3151 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
3152                                                      SelectionDAG &DAG) const {
3153   auto *Load = cast<LoadSDNode>(Op);
3154 
3155   SDLoc DL(Op);
3156   MVT VT = Op.getSimpleValueType();
3157   MVT ContainerVT = getContainerForFixedLengthVector(VT);
3158 
3159   SDValue VL =
3160       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
3161 
3162   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
3163   SDValue NewLoad = DAG.getMemIntrinsicNode(
3164       RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
3165       Load->getMemoryVT(), Load->getMemOperand());
3166 
3167   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
3168   return DAG.getMergeValues({Result, Load->getChain()}, DL);
3169 }
3170 
3171 SDValue
3172 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
3173                                                       SelectionDAG &DAG) const {
3174   auto *Store = cast<StoreSDNode>(Op);
3175 
3176   SDLoc DL(Op);
3177   MVT VT = Store->getValue().getSimpleValueType();
3178 
3179   // FIXME: We probably need to zero any extra bits in a byte for mask stores.
3180   // This is tricky to do.
3181 
3182   MVT ContainerVT = getContainerForFixedLengthVector(VT);
3183 
3184   SDValue VL =
3185       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
3186 
3187   SDValue NewValue =
3188       convertToScalableVector(ContainerVT, Store->getValue(), DAG, Subtarget);
3189   return DAG.getMemIntrinsicNode(
3190       RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
3191       {Store->getChain(), NewValue, Store->getBasePtr(), VL},
3192       Store->getMemoryVT(), Store->getMemOperand());
3193 }
3194 
3195 SDValue RISCVTargetLowering::lowerFixedLengthVectorMaskedLoadToRVV(
3196     SDValue Op, SelectionDAG &DAG) const {
3197   auto *Load = cast<MaskedLoadSDNode>(Op);
3198 
3199   SDLoc DL(Op);
3200   MVT VT = Op.getSimpleValueType();
3201   MVT ContainerVT = getContainerForFixedLengthVector(VT);
3202   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3203   MVT XLenVT = Subtarget.getXLenVT();
3204 
3205   SDValue Mask =
3206       convertToScalableVector(MaskVT, Load->getMask(), DAG, Subtarget);
3207   SDValue PassThru =
3208       convertToScalableVector(ContainerVT, Load->getPassThru(), DAG, Subtarget);
3209   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
3210 
3211   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
3212   SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT);
3213   SDValue Ops[] = {Load->getChain(),   IntID, PassThru,
3214                    Load->getBasePtr(), Mask,  VL};
3215   SDValue NewLoad =
3216       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
3217                               Load->getMemoryVT(), Load->getMemOperand());
3218 
3219   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
3220   return DAG.getMergeValues({Result, Load->getChain()}, DL);
3221 }
3222 
3223 SDValue RISCVTargetLowering::lowerFixedLengthVectorMaskedStoreToRVV(
3224     SDValue Op, SelectionDAG &DAG) const {
3225   auto *Store = cast<MaskedStoreSDNode>(Op);
3226 
3227   SDLoc DL(Op);
3228   SDValue Val = Store->getValue();
3229   MVT VT = Val.getSimpleValueType();
3230   MVT ContainerVT = getContainerForFixedLengthVector(VT);
3231   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3232   MVT XLenVT = Subtarget.getXLenVT();
3233 
3234   Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
3235   SDValue Mask =
3236       convertToScalableVector(MaskVT, Store->getMask(), DAG, Subtarget);
3237 
3238   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
3239 
3240   SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vse_mask, DL, XLenVT);
3241   return DAG.getMemIntrinsicNode(
3242       ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
3243       {Store->getChain(), IntID, Val, Store->getBasePtr(), Mask, VL},
3244       Store->getMemoryVT(), Store->getMemOperand());
3245 }
3246 
3247 SDValue
3248 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
3249                                                       SelectionDAG &DAG) const {
3250   MVT InVT = Op.getOperand(0).getSimpleValueType();
3251   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
3252 
3253   MVT VT = Op.getSimpleValueType();
3254 
3255   SDValue Op1 =
3256       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
3257   SDValue Op2 =
3258       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
3259 
3260   SDLoc DL(Op);
3261   SDValue VL =
3262       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
3263 
3264   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3265 
3266   bool Invert = false;
3267   Optional<unsigned> LogicOpc;
3268   if (ContainerVT.isFloatingPoint()) {
3269     bool Swap = false;
3270     switch (CC) {
3271     default:
3272       break;
3273     case ISD::SETULE:
3274     case ISD::SETULT:
3275       Swap = true;
3276       LLVM_FALLTHROUGH;
3277     case ISD::SETUGE:
3278     case ISD::SETUGT:
3279       CC = getSetCCInverse(CC, ContainerVT);
3280       Invert = true;
3281       break;
3282     case ISD::SETOGE:
3283     case ISD::SETOGT:
3284     case ISD::SETGE:
3285     case ISD::SETGT:
3286       Swap = true;
3287       break;
3288     case ISD::SETUEQ:
3289       // Use !((OLT Op1, Op2) || (OLT Op2, Op1))
3290       Invert = true;
3291       LogicOpc = RISCVISD::VMOR_VL;
3292       CC = ISD::SETOLT;
3293       break;
3294     case ISD::SETONE:
3295       // Use ((OLT Op1, Op2) || (OLT Op2, Op1))
3296       LogicOpc = RISCVISD::VMOR_VL;
3297       CC = ISD::SETOLT;
3298       break;
3299     case ISD::SETO:
3300       // Use (OEQ Op1, Op1) && (OEQ Op2, Op2)
3301       LogicOpc = RISCVISD::VMAND_VL;
3302       CC = ISD::SETOEQ;
3303       break;
3304     case ISD::SETUO:
3305       // Use (UNE Op1, Op1) || (UNE Op2, Op2)
3306       LogicOpc = RISCVISD::VMOR_VL;
3307       CC = ISD::SETUNE;
3308       break;
3309     }
3310 
3311     if (Swap) {
3312       CC = getSetCCSwappedOperands(CC);
3313       std::swap(Op1, Op2);
3314     }
3315   }
3316 
3317   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3318   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3319 
3320   // There are 3 cases we need to emit.
3321   // 1. For (OEQ Op1, Op1) && (OEQ Op2, Op2) or (UNE Op1, Op1) || (UNE Op2, Op2)
3322   //    we need to compare each operand with itself.
3323   // 2. For (OLT Op1, Op2) || (OLT Op2, Op1) we need to compare Op1 and Op2 in
3324   //    both orders.
3325   // 3. For any other case we just need one compare with Op1 and Op2.
3326   SDValue Cmp;
3327   if (LogicOpc && (CC == ISD::SETOEQ || CC == ISD::SETUNE)) {
3328     Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op1,
3329                       DAG.getCondCode(CC), Mask, VL);
3330     SDValue Cmp2 = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op2, Op2,
3331                                DAG.getCondCode(CC), Mask, VL);
3332     Cmp = DAG.getNode(*LogicOpc, DL, MaskVT, Cmp, Cmp2, VL);
3333   } else {
3334     Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
3335                       DAG.getCondCode(CC), Mask, VL);
3336     if (LogicOpc) {
3337       SDValue Cmp2 = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op2, Op1,
3338                                  DAG.getCondCode(CC), Mask, VL);
3339       Cmp = DAG.getNode(*LogicOpc, DL, MaskVT, Cmp, Cmp2, VL);
3340     }
3341   }
3342 
3343   if (Invert) {
3344     SDValue AllOnes = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3345     Cmp = DAG.getNode(RISCVISD::VMXOR_VL, DL, MaskVT, Cmp, AllOnes, VL);
3346   }
3347 
3348   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
3349 }
3350 
3351 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
3352     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
3353   MVT VT = Op.getSimpleValueType();
3354 
3355   if (VT.getVectorElementType() == MVT::i1)
3356     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
3357 
3358   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
3359 }
3360 
3361 // Lower vector ABS to smax(X, sub(0, X)).
3362 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
3363   SDLoc DL(Op);
3364   MVT VT = Op.getSimpleValueType();
3365   SDValue X = Op.getOperand(0);
3366 
3367   assert(VT.isFixedLengthVector() && "Unexpected type");
3368 
3369   MVT ContainerVT = getContainerForFixedLengthVector(VT);
3370   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
3371 
3372   SDValue Mask, VL;
3373   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3374 
3375   SDValue SplatZero =
3376       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
3377                   DAG.getConstant(0, DL, Subtarget.getXLenVT()));
3378   SDValue NegX =
3379       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
3380   SDValue Max =
3381       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
3382 
3383   return convertFromScalableVector(VT, Max, DAG, Subtarget);
3384 }
3385 
3386 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
3387     SDValue Op, SelectionDAG &DAG) const {
3388   SDLoc DL(Op);
3389   MVT VT = Op.getSimpleValueType();
3390   SDValue Mag = Op.getOperand(0);
3391   SDValue Sign = Op.getOperand(1);
3392   assert(Mag.getValueType() == Sign.getValueType() &&
3393          "Can only handle COPYSIGN with matching types.");
3394 
3395   MVT ContainerVT = getContainerForFixedLengthVector(VT);
3396   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
3397   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
3398 
3399   SDValue Mask, VL;
3400   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3401 
3402   SDValue CopySign =
3403       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
3404 
3405   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
3406 }
3407 
3408 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
3409     SDValue Op, SelectionDAG &DAG) const {
3410   MVT VT = Op.getSimpleValueType();
3411   MVT ContainerVT = getContainerForFixedLengthVector(VT);
3412 
3413   MVT I1ContainerVT =
3414       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3415 
3416   SDValue CC =
3417       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
3418   SDValue Op1 =
3419       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
3420   SDValue Op2 =
3421       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
3422 
3423   SDLoc DL(Op);
3424   SDValue Mask, VL;
3425   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3426 
3427   SDValue Select =
3428       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
3429 
3430   return convertFromScalableVector(VT, Select, DAG, Subtarget);
3431 }
3432 
3433 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
3434                                                unsigned NewOpc,
3435                                                bool HasMask) const {
3436   MVT VT = Op.getSimpleValueType();
3437   assert(useRVVForFixedLengthVectorVT(VT) &&
3438          "Only expected to lower fixed length vector operation!");
3439   MVT ContainerVT = getContainerForFixedLengthVector(VT);
3440 
3441   // Create list of operands by converting existing ones to scalable types.
3442   SmallVector<SDValue, 6> Ops;
3443   for (const SDValue &V : Op->op_values()) {
3444     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
3445 
3446     // Pass through non-vector operands.
3447     if (!V.getValueType().isVector()) {
3448       Ops.push_back(V);
3449       continue;
3450     }
3451 
3452     // "cast" fixed length vector to a scalable vector.
3453     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
3454            "Only fixed length vectors are supported!");
3455     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
3456   }
3457 
3458   SDLoc DL(Op);
3459   SDValue Mask, VL;
3460   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3461   if (HasMask)
3462     Ops.push_back(Mask);
3463   Ops.push_back(VL);
3464 
3465   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
3466   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
3467 }
3468 
3469 // Custom lower MGATHER to a legalized form for RVV. It will then be matched to
3470 // a RVV indexed load. The RVV indexed load/store instructions only support the
3471 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or
3472 // truncated to XLEN and are treated as byte offsets. Any signed or scaled
3473 // indexing is extended to the XLEN value type and scaled accordingly.
3474 SDValue RISCVTargetLowering::lowerMGATHERMSCATTER(SDValue Op,
3475                                                   SelectionDAG &DAG) const {
3476   auto *N = cast<MaskedGatherScatterSDNode>(Op.getNode());
3477   SDLoc DL(Op);
3478   SDValue Index = N->getIndex();
3479   SDValue Mask = N->getMask();
3480 
3481   MVT XLenVT = Subtarget.getXLenVT();
3482   assert(N->getBasePtr().getSimpleValueType() == XLenVT &&
3483          "Unexpected pointer type");
3484   // Targets have to explicitly opt-in for extending vector loads and
3485   // truncating vector stores.
3486   const auto *MGN = dyn_cast<MaskedGatherSDNode>(N);
3487   const auto *MSN = dyn_cast<MaskedScatterSDNode>(N);
3488   assert((!MGN || MGN->getExtensionType() == ISD::NON_EXTLOAD) &&
3489          "Unexpected extending MGATHER");
3490   assert((!MSN || !MSN->isTruncatingStore()) &&
3491          "Unexpected extending MSCATTER");
3492 
3493   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
3494   // the selection of the masked intrinsics doesn't do this for us.
3495   unsigned IntID = 0;
3496   MVT IndexVT = Index.getSimpleValueType();
3497   SDValue VL = getDefaultVLOps(IndexVT, IndexVT, DL, DAG, Subtarget).second;
3498   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
3499 
3500   if (IsUnmasked)
3501     IntID = MGN ? Intrinsic::riscv_vloxei : Intrinsic::riscv_vsoxei;
3502   else
3503     IntID = MGN ? Intrinsic::riscv_vloxei_mask : Intrinsic::riscv_vsoxei_mask;
3504   SmallVector<SDValue, 8> Ops{N->getChain(),
3505                               DAG.getTargetConstant(IntID, DL, XLenVT)};
3506   if (MSN)
3507     Ops.push_back(MSN->getValue());
3508   else if (!IsUnmasked)
3509     Ops.push_back(MGN->getPassThru());
3510   Ops.push_back(N->getBasePtr());
3511   Ops.push_back(Index);
3512   if (!IsUnmasked)
3513     Ops.push_back(Mask);
3514   Ops.push_back(VL);
3515   return DAG.getMemIntrinsicNode(
3516       MGN ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL, N->getVTList(),
3517       Ops, N->getMemoryVT(), N->getMemOperand());
3518 }
3519 
3520 // Returns the opcode of the target-specific SDNode that implements the 32-bit
3521 // form of the given Opcode.
3522 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
3523   switch (Opcode) {
3524   default:
3525     llvm_unreachable("Unexpected opcode");
3526   case ISD::SHL:
3527     return RISCVISD::SLLW;
3528   case ISD::SRA:
3529     return RISCVISD::SRAW;
3530   case ISD::SRL:
3531     return RISCVISD::SRLW;
3532   case ISD::SDIV:
3533     return RISCVISD::DIVW;
3534   case ISD::UDIV:
3535     return RISCVISD::DIVUW;
3536   case ISD::UREM:
3537     return RISCVISD::REMUW;
3538   case ISD::ROTL:
3539     return RISCVISD::ROLW;
3540   case ISD::ROTR:
3541     return RISCVISD::RORW;
3542   case RISCVISD::GREVI:
3543     return RISCVISD::GREVIW;
3544   case RISCVISD::GORCI:
3545     return RISCVISD::GORCIW;
3546   }
3547 }
3548 
3549 // Converts the given 32-bit operation to a target-specific SelectionDAG node.
3550 // Because i32 isn't a legal type for RV64, these operations would otherwise
3551 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W
3552 // later one because the fact the operation was originally of type i32 is
3553 // lost.
3554 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
3555                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
3556   SDLoc DL(N);
3557   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
3558   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
3559   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
3560   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
3561   // ReplaceNodeResults requires we maintain the same type for the return value.
3562   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
3563 }
3564 
3565 // Converts the given 32-bit operation to a i64 operation with signed extension
3566 // semantic to reduce the signed extension instructions.
3567 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
3568   SDLoc DL(N);
3569   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
3570   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
3571   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
3572   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
3573                                DAG.getValueType(MVT::i32));
3574   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
3575 }
3576 
3577 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
3578                                              SmallVectorImpl<SDValue> &Results,
3579                                              SelectionDAG &DAG) const {
3580   SDLoc DL(N);
3581   switch (N->getOpcode()) {
3582   default:
3583     llvm_unreachable("Don't know how to custom type legalize this operation!");
3584   case ISD::STRICT_FP_TO_SINT:
3585   case ISD::STRICT_FP_TO_UINT:
3586   case ISD::FP_TO_SINT:
3587   case ISD::FP_TO_UINT: {
3588     bool IsStrict = N->isStrictFPOpcode();
3589     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3590            "Unexpected custom legalisation");
3591     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
3592     // If the FP type needs to be softened, emit a library call using the 'si'
3593     // version. If we left it to default legalization we'd end up with 'di'. If
3594     // the FP type doesn't need to be softened just let generic type
3595     // legalization promote the result type.
3596     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
3597         TargetLowering::TypeSoftenFloat)
3598       return;
3599     RTLIB::Libcall LC;
3600     if (N->getOpcode() == ISD::FP_TO_SINT ||
3601         N->getOpcode() == ISD::STRICT_FP_TO_SINT)
3602       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
3603     else
3604       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
3605     MakeLibCallOptions CallOptions;
3606     EVT OpVT = Op0.getValueType();
3607     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
3608     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
3609     SDValue Result;
3610     std::tie(Result, Chain) =
3611         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
3612     Results.push_back(Result);
3613     if (IsStrict)
3614       Results.push_back(Chain);
3615     break;
3616   }
3617   case ISD::READCYCLECOUNTER: {
3618     assert(!Subtarget.is64Bit() &&
3619            "READCYCLECOUNTER only has custom type legalization on riscv32");
3620 
3621     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
3622     SDValue RCW =
3623         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
3624 
3625     Results.push_back(
3626         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
3627     Results.push_back(RCW.getValue(2));
3628     break;
3629   }
3630   case ISD::ADD:
3631   case ISD::SUB:
3632   case ISD::MUL:
3633     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3634            "Unexpected custom legalisation");
3635     if (N->getOperand(1).getOpcode() == ISD::Constant)
3636       return;
3637     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
3638     break;
3639   case ISD::SHL:
3640   case ISD::SRA:
3641   case ISD::SRL:
3642     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3643            "Unexpected custom legalisation");
3644     if (N->getOperand(1).getOpcode() == ISD::Constant)
3645       return;
3646     Results.push_back(customLegalizeToWOp(N, DAG));
3647     break;
3648   case ISD::ROTL:
3649   case ISD::ROTR:
3650     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3651            "Unexpected custom legalisation");
3652     Results.push_back(customLegalizeToWOp(N, DAG));
3653     break;
3654   case ISD::SDIV:
3655   case ISD::UDIV:
3656   case ISD::UREM: {
3657     MVT VT = N->getSimpleValueType(0);
3658     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
3659            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
3660            "Unexpected custom legalisation");
3661     if (N->getOperand(0).getOpcode() == ISD::Constant ||
3662         N->getOperand(1).getOpcode() == ISD::Constant)
3663       return;
3664 
3665     // If the input is i32, use ANY_EXTEND since the W instructions don't read
3666     // the upper 32 bits. For other types we need to sign or zero extend
3667     // based on the opcode.
3668     unsigned ExtOpc = ISD::ANY_EXTEND;
3669     if (VT != MVT::i32)
3670       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
3671                                            : ISD::ZERO_EXTEND;
3672 
3673     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
3674     break;
3675   }
3676   case ISD::UADDO:
3677   case ISD::USUBO: {
3678     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3679            "Unexpected custom legalisation");
3680     bool IsAdd = N->getOpcode() == ISD::UADDO;
3681     SDLoc DL(N);
3682     // Create an ADDW or SUBW.
3683     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
3684     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
3685     SDValue Res =
3686         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
3687     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
3688                       DAG.getValueType(MVT::i32));
3689 
3690     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
3691     // Since the inputs are sign extended from i32, this is equivalent to
3692     // comparing the lower 32 bits.
3693     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
3694     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
3695                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
3696 
3697     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
3698     Results.push_back(Overflow);
3699     return;
3700   }
3701   case ISD::UADDSAT:
3702   case ISD::USUBSAT: {
3703     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3704            "Unexpected custom legalisation");
3705     SDLoc DL(N);
3706     if (Subtarget.hasStdExtZbb()) {
3707       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
3708       // sign extend allows overflow of the lower 32 bits to be detected on
3709       // the promoted size.
3710       SDValue LHS =
3711           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
3712       SDValue RHS =
3713           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
3714       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
3715       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
3716       return;
3717     }
3718 
3719     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
3720     // promotion for UADDO/USUBO.
3721     Results.push_back(expandAddSubSat(N, DAG));
3722     return;
3723   }
3724   case ISD::BITCAST: {
3725     assert(((N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3726              Subtarget.hasStdExtF()) ||
3727             (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh())) &&
3728            "Unexpected custom legalisation");
3729     SDValue Op0 = N->getOperand(0);
3730     if (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh()) {
3731       if (Op0.getValueType() != MVT::f16)
3732         return;
3733       SDValue FPConv =
3734           DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, Subtarget.getXLenVT(), Op0);
3735       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
3736     } else if (N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3737                Subtarget.hasStdExtF()) {
3738       if (Op0.getValueType() != MVT::f32)
3739         return;
3740       SDValue FPConv =
3741           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
3742       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
3743     }
3744     break;
3745   }
3746   case RISCVISD::GREVI:
3747   case RISCVISD::GORCI: {
3748     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3749            "Unexpected custom legalisation");
3750     // This is similar to customLegalizeToWOp, except that we pass the second
3751     // operand (a TargetConstant) straight through: it is already of type
3752     // XLenVT.
3753     SDLoc DL(N);
3754     RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
3755     SDValue NewOp0 =
3756         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
3757     SDValue NewRes =
3758         DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, N->getOperand(1));
3759     // ReplaceNodeResults requires we maintain the same type for the return
3760     // value.
3761     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
3762     break;
3763   }
3764   case RISCVISD::SHFLI: {
3765     // There is no SHFLIW instruction, but we can just promote the operation.
3766     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3767            "Unexpected custom legalisation");
3768     SDLoc DL(N);
3769     SDValue NewOp0 =
3770         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
3771     SDValue NewRes =
3772         DAG.getNode(RISCVISD::SHFLI, DL, MVT::i64, NewOp0, N->getOperand(1));
3773     // ReplaceNodeResults requires we maintain the same type for the return
3774     // value.
3775     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
3776     break;
3777   }
3778   case ISD::BSWAP:
3779   case ISD::BITREVERSE: {
3780     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3781            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
3782     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
3783                                  N->getOperand(0));
3784     unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24;
3785     SDValue GREVIW = DAG.getNode(RISCVISD::GREVIW, DL, MVT::i64, NewOp0,
3786                                  DAG.getTargetConstant(Imm, DL,
3787                                                        Subtarget.getXLenVT()));
3788     // ReplaceNodeResults requires we maintain the same type for the return
3789     // value.
3790     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW));
3791     break;
3792   }
3793   case ISD::FSHL:
3794   case ISD::FSHR: {
3795     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
3796            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
3797     SDValue NewOp0 =
3798         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
3799     SDValue NewOp1 =
3800         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
3801     SDValue NewOp2 =
3802         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
3803     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
3804     // Mask the shift amount to 5 bits.
3805     NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
3806                          DAG.getConstant(0x1f, DL, MVT::i64));
3807     unsigned Opc =
3808         N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW;
3809     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2);
3810     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
3811     break;
3812   }
3813   case ISD::EXTRACT_VECTOR_ELT: {
3814     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
3815     // type is illegal (currently only vXi64 RV32).
3816     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
3817     // transferred to the destination register. We issue two of these from the
3818     // upper- and lower- halves of the SEW-bit vector element, slid down to the
3819     // first element.
3820     SDLoc DL(N);
3821     SDValue Vec = N->getOperand(0);
3822     SDValue Idx = N->getOperand(1);
3823 
3824     // The vector type hasn't been legalized yet so we can't issue target
3825     // specific nodes if it needs legalization.
3826     // FIXME: We would manually legalize if it's important.
3827     if (!isTypeLegal(Vec.getValueType()))
3828       return;
3829 
3830     MVT VecVT = Vec.getSimpleValueType();
3831 
3832     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
3833            VecVT.getVectorElementType() == MVT::i64 &&
3834            "Unexpected EXTRACT_VECTOR_ELT legalization");
3835 
3836     // If this is a fixed vector, we need to convert it to a scalable vector.
3837     MVT ContainerVT = VecVT;
3838     if (VecVT.isFixedLengthVector()) {
3839       ContainerVT = getContainerForFixedLengthVector(VecVT);
3840       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3841     }
3842 
3843     MVT XLenVT = Subtarget.getXLenVT();
3844 
3845     // Use a VL of 1 to avoid processing more elements than we need.
3846     MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
3847     SDValue VL = DAG.getConstant(1, DL, XLenVT);
3848     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3849 
3850     // Unless the index is known to be 0, we must slide the vector down to get
3851     // the desired element into index 0.
3852     if (!isNullConstant(Idx)) {
3853       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
3854                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
3855     }
3856 
3857     // Extract the lower XLEN bits of the correct vector element.
3858     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
3859 
3860     // To extract the upper XLEN bits of the vector element, shift the first
3861     // element right by 32 bits and re-extract the lower XLEN bits.
3862     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
3863                                      DAG.getConstant(32, DL, XLenVT), VL);
3864     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
3865                                  ThirtyTwoV, Mask, VL);
3866 
3867     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
3868 
3869     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
3870     break;
3871   }
3872   case ISD::INTRINSIC_WO_CHAIN: {
3873     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3874     switch (IntNo) {
3875     default:
3876       llvm_unreachable(
3877           "Don't know how to custom type legalize this intrinsic!");
3878     case Intrinsic::riscv_vmv_x_s: {
3879       EVT VT = N->getValueType(0);
3880       MVT XLenVT = Subtarget.getXLenVT();
3881       if (VT.bitsLT(XLenVT)) {
3882         // Simple case just extract using vmv.x.s and truncate.
3883         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
3884                                       Subtarget.getXLenVT(), N->getOperand(1));
3885         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
3886         return;
3887       }
3888 
3889       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
3890              "Unexpected custom legalization");
3891 
3892       // We need to do the move in two steps.
3893       SDValue Vec = N->getOperand(1);
3894       MVT VecVT = Vec.getSimpleValueType();
3895 
3896       // First extract the lower XLEN bits of the element.
3897       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
3898 
3899       // To extract the upper XLEN bits of the vector element, shift the first
3900       // element right by 32 bits and re-extract the lower XLEN bits.
3901       SDValue VL = DAG.getConstant(1, DL, XLenVT);
3902       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
3903       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3904       SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT,
3905                                        DAG.getConstant(32, DL, XLenVT), VL);
3906       SDValue LShr32 =
3907           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
3908       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
3909 
3910       Results.push_back(
3911           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
3912       break;
3913     }
3914     }
3915     break;
3916   }
3917   case ISD::VECREDUCE_ADD:
3918   case ISD::VECREDUCE_AND:
3919   case ISD::VECREDUCE_OR:
3920   case ISD::VECREDUCE_XOR:
3921   case ISD::VECREDUCE_SMAX:
3922   case ISD::VECREDUCE_UMAX:
3923   case ISD::VECREDUCE_SMIN:
3924   case ISD::VECREDUCE_UMIN:
3925     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
3926       Results.push_back(V);
3927     break;
3928   }
3929 }
3930 
3931 // A structure to hold one of the bit-manipulation patterns below. Together, a
3932 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
3933 //   (or (and (shl x, 1), 0xAAAAAAAA),
3934 //       (and (srl x, 1), 0x55555555))
3935 struct RISCVBitmanipPat {
3936   SDValue Op;
3937   unsigned ShAmt;
3938   bool IsSHL;
3939 
3940   bool formsPairWith(const RISCVBitmanipPat &Other) const {
3941     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
3942   }
3943 };
3944 
3945 // Matches patterns of the form
3946 //   (and (shl x, C2), (C1 << C2))
3947 //   (and (srl x, C2), C1)
3948 //   (shl (and x, C1), C2)
3949 //   (srl (and x, (C1 << C2)), C2)
3950 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
3951 // The expected masks for each shift amount are specified in BitmanipMasks where
3952 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
3953 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
3954 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
3955 // XLen is 64.
3956 static Optional<RISCVBitmanipPat>
3957 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
3958   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
3959          "Unexpected number of masks");
3960   Optional<uint64_t> Mask;
3961   // Optionally consume a mask around the shift operation.
3962   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
3963     Mask = Op.getConstantOperandVal(1);
3964     Op = Op.getOperand(0);
3965   }
3966   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
3967     return None;
3968   bool IsSHL = Op.getOpcode() == ISD::SHL;
3969 
3970   if (!isa<ConstantSDNode>(Op.getOperand(1)))
3971     return None;
3972   uint64_t ShAmt = Op.getConstantOperandVal(1);
3973 
3974   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
3975   if (ShAmt >= Width && !isPowerOf2_64(ShAmt))
3976     return None;
3977   // If we don't have enough masks for 64 bit, then we must be trying to
3978   // match SHFL so we're only allowed to shift 1/4 of the width.
3979   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
3980     return None;
3981 
3982   SDValue Src = Op.getOperand(0);
3983 
3984   // The expected mask is shifted left when the AND is found around SHL
3985   // patterns.
3986   //   ((x >> 1) & 0x55555555)
3987   //   ((x << 1) & 0xAAAAAAAA)
3988   bool SHLExpMask = IsSHL;
3989 
3990   if (!Mask) {
3991     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
3992     // the mask is all ones: consume that now.
3993     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
3994       Mask = Src.getConstantOperandVal(1);
3995       Src = Src.getOperand(0);
3996       // The expected mask is now in fact shifted left for SRL, so reverse the
3997       // decision.
3998       //   ((x & 0xAAAAAAAA) >> 1)
3999       //   ((x & 0x55555555) << 1)
4000       SHLExpMask = !SHLExpMask;
4001     } else {
4002       // Use a default shifted mask of all-ones if there's no AND, truncated
4003       // down to the expected width. This simplifies the logic later on.
4004       Mask = maskTrailingOnes<uint64_t>(Width);
4005       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
4006     }
4007   }
4008 
4009   unsigned MaskIdx = Log2_32(ShAmt);
4010   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
4011 
4012   if (SHLExpMask)
4013     ExpMask <<= ShAmt;
4014 
4015   if (Mask != ExpMask)
4016     return None;
4017 
4018   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
4019 }
4020 
4021 // Matches any of the following bit-manipulation patterns:
4022 //   (and (shl x, 1), (0x55555555 << 1))
4023 //   (and (srl x, 1), 0x55555555)
4024 //   (shl (and x, 0x55555555), 1)
4025 //   (srl (and x, (0x55555555 << 1)), 1)
4026 // where the shift amount and mask may vary thus:
4027 //   [1]  = 0x55555555 / 0xAAAAAAAA
4028 //   [2]  = 0x33333333 / 0xCCCCCCCC
4029 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
4030 //   [8]  = 0x00FF00FF / 0xFF00FF00
4031 //   [16] = 0x0000FFFF / 0xFFFFFFFF
4032 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
4033 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
4034   // These are the unshifted masks which we use to match bit-manipulation
4035   // patterns. They may be shifted left in certain circumstances.
4036   static const uint64_t BitmanipMasks[] = {
4037       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
4038       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
4039 
4040   return matchRISCVBitmanipPat(Op, BitmanipMasks);
4041 }
4042 
4043 // Match the following pattern as a GREVI(W) operation
4044 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
4045 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
4046                                const RISCVSubtarget &Subtarget) {
4047   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
4048   EVT VT = Op.getValueType();
4049 
4050   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
4051     auto LHS = matchGREVIPat(Op.getOperand(0));
4052     auto RHS = matchGREVIPat(Op.getOperand(1));
4053     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
4054       SDLoc DL(Op);
4055       return DAG.getNode(
4056           RISCVISD::GREVI, DL, VT, LHS->Op,
4057           DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT()));
4058     }
4059   }
4060   return SDValue();
4061 }
4062 
4063 // Matches any the following pattern as a GORCI(W) operation
4064 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
4065 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
4066 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
4067 // Note that with the variant of 3.,
4068 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
4069 // the inner pattern will first be matched as GREVI and then the outer
4070 // pattern will be matched to GORC via the first rule above.
4071 // 4.  (or (rotl/rotr x, bitwidth/2), x)
4072 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
4073                                const RISCVSubtarget &Subtarget) {
4074   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
4075   EVT VT = Op.getValueType();
4076 
4077   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
4078     SDLoc DL(Op);
4079     SDValue Op0 = Op.getOperand(0);
4080     SDValue Op1 = Op.getOperand(1);
4081 
4082     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
4083       if (Reverse.getOpcode() == RISCVISD::GREVI && Reverse.getOperand(0) == X &&
4084           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
4085         return DAG.getNode(RISCVISD::GORCI, DL, VT, X, Reverse.getOperand(1));
4086       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
4087       if ((Reverse.getOpcode() == ISD::ROTL ||
4088            Reverse.getOpcode() == ISD::ROTR) &&
4089           Reverse.getOperand(0) == X &&
4090           isa<ConstantSDNode>(Reverse.getOperand(1))) {
4091         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
4092         if (RotAmt == (VT.getSizeInBits() / 2))
4093           return DAG.getNode(
4094               RISCVISD::GORCI, DL, VT, X,
4095               DAG.getTargetConstant(RotAmt, DL, Subtarget.getXLenVT()));
4096       }
4097       return SDValue();
4098     };
4099 
4100     // Check for either commutable permutation of (or (GREVI x, shamt), x)
4101     if (SDValue V = MatchOROfReverse(Op0, Op1))
4102       return V;
4103     if (SDValue V = MatchOROfReverse(Op1, Op0))
4104       return V;
4105 
4106     // OR is commutable so canonicalize its OR operand to the left
4107     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
4108       std::swap(Op0, Op1);
4109     if (Op0.getOpcode() != ISD::OR)
4110       return SDValue();
4111     SDValue OrOp0 = Op0.getOperand(0);
4112     SDValue OrOp1 = Op0.getOperand(1);
4113     auto LHS = matchGREVIPat(OrOp0);
4114     // OR is commutable so swap the operands and try again: x might have been
4115     // on the left
4116     if (!LHS) {
4117       std::swap(OrOp0, OrOp1);
4118       LHS = matchGREVIPat(OrOp0);
4119     }
4120     auto RHS = matchGREVIPat(Op1);
4121     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
4122       return DAG.getNode(
4123           RISCVISD::GORCI, DL, VT, LHS->Op,
4124           DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT()));
4125     }
4126   }
4127   return SDValue();
4128 }
4129 
4130 // Matches any of the following bit-manipulation patterns:
4131 //   (and (shl x, 1), (0x22222222 << 1))
4132 //   (and (srl x, 1), 0x22222222)
4133 //   (shl (and x, 0x22222222), 1)
4134 //   (srl (and x, (0x22222222 << 1)), 1)
4135 // where the shift amount and mask may vary thus:
4136 //   [1]  = 0x22222222 / 0x44444444
4137 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
4138 //   [4]  = 0x00F000F0 / 0x0F000F00
4139 //   [8]  = 0x0000FF00 / 0x00FF0000
4140 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
4141 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
4142   // These are the unshifted masks which we use to match bit-manipulation
4143   // patterns. They may be shifted left in certain circumstances.
4144   static const uint64_t BitmanipMasks[] = {
4145       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
4146       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
4147 
4148   return matchRISCVBitmanipPat(Op, BitmanipMasks);
4149 }
4150 
4151 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
4152 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
4153                                const RISCVSubtarget &Subtarget) {
4154   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
4155   EVT VT = Op.getValueType();
4156 
4157   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
4158     return SDValue();
4159 
4160   SDValue Op0 = Op.getOperand(0);
4161   SDValue Op1 = Op.getOperand(1);
4162 
4163   // Or is commutable so canonicalize the second OR to the LHS.
4164   if (Op0.getOpcode() != ISD::OR)
4165     std::swap(Op0, Op1);
4166   if (Op0.getOpcode() != ISD::OR)
4167     return SDValue();
4168 
4169   // We found an inner OR, so our operands are the operands of the inner OR
4170   // and the other operand of the outer OR.
4171   SDValue A = Op0.getOperand(0);
4172   SDValue B = Op0.getOperand(1);
4173   SDValue C = Op1;
4174 
4175   auto Match1 = matchSHFLPat(A);
4176   auto Match2 = matchSHFLPat(B);
4177 
4178   // If neither matched, we failed.
4179   if (!Match1 && !Match2)
4180     return SDValue();
4181 
4182   // We had at least one match. if one failed, try the remaining C operand.
4183   if (!Match1) {
4184     std::swap(A, C);
4185     Match1 = matchSHFLPat(A);
4186     if (!Match1)
4187       return SDValue();
4188   } else if (!Match2) {
4189     std::swap(B, C);
4190     Match2 = matchSHFLPat(B);
4191     if (!Match2)
4192       return SDValue();
4193   }
4194   assert(Match1 && Match2);
4195 
4196   // Make sure our matches pair up.
4197   if (!Match1->formsPairWith(*Match2))
4198     return SDValue();
4199 
4200   // All the remains is to make sure C is an AND with the same input, that masks
4201   // out the bits that are being shuffled.
4202   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
4203       C.getOperand(0) != Match1->Op)
4204     return SDValue();
4205 
4206   uint64_t Mask = C.getConstantOperandVal(1);
4207 
4208   static const uint64_t BitmanipMasks[] = {
4209       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
4210       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
4211   };
4212 
4213   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
4214   unsigned MaskIdx = Log2_32(Match1->ShAmt);
4215   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
4216 
4217   if (Mask != ExpMask)
4218     return SDValue();
4219 
4220   SDLoc DL(Op);
4221   return DAG.getNode(
4222       RISCVISD::SHFLI, DL, VT, Match1->Op,
4223       DAG.getTargetConstant(Match1->ShAmt, DL, Subtarget.getXLenVT()));
4224 }
4225 
4226 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
4227 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
4228 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
4229 // not undo itself, but they are redundant.
4230 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
4231   unsigned ShAmt1 = N->getConstantOperandVal(1);
4232   SDValue Src = N->getOperand(0);
4233 
4234   if (Src.getOpcode() != N->getOpcode())
4235     return SDValue();
4236 
4237   unsigned ShAmt2 = Src.getConstantOperandVal(1);
4238   Src = Src.getOperand(0);
4239 
4240   unsigned CombinedShAmt;
4241   if (N->getOpcode() == RISCVISD::GORCI || N->getOpcode() == RISCVISD::GORCIW)
4242     CombinedShAmt = ShAmt1 | ShAmt2;
4243   else
4244     CombinedShAmt = ShAmt1 ^ ShAmt2;
4245 
4246   if (CombinedShAmt == 0)
4247     return Src;
4248 
4249   SDLoc DL(N);
4250   return DAG.getNode(N->getOpcode(), DL, N->getValueType(0), Src,
4251                      DAG.getTargetConstant(CombinedShAmt, DL,
4252                                            N->getOperand(1).getValueType()));
4253 }
4254 
4255 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
4256                                                DAGCombinerInfo &DCI) const {
4257   SelectionDAG &DAG = DCI.DAG;
4258 
4259   switch (N->getOpcode()) {
4260   default:
4261     break;
4262   case RISCVISD::SplitF64: {
4263     SDValue Op0 = N->getOperand(0);
4264     // If the input to SplitF64 is just BuildPairF64 then the operation is
4265     // redundant. Instead, use BuildPairF64's operands directly.
4266     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
4267       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
4268 
4269     SDLoc DL(N);
4270 
4271     // It's cheaper to materialise two 32-bit integers than to load a double
4272     // from the constant pool and transfer it to integer registers through the
4273     // stack.
4274     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
4275       APInt V = C->getValueAPF().bitcastToAPInt();
4276       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
4277       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
4278       return DCI.CombineTo(N, Lo, Hi);
4279     }
4280 
4281     // This is a target-specific version of a DAGCombine performed in
4282     // DAGCombiner::visitBITCAST. It performs the equivalent of:
4283     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
4284     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
4285     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
4286         !Op0.getNode()->hasOneUse())
4287       break;
4288     SDValue NewSplitF64 =
4289         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
4290                     Op0.getOperand(0));
4291     SDValue Lo = NewSplitF64.getValue(0);
4292     SDValue Hi = NewSplitF64.getValue(1);
4293     APInt SignBit = APInt::getSignMask(32);
4294     if (Op0.getOpcode() == ISD::FNEG) {
4295       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
4296                                   DAG.getConstant(SignBit, DL, MVT::i32));
4297       return DCI.CombineTo(N, Lo, NewHi);
4298     }
4299     assert(Op0.getOpcode() == ISD::FABS);
4300     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
4301                                 DAG.getConstant(~SignBit, DL, MVT::i32));
4302     return DCI.CombineTo(N, Lo, NewHi);
4303   }
4304   case RISCVISD::SLLW:
4305   case RISCVISD::SRAW:
4306   case RISCVISD::SRLW:
4307   case RISCVISD::ROLW:
4308   case RISCVISD::RORW: {
4309     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
4310     SDValue LHS = N->getOperand(0);
4311     SDValue RHS = N->getOperand(1);
4312     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
4313     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
4314     if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) ||
4315         SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) {
4316       if (N->getOpcode() != ISD::DELETED_NODE)
4317         DCI.AddToWorklist(N);
4318       return SDValue(N, 0);
4319     }
4320     break;
4321   }
4322   case RISCVISD::FSL:
4323   case RISCVISD::FSR: {
4324     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
4325     SDValue ShAmt = N->getOperand(2);
4326     unsigned BitWidth = ShAmt.getValueSizeInBits();
4327     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
4328     APInt ShAmtMask(BitWidth, (BitWidth * 2) - 1);
4329     if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
4330       if (N->getOpcode() != ISD::DELETED_NODE)
4331         DCI.AddToWorklist(N);
4332       return SDValue(N, 0);
4333     }
4334     break;
4335   }
4336   case RISCVISD::FSLW:
4337   case RISCVISD::FSRW: {
4338     // Only the lower 32 bits of Values and lower 6 bits of shift amount are
4339     // read.
4340     SDValue Op0 = N->getOperand(0);
4341     SDValue Op1 = N->getOperand(1);
4342     SDValue ShAmt = N->getOperand(2);
4343     APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32);
4344     APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6);
4345     if (SimplifyDemandedBits(Op0, OpMask, DCI) ||
4346         SimplifyDemandedBits(Op1, OpMask, DCI) ||
4347         SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
4348       if (N->getOpcode() != ISD::DELETED_NODE)
4349         DCI.AddToWorklist(N);
4350       return SDValue(N, 0);
4351     }
4352     break;
4353   }
4354   case RISCVISD::GREVIW:
4355   case RISCVISD::GORCIW: {
4356     // Only the lower 32 bits of the first operand are read
4357     SDValue Op0 = N->getOperand(0);
4358     APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32);
4359     if (SimplifyDemandedBits(Op0, Mask, DCI)) {
4360       if (N->getOpcode() != ISD::DELETED_NODE)
4361         DCI.AddToWorklist(N);
4362       return SDValue(N, 0);
4363     }
4364 
4365     return combineGREVI_GORCI(N, DCI.DAG);
4366   }
4367   case RISCVISD::FMV_X_ANYEXTW_RV64: {
4368     SDLoc DL(N);
4369     SDValue Op0 = N->getOperand(0);
4370     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
4371     // conversion is unnecessary and can be replaced with an ANY_EXTEND
4372     // of the FMV_W_X_RV64 operand.
4373     if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) {
4374       assert(Op0.getOperand(0).getValueType() == MVT::i64 &&
4375              "Unexpected value type!");
4376       return Op0.getOperand(0);
4377     }
4378 
4379     // This is a target-specific version of a DAGCombine performed in
4380     // DAGCombiner::visitBITCAST. It performs the equivalent of:
4381     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
4382     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
4383     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
4384         !Op0.getNode()->hasOneUse())
4385       break;
4386     SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64,
4387                                  Op0.getOperand(0));
4388     APInt SignBit = APInt::getSignMask(32).sext(64);
4389     if (Op0.getOpcode() == ISD::FNEG)
4390       return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV,
4391                          DAG.getConstant(SignBit, DL, MVT::i64));
4392 
4393     assert(Op0.getOpcode() == ISD::FABS);
4394     return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV,
4395                        DAG.getConstant(~SignBit, DL, MVT::i64));
4396   }
4397   case RISCVISD::GREVI:
4398   case RISCVISD::GORCI:
4399     return combineGREVI_GORCI(N, DCI.DAG);
4400   case ISD::OR:
4401     if (auto GREV = combineORToGREV(SDValue(N, 0), DCI.DAG, Subtarget))
4402       return GREV;
4403     if (auto GORC = combineORToGORC(SDValue(N, 0), DCI.DAG, Subtarget))
4404       return GORC;
4405     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DCI.DAG, Subtarget))
4406       return SHFL;
4407     break;
4408   case RISCVISD::SELECT_CC: {
4409     // Transform
4410     SDValue LHS = N->getOperand(0);
4411     SDValue RHS = N->getOperand(1);
4412     auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2));
4413     if (!ISD::isIntEqualitySetCC(CCVal))
4414       break;
4415 
4416     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
4417     //      (select_cc X, Y, lt, trueV, falseV)
4418     // Sometimes the setcc is introduced after select_cc has been formed.
4419     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
4420         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
4421       // If we're looking for eq 0 instead of ne 0, we need to invert the
4422       // condition.
4423       bool Invert = CCVal == ISD::SETEQ;
4424       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
4425       if (Invert)
4426         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
4427 
4428       SDLoc DL(N);
4429       RHS = LHS.getOperand(1);
4430       LHS = LHS.getOperand(0);
4431       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
4432 
4433       SDValue TargetCC = DAG.getConstant(CCVal, DL, Subtarget.getXLenVT());
4434       return DAG.getNode(
4435           RISCVISD::SELECT_CC, DL, N->getValueType(0),
4436           {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)});
4437     }
4438 
4439     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
4440     //      (select_cc X, Y, eq/ne, trueV, falseV)
4441     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
4442       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
4443                          {LHS.getOperand(0), LHS.getOperand(1),
4444                           N->getOperand(2), N->getOperand(3),
4445                           N->getOperand(4)});
4446     // (select_cc X, 1, setne, trueV, falseV) ->
4447     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
4448     // This can occur when legalizing some floating point comparisons.
4449     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
4450     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
4451       SDLoc DL(N);
4452       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
4453       SDValue TargetCC = DAG.getConstant(CCVal, DL, Subtarget.getXLenVT());
4454       RHS = DAG.getConstant(0, DL, LHS.getValueType());
4455       return DAG.getNode(
4456           RISCVISD::SELECT_CC, DL, N->getValueType(0),
4457           {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)});
4458     }
4459 
4460     break;
4461   }
4462   case RISCVISD::BR_CC: {
4463     SDValue LHS = N->getOperand(1);
4464     SDValue RHS = N->getOperand(2);
4465     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
4466     if (!ISD::isIntEqualitySetCC(CCVal))
4467       break;
4468 
4469     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
4470     //      (br_cc X, Y, lt, dest)
4471     // Sometimes the setcc is introduced after br_cc has been formed.
4472     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
4473         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
4474       // If we're looking for eq 0 instead of ne 0, we need to invert the
4475       // condition.
4476       bool Invert = CCVal == ISD::SETEQ;
4477       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
4478       if (Invert)
4479         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
4480 
4481       SDLoc DL(N);
4482       RHS = LHS.getOperand(1);
4483       LHS = LHS.getOperand(0);
4484       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
4485 
4486       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
4487                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
4488                          N->getOperand(4));
4489     }
4490 
4491     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
4492     //      (br_cc X, Y, eq/ne, trueV, falseV)
4493     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
4494       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
4495                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
4496                          N->getOperand(3), N->getOperand(4));
4497 
4498     // (br_cc X, 1, setne, br_cc) ->
4499     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
4500     // This can occur when legalizing some floating point comparisons.
4501     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
4502     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
4503       SDLoc DL(N);
4504       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
4505       SDValue TargetCC = DAG.getCondCode(CCVal);
4506       RHS = DAG.getConstant(0, DL, LHS.getValueType());
4507       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
4508                          N->getOperand(0), LHS, RHS, TargetCC,
4509                          N->getOperand(4));
4510     }
4511     break;
4512   }
4513   case ISD::FCOPYSIGN: {
4514     EVT VT = N->getValueType(0);
4515     if (!VT.isVector())
4516       break;
4517     // There is a form of VFSGNJ which injects the negated sign of its second
4518     // operand. Try and bubble any FNEG up after the extend/round to produce
4519     // this optimized pattern. Avoid modifying cases where FP_ROUND and
4520     // TRUNC=1.
4521     SDValue In2 = N->getOperand(1);
4522     // Avoid cases where the extend/round has multiple uses, as duplicating
4523     // those is typically more expensive than removing a fneg.
4524     if (!In2.hasOneUse())
4525       break;
4526     if (In2.getOpcode() != ISD::FP_EXTEND &&
4527         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
4528       break;
4529     In2 = In2.getOperand(0);
4530     if (In2.getOpcode() != ISD::FNEG)
4531       break;
4532     SDLoc DL(N);
4533     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
4534     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
4535                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
4536   }
4537   case ISD::MGATHER:
4538   case ISD::MSCATTER: {
4539     if (!DCI.isBeforeLegalize())
4540       break;
4541     MaskedGatherScatterSDNode *MGSN = cast<MaskedGatherScatterSDNode>(N);
4542     SDValue Index = MGSN->getIndex();
4543     EVT IndexVT = Index.getValueType();
4544     MVT XLenVT = Subtarget.getXLenVT();
4545     // RISCV indexed loads only support the "unsigned unscaled" addressing
4546     // mode, so anything else must be manually legalized.
4547     bool NeedsIdxLegalization = MGSN->isIndexScaled() ||
4548                                 (MGSN->isIndexSigned() &&
4549                                  IndexVT.getVectorElementType().bitsLT(XLenVT));
4550     if (!NeedsIdxLegalization)
4551       break;
4552 
4553     SDLoc DL(N);
4554 
4555     // Any index legalization should first promote to XLenVT, so we don't lose
4556     // bits when scaling. This may create an illegal index type so we let
4557     // LLVM's legalization take care of the splitting.
4558     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
4559       IndexVT = IndexVT.changeVectorElementType(XLenVT);
4560       Index = DAG.getNode(MGSN->isIndexSigned() ? ISD::SIGN_EXTEND
4561                                                 : ISD::ZERO_EXTEND,
4562                           DL, IndexVT, Index);
4563     }
4564 
4565     unsigned Scale = N->getConstantOperandVal(5);
4566     if (MGSN->isIndexScaled() && Scale != 1) {
4567       // Manually scale the indices by the element size.
4568       // TODO: Sanitize the scale operand here?
4569       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
4570       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
4571       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
4572     }
4573 
4574     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
4575     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) {
4576       return DAG.getMaskedGather(
4577           N->getVTList(), MGSN->getMemoryVT(), DL,
4578           {MGSN->getChain(), MGN->getPassThru(), MGSN->getMask(),
4579            MGSN->getBasePtr(), Index, MGN->getScale()},
4580           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
4581     }
4582     const auto *MSN = cast<MaskedScatterSDNode>(N);
4583     return DAG.getMaskedScatter(
4584         N->getVTList(), MGSN->getMemoryVT(), DL,
4585         {MGSN->getChain(), MSN->getValue(), MGSN->getMask(), MGSN->getBasePtr(),
4586          Index, MGSN->getScale()},
4587         MGSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
4588   }
4589   }
4590 
4591   return SDValue();
4592 }
4593 
4594 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
4595     const SDNode *N, CombineLevel Level) const {
4596   // The following folds are only desirable if `(OP _, c1 << c2)` can be
4597   // materialised in fewer instructions than `(OP _, c1)`:
4598   //
4599   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
4600   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
4601   SDValue N0 = N->getOperand(0);
4602   EVT Ty = N0.getValueType();
4603   if (Ty.isScalarInteger() &&
4604       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
4605     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
4606     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
4607     if (C1 && C2) {
4608       const APInt &C1Int = C1->getAPIntValue();
4609       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
4610 
4611       // We can materialise `c1 << c2` into an add immediate, so it's "free",
4612       // and the combine should happen, to potentially allow further combines
4613       // later.
4614       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
4615           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
4616         return true;
4617 
4618       // We can materialise `c1` in an add immediate, so it's "free", and the
4619       // combine should be prevented.
4620       if (C1Int.getMinSignedBits() <= 64 &&
4621           isLegalAddImmediate(C1Int.getSExtValue()))
4622         return false;
4623 
4624       // Neither constant will fit into an immediate, so find materialisation
4625       // costs.
4626       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
4627                                               Subtarget.is64Bit());
4628       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
4629           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit());
4630 
4631       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
4632       // combine should be prevented.
4633       if (C1Cost < ShiftedC1Cost)
4634         return false;
4635     }
4636   }
4637   return true;
4638 }
4639 
4640 bool RISCVTargetLowering::targetShrinkDemandedConstant(
4641     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
4642     TargetLoweringOpt &TLO) const {
4643   // Delay this optimization as late as possible.
4644   if (!TLO.LegalOps)
4645     return false;
4646 
4647   EVT VT = Op.getValueType();
4648   if (VT.isVector())
4649     return false;
4650 
4651   // Only handle AND for now.
4652   if (Op.getOpcode() != ISD::AND)
4653     return false;
4654 
4655   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
4656   if (!C)
4657     return false;
4658 
4659   const APInt &Mask = C->getAPIntValue();
4660 
4661   // Clear all non-demanded bits initially.
4662   APInt ShrunkMask = Mask & DemandedBits;
4663 
4664   // If the shrunk mask fits in sign extended 12 bits, let the target
4665   // independent code apply it.
4666   if (ShrunkMask.isSignedIntN(12))
4667     return false;
4668 
4669   // Try to make a smaller immediate by setting undemanded bits.
4670 
4671   // We need to be able to make a negative number through a combination of mask
4672   // and undemanded bits.
4673   APInt ExpandedMask = Mask | ~DemandedBits;
4674   if (!ExpandedMask.isNegative())
4675     return false;
4676 
4677   // What is the fewest number of bits we need to represent the negative number.
4678   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
4679 
4680   // Try to make a 12 bit negative immediate. If that fails try to make a 32
4681   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
4682   APInt NewMask = ShrunkMask;
4683   if (MinSignedBits <= 12)
4684     NewMask.setBitsFrom(11);
4685   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
4686     NewMask.setBitsFrom(31);
4687   else
4688     return false;
4689 
4690   // Sanity check that our new mask is a subset of the demanded mask.
4691   assert(NewMask.isSubsetOf(ExpandedMask));
4692 
4693   // If we aren't changing the mask, just return true to keep it and prevent
4694   // the caller from optimizing.
4695   if (NewMask == Mask)
4696     return true;
4697 
4698   // Replace the constant with the new mask.
4699   SDLoc DL(Op);
4700   SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
4701   SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
4702   return TLO.CombineTo(Op, NewOp);
4703 }
4704 
4705 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
4706                                                         KnownBits &Known,
4707                                                         const APInt &DemandedElts,
4708                                                         const SelectionDAG &DAG,
4709                                                         unsigned Depth) const {
4710   unsigned BitWidth = Known.getBitWidth();
4711   unsigned Opc = Op.getOpcode();
4712   assert((Opc >= ISD::BUILTIN_OP_END ||
4713           Opc == ISD::INTRINSIC_WO_CHAIN ||
4714           Opc == ISD::INTRINSIC_W_CHAIN ||
4715           Opc == ISD::INTRINSIC_VOID) &&
4716          "Should use MaskedValueIsZero if you don't know whether Op"
4717          " is a target node!");
4718 
4719   Known.resetAll();
4720   switch (Opc) {
4721   default: break;
4722   case RISCVISD::SELECT_CC: {
4723     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
4724     // If we don't know any bits, early out.
4725     if (Known.isUnknown())
4726       break;
4727     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
4728 
4729     // Only known if known in both the LHS and RHS.
4730     Known = KnownBits::commonBits(Known, Known2);
4731     break;
4732   }
4733   case RISCVISD::REMUW: {
4734     KnownBits Known2;
4735     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4736     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4737     // We only care about the lower 32 bits.
4738     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
4739     // Restore the original width by sign extending.
4740     Known = Known.sext(BitWidth);
4741     break;
4742   }
4743   case RISCVISD::DIVUW: {
4744     KnownBits Known2;
4745     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4746     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4747     // We only care about the lower 32 bits.
4748     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
4749     // Restore the original width by sign extending.
4750     Known = Known.sext(BitWidth);
4751     break;
4752   }
4753   case RISCVISD::READ_VLENB:
4754     // We assume VLENB is at least 8 bytes.
4755     // FIXME: The 1.0 draft spec defines minimum VLEN as 128 bits.
4756     Known.Zero.setLowBits(3);
4757     break;
4758   }
4759 }
4760 
4761 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
4762     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4763     unsigned Depth) const {
4764   switch (Op.getOpcode()) {
4765   default:
4766     break;
4767   case RISCVISD::SLLW:
4768   case RISCVISD::SRAW:
4769   case RISCVISD::SRLW:
4770   case RISCVISD::DIVW:
4771   case RISCVISD::DIVUW:
4772   case RISCVISD::REMUW:
4773   case RISCVISD::ROLW:
4774   case RISCVISD::RORW:
4775   case RISCVISD::GREVIW:
4776   case RISCVISD::GORCIW:
4777   case RISCVISD::FSLW:
4778   case RISCVISD::FSRW:
4779     // TODO: As the result is sign-extended, this is conservatively correct. A
4780     // more precise answer could be calculated for SRAW depending on known
4781     // bits in the shift amount.
4782     return 33;
4783   case RISCVISD::SHFLI: {
4784     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
4785     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
4786     // will stay within the upper 32 bits. If there were more than 32 sign bits
4787     // before there will be at least 33 sign bits after.
4788     if (Op.getValueType() == MVT::i64 &&
4789         (Op.getConstantOperandVal(1) & 0x10) == 0) {
4790       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4791       if (Tmp > 32)
4792         return 33;
4793     }
4794     break;
4795   }
4796   case RISCVISD::VMV_X_S:
4797     // The number of sign bits of the scalar result is computed by obtaining the
4798     // element type of the input vector operand, subtracting its width from the
4799     // XLEN, and then adding one (sign bit within the element type). If the
4800     // element type is wider than XLen, the least-significant XLEN bits are
4801     // taken.
4802     if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen())
4803       return 1;
4804     return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1;
4805   }
4806 
4807   return 1;
4808 }
4809 
4810 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
4811                                                   MachineBasicBlock *BB) {
4812   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
4813 
4814   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
4815   // Should the count have wrapped while it was being read, we need to try
4816   // again.
4817   // ...
4818   // read:
4819   // rdcycleh x3 # load high word of cycle
4820   // rdcycle  x2 # load low word of cycle
4821   // rdcycleh x4 # load high word of cycle
4822   // bne x3, x4, read # check if high word reads match, otherwise try again
4823   // ...
4824 
4825   MachineFunction &MF = *BB->getParent();
4826   const BasicBlock *LLVM_BB = BB->getBasicBlock();
4827   MachineFunction::iterator It = ++BB->getIterator();
4828 
4829   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
4830   MF.insert(It, LoopMBB);
4831 
4832   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
4833   MF.insert(It, DoneMBB);
4834 
4835   // Transfer the remainder of BB and its successor edges to DoneMBB.
4836   DoneMBB->splice(DoneMBB->begin(), BB,
4837                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
4838   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
4839 
4840   BB->addSuccessor(LoopMBB);
4841 
4842   MachineRegisterInfo &RegInfo = MF.getRegInfo();
4843   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
4844   Register LoReg = MI.getOperand(0).getReg();
4845   Register HiReg = MI.getOperand(1).getReg();
4846   DebugLoc DL = MI.getDebugLoc();
4847 
4848   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
4849   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
4850       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
4851       .addReg(RISCV::X0);
4852   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
4853       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
4854       .addReg(RISCV::X0);
4855   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
4856       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
4857       .addReg(RISCV::X0);
4858 
4859   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
4860       .addReg(HiReg)
4861       .addReg(ReadAgainReg)
4862       .addMBB(LoopMBB);
4863 
4864   LoopMBB->addSuccessor(LoopMBB);
4865   LoopMBB->addSuccessor(DoneMBB);
4866 
4867   MI.eraseFromParent();
4868 
4869   return DoneMBB;
4870 }
4871 
4872 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
4873                                              MachineBasicBlock *BB) {
4874   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
4875 
4876   MachineFunction &MF = *BB->getParent();
4877   DebugLoc DL = MI.getDebugLoc();
4878   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
4879   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
4880   Register LoReg = MI.getOperand(0).getReg();
4881   Register HiReg = MI.getOperand(1).getReg();
4882   Register SrcReg = MI.getOperand(2).getReg();
4883   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
4884   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
4885 
4886   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
4887                           RI);
4888   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
4889   MachineMemOperand *MMOLo =
4890       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
4891   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
4892       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
4893   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
4894       .addFrameIndex(FI)
4895       .addImm(0)
4896       .addMemOperand(MMOLo);
4897   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
4898       .addFrameIndex(FI)
4899       .addImm(4)
4900       .addMemOperand(MMOHi);
4901   MI.eraseFromParent(); // The pseudo instruction is gone now.
4902   return BB;
4903 }
4904 
4905 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
4906                                                  MachineBasicBlock *BB) {
4907   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
4908          "Unexpected instruction");
4909 
4910   MachineFunction &MF = *BB->getParent();
4911   DebugLoc DL = MI.getDebugLoc();
4912   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
4913   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
4914   Register DstReg = MI.getOperand(0).getReg();
4915   Register LoReg = MI.getOperand(1).getReg();
4916   Register HiReg = MI.getOperand(2).getReg();
4917   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
4918   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
4919 
4920   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
4921   MachineMemOperand *MMOLo =
4922       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
4923   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
4924       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
4925   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
4926       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
4927       .addFrameIndex(FI)
4928       .addImm(0)
4929       .addMemOperand(MMOLo);
4930   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
4931       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
4932       .addFrameIndex(FI)
4933       .addImm(4)
4934       .addMemOperand(MMOHi);
4935   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
4936   MI.eraseFromParent(); // The pseudo instruction is gone now.
4937   return BB;
4938 }
4939 
4940 static bool isSelectPseudo(MachineInstr &MI) {
4941   switch (MI.getOpcode()) {
4942   default:
4943     return false;
4944   case RISCV::Select_GPR_Using_CC_GPR:
4945   case RISCV::Select_FPR16_Using_CC_GPR:
4946   case RISCV::Select_FPR32_Using_CC_GPR:
4947   case RISCV::Select_FPR64_Using_CC_GPR:
4948     return true;
4949   }
4950 }
4951 
4952 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
4953                                            MachineBasicBlock *BB) {
4954   // To "insert" Select_* instructions, we actually have to insert the triangle
4955   // control-flow pattern.  The incoming instructions know the destination vreg
4956   // to set, the condition code register to branch on, the true/false values to
4957   // select between, and the condcode to use to select the appropriate branch.
4958   //
4959   // We produce the following control flow:
4960   //     HeadMBB
4961   //     |  \
4962   //     |  IfFalseMBB
4963   //     | /
4964   //    TailMBB
4965   //
4966   // When we find a sequence of selects we attempt to optimize their emission
4967   // by sharing the control flow. Currently we only handle cases where we have
4968   // multiple selects with the exact same condition (same LHS, RHS and CC).
4969   // The selects may be interleaved with other instructions if the other
4970   // instructions meet some requirements we deem safe:
4971   // - They are debug instructions. Otherwise,
4972   // - They do not have side-effects, do not access memory and their inputs do
4973   //   not depend on the results of the select pseudo-instructions.
4974   // The TrueV/FalseV operands of the selects cannot depend on the result of
4975   // previous selects in the sequence.
4976   // These conditions could be further relaxed. See the X86 target for a
4977   // related approach and more information.
4978   Register LHS = MI.getOperand(1).getReg();
4979   Register RHS = MI.getOperand(2).getReg();
4980   auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
4981 
4982   SmallVector<MachineInstr *, 4> SelectDebugValues;
4983   SmallSet<Register, 4> SelectDests;
4984   SelectDests.insert(MI.getOperand(0).getReg());
4985 
4986   MachineInstr *LastSelectPseudo = &MI;
4987 
4988   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
4989        SequenceMBBI != E; ++SequenceMBBI) {
4990     if (SequenceMBBI->isDebugInstr())
4991       continue;
4992     else if (isSelectPseudo(*SequenceMBBI)) {
4993       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
4994           SequenceMBBI->getOperand(2).getReg() != RHS ||
4995           SequenceMBBI->getOperand(3).getImm() != CC ||
4996           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
4997           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
4998         break;
4999       LastSelectPseudo = &*SequenceMBBI;
5000       SequenceMBBI->collectDebugValues(SelectDebugValues);
5001       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
5002     } else {
5003       if (SequenceMBBI->hasUnmodeledSideEffects() ||
5004           SequenceMBBI->mayLoadOrStore())
5005         break;
5006       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
5007             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
5008           }))
5009         break;
5010     }
5011   }
5012 
5013   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
5014   const BasicBlock *LLVM_BB = BB->getBasicBlock();
5015   DebugLoc DL = MI.getDebugLoc();
5016   MachineFunction::iterator I = ++BB->getIterator();
5017 
5018   MachineBasicBlock *HeadMBB = BB;
5019   MachineFunction *F = BB->getParent();
5020   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
5021   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
5022 
5023   F->insert(I, IfFalseMBB);
5024   F->insert(I, TailMBB);
5025 
5026   // Transfer debug instructions associated with the selects to TailMBB.
5027   for (MachineInstr *DebugInstr : SelectDebugValues) {
5028     TailMBB->push_back(DebugInstr->removeFromParent());
5029   }
5030 
5031   // Move all instructions after the sequence to TailMBB.
5032   TailMBB->splice(TailMBB->end(), HeadMBB,
5033                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
5034   // Update machine-CFG edges by transferring all successors of the current
5035   // block to the new block which will contain the Phi nodes for the selects.
5036   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
5037   // Set the successors for HeadMBB.
5038   HeadMBB->addSuccessor(IfFalseMBB);
5039   HeadMBB->addSuccessor(TailMBB);
5040 
5041   // Insert appropriate branch.
5042   unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
5043 
5044   BuildMI(HeadMBB, DL, TII.get(Opcode))
5045     .addReg(LHS)
5046     .addReg(RHS)
5047     .addMBB(TailMBB);
5048 
5049   // IfFalseMBB just falls through to TailMBB.
5050   IfFalseMBB->addSuccessor(TailMBB);
5051 
5052   // Create PHIs for all of the select pseudo-instructions.
5053   auto SelectMBBI = MI.getIterator();
5054   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
5055   auto InsertionPoint = TailMBB->begin();
5056   while (SelectMBBI != SelectEnd) {
5057     auto Next = std::next(SelectMBBI);
5058     if (isSelectPseudo(*SelectMBBI)) {
5059       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
5060       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
5061               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
5062           .addReg(SelectMBBI->getOperand(4).getReg())
5063           .addMBB(HeadMBB)
5064           .addReg(SelectMBBI->getOperand(5).getReg())
5065           .addMBB(IfFalseMBB);
5066       SelectMBBI->eraseFromParent();
5067     }
5068     SelectMBBI = Next;
5069   }
5070 
5071   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
5072   return TailMBB;
5073 }
5074 
5075 static MachineInstr *elideCopies(MachineInstr *MI,
5076                                  const MachineRegisterInfo &MRI) {
5077   while (true) {
5078     if (!MI->isFullCopy())
5079       return MI;
5080     if (!Register::isVirtualRegister(MI->getOperand(1).getReg()))
5081       return nullptr;
5082     MI = MRI.getVRegDef(MI->getOperand(1).getReg());
5083     if (!MI)
5084       return nullptr;
5085   }
5086 }
5087 
5088 static MachineBasicBlock *addVSetVL(MachineInstr &MI, MachineBasicBlock *BB,
5089                                     int VLIndex, unsigned SEWIndex,
5090                                     RISCVVLMUL VLMul, bool ForceTailAgnostic) {
5091   MachineFunction &MF = *BB->getParent();
5092   DebugLoc DL = MI.getDebugLoc();
5093   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
5094 
5095   unsigned SEW = MI.getOperand(SEWIndex).getImm();
5096   assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW");
5097   RISCVVSEW ElementWidth = static_cast<RISCVVSEW>(Log2_32(SEW / 8));
5098 
5099   MachineRegisterInfo &MRI = MF.getRegInfo();
5100 
5101   auto BuildVSETVLI = [&]() {
5102     if (VLIndex >= 0) {
5103       Register DestReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
5104       Register VLReg = MI.getOperand(VLIndex).getReg();
5105 
5106       // VL might be a compile time constant, but isel would have to put it
5107       // in a register. See if VL comes from an ADDI X0, imm.
5108       if (VLReg.isVirtual()) {
5109         MachineInstr *Def = MRI.getVRegDef(VLReg);
5110         if (Def && Def->getOpcode() == RISCV::ADDI &&
5111             Def->getOperand(1).getReg() == RISCV::X0 &&
5112             Def->getOperand(2).isImm()) {
5113           uint64_t Imm = Def->getOperand(2).getImm();
5114           // VSETIVLI allows a 5-bit zero extended immediate.
5115           if (isUInt<5>(Imm))
5116             return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETIVLI))
5117                 .addReg(DestReg, RegState::Define | RegState::Dead)
5118                 .addImm(Imm);
5119         }
5120       }
5121 
5122       return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI))
5123           .addReg(DestReg, RegState::Define | RegState::Dead)
5124           .addReg(VLReg);
5125     }
5126 
5127     // With no VL operator in the pseudo, do not modify VL (rd = X0, rs1 = X0).
5128     return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI))
5129         .addReg(RISCV::X0, RegState::Define | RegState::Dead)
5130         .addReg(RISCV::X0, RegState::Kill);
5131   };
5132 
5133   MachineInstrBuilder MIB = BuildVSETVLI();
5134 
5135   // Default to tail agnostic unless the destination is tied to a source. In
5136   // that case the user would have some control over the tail values. The tail
5137   // policy is also ignored on instructions that only update element 0 like
5138   // vmv.s.x or reductions so use agnostic there to match the common case.
5139   // FIXME: This is conservatively correct, but we might want to detect that
5140   // the input is undefined.
5141   bool TailAgnostic = true;
5142   unsigned UseOpIdx;
5143   if (!ForceTailAgnostic && MI.isRegTiedToUseOperand(0, &UseOpIdx)) {
5144     TailAgnostic = false;
5145     // If the tied operand is an IMPLICIT_DEF we can keep TailAgnostic.
5146     const MachineOperand &UseMO = MI.getOperand(UseOpIdx);
5147     MachineInstr *UseMI = MRI.getVRegDef(UseMO.getReg());
5148     if (UseMI) {
5149       UseMI = elideCopies(UseMI, MRI);
5150       if (UseMI && UseMI->isImplicitDef())
5151         TailAgnostic = true;
5152     }
5153   }
5154 
5155   // For simplicity we reuse the vtype representation here.
5156   MIB.addImm(RISCVVType::encodeVTYPE(VLMul, ElementWidth,
5157                                      /*TailAgnostic*/ TailAgnostic,
5158                                      /*MaskAgnostic*/ false));
5159 
5160   // Remove (now) redundant operands from pseudo
5161   if (VLIndex >= 0) {
5162     MI.getOperand(VLIndex).setReg(RISCV::NoRegister);
5163     MI.getOperand(VLIndex).setIsKill(false);
5164   }
5165 
5166   return BB;
5167 }
5168 
5169 MachineBasicBlock *
5170 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
5171                                                  MachineBasicBlock *BB) const {
5172   uint64_t TSFlags = MI.getDesc().TSFlags;
5173 
5174   if (TSFlags & RISCVII::HasSEWOpMask) {
5175     unsigned NumOperands = MI.getNumExplicitOperands();
5176     int VLIndex = (TSFlags & RISCVII::HasVLOpMask) ? NumOperands - 2 : -1;
5177     unsigned SEWIndex = NumOperands - 1;
5178     bool ForceTailAgnostic = TSFlags & RISCVII::ForceTailAgnosticMask;
5179 
5180     RISCVVLMUL VLMul = static_cast<RISCVVLMUL>((TSFlags & RISCVII::VLMulMask) >>
5181                                                RISCVII::VLMulShift);
5182     return addVSetVL(MI, BB, VLIndex, SEWIndex, VLMul, ForceTailAgnostic);
5183   }
5184 
5185   switch (MI.getOpcode()) {
5186   default:
5187     llvm_unreachable("Unexpected instr type to insert");
5188   case RISCV::ReadCycleWide:
5189     assert(!Subtarget.is64Bit() &&
5190            "ReadCycleWrite is only to be used on riscv32");
5191     return emitReadCycleWidePseudo(MI, BB);
5192   case RISCV::Select_GPR_Using_CC_GPR:
5193   case RISCV::Select_FPR16_Using_CC_GPR:
5194   case RISCV::Select_FPR32_Using_CC_GPR:
5195   case RISCV::Select_FPR64_Using_CC_GPR:
5196     return emitSelectPseudo(MI, BB);
5197   case RISCV::BuildPairF64Pseudo:
5198     return emitBuildPairF64Pseudo(MI, BB);
5199   case RISCV::SplitF64Pseudo:
5200     return emitSplitF64Pseudo(MI, BB);
5201   }
5202 }
5203 
5204 // Calling Convention Implementation.
5205 // The expectations for frontend ABI lowering vary from target to target.
5206 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
5207 // details, but this is a longer term goal. For now, we simply try to keep the
5208 // role of the frontend as simple and well-defined as possible. The rules can
5209 // be summarised as:
5210 // * Never split up large scalar arguments. We handle them here.
5211 // * If a hardfloat calling convention is being used, and the struct may be
5212 // passed in a pair of registers (fp+fp, int+fp), and both registers are
5213 // available, then pass as two separate arguments. If either the GPRs or FPRs
5214 // are exhausted, then pass according to the rule below.
5215 // * If a struct could never be passed in registers or directly in a stack
5216 // slot (as it is larger than 2*XLEN and the floating point rules don't
5217 // apply), then pass it using a pointer with the byval attribute.
5218 // * If a struct is less than 2*XLEN, then coerce to either a two-element
5219 // word-sized array or a 2*XLEN scalar (depending on alignment).
5220 // * The frontend can determine whether a struct is returned by reference or
5221 // not based on its size and fields. If it will be returned by reference, the
5222 // frontend must modify the prototype so a pointer with the sret annotation is
5223 // passed as the first argument. This is not necessary for large scalar
5224 // returns.
5225 // * Struct return values and varargs should be coerced to structs containing
5226 // register-size fields in the same situations they would be for fixed
5227 // arguments.
5228 
5229 static const MCPhysReg ArgGPRs[] = {
5230   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
5231   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
5232 };
5233 static const MCPhysReg ArgFPR16s[] = {
5234   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
5235   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
5236 };
5237 static const MCPhysReg ArgFPR32s[] = {
5238   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
5239   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
5240 };
5241 static const MCPhysReg ArgFPR64s[] = {
5242   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
5243   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
5244 };
5245 // This is an interim calling convention and it may be changed in the future.
5246 static const MCPhysReg ArgVRs[] = {
5247     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
5248     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
5249     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
5250 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
5251                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
5252                                      RISCV::V20M2, RISCV::V22M2};
5253 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
5254                                      RISCV::V20M4};
5255 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
5256 
5257 // Pass a 2*XLEN argument that has been split into two XLEN values through
5258 // registers or the stack as necessary.
5259 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
5260                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
5261                                 MVT ValVT2, MVT LocVT2,
5262                                 ISD::ArgFlagsTy ArgFlags2) {
5263   unsigned XLenInBytes = XLen / 8;
5264   if (Register Reg = State.AllocateReg(ArgGPRs)) {
5265     // At least one half can be passed via register.
5266     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
5267                                      VA1.getLocVT(), CCValAssign::Full));
5268   } else {
5269     // Both halves must be passed on the stack, with proper alignment.
5270     Align StackAlign =
5271         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
5272     State.addLoc(
5273         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
5274                             State.AllocateStack(XLenInBytes, StackAlign),
5275                             VA1.getLocVT(), CCValAssign::Full));
5276     State.addLoc(CCValAssign::getMem(
5277         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
5278         LocVT2, CCValAssign::Full));
5279     return false;
5280   }
5281 
5282   if (Register Reg = State.AllocateReg(ArgGPRs)) {
5283     // The second half can also be passed via register.
5284     State.addLoc(
5285         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
5286   } else {
5287     // The second half is passed via the stack, without additional alignment.
5288     State.addLoc(CCValAssign::getMem(
5289         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
5290         LocVT2, CCValAssign::Full));
5291   }
5292 
5293   return false;
5294 }
5295 
5296 // Implements the RISC-V calling convention. Returns true upon failure.
5297 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
5298                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
5299                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
5300                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
5301                      Optional<unsigned> FirstMaskArgument) {
5302   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
5303   assert(XLen == 32 || XLen == 64);
5304   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
5305 
5306   // Any return value split in to more than two values can't be returned
5307   // directly. Vectors are returned via the available vector registers.
5308   if (!LocVT.isVector() && IsRet && ValNo > 1)
5309     return true;
5310 
5311   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
5312   // variadic argument, or if no F16/F32 argument registers are available.
5313   bool UseGPRForF16_F32 = true;
5314   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
5315   // variadic argument, or if no F64 argument registers are available.
5316   bool UseGPRForF64 = true;
5317 
5318   switch (ABI) {
5319   default:
5320     llvm_unreachable("Unexpected ABI");
5321   case RISCVABI::ABI_ILP32:
5322   case RISCVABI::ABI_LP64:
5323     break;
5324   case RISCVABI::ABI_ILP32F:
5325   case RISCVABI::ABI_LP64F:
5326     UseGPRForF16_F32 = !IsFixed;
5327     break;
5328   case RISCVABI::ABI_ILP32D:
5329   case RISCVABI::ABI_LP64D:
5330     UseGPRForF16_F32 = !IsFixed;
5331     UseGPRForF64 = !IsFixed;
5332     break;
5333   }
5334 
5335   // FPR16, FPR32, and FPR64 alias each other.
5336   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
5337     UseGPRForF16_F32 = true;
5338     UseGPRForF64 = true;
5339   }
5340 
5341   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
5342   // similar local variables rather than directly checking against the target
5343   // ABI.
5344 
5345   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
5346     LocVT = XLenVT;
5347     LocInfo = CCValAssign::BCvt;
5348   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
5349     LocVT = MVT::i64;
5350     LocInfo = CCValAssign::BCvt;
5351   }
5352 
5353   // If this is a variadic argument, the RISC-V calling convention requires
5354   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
5355   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
5356   // be used regardless of whether the original argument was split during
5357   // legalisation or not. The argument will not be passed by registers if the
5358   // original type is larger than 2*XLEN, so the register alignment rule does
5359   // not apply.
5360   unsigned TwoXLenInBytes = (2 * XLen) / 8;
5361   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
5362       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
5363     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
5364     // Skip 'odd' register if necessary.
5365     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
5366       State.AllocateReg(ArgGPRs);
5367   }
5368 
5369   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
5370   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
5371       State.getPendingArgFlags();
5372 
5373   assert(PendingLocs.size() == PendingArgFlags.size() &&
5374          "PendingLocs and PendingArgFlags out of sync");
5375 
5376   // Handle passing f64 on RV32D with a soft float ABI or when floating point
5377   // registers are exhausted.
5378   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
5379     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
5380            "Can't lower f64 if it is split");
5381     // Depending on available argument GPRS, f64 may be passed in a pair of
5382     // GPRs, split between a GPR and the stack, or passed completely on the
5383     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
5384     // cases.
5385     Register Reg = State.AllocateReg(ArgGPRs);
5386     LocVT = MVT::i32;
5387     if (!Reg) {
5388       unsigned StackOffset = State.AllocateStack(8, Align(8));
5389       State.addLoc(
5390           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
5391       return false;
5392     }
5393     if (!State.AllocateReg(ArgGPRs))
5394       State.AllocateStack(4, Align(4));
5395     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
5396     return false;
5397   }
5398 
5399   // Fixed-length vectors are located in the corresponding scalable-vector
5400   // container types.
5401   if (ValVT.isFixedLengthVector())
5402     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
5403 
5404   // Split arguments might be passed indirectly, so keep track of the pending
5405   // values. Split vectors are passed via a mix of registers and indirectly, so
5406   // treat them as we would any other argument.
5407   if (!LocVT.isVector() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
5408     LocVT = XLenVT;
5409     LocInfo = CCValAssign::Indirect;
5410     PendingLocs.push_back(
5411         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
5412     PendingArgFlags.push_back(ArgFlags);
5413     if (!ArgFlags.isSplitEnd()) {
5414       return false;
5415     }
5416   }
5417 
5418   // If the split argument only had two elements, it should be passed directly
5419   // in registers or on the stack.
5420   if (!LocVT.isVector() && ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
5421     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
5422     // Apply the normal calling convention rules to the first half of the
5423     // split argument.
5424     CCValAssign VA = PendingLocs[0];
5425     ISD::ArgFlagsTy AF = PendingArgFlags[0];
5426     PendingLocs.clear();
5427     PendingArgFlags.clear();
5428     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
5429                                ArgFlags);
5430   }
5431 
5432   // Allocate to a register if possible, or else a stack slot.
5433   Register Reg;
5434   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
5435     Reg = State.AllocateReg(ArgFPR16s);
5436   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
5437     Reg = State.AllocateReg(ArgFPR32s);
5438   else if (ValVT == MVT::f64 && !UseGPRForF64)
5439     Reg = State.AllocateReg(ArgFPR64s);
5440   else if (ValVT.isVector()) {
5441     const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
5442     if (RC == &RISCV::VRRegClass) {
5443       // Assign the first mask argument to V0.
5444       // This is an interim calling convention and it may be changed in the
5445       // future.
5446       if (FirstMaskArgument.hasValue() &&
5447           ValNo == FirstMaskArgument.getValue()) {
5448         Reg = State.AllocateReg(RISCV::V0);
5449       } else {
5450         Reg = State.AllocateReg(ArgVRs);
5451       }
5452     } else if (RC == &RISCV::VRM2RegClass) {
5453       Reg = State.AllocateReg(ArgVRM2s);
5454     } else if (RC == &RISCV::VRM4RegClass) {
5455       Reg = State.AllocateReg(ArgVRM4s);
5456     } else if (RC == &RISCV::VRM8RegClass) {
5457       Reg = State.AllocateReg(ArgVRM8s);
5458     } else {
5459       llvm_unreachable("Unhandled class register for ValueType");
5460     }
5461     if (!Reg) {
5462       // For return values, the vector must be passed fully via registers or
5463       // via the stack.
5464       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
5465       // but we're using all of them.
5466       if (IsRet)
5467         return true;
5468       LocInfo = CCValAssign::Indirect;
5469       // Try using a GPR to pass the address
5470       Reg = State.AllocateReg(ArgGPRs);
5471       LocVT = XLenVT;
5472     }
5473   } else
5474     Reg = State.AllocateReg(ArgGPRs);
5475   unsigned StackOffset =
5476       Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8));
5477 
5478   // If we reach this point and PendingLocs is non-empty, we must be at the
5479   // end of a split argument that must be passed indirectly.
5480   if (!PendingLocs.empty()) {
5481     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
5482     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
5483 
5484     for (auto &It : PendingLocs) {
5485       if (Reg)
5486         It.convertToReg(Reg);
5487       else
5488         It.convertToMem(StackOffset);
5489       State.addLoc(It);
5490     }
5491     PendingLocs.clear();
5492     PendingArgFlags.clear();
5493     return false;
5494   }
5495 
5496   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
5497           (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) &&
5498          "Expected an XLenVT or vector types at this stage");
5499 
5500   if (Reg) {
5501     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
5502     return false;
5503   }
5504 
5505   // When a floating-point value is passed on the stack, no bit-conversion is
5506   // needed.
5507   if (ValVT.isFloatingPoint()) {
5508     LocVT = ValVT;
5509     LocInfo = CCValAssign::Full;
5510   }
5511   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
5512   return false;
5513 }
5514 
5515 template <typename ArgTy>
5516 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
5517   for (const auto &ArgIdx : enumerate(Args)) {
5518     MVT ArgVT = ArgIdx.value().VT;
5519     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
5520       return ArgIdx.index();
5521   }
5522   return None;
5523 }
5524 
5525 void RISCVTargetLowering::analyzeInputArgs(
5526     MachineFunction &MF, CCState &CCInfo,
5527     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const {
5528   unsigned NumArgs = Ins.size();
5529   FunctionType *FType = MF.getFunction().getFunctionType();
5530 
5531   Optional<unsigned> FirstMaskArgument;
5532   if (Subtarget.hasStdExtV())
5533     FirstMaskArgument = preAssignMask(Ins);
5534 
5535   for (unsigned i = 0; i != NumArgs; ++i) {
5536     MVT ArgVT = Ins[i].VT;
5537     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
5538 
5539     Type *ArgTy = nullptr;
5540     if (IsRet)
5541       ArgTy = FType->getReturnType();
5542     else if (Ins[i].isOrigArg())
5543       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
5544 
5545     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
5546     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
5547                  ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
5548                  FirstMaskArgument)) {
5549       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
5550                         << EVT(ArgVT).getEVTString() << '\n');
5551       llvm_unreachable(nullptr);
5552     }
5553   }
5554 }
5555 
5556 void RISCVTargetLowering::analyzeOutputArgs(
5557     MachineFunction &MF, CCState &CCInfo,
5558     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
5559     CallLoweringInfo *CLI) const {
5560   unsigned NumArgs = Outs.size();
5561 
5562   Optional<unsigned> FirstMaskArgument;
5563   if (Subtarget.hasStdExtV())
5564     FirstMaskArgument = preAssignMask(Outs);
5565 
5566   for (unsigned i = 0; i != NumArgs; i++) {
5567     MVT ArgVT = Outs[i].VT;
5568     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5569     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
5570 
5571     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
5572     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
5573                  ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
5574                  FirstMaskArgument)) {
5575       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
5576                         << EVT(ArgVT).getEVTString() << "\n");
5577       llvm_unreachable(nullptr);
5578     }
5579   }
5580 }
5581 
5582 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
5583 // values.
5584 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
5585                                    const CCValAssign &VA, const SDLoc &DL,
5586                                    const RISCVSubtarget &Subtarget) {
5587   switch (VA.getLocInfo()) {
5588   default:
5589     llvm_unreachable("Unexpected CCValAssign::LocInfo");
5590   case CCValAssign::Full:
5591     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
5592       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
5593     break;
5594   case CCValAssign::BCvt:
5595     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
5596       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
5597     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
5598       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
5599     else
5600       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
5601     break;
5602   }
5603   return Val;
5604 }
5605 
5606 // The caller is responsible for loading the full value if the argument is
5607 // passed with CCValAssign::Indirect.
5608 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
5609                                 const CCValAssign &VA, const SDLoc &DL,
5610                                 const RISCVTargetLowering &TLI) {
5611   MachineFunction &MF = DAG.getMachineFunction();
5612   MachineRegisterInfo &RegInfo = MF.getRegInfo();
5613   EVT LocVT = VA.getLocVT();
5614   SDValue Val;
5615   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
5616   Register VReg = RegInfo.createVirtualRegister(RC);
5617   RegInfo.addLiveIn(VA.getLocReg(), VReg);
5618   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
5619 
5620   if (VA.getLocInfo() == CCValAssign::Indirect)
5621     return Val;
5622 
5623   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
5624 }
5625 
5626 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
5627                                    const CCValAssign &VA, const SDLoc &DL,
5628                                    const RISCVSubtarget &Subtarget) {
5629   EVT LocVT = VA.getLocVT();
5630 
5631   switch (VA.getLocInfo()) {
5632   default:
5633     llvm_unreachable("Unexpected CCValAssign::LocInfo");
5634   case CCValAssign::Full:
5635     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
5636       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
5637     break;
5638   case CCValAssign::BCvt:
5639     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
5640       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
5641     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
5642       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
5643     else
5644       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
5645     break;
5646   }
5647   return Val;
5648 }
5649 
5650 // The caller is responsible for loading the full value if the argument is
5651 // passed with CCValAssign::Indirect.
5652 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
5653                                 const CCValAssign &VA, const SDLoc &DL) {
5654   MachineFunction &MF = DAG.getMachineFunction();
5655   MachineFrameInfo &MFI = MF.getFrameInfo();
5656   EVT LocVT = VA.getLocVT();
5657   EVT ValVT = VA.getValVT();
5658   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
5659   int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
5660                                  VA.getLocMemOffset(), /*Immutable=*/true);
5661   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
5662   SDValue Val;
5663 
5664   ISD::LoadExtType ExtType;
5665   switch (VA.getLocInfo()) {
5666   default:
5667     llvm_unreachable("Unexpected CCValAssign::LocInfo");
5668   case CCValAssign::Full:
5669   case CCValAssign::Indirect:
5670   case CCValAssign::BCvt:
5671     ExtType = ISD::NON_EXTLOAD;
5672     break;
5673   }
5674   Val = DAG.getExtLoad(
5675       ExtType, DL, LocVT, Chain, FIN,
5676       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
5677   return Val;
5678 }
5679 
5680 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
5681                                        const CCValAssign &VA, const SDLoc &DL) {
5682   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
5683          "Unexpected VA");
5684   MachineFunction &MF = DAG.getMachineFunction();
5685   MachineFrameInfo &MFI = MF.getFrameInfo();
5686   MachineRegisterInfo &RegInfo = MF.getRegInfo();
5687 
5688   if (VA.isMemLoc()) {
5689     // f64 is passed on the stack.
5690     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
5691     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
5692     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
5693                        MachinePointerInfo::getFixedStack(MF, FI));
5694   }
5695 
5696   assert(VA.isRegLoc() && "Expected register VA assignment");
5697 
5698   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
5699   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
5700   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
5701   SDValue Hi;
5702   if (VA.getLocReg() == RISCV::X17) {
5703     // Second half of f64 is passed on the stack.
5704     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
5705     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
5706     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
5707                      MachinePointerInfo::getFixedStack(MF, FI));
5708   } else {
5709     // Second half of f64 is passed in another GPR.
5710     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
5711     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
5712     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
5713   }
5714   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
5715 }
5716 
5717 // FastCC has less than 1% performance improvement for some particular
5718 // benchmark. But theoretically, it may has benenfit for some cases.
5719 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT,
5720                             CCValAssign::LocInfo LocInfo,
5721                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
5722 
5723   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
5724     // X5 and X6 might be used for save-restore libcall.
5725     static const MCPhysReg GPRList[] = {
5726         RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
5727         RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
5728         RISCV::X29, RISCV::X30, RISCV::X31};
5729     if (unsigned Reg = State.AllocateReg(GPRList)) {
5730       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
5731       return false;
5732     }
5733   }
5734 
5735   if (LocVT == MVT::f16) {
5736     static const MCPhysReg FPR16List[] = {
5737         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
5738         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
5739         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
5740         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
5741     if (unsigned Reg = State.AllocateReg(FPR16List)) {
5742       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
5743       return false;
5744     }
5745   }
5746 
5747   if (LocVT == MVT::f32) {
5748     static const MCPhysReg FPR32List[] = {
5749         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
5750         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
5751         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
5752         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
5753     if (unsigned Reg = State.AllocateReg(FPR32List)) {
5754       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
5755       return false;
5756     }
5757   }
5758 
5759   if (LocVT == MVT::f64) {
5760     static const MCPhysReg FPR64List[] = {
5761         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
5762         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
5763         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
5764         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
5765     if (unsigned Reg = State.AllocateReg(FPR64List)) {
5766       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
5767       return false;
5768     }
5769   }
5770 
5771   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
5772     unsigned Offset4 = State.AllocateStack(4, Align(4));
5773     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
5774     return false;
5775   }
5776 
5777   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
5778     unsigned Offset5 = State.AllocateStack(8, Align(8));
5779     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
5780     return false;
5781   }
5782 
5783   return true; // CC didn't match.
5784 }
5785 
5786 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
5787                          CCValAssign::LocInfo LocInfo,
5788                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
5789 
5790   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
5791     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
5792     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
5793     static const MCPhysReg GPRList[] = {
5794         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
5795         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
5796     if (unsigned Reg = State.AllocateReg(GPRList)) {
5797       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
5798       return false;
5799     }
5800   }
5801 
5802   if (LocVT == MVT::f32) {
5803     // Pass in STG registers: F1, ..., F6
5804     //                        fs0 ... fs5
5805     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
5806                                           RISCV::F18_F, RISCV::F19_F,
5807                                           RISCV::F20_F, RISCV::F21_F};
5808     if (unsigned Reg = State.AllocateReg(FPR32List)) {
5809       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
5810       return false;
5811     }
5812   }
5813 
5814   if (LocVT == MVT::f64) {
5815     // Pass in STG registers: D1, ..., D6
5816     //                        fs6 ... fs11
5817     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
5818                                           RISCV::F24_D, RISCV::F25_D,
5819                                           RISCV::F26_D, RISCV::F27_D};
5820     if (unsigned Reg = State.AllocateReg(FPR64List)) {
5821       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
5822       return false;
5823     }
5824   }
5825 
5826   report_fatal_error("No registers left in GHC calling convention");
5827   return true;
5828 }
5829 
5830 // Transform physical registers into virtual registers.
5831 SDValue RISCVTargetLowering::LowerFormalArguments(
5832     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
5833     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
5834     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5835 
5836   MachineFunction &MF = DAG.getMachineFunction();
5837 
5838   switch (CallConv) {
5839   default:
5840     report_fatal_error("Unsupported calling convention");
5841   case CallingConv::C:
5842   case CallingConv::Fast:
5843     break;
5844   case CallingConv::GHC:
5845     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
5846         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
5847       report_fatal_error(
5848         "GHC calling convention requires the F and D instruction set extensions");
5849   }
5850 
5851   const Function &Func = MF.getFunction();
5852   if (Func.hasFnAttribute("interrupt")) {
5853     if (!Func.arg_empty())
5854       report_fatal_error(
5855         "Functions with the interrupt attribute cannot have arguments!");
5856 
5857     StringRef Kind =
5858       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
5859 
5860     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
5861       report_fatal_error(
5862         "Function interrupt attribute argument not supported!");
5863   }
5864 
5865   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5866   MVT XLenVT = Subtarget.getXLenVT();
5867   unsigned XLenInBytes = Subtarget.getXLen() / 8;
5868   // Used with vargs to acumulate store chains.
5869   std::vector<SDValue> OutChains;
5870 
5871   // Assign locations to all of the incoming arguments.
5872   SmallVector<CCValAssign, 16> ArgLocs;
5873   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5874 
5875   if (CallConv == CallingConv::Fast)
5876     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC);
5877   else if (CallConv == CallingConv::GHC)
5878     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
5879   else
5880     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false);
5881 
5882   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
5883     CCValAssign &VA = ArgLocs[i];
5884     SDValue ArgValue;
5885     // Passing f64 on RV32D with a soft float ABI must be handled as a special
5886     // case.
5887     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
5888       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
5889     else if (VA.isRegLoc())
5890       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
5891     else
5892       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
5893 
5894     if (VA.getLocInfo() == CCValAssign::Indirect) {
5895       // If the original argument was split and passed by reference (e.g. i128
5896       // on RV32), we need to load all parts of it here (using the same
5897       // address). Vectors may be partly split to registers and partly to the
5898       // stack, in which case the base address is partly offset and subsequent
5899       // stores are relative to that.
5900       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
5901                                    MachinePointerInfo()));
5902       unsigned ArgIndex = Ins[i].OrigArgIndex;
5903       unsigned ArgPartOffset = Ins[i].PartOffset;
5904       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
5905       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
5906         CCValAssign &PartVA = ArgLocs[i + 1];
5907         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
5908         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
5909                                       DAG.getIntPtrConstant(PartOffset, DL));
5910         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
5911                                      MachinePointerInfo()));
5912         ++i;
5913       }
5914       continue;
5915     }
5916     InVals.push_back(ArgValue);
5917   }
5918 
5919   if (IsVarArg) {
5920     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
5921     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
5922     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
5923     MachineFrameInfo &MFI = MF.getFrameInfo();
5924     MachineRegisterInfo &RegInfo = MF.getRegInfo();
5925     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
5926 
5927     // Offset of the first variable argument from stack pointer, and size of
5928     // the vararg save area. For now, the varargs save area is either zero or
5929     // large enough to hold a0-a7.
5930     int VaArgOffset, VarArgsSaveSize;
5931 
5932     // If all registers are allocated, then all varargs must be passed on the
5933     // stack and we don't need to save any argregs.
5934     if (ArgRegs.size() == Idx) {
5935       VaArgOffset = CCInfo.getNextStackOffset();
5936       VarArgsSaveSize = 0;
5937     } else {
5938       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
5939       VaArgOffset = -VarArgsSaveSize;
5940     }
5941 
5942     // Record the frame index of the first variable argument
5943     // which is a value necessary to VASTART.
5944     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
5945     RVFI->setVarArgsFrameIndex(FI);
5946 
5947     // If saving an odd number of registers then create an extra stack slot to
5948     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
5949     // offsets to even-numbered registered remain 2*XLEN-aligned.
5950     if (Idx % 2) {
5951       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
5952       VarArgsSaveSize += XLenInBytes;
5953     }
5954 
5955     // Copy the integer registers that may have been used for passing varargs
5956     // to the vararg save area.
5957     for (unsigned I = Idx; I < ArgRegs.size();
5958          ++I, VaArgOffset += XLenInBytes) {
5959       const Register Reg = RegInfo.createVirtualRegister(RC);
5960       RegInfo.addLiveIn(ArgRegs[I], Reg);
5961       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
5962       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
5963       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
5964       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
5965                                    MachinePointerInfo::getFixedStack(MF, FI));
5966       cast<StoreSDNode>(Store.getNode())
5967           ->getMemOperand()
5968           ->setValue((Value *)nullptr);
5969       OutChains.push_back(Store);
5970     }
5971     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
5972   }
5973 
5974   // All stores are grouped in one node to allow the matching between
5975   // the size of Ins and InVals. This only happens for vararg functions.
5976   if (!OutChains.empty()) {
5977     OutChains.push_back(Chain);
5978     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
5979   }
5980 
5981   return Chain;
5982 }
5983 
5984 /// isEligibleForTailCallOptimization - Check whether the call is eligible
5985 /// for tail call optimization.
5986 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
5987 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
5988     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
5989     const SmallVector<CCValAssign, 16> &ArgLocs) const {
5990 
5991   auto &Callee = CLI.Callee;
5992   auto CalleeCC = CLI.CallConv;
5993   auto &Outs = CLI.Outs;
5994   auto &Caller = MF.getFunction();
5995   auto CallerCC = Caller.getCallingConv();
5996 
5997   // Exception-handling functions need a special set of instructions to
5998   // indicate a return to the hardware. Tail-calling another function would
5999   // probably break this.
6000   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
6001   // should be expanded as new function attributes are introduced.
6002   if (Caller.hasFnAttribute("interrupt"))
6003     return false;
6004 
6005   // Do not tail call opt if the stack is used to pass parameters.
6006   if (CCInfo.getNextStackOffset() != 0)
6007     return false;
6008 
6009   // Do not tail call opt if any parameters need to be passed indirectly.
6010   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
6011   // passed indirectly. So the address of the value will be passed in a
6012   // register, or if not available, then the address is put on the stack. In
6013   // order to pass indirectly, space on the stack often needs to be allocated
6014   // in order to store the value. In this case the CCInfo.getNextStackOffset()
6015   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
6016   // are passed CCValAssign::Indirect.
6017   for (auto &VA : ArgLocs)
6018     if (VA.getLocInfo() == CCValAssign::Indirect)
6019       return false;
6020 
6021   // Do not tail call opt if either caller or callee uses struct return
6022   // semantics.
6023   auto IsCallerStructRet = Caller.hasStructRetAttr();
6024   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
6025   if (IsCallerStructRet || IsCalleeStructRet)
6026     return false;
6027 
6028   // Externally-defined functions with weak linkage should not be
6029   // tail-called. The behaviour of branch instructions in this situation (as
6030   // used for tail calls) is implementation-defined, so we cannot rely on the
6031   // linker replacing the tail call with a return.
6032   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
6033     const GlobalValue *GV = G->getGlobal();
6034     if (GV->hasExternalWeakLinkage())
6035       return false;
6036   }
6037 
6038   // The callee has to preserve all registers the caller needs to preserve.
6039   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
6040   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
6041   if (CalleeCC != CallerCC) {
6042     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
6043     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
6044       return false;
6045   }
6046 
6047   // Byval parameters hand the function a pointer directly into the stack area
6048   // we want to reuse during a tail call. Working around this *is* possible
6049   // but less efficient and uglier in LowerCall.
6050   for (auto &Arg : Outs)
6051     if (Arg.Flags.isByVal())
6052       return false;
6053 
6054   return true;
6055 }
6056 
6057 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
6058 // and output parameter nodes.
6059 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
6060                                        SmallVectorImpl<SDValue> &InVals) const {
6061   SelectionDAG &DAG = CLI.DAG;
6062   SDLoc &DL = CLI.DL;
6063   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
6064   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
6065   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
6066   SDValue Chain = CLI.Chain;
6067   SDValue Callee = CLI.Callee;
6068   bool &IsTailCall = CLI.IsTailCall;
6069   CallingConv::ID CallConv = CLI.CallConv;
6070   bool IsVarArg = CLI.IsVarArg;
6071   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6072   MVT XLenVT = Subtarget.getXLenVT();
6073 
6074   MachineFunction &MF = DAG.getMachineFunction();
6075 
6076   // Analyze the operands of the call, assigning locations to each operand.
6077   SmallVector<CCValAssign, 16> ArgLocs;
6078   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
6079 
6080   if (CallConv == CallingConv::Fast)
6081     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC);
6082   else if (CallConv == CallingConv::GHC)
6083     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
6084   else
6085     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI);
6086 
6087   // Check if it's really possible to do a tail call.
6088   if (IsTailCall)
6089     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
6090 
6091   if (IsTailCall)
6092     ++NumTailCalls;
6093   else if (CLI.CB && CLI.CB->isMustTailCall())
6094     report_fatal_error("failed to perform tail call elimination on a call "
6095                        "site marked musttail");
6096 
6097   // Get a count of how many bytes are to be pushed on the stack.
6098   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
6099 
6100   // Create local copies for byval args
6101   SmallVector<SDValue, 8> ByValArgs;
6102   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
6103     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6104     if (!Flags.isByVal())
6105       continue;
6106 
6107     SDValue Arg = OutVals[i];
6108     unsigned Size = Flags.getByValSize();
6109     Align Alignment = Flags.getNonZeroByValAlign();
6110 
6111     int FI =
6112         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
6113     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
6114     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
6115 
6116     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
6117                           /*IsVolatile=*/false,
6118                           /*AlwaysInline=*/false, IsTailCall,
6119                           MachinePointerInfo(), MachinePointerInfo());
6120     ByValArgs.push_back(FIPtr);
6121   }
6122 
6123   if (!IsTailCall)
6124     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
6125 
6126   // Copy argument values to their designated locations.
6127   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
6128   SmallVector<SDValue, 8> MemOpChains;
6129   SDValue StackPtr;
6130   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
6131     CCValAssign &VA = ArgLocs[i];
6132     SDValue ArgValue = OutVals[i];
6133     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6134 
6135     // Handle passing f64 on RV32D with a soft float ABI as a special case.
6136     bool IsF64OnRV32DSoftABI =
6137         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
6138     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
6139       SDValue SplitF64 = DAG.getNode(
6140           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
6141       SDValue Lo = SplitF64.getValue(0);
6142       SDValue Hi = SplitF64.getValue(1);
6143 
6144       Register RegLo = VA.getLocReg();
6145       RegsToPass.push_back(std::make_pair(RegLo, Lo));
6146 
6147       if (RegLo == RISCV::X17) {
6148         // Second half of f64 is passed on the stack.
6149         // Work out the address of the stack slot.
6150         if (!StackPtr.getNode())
6151           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
6152         // Emit the store.
6153         MemOpChains.push_back(
6154             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
6155       } else {
6156         // Second half of f64 is passed in another GPR.
6157         assert(RegLo < RISCV::X31 && "Invalid register pair");
6158         Register RegHigh = RegLo + 1;
6159         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
6160       }
6161       continue;
6162     }
6163 
6164     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
6165     // as any other MemLoc.
6166 
6167     // Promote the value if needed.
6168     // For now, only handle fully promoted and indirect arguments.
6169     if (VA.getLocInfo() == CCValAssign::Indirect) {
6170       // Store the argument in a stack slot and pass its address.
6171       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT);
6172       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
6173       MemOpChains.push_back(
6174           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
6175                        MachinePointerInfo::getFixedStack(MF, FI)));
6176       // If the original argument was split (e.g. i128), we need
6177       // to store the required parts of it here (and pass just one address).
6178       // Vectors may be partly split to registers and partly to the stack, in
6179       // which case the base address is partly offset and subsequent stores are
6180       // relative to that.
6181       unsigned ArgIndex = Outs[i].OrigArgIndex;
6182       unsigned ArgPartOffset = Outs[i].PartOffset;
6183       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
6184       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
6185         SDValue PartValue = OutVals[i + 1];
6186         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
6187         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
6188                                       DAG.getIntPtrConstant(PartOffset, DL));
6189         MemOpChains.push_back(
6190             DAG.getStore(Chain, DL, PartValue, Address,
6191                          MachinePointerInfo::getFixedStack(MF, FI)));
6192         ++i;
6193       }
6194       ArgValue = SpillSlot;
6195     } else {
6196       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
6197     }
6198 
6199     // Use local copy if it is a byval arg.
6200     if (Flags.isByVal())
6201       ArgValue = ByValArgs[j++];
6202 
6203     if (VA.isRegLoc()) {
6204       // Queue up the argument copies and emit them at the end.
6205       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
6206     } else {
6207       assert(VA.isMemLoc() && "Argument not register or memory");
6208       assert(!IsTailCall && "Tail call not allowed if stack is used "
6209                             "for passing parameters");
6210 
6211       // Work out the address of the stack slot.
6212       if (!StackPtr.getNode())
6213         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
6214       SDValue Address =
6215           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
6216                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
6217 
6218       // Emit the store.
6219       MemOpChains.push_back(
6220           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
6221     }
6222   }
6223 
6224   // Join the stores, which are independent of one another.
6225   if (!MemOpChains.empty())
6226     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
6227 
6228   SDValue Glue;
6229 
6230   // Build a sequence of copy-to-reg nodes, chained and glued together.
6231   for (auto &Reg : RegsToPass) {
6232     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
6233     Glue = Chain.getValue(1);
6234   }
6235 
6236   // Validate that none of the argument registers have been marked as
6237   // reserved, if so report an error. Do the same for the return address if this
6238   // is not a tailcall.
6239   validateCCReservedRegs(RegsToPass, MF);
6240   if (!IsTailCall &&
6241       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
6242     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
6243         MF.getFunction(),
6244         "Return address register required, but has been reserved."});
6245 
6246   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
6247   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
6248   // split it and then direct call can be matched by PseudoCALL.
6249   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
6250     const GlobalValue *GV = S->getGlobal();
6251 
6252     unsigned OpFlags = RISCVII::MO_CALL;
6253     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
6254       OpFlags = RISCVII::MO_PLT;
6255 
6256     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
6257   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
6258     unsigned OpFlags = RISCVII::MO_CALL;
6259 
6260     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
6261                                                  nullptr))
6262       OpFlags = RISCVII::MO_PLT;
6263 
6264     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
6265   }
6266 
6267   // The first call operand is the chain and the second is the target address.
6268   SmallVector<SDValue, 8> Ops;
6269   Ops.push_back(Chain);
6270   Ops.push_back(Callee);
6271 
6272   // Add argument registers to the end of the list so that they are
6273   // known live into the call.
6274   for (auto &Reg : RegsToPass)
6275     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
6276 
6277   if (!IsTailCall) {
6278     // Add a register mask operand representing the call-preserved registers.
6279     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
6280     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
6281     assert(Mask && "Missing call preserved mask for calling convention");
6282     Ops.push_back(DAG.getRegisterMask(Mask));
6283   }
6284 
6285   // Glue the call to the argument copies, if any.
6286   if (Glue.getNode())
6287     Ops.push_back(Glue);
6288 
6289   // Emit the call.
6290   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6291 
6292   if (IsTailCall) {
6293     MF.getFrameInfo().setHasTailCall();
6294     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
6295   }
6296 
6297   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
6298   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
6299   Glue = Chain.getValue(1);
6300 
6301   // Mark the end of the call, which is glued to the call itself.
6302   Chain = DAG.getCALLSEQ_END(Chain,
6303                              DAG.getConstant(NumBytes, DL, PtrVT, true),
6304                              DAG.getConstant(0, DL, PtrVT, true),
6305                              Glue, DL);
6306   Glue = Chain.getValue(1);
6307 
6308   // Assign locations to each value returned by this call.
6309   SmallVector<CCValAssign, 16> RVLocs;
6310   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
6311   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true);
6312 
6313   // Copy all of the result registers out of their specified physreg.
6314   for (auto &VA : RVLocs) {
6315     // Copy the value out
6316     SDValue RetValue =
6317         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
6318     // Glue the RetValue to the end of the call sequence
6319     Chain = RetValue.getValue(1);
6320     Glue = RetValue.getValue(2);
6321 
6322     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
6323       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
6324       SDValue RetValue2 =
6325           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
6326       Chain = RetValue2.getValue(1);
6327       Glue = RetValue2.getValue(2);
6328       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
6329                              RetValue2);
6330     }
6331 
6332     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
6333 
6334     InVals.push_back(RetValue);
6335   }
6336 
6337   return Chain;
6338 }
6339 
6340 bool RISCVTargetLowering::CanLowerReturn(
6341     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
6342     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
6343   SmallVector<CCValAssign, 16> RVLocs;
6344   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
6345 
6346   Optional<unsigned> FirstMaskArgument;
6347   if (Subtarget.hasStdExtV())
6348     FirstMaskArgument = preAssignMask(Outs);
6349 
6350   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
6351     MVT VT = Outs[i].VT;
6352     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
6353     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
6354     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
6355                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
6356                  *this, FirstMaskArgument))
6357       return false;
6358   }
6359   return true;
6360 }
6361 
6362 SDValue
6363 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
6364                                  bool IsVarArg,
6365                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
6366                                  const SmallVectorImpl<SDValue> &OutVals,
6367                                  const SDLoc &DL, SelectionDAG &DAG) const {
6368   const MachineFunction &MF = DAG.getMachineFunction();
6369   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
6370 
6371   // Stores the assignment of the return value to a location.
6372   SmallVector<CCValAssign, 16> RVLocs;
6373 
6374   // Info about the registers and stack slot.
6375   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
6376                  *DAG.getContext());
6377 
6378   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
6379                     nullptr);
6380 
6381   if (CallConv == CallingConv::GHC && !RVLocs.empty())
6382     report_fatal_error("GHC functions return void only");
6383 
6384   SDValue Glue;
6385   SmallVector<SDValue, 4> RetOps(1, Chain);
6386 
6387   // Copy the result values into the output registers.
6388   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
6389     SDValue Val = OutVals[i];
6390     CCValAssign &VA = RVLocs[i];
6391     assert(VA.isRegLoc() && "Can only return in registers!");
6392 
6393     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
6394       // Handle returning f64 on RV32D with a soft float ABI.
6395       assert(VA.isRegLoc() && "Expected return via registers");
6396       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
6397                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
6398       SDValue Lo = SplitF64.getValue(0);
6399       SDValue Hi = SplitF64.getValue(1);
6400       Register RegLo = VA.getLocReg();
6401       assert(RegLo < RISCV::X31 && "Invalid register pair");
6402       Register RegHi = RegLo + 1;
6403 
6404       if (STI.isRegisterReservedByUser(RegLo) ||
6405           STI.isRegisterReservedByUser(RegHi))
6406         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
6407             MF.getFunction(),
6408             "Return value register required, but has been reserved."});
6409 
6410       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
6411       Glue = Chain.getValue(1);
6412       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
6413       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
6414       Glue = Chain.getValue(1);
6415       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
6416     } else {
6417       // Handle a 'normal' return.
6418       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
6419       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
6420 
6421       if (STI.isRegisterReservedByUser(VA.getLocReg()))
6422         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
6423             MF.getFunction(),
6424             "Return value register required, but has been reserved."});
6425 
6426       // Guarantee that all emitted copies are stuck together.
6427       Glue = Chain.getValue(1);
6428       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
6429     }
6430   }
6431 
6432   RetOps[0] = Chain; // Update chain.
6433 
6434   // Add the glue node if we have it.
6435   if (Glue.getNode()) {
6436     RetOps.push_back(Glue);
6437   }
6438 
6439   // Interrupt service routines use different return instructions.
6440   const Function &Func = DAG.getMachineFunction().getFunction();
6441   if (Func.hasFnAttribute("interrupt")) {
6442     if (!Func.getReturnType()->isVoidTy())
6443       report_fatal_error(
6444           "Functions with the interrupt attribute must have void return type!");
6445 
6446     MachineFunction &MF = DAG.getMachineFunction();
6447     StringRef Kind =
6448       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
6449 
6450     unsigned RetOpc;
6451     if (Kind == "user")
6452       RetOpc = RISCVISD::URET_FLAG;
6453     else if (Kind == "supervisor")
6454       RetOpc = RISCVISD::SRET_FLAG;
6455     else
6456       RetOpc = RISCVISD::MRET_FLAG;
6457 
6458     return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
6459   }
6460 
6461   return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
6462 }
6463 
6464 void RISCVTargetLowering::validateCCReservedRegs(
6465     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
6466     MachineFunction &MF) const {
6467   const Function &F = MF.getFunction();
6468   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
6469 
6470   if (llvm::any_of(Regs, [&STI](auto Reg) {
6471         return STI.isRegisterReservedByUser(Reg.first);
6472       }))
6473     F.getContext().diagnose(DiagnosticInfoUnsupported{
6474         F, "Argument register required, but has been reserved."});
6475 }
6476 
6477 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
6478   return CI->isTailCall();
6479 }
6480 
6481 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
6482 #define NODE_NAME_CASE(NODE)                                                   \
6483   case RISCVISD::NODE:                                                         \
6484     return "RISCVISD::" #NODE;
6485   // clang-format off
6486   switch ((RISCVISD::NodeType)Opcode) {
6487   case RISCVISD::FIRST_NUMBER:
6488     break;
6489   NODE_NAME_CASE(RET_FLAG)
6490   NODE_NAME_CASE(URET_FLAG)
6491   NODE_NAME_CASE(SRET_FLAG)
6492   NODE_NAME_CASE(MRET_FLAG)
6493   NODE_NAME_CASE(CALL)
6494   NODE_NAME_CASE(SELECT_CC)
6495   NODE_NAME_CASE(BR_CC)
6496   NODE_NAME_CASE(BuildPairF64)
6497   NODE_NAME_CASE(SplitF64)
6498   NODE_NAME_CASE(TAIL)
6499   NODE_NAME_CASE(SLLW)
6500   NODE_NAME_CASE(SRAW)
6501   NODE_NAME_CASE(SRLW)
6502   NODE_NAME_CASE(DIVW)
6503   NODE_NAME_CASE(DIVUW)
6504   NODE_NAME_CASE(REMUW)
6505   NODE_NAME_CASE(ROLW)
6506   NODE_NAME_CASE(RORW)
6507   NODE_NAME_CASE(FSLW)
6508   NODE_NAME_CASE(FSRW)
6509   NODE_NAME_CASE(FSL)
6510   NODE_NAME_CASE(FSR)
6511   NODE_NAME_CASE(FMV_H_X)
6512   NODE_NAME_CASE(FMV_X_ANYEXTH)
6513   NODE_NAME_CASE(FMV_W_X_RV64)
6514   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
6515   NODE_NAME_CASE(READ_CYCLE_WIDE)
6516   NODE_NAME_CASE(GREVI)
6517   NODE_NAME_CASE(GREVIW)
6518   NODE_NAME_CASE(GORCI)
6519   NODE_NAME_CASE(GORCIW)
6520   NODE_NAME_CASE(SHFLI)
6521   NODE_NAME_CASE(VMV_V_X_VL)
6522   NODE_NAME_CASE(VFMV_V_F_VL)
6523   NODE_NAME_CASE(VMV_X_S)
6524   NODE_NAME_CASE(VMV_S_XF_VL)
6525   NODE_NAME_CASE(SPLAT_VECTOR_I64)
6526   NODE_NAME_CASE(READ_VLENB)
6527   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
6528   NODE_NAME_CASE(VLEFF)
6529   NODE_NAME_CASE(VLEFF_MASK)
6530   NODE_NAME_CASE(VSLIDEUP_VL)
6531   NODE_NAME_CASE(VSLIDE1UP_VL)
6532   NODE_NAME_CASE(VSLIDEDOWN_VL)
6533   NODE_NAME_CASE(VID_VL)
6534   NODE_NAME_CASE(VFNCVT_ROD_VL)
6535   NODE_NAME_CASE(VECREDUCE_ADD_VL)
6536   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
6537   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
6538   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
6539   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
6540   NODE_NAME_CASE(VECREDUCE_AND_VL)
6541   NODE_NAME_CASE(VECREDUCE_OR_VL)
6542   NODE_NAME_CASE(VECREDUCE_XOR_VL)
6543   NODE_NAME_CASE(VECREDUCE_FADD_VL)
6544   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
6545   NODE_NAME_CASE(ADD_VL)
6546   NODE_NAME_CASE(AND_VL)
6547   NODE_NAME_CASE(MUL_VL)
6548   NODE_NAME_CASE(OR_VL)
6549   NODE_NAME_CASE(SDIV_VL)
6550   NODE_NAME_CASE(SHL_VL)
6551   NODE_NAME_CASE(SREM_VL)
6552   NODE_NAME_CASE(SRA_VL)
6553   NODE_NAME_CASE(SRL_VL)
6554   NODE_NAME_CASE(SUB_VL)
6555   NODE_NAME_CASE(UDIV_VL)
6556   NODE_NAME_CASE(UREM_VL)
6557   NODE_NAME_CASE(XOR_VL)
6558   NODE_NAME_CASE(FADD_VL)
6559   NODE_NAME_CASE(FSUB_VL)
6560   NODE_NAME_CASE(FMUL_VL)
6561   NODE_NAME_CASE(FDIV_VL)
6562   NODE_NAME_CASE(FNEG_VL)
6563   NODE_NAME_CASE(FABS_VL)
6564   NODE_NAME_CASE(FSQRT_VL)
6565   NODE_NAME_CASE(FMA_VL)
6566   NODE_NAME_CASE(FCOPYSIGN_VL)
6567   NODE_NAME_CASE(SMIN_VL)
6568   NODE_NAME_CASE(SMAX_VL)
6569   NODE_NAME_CASE(UMIN_VL)
6570   NODE_NAME_CASE(UMAX_VL)
6571   NODE_NAME_CASE(MULHS_VL)
6572   NODE_NAME_CASE(MULHU_VL)
6573   NODE_NAME_CASE(FP_TO_SINT_VL)
6574   NODE_NAME_CASE(FP_TO_UINT_VL)
6575   NODE_NAME_CASE(SINT_TO_FP_VL)
6576   NODE_NAME_CASE(UINT_TO_FP_VL)
6577   NODE_NAME_CASE(FP_EXTEND_VL)
6578   NODE_NAME_CASE(FP_ROUND_VL)
6579   NODE_NAME_CASE(SETCC_VL)
6580   NODE_NAME_CASE(VSELECT_VL)
6581   NODE_NAME_CASE(VMAND_VL)
6582   NODE_NAME_CASE(VMOR_VL)
6583   NODE_NAME_CASE(VMXOR_VL)
6584   NODE_NAME_CASE(VMCLR_VL)
6585   NODE_NAME_CASE(VMSET_VL)
6586   NODE_NAME_CASE(VRGATHER_VX_VL)
6587   NODE_NAME_CASE(VRGATHER_VV_VL)
6588   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
6589   NODE_NAME_CASE(VSEXT_VL)
6590   NODE_NAME_CASE(VZEXT_VL)
6591   NODE_NAME_CASE(VLE_VL)
6592   NODE_NAME_CASE(VSE_VL)
6593   }
6594   // clang-format on
6595   return nullptr;
6596 #undef NODE_NAME_CASE
6597 }
6598 
6599 /// getConstraintType - Given a constraint letter, return the type of
6600 /// constraint it is for this target.
6601 RISCVTargetLowering::ConstraintType
6602 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
6603   if (Constraint.size() == 1) {
6604     switch (Constraint[0]) {
6605     default:
6606       break;
6607     case 'f':
6608     case 'v':
6609       return C_RegisterClass;
6610     case 'I':
6611     case 'J':
6612     case 'K':
6613       return C_Immediate;
6614     case 'A':
6615       return C_Memory;
6616     }
6617   }
6618   return TargetLowering::getConstraintType(Constraint);
6619 }
6620 
6621 std::pair<unsigned, const TargetRegisterClass *>
6622 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
6623                                                   StringRef Constraint,
6624                                                   MVT VT) const {
6625   // First, see if this is a constraint that directly corresponds to a
6626   // RISCV register class.
6627   if (Constraint.size() == 1) {
6628     switch (Constraint[0]) {
6629     case 'r':
6630       return std::make_pair(0U, &RISCV::GPRRegClass);
6631     case 'f':
6632       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
6633         return std::make_pair(0U, &RISCV::FPR16RegClass);
6634       if (Subtarget.hasStdExtF() && VT == MVT::f32)
6635         return std::make_pair(0U, &RISCV::FPR32RegClass);
6636       if (Subtarget.hasStdExtD() && VT == MVT::f64)
6637         return std::make_pair(0U, &RISCV::FPR64RegClass);
6638       break;
6639     case 'v':
6640       for (const auto *RC :
6641            {&RISCV::VMRegClass, &RISCV::VRRegClass, &RISCV::VRM2RegClass,
6642             &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
6643         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
6644           return std::make_pair(0U, RC);
6645       }
6646       break;
6647     default:
6648       break;
6649     }
6650   }
6651 
6652   // Clang will correctly decode the usage of register name aliases into their
6653   // official names. However, other frontends like `rustc` do not. This allows
6654   // users of these frontends to use the ABI names for registers in LLVM-style
6655   // register constraints.
6656   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
6657                                .Case("{zero}", RISCV::X0)
6658                                .Case("{ra}", RISCV::X1)
6659                                .Case("{sp}", RISCV::X2)
6660                                .Case("{gp}", RISCV::X3)
6661                                .Case("{tp}", RISCV::X4)
6662                                .Case("{t0}", RISCV::X5)
6663                                .Case("{t1}", RISCV::X6)
6664                                .Case("{t2}", RISCV::X7)
6665                                .Cases("{s0}", "{fp}", RISCV::X8)
6666                                .Case("{s1}", RISCV::X9)
6667                                .Case("{a0}", RISCV::X10)
6668                                .Case("{a1}", RISCV::X11)
6669                                .Case("{a2}", RISCV::X12)
6670                                .Case("{a3}", RISCV::X13)
6671                                .Case("{a4}", RISCV::X14)
6672                                .Case("{a5}", RISCV::X15)
6673                                .Case("{a6}", RISCV::X16)
6674                                .Case("{a7}", RISCV::X17)
6675                                .Case("{s2}", RISCV::X18)
6676                                .Case("{s3}", RISCV::X19)
6677                                .Case("{s4}", RISCV::X20)
6678                                .Case("{s5}", RISCV::X21)
6679                                .Case("{s6}", RISCV::X22)
6680                                .Case("{s7}", RISCV::X23)
6681                                .Case("{s8}", RISCV::X24)
6682                                .Case("{s9}", RISCV::X25)
6683                                .Case("{s10}", RISCV::X26)
6684                                .Case("{s11}", RISCV::X27)
6685                                .Case("{t3}", RISCV::X28)
6686                                .Case("{t4}", RISCV::X29)
6687                                .Case("{t5}", RISCV::X30)
6688                                .Case("{t6}", RISCV::X31)
6689                                .Default(RISCV::NoRegister);
6690   if (XRegFromAlias != RISCV::NoRegister)
6691     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
6692 
6693   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
6694   // TableGen record rather than the AsmName to choose registers for InlineAsm
6695   // constraints, plus we want to match those names to the widest floating point
6696   // register type available, manually select floating point registers here.
6697   //
6698   // The second case is the ABI name of the register, so that frontends can also
6699   // use the ABI names in register constraint lists.
6700   if (Subtarget.hasStdExtF()) {
6701     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
6702                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
6703                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
6704                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
6705                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
6706                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
6707                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
6708                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
6709                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
6710                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
6711                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
6712                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
6713                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
6714                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
6715                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
6716                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
6717                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
6718                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
6719                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
6720                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
6721                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
6722                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
6723                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
6724                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
6725                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
6726                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
6727                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
6728                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
6729                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
6730                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
6731                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
6732                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
6733                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
6734                         .Default(RISCV::NoRegister);
6735     if (FReg != RISCV::NoRegister) {
6736       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
6737       if (Subtarget.hasStdExtD()) {
6738         unsigned RegNo = FReg - RISCV::F0_F;
6739         unsigned DReg = RISCV::F0_D + RegNo;
6740         return std::make_pair(DReg, &RISCV::FPR64RegClass);
6741       }
6742       return std::make_pair(FReg, &RISCV::FPR32RegClass);
6743     }
6744   }
6745 
6746   if (Subtarget.hasStdExtV()) {
6747     Register VReg = StringSwitch<Register>(Constraint.lower())
6748                         .Case("{v0}", RISCV::V0)
6749                         .Case("{v1}", RISCV::V1)
6750                         .Case("{v2}", RISCV::V2)
6751                         .Case("{v3}", RISCV::V3)
6752                         .Case("{v4}", RISCV::V4)
6753                         .Case("{v5}", RISCV::V5)
6754                         .Case("{v6}", RISCV::V6)
6755                         .Case("{v7}", RISCV::V7)
6756                         .Case("{v8}", RISCV::V8)
6757                         .Case("{v9}", RISCV::V9)
6758                         .Case("{v10}", RISCV::V10)
6759                         .Case("{v11}", RISCV::V11)
6760                         .Case("{v12}", RISCV::V12)
6761                         .Case("{v13}", RISCV::V13)
6762                         .Case("{v14}", RISCV::V14)
6763                         .Case("{v15}", RISCV::V15)
6764                         .Case("{v16}", RISCV::V16)
6765                         .Case("{v17}", RISCV::V17)
6766                         .Case("{v18}", RISCV::V18)
6767                         .Case("{v19}", RISCV::V19)
6768                         .Case("{v20}", RISCV::V20)
6769                         .Case("{v21}", RISCV::V21)
6770                         .Case("{v22}", RISCV::V22)
6771                         .Case("{v23}", RISCV::V23)
6772                         .Case("{v24}", RISCV::V24)
6773                         .Case("{v25}", RISCV::V25)
6774                         .Case("{v26}", RISCV::V26)
6775                         .Case("{v27}", RISCV::V27)
6776                         .Case("{v28}", RISCV::V28)
6777                         .Case("{v29}", RISCV::V29)
6778                         .Case("{v30}", RISCV::V30)
6779                         .Case("{v31}", RISCV::V31)
6780                         .Default(RISCV::NoRegister);
6781     if (VReg != RISCV::NoRegister) {
6782       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
6783         return std::make_pair(VReg, &RISCV::VMRegClass);
6784       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
6785         return std::make_pair(VReg, &RISCV::VRRegClass);
6786       for (const auto *RC :
6787            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
6788         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
6789           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
6790           return std::make_pair(VReg, RC);
6791         }
6792       }
6793     }
6794   }
6795 
6796   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
6797 }
6798 
6799 unsigned
6800 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
6801   // Currently only support length 1 constraints.
6802   if (ConstraintCode.size() == 1) {
6803     switch (ConstraintCode[0]) {
6804     case 'A':
6805       return InlineAsm::Constraint_A;
6806     default:
6807       break;
6808     }
6809   }
6810 
6811   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
6812 }
6813 
6814 void RISCVTargetLowering::LowerAsmOperandForConstraint(
6815     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
6816     SelectionDAG &DAG) const {
6817   // Currently only support length 1 constraints.
6818   if (Constraint.length() == 1) {
6819     switch (Constraint[0]) {
6820     case 'I':
6821       // Validate & create a 12-bit signed immediate operand.
6822       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
6823         uint64_t CVal = C->getSExtValue();
6824         if (isInt<12>(CVal))
6825           Ops.push_back(
6826               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
6827       }
6828       return;
6829     case 'J':
6830       // Validate & create an integer zero operand.
6831       if (auto *C = dyn_cast<ConstantSDNode>(Op))
6832         if (C->getZExtValue() == 0)
6833           Ops.push_back(
6834               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
6835       return;
6836     case 'K':
6837       // Validate & create a 5-bit unsigned immediate operand.
6838       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
6839         uint64_t CVal = C->getZExtValue();
6840         if (isUInt<5>(CVal))
6841           Ops.push_back(
6842               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
6843       }
6844       return;
6845     default:
6846       break;
6847     }
6848   }
6849   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
6850 }
6851 
6852 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
6853                                                    Instruction *Inst,
6854                                                    AtomicOrdering Ord) const {
6855   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
6856     return Builder.CreateFence(Ord);
6857   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
6858     return Builder.CreateFence(AtomicOrdering::Release);
6859   return nullptr;
6860 }
6861 
6862 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
6863                                                     Instruction *Inst,
6864                                                     AtomicOrdering Ord) const {
6865   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
6866     return Builder.CreateFence(AtomicOrdering::Acquire);
6867   return nullptr;
6868 }
6869 
6870 TargetLowering::AtomicExpansionKind
6871 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
6872   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
6873   // point operations can't be used in an lr/sc sequence without breaking the
6874   // forward-progress guarantee.
6875   if (AI->isFloatingPointOperation())
6876     return AtomicExpansionKind::CmpXChg;
6877 
6878   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
6879   if (Size == 8 || Size == 16)
6880     return AtomicExpansionKind::MaskedIntrinsic;
6881   return AtomicExpansionKind::None;
6882 }
6883 
6884 static Intrinsic::ID
6885 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
6886   if (XLen == 32) {
6887     switch (BinOp) {
6888     default:
6889       llvm_unreachable("Unexpected AtomicRMW BinOp");
6890     case AtomicRMWInst::Xchg:
6891       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
6892     case AtomicRMWInst::Add:
6893       return Intrinsic::riscv_masked_atomicrmw_add_i32;
6894     case AtomicRMWInst::Sub:
6895       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
6896     case AtomicRMWInst::Nand:
6897       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
6898     case AtomicRMWInst::Max:
6899       return Intrinsic::riscv_masked_atomicrmw_max_i32;
6900     case AtomicRMWInst::Min:
6901       return Intrinsic::riscv_masked_atomicrmw_min_i32;
6902     case AtomicRMWInst::UMax:
6903       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
6904     case AtomicRMWInst::UMin:
6905       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
6906     }
6907   }
6908 
6909   if (XLen == 64) {
6910     switch (BinOp) {
6911     default:
6912       llvm_unreachable("Unexpected AtomicRMW BinOp");
6913     case AtomicRMWInst::Xchg:
6914       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
6915     case AtomicRMWInst::Add:
6916       return Intrinsic::riscv_masked_atomicrmw_add_i64;
6917     case AtomicRMWInst::Sub:
6918       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
6919     case AtomicRMWInst::Nand:
6920       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
6921     case AtomicRMWInst::Max:
6922       return Intrinsic::riscv_masked_atomicrmw_max_i64;
6923     case AtomicRMWInst::Min:
6924       return Intrinsic::riscv_masked_atomicrmw_min_i64;
6925     case AtomicRMWInst::UMax:
6926       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
6927     case AtomicRMWInst::UMin:
6928       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
6929     }
6930   }
6931 
6932   llvm_unreachable("Unexpected XLen\n");
6933 }
6934 
6935 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
6936     IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
6937     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
6938   unsigned XLen = Subtarget.getXLen();
6939   Value *Ordering =
6940       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
6941   Type *Tys[] = {AlignedAddr->getType()};
6942   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
6943       AI->getModule(),
6944       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
6945 
6946   if (XLen == 64) {
6947     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
6948     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
6949     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
6950   }
6951 
6952   Value *Result;
6953 
6954   // Must pass the shift amount needed to sign extend the loaded value prior
6955   // to performing a signed comparison for min/max. ShiftAmt is the number of
6956   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
6957   // is the number of bits to left+right shift the value in order to
6958   // sign-extend.
6959   if (AI->getOperation() == AtomicRMWInst::Min ||
6960       AI->getOperation() == AtomicRMWInst::Max) {
6961     const DataLayout &DL = AI->getModule()->getDataLayout();
6962     unsigned ValWidth =
6963         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
6964     Value *SextShamt =
6965         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
6966     Result = Builder.CreateCall(LrwOpScwLoop,
6967                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
6968   } else {
6969     Result =
6970         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
6971   }
6972 
6973   if (XLen == 64)
6974     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
6975   return Result;
6976 }
6977 
6978 TargetLowering::AtomicExpansionKind
6979 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
6980     AtomicCmpXchgInst *CI) const {
6981   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
6982   if (Size == 8 || Size == 16)
6983     return AtomicExpansionKind::MaskedIntrinsic;
6984   return AtomicExpansionKind::None;
6985 }
6986 
6987 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
6988     IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
6989     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
6990   unsigned XLen = Subtarget.getXLen();
6991   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
6992   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
6993   if (XLen == 64) {
6994     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
6995     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
6996     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
6997     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
6998   }
6999   Type *Tys[] = {AlignedAddr->getType()};
7000   Function *MaskedCmpXchg =
7001       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
7002   Value *Result = Builder.CreateCall(
7003       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
7004   if (XLen == 64)
7005     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
7006   return Result;
7007 }
7008 
7009 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
7010   return false;
7011 }
7012 
7013 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
7014                                                      EVT VT) const {
7015   VT = VT.getScalarType();
7016 
7017   if (!VT.isSimple())
7018     return false;
7019 
7020   switch (VT.getSimpleVT().SimpleTy) {
7021   case MVT::f16:
7022     return Subtarget.hasStdExtZfh();
7023   case MVT::f32:
7024     return Subtarget.hasStdExtF();
7025   case MVT::f64:
7026     return Subtarget.hasStdExtD();
7027   default:
7028     break;
7029   }
7030 
7031   return false;
7032 }
7033 
7034 Register RISCVTargetLowering::getExceptionPointerRegister(
7035     const Constant *PersonalityFn) const {
7036   return RISCV::X10;
7037 }
7038 
7039 Register RISCVTargetLowering::getExceptionSelectorRegister(
7040     const Constant *PersonalityFn) const {
7041   return RISCV::X11;
7042 }
7043 
7044 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
7045   // Return false to suppress the unnecessary extensions if the LibCall
7046   // arguments or return value is f32 type for LP64 ABI.
7047   RISCVABI::ABI ABI = Subtarget.getTargetABI();
7048   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
7049     return false;
7050 
7051   return true;
7052 }
7053 
7054 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
7055   if (Subtarget.is64Bit() && Type == MVT::i32)
7056     return true;
7057 
7058   return IsSigned;
7059 }
7060 
7061 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
7062                                                  SDValue C) const {
7063   // Check integral scalar types.
7064   if (VT.isScalarInteger()) {
7065     // Omit the optimization if the sub target has the M extension and the data
7066     // size exceeds XLen.
7067     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
7068       return false;
7069     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
7070       // Break the MUL to a SLLI and an ADD/SUB.
7071       const APInt &Imm = ConstNode->getAPIntValue();
7072       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
7073           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
7074         return true;
7075       // Omit the following optimization if the sub target has the M extension
7076       // and the data size >= XLen.
7077       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
7078         return false;
7079       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
7080       // a pair of LUI/ADDI.
7081       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
7082         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
7083         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
7084             (1 - ImmS).isPowerOf2())
7085         return true;
7086       }
7087     }
7088   }
7089 
7090   return false;
7091 }
7092 
7093 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
7094   if (!Subtarget.useRVVForFixedLengthVectors())
7095     return false;
7096 
7097   if (!VT.isFixedLengthVector())
7098     return false;
7099 
7100   // Don't use RVV for vectors we cannot scalarize if required.
7101   switch (VT.getVectorElementType().SimpleTy) {
7102   // i1 is supported but has different rules.
7103   default:
7104     return false;
7105   case MVT::i1:
7106     // Masks can only use a single register.
7107     if (VT.getVectorNumElements() > Subtarget.getMinRVVVectorSizeInBits())
7108       return false;
7109     break;
7110   case MVT::i8:
7111   case MVT::i16:
7112   case MVT::i32:
7113   case MVT::i64:
7114     break;
7115   case MVT::f16:
7116     if (!Subtarget.hasStdExtZfh())
7117       return false;
7118     break;
7119   case MVT::f32:
7120     if (!Subtarget.hasStdExtF())
7121       return false;
7122     break;
7123   case MVT::f64:
7124     if (!Subtarget.hasStdExtD())
7125       return false;
7126     break;
7127   }
7128 
7129   unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT);
7130   // Don't use RVV for types that don't fit.
7131   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
7132     return false;
7133 
7134   // TODO: Perhaps an artificial restriction, but worth having whilst getting
7135   // the base fixed length RVV support in place.
7136   if (!VT.isPow2VectorType())
7137     return false;
7138 
7139   return true;
7140 }
7141 
7142 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
7143     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
7144     bool *Fast) const {
7145   if (!VT.isScalableVector())
7146     return false;
7147 
7148   EVT ElemVT = VT.getVectorElementType();
7149   if (Alignment >= ElemVT.getStoreSize()) {
7150     if (Fast)
7151       *Fast = true;
7152     return true;
7153   }
7154 
7155   return false;
7156 }
7157 
7158 bool RISCVTargetLowering::splitValueIntoRegisterParts(
7159     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
7160     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
7161   EVT ValueVT = Val.getValueType();
7162   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
7163     LLVMContext &Context = *DAG.getContext();
7164     EVT ValueEltVT = ValueVT.getVectorElementType();
7165     EVT PartEltVT = PartVT.getVectorElementType();
7166     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
7167     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
7168     if (PartVTBitSize % ValueVTBitSize == 0) {
7169       // If the element types are different, bitcast to the same element type of
7170       // PartVT first.
7171       if (ValueEltVT != PartEltVT) {
7172         unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
7173         assert(Count != 0 && "The number of element should not be zero.");
7174         EVT SameEltTypeVT =
7175             EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
7176         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
7177       }
7178       Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
7179                         Val, DAG.getConstant(0, DL, Subtarget.getXLenVT()));
7180       Parts[0] = Val;
7181       return true;
7182     }
7183   }
7184   return false;
7185 }
7186 
7187 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
7188     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
7189     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
7190   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
7191     LLVMContext &Context = *DAG.getContext();
7192     SDValue Val = Parts[0];
7193     EVT ValueEltVT = ValueVT.getVectorElementType();
7194     EVT PartEltVT = PartVT.getVectorElementType();
7195     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
7196     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
7197     if (PartVTBitSize % ValueVTBitSize == 0) {
7198       EVT SameEltTypeVT = ValueVT;
7199       // If the element types are different, convert it to the same element type
7200       // of PartVT.
7201       if (ValueEltVT != PartEltVT) {
7202         unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
7203         assert(Count != 0 && "The number of element should not be zero.");
7204         SameEltTypeVT =
7205             EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
7206       }
7207       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val,
7208                         DAG.getConstant(0, DL, Subtarget.getXLenVT()));
7209       if (ValueEltVT != PartEltVT)
7210         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
7211       return Val;
7212     }
7213   }
7214   return SDValue();
7215 }
7216 
7217 #define GET_REGISTER_MATCHER
7218 #include "RISCVGenAsmMatcher.inc"
7219 
7220 Register
7221 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
7222                                        const MachineFunction &MF) const {
7223   Register Reg = MatchRegisterAltName(RegName);
7224   if (Reg == RISCV::NoRegister)
7225     Reg = MatchRegisterName(RegName);
7226   if (Reg == RISCV::NoRegister)
7227     report_fatal_error(
7228         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
7229   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
7230   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
7231     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
7232                              StringRef(RegName) + "\"."));
7233   return Reg;
7234 }
7235 
7236 namespace llvm {
7237 namespace RISCVVIntrinsicsTable {
7238 
7239 #define GET_RISCVVIntrinsicsTable_IMPL
7240 #include "RISCVGenSearchableTables.inc"
7241 
7242 } // namespace RISCVVIntrinsicsTable
7243 
7244 } // namespace llvm
7245