1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/IntrinsicsRISCV.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/KnownBits.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "riscv-lower" 45 46 STATISTIC(NumTailCalls, "Number of tail calls"); 47 48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 49 const RISCVSubtarget &STI) 50 : TargetLowering(TM), Subtarget(STI) { 51 52 if (Subtarget.isRV32E()) 53 report_fatal_error("Codegen not yet implemented for RV32E"); 54 55 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 56 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 57 58 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 59 !Subtarget.hasStdExtF()) { 60 errs() << "Hard-float 'f' ABI can't be used for a target that " 61 "doesn't support the F instruction set extension (ignoring " 62 "target-abi)\n"; 63 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 64 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 65 !Subtarget.hasStdExtD()) { 66 errs() << "Hard-float 'd' ABI can't be used for a target that " 67 "doesn't support the D instruction set extension (ignoring " 68 "target-abi)\n"; 69 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 70 } 71 72 switch (ABI) { 73 default: 74 report_fatal_error("Don't know how to lower this ABI"); 75 case RISCVABI::ABI_ILP32: 76 case RISCVABI::ABI_ILP32F: 77 case RISCVABI::ABI_ILP32D: 78 case RISCVABI::ABI_LP64: 79 case RISCVABI::ABI_LP64F: 80 case RISCVABI::ABI_LP64D: 81 break; 82 } 83 84 MVT XLenVT = Subtarget.getXLenVT(); 85 86 // Set up the register classes. 87 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 88 89 if (Subtarget.hasStdExtZfh()) 90 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 91 if (Subtarget.hasStdExtF()) 92 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 93 if (Subtarget.hasStdExtD()) 94 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 95 96 static const MVT::SimpleValueType BoolVecVTs[] = { 97 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 98 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 99 static const MVT::SimpleValueType IntVecVTs[] = { 100 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 101 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 102 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 103 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 104 MVT::nxv4i64, MVT::nxv8i64}; 105 static const MVT::SimpleValueType F16VecVTs[] = { 106 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 107 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 108 static const MVT::SimpleValueType F32VecVTs[] = { 109 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 110 static const MVT::SimpleValueType F64VecVTs[] = { 111 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 112 113 if (Subtarget.hasVInstructions()) { 114 auto addRegClassForRVV = [this](MVT VT) { 115 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 116 assert(Size <= 512 && isPowerOf2_32(Size)); 117 const TargetRegisterClass *RC; 118 if (Size <= 64) 119 RC = &RISCV::VRRegClass; 120 else if (Size == 128) 121 RC = &RISCV::VRM2RegClass; 122 else if (Size == 256) 123 RC = &RISCV::VRM4RegClass; 124 else 125 RC = &RISCV::VRM8RegClass; 126 127 addRegisterClass(VT, RC); 128 }; 129 130 for (MVT VT : BoolVecVTs) 131 addRegClassForRVV(VT); 132 for (MVT VT : IntVecVTs) { 133 if (VT.getVectorElementType() == MVT::i64 && 134 !Subtarget.hasVInstructionsI64()) 135 continue; 136 addRegClassForRVV(VT); 137 } 138 139 if (Subtarget.hasVInstructionsF16()) 140 for (MVT VT : F16VecVTs) 141 addRegClassForRVV(VT); 142 143 if (Subtarget.hasVInstructionsF32()) 144 for (MVT VT : F32VecVTs) 145 addRegClassForRVV(VT); 146 147 if (Subtarget.hasVInstructionsF64()) 148 for (MVT VT : F64VecVTs) 149 addRegClassForRVV(VT); 150 151 if (Subtarget.useRVVForFixedLengthVectors()) { 152 auto addRegClassForFixedVectors = [this](MVT VT) { 153 MVT ContainerVT = getContainerForFixedLengthVector(VT); 154 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 155 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 156 addRegisterClass(VT, TRI.getRegClass(RCID)); 157 }; 158 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 159 if (useRVVForFixedLengthVectorVT(VT)) 160 addRegClassForFixedVectors(VT); 161 162 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 163 if (useRVVForFixedLengthVectorVT(VT)) 164 addRegClassForFixedVectors(VT); 165 } 166 } 167 168 // Compute derived properties from the register classes. 169 computeRegisterProperties(STI.getRegisterInfo()); 170 171 setStackPointerRegisterToSaveRestore(RISCV::X2); 172 173 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 174 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 175 176 // TODO: add all necessary setOperationAction calls. 177 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 178 179 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 180 setOperationAction(ISD::BR_CC, XLenVT, Expand); 181 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 182 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 183 184 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 185 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 186 187 setOperationAction(ISD::VASTART, MVT::Other, Custom); 188 setOperationAction(ISD::VAARG, MVT::Other, Expand); 189 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 190 setOperationAction(ISD::VAEND, MVT::Other, Expand); 191 192 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 193 if (!Subtarget.hasStdExtZbb()) { 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 195 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 196 } 197 198 if (Subtarget.is64Bit()) { 199 setOperationAction(ISD::ADD, MVT::i32, Custom); 200 setOperationAction(ISD::SUB, MVT::i32, Custom); 201 setOperationAction(ISD::SHL, MVT::i32, Custom); 202 setOperationAction(ISD::SRA, MVT::i32, Custom); 203 setOperationAction(ISD::SRL, MVT::i32, Custom); 204 205 setOperationAction(ISD::UADDO, MVT::i32, Custom); 206 setOperationAction(ISD::USUBO, MVT::i32, Custom); 207 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 208 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 209 } else { 210 setLibcallName(RTLIB::SHL_I128, nullptr); 211 setLibcallName(RTLIB::SRL_I128, nullptr); 212 setLibcallName(RTLIB::SRA_I128, nullptr); 213 setLibcallName(RTLIB::MUL_I128, nullptr); 214 setLibcallName(RTLIB::MULO_I64, nullptr); 215 } 216 217 if (!Subtarget.hasStdExtM()) { 218 setOperationAction(ISD::MUL, XLenVT, Expand); 219 setOperationAction(ISD::MULHS, XLenVT, Expand); 220 setOperationAction(ISD::MULHU, XLenVT, Expand); 221 setOperationAction(ISD::SDIV, XLenVT, Expand); 222 setOperationAction(ISD::UDIV, XLenVT, Expand); 223 setOperationAction(ISD::SREM, XLenVT, Expand); 224 setOperationAction(ISD::UREM, XLenVT, Expand); 225 } else { 226 if (Subtarget.is64Bit()) { 227 setOperationAction(ISD::MUL, MVT::i32, Custom); 228 setOperationAction(ISD::MUL, MVT::i128, Custom); 229 230 setOperationAction(ISD::SDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UDIV, MVT::i8, Custom); 232 setOperationAction(ISD::UREM, MVT::i8, Custom); 233 setOperationAction(ISD::SDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UDIV, MVT::i16, Custom); 235 setOperationAction(ISD::UREM, MVT::i16, Custom); 236 setOperationAction(ISD::SDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UDIV, MVT::i32, Custom); 238 setOperationAction(ISD::UREM, MVT::i32, Custom); 239 } else { 240 setOperationAction(ISD::MUL, MVT::i64, Custom); 241 } 242 } 243 244 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 246 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 247 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 248 249 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 251 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 252 253 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 254 Subtarget.hasStdExtZbkb()) { 255 if (Subtarget.is64Bit()) { 256 setOperationAction(ISD::ROTL, MVT::i32, Custom); 257 setOperationAction(ISD::ROTR, MVT::i32, Custom); 258 } 259 } else { 260 setOperationAction(ISD::ROTL, XLenVT, Expand); 261 setOperationAction(ISD::ROTR, XLenVT, Expand); 262 } 263 264 if (Subtarget.hasStdExtZbp()) { 265 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 266 // more combining. 267 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 268 setOperationAction(ISD::BSWAP, XLenVT, Custom); 269 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 270 // BSWAP i8 doesn't exist. 271 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 272 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 273 274 if (Subtarget.is64Bit()) { 275 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 276 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 277 } 278 } else { 279 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 280 // pattern match it directly in isel. 281 setOperationAction(ISD::BSWAP, XLenVT, 282 (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) 283 ? Legal 284 : Expand); 285 } 286 287 if (Subtarget.hasStdExtZbb()) { 288 setOperationAction(ISD::SMIN, XLenVT, Legal); 289 setOperationAction(ISD::SMAX, XLenVT, Legal); 290 setOperationAction(ISD::UMIN, XLenVT, Legal); 291 setOperationAction(ISD::UMAX, XLenVT, Legal); 292 293 if (Subtarget.is64Bit()) { 294 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 295 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 296 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 297 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 298 } 299 } else { 300 setOperationAction(ISD::CTTZ, XLenVT, Expand); 301 setOperationAction(ISD::CTLZ, XLenVT, Expand); 302 setOperationAction(ISD::CTPOP, XLenVT, Expand); 303 } 304 305 if (Subtarget.hasStdExtZbt()) { 306 setOperationAction(ISD::FSHL, XLenVT, Custom); 307 setOperationAction(ISD::FSHR, XLenVT, Custom); 308 setOperationAction(ISD::SELECT, XLenVT, Legal); 309 310 if (Subtarget.is64Bit()) { 311 setOperationAction(ISD::FSHL, MVT::i32, Custom); 312 setOperationAction(ISD::FSHR, MVT::i32, Custom); 313 } 314 } else { 315 setOperationAction(ISD::SELECT, XLenVT, Custom); 316 } 317 318 static const ISD::CondCode FPCCToExpand[] = { 319 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 320 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 321 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 322 323 static const ISD::NodeType FPOpToExpand[] = { 324 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 325 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 326 327 if (Subtarget.hasStdExtZfh()) 328 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 329 330 if (Subtarget.hasStdExtZfh()) { 331 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 332 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 333 setOperationAction(ISD::LRINT, MVT::f16, Legal); 334 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 335 setOperationAction(ISD::LROUND, MVT::f16, Legal); 336 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 337 setOperationAction(ISD::STRICT_LRINT, MVT::f16, Legal); 338 setOperationAction(ISD::STRICT_LLRINT, MVT::f16, Legal); 339 setOperationAction(ISD::STRICT_LROUND, MVT::f16, Legal); 340 setOperationAction(ISD::STRICT_LLROUND, MVT::f16, Legal); 341 setOperationAction(ISD::STRICT_FADD, MVT::f16, Legal); 342 setOperationAction(ISD::STRICT_FMA, MVT::f16, Legal); 343 setOperationAction(ISD::STRICT_FSUB, MVT::f16, Legal); 344 setOperationAction(ISD::STRICT_FMUL, MVT::f16, Legal); 345 setOperationAction(ISD::STRICT_FDIV, MVT::f16, Legal); 346 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); 347 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 348 setOperationAction(ISD::STRICT_FSQRT, MVT::f16, Legal); 349 setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Legal); 350 setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Legal); 351 for (auto CC : FPCCToExpand) 352 setCondCodeAction(CC, MVT::f16, Expand); 353 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 354 setOperationAction(ISD::SELECT, MVT::f16, Custom); 355 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 356 357 setOperationAction(ISD::FREM, MVT::f16, Promote); 358 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 359 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 360 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 361 setOperationAction(ISD::FRINT, MVT::f16, Promote); 362 setOperationAction(ISD::FROUND, MVT::f16, Promote); 363 setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote); 364 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 365 setOperationAction(ISD::FPOW, MVT::f16, Promote); 366 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 367 setOperationAction(ISD::FCOS, MVT::f16, Promote); 368 setOperationAction(ISD::FSIN, MVT::f16, Promote); 369 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 370 setOperationAction(ISD::FEXP, MVT::f16, Promote); 371 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 372 setOperationAction(ISD::FLOG, MVT::f16, Promote); 373 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 374 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 375 376 // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have 377 // complete support for all operations in LegalizeDAG. 378 379 // We need to custom promote this. 380 if (Subtarget.is64Bit()) 381 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 382 } 383 384 if (Subtarget.hasStdExtF()) { 385 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 386 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 387 setOperationAction(ISD::LRINT, MVT::f32, Legal); 388 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 389 setOperationAction(ISD::LROUND, MVT::f32, Legal); 390 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 391 setOperationAction(ISD::STRICT_LRINT, MVT::f32, Legal); 392 setOperationAction(ISD::STRICT_LLRINT, MVT::f32, Legal); 393 setOperationAction(ISD::STRICT_LROUND, MVT::f32, Legal); 394 setOperationAction(ISD::STRICT_LLROUND, MVT::f32, Legal); 395 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 396 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 397 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 398 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 399 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 400 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 401 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 402 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 403 for (auto CC : FPCCToExpand) 404 setCondCodeAction(CC, MVT::f32, Expand); 405 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 406 setOperationAction(ISD::SELECT, MVT::f32, Custom); 407 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 408 for (auto Op : FPOpToExpand) 409 setOperationAction(Op, MVT::f32, Expand); 410 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 411 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 412 } 413 414 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 415 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 416 417 if (Subtarget.hasStdExtD()) { 418 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 419 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 420 setOperationAction(ISD::LRINT, MVT::f64, Legal); 421 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 422 setOperationAction(ISD::LROUND, MVT::f64, Legal); 423 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 424 setOperationAction(ISD::STRICT_LRINT, MVT::f64, Legal); 425 setOperationAction(ISD::STRICT_LLRINT, MVT::f64, Legal); 426 setOperationAction(ISD::STRICT_LROUND, MVT::f64, Legal); 427 setOperationAction(ISD::STRICT_LLROUND, MVT::f64, Legal); 428 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 429 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 430 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 431 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 432 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 433 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 434 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 435 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 436 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 437 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 438 for (auto CC : FPCCToExpand) 439 setCondCodeAction(CC, MVT::f64, Expand); 440 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 441 setOperationAction(ISD::SELECT, MVT::f64, Custom); 442 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 443 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 444 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 445 for (auto Op : FPOpToExpand) 446 setOperationAction(Op, MVT::f64, Expand); 447 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 448 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 449 } 450 451 if (Subtarget.is64Bit()) { 452 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 453 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 454 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 455 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 456 } 457 458 if (Subtarget.hasStdExtF()) { 459 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 460 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 461 462 setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal); 463 setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal); 464 setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal); 465 setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal); 466 467 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 468 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 469 } 470 471 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 472 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 473 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 474 setOperationAction(ISD::JumpTable, XLenVT, Custom); 475 476 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 477 478 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 479 // Unfortunately this can't be determined just from the ISA naming string. 480 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 481 Subtarget.is64Bit() ? Legal : Custom); 482 483 setOperationAction(ISD::TRAP, MVT::Other, Legal); 484 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 485 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 486 if (Subtarget.is64Bit()) 487 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 488 489 if (Subtarget.hasStdExtA()) { 490 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 491 setMinCmpXchgSizeInBits(32); 492 } else { 493 setMaxAtomicSizeInBitsSupported(0); 494 } 495 496 setBooleanContents(ZeroOrOneBooleanContent); 497 498 if (Subtarget.hasVInstructions()) { 499 setBooleanVectorContents(ZeroOrOneBooleanContent); 500 501 setOperationAction(ISD::VSCALE, XLenVT, Custom); 502 503 // RVV intrinsics may have illegal operands. 504 // We also need to custom legalize vmv.x.s. 505 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 506 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 507 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 508 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 509 if (Subtarget.is64Bit()) { 510 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 511 } else { 512 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 513 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 514 } 515 516 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 517 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 518 519 static const unsigned IntegerVPOps[] = { 520 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 521 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 522 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 523 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 524 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 525 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 526 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 527 ISD::VP_MERGE, ISD::VP_SELECT}; 528 529 static const unsigned FloatingPointVPOps[] = { 530 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 531 ISD::VP_FDIV, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 532 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_MERGE, 533 ISD::VP_SELECT}; 534 535 if (!Subtarget.is64Bit()) { 536 // We must custom-lower certain vXi64 operations on RV32 due to the vector 537 // element type being illegal. 538 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 539 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 540 541 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 542 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 543 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 544 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 545 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 546 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 547 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 548 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 549 550 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 551 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 552 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 553 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 554 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 555 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 556 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 557 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 558 } 559 560 for (MVT VT : BoolVecVTs) { 561 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 562 563 // Mask VTs are custom-expanded into a series of standard nodes 564 setOperationAction(ISD::TRUNCATE, VT, Custom); 565 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 566 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 567 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 568 569 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 570 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 571 572 setOperationAction(ISD::SELECT, VT, Custom); 573 setOperationAction(ISD::SELECT_CC, VT, Expand); 574 setOperationAction(ISD::VSELECT, VT, Expand); 575 setOperationAction(ISD::VP_MERGE, VT, Expand); 576 setOperationAction(ISD::VP_SELECT, VT, Expand); 577 578 setOperationAction(ISD::VP_AND, VT, Custom); 579 setOperationAction(ISD::VP_OR, VT, Custom); 580 setOperationAction(ISD::VP_XOR, VT, Custom); 581 582 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 583 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 584 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 585 586 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 587 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 588 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 589 590 // RVV has native int->float & float->int conversions where the 591 // element type sizes are within one power-of-two of each other. Any 592 // wider distances between type sizes have to be lowered as sequences 593 // which progressively narrow the gap in stages. 594 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 595 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 596 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 597 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 598 599 // Expand all extending loads to types larger than this, and truncating 600 // stores from types larger than this. 601 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 602 setTruncStoreAction(OtherVT, VT, Expand); 603 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 604 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 605 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 606 } 607 } 608 609 for (MVT VT : IntVecVTs) { 610 if (VT.getVectorElementType() == MVT::i64 && 611 !Subtarget.hasVInstructionsI64()) 612 continue; 613 614 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 615 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 616 617 // Vectors implement MULHS/MULHU. 618 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 619 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 620 621 // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*. 622 if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) { 623 setOperationAction(ISD::MULHU, VT, Expand); 624 setOperationAction(ISD::MULHS, VT, Expand); 625 } 626 627 setOperationAction(ISD::SMIN, VT, Legal); 628 setOperationAction(ISD::SMAX, VT, Legal); 629 setOperationAction(ISD::UMIN, VT, Legal); 630 setOperationAction(ISD::UMAX, VT, Legal); 631 632 setOperationAction(ISD::ROTL, VT, Expand); 633 setOperationAction(ISD::ROTR, VT, Expand); 634 635 setOperationAction(ISD::CTTZ, VT, Expand); 636 setOperationAction(ISD::CTLZ, VT, Expand); 637 setOperationAction(ISD::CTPOP, VT, Expand); 638 639 setOperationAction(ISD::BSWAP, VT, Expand); 640 641 // Custom-lower extensions and truncations from/to mask types. 642 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 643 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 644 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 645 646 // RVV has native int->float & float->int conversions where the 647 // element type sizes are within one power-of-two of each other. Any 648 // wider distances between type sizes have to be lowered as sequences 649 // which progressively narrow the gap in stages. 650 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 651 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 652 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 653 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 654 655 setOperationAction(ISD::SADDSAT, VT, Legal); 656 setOperationAction(ISD::UADDSAT, VT, Legal); 657 setOperationAction(ISD::SSUBSAT, VT, Legal); 658 setOperationAction(ISD::USUBSAT, VT, Legal); 659 660 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 661 // nodes which truncate by one power of two at a time. 662 setOperationAction(ISD::TRUNCATE, VT, Custom); 663 664 // Custom-lower insert/extract operations to simplify patterns. 665 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 666 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 667 668 // Custom-lower reduction operations to set up the corresponding custom 669 // nodes' operands. 670 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 671 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 672 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 673 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 674 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 675 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 676 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 677 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 678 679 for (unsigned VPOpc : IntegerVPOps) 680 setOperationAction(VPOpc, VT, Custom); 681 682 setOperationAction(ISD::LOAD, VT, Custom); 683 setOperationAction(ISD::STORE, VT, Custom); 684 685 setOperationAction(ISD::MLOAD, VT, Custom); 686 setOperationAction(ISD::MSTORE, VT, Custom); 687 setOperationAction(ISD::MGATHER, VT, Custom); 688 setOperationAction(ISD::MSCATTER, VT, Custom); 689 690 setOperationAction(ISD::VP_LOAD, VT, Custom); 691 setOperationAction(ISD::VP_STORE, VT, Custom); 692 setOperationAction(ISD::VP_GATHER, VT, Custom); 693 setOperationAction(ISD::VP_SCATTER, VT, Custom); 694 695 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 696 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 697 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 698 699 setOperationAction(ISD::SELECT, VT, Custom); 700 setOperationAction(ISD::SELECT_CC, VT, Expand); 701 702 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 703 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 704 705 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 706 setTruncStoreAction(VT, OtherVT, Expand); 707 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 708 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 709 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 710 } 711 712 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 713 // type that can represent the value exactly. 714 if (VT.getVectorElementType() != MVT::i64) { 715 MVT FloatEltVT = 716 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 717 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 718 if (isTypeLegal(FloatVT)) { 719 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 720 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 721 } 722 } 723 } 724 725 // Expand various CCs to best match the RVV ISA, which natively supports UNE 726 // but no other unordered comparisons, and supports all ordered comparisons 727 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 728 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 729 // and we pattern-match those back to the "original", swapping operands once 730 // more. This way we catch both operations and both "vf" and "fv" forms with 731 // fewer patterns. 732 static const ISD::CondCode VFPCCToExpand[] = { 733 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 734 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 735 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 736 }; 737 738 // Sets common operation actions on RVV floating-point vector types. 739 const auto SetCommonVFPActions = [&](MVT VT) { 740 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 741 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 742 // sizes are within one power-of-two of each other. Therefore conversions 743 // between vXf16 and vXf64 must be lowered as sequences which convert via 744 // vXf32. 745 setOperationAction(ISD::FP_ROUND, VT, Custom); 746 setOperationAction(ISD::FP_EXTEND, VT, Custom); 747 // Custom-lower insert/extract operations to simplify patterns. 748 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 749 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 750 // Expand various condition codes (explained above). 751 for (auto CC : VFPCCToExpand) 752 setCondCodeAction(CC, VT, Expand); 753 754 setOperationAction(ISD::FMINNUM, VT, Legal); 755 setOperationAction(ISD::FMAXNUM, VT, Legal); 756 757 setOperationAction(ISD::FTRUNC, VT, Custom); 758 setOperationAction(ISD::FCEIL, VT, Custom); 759 setOperationAction(ISD::FFLOOR, VT, Custom); 760 761 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 762 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 763 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 764 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 765 766 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 767 768 setOperationAction(ISD::LOAD, VT, Custom); 769 setOperationAction(ISD::STORE, VT, Custom); 770 771 setOperationAction(ISD::MLOAD, VT, Custom); 772 setOperationAction(ISD::MSTORE, VT, Custom); 773 setOperationAction(ISD::MGATHER, VT, Custom); 774 setOperationAction(ISD::MSCATTER, VT, Custom); 775 776 setOperationAction(ISD::VP_LOAD, VT, Custom); 777 setOperationAction(ISD::VP_STORE, VT, Custom); 778 setOperationAction(ISD::VP_GATHER, VT, Custom); 779 setOperationAction(ISD::VP_SCATTER, VT, Custom); 780 781 setOperationAction(ISD::SELECT, VT, Custom); 782 setOperationAction(ISD::SELECT_CC, VT, Expand); 783 784 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 785 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 786 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 787 788 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 789 790 for (unsigned VPOpc : FloatingPointVPOps) 791 setOperationAction(VPOpc, VT, Custom); 792 }; 793 794 // Sets common extload/truncstore actions on RVV floating-point vector 795 // types. 796 const auto SetCommonVFPExtLoadTruncStoreActions = 797 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 798 for (auto SmallVT : SmallerVTs) { 799 setTruncStoreAction(VT, SmallVT, Expand); 800 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 801 } 802 }; 803 804 if (Subtarget.hasVInstructionsF16()) 805 for (MVT VT : F16VecVTs) 806 SetCommonVFPActions(VT); 807 808 for (MVT VT : F32VecVTs) { 809 if (Subtarget.hasVInstructionsF32()) 810 SetCommonVFPActions(VT); 811 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 812 } 813 814 for (MVT VT : F64VecVTs) { 815 if (Subtarget.hasVInstructionsF64()) 816 SetCommonVFPActions(VT); 817 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 818 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 819 } 820 821 if (Subtarget.useRVVForFixedLengthVectors()) { 822 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 823 if (!useRVVForFixedLengthVectorVT(VT)) 824 continue; 825 826 // By default everything must be expanded. 827 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 828 setOperationAction(Op, VT, Expand); 829 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 830 setTruncStoreAction(VT, OtherVT, Expand); 831 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 832 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 833 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 834 } 835 836 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 837 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 838 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 839 840 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 841 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 842 843 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 844 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 845 846 setOperationAction(ISD::LOAD, VT, Custom); 847 setOperationAction(ISD::STORE, VT, Custom); 848 849 setOperationAction(ISD::SETCC, VT, Custom); 850 851 setOperationAction(ISD::SELECT, VT, Custom); 852 853 setOperationAction(ISD::TRUNCATE, VT, Custom); 854 855 setOperationAction(ISD::BITCAST, VT, Custom); 856 857 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 858 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 859 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 860 861 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 862 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 863 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 864 865 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 866 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 867 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 868 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 869 870 // Operations below are different for between masks and other vectors. 871 if (VT.getVectorElementType() == MVT::i1) { 872 setOperationAction(ISD::VP_AND, VT, Custom); 873 setOperationAction(ISD::VP_OR, VT, Custom); 874 setOperationAction(ISD::VP_XOR, VT, Custom); 875 setOperationAction(ISD::AND, VT, Custom); 876 setOperationAction(ISD::OR, VT, Custom); 877 setOperationAction(ISD::XOR, VT, Custom); 878 continue; 879 } 880 881 // Use SPLAT_VECTOR to prevent type legalization from destroying the 882 // splats when type legalizing i64 scalar on RV32. 883 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 884 // improvements first. 885 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 886 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 887 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 888 } 889 890 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 891 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 892 893 setOperationAction(ISD::MLOAD, VT, Custom); 894 setOperationAction(ISD::MSTORE, VT, Custom); 895 setOperationAction(ISD::MGATHER, VT, Custom); 896 setOperationAction(ISD::MSCATTER, VT, Custom); 897 898 setOperationAction(ISD::VP_LOAD, VT, Custom); 899 setOperationAction(ISD::VP_STORE, VT, Custom); 900 setOperationAction(ISD::VP_GATHER, VT, Custom); 901 setOperationAction(ISD::VP_SCATTER, VT, Custom); 902 903 setOperationAction(ISD::ADD, VT, Custom); 904 setOperationAction(ISD::MUL, VT, Custom); 905 setOperationAction(ISD::SUB, VT, Custom); 906 setOperationAction(ISD::AND, VT, Custom); 907 setOperationAction(ISD::OR, VT, Custom); 908 setOperationAction(ISD::XOR, VT, Custom); 909 setOperationAction(ISD::SDIV, VT, Custom); 910 setOperationAction(ISD::SREM, VT, Custom); 911 setOperationAction(ISD::UDIV, VT, Custom); 912 setOperationAction(ISD::UREM, VT, Custom); 913 setOperationAction(ISD::SHL, VT, Custom); 914 setOperationAction(ISD::SRA, VT, Custom); 915 setOperationAction(ISD::SRL, VT, Custom); 916 917 setOperationAction(ISD::SMIN, VT, Custom); 918 setOperationAction(ISD::SMAX, VT, Custom); 919 setOperationAction(ISD::UMIN, VT, Custom); 920 setOperationAction(ISD::UMAX, VT, Custom); 921 setOperationAction(ISD::ABS, VT, Custom); 922 923 // vXi64 MULHS/MULHU requires the V extension instead of Zve64*. 924 if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) { 925 setOperationAction(ISD::MULHS, VT, Custom); 926 setOperationAction(ISD::MULHU, VT, Custom); 927 } 928 929 setOperationAction(ISD::SADDSAT, VT, Custom); 930 setOperationAction(ISD::UADDSAT, VT, Custom); 931 setOperationAction(ISD::SSUBSAT, VT, Custom); 932 setOperationAction(ISD::USUBSAT, VT, Custom); 933 934 setOperationAction(ISD::VSELECT, VT, Custom); 935 setOperationAction(ISD::SELECT_CC, VT, Expand); 936 937 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 938 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 939 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 940 941 // Custom-lower reduction operations to set up the corresponding custom 942 // nodes' operands. 943 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 944 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 945 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 946 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 947 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 948 949 for (unsigned VPOpc : IntegerVPOps) 950 setOperationAction(VPOpc, VT, Custom); 951 952 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 953 // type that can represent the value exactly. 954 if (VT.getVectorElementType() != MVT::i64) { 955 MVT FloatEltVT = 956 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 957 EVT FloatVT = 958 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 959 if (isTypeLegal(FloatVT)) { 960 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 961 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 962 } 963 } 964 } 965 966 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 967 if (!useRVVForFixedLengthVectorVT(VT)) 968 continue; 969 970 // By default everything must be expanded. 971 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 972 setOperationAction(Op, VT, Expand); 973 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 974 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 975 setTruncStoreAction(VT, OtherVT, Expand); 976 } 977 978 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 979 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 980 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 981 982 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 983 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 984 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 985 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 986 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 987 988 setOperationAction(ISD::LOAD, VT, Custom); 989 setOperationAction(ISD::STORE, VT, Custom); 990 setOperationAction(ISD::MLOAD, VT, Custom); 991 setOperationAction(ISD::MSTORE, VT, Custom); 992 setOperationAction(ISD::MGATHER, VT, Custom); 993 setOperationAction(ISD::MSCATTER, VT, Custom); 994 995 setOperationAction(ISD::VP_LOAD, VT, Custom); 996 setOperationAction(ISD::VP_STORE, VT, Custom); 997 setOperationAction(ISD::VP_GATHER, VT, Custom); 998 setOperationAction(ISD::VP_SCATTER, VT, Custom); 999 1000 setOperationAction(ISD::FADD, VT, Custom); 1001 setOperationAction(ISD::FSUB, VT, Custom); 1002 setOperationAction(ISD::FMUL, VT, Custom); 1003 setOperationAction(ISD::FDIV, VT, Custom); 1004 setOperationAction(ISD::FNEG, VT, Custom); 1005 setOperationAction(ISD::FABS, VT, Custom); 1006 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 1007 setOperationAction(ISD::FSQRT, VT, Custom); 1008 setOperationAction(ISD::FMA, VT, Custom); 1009 setOperationAction(ISD::FMINNUM, VT, Custom); 1010 setOperationAction(ISD::FMAXNUM, VT, Custom); 1011 1012 setOperationAction(ISD::FP_ROUND, VT, Custom); 1013 setOperationAction(ISD::FP_EXTEND, VT, Custom); 1014 1015 setOperationAction(ISD::FTRUNC, VT, Custom); 1016 setOperationAction(ISD::FCEIL, VT, Custom); 1017 setOperationAction(ISD::FFLOOR, VT, Custom); 1018 1019 for (auto CC : VFPCCToExpand) 1020 setCondCodeAction(CC, VT, Expand); 1021 1022 setOperationAction(ISD::VSELECT, VT, Custom); 1023 setOperationAction(ISD::SELECT, VT, Custom); 1024 setOperationAction(ISD::SELECT_CC, VT, Expand); 1025 1026 setOperationAction(ISD::BITCAST, VT, Custom); 1027 1028 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 1029 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 1030 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 1031 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 1032 1033 for (unsigned VPOpc : FloatingPointVPOps) 1034 setOperationAction(VPOpc, VT, Custom); 1035 } 1036 1037 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 1038 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 1039 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 1040 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 1041 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 1042 if (Subtarget.hasStdExtZfh()) 1043 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 1044 if (Subtarget.hasStdExtF()) 1045 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 1046 if (Subtarget.hasStdExtD()) 1047 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 1048 } 1049 } 1050 1051 // Function alignments. 1052 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 1053 setMinFunctionAlignment(FunctionAlignment); 1054 setPrefFunctionAlignment(FunctionAlignment); 1055 1056 setMinimumJumpTableEntries(5); 1057 1058 // Jumps are expensive, compared to logic 1059 setJumpIsExpensive(); 1060 1061 setTargetDAGCombine(ISD::ADD); 1062 setTargetDAGCombine(ISD::SUB); 1063 setTargetDAGCombine(ISD::AND); 1064 setTargetDAGCombine(ISD::OR); 1065 setTargetDAGCombine(ISD::XOR); 1066 setTargetDAGCombine(ISD::ANY_EXTEND); 1067 if (Subtarget.hasStdExtF()) { 1068 setTargetDAGCombine(ISD::ZERO_EXTEND); 1069 setTargetDAGCombine(ISD::FP_TO_SINT); 1070 setTargetDAGCombine(ISD::FP_TO_UINT); 1071 setTargetDAGCombine(ISD::FP_TO_SINT_SAT); 1072 setTargetDAGCombine(ISD::FP_TO_UINT_SAT); 1073 } 1074 if (Subtarget.hasVInstructions()) { 1075 setTargetDAGCombine(ISD::FCOPYSIGN); 1076 setTargetDAGCombine(ISD::MGATHER); 1077 setTargetDAGCombine(ISD::MSCATTER); 1078 setTargetDAGCombine(ISD::VP_GATHER); 1079 setTargetDAGCombine(ISD::VP_SCATTER); 1080 setTargetDAGCombine(ISD::SRA); 1081 setTargetDAGCombine(ISD::SRL); 1082 setTargetDAGCombine(ISD::SHL); 1083 setTargetDAGCombine(ISD::STORE); 1084 } 1085 } 1086 1087 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 1088 LLVMContext &Context, 1089 EVT VT) const { 1090 if (!VT.isVector()) 1091 return getPointerTy(DL); 1092 if (Subtarget.hasVInstructions() && 1093 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 1094 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 1095 return VT.changeVectorElementTypeToInteger(); 1096 } 1097 1098 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 1099 return Subtarget.getXLenVT(); 1100 } 1101 1102 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1103 const CallInst &I, 1104 MachineFunction &MF, 1105 unsigned Intrinsic) const { 1106 auto &DL = I.getModule()->getDataLayout(); 1107 switch (Intrinsic) { 1108 default: 1109 return false; 1110 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 1111 case Intrinsic::riscv_masked_atomicrmw_add_i32: 1112 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 1113 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 1114 case Intrinsic::riscv_masked_atomicrmw_max_i32: 1115 case Intrinsic::riscv_masked_atomicrmw_min_i32: 1116 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 1117 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 1118 case Intrinsic::riscv_masked_cmpxchg_i32: { 1119 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 1120 Info.opc = ISD::INTRINSIC_W_CHAIN; 1121 Info.memVT = MVT::getVT(PtrTy->getPointerElementType()); 1122 Info.ptrVal = I.getArgOperand(0); 1123 Info.offset = 0; 1124 Info.align = Align(4); 1125 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1126 MachineMemOperand::MOVolatile; 1127 return true; 1128 } 1129 case Intrinsic::riscv_masked_strided_load: 1130 Info.opc = ISD::INTRINSIC_W_CHAIN; 1131 Info.ptrVal = I.getArgOperand(1); 1132 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1133 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1134 Info.size = MemoryLocation::UnknownSize; 1135 Info.flags |= MachineMemOperand::MOLoad; 1136 return true; 1137 case Intrinsic::riscv_masked_strided_store: 1138 Info.opc = ISD::INTRINSIC_VOID; 1139 Info.ptrVal = I.getArgOperand(1); 1140 Info.memVT = 1141 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1142 Info.align = Align( 1143 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1144 8); 1145 Info.size = MemoryLocation::UnknownSize; 1146 Info.flags |= MachineMemOperand::MOStore; 1147 return true; 1148 } 1149 } 1150 1151 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1152 const AddrMode &AM, Type *Ty, 1153 unsigned AS, 1154 Instruction *I) const { 1155 // No global is ever allowed as a base. 1156 if (AM.BaseGV) 1157 return false; 1158 1159 // Require a 12-bit signed offset. 1160 if (!isInt<12>(AM.BaseOffs)) 1161 return false; 1162 1163 switch (AM.Scale) { 1164 case 0: // "r+i" or just "i", depending on HasBaseReg. 1165 break; 1166 case 1: 1167 if (!AM.HasBaseReg) // allow "r+i". 1168 break; 1169 return false; // disallow "r+r" or "r+r+i". 1170 default: 1171 return false; 1172 } 1173 1174 return true; 1175 } 1176 1177 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1178 return isInt<12>(Imm); 1179 } 1180 1181 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1182 return isInt<12>(Imm); 1183 } 1184 1185 // On RV32, 64-bit integers are split into their high and low parts and held 1186 // in two different registers, so the trunc is free since the low register can 1187 // just be used. 1188 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1189 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1190 return false; 1191 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1192 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1193 return (SrcBits == 64 && DestBits == 32); 1194 } 1195 1196 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1197 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1198 !SrcVT.isInteger() || !DstVT.isInteger()) 1199 return false; 1200 unsigned SrcBits = SrcVT.getSizeInBits(); 1201 unsigned DestBits = DstVT.getSizeInBits(); 1202 return (SrcBits == 64 && DestBits == 32); 1203 } 1204 1205 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1206 // Zexts are free if they can be combined with a load. 1207 // Don't advertise i32->i64 zextload as being free for RV64. It interacts 1208 // poorly with type legalization of compares preferring sext. 1209 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1210 EVT MemVT = LD->getMemoryVT(); 1211 if ((MemVT == MVT::i8 || MemVT == MVT::i16) && 1212 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1213 LD->getExtensionType() == ISD::ZEXTLOAD)) 1214 return true; 1215 } 1216 1217 return TargetLowering::isZExtFree(Val, VT2); 1218 } 1219 1220 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1221 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1222 } 1223 1224 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1225 return Subtarget.hasStdExtZbb(); 1226 } 1227 1228 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1229 return Subtarget.hasStdExtZbb(); 1230 } 1231 1232 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { 1233 EVT VT = Y.getValueType(); 1234 1235 // FIXME: Support vectors once we have tests. 1236 if (VT.isVector()) 1237 return false; 1238 1239 return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 1240 Subtarget.hasStdExtZbkb()) && 1241 !isa<ConstantSDNode>(Y); 1242 } 1243 1244 /// Check if sinking \p I's operands to I's basic block is profitable, because 1245 /// the operands can be folded into a target instruction, e.g. 1246 /// splats of scalars can fold into vector instructions. 1247 bool RISCVTargetLowering::shouldSinkOperands( 1248 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1249 using namespace llvm::PatternMatch; 1250 1251 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1252 return false; 1253 1254 auto IsSinker = [&](Instruction *I, int Operand) { 1255 switch (I->getOpcode()) { 1256 case Instruction::Add: 1257 case Instruction::Sub: 1258 case Instruction::Mul: 1259 case Instruction::And: 1260 case Instruction::Or: 1261 case Instruction::Xor: 1262 case Instruction::FAdd: 1263 case Instruction::FSub: 1264 case Instruction::FMul: 1265 case Instruction::FDiv: 1266 case Instruction::ICmp: 1267 case Instruction::FCmp: 1268 return true; 1269 case Instruction::Shl: 1270 case Instruction::LShr: 1271 case Instruction::AShr: 1272 case Instruction::UDiv: 1273 case Instruction::SDiv: 1274 case Instruction::URem: 1275 case Instruction::SRem: 1276 return Operand == 1; 1277 case Instruction::Call: 1278 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1279 switch (II->getIntrinsicID()) { 1280 case Intrinsic::fma: 1281 return Operand == 0 || Operand == 1; 1282 // FIXME: Our patterns can only match vx/vf instructions when the splat 1283 // it on the RHS, because TableGen doesn't recognize our VP operations 1284 // as commutative. 1285 case Intrinsic::vp_add: 1286 case Intrinsic::vp_mul: 1287 case Intrinsic::vp_and: 1288 case Intrinsic::vp_or: 1289 case Intrinsic::vp_xor: 1290 case Intrinsic::vp_fadd: 1291 case Intrinsic::vp_fmul: 1292 case Intrinsic::vp_shl: 1293 case Intrinsic::vp_lshr: 1294 case Intrinsic::vp_ashr: 1295 case Intrinsic::vp_udiv: 1296 case Intrinsic::vp_sdiv: 1297 case Intrinsic::vp_urem: 1298 case Intrinsic::vp_srem: 1299 return Operand == 1; 1300 // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have 1301 // explicit patterns for both LHS and RHS (as 'vr' versions). 1302 case Intrinsic::vp_sub: 1303 case Intrinsic::vp_fsub: 1304 case Intrinsic::vp_fdiv: 1305 return Operand == 0 || Operand == 1; 1306 default: 1307 return false; 1308 } 1309 } 1310 return false; 1311 default: 1312 return false; 1313 } 1314 }; 1315 1316 for (auto OpIdx : enumerate(I->operands())) { 1317 if (!IsSinker(I, OpIdx.index())) 1318 continue; 1319 1320 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1321 // Make sure we are not already sinking this operand 1322 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1323 continue; 1324 1325 // We are looking for a splat that can be sunk. 1326 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1327 m_Undef(), m_ZeroMask()))) 1328 continue; 1329 1330 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1331 // and vector registers 1332 for (Use &U : Op->uses()) { 1333 Instruction *Insn = cast<Instruction>(U.getUser()); 1334 if (!IsSinker(Insn, U.getOperandNo())) 1335 return false; 1336 } 1337 1338 Ops.push_back(&Op->getOperandUse(0)); 1339 Ops.push_back(&OpIdx.value()); 1340 } 1341 return true; 1342 } 1343 1344 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1345 bool ForCodeSize) const { 1346 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1347 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1348 return false; 1349 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1350 return false; 1351 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1352 return false; 1353 return Imm.isZero(); 1354 } 1355 1356 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1357 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1358 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1359 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1360 } 1361 1362 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1363 CallingConv::ID CC, 1364 EVT VT) const { 1365 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1366 // We might still end up using a GPR but that will be decided based on ABI. 1367 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1368 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1369 return MVT::f32; 1370 1371 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1372 } 1373 1374 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1375 CallingConv::ID CC, 1376 EVT VT) const { 1377 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1378 // We might still end up using a GPR but that will be decided based on ABI. 1379 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1380 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1381 return 1; 1382 1383 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1384 } 1385 1386 // Changes the condition code and swaps operands if necessary, so the SetCC 1387 // operation matches one of the comparisons supported directly by branches 1388 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1389 // with 1/-1. 1390 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1391 ISD::CondCode &CC, SelectionDAG &DAG) { 1392 // Convert X > -1 to X >= 0. 1393 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1394 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1395 CC = ISD::SETGE; 1396 return; 1397 } 1398 // Convert X < 1 to 0 >= X. 1399 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1400 RHS = LHS; 1401 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1402 CC = ISD::SETGE; 1403 return; 1404 } 1405 1406 switch (CC) { 1407 default: 1408 break; 1409 case ISD::SETGT: 1410 case ISD::SETLE: 1411 case ISD::SETUGT: 1412 case ISD::SETULE: 1413 CC = ISD::getSetCCSwappedOperands(CC); 1414 std::swap(LHS, RHS); 1415 break; 1416 } 1417 } 1418 1419 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1420 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1421 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1422 if (VT.getVectorElementType() == MVT::i1) 1423 KnownSize *= 8; 1424 1425 switch (KnownSize) { 1426 default: 1427 llvm_unreachable("Invalid LMUL."); 1428 case 8: 1429 return RISCVII::VLMUL::LMUL_F8; 1430 case 16: 1431 return RISCVII::VLMUL::LMUL_F4; 1432 case 32: 1433 return RISCVII::VLMUL::LMUL_F2; 1434 case 64: 1435 return RISCVII::VLMUL::LMUL_1; 1436 case 128: 1437 return RISCVII::VLMUL::LMUL_2; 1438 case 256: 1439 return RISCVII::VLMUL::LMUL_4; 1440 case 512: 1441 return RISCVII::VLMUL::LMUL_8; 1442 } 1443 } 1444 1445 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1446 switch (LMul) { 1447 default: 1448 llvm_unreachable("Invalid LMUL."); 1449 case RISCVII::VLMUL::LMUL_F8: 1450 case RISCVII::VLMUL::LMUL_F4: 1451 case RISCVII::VLMUL::LMUL_F2: 1452 case RISCVII::VLMUL::LMUL_1: 1453 return RISCV::VRRegClassID; 1454 case RISCVII::VLMUL::LMUL_2: 1455 return RISCV::VRM2RegClassID; 1456 case RISCVII::VLMUL::LMUL_4: 1457 return RISCV::VRM4RegClassID; 1458 case RISCVII::VLMUL::LMUL_8: 1459 return RISCV::VRM8RegClassID; 1460 } 1461 } 1462 1463 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1464 RISCVII::VLMUL LMUL = getLMUL(VT); 1465 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1466 LMUL == RISCVII::VLMUL::LMUL_F4 || 1467 LMUL == RISCVII::VLMUL::LMUL_F2 || 1468 LMUL == RISCVII::VLMUL::LMUL_1) { 1469 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1470 "Unexpected subreg numbering"); 1471 return RISCV::sub_vrm1_0 + Index; 1472 } 1473 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1474 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1475 "Unexpected subreg numbering"); 1476 return RISCV::sub_vrm2_0 + Index; 1477 } 1478 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1479 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1480 "Unexpected subreg numbering"); 1481 return RISCV::sub_vrm4_0 + Index; 1482 } 1483 llvm_unreachable("Invalid vector type."); 1484 } 1485 1486 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1487 if (VT.getVectorElementType() == MVT::i1) 1488 return RISCV::VRRegClassID; 1489 return getRegClassIDForLMUL(getLMUL(VT)); 1490 } 1491 1492 // Attempt to decompose a subvector insert/extract between VecVT and 1493 // SubVecVT via subregister indices. Returns the subregister index that 1494 // can perform the subvector insert/extract with the given element index, as 1495 // well as the index corresponding to any leftover subvectors that must be 1496 // further inserted/extracted within the register class for SubVecVT. 1497 std::pair<unsigned, unsigned> 1498 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1499 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1500 const RISCVRegisterInfo *TRI) { 1501 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1502 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1503 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1504 "Register classes not ordered"); 1505 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1506 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1507 // Try to compose a subregister index that takes us from the incoming 1508 // LMUL>1 register class down to the outgoing one. At each step we half 1509 // the LMUL: 1510 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1511 // Note that this is not guaranteed to find a subregister index, such as 1512 // when we are extracting from one VR type to another. 1513 unsigned SubRegIdx = RISCV::NoSubRegister; 1514 for (const unsigned RCID : 1515 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1516 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1517 VecVT = VecVT.getHalfNumVectorElementsVT(); 1518 bool IsHi = 1519 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1520 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1521 getSubregIndexByMVT(VecVT, IsHi)); 1522 if (IsHi) 1523 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1524 } 1525 return {SubRegIdx, InsertExtractIdx}; 1526 } 1527 1528 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1529 // stores for those types. 1530 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1531 return !Subtarget.useRVVForFixedLengthVectors() || 1532 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1533 } 1534 1535 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1536 if (ScalarTy->isPointerTy()) 1537 return true; 1538 1539 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1540 ScalarTy->isIntegerTy(32)) 1541 return true; 1542 1543 if (ScalarTy->isIntegerTy(64)) 1544 return Subtarget.hasVInstructionsI64(); 1545 1546 if (ScalarTy->isHalfTy()) 1547 return Subtarget.hasVInstructionsF16(); 1548 if (ScalarTy->isFloatTy()) 1549 return Subtarget.hasVInstructionsF32(); 1550 if (ScalarTy->isDoubleTy()) 1551 return Subtarget.hasVInstructionsF64(); 1552 1553 return false; 1554 } 1555 1556 static SDValue getVLOperand(SDValue Op) { 1557 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1558 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 1559 "Unexpected opcode"); 1560 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 1561 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 1562 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1563 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 1564 if (!II) 1565 return SDValue(); 1566 return Op.getOperand(II->VLOperand + 1 + HasChain); 1567 } 1568 1569 static bool useRVVForFixedLengthVectorVT(MVT VT, 1570 const RISCVSubtarget &Subtarget) { 1571 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1572 if (!Subtarget.useRVVForFixedLengthVectors()) 1573 return false; 1574 1575 // We only support a set of vector types with a consistent maximum fixed size 1576 // across all supported vector element types to avoid legalization issues. 1577 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1578 // fixed-length vector type we support is 1024 bytes. 1579 if (VT.getFixedSizeInBits() > 1024 * 8) 1580 return false; 1581 1582 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1583 1584 MVT EltVT = VT.getVectorElementType(); 1585 1586 // Don't use RVV for vectors we cannot scalarize if required. 1587 switch (EltVT.SimpleTy) { 1588 // i1 is supported but has different rules. 1589 default: 1590 return false; 1591 case MVT::i1: 1592 // Masks can only use a single register. 1593 if (VT.getVectorNumElements() > MinVLen) 1594 return false; 1595 MinVLen /= 8; 1596 break; 1597 case MVT::i8: 1598 case MVT::i16: 1599 case MVT::i32: 1600 break; 1601 case MVT::i64: 1602 if (!Subtarget.hasVInstructionsI64()) 1603 return false; 1604 break; 1605 case MVT::f16: 1606 if (!Subtarget.hasVInstructionsF16()) 1607 return false; 1608 break; 1609 case MVT::f32: 1610 if (!Subtarget.hasVInstructionsF32()) 1611 return false; 1612 break; 1613 case MVT::f64: 1614 if (!Subtarget.hasVInstructionsF64()) 1615 return false; 1616 break; 1617 } 1618 1619 // Reject elements larger than ELEN. 1620 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1621 return false; 1622 1623 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1624 // Don't use RVV for types that don't fit. 1625 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1626 return false; 1627 1628 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1629 // the base fixed length RVV support in place. 1630 if (!VT.isPow2VectorType()) 1631 return false; 1632 1633 return true; 1634 } 1635 1636 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1637 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1638 } 1639 1640 // Return the largest legal scalable vector type that matches VT's element type. 1641 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1642 const RISCVSubtarget &Subtarget) { 1643 // This may be called before legal types are setup. 1644 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1645 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1646 "Expected legal fixed length vector!"); 1647 1648 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1649 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1650 1651 MVT EltVT = VT.getVectorElementType(); 1652 switch (EltVT.SimpleTy) { 1653 default: 1654 llvm_unreachable("unexpected element type for RVV container"); 1655 case MVT::i1: 1656 case MVT::i8: 1657 case MVT::i16: 1658 case MVT::i32: 1659 case MVT::i64: 1660 case MVT::f16: 1661 case MVT::f32: 1662 case MVT::f64: { 1663 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1664 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1665 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1666 unsigned NumElts = 1667 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1668 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1669 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1670 return MVT::getScalableVectorVT(EltVT, NumElts); 1671 } 1672 } 1673 } 1674 1675 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1676 const RISCVSubtarget &Subtarget) { 1677 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1678 Subtarget); 1679 } 1680 1681 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1682 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1683 } 1684 1685 // Grow V to consume an entire RVV register. 1686 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1687 const RISCVSubtarget &Subtarget) { 1688 assert(VT.isScalableVector() && 1689 "Expected to convert into a scalable vector!"); 1690 assert(V.getValueType().isFixedLengthVector() && 1691 "Expected a fixed length vector operand!"); 1692 SDLoc DL(V); 1693 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1694 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1695 } 1696 1697 // Shrink V so it's just big enough to maintain a VT's worth of data. 1698 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1699 const RISCVSubtarget &Subtarget) { 1700 assert(VT.isFixedLengthVector() && 1701 "Expected to convert into a fixed length vector!"); 1702 assert(V.getValueType().isScalableVector() && 1703 "Expected a scalable vector operand!"); 1704 SDLoc DL(V); 1705 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1706 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1707 } 1708 1709 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1710 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1711 // the vector type that it is contained in. 1712 static std::pair<SDValue, SDValue> 1713 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1714 const RISCVSubtarget &Subtarget) { 1715 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1716 MVT XLenVT = Subtarget.getXLenVT(); 1717 SDValue VL = VecVT.isFixedLengthVector() 1718 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1719 : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 1720 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1721 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1722 return {Mask, VL}; 1723 } 1724 1725 // As above but assuming the given type is a scalable vector type. 1726 static std::pair<SDValue, SDValue> 1727 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1728 const RISCVSubtarget &Subtarget) { 1729 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1730 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1731 } 1732 1733 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1734 // of either is (currently) supported. This can get us into an infinite loop 1735 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1736 // as a ..., etc. 1737 // Until either (or both) of these can reliably lower any node, reporting that 1738 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1739 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1740 // which is not desirable. 1741 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1742 EVT VT, unsigned DefinedValues) const { 1743 return false; 1744 } 1745 1746 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1747 // Only splats are currently supported. 1748 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1749 return true; 1750 1751 return false; 1752 } 1753 1754 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, 1755 const RISCVSubtarget &Subtarget) { 1756 // RISCV FP-to-int conversions saturate to the destination register size, but 1757 // don't produce 0 for nan. We can use a conversion instruction and fix the 1758 // nan case with a compare and a select. 1759 SDValue Src = Op.getOperand(0); 1760 1761 EVT DstVT = Op.getValueType(); 1762 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1763 1764 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1765 unsigned Opc; 1766 if (SatVT == DstVT) 1767 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 1768 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1769 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 1770 else 1771 return SDValue(); 1772 // FIXME: Support other SatVTs by clamping before or after the conversion. 1773 1774 SDLoc DL(Op); 1775 SDValue FpToInt = DAG.getNode( 1776 Opc, DL, DstVT, Src, 1777 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT())); 1778 1779 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1780 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1781 } 1782 1783 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1784 // and back. Taking care to avoid converting values that are nan or already 1785 // correct. 1786 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1787 // have FRM dependencies modeled yet. 1788 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1789 MVT VT = Op.getSimpleValueType(); 1790 assert(VT.isVector() && "Unexpected type"); 1791 1792 SDLoc DL(Op); 1793 1794 // Freeze the source since we are increasing the number of uses. 1795 SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0)); 1796 1797 // Truncate to integer and convert back to FP. 1798 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1799 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1800 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1801 1802 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1803 1804 if (Op.getOpcode() == ISD::FCEIL) { 1805 // If the truncated value is the greater than or equal to the original 1806 // value, we've computed the ceil. Otherwise, we went the wrong way and 1807 // need to increase by 1. 1808 // FIXME: This should use a masked operation. Handle here or in isel? 1809 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1810 DAG.getConstantFP(1.0, DL, VT)); 1811 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1812 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1813 } else if (Op.getOpcode() == ISD::FFLOOR) { 1814 // If the truncated value is the less than or equal to the original value, 1815 // we've computed the floor. Otherwise, we went the wrong way and need to 1816 // decrease by 1. 1817 // FIXME: This should use a masked operation. Handle here or in isel? 1818 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1819 DAG.getConstantFP(1.0, DL, VT)); 1820 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1821 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1822 } 1823 1824 // Restore the original sign so that -0.0 is preserved. 1825 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1826 1827 // Determine the largest integer that can be represented exactly. This and 1828 // values larger than it don't have any fractional bits so don't need to 1829 // be converted. 1830 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1831 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1832 APFloat MaxVal = APFloat(FltSem); 1833 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1834 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1835 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1836 1837 // If abs(Src) was larger than MaxVal or nan, keep it. 1838 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1839 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1840 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1841 } 1842 1843 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1844 const RISCVSubtarget &Subtarget) { 1845 MVT VT = Op.getSimpleValueType(); 1846 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1847 1848 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1849 1850 SDLoc DL(Op); 1851 SDValue Mask, VL; 1852 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1853 1854 unsigned Opc = 1855 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1856 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1857 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1858 } 1859 1860 struct VIDSequence { 1861 int64_t StepNumerator; 1862 unsigned StepDenominator; 1863 int64_t Addend; 1864 }; 1865 1866 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1867 // to the (non-zero) step S and start value X. This can be then lowered as the 1868 // RVV sequence (VID * S) + X, for example. 1869 // The step S is represented as an integer numerator divided by a positive 1870 // denominator. Note that the implementation currently only identifies 1871 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1872 // cannot detect 2/3, for example. 1873 // Note that this method will also match potentially unappealing index 1874 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1875 // determine whether this is worth generating code for. 1876 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1877 unsigned NumElts = Op.getNumOperands(); 1878 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1879 if (!Op.getValueType().isInteger()) 1880 return None; 1881 1882 Optional<unsigned> SeqStepDenom; 1883 Optional<int64_t> SeqStepNum, SeqAddend; 1884 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1885 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1886 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1887 // Assume undef elements match the sequence; we just have to be careful 1888 // when interpolating across them. 1889 if (Op.getOperand(Idx).isUndef()) 1890 continue; 1891 // The BUILD_VECTOR must be all constants. 1892 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1893 return None; 1894 1895 uint64_t Val = Op.getConstantOperandVal(Idx) & 1896 maskTrailingOnes<uint64_t>(EltSizeInBits); 1897 1898 if (PrevElt) { 1899 // Calculate the step since the last non-undef element, and ensure 1900 // it's consistent across the entire sequence. 1901 unsigned IdxDiff = Idx - PrevElt->second; 1902 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1903 1904 // A zero-value value difference means that we're somewhere in the middle 1905 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1906 // step change before evaluating the sequence. 1907 if (ValDiff != 0) { 1908 int64_t Remainder = ValDiff % IdxDiff; 1909 // Normalize the step if it's greater than 1. 1910 if (Remainder != ValDiff) { 1911 // The difference must cleanly divide the element span. 1912 if (Remainder != 0) 1913 return None; 1914 ValDiff /= IdxDiff; 1915 IdxDiff = 1; 1916 } 1917 1918 if (!SeqStepNum) 1919 SeqStepNum = ValDiff; 1920 else if (ValDiff != SeqStepNum) 1921 return None; 1922 1923 if (!SeqStepDenom) 1924 SeqStepDenom = IdxDiff; 1925 else if (IdxDiff != *SeqStepDenom) 1926 return None; 1927 } 1928 } 1929 1930 // Record and/or check any addend. 1931 if (SeqStepNum && SeqStepDenom) { 1932 uint64_t ExpectedVal = 1933 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1934 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1935 if (!SeqAddend) 1936 SeqAddend = Addend; 1937 else if (SeqAddend != Addend) 1938 return None; 1939 } 1940 1941 // Record this non-undef element for later. 1942 if (!PrevElt || PrevElt->first != Val) 1943 PrevElt = std::make_pair(Val, Idx); 1944 } 1945 // We need to have logged both a step and an addend for this to count as 1946 // a legal index sequence. 1947 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1948 return None; 1949 1950 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1951 } 1952 1953 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1954 const RISCVSubtarget &Subtarget) { 1955 MVT VT = Op.getSimpleValueType(); 1956 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1957 1958 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1959 1960 SDLoc DL(Op); 1961 SDValue Mask, VL; 1962 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1963 1964 MVT XLenVT = Subtarget.getXLenVT(); 1965 unsigned NumElts = Op.getNumOperands(); 1966 1967 if (VT.getVectorElementType() == MVT::i1) { 1968 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1969 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1970 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1971 } 1972 1973 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1974 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1975 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1976 } 1977 1978 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1979 // scalar integer chunks whose bit-width depends on the number of mask 1980 // bits and XLEN. 1981 // First, determine the most appropriate scalar integer type to use. This 1982 // is at most XLenVT, but may be shrunk to a smaller vector element type 1983 // according to the size of the final vector - use i8 chunks rather than 1984 // XLenVT if we're producing a v8i1. This results in more consistent 1985 // codegen across RV32 and RV64. 1986 unsigned NumViaIntegerBits = 1987 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1988 NumViaIntegerBits = std::min(NumViaIntegerBits, 1989 Subtarget.getMaxELENForFixedLengthVectors()); 1990 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1991 // If we have to use more than one INSERT_VECTOR_ELT then this 1992 // optimization is likely to increase code size; avoid peforming it in 1993 // such a case. We can use a load from a constant pool in this case. 1994 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1995 return SDValue(); 1996 // Now we can create our integer vector type. Note that it may be larger 1997 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1998 MVT IntegerViaVecVT = 1999 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 2000 divideCeil(NumElts, NumViaIntegerBits)); 2001 2002 uint64_t Bits = 0; 2003 unsigned BitPos = 0, IntegerEltIdx = 0; 2004 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 2005 2006 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 2007 // Once we accumulate enough bits to fill our scalar type, insert into 2008 // our vector and clear our accumulated data. 2009 if (I != 0 && I % NumViaIntegerBits == 0) { 2010 if (NumViaIntegerBits <= 32) 2011 Bits = SignExtend64(Bits, 32); 2012 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2013 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 2014 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2015 Bits = 0; 2016 BitPos = 0; 2017 IntegerEltIdx++; 2018 } 2019 SDValue V = Op.getOperand(I); 2020 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 2021 Bits |= ((uint64_t)BitValue << BitPos); 2022 } 2023 2024 // Insert the (remaining) scalar value into position in our integer 2025 // vector type. 2026 if (NumViaIntegerBits <= 32) 2027 Bits = SignExtend64(Bits, 32); 2028 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2029 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 2030 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2031 2032 if (NumElts < NumViaIntegerBits) { 2033 // If we're producing a smaller vector than our minimum legal integer 2034 // type, bitcast to the equivalent (known-legal) mask type, and extract 2035 // our final mask. 2036 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 2037 Vec = DAG.getBitcast(MVT::v8i1, Vec); 2038 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 2039 DAG.getConstant(0, DL, XLenVT)); 2040 } else { 2041 // Else we must have produced an integer type with the same size as the 2042 // mask type; bitcast for the final result. 2043 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 2044 Vec = DAG.getBitcast(VT, Vec); 2045 } 2046 2047 return Vec; 2048 } 2049 2050 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 2051 // vector type, we have a legal equivalently-sized i8 type, so we can use 2052 // that. 2053 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 2054 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 2055 2056 SDValue WideVec; 2057 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2058 // For a splat, perform a scalar truncate before creating the wider 2059 // vector. 2060 assert(Splat.getValueType() == XLenVT && 2061 "Unexpected type for i1 splat value"); 2062 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 2063 DAG.getConstant(1, DL, XLenVT)); 2064 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 2065 } else { 2066 SmallVector<SDValue, 8> Ops(Op->op_values()); 2067 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 2068 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 2069 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 2070 } 2071 2072 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 2073 } 2074 2075 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2076 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 2077 : RISCVISD::VMV_V_X_VL; 2078 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 2079 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2080 } 2081 2082 // Try and match index sequences, which we can lower to the vid instruction 2083 // with optional modifications. An all-undef vector is matched by 2084 // getSplatValue, above. 2085 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 2086 int64_t StepNumerator = SimpleVID->StepNumerator; 2087 unsigned StepDenominator = SimpleVID->StepDenominator; 2088 int64_t Addend = SimpleVID->Addend; 2089 2090 assert(StepNumerator != 0 && "Invalid step"); 2091 bool Negate = false; 2092 int64_t SplatStepVal = StepNumerator; 2093 unsigned StepOpcode = ISD::MUL; 2094 if (StepNumerator != 1) { 2095 if (isPowerOf2_64(std::abs(StepNumerator))) { 2096 Negate = StepNumerator < 0; 2097 StepOpcode = ISD::SHL; 2098 SplatStepVal = Log2_64(std::abs(StepNumerator)); 2099 } 2100 } 2101 2102 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 2103 // threshold since it's the immediate value many RVV instructions accept. 2104 // There is no vmul.vi instruction so ensure multiply constant can fit in 2105 // a single addi instruction. 2106 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 2107 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 2108 isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) { 2109 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 2110 // Convert right out of the scalable type so we can use standard ISD 2111 // nodes for the rest of the computation. If we used scalable types with 2112 // these, we'd lose the fixed-length vector info and generate worse 2113 // vsetvli code. 2114 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 2115 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 2116 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 2117 SDValue SplatStep = DAG.getSplatVector( 2118 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 2119 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); 2120 } 2121 if (StepDenominator != 1) { 2122 SDValue SplatStep = DAG.getSplatVector( 2123 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 2124 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 2125 } 2126 if (Addend != 0 || Negate) { 2127 SDValue SplatAddend = 2128 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 2129 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 2130 } 2131 return VID; 2132 } 2133 } 2134 2135 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2136 // when re-interpreted as a vector with a larger element type. For example, 2137 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2138 // could be instead splat as 2139 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2140 // TODO: This optimization could also work on non-constant splats, but it 2141 // would require bit-manipulation instructions to construct the splat value. 2142 SmallVector<SDValue> Sequence; 2143 unsigned EltBitSize = VT.getScalarSizeInBits(); 2144 const auto *BV = cast<BuildVectorSDNode>(Op); 2145 if (VT.isInteger() && EltBitSize < 64 && 2146 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2147 BV->getRepeatedSequence(Sequence) && 2148 (Sequence.size() * EltBitSize) <= 64) { 2149 unsigned SeqLen = Sequence.size(); 2150 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2151 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2152 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2153 ViaIntVT == MVT::i64) && 2154 "Unexpected sequence type"); 2155 2156 unsigned EltIdx = 0; 2157 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2158 uint64_t SplatValue = 0; 2159 // Construct the amalgamated value which can be splatted as this larger 2160 // vector type. 2161 for (const auto &SeqV : Sequence) { 2162 if (!SeqV.isUndef()) 2163 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2164 << (EltIdx * EltBitSize)); 2165 EltIdx++; 2166 } 2167 2168 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2169 // achieve better constant materializion. 2170 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2171 SplatValue = SignExtend64(SplatValue, 32); 2172 2173 // Since we can't introduce illegal i64 types at this stage, we can only 2174 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2175 // way we can use RVV instructions to splat. 2176 assert((ViaIntVT.bitsLE(XLenVT) || 2177 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2178 "Unexpected bitcast sequence"); 2179 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2180 SDValue ViaVL = 2181 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2182 MVT ViaContainerVT = 2183 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2184 SDValue Splat = 2185 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2186 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2187 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2188 return DAG.getBitcast(VT, Splat); 2189 } 2190 } 2191 2192 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2193 // which constitute a large proportion of the elements. In such cases we can 2194 // splat a vector with the dominant element and make up the shortfall with 2195 // INSERT_VECTOR_ELTs. 2196 // Note that this includes vectors of 2 elements by association. The 2197 // upper-most element is the "dominant" one, allowing us to use a splat to 2198 // "insert" the upper element, and an insert of the lower element at position 2199 // 0, which improves codegen. 2200 SDValue DominantValue; 2201 unsigned MostCommonCount = 0; 2202 DenseMap<SDValue, unsigned> ValueCounts; 2203 unsigned NumUndefElts = 2204 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2205 2206 // Track the number of scalar loads we know we'd be inserting, estimated as 2207 // any non-zero floating-point constant. Other kinds of element are either 2208 // already in registers or are materialized on demand. The threshold at which 2209 // a vector load is more desirable than several scalar materializion and 2210 // vector-insertion instructions is not known. 2211 unsigned NumScalarLoads = 0; 2212 2213 for (SDValue V : Op->op_values()) { 2214 if (V.isUndef()) 2215 continue; 2216 2217 ValueCounts.insert(std::make_pair(V, 0)); 2218 unsigned &Count = ValueCounts[V]; 2219 2220 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2221 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2222 2223 // Is this value dominant? In case of a tie, prefer the highest element as 2224 // it's cheaper to insert near the beginning of a vector than it is at the 2225 // end. 2226 if (++Count >= MostCommonCount) { 2227 DominantValue = V; 2228 MostCommonCount = Count; 2229 } 2230 } 2231 2232 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2233 unsigned NumDefElts = NumElts - NumUndefElts; 2234 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2235 2236 // Don't perform this optimization when optimizing for size, since 2237 // materializing elements and inserting them tends to cause code bloat. 2238 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2239 ((MostCommonCount > DominantValueCountThreshold) || 2240 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2241 // Start by splatting the most common element. 2242 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2243 2244 DenseSet<SDValue> Processed{DominantValue}; 2245 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2246 for (const auto &OpIdx : enumerate(Op->ops())) { 2247 const SDValue &V = OpIdx.value(); 2248 if (V.isUndef() || !Processed.insert(V).second) 2249 continue; 2250 if (ValueCounts[V] == 1) { 2251 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2252 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2253 } else { 2254 // Blend in all instances of this value using a VSELECT, using a 2255 // mask where each bit signals whether that element is the one 2256 // we're after. 2257 SmallVector<SDValue> Ops; 2258 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2259 return DAG.getConstant(V == V1, DL, XLenVT); 2260 }); 2261 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2262 DAG.getBuildVector(SelMaskTy, DL, Ops), 2263 DAG.getSplatBuildVector(VT, DL, V), Vec); 2264 } 2265 } 2266 2267 return Vec; 2268 } 2269 2270 return SDValue(); 2271 } 2272 2273 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 2274 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 2275 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2276 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2277 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2278 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2279 // node in order to try and match RVV vector/scalar instructions. 2280 if ((LoC >> 31) == HiC) 2281 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 2282 2283 // If vl is equal to VLMax and Hi constant is equal to Lo, we could use 2284 // vmv.v.x whose EEW = 32 to lower it. 2285 auto *Const = dyn_cast<ConstantSDNode>(VL); 2286 if (LoC == HiC && Const && Const->getSExtValue() == RISCV::VLMaxSentinel) { 2287 MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 2288 // TODO: if vl <= min(VLMAX), we can also do this. But we could not 2289 // access the subtarget here now. 2290 auto InterVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterVT, Lo, VL); 2291 return DAG.getNode(ISD::BITCAST, DL, VT, InterVec); 2292 } 2293 } 2294 2295 // Fall back to a stack store and stride x0 vector load. 2296 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 2297 } 2298 2299 // Called by type legalization to handle splat of i64 on RV32. 2300 // FIXME: We can optimize this when the type has sign or zero bits in one 2301 // of the halves. 2302 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 2303 SDValue VL, SelectionDAG &DAG) { 2304 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2305 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2306 DAG.getConstant(0, DL, MVT::i32)); 2307 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2308 DAG.getConstant(1, DL, MVT::i32)); 2309 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 2310 } 2311 2312 // This function lowers a splat of a scalar operand Splat with the vector 2313 // length VL. It ensures the final sequence is type legal, which is useful when 2314 // lowering a splat after type legalization. 2315 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 2316 SelectionDAG &DAG, 2317 const RISCVSubtarget &Subtarget) { 2318 if (VT.isFloatingPoint()) { 2319 // If VL is 1, we could use vfmv.s.f. 2320 if (isOneConstant(VL)) 2321 return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, DAG.getUNDEF(VT), 2322 Scalar, VL); 2323 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 2324 } 2325 2326 MVT XLenVT = Subtarget.getXLenVT(); 2327 2328 // Simplest case is that the operand needs to be promoted to XLenVT. 2329 if (Scalar.getValueType().bitsLE(XLenVT)) { 2330 // If the operand is a constant, sign extend to increase our chances 2331 // of being able to use a .vi instruction. ANY_EXTEND would become a 2332 // a zero extend and the simm5 check in isel would fail. 2333 // FIXME: Should we ignore the upper bits in isel instead? 2334 unsigned ExtOpc = 2335 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2336 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2337 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar); 2338 // If VL is 1 and the scalar value won't benefit from immediate, we could 2339 // use vmv.s.x. 2340 if (isOneConstant(VL) && 2341 (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue()))) 2342 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), Scalar, 2343 VL); 2344 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 2345 } 2346 2347 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2348 "Unexpected scalar for splat lowering!"); 2349 2350 if (isOneConstant(VL) && isNullConstant(Scalar)) 2351 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), 2352 DAG.getConstant(0, DL, XLenVT), VL); 2353 2354 // Otherwise use the more complicated splatting algorithm. 2355 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 2356 } 2357 2358 // Is the mask a slidedown that shifts in undefs. 2359 static int matchShuffleAsSlideDown(ArrayRef<int> Mask) { 2360 int Size = Mask.size(); 2361 2362 // Elements shifted in should be undef. 2363 auto CheckUndefs = [&](int Shift) { 2364 for (int i = Size - Shift; i != Size; ++i) 2365 if (Mask[i] >= 0) 2366 return false; 2367 return true; 2368 }; 2369 2370 // Elements should be shifted or undef. 2371 auto MatchShift = [&](int Shift) { 2372 for (int i = 0; i != Size - Shift; ++i) 2373 if (Mask[i] >= 0 && Mask[i] != Shift + i) 2374 return false; 2375 return true; 2376 }; 2377 2378 // Try all possible shifts. 2379 for (int Shift = 1; Shift != Size; ++Shift) 2380 if (CheckUndefs(Shift) && MatchShift(Shift)) 2381 return Shift; 2382 2383 // No match. 2384 return -1; 2385 } 2386 2387 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources, 2388 const RISCVSubtarget &Subtarget) { 2389 // We need to be able to widen elements to the next larger integer type. 2390 if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors()) 2391 return false; 2392 2393 int Size = Mask.size(); 2394 assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); 2395 2396 int Srcs[] = {-1, -1}; 2397 for (int i = 0; i != Size; ++i) { 2398 // Ignore undef elements. 2399 if (Mask[i] < 0) 2400 continue; 2401 2402 // Is this an even or odd element. 2403 int Pol = i % 2; 2404 2405 // Ensure we consistently use the same source for this element polarity. 2406 int Src = Mask[i] / Size; 2407 if (Srcs[Pol] < 0) 2408 Srcs[Pol] = Src; 2409 if (Srcs[Pol] != Src) 2410 return false; 2411 2412 // Make sure the element within the source is appropriate for this element 2413 // in the destination. 2414 int Elt = Mask[i] % Size; 2415 if (Elt != i / 2) 2416 return false; 2417 } 2418 2419 // We need to find a source for each polarity and they can't be the same. 2420 if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1]) 2421 return false; 2422 2423 // Swap the sources if the second source was in the even polarity. 2424 SwapSources = Srcs[0] > Srcs[1]; 2425 2426 return true; 2427 } 2428 2429 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2430 const RISCVSubtarget &Subtarget) { 2431 SDValue V1 = Op.getOperand(0); 2432 SDValue V2 = Op.getOperand(1); 2433 SDLoc DL(Op); 2434 MVT XLenVT = Subtarget.getXLenVT(); 2435 MVT VT = Op.getSimpleValueType(); 2436 unsigned NumElts = VT.getVectorNumElements(); 2437 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2438 2439 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2440 2441 SDValue TrueMask, VL; 2442 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2443 2444 if (SVN->isSplat()) { 2445 const int Lane = SVN->getSplatIndex(); 2446 if (Lane >= 0) { 2447 MVT SVT = VT.getVectorElementType(); 2448 2449 // Turn splatted vector load into a strided load with an X0 stride. 2450 SDValue V = V1; 2451 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2452 // with undef. 2453 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2454 int Offset = Lane; 2455 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2456 int OpElements = 2457 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2458 V = V.getOperand(Offset / OpElements); 2459 Offset %= OpElements; 2460 } 2461 2462 // We need to ensure the load isn't atomic or volatile. 2463 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2464 auto *Ld = cast<LoadSDNode>(V); 2465 Offset *= SVT.getStoreSize(); 2466 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2467 TypeSize::Fixed(Offset), DL); 2468 2469 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2470 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2471 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2472 SDValue IntID = 2473 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2474 SDValue Ops[] = {Ld->getChain(), 2475 IntID, 2476 DAG.getUNDEF(ContainerVT), 2477 NewAddr, 2478 DAG.getRegister(RISCV::X0, XLenVT), 2479 VL}; 2480 SDValue NewLoad = DAG.getMemIntrinsicNode( 2481 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2482 DAG.getMachineFunction().getMachineMemOperand( 2483 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2484 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2485 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2486 } 2487 2488 // Otherwise use a scalar load and splat. This will give the best 2489 // opportunity to fold a splat into the operation. ISel can turn it into 2490 // the x0 strided load if we aren't able to fold away the select. 2491 if (SVT.isFloatingPoint()) 2492 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2493 Ld->getPointerInfo().getWithOffset(Offset), 2494 Ld->getOriginalAlign(), 2495 Ld->getMemOperand()->getFlags()); 2496 else 2497 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2498 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2499 Ld->getOriginalAlign(), 2500 Ld->getMemOperand()->getFlags()); 2501 DAG.makeEquivalentMemoryOrdering(Ld, V); 2502 2503 unsigned Opc = 2504 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2505 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 2506 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2507 } 2508 2509 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2510 assert(Lane < (int)NumElts && "Unexpected lane!"); 2511 SDValue Gather = 2512 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2513 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2514 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2515 } 2516 } 2517 2518 ArrayRef<int> Mask = SVN->getMask(); 2519 2520 // Try to match as a slidedown. 2521 int SlideAmt = matchShuffleAsSlideDown(Mask); 2522 if (SlideAmt >= 0) { 2523 // TODO: Should we reduce the VL to account for the upper undef elements? 2524 // Requires additional vsetvlis, but might be faster to execute. 2525 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2526 SDValue SlideDown = 2527 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 2528 DAG.getUNDEF(ContainerVT), V1, 2529 DAG.getConstant(SlideAmt, DL, XLenVT), 2530 TrueMask, VL); 2531 return convertFromScalableVector(VT, SlideDown, DAG, Subtarget); 2532 } 2533 2534 // Detect an interleave shuffle and lower to 2535 // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1)) 2536 bool SwapSources; 2537 if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) { 2538 // Swap sources if needed. 2539 if (SwapSources) 2540 std::swap(V1, V2); 2541 2542 // Extract the lower half of the vectors. 2543 MVT HalfVT = VT.getHalfNumVectorElementsVT(); 2544 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1, 2545 DAG.getConstant(0, DL, XLenVT)); 2546 V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2, 2547 DAG.getConstant(0, DL, XLenVT)); 2548 2549 // Double the element width and halve the number of elements in an int type. 2550 unsigned EltBits = VT.getScalarSizeInBits(); 2551 MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2); 2552 MVT WideIntVT = 2553 MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2); 2554 // Convert this to a scalable vector. We need to base this on the 2555 // destination size to ensure there's always a type with a smaller LMUL. 2556 MVT WideIntContainerVT = 2557 getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget); 2558 2559 // Convert sources to scalable vectors with the same element count as the 2560 // larger type. 2561 MVT HalfContainerVT = MVT::getVectorVT( 2562 VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount()); 2563 V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget); 2564 V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget); 2565 2566 // Cast sources to integer. 2567 MVT IntEltVT = MVT::getIntegerVT(EltBits); 2568 MVT IntHalfVT = 2569 MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount()); 2570 V1 = DAG.getBitcast(IntHalfVT, V1); 2571 V2 = DAG.getBitcast(IntHalfVT, V2); 2572 2573 // Freeze V2 since we use it twice and we need to be sure that the add and 2574 // multiply see the same value. 2575 V2 = DAG.getNode(ISD::FREEZE, DL, IntHalfVT, V2); 2576 2577 // Recreate TrueMask using the widened type's element count. 2578 MVT MaskVT = 2579 MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount()); 2580 TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 2581 2582 // Widen V1 and V2 with 0s and add one copy of V2 to V1. 2583 SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1, 2584 V2, TrueMask, VL); 2585 // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer. 2586 SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT, 2587 DAG.getAllOnesConstant(DL, XLenVT)); 2588 SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT, 2589 V2, Multiplier, TrueMask, VL); 2590 // Add the new copies to our previous addition giving us 2^eltbits copies of 2591 // V2. This is equivalent to shifting V2 left by eltbits. This should 2592 // combine with the vwmulu.vv above to form vwmaccu.vv. 2593 Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul, 2594 TrueMask, VL); 2595 // Cast back to ContainerVT. We need to re-create a new ContainerVT in case 2596 // WideIntContainerVT is a larger fractional LMUL than implied by the fixed 2597 // vector VT. 2598 ContainerVT = 2599 MVT::getVectorVT(VT.getVectorElementType(), 2600 WideIntContainerVT.getVectorElementCount() * 2); 2601 Add = DAG.getBitcast(ContainerVT, Add); 2602 return convertFromScalableVector(VT, Add, DAG, Subtarget); 2603 } 2604 2605 // Detect shuffles which can be re-expressed as vector selects; these are 2606 // shuffles in which each element in the destination is taken from an element 2607 // at the corresponding index in either source vectors. 2608 bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) { 2609 int MaskIndex = MaskIdx.value(); 2610 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2611 }); 2612 2613 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2614 2615 SmallVector<SDValue> MaskVals; 2616 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2617 // merged with a second vrgather. 2618 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2619 2620 // By default we preserve the original operand order, and use a mask to 2621 // select LHS as true and RHS as false. However, since RVV vector selects may 2622 // feature splats but only on the LHS, we may choose to invert our mask and 2623 // instead select between RHS and LHS. 2624 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2625 bool InvertMask = IsSelect == SwapOps; 2626 2627 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2628 // half. 2629 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2630 2631 // Now construct the mask that will be used by the vselect or blended 2632 // vrgather operation. For vrgathers, construct the appropriate indices into 2633 // each vector. 2634 for (int MaskIndex : Mask) { 2635 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2636 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2637 if (!IsSelect) { 2638 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2639 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2640 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2641 : DAG.getUNDEF(XLenVT)); 2642 GatherIndicesRHS.push_back( 2643 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2644 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2645 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2646 ++LHSIndexCounts[MaskIndex]; 2647 if (!IsLHSOrUndefIndex) 2648 ++RHSIndexCounts[MaskIndex - NumElts]; 2649 } 2650 } 2651 2652 if (SwapOps) { 2653 std::swap(V1, V2); 2654 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2655 } 2656 2657 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2658 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2659 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2660 2661 if (IsSelect) 2662 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2663 2664 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2665 // On such a large vector we're unable to use i8 as the index type. 2666 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2667 // may involve vector splitting if we're already at LMUL=8, or our 2668 // user-supplied maximum fixed-length LMUL. 2669 return SDValue(); 2670 } 2671 2672 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2673 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2674 MVT IndexVT = VT.changeTypeToInteger(); 2675 // Since we can't introduce illegal index types at this stage, use i16 and 2676 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2677 // than XLenVT. 2678 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2679 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2680 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2681 } 2682 2683 MVT IndexContainerVT = 2684 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2685 2686 SDValue Gather; 2687 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2688 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2689 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2690 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2691 } else { 2692 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2693 // If only one index is used, we can use a "splat" vrgather. 2694 // TODO: We can splat the most-common index and fix-up any stragglers, if 2695 // that's beneficial. 2696 if (LHSIndexCounts.size() == 1) { 2697 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2698 Gather = 2699 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2700 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2701 } else { 2702 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2703 LHSIndices = 2704 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2705 2706 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2707 TrueMask, VL); 2708 } 2709 } 2710 2711 // If a second vector operand is used by this shuffle, blend it in with an 2712 // additional vrgather. 2713 if (!V2.isUndef()) { 2714 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2715 // If only one index is used, we can use a "splat" vrgather. 2716 // TODO: We can splat the most-common index and fix-up any stragglers, if 2717 // that's beneficial. 2718 if (RHSIndexCounts.size() == 1) { 2719 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2720 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2721 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2722 } else { 2723 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2724 RHSIndices = 2725 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2726 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2727 VL); 2728 } 2729 2730 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2731 SelectMask = 2732 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2733 2734 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2735 Gather, VL); 2736 } 2737 2738 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2739 } 2740 2741 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2742 SDLoc DL, SelectionDAG &DAG, 2743 const RISCVSubtarget &Subtarget) { 2744 if (VT.isScalableVector()) 2745 return DAG.getFPExtendOrRound(Op, DL, VT); 2746 assert(VT.isFixedLengthVector() && 2747 "Unexpected value type for RVV FP extend/round lowering"); 2748 SDValue Mask, VL; 2749 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2750 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2751 ? RISCVISD::FP_EXTEND_VL 2752 : RISCVISD::FP_ROUND_VL; 2753 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2754 } 2755 2756 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2757 // the exponent. 2758 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2759 MVT VT = Op.getSimpleValueType(); 2760 unsigned EltSize = VT.getScalarSizeInBits(); 2761 SDValue Src = Op.getOperand(0); 2762 SDLoc DL(Op); 2763 2764 // We need a FP type that can represent the value. 2765 // TODO: Use f16 for i8 when possible? 2766 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2767 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2768 2769 // Legal types should have been checked in the RISCVTargetLowering 2770 // constructor. 2771 // TODO: Splitting may make sense in some cases. 2772 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2773 "Expected legal float type!"); 2774 2775 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2776 // The trailing zero count is equal to log2 of this single bit value. 2777 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2778 SDValue Neg = 2779 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2780 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2781 } 2782 2783 // We have a legal FP type, convert to it. 2784 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2785 // Bitcast to integer and shift the exponent to the LSB. 2786 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2787 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2788 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2789 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2790 DAG.getConstant(ShiftAmt, DL, IntVT)); 2791 // Truncate back to original type to allow vnsrl. 2792 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2793 // The exponent contains log2 of the value in biased form. 2794 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2795 2796 // For trailing zeros, we just need to subtract the bias. 2797 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2798 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2799 DAG.getConstant(ExponentBias, DL, VT)); 2800 2801 // For leading zeros, we need to remove the bias and convert from log2 to 2802 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 2803 unsigned Adjust = ExponentBias + (EltSize - 1); 2804 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 2805 } 2806 2807 // While RVV has alignment restrictions, we should always be able to load as a 2808 // legal equivalently-sized byte-typed vector instead. This method is 2809 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2810 // the load is already correctly-aligned, it returns SDValue(). 2811 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2812 SelectionDAG &DAG) const { 2813 auto *Load = cast<LoadSDNode>(Op); 2814 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2815 2816 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2817 Load->getMemoryVT(), 2818 *Load->getMemOperand())) 2819 return SDValue(); 2820 2821 SDLoc DL(Op); 2822 MVT VT = Op.getSimpleValueType(); 2823 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2824 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2825 "Unexpected unaligned RVV load type"); 2826 MVT NewVT = 2827 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2828 assert(NewVT.isValid() && 2829 "Expecting equally-sized RVV vector types to be legal"); 2830 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2831 Load->getPointerInfo(), Load->getOriginalAlign(), 2832 Load->getMemOperand()->getFlags()); 2833 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2834 } 2835 2836 // While RVV has alignment restrictions, we should always be able to store as a 2837 // legal equivalently-sized byte-typed vector instead. This method is 2838 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2839 // returns SDValue() if the store is already correctly aligned. 2840 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2841 SelectionDAG &DAG) const { 2842 auto *Store = cast<StoreSDNode>(Op); 2843 assert(Store && Store->getValue().getValueType().isVector() && 2844 "Expected vector store"); 2845 2846 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2847 Store->getMemoryVT(), 2848 *Store->getMemOperand())) 2849 return SDValue(); 2850 2851 SDLoc DL(Op); 2852 SDValue StoredVal = Store->getValue(); 2853 MVT VT = StoredVal.getSimpleValueType(); 2854 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2855 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2856 "Unexpected unaligned RVV store type"); 2857 MVT NewVT = 2858 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2859 assert(NewVT.isValid() && 2860 "Expecting equally-sized RVV vector types to be legal"); 2861 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2862 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2863 Store->getPointerInfo(), Store->getOriginalAlign(), 2864 Store->getMemOperand()->getFlags()); 2865 } 2866 2867 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2868 SelectionDAG &DAG) const { 2869 switch (Op.getOpcode()) { 2870 default: 2871 report_fatal_error("unimplemented operand"); 2872 case ISD::GlobalAddress: 2873 return lowerGlobalAddress(Op, DAG); 2874 case ISD::BlockAddress: 2875 return lowerBlockAddress(Op, DAG); 2876 case ISD::ConstantPool: 2877 return lowerConstantPool(Op, DAG); 2878 case ISD::JumpTable: 2879 return lowerJumpTable(Op, DAG); 2880 case ISD::GlobalTLSAddress: 2881 return lowerGlobalTLSAddress(Op, DAG); 2882 case ISD::SELECT: 2883 return lowerSELECT(Op, DAG); 2884 case ISD::BRCOND: 2885 return lowerBRCOND(Op, DAG); 2886 case ISD::VASTART: 2887 return lowerVASTART(Op, DAG); 2888 case ISD::FRAMEADDR: 2889 return lowerFRAMEADDR(Op, DAG); 2890 case ISD::RETURNADDR: 2891 return lowerRETURNADDR(Op, DAG); 2892 case ISD::SHL_PARTS: 2893 return lowerShiftLeftParts(Op, DAG); 2894 case ISD::SRA_PARTS: 2895 return lowerShiftRightParts(Op, DAG, true); 2896 case ISD::SRL_PARTS: 2897 return lowerShiftRightParts(Op, DAG, false); 2898 case ISD::BITCAST: { 2899 SDLoc DL(Op); 2900 EVT VT = Op.getValueType(); 2901 SDValue Op0 = Op.getOperand(0); 2902 EVT Op0VT = Op0.getValueType(); 2903 MVT XLenVT = Subtarget.getXLenVT(); 2904 if (VT.isFixedLengthVector()) { 2905 // We can handle fixed length vector bitcasts with a simple replacement 2906 // in isel. 2907 if (Op0VT.isFixedLengthVector()) 2908 return Op; 2909 // When bitcasting from scalar to fixed-length vector, insert the scalar 2910 // into a one-element vector of the result type, and perform a vector 2911 // bitcast. 2912 if (!Op0VT.isVector()) { 2913 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2914 if (!isTypeLegal(BVT)) 2915 return SDValue(); 2916 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2917 DAG.getUNDEF(BVT), Op0, 2918 DAG.getConstant(0, DL, XLenVT))); 2919 } 2920 return SDValue(); 2921 } 2922 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2923 // thus: bitcast the vector to a one-element vector type whose element type 2924 // is the same as the result type, and extract the first element. 2925 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2926 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 2927 if (!isTypeLegal(BVT)) 2928 return SDValue(); 2929 SDValue BVec = DAG.getBitcast(BVT, Op0); 2930 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2931 DAG.getConstant(0, DL, XLenVT)); 2932 } 2933 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2934 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2935 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2936 return FPConv; 2937 } 2938 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2939 Subtarget.hasStdExtF()) { 2940 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2941 SDValue FPConv = 2942 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2943 return FPConv; 2944 } 2945 return SDValue(); 2946 } 2947 case ISD::INTRINSIC_WO_CHAIN: 2948 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2949 case ISD::INTRINSIC_W_CHAIN: 2950 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2951 case ISD::INTRINSIC_VOID: 2952 return LowerINTRINSIC_VOID(Op, DAG); 2953 case ISD::BSWAP: 2954 case ISD::BITREVERSE: { 2955 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2956 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2957 MVT VT = Op.getSimpleValueType(); 2958 SDLoc DL(Op); 2959 // Start with the maximum immediate value which is the bitwidth - 1. 2960 unsigned Imm = VT.getSizeInBits() - 1; 2961 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2962 if (Op.getOpcode() == ISD::BSWAP) 2963 Imm &= ~0x7U; 2964 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2965 DAG.getConstant(Imm, DL, VT)); 2966 } 2967 case ISD::FSHL: 2968 case ISD::FSHR: { 2969 MVT VT = Op.getSimpleValueType(); 2970 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2971 SDLoc DL(Op); 2972 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2973 // use log(XLen) bits. Mask the shift amount accordingly to prevent 2974 // accidentally setting the extra bit. 2975 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2976 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2977 DAG.getConstant(ShAmtWidth, DL, VT)); 2978 // fshl and fshr concatenate their operands in the same order. fsr and fsl 2979 // instruction use different orders. fshl will return its first operand for 2980 // shift of zero, fshr will return its second operand. fsl and fsr both 2981 // return rs1 so the ISD nodes need to have different operand orders. 2982 // Shift amount is in rs2. 2983 SDValue Op0 = Op.getOperand(0); 2984 SDValue Op1 = Op.getOperand(1); 2985 unsigned Opc = RISCVISD::FSL; 2986 if (Op.getOpcode() == ISD::FSHR) { 2987 std::swap(Op0, Op1); 2988 Opc = RISCVISD::FSR; 2989 } 2990 return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt); 2991 } 2992 case ISD::TRUNCATE: { 2993 SDLoc DL(Op); 2994 MVT VT = Op.getSimpleValueType(); 2995 // Only custom-lower vector truncates 2996 if (!VT.isVector()) 2997 return Op; 2998 2999 // Truncates to mask types are handled differently 3000 if (VT.getVectorElementType() == MVT::i1) 3001 return lowerVectorMaskTrunc(Op, DAG); 3002 3003 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 3004 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 3005 // truncate by one power of two at a time. 3006 MVT DstEltVT = VT.getVectorElementType(); 3007 3008 SDValue Src = Op.getOperand(0); 3009 MVT SrcVT = Src.getSimpleValueType(); 3010 MVT SrcEltVT = SrcVT.getVectorElementType(); 3011 3012 assert(DstEltVT.bitsLT(SrcEltVT) && 3013 isPowerOf2_64(DstEltVT.getSizeInBits()) && 3014 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 3015 "Unexpected vector truncate lowering"); 3016 3017 MVT ContainerVT = SrcVT; 3018 if (SrcVT.isFixedLengthVector()) { 3019 ContainerVT = getContainerForFixedLengthVector(SrcVT); 3020 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3021 } 3022 3023 SDValue Result = Src; 3024 SDValue Mask, VL; 3025 std::tie(Mask, VL) = 3026 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 3027 LLVMContext &Context = *DAG.getContext(); 3028 const ElementCount Count = ContainerVT.getVectorElementCount(); 3029 do { 3030 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 3031 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 3032 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 3033 Mask, VL); 3034 } while (SrcEltVT != DstEltVT); 3035 3036 if (SrcVT.isFixedLengthVector()) 3037 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 3038 3039 return Result; 3040 } 3041 case ISD::ANY_EXTEND: 3042 case ISD::ZERO_EXTEND: 3043 if (Op.getOperand(0).getValueType().isVector() && 3044 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3045 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 3046 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 3047 case ISD::SIGN_EXTEND: 3048 if (Op.getOperand(0).getValueType().isVector() && 3049 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3050 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 3051 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 3052 case ISD::SPLAT_VECTOR_PARTS: 3053 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 3054 case ISD::INSERT_VECTOR_ELT: 3055 return lowerINSERT_VECTOR_ELT(Op, DAG); 3056 case ISD::EXTRACT_VECTOR_ELT: 3057 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 3058 case ISD::VSCALE: { 3059 MVT VT = Op.getSimpleValueType(); 3060 SDLoc DL(Op); 3061 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 3062 // We define our scalable vector types for lmul=1 to use a 64 bit known 3063 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 3064 // vscale as VLENB / 8. 3065 static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); 3066 if (isa<ConstantSDNode>(Op.getOperand(0))) { 3067 // We assume VLENB is a multiple of 8. We manually choose the best shift 3068 // here because SimplifyDemandedBits isn't always able to simplify it. 3069 uint64_t Val = Op.getConstantOperandVal(0); 3070 if (isPowerOf2_64(Val)) { 3071 uint64_t Log2 = Log2_64(Val); 3072 if (Log2 < 3) 3073 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 3074 DAG.getConstant(3 - Log2, DL, VT)); 3075 if (Log2 > 3) 3076 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 3077 DAG.getConstant(Log2 - 3, DL, VT)); 3078 return VLENB; 3079 } 3080 // If the multiplier is a multiple of 8, scale it down to avoid needing 3081 // to shift the VLENB value. 3082 if ((Val % 8) == 0) 3083 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 3084 DAG.getConstant(Val / 8, DL, VT)); 3085 } 3086 3087 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 3088 DAG.getConstant(3, DL, VT)); 3089 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 3090 } 3091 case ISD::FPOWI: { 3092 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 3093 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 3094 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 3095 Op.getOperand(1).getValueType() == MVT::i32) { 3096 SDLoc DL(Op); 3097 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 3098 SDValue Powi = 3099 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 3100 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 3101 DAG.getIntPtrConstant(0, DL)); 3102 } 3103 return SDValue(); 3104 } 3105 case ISD::FP_EXTEND: { 3106 // RVV can only do fp_extend to types double the size as the source. We 3107 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 3108 // via f32. 3109 SDLoc DL(Op); 3110 MVT VT = Op.getSimpleValueType(); 3111 SDValue Src = Op.getOperand(0); 3112 MVT SrcVT = Src.getSimpleValueType(); 3113 3114 // Prepare any fixed-length vector operands. 3115 MVT ContainerVT = VT; 3116 if (SrcVT.isFixedLengthVector()) { 3117 ContainerVT = getContainerForFixedLengthVector(VT); 3118 MVT SrcContainerVT = 3119 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 3120 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3121 } 3122 3123 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 3124 SrcVT.getVectorElementType() != MVT::f16) { 3125 // For scalable vectors, we only need to close the gap between 3126 // vXf16->vXf64. 3127 if (!VT.isFixedLengthVector()) 3128 return Op; 3129 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 3130 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3131 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3132 } 3133 3134 MVT InterVT = VT.changeVectorElementType(MVT::f32); 3135 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 3136 SDValue IntermediateExtend = getRVVFPExtendOrRound( 3137 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 3138 3139 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 3140 DL, DAG, Subtarget); 3141 if (VT.isFixedLengthVector()) 3142 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 3143 return Extend; 3144 } 3145 case ISD::FP_ROUND: { 3146 // RVV can only do fp_round to types half the size as the source. We 3147 // custom-lower f64->f16 rounds via RVV's round-to-odd float 3148 // conversion instruction. 3149 SDLoc DL(Op); 3150 MVT VT = Op.getSimpleValueType(); 3151 SDValue Src = Op.getOperand(0); 3152 MVT SrcVT = Src.getSimpleValueType(); 3153 3154 // Prepare any fixed-length vector operands. 3155 MVT ContainerVT = VT; 3156 if (VT.isFixedLengthVector()) { 3157 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3158 ContainerVT = 3159 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3160 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3161 } 3162 3163 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 3164 SrcVT.getVectorElementType() != MVT::f64) { 3165 // For scalable vectors, we only need to close the gap between 3166 // vXf64<->vXf16. 3167 if (!VT.isFixedLengthVector()) 3168 return Op; 3169 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 3170 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3171 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3172 } 3173 3174 SDValue Mask, VL; 3175 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3176 3177 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 3178 SDValue IntermediateRound = 3179 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 3180 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 3181 DL, DAG, Subtarget); 3182 3183 if (VT.isFixedLengthVector()) 3184 return convertFromScalableVector(VT, Round, DAG, Subtarget); 3185 return Round; 3186 } 3187 case ISD::FP_TO_SINT: 3188 case ISD::FP_TO_UINT: 3189 case ISD::SINT_TO_FP: 3190 case ISD::UINT_TO_FP: { 3191 // RVV can only do fp<->int conversions to types half/double the size as 3192 // the source. We custom-lower any conversions that do two hops into 3193 // sequences. 3194 MVT VT = Op.getSimpleValueType(); 3195 if (!VT.isVector()) 3196 return Op; 3197 SDLoc DL(Op); 3198 SDValue Src = Op.getOperand(0); 3199 MVT EltVT = VT.getVectorElementType(); 3200 MVT SrcVT = Src.getSimpleValueType(); 3201 MVT SrcEltVT = SrcVT.getVectorElementType(); 3202 unsigned EltSize = EltVT.getSizeInBits(); 3203 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 3204 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 3205 "Unexpected vector element types"); 3206 3207 bool IsInt2FP = SrcEltVT.isInteger(); 3208 // Widening conversions 3209 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 3210 if (IsInt2FP) { 3211 // Do a regular integer sign/zero extension then convert to float. 3212 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 3213 VT.getVectorElementCount()); 3214 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 3215 ? ISD::ZERO_EXTEND 3216 : ISD::SIGN_EXTEND; 3217 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 3218 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 3219 } 3220 // FP2Int 3221 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 3222 // Do one doubling fp_extend then complete the operation by converting 3223 // to int. 3224 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3225 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 3226 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 3227 } 3228 3229 // Narrowing conversions 3230 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 3231 if (IsInt2FP) { 3232 // One narrowing int_to_fp, then an fp_round. 3233 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 3234 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3235 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 3236 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 3237 } 3238 // FP2Int 3239 // One narrowing fp_to_int, then truncate the integer. If the float isn't 3240 // representable by the integer, the result is poison. 3241 MVT IVecVT = 3242 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 3243 VT.getVectorElementCount()); 3244 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 3245 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 3246 } 3247 3248 // Scalable vectors can exit here. Patterns will handle equally-sized 3249 // conversions halving/doubling ones. 3250 if (!VT.isFixedLengthVector()) 3251 return Op; 3252 3253 // For fixed-length vectors we lower to a custom "VL" node. 3254 unsigned RVVOpc = 0; 3255 switch (Op.getOpcode()) { 3256 default: 3257 llvm_unreachable("Impossible opcode"); 3258 case ISD::FP_TO_SINT: 3259 RVVOpc = RISCVISD::FP_TO_SINT_VL; 3260 break; 3261 case ISD::FP_TO_UINT: 3262 RVVOpc = RISCVISD::FP_TO_UINT_VL; 3263 break; 3264 case ISD::SINT_TO_FP: 3265 RVVOpc = RISCVISD::SINT_TO_FP_VL; 3266 break; 3267 case ISD::UINT_TO_FP: 3268 RVVOpc = RISCVISD::UINT_TO_FP_VL; 3269 break; 3270 } 3271 3272 MVT ContainerVT, SrcContainerVT; 3273 // Derive the reference container type from the larger vector type. 3274 if (SrcEltSize > EltSize) { 3275 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3276 ContainerVT = 3277 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3278 } else { 3279 ContainerVT = getContainerForFixedLengthVector(VT); 3280 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 3281 } 3282 3283 SDValue Mask, VL; 3284 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3285 3286 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3287 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 3288 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3289 } 3290 case ISD::FP_TO_SINT_SAT: 3291 case ISD::FP_TO_UINT_SAT: 3292 return lowerFP_TO_INT_SAT(Op, DAG, Subtarget); 3293 case ISD::FTRUNC: 3294 case ISD::FCEIL: 3295 case ISD::FFLOOR: 3296 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 3297 case ISD::VECREDUCE_ADD: 3298 case ISD::VECREDUCE_UMAX: 3299 case ISD::VECREDUCE_SMAX: 3300 case ISD::VECREDUCE_UMIN: 3301 case ISD::VECREDUCE_SMIN: 3302 return lowerVECREDUCE(Op, DAG); 3303 case ISD::VECREDUCE_AND: 3304 case ISD::VECREDUCE_OR: 3305 case ISD::VECREDUCE_XOR: 3306 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3307 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 3308 return lowerVECREDUCE(Op, DAG); 3309 case ISD::VECREDUCE_FADD: 3310 case ISD::VECREDUCE_SEQ_FADD: 3311 case ISD::VECREDUCE_FMIN: 3312 case ISD::VECREDUCE_FMAX: 3313 return lowerFPVECREDUCE(Op, DAG); 3314 case ISD::VP_REDUCE_ADD: 3315 case ISD::VP_REDUCE_UMAX: 3316 case ISD::VP_REDUCE_SMAX: 3317 case ISD::VP_REDUCE_UMIN: 3318 case ISD::VP_REDUCE_SMIN: 3319 case ISD::VP_REDUCE_FADD: 3320 case ISD::VP_REDUCE_SEQ_FADD: 3321 case ISD::VP_REDUCE_FMIN: 3322 case ISD::VP_REDUCE_FMAX: 3323 return lowerVPREDUCE(Op, DAG); 3324 case ISD::VP_REDUCE_AND: 3325 case ISD::VP_REDUCE_OR: 3326 case ISD::VP_REDUCE_XOR: 3327 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 3328 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 3329 return lowerVPREDUCE(Op, DAG); 3330 case ISD::INSERT_SUBVECTOR: 3331 return lowerINSERT_SUBVECTOR(Op, DAG); 3332 case ISD::EXTRACT_SUBVECTOR: 3333 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3334 case ISD::STEP_VECTOR: 3335 return lowerSTEP_VECTOR(Op, DAG); 3336 case ISD::VECTOR_REVERSE: 3337 return lowerVECTOR_REVERSE(Op, DAG); 3338 case ISD::BUILD_VECTOR: 3339 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3340 case ISD::SPLAT_VECTOR: 3341 if (Op.getValueType().getVectorElementType() == MVT::i1) 3342 return lowerVectorMaskSplat(Op, DAG); 3343 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 3344 case ISD::VECTOR_SHUFFLE: 3345 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3346 case ISD::CONCAT_VECTORS: { 3347 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3348 // better than going through the stack, as the default expansion does. 3349 SDLoc DL(Op); 3350 MVT VT = Op.getSimpleValueType(); 3351 unsigned NumOpElts = 3352 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3353 SDValue Vec = DAG.getUNDEF(VT); 3354 for (const auto &OpIdx : enumerate(Op->ops())) { 3355 SDValue SubVec = OpIdx.value(); 3356 // Don't insert undef subvectors. 3357 if (SubVec.isUndef()) 3358 continue; 3359 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec, 3360 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3361 } 3362 return Vec; 3363 } 3364 case ISD::LOAD: 3365 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3366 return V; 3367 if (Op.getValueType().isFixedLengthVector()) 3368 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3369 return Op; 3370 case ISD::STORE: 3371 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3372 return V; 3373 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3374 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3375 return Op; 3376 case ISD::MLOAD: 3377 case ISD::VP_LOAD: 3378 return lowerMaskedLoad(Op, DAG); 3379 case ISD::MSTORE: 3380 case ISD::VP_STORE: 3381 return lowerMaskedStore(Op, DAG); 3382 case ISD::SETCC: 3383 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3384 case ISD::ADD: 3385 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3386 case ISD::SUB: 3387 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3388 case ISD::MUL: 3389 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3390 case ISD::MULHS: 3391 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3392 case ISD::MULHU: 3393 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3394 case ISD::AND: 3395 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3396 RISCVISD::AND_VL); 3397 case ISD::OR: 3398 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3399 RISCVISD::OR_VL); 3400 case ISD::XOR: 3401 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3402 RISCVISD::XOR_VL); 3403 case ISD::SDIV: 3404 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3405 case ISD::SREM: 3406 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3407 case ISD::UDIV: 3408 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3409 case ISD::UREM: 3410 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3411 case ISD::SHL: 3412 case ISD::SRA: 3413 case ISD::SRL: 3414 if (Op.getSimpleValueType().isFixedLengthVector()) 3415 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3416 // This can be called for an i32 shift amount that needs to be promoted. 3417 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3418 "Unexpected custom legalisation"); 3419 return SDValue(); 3420 case ISD::SADDSAT: 3421 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3422 case ISD::UADDSAT: 3423 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3424 case ISD::SSUBSAT: 3425 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3426 case ISD::USUBSAT: 3427 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3428 case ISD::FADD: 3429 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3430 case ISD::FSUB: 3431 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3432 case ISD::FMUL: 3433 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3434 case ISD::FDIV: 3435 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3436 case ISD::FNEG: 3437 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3438 case ISD::FABS: 3439 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3440 case ISD::FSQRT: 3441 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3442 case ISD::FMA: 3443 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 3444 case ISD::SMIN: 3445 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3446 case ISD::SMAX: 3447 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3448 case ISD::UMIN: 3449 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3450 case ISD::UMAX: 3451 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3452 case ISD::FMINNUM: 3453 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3454 case ISD::FMAXNUM: 3455 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3456 case ISD::ABS: 3457 return lowerABS(Op, DAG); 3458 case ISD::CTLZ_ZERO_UNDEF: 3459 case ISD::CTTZ_ZERO_UNDEF: 3460 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3461 case ISD::VSELECT: 3462 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3463 case ISD::FCOPYSIGN: 3464 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3465 case ISD::MGATHER: 3466 case ISD::VP_GATHER: 3467 return lowerMaskedGather(Op, DAG); 3468 case ISD::MSCATTER: 3469 case ISD::VP_SCATTER: 3470 return lowerMaskedScatter(Op, DAG); 3471 case ISD::FLT_ROUNDS_: 3472 return lowerGET_ROUNDING(Op, DAG); 3473 case ISD::SET_ROUNDING: 3474 return lowerSET_ROUNDING(Op, DAG); 3475 case ISD::VP_SELECT: 3476 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3477 case ISD::VP_MERGE: 3478 return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL); 3479 case ISD::VP_ADD: 3480 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3481 case ISD::VP_SUB: 3482 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3483 case ISD::VP_MUL: 3484 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3485 case ISD::VP_SDIV: 3486 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3487 case ISD::VP_UDIV: 3488 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3489 case ISD::VP_SREM: 3490 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3491 case ISD::VP_UREM: 3492 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3493 case ISD::VP_AND: 3494 return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL); 3495 case ISD::VP_OR: 3496 return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL); 3497 case ISD::VP_XOR: 3498 return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL); 3499 case ISD::VP_ASHR: 3500 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3501 case ISD::VP_LSHR: 3502 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3503 case ISD::VP_SHL: 3504 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3505 case ISD::VP_FADD: 3506 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3507 case ISD::VP_FSUB: 3508 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3509 case ISD::VP_FMUL: 3510 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3511 case ISD::VP_FDIV: 3512 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3513 } 3514 } 3515 3516 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3517 SelectionDAG &DAG, unsigned Flags) { 3518 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3519 } 3520 3521 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3522 SelectionDAG &DAG, unsigned Flags) { 3523 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3524 Flags); 3525 } 3526 3527 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3528 SelectionDAG &DAG, unsigned Flags) { 3529 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3530 N->getOffset(), Flags); 3531 } 3532 3533 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3534 SelectionDAG &DAG, unsigned Flags) { 3535 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3536 } 3537 3538 template <class NodeTy> 3539 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3540 bool IsLocal) const { 3541 SDLoc DL(N); 3542 EVT Ty = getPointerTy(DAG.getDataLayout()); 3543 3544 if (isPositionIndependent()) { 3545 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3546 if (IsLocal) 3547 // Use PC-relative addressing to access the symbol. This generates the 3548 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3549 // %pcrel_lo(auipc)). 3550 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3551 3552 // Use PC-relative addressing to access the GOT for this symbol, then load 3553 // the address from the GOT. This generates the pattern (PseudoLA sym), 3554 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3555 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3556 } 3557 3558 switch (getTargetMachine().getCodeModel()) { 3559 default: 3560 report_fatal_error("Unsupported code model for lowering"); 3561 case CodeModel::Small: { 3562 // Generate a sequence for accessing addresses within the first 2 GiB of 3563 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3564 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3565 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3566 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3567 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3568 } 3569 case CodeModel::Medium: { 3570 // Generate a sequence for accessing addresses within any 2GiB range within 3571 // the address space. This generates the pattern (PseudoLLA sym), which 3572 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3573 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3574 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3575 } 3576 } 3577 } 3578 3579 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3580 SelectionDAG &DAG) const { 3581 SDLoc DL(Op); 3582 EVT Ty = Op.getValueType(); 3583 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3584 int64_t Offset = N->getOffset(); 3585 MVT XLenVT = Subtarget.getXLenVT(); 3586 3587 const GlobalValue *GV = N->getGlobal(); 3588 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3589 SDValue Addr = getAddr(N, DAG, IsLocal); 3590 3591 // In order to maximise the opportunity for common subexpression elimination, 3592 // emit a separate ADD node for the global address offset instead of folding 3593 // it in the global address node. Later peephole optimisations may choose to 3594 // fold it back in when profitable. 3595 if (Offset != 0) 3596 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3597 DAG.getConstant(Offset, DL, XLenVT)); 3598 return Addr; 3599 } 3600 3601 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3602 SelectionDAG &DAG) const { 3603 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3604 3605 return getAddr(N, DAG); 3606 } 3607 3608 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3609 SelectionDAG &DAG) const { 3610 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3611 3612 return getAddr(N, DAG); 3613 } 3614 3615 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3616 SelectionDAG &DAG) const { 3617 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3618 3619 return getAddr(N, DAG); 3620 } 3621 3622 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3623 SelectionDAG &DAG, 3624 bool UseGOT) const { 3625 SDLoc DL(N); 3626 EVT Ty = getPointerTy(DAG.getDataLayout()); 3627 const GlobalValue *GV = N->getGlobal(); 3628 MVT XLenVT = Subtarget.getXLenVT(); 3629 3630 if (UseGOT) { 3631 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3632 // load the address from the GOT and add the thread pointer. This generates 3633 // the pattern (PseudoLA_TLS_IE sym), which expands to 3634 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3635 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3636 SDValue Load = 3637 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3638 3639 // Add the thread pointer. 3640 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3641 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3642 } 3643 3644 // Generate a sequence for accessing the address relative to the thread 3645 // pointer, with the appropriate adjustment for the thread pointer offset. 3646 // This generates the pattern 3647 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3648 SDValue AddrHi = 3649 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3650 SDValue AddrAdd = 3651 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3652 SDValue AddrLo = 3653 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3654 3655 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3656 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3657 SDValue MNAdd = SDValue( 3658 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3659 0); 3660 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3661 } 3662 3663 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3664 SelectionDAG &DAG) const { 3665 SDLoc DL(N); 3666 EVT Ty = getPointerTy(DAG.getDataLayout()); 3667 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3668 const GlobalValue *GV = N->getGlobal(); 3669 3670 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3671 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3672 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3673 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3674 SDValue Load = 3675 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3676 3677 // Prepare argument list to generate call. 3678 ArgListTy Args; 3679 ArgListEntry Entry; 3680 Entry.Node = Load; 3681 Entry.Ty = CallTy; 3682 Args.push_back(Entry); 3683 3684 // Setup call to __tls_get_addr. 3685 TargetLowering::CallLoweringInfo CLI(DAG); 3686 CLI.setDebugLoc(DL) 3687 .setChain(DAG.getEntryNode()) 3688 .setLibCallee(CallingConv::C, CallTy, 3689 DAG.getExternalSymbol("__tls_get_addr", Ty), 3690 std::move(Args)); 3691 3692 return LowerCallTo(CLI).first; 3693 } 3694 3695 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3696 SelectionDAG &DAG) const { 3697 SDLoc DL(Op); 3698 EVT Ty = Op.getValueType(); 3699 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3700 int64_t Offset = N->getOffset(); 3701 MVT XLenVT = Subtarget.getXLenVT(); 3702 3703 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3704 3705 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3706 CallingConv::GHC) 3707 report_fatal_error("In GHC calling convention TLS is not supported"); 3708 3709 SDValue Addr; 3710 switch (Model) { 3711 case TLSModel::LocalExec: 3712 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3713 break; 3714 case TLSModel::InitialExec: 3715 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3716 break; 3717 case TLSModel::LocalDynamic: 3718 case TLSModel::GeneralDynamic: 3719 Addr = getDynamicTLSAddr(N, DAG); 3720 break; 3721 } 3722 3723 // In order to maximise the opportunity for common subexpression elimination, 3724 // emit a separate ADD node for the global address offset instead of folding 3725 // it in the global address node. Later peephole optimisations may choose to 3726 // fold it back in when profitable. 3727 if (Offset != 0) 3728 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3729 DAG.getConstant(Offset, DL, XLenVT)); 3730 return Addr; 3731 } 3732 3733 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3734 SDValue CondV = Op.getOperand(0); 3735 SDValue TrueV = Op.getOperand(1); 3736 SDValue FalseV = Op.getOperand(2); 3737 SDLoc DL(Op); 3738 MVT VT = Op.getSimpleValueType(); 3739 MVT XLenVT = Subtarget.getXLenVT(); 3740 3741 // Lower vector SELECTs to VSELECTs by splatting the condition. 3742 if (VT.isVector()) { 3743 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3744 SDValue CondSplat = VT.isScalableVector() 3745 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3746 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3747 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3748 } 3749 3750 // If the result type is XLenVT and CondV is the output of a SETCC node 3751 // which also operated on XLenVT inputs, then merge the SETCC node into the 3752 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3753 // compare+branch instructions. i.e.: 3754 // (select (setcc lhs, rhs, cc), truev, falsev) 3755 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3756 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3757 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3758 SDValue LHS = CondV.getOperand(0); 3759 SDValue RHS = CondV.getOperand(1); 3760 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3761 ISD::CondCode CCVal = CC->get(); 3762 3763 // Special case for a select of 2 constants that have a diffence of 1. 3764 // Normally this is done by DAGCombine, but if the select is introduced by 3765 // type legalization or op legalization, we miss it. Restricting to SETLT 3766 // case for now because that is what signed saturating add/sub need. 3767 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3768 // but we would probably want to swap the true/false values if the condition 3769 // is SETGE/SETLE to avoid an XORI. 3770 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3771 CCVal == ISD::SETLT) { 3772 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3773 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3774 if (TrueVal - 1 == FalseVal) 3775 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3776 if (TrueVal + 1 == FalseVal) 3777 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3778 } 3779 3780 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3781 3782 SDValue TargetCC = DAG.getCondCode(CCVal); 3783 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3784 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3785 } 3786 3787 // Otherwise: 3788 // (select condv, truev, falsev) 3789 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3790 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3791 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3792 3793 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3794 3795 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3796 } 3797 3798 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3799 SDValue CondV = Op.getOperand(1); 3800 SDLoc DL(Op); 3801 MVT XLenVT = Subtarget.getXLenVT(); 3802 3803 if (CondV.getOpcode() == ISD::SETCC && 3804 CondV.getOperand(0).getValueType() == XLenVT) { 3805 SDValue LHS = CondV.getOperand(0); 3806 SDValue RHS = CondV.getOperand(1); 3807 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3808 3809 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3810 3811 SDValue TargetCC = DAG.getCondCode(CCVal); 3812 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3813 LHS, RHS, TargetCC, Op.getOperand(2)); 3814 } 3815 3816 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3817 CondV, DAG.getConstant(0, DL, XLenVT), 3818 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3819 } 3820 3821 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3822 MachineFunction &MF = DAG.getMachineFunction(); 3823 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3824 3825 SDLoc DL(Op); 3826 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3827 getPointerTy(MF.getDataLayout())); 3828 3829 // vastart just stores the address of the VarArgsFrameIndex slot into the 3830 // memory location argument. 3831 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3832 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3833 MachinePointerInfo(SV)); 3834 } 3835 3836 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3837 SelectionDAG &DAG) const { 3838 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3839 MachineFunction &MF = DAG.getMachineFunction(); 3840 MachineFrameInfo &MFI = MF.getFrameInfo(); 3841 MFI.setFrameAddressIsTaken(true); 3842 Register FrameReg = RI.getFrameRegister(MF); 3843 int XLenInBytes = Subtarget.getXLen() / 8; 3844 3845 EVT VT = Op.getValueType(); 3846 SDLoc DL(Op); 3847 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3848 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3849 while (Depth--) { 3850 int Offset = -(XLenInBytes * 2); 3851 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3852 DAG.getIntPtrConstant(Offset, DL)); 3853 FrameAddr = 3854 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3855 } 3856 return FrameAddr; 3857 } 3858 3859 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3860 SelectionDAG &DAG) const { 3861 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3862 MachineFunction &MF = DAG.getMachineFunction(); 3863 MachineFrameInfo &MFI = MF.getFrameInfo(); 3864 MFI.setReturnAddressIsTaken(true); 3865 MVT XLenVT = Subtarget.getXLenVT(); 3866 int XLenInBytes = Subtarget.getXLen() / 8; 3867 3868 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3869 return SDValue(); 3870 3871 EVT VT = Op.getValueType(); 3872 SDLoc DL(Op); 3873 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3874 if (Depth) { 3875 int Off = -XLenInBytes; 3876 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3877 SDValue Offset = DAG.getConstant(Off, DL, VT); 3878 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3879 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3880 MachinePointerInfo()); 3881 } 3882 3883 // Return the value of the return address register, marking it an implicit 3884 // live-in. 3885 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3886 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3887 } 3888 3889 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3890 SelectionDAG &DAG) const { 3891 SDLoc DL(Op); 3892 SDValue Lo = Op.getOperand(0); 3893 SDValue Hi = Op.getOperand(1); 3894 SDValue Shamt = Op.getOperand(2); 3895 EVT VT = Lo.getValueType(); 3896 3897 // if Shamt-XLEN < 0: // Shamt < XLEN 3898 // Lo = Lo << Shamt 3899 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 3900 // else: 3901 // Lo = 0 3902 // Hi = Lo << (Shamt-XLEN) 3903 3904 SDValue Zero = DAG.getConstant(0, DL, VT); 3905 SDValue One = DAG.getConstant(1, DL, VT); 3906 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3907 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3908 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3909 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3910 3911 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3912 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3913 SDValue ShiftRightLo = 3914 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3915 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3916 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3917 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3918 3919 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3920 3921 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3922 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3923 3924 SDValue Parts[2] = {Lo, Hi}; 3925 return DAG.getMergeValues(Parts, DL); 3926 } 3927 3928 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3929 bool IsSRA) const { 3930 SDLoc DL(Op); 3931 SDValue Lo = Op.getOperand(0); 3932 SDValue Hi = Op.getOperand(1); 3933 SDValue Shamt = Op.getOperand(2); 3934 EVT VT = Lo.getValueType(); 3935 3936 // SRA expansion: 3937 // if Shamt-XLEN < 0: // Shamt < XLEN 3938 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3939 // Hi = Hi >>s Shamt 3940 // else: 3941 // Lo = Hi >>s (Shamt-XLEN); 3942 // Hi = Hi >>s (XLEN-1) 3943 // 3944 // SRL expansion: 3945 // if Shamt-XLEN < 0: // Shamt < XLEN 3946 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3947 // Hi = Hi >>u Shamt 3948 // else: 3949 // Lo = Hi >>u (Shamt-XLEN); 3950 // Hi = 0; 3951 3952 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3953 3954 SDValue Zero = DAG.getConstant(0, DL, VT); 3955 SDValue One = DAG.getConstant(1, DL, VT); 3956 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3957 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3958 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3959 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3960 3961 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3962 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3963 SDValue ShiftLeftHi = 3964 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 3965 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3966 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3967 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 3968 SDValue HiFalse = 3969 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 3970 3971 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3972 3973 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3974 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3975 3976 SDValue Parts[2] = {Lo, Hi}; 3977 return DAG.getMergeValues(Parts, DL); 3978 } 3979 3980 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 3981 // legal equivalently-sized i8 type, so we can use that as a go-between. 3982 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3983 SelectionDAG &DAG) const { 3984 SDLoc DL(Op); 3985 MVT VT = Op.getSimpleValueType(); 3986 SDValue SplatVal = Op.getOperand(0); 3987 // All-zeros or all-ones splats are handled specially. 3988 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 3989 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3990 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 3991 } 3992 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 3993 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3994 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3995 } 3996 MVT XLenVT = Subtarget.getXLenVT(); 3997 assert(SplatVal.getValueType() == XLenVT && 3998 "Unexpected type for i1 splat value"); 3999 MVT InterVT = VT.changeVectorElementType(MVT::i8); 4000 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 4001 DAG.getConstant(1, DL, XLenVT)); 4002 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 4003 SDValue Zero = DAG.getConstant(0, DL, InterVT); 4004 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 4005 } 4006 4007 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 4008 // illegal (currently only vXi64 RV32). 4009 // FIXME: We could also catch non-constant sign-extended i32 values and lower 4010 // them to SPLAT_VECTOR_I64 4011 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 4012 SelectionDAG &DAG) const { 4013 SDLoc DL(Op); 4014 MVT VecVT = Op.getSimpleValueType(); 4015 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 4016 "Unexpected SPLAT_VECTOR_PARTS lowering"); 4017 4018 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 4019 SDValue Lo = Op.getOperand(0); 4020 SDValue Hi = Op.getOperand(1); 4021 4022 if (VecVT.isFixedLengthVector()) { 4023 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4024 SDLoc DL(Op); 4025 SDValue Mask, VL; 4026 std::tie(Mask, VL) = 4027 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4028 4029 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 4030 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 4031 } 4032 4033 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 4034 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 4035 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 4036 // If Hi constant is all the same sign bit as Lo, lower this as a custom 4037 // node in order to try and match RVV vector/scalar instructions. 4038 if ((LoC >> 31) == HiC) 4039 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 4040 } 4041 4042 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 4043 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 4044 isa<ConstantSDNode>(Hi.getOperand(1)) && 4045 Hi.getConstantOperandVal(1) == 31) 4046 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 4047 4048 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 4049 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 4050 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64)); 4051 } 4052 4053 // Custom-lower extensions from mask vectors by using a vselect either with 1 4054 // for zero/any-extension or -1 for sign-extension: 4055 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 4056 // Note that any-extension is lowered identically to zero-extension. 4057 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 4058 int64_t ExtTrueVal) const { 4059 SDLoc DL(Op); 4060 MVT VecVT = Op.getSimpleValueType(); 4061 SDValue Src = Op.getOperand(0); 4062 // Only custom-lower extensions from mask types 4063 assert(Src.getValueType().isVector() && 4064 Src.getValueType().getVectorElementType() == MVT::i1); 4065 4066 MVT XLenVT = Subtarget.getXLenVT(); 4067 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 4068 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 4069 4070 if (VecVT.isScalableVector()) { 4071 // Be careful not to introduce illegal scalar types at this stage, and be 4072 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 4073 // illegal and must be expanded. Since we know that the constants are 4074 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 4075 bool IsRV32E64 = 4076 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 4077 4078 if (!IsRV32E64) { 4079 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 4080 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 4081 } else { 4082 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 4083 SplatTrueVal = 4084 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 4085 } 4086 4087 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 4088 } 4089 4090 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4091 MVT I1ContainerVT = 4092 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4093 4094 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 4095 4096 SDValue Mask, VL; 4097 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4098 4099 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 4100 SplatTrueVal = 4101 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 4102 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 4103 SplatTrueVal, SplatZero, VL); 4104 4105 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 4106 } 4107 4108 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 4109 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 4110 MVT ExtVT = Op.getSimpleValueType(); 4111 // Only custom-lower extensions from fixed-length vector types. 4112 if (!ExtVT.isFixedLengthVector()) 4113 return Op; 4114 MVT VT = Op.getOperand(0).getSimpleValueType(); 4115 // Grab the canonical container type for the extended type. Infer the smaller 4116 // type from that to ensure the same number of vector elements, as we know 4117 // the LMUL will be sufficient to hold the smaller type. 4118 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 4119 // Get the extended container type manually to ensure the same number of 4120 // vector elements between source and dest. 4121 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4122 ContainerExtVT.getVectorElementCount()); 4123 4124 SDValue Op1 = 4125 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4126 4127 SDLoc DL(Op); 4128 SDValue Mask, VL; 4129 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4130 4131 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 4132 4133 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 4134 } 4135 4136 // Custom-lower truncations from vectors to mask vectors by using a mask and a 4137 // setcc operation: 4138 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 4139 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 4140 SelectionDAG &DAG) const { 4141 SDLoc DL(Op); 4142 EVT MaskVT = Op.getValueType(); 4143 // Only expect to custom-lower truncations to mask types 4144 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 4145 "Unexpected type for vector mask lowering"); 4146 SDValue Src = Op.getOperand(0); 4147 MVT VecVT = Src.getSimpleValueType(); 4148 4149 // If this is a fixed vector, we need to convert it to a scalable vector. 4150 MVT ContainerVT = VecVT; 4151 if (VecVT.isFixedLengthVector()) { 4152 ContainerVT = getContainerForFixedLengthVector(VecVT); 4153 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 4154 } 4155 4156 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 4157 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 4158 4159 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 4160 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 4161 4162 if (VecVT.isScalableVector()) { 4163 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 4164 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 4165 } 4166 4167 SDValue Mask, VL; 4168 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4169 4170 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 4171 SDValue Trunc = 4172 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 4173 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 4174 DAG.getCondCode(ISD::SETNE), Mask, VL); 4175 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 4176 } 4177 4178 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 4179 // first position of a vector, and that vector is slid up to the insert index. 4180 // By limiting the active vector length to index+1 and merging with the 4181 // original vector (with an undisturbed tail policy for elements >= VL), we 4182 // achieve the desired result of leaving all elements untouched except the one 4183 // at VL-1, which is replaced with the desired value. 4184 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4185 SelectionDAG &DAG) const { 4186 SDLoc DL(Op); 4187 MVT VecVT = Op.getSimpleValueType(); 4188 SDValue Vec = Op.getOperand(0); 4189 SDValue Val = Op.getOperand(1); 4190 SDValue Idx = Op.getOperand(2); 4191 4192 if (VecVT.getVectorElementType() == MVT::i1) { 4193 // FIXME: For now we just promote to an i8 vector and insert into that, 4194 // but this is probably not optimal. 4195 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4196 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4197 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 4198 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 4199 } 4200 4201 MVT ContainerVT = VecVT; 4202 // If the operand is a fixed-length vector, convert to a scalable one. 4203 if (VecVT.isFixedLengthVector()) { 4204 ContainerVT = getContainerForFixedLengthVector(VecVT); 4205 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4206 } 4207 4208 MVT XLenVT = Subtarget.getXLenVT(); 4209 4210 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4211 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 4212 // Even i64-element vectors on RV32 can be lowered without scalar 4213 // legalization if the most-significant 32 bits of the value are not affected 4214 // by the sign-extension of the lower 32 bits. 4215 // TODO: We could also catch sign extensions of a 32-bit value. 4216 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 4217 const auto *CVal = cast<ConstantSDNode>(Val); 4218 if (isInt<32>(CVal->getSExtValue())) { 4219 IsLegalInsert = true; 4220 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4221 } 4222 } 4223 4224 SDValue Mask, VL; 4225 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4226 4227 SDValue ValInVec; 4228 4229 if (IsLegalInsert) { 4230 unsigned Opc = 4231 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 4232 if (isNullConstant(Idx)) { 4233 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 4234 if (!VecVT.isFixedLengthVector()) 4235 return Vec; 4236 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 4237 } 4238 ValInVec = 4239 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 4240 } else { 4241 // On RV32, i64-element vectors must be specially handled to place the 4242 // value at element 0, by using two vslide1up instructions in sequence on 4243 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 4244 // this. 4245 SDValue One = DAG.getConstant(1, DL, XLenVT); 4246 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 4247 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 4248 MVT I32ContainerVT = 4249 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 4250 SDValue I32Mask = 4251 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 4252 // Limit the active VL to two. 4253 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 4254 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 4255 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 4256 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 4257 InsertI64VL); 4258 // First slide in the hi value, then the lo in underneath it. 4259 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 4260 ValHi, I32Mask, InsertI64VL); 4261 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 4262 ValLo, I32Mask, InsertI64VL); 4263 // Bitcast back to the right container type. 4264 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 4265 } 4266 4267 // Now that the value is in a vector, slide it into position. 4268 SDValue InsertVL = 4269 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 4270 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4271 ValInVec, Idx, Mask, InsertVL); 4272 if (!VecVT.isFixedLengthVector()) 4273 return Slideup; 4274 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4275 } 4276 4277 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 4278 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 4279 // types this is done using VMV_X_S to allow us to glean information about the 4280 // sign bits of the result. 4281 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4282 SelectionDAG &DAG) const { 4283 SDLoc DL(Op); 4284 SDValue Idx = Op.getOperand(1); 4285 SDValue Vec = Op.getOperand(0); 4286 EVT EltVT = Op.getValueType(); 4287 MVT VecVT = Vec.getSimpleValueType(); 4288 MVT XLenVT = Subtarget.getXLenVT(); 4289 4290 if (VecVT.getVectorElementType() == MVT::i1) { 4291 // FIXME: For now we just promote to an i8 vector and extract from that, 4292 // but this is probably not optimal. 4293 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4294 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4295 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 4296 } 4297 4298 // If this is a fixed vector, we need to convert it to a scalable vector. 4299 MVT ContainerVT = VecVT; 4300 if (VecVT.isFixedLengthVector()) { 4301 ContainerVT = getContainerForFixedLengthVector(VecVT); 4302 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4303 } 4304 4305 // If the index is 0, the vector is already in the right position. 4306 if (!isNullConstant(Idx)) { 4307 // Use a VL of 1 to avoid processing more elements than we need. 4308 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4309 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4310 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4311 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4312 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4313 } 4314 4315 if (!EltVT.isInteger()) { 4316 // Floating-point extracts are handled in TableGen. 4317 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 4318 DAG.getConstant(0, DL, XLenVT)); 4319 } 4320 4321 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4322 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 4323 } 4324 4325 // Some RVV intrinsics may claim that they want an integer operand to be 4326 // promoted or expanded. 4327 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 4328 const RISCVSubtarget &Subtarget) { 4329 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 4330 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 4331 "Unexpected opcode"); 4332 4333 if (!Subtarget.hasVInstructions()) 4334 return SDValue(); 4335 4336 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 4337 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 4338 SDLoc DL(Op); 4339 4340 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4341 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4342 if (!II || !II->hasSplatOperand()) 4343 return SDValue(); 4344 4345 unsigned SplatOp = II->SplatOperand + 1 + HasChain; 4346 assert(SplatOp < Op.getNumOperands()); 4347 4348 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4349 SDValue &ScalarOp = Operands[SplatOp]; 4350 MVT OpVT = ScalarOp.getSimpleValueType(); 4351 MVT XLenVT = Subtarget.getXLenVT(); 4352 4353 // If this isn't a scalar, or its type is XLenVT we're done. 4354 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4355 return SDValue(); 4356 4357 // Simplest case is that the operand needs to be promoted to XLenVT. 4358 if (OpVT.bitsLT(XLenVT)) { 4359 // If the operand is a constant, sign extend to increase our chances 4360 // of being able to use a .vi instruction. ANY_EXTEND would become a 4361 // a zero extend and the simm5 check in isel would fail. 4362 // FIXME: Should we ignore the upper bits in isel instead? 4363 unsigned ExtOpc = 4364 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4365 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4366 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4367 } 4368 4369 // Use the previous operand to get the vXi64 VT. The result might be a mask 4370 // VT for compares. Using the previous operand assumes that the previous 4371 // operand will never have a smaller element size than a scalar operand and 4372 // that a widening operation never uses SEW=64. 4373 // NOTE: If this fails the below assert, we can probably just find the 4374 // element count from any operand or result and use it to construct the VT. 4375 assert(II->SplatOperand > 0 && "Unexpected splat operand!"); 4376 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4377 4378 // The more complex case is when the scalar is larger than XLenVT. 4379 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4380 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4381 4382 // If this is a sign-extended 32-bit constant, we can truncate it and rely 4383 // on the instruction to sign-extend since SEW>XLEN. 4384 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 4385 if (isInt<32>(CVal->getSExtValue())) { 4386 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4387 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4388 } 4389 } 4390 4391 // We need to convert the scalar to a splat vector. 4392 // FIXME: Can we implicitly truncate the scalar if it is known to 4393 // be sign extended? 4394 SDValue VL = getVLOperand(Op); 4395 assert(VL.getValueType() == XLenVT); 4396 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 4397 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4398 } 4399 4400 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4401 SelectionDAG &DAG) const { 4402 unsigned IntNo = Op.getConstantOperandVal(0); 4403 SDLoc DL(Op); 4404 MVT XLenVT = Subtarget.getXLenVT(); 4405 4406 switch (IntNo) { 4407 default: 4408 break; // Don't custom lower most intrinsics. 4409 case Intrinsic::thread_pointer: { 4410 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4411 return DAG.getRegister(RISCV::X4, PtrVT); 4412 } 4413 case Intrinsic::riscv_orc_b: 4414 // Lower to the GORCI encoding for orc.b. 4415 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 4416 DAG.getConstant(7, DL, XLenVT)); 4417 case Intrinsic::riscv_grev: 4418 case Intrinsic::riscv_gorc: { 4419 unsigned Opc = 4420 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4421 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4422 } 4423 case Intrinsic::riscv_shfl: 4424 case Intrinsic::riscv_unshfl: { 4425 unsigned Opc = 4426 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4427 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4428 } 4429 case Intrinsic::riscv_bcompress: 4430 case Intrinsic::riscv_bdecompress: { 4431 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4432 : RISCVISD::BDECOMPRESS; 4433 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4434 } 4435 case Intrinsic::riscv_bfp: 4436 return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1), 4437 Op.getOperand(2)); 4438 case Intrinsic::riscv_fsl: 4439 return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1), 4440 Op.getOperand(2), Op.getOperand(3)); 4441 case Intrinsic::riscv_fsr: 4442 return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1), 4443 Op.getOperand(2), Op.getOperand(3)); 4444 case Intrinsic::riscv_vmv_x_s: 4445 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4446 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4447 Op.getOperand(1)); 4448 case Intrinsic::riscv_vmv_v_x: 4449 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4450 Op.getSimpleValueType(), DL, DAG, Subtarget); 4451 case Intrinsic::riscv_vfmv_v_f: 4452 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4453 Op.getOperand(1), Op.getOperand(2)); 4454 case Intrinsic::riscv_vmv_s_x: { 4455 SDValue Scalar = Op.getOperand(2); 4456 4457 if (Scalar.getValueType().bitsLE(XLenVT)) { 4458 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4459 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4460 Op.getOperand(1), Scalar, Op.getOperand(3)); 4461 } 4462 4463 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4464 4465 // This is an i64 value that lives in two scalar registers. We have to 4466 // insert this in a convoluted way. First we build vXi64 splat containing 4467 // the/ two values that we assemble using some bit math. Next we'll use 4468 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4469 // to merge element 0 from our splat into the source vector. 4470 // FIXME: This is probably not the best way to do this, but it is 4471 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4472 // point. 4473 // sw lo, (a0) 4474 // sw hi, 4(a0) 4475 // vlse vX, (a0) 4476 // 4477 // vid.v vVid 4478 // vmseq.vx mMask, vVid, 0 4479 // vmerge.vvm vDest, vSrc, vVal, mMask 4480 MVT VT = Op.getSimpleValueType(); 4481 SDValue Vec = Op.getOperand(1); 4482 SDValue VL = getVLOperand(Op); 4483 4484 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 4485 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4486 DAG.getConstant(0, DL, MVT::i32), VL); 4487 4488 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 4489 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4490 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4491 SDValue SelectCond = 4492 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4493 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4494 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4495 Vec, VL); 4496 } 4497 case Intrinsic::riscv_vslide1up: 4498 case Intrinsic::riscv_vslide1down: 4499 case Intrinsic::riscv_vslide1up_mask: 4500 case Intrinsic::riscv_vslide1down_mask: { 4501 // We need to special case these when the scalar is larger than XLen. 4502 unsigned NumOps = Op.getNumOperands(); 4503 bool IsMasked = NumOps == 7; 4504 unsigned OpOffset = IsMasked ? 1 : 0; 4505 SDValue Scalar = Op.getOperand(2 + OpOffset); 4506 if (Scalar.getValueType().bitsLE(XLenVT)) 4507 break; 4508 4509 // Splatting a sign extended constant is fine. 4510 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 4511 if (isInt<32>(CVal->getSExtValue())) 4512 break; 4513 4514 MVT VT = Op.getSimpleValueType(); 4515 assert(VT.getVectorElementType() == MVT::i64 && 4516 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 4517 4518 // Convert the vector source to the equivalent nxvXi32 vector. 4519 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4520 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 4521 4522 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4523 DAG.getConstant(0, DL, XLenVT)); 4524 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4525 DAG.getConstant(1, DL, XLenVT)); 4526 4527 // Double the VL since we halved SEW. 4528 SDValue VL = getVLOperand(Op); 4529 SDValue I32VL = 4530 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4531 4532 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 4533 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 4534 4535 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4536 // instructions. 4537 if (IntNo == Intrinsic::riscv_vslide1up || 4538 IntNo == Intrinsic::riscv_vslide1up_mask) { 4539 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 4540 I32Mask, I32VL); 4541 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 4542 I32Mask, I32VL); 4543 } else { 4544 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 4545 I32Mask, I32VL); 4546 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 4547 I32Mask, I32VL); 4548 } 4549 4550 // Convert back to nxvXi64. 4551 Vec = DAG.getBitcast(VT, Vec); 4552 4553 if (!IsMasked) 4554 return Vec; 4555 4556 // Apply mask after the operation. 4557 SDValue Mask = Op.getOperand(NumOps - 3); 4558 SDValue MaskedOff = Op.getOperand(1); 4559 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 4560 } 4561 } 4562 4563 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4564 } 4565 4566 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4567 SelectionDAG &DAG) const { 4568 unsigned IntNo = Op.getConstantOperandVal(1); 4569 switch (IntNo) { 4570 default: 4571 break; 4572 case Intrinsic::riscv_masked_strided_load: { 4573 SDLoc DL(Op); 4574 MVT XLenVT = Subtarget.getXLenVT(); 4575 4576 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4577 // the selection of the masked intrinsics doesn't do this for us. 4578 SDValue Mask = Op.getOperand(5); 4579 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4580 4581 MVT VT = Op->getSimpleValueType(0); 4582 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4583 4584 SDValue PassThru = Op.getOperand(2); 4585 if (!IsUnmasked) { 4586 MVT MaskVT = 4587 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4588 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4589 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4590 } 4591 4592 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4593 4594 SDValue IntID = DAG.getTargetConstant( 4595 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4596 XLenVT); 4597 4598 auto *Load = cast<MemIntrinsicSDNode>(Op); 4599 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4600 if (IsUnmasked) 4601 Ops.push_back(DAG.getUNDEF(ContainerVT)); 4602 else 4603 Ops.push_back(PassThru); 4604 Ops.push_back(Op.getOperand(3)); // Ptr 4605 Ops.push_back(Op.getOperand(4)); // Stride 4606 if (!IsUnmasked) 4607 Ops.push_back(Mask); 4608 Ops.push_back(VL); 4609 if (!IsUnmasked) { 4610 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4611 Ops.push_back(Policy); 4612 } 4613 4614 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4615 SDValue Result = 4616 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4617 Load->getMemoryVT(), Load->getMemOperand()); 4618 SDValue Chain = Result.getValue(1); 4619 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4620 return DAG.getMergeValues({Result, Chain}, DL); 4621 } 4622 } 4623 4624 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4625 } 4626 4627 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4628 SelectionDAG &DAG) const { 4629 unsigned IntNo = Op.getConstantOperandVal(1); 4630 switch (IntNo) { 4631 default: 4632 break; 4633 case Intrinsic::riscv_masked_strided_store: { 4634 SDLoc DL(Op); 4635 MVT XLenVT = Subtarget.getXLenVT(); 4636 4637 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4638 // the selection of the masked intrinsics doesn't do this for us. 4639 SDValue Mask = Op.getOperand(5); 4640 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4641 4642 SDValue Val = Op.getOperand(2); 4643 MVT VT = Val.getSimpleValueType(); 4644 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4645 4646 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4647 if (!IsUnmasked) { 4648 MVT MaskVT = 4649 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4650 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4651 } 4652 4653 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4654 4655 SDValue IntID = DAG.getTargetConstant( 4656 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4657 XLenVT); 4658 4659 auto *Store = cast<MemIntrinsicSDNode>(Op); 4660 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4661 Ops.push_back(Val); 4662 Ops.push_back(Op.getOperand(3)); // Ptr 4663 Ops.push_back(Op.getOperand(4)); // Stride 4664 if (!IsUnmasked) 4665 Ops.push_back(Mask); 4666 Ops.push_back(VL); 4667 4668 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 4669 Ops, Store->getMemoryVT(), 4670 Store->getMemOperand()); 4671 } 4672 } 4673 4674 return SDValue(); 4675 } 4676 4677 static MVT getLMUL1VT(MVT VT) { 4678 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 4679 "Unexpected vector MVT"); 4680 return MVT::getScalableVectorVT( 4681 VT.getVectorElementType(), 4682 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 4683 } 4684 4685 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 4686 switch (ISDOpcode) { 4687 default: 4688 llvm_unreachable("Unhandled reduction"); 4689 case ISD::VECREDUCE_ADD: 4690 return RISCVISD::VECREDUCE_ADD_VL; 4691 case ISD::VECREDUCE_UMAX: 4692 return RISCVISD::VECREDUCE_UMAX_VL; 4693 case ISD::VECREDUCE_SMAX: 4694 return RISCVISD::VECREDUCE_SMAX_VL; 4695 case ISD::VECREDUCE_UMIN: 4696 return RISCVISD::VECREDUCE_UMIN_VL; 4697 case ISD::VECREDUCE_SMIN: 4698 return RISCVISD::VECREDUCE_SMIN_VL; 4699 case ISD::VECREDUCE_AND: 4700 return RISCVISD::VECREDUCE_AND_VL; 4701 case ISD::VECREDUCE_OR: 4702 return RISCVISD::VECREDUCE_OR_VL; 4703 case ISD::VECREDUCE_XOR: 4704 return RISCVISD::VECREDUCE_XOR_VL; 4705 } 4706 } 4707 4708 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 4709 SelectionDAG &DAG, 4710 bool IsVP) const { 4711 SDLoc DL(Op); 4712 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 4713 MVT VecVT = Vec.getSimpleValueType(); 4714 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 4715 Op.getOpcode() == ISD::VECREDUCE_OR || 4716 Op.getOpcode() == ISD::VECREDUCE_XOR || 4717 Op.getOpcode() == ISD::VP_REDUCE_AND || 4718 Op.getOpcode() == ISD::VP_REDUCE_OR || 4719 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 4720 "Unexpected reduction lowering"); 4721 4722 MVT XLenVT = Subtarget.getXLenVT(); 4723 assert(Op.getValueType() == XLenVT && 4724 "Expected reduction output to be legalized to XLenVT"); 4725 4726 MVT ContainerVT = VecVT; 4727 if (VecVT.isFixedLengthVector()) { 4728 ContainerVT = getContainerForFixedLengthVector(VecVT); 4729 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4730 } 4731 4732 SDValue Mask, VL; 4733 if (IsVP) { 4734 Mask = Op.getOperand(2); 4735 VL = Op.getOperand(3); 4736 } else { 4737 std::tie(Mask, VL) = 4738 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4739 } 4740 4741 unsigned BaseOpc; 4742 ISD::CondCode CC; 4743 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4744 4745 switch (Op.getOpcode()) { 4746 default: 4747 llvm_unreachable("Unhandled reduction"); 4748 case ISD::VECREDUCE_AND: 4749 case ISD::VP_REDUCE_AND: { 4750 // vcpop ~x == 0 4751 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 4752 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 4753 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4754 CC = ISD::SETEQ; 4755 BaseOpc = ISD::AND; 4756 break; 4757 } 4758 case ISD::VECREDUCE_OR: 4759 case ISD::VP_REDUCE_OR: 4760 // vcpop x != 0 4761 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4762 CC = ISD::SETNE; 4763 BaseOpc = ISD::OR; 4764 break; 4765 case ISD::VECREDUCE_XOR: 4766 case ISD::VP_REDUCE_XOR: { 4767 // ((vcpop x) & 1) != 0 4768 SDValue One = DAG.getConstant(1, DL, XLenVT); 4769 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4770 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 4771 CC = ISD::SETNE; 4772 BaseOpc = ISD::XOR; 4773 break; 4774 } 4775 } 4776 4777 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 4778 4779 if (!IsVP) 4780 return SetCC; 4781 4782 // Now include the start value in the operation. 4783 // Note that we must return the start value when no elements are operated 4784 // upon. The vcpop instructions we've emitted in each case above will return 4785 // 0 for an inactive vector, and so we've already received the neutral value: 4786 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 4787 // can simply include the start value. 4788 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 4789 } 4790 4791 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 4792 SelectionDAG &DAG) const { 4793 SDLoc DL(Op); 4794 SDValue Vec = Op.getOperand(0); 4795 EVT VecEVT = Vec.getValueType(); 4796 4797 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 4798 4799 // Due to ordering in legalize types we may have a vector type that needs to 4800 // be split. Do that manually so we can get down to a legal type. 4801 while (getTypeAction(*DAG.getContext(), VecEVT) == 4802 TargetLowering::TypeSplitVector) { 4803 SDValue Lo, Hi; 4804 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 4805 VecEVT = Lo.getValueType(); 4806 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 4807 } 4808 4809 // TODO: The type may need to be widened rather than split. Or widened before 4810 // it can be split. 4811 if (!isTypeLegal(VecEVT)) 4812 return SDValue(); 4813 4814 MVT VecVT = VecEVT.getSimpleVT(); 4815 MVT VecEltVT = VecVT.getVectorElementType(); 4816 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 4817 4818 MVT ContainerVT = VecVT; 4819 if (VecVT.isFixedLengthVector()) { 4820 ContainerVT = getContainerForFixedLengthVector(VecVT); 4821 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4822 } 4823 4824 MVT M1VT = getLMUL1VT(ContainerVT); 4825 MVT XLenVT = Subtarget.getXLenVT(); 4826 4827 SDValue Mask, VL; 4828 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4829 4830 SDValue NeutralElem = 4831 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 4832 SDValue IdentitySplat = lowerScalarSplat( 4833 NeutralElem, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 4834 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 4835 IdentitySplat, Mask, VL); 4836 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4837 DAG.getConstant(0, DL, XLenVT)); 4838 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4839 } 4840 4841 // Given a reduction op, this function returns the matching reduction opcode, 4842 // the vector SDValue and the scalar SDValue required to lower this to a 4843 // RISCVISD node. 4844 static std::tuple<unsigned, SDValue, SDValue> 4845 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 4846 SDLoc DL(Op); 4847 auto Flags = Op->getFlags(); 4848 unsigned Opcode = Op.getOpcode(); 4849 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 4850 switch (Opcode) { 4851 default: 4852 llvm_unreachable("Unhandled reduction"); 4853 case ISD::VECREDUCE_FADD: { 4854 // Use positive zero if we can. It is cheaper to materialize. 4855 SDValue Zero = 4856 DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); 4857 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); 4858 } 4859 case ISD::VECREDUCE_SEQ_FADD: 4860 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 4861 Op.getOperand(0)); 4862 case ISD::VECREDUCE_FMIN: 4863 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 4864 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4865 case ISD::VECREDUCE_FMAX: 4866 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 4867 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4868 } 4869 } 4870 4871 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 4872 SelectionDAG &DAG) const { 4873 SDLoc DL(Op); 4874 MVT VecEltVT = Op.getSimpleValueType(); 4875 4876 unsigned RVVOpcode; 4877 SDValue VectorVal, ScalarVal; 4878 std::tie(RVVOpcode, VectorVal, ScalarVal) = 4879 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 4880 MVT VecVT = VectorVal.getSimpleValueType(); 4881 4882 MVT ContainerVT = VecVT; 4883 if (VecVT.isFixedLengthVector()) { 4884 ContainerVT = getContainerForFixedLengthVector(VecVT); 4885 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 4886 } 4887 4888 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 4889 MVT XLenVT = Subtarget.getXLenVT(); 4890 4891 SDValue Mask, VL; 4892 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4893 4894 SDValue ScalarSplat = lowerScalarSplat( 4895 ScalarVal, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 4896 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 4897 VectorVal, ScalarSplat, Mask, VL); 4898 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4899 DAG.getConstant(0, DL, XLenVT)); 4900 } 4901 4902 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 4903 switch (ISDOpcode) { 4904 default: 4905 llvm_unreachable("Unhandled reduction"); 4906 case ISD::VP_REDUCE_ADD: 4907 return RISCVISD::VECREDUCE_ADD_VL; 4908 case ISD::VP_REDUCE_UMAX: 4909 return RISCVISD::VECREDUCE_UMAX_VL; 4910 case ISD::VP_REDUCE_SMAX: 4911 return RISCVISD::VECREDUCE_SMAX_VL; 4912 case ISD::VP_REDUCE_UMIN: 4913 return RISCVISD::VECREDUCE_UMIN_VL; 4914 case ISD::VP_REDUCE_SMIN: 4915 return RISCVISD::VECREDUCE_SMIN_VL; 4916 case ISD::VP_REDUCE_AND: 4917 return RISCVISD::VECREDUCE_AND_VL; 4918 case ISD::VP_REDUCE_OR: 4919 return RISCVISD::VECREDUCE_OR_VL; 4920 case ISD::VP_REDUCE_XOR: 4921 return RISCVISD::VECREDUCE_XOR_VL; 4922 case ISD::VP_REDUCE_FADD: 4923 return RISCVISD::VECREDUCE_FADD_VL; 4924 case ISD::VP_REDUCE_SEQ_FADD: 4925 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 4926 case ISD::VP_REDUCE_FMAX: 4927 return RISCVISD::VECREDUCE_FMAX_VL; 4928 case ISD::VP_REDUCE_FMIN: 4929 return RISCVISD::VECREDUCE_FMIN_VL; 4930 } 4931 } 4932 4933 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 4934 SelectionDAG &DAG) const { 4935 SDLoc DL(Op); 4936 SDValue Vec = Op.getOperand(1); 4937 EVT VecEVT = Vec.getValueType(); 4938 4939 // TODO: The type may need to be widened rather than split. Or widened before 4940 // it can be split. 4941 if (!isTypeLegal(VecEVT)) 4942 return SDValue(); 4943 4944 MVT VecVT = VecEVT.getSimpleVT(); 4945 MVT VecEltVT = VecVT.getVectorElementType(); 4946 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 4947 4948 MVT ContainerVT = VecVT; 4949 if (VecVT.isFixedLengthVector()) { 4950 ContainerVT = getContainerForFixedLengthVector(VecVT); 4951 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4952 } 4953 4954 SDValue VL = Op.getOperand(3); 4955 SDValue Mask = Op.getOperand(2); 4956 4957 MVT M1VT = getLMUL1VT(ContainerVT); 4958 MVT XLenVT = Subtarget.getXLenVT(); 4959 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 4960 4961 SDValue StartSplat = 4962 lowerScalarSplat(Op.getOperand(0), DAG.getConstant(1, DL, XLenVT), M1VT, 4963 DL, DAG, Subtarget); 4964 SDValue Reduction = 4965 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 4966 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 4967 DAG.getConstant(0, DL, XLenVT)); 4968 if (!VecVT.isInteger()) 4969 return Elt0; 4970 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4971 } 4972 4973 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 4974 SelectionDAG &DAG) const { 4975 SDValue Vec = Op.getOperand(0); 4976 SDValue SubVec = Op.getOperand(1); 4977 MVT VecVT = Vec.getSimpleValueType(); 4978 MVT SubVecVT = SubVec.getSimpleValueType(); 4979 4980 SDLoc DL(Op); 4981 MVT XLenVT = Subtarget.getXLenVT(); 4982 unsigned OrigIdx = Op.getConstantOperandVal(2); 4983 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4984 4985 // We don't have the ability to slide mask vectors up indexed by their i1 4986 // elements; the smallest we can do is i8. Often we are able to bitcast to 4987 // equivalent i8 vectors. Note that when inserting a fixed-length vector 4988 // into a scalable one, we might not necessarily have enough scalable 4989 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 4990 if (SubVecVT.getVectorElementType() == MVT::i1 && 4991 (OrigIdx != 0 || !Vec.isUndef())) { 4992 if (VecVT.getVectorMinNumElements() >= 8 && 4993 SubVecVT.getVectorMinNumElements() >= 8) { 4994 assert(OrigIdx % 8 == 0 && "Invalid index"); 4995 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4996 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4997 "Unexpected mask vector lowering"); 4998 OrigIdx /= 8; 4999 SubVecVT = 5000 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5001 SubVecVT.isScalableVector()); 5002 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5003 VecVT.isScalableVector()); 5004 Vec = DAG.getBitcast(VecVT, Vec); 5005 SubVec = DAG.getBitcast(SubVecVT, SubVec); 5006 } else { 5007 // We can't slide this mask vector up indexed by its i1 elements. 5008 // This poses a problem when we wish to insert a scalable vector which 5009 // can't be re-expressed as a larger type. Just choose the slow path and 5010 // extend to a larger type, then truncate back down. 5011 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5012 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5013 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5014 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 5015 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 5016 Op.getOperand(2)); 5017 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 5018 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 5019 } 5020 } 5021 5022 // If the subvector vector is a fixed-length type, we cannot use subregister 5023 // manipulation to simplify the codegen; we don't know which register of a 5024 // LMUL group contains the specific subvector as we only know the minimum 5025 // register size. Therefore we must slide the vector group up the full 5026 // amount. 5027 if (SubVecVT.isFixedLengthVector()) { 5028 if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector()) 5029 return Op; 5030 MVT ContainerVT = VecVT; 5031 if (VecVT.isFixedLengthVector()) { 5032 ContainerVT = getContainerForFixedLengthVector(VecVT); 5033 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5034 } 5035 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 5036 DAG.getUNDEF(ContainerVT), SubVec, 5037 DAG.getConstant(0, DL, XLenVT)); 5038 if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) { 5039 SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget); 5040 return DAG.getBitcast(Op.getValueType(), SubVec); 5041 } 5042 SDValue Mask = 5043 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5044 // Set the vector length to only the number of elements we care about. Note 5045 // that for slideup this includes the offset. 5046 SDValue VL = 5047 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 5048 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5049 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 5050 SubVec, SlideupAmt, Mask, VL); 5051 if (VecVT.isFixedLengthVector()) 5052 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 5053 return DAG.getBitcast(Op.getValueType(), Slideup); 5054 } 5055 5056 unsigned SubRegIdx, RemIdx; 5057 std::tie(SubRegIdx, RemIdx) = 5058 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5059 VecVT, SubVecVT, OrigIdx, TRI); 5060 5061 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 5062 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 5063 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 5064 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 5065 5066 // 1. If the Idx has been completely eliminated and this subvector's size is 5067 // a vector register or a multiple thereof, or the surrounding elements are 5068 // undef, then this is a subvector insert which naturally aligns to a vector 5069 // register. These can easily be handled using subregister manipulation. 5070 // 2. If the subvector is smaller than a vector register, then the insertion 5071 // must preserve the undisturbed elements of the register. We do this by 5072 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 5073 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 5074 // subvector within the vector register, and an INSERT_SUBVECTOR of that 5075 // LMUL=1 type back into the larger vector (resolving to another subregister 5076 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 5077 // to avoid allocating a large register group to hold our subvector. 5078 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 5079 return Op; 5080 5081 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 5082 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 5083 // (in our case undisturbed). This means we can set up a subvector insertion 5084 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 5085 // size of the subvector. 5086 MVT InterSubVT = VecVT; 5087 SDValue AlignedExtract = Vec; 5088 unsigned AlignedIdx = OrigIdx - RemIdx; 5089 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5090 InterSubVT = getLMUL1VT(VecVT); 5091 // Extract a subvector equal to the nearest full vector register type. This 5092 // should resolve to a EXTRACT_SUBREG instruction. 5093 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5094 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5095 } 5096 5097 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5098 // For scalable vectors this must be further multiplied by vscale. 5099 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 5100 5101 SDValue Mask, VL; 5102 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5103 5104 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 5105 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 5106 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 5107 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 5108 5109 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 5110 DAG.getUNDEF(InterSubVT), SubVec, 5111 DAG.getConstant(0, DL, XLenVT)); 5112 5113 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 5114 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 5115 5116 // If required, insert this subvector back into the correct vector register. 5117 // This should resolve to an INSERT_SUBREG instruction. 5118 if (VecVT.bitsGT(InterSubVT)) 5119 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 5120 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5121 5122 // We might have bitcast from a mask type: cast back to the original type if 5123 // required. 5124 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 5125 } 5126 5127 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 5128 SelectionDAG &DAG) const { 5129 SDValue Vec = Op.getOperand(0); 5130 MVT SubVecVT = Op.getSimpleValueType(); 5131 MVT VecVT = Vec.getSimpleValueType(); 5132 5133 SDLoc DL(Op); 5134 MVT XLenVT = Subtarget.getXLenVT(); 5135 unsigned OrigIdx = Op.getConstantOperandVal(1); 5136 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5137 5138 // We don't have the ability to slide mask vectors down indexed by their i1 5139 // elements; the smallest we can do is i8. Often we are able to bitcast to 5140 // equivalent i8 vectors. Note that when extracting a fixed-length vector 5141 // from a scalable one, we might not necessarily have enough scalable 5142 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 5143 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 5144 if (VecVT.getVectorMinNumElements() >= 8 && 5145 SubVecVT.getVectorMinNumElements() >= 8) { 5146 assert(OrigIdx % 8 == 0 && "Invalid index"); 5147 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5148 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5149 "Unexpected mask vector lowering"); 5150 OrigIdx /= 8; 5151 SubVecVT = 5152 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5153 SubVecVT.isScalableVector()); 5154 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5155 VecVT.isScalableVector()); 5156 Vec = DAG.getBitcast(VecVT, Vec); 5157 } else { 5158 // We can't slide this mask vector down, indexed by its i1 elements. 5159 // This poses a problem when we wish to extract a scalable vector which 5160 // can't be re-expressed as a larger type. Just choose the slow path and 5161 // extend to a larger type, then truncate back down. 5162 // TODO: We could probably improve this when extracting certain fixed 5163 // from fixed, where we can extract as i8 and shift the correct element 5164 // right to reach the desired subvector? 5165 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5166 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5167 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5168 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 5169 Op.getOperand(1)); 5170 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 5171 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 5172 } 5173 } 5174 5175 // If the subvector vector is a fixed-length type, we cannot use subregister 5176 // manipulation to simplify the codegen; we don't know which register of a 5177 // LMUL group contains the specific subvector as we only know the minimum 5178 // register size. Therefore we must slide the vector group down the full 5179 // amount. 5180 if (SubVecVT.isFixedLengthVector()) { 5181 // With an index of 0 this is a cast-like subvector, which can be performed 5182 // with subregister operations. 5183 if (OrigIdx == 0) 5184 return Op; 5185 MVT ContainerVT = VecVT; 5186 if (VecVT.isFixedLengthVector()) { 5187 ContainerVT = getContainerForFixedLengthVector(VecVT); 5188 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5189 } 5190 SDValue Mask = 5191 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5192 // Set the vector length to only the number of elements we care about. This 5193 // avoids sliding down elements we're going to discard straight away. 5194 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 5195 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5196 SDValue Slidedown = 5197 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5198 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 5199 // Now we can use a cast-like subvector extract to get the result. 5200 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5201 DAG.getConstant(0, DL, XLenVT)); 5202 return DAG.getBitcast(Op.getValueType(), Slidedown); 5203 } 5204 5205 unsigned SubRegIdx, RemIdx; 5206 std::tie(SubRegIdx, RemIdx) = 5207 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5208 VecVT, SubVecVT, OrigIdx, TRI); 5209 5210 // If the Idx has been completely eliminated then this is a subvector extract 5211 // which naturally aligns to a vector register. These can easily be handled 5212 // using subregister manipulation. 5213 if (RemIdx == 0) 5214 return Op; 5215 5216 // Else we must shift our vector register directly to extract the subvector. 5217 // Do this using VSLIDEDOWN. 5218 5219 // If the vector type is an LMUL-group type, extract a subvector equal to the 5220 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 5221 // instruction. 5222 MVT InterSubVT = VecVT; 5223 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5224 InterSubVT = getLMUL1VT(VecVT); 5225 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5226 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 5227 } 5228 5229 // Slide this vector register down by the desired number of elements in order 5230 // to place the desired subvector starting at element 0. 5231 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5232 // For scalable vectors this must be further multiplied by vscale. 5233 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 5234 5235 SDValue Mask, VL; 5236 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 5237 SDValue Slidedown = 5238 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 5239 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 5240 5241 // Now the vector is in the right position, extract our final subvector. This 5242 // should resolve to a COPY. 5243 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5244 DAG.getConstant(0, DL, XLenVT)); 5245 5246 // We might have bitcast from a mask type: cast back to the original type if 5247 // required. 5248 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 5249 } 5250 5251 // Lower step_vector to the vid instruction. Any non-identity step value must 5252 // be accounted for my manual expansion. 5253 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 5254 SelectionDAG &DAG) const { 5255 SDLoc DL(Op); 5256 MVT VT = Op.getSimpleValueType(); 5257 MVT XLenVT = Subtarget.getXLenVT(); 5258 SDValue Mask, VL; 5259 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 5260 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 5261 uint64_t StepValImm = Op.getConstantOperandVal(0); 5262 if (StepValImm != 1) { 5263 if (isPowerOf2_64(StepValImm)) { 5264 SDValue StepVal = 5265 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 5266 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 5267 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 5268 } else { 5269 SDValue StepVal = lowerScalarSplat( 5270 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 5271 DL, DAG, Subtarget); 5272 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 5273 } 5274 } 5275 return StepVec; 5276 } 5277 5278 // Implement vector_reverse using vrgather.vv with indices determined by 5279 // subtracting the id of each element from (VLMAX-1). This will convert 5280 // the indices like so: 5281 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 5282 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 5283 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 5284 SelectionDAG &DAG) const { 5285 SDLoc DL(Op); 5286 MVT VecVT = Op.getSimpleValueType(); 5287 unsigned EltSize = VecVT.getScalarSizeInBits(); 5288 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 5289 5290 unsigned MaxVLMAX = 0; 5291 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 5292 if (VectorBitsMax != 0) 5293 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 5294 5295 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 5296 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 5297 5298 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 5299 // to use vrgatherei16.vv. 5300 // TODO: It's also possible to use vrgatherei16.vv for other types to 5301 // decrease register width for the index calculation. 5302 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 5303 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 5304 // Reverse each half, then reassemble them in reverse order. 5305 // NOTE: It's also possible that after splitting that VLMAX no longer 5306 // requires vrgatherei16.vv. 5307 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 5308 SDValue Lo, Hi; 5309 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 5310 EVT LoVT, HiVT; 5311 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5312 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 5313 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 5314 // Reassemble the low and high pieces reversed. 5315 // FIXME: This is a CONCAT_VECTORS. 5316 SDValue Res = 5317 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 5318 DAG.getIntPtrConstant(0, DL)); 5319 return DAG.getNode( 5320 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 5321 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 5322 } 5323 5324 // Just promote the int type to i16 which will double the LMUL. 5325 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 5326 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 5327 } 5328 5329 MVT XLenVT = Subtarget.getXLenVT(); 5330 SDValue Mask, VL; 5331 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5332 5333 // Calculate VLMAX-1 for the desired SEW. 5334 unsigned MinElts = VecVT.getVectorMinNumElements(); 5335 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5336 DAG.getConstant(MinElts, DL, XLenVT)); 5337 SDValue VLMinus1 = 5338 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 5339 5340 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 5341 bool IsRV32E64 = 5342 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 5343 SDValue SplatVL; 5344 if (!IsRV32E64) 5345 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 5346 else 5347 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 5348 5349 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 5350 SDValue Indices = 5351 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 5352 5353 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 5354 } 5355 5356 SDValue 5357 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5358 SelectionDAG &DAG) const { 5359 SDLoc DL(Op); 5360 auto *Load = cast<LoadSDNode>(Op); 5361 5362 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5363 Load->getMemoryVT(), 5364 *Load->getMemOperand()) && 5365 "Expecting a correctly-aligned load"); 5366 5367 MVT VT = Op.getSimpleValueType(); 5368 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5369 5370 SDValue VL = 5371 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5372 5373 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5374 SDValue NewLoad = DAG.getMemIntrinsicNode( 5375 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 5376 Load->getMemoryVT(), Load->getMemOperand()); 5377 5378 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5379 return DAG.getMergeValues({Result, Load->getChain()}, DL); 5380 } 5381 5382 SDValue 5383 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5384 SelectionDAG &DAG) const { 5385 SDLoc DL(Op); 5386 auto *Store = cast<StoreSDNode>(Op); 5387 5388 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5389 Store->getMemoryVT(), 5390 *Store->getMemOperand()) && 5391 "Expecting a correctly-aligned store"); 5392 5393 SDValue StoreVal = Store->getValue(); 5394 MVT VT = StoreVal.getSimpleValueType(); 5395 5396 // If the size less than a byte, we need to pad with zeros to make a byte. 5397 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5398 VT = MVT::v8i1; 5399 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5400 DAG.getConstant(0, DL, VT), StoreVal, 5401 DAG.getIntPtrConstant(0, DL)); 5402 } 5403 5404 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5405 5406 SDValue VL = 5407 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5408 5409 SDValue NewValue = 5410 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5411 return DAG.getMemIntrinsicNode( 5412 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 5413 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 5414 Store->getMemoryVT(), Store->getMemOperand()); 5415 } 5416 5417 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5418 SelectionDAG &DAG) const { 5419 SDLoc DL(Op); 5420 MVT VT = Op.getSimpleValueType(); 5421 5422 const auto *MemSD = cast<MemSDNode>(Op); 5423 EVT MemVT = MemSD->getMemoryVT(); 5424 MachineMemOperand *MMO = MemSD->getMemOperand(); 5425 SDValue Chain = MemSD->getChain(); 5426 SDValue BasePtr = MemSD->getBasePtr(); 5427 5428 SDValue Mask, PassThru, VL; 5429 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5430 Mask = VPLoad->getMask(); 5431 PassThru = DAG.getUNDEF(VT); 5432 VL = VPLoad->getVectorLength(); 5433 } else { 5434 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5435 Mask = MLoad->getMask(); 5436 PassThru = MLoad->getPassThru(); 5437 } 5438 5439 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5440 5441 MVT XLenVT = Subtarget.getXLenVT(); 5442 5443 MVT ContainerVT = VT; 5444 if (VT.isFixedLengthVector()) { 5445 ContainerVT = getContainerForFixedLengthVector(VT); 5446 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5447 if (!IsUnmasked) { 5448 MVT MaskVT = 5449 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5450 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5451 } 5452 } 5453 5454 if (!VL) 5455 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5456 5457 unsigned IntID = 5458 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5459 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5460 if (IsUnmasked) 5461 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5462 else 5463 Ops.push_back(PassThru); 5464 Ops.push_back(BasePtr); 5465 if (!IsUnmasked) 5466 Ops.push_back(Mask); 5467 Ops.push_back(VL); 5468 if (!IsUnmasked) 5469 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5470 5471 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5472 5473 SDValue Result = 5474 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5475 Chain = Result.getValue(1); 5476 5477 if (VT.isFixedLengthVector()) 5478 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5479 5480 return DAG.getMergeValues({Result, Chain}, DL); 5481 } 5482 5483 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5484 SelectionDAG &DAG) const { 5485 SDLoc DL(Op); 5486 5487 const auto *MemSD = cast<MemSDNode>(Op); 5488 EVT MemVT = MemSD->getMemoryVT(); 5489 MachineMemOperand *MMO = MemSD->getMemOperand(); 5490 SDValue Chain = MemSD->getChain(); 5491 SDValue BasePtr = MemSD->getBasePtr(); 5492 SDValue Val, Mask, VL; 5493 5494 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5495 Val = VPStore->getValue(); 5496 Mask = VPStore->getMask(); 5497 VL = VPStore->getVectorLength(); 5498 } else { 5499 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5500 Val = MStore->getValue(); 5501 Mask = MStore->getMask(); 5502 } 5503 5504 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5505 5506 MVT VT = Val.getSimpleValueType(); 5507 MVT XLenVT = Subtarget.getXLenVT(); 5508 5509 MVT ContainerVT = VT; 5510 if (VT.isFixedLengthVector()) { 5511 ContainerVT = getContainerForFixedLengthVector(VT); 5512 5513 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5514 if (!IsUnmasked) { 5515 MVT MaskVT = 5516 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5517 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5518 } 5519 } 5520 5521 if (!VL) 5522 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5523 5524 unsigned IntID = 5525 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 5526 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5527 Ops.push_back(Val); 5528 Ops.push_back(BasePtr); 5529 if (!IsUnmasked) 5530 Ops.push_back(Mask); 5531 Ops.push_back(VL); 5532 5533 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5534 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5535 } 5536 5537 SDValue 5538 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 5539 SelectionDAG &DAG) const { 5540 MVT InVT = Op.getOperand(0).getSimpleValueType(); 5541 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 5542 5543 MVT VT = Op.getSimpleValueType(); 5544 5545 SDValue Op1 = 5546 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 5547 SDValue Op2 = 5548 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5549 5550 SDLoc DL(Op); 5551 SDValue VL = 5552 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5553 5554 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5555 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5556 5557 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 5558 Op.getOperand(2), Mask, VL); 5559 5560 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 5561 } 5562 5563 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5564 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5565 MVT VT = Op.getSimpleValueType(); 5566 5567 if (VT.getVectorElementType() == MVT::i1) 5568 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5569 5570 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5571 } 5572 5573 SDValue 5574 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5575 SelectionDAG &DAG) const { 5576 unsigned Opc; 5577 switch (Op.getOpcode()) { 5578 default: llvm_unreachable("Unexpected opcode!"); 5579 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5580 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5581 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5582 } 5583 5584 return lowerToScalableOp(Op, DAG, Opc); 5585 } 5586 5587 // Lower vector ABS to smax(X, sub(0, X)). 5588 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5589 SDLoc DL(Op); 5590 MVT VT = Op.getSimpleValueType(); 5591 SDValue X = Op.getOperand(0); 5592 5593 assert(VT.isFixedLengthVector() && "Unexpected type"); 5594 5595 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5596 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5597 5598 SDValue Mask, VL; 5599 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5600 5601 SDValue SplatZero = 5602 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5603 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 5604 SDValue NegX = 5605 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 5606 SDValue Max = 5607 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 5608 5609 return convertFromScalableVector(VT, Max, DAG, Subtarget); 5610 } 5611 5612 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 5613 SDValue Op, SelectionDAG &DAG) const { 5614 SDLoc DL(Op); 5615 MVT VT = Op.getSimpleValueType(); 5616 SDValue Mag = Op.getOperand(0); 5617 SDValue Sign = Op.getOperand(1); 5618 assert(Mag.getValueType() == Sign.getValueType() && 5619 "Can only handle COPYSIGN with matching types."); 5620 5621 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5622 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 5623 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 5624 5625 SDValue Mask, VL; 5626 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5627 5628 SDValue CopySign = 5629 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 5630 5631 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 5632 } 5633 5634 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 5635 SDValue Op, SelectionDAG &DAG) const { 5636 MVT VT = Op.getSimpleValueType(); 5637 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5638 5639 MVT I1ContainerVT = 5640 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5641 5642 SDValue CC = 5643 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 5644 SDValue Op1 = 5645 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5646 SDValue Op2 = 5647 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 5648 5649 SDLoc DL(Op); 5650 SDValue Mask, VL; 5651 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5652 5653 SDValue Select = 5654 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 5655 5656 return convertFromScalableVector(VT, Select, DAG, Subtarget); 5657 } 5658 5659 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 5660 unsigned NewOpc, 5661 bool HasMask) const { 5662 MVT VT = Op.getSimpleValueType(); 5663 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5664 5665 // Create list of operands by converting existing ones to scalable types. 5666 SmallVector<SDValue, 6> Ops; 5667 for (const SDValue &V : Op->op_values()) { 5668 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5669 5670 // Pass through non-vector operands. 5671 if (!V.getValueType().isVector()) { 5672 Ops.push_back(V); 5673 continue; 5674 } 5675 5676 // "cast" fixed length vector to a scalable vector. 5677 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 5678 "Only fixed length vectors are supported!"); 5679 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5680 } 5681 5682 SDLoc DL(Op); 5683 SDValue Mask, VL; 5684 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5685 if (HasMask) 5686 Ops.push_back(Mask); 5687 Ops.push_back(VL); 5688 5689 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 5690 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 5691 } 5692 5693 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 5694 // * Operands of each node are assumed to be in the same order. 5695 // * The EVL operand is promoted from i32 to i64 on RV64. 5696 // * Fixed-length vectors are converted to their scalable-vector container 5697 // types. 5698 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 5699 unsigned RISCVISDOpc) const { 5700 SDLoc DL(Op); 5701 MVT VT = Op.getSimpleValueType(); 5702 SmallVector<SDValue, 4> Ops; 5703 5704 for (const auto &OpIdx : enumerate(Op->ops())) { 5705 SDValue V = OpIdx.value(); 5706 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5707 // Pass through operands which aren't fixed-length vectors. 5708 if (!V.getValueType().isFixedLengthVector()) { 5709 Ops.push_back(V); 5710 continue; 5711 } 5712 // "cast" fixed length vector to a scalable vector. 5713 MVT OpVT = V.getSimpleValueType(); 5714 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 5715 assert(useRVVForFixedLengthVectorVT(OpVT) && 5716 "Only fixed length vectors are supported!"); 5717 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5718 } 5719 5720 if (!VT.isFixedLengthVector()) 5721 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 5722 5723 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5724 5725 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 5726 5727 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 5728 } 5729 5730 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG, 5731 unsigned MaskOpc, 5732 unsigned VecOpc) const { 5733 MVT VT = Op.getSimpleValueType(); 5734 if (VT.getVectorElementType() != MVT::i1) 5735 return lowerVPOp(Op, DAG, VecOpc); 5736 5737 // It is safe to drop mask parameter as masked-off elements are undef. 5738 SDValue Op1 = Op->getOperand(0); 5739 SDValue Op2 = Op->getOperand(1); 5740 SDValue VL = Op->getOperand(3); 5741 5742 MVT ContainerVT = VT; 5743 const bool IsFixed = VT.isFixedLengthVector(); 5744 if (IsFixed) { 5745 ContainerVT = getContainerForFixedLengthVector(VT); 5746 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 5747 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 5748 } 5749 5750 SDLoc DL(Op); 5751 SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL); 5752 if (!IsFixed) 5753 return Val; 5754 return convertFromScalableVector(VT, Val, DAG, Subtarget); 5755 } 5756 5757 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 5758 // matched to a RVV indexed load. The RVV indexed load instructions only 5759 // support the "unsigned unscaled" addressing mode; indices are implicitly 5760 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5761 // signed or scaled indexing is extended to the XLEN value type and scaled 5762 // accordingly. 5763 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 5764 SelectionDAG &DAG) const { 5765 SDLoc DL(Op); 5766 MVT VT = Op.getSimpleValueType(); 5767 5768 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5769 EVT MemVT = MemSD->getMemoryVT(); 5770 MachineMemOperand *MMO = MemSD->getMemOperand(); 5771 SDValue Chain = MemSD->getChain(); 5772 SDValue BasePtr = MemSD->getBasePtr(); 5773 5774 ISD::LoadExtType LoadExtType; 5775 SDValue Index, Mask, PassThru, VL; 5776 5777 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 5778 Index = VPGN->getIndex(); 5779 Mask = VPGN->getMask(); 5780 PassThru = DAG.getUNDEF(VT); 5781 VL = VPGN->getVectorLength(); 5782 // VP doesn't support extending loads. 5783 LoadExtType = ISD::NON_EXTLOAD; 5784 } else { 5785 // Else it must be a MGATHER. 5786 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 5787 Index = MGN->getIndex(); 5788 Mask = MGN->getMask(); 5789 PassThru = MGN->getPassThru(); 5790 LoadExtType = MGN->getExtensionType(); 5791 } 5792 5793 MVT IndexVT = Index.getSimpleValueType(); 5794 MVT XLenVT = Subtarget.getXLenVT(); 5795 5796 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5797 "Unexpected VTs!"); 5798 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5799 // Targets have to explicitly opt-in for extending vector loads. 5800 assert(LoadExtType == ISD::NON_EXTLOAD && 5801 "Unexpected extending MGATHER/VP_GATHER"); 5802 (void)LoadExtType; 5803 5804 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5805 // the selection of the masked intrinsics doesn't do this for us. 5806 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5807 5808 MVT ContainerVT = VT; 5809 if (VT.isFixedLengthVector()) { 5810 // We need to use the larger of the result and index type to determine the 5811 // scalable type to use so we don't increase LMUL for any operand/result. 5812 if (VT.bitsGE(IndexVT)) { 5813 ContainerVT = getContainerForFixedLengthVector(VT); 5814 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5815 ContainerVT.getVectorElementCount()); 5816 } else { 5817 IndexVT = getContainerForFixedLengthVector(IndexVT); 5818 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 5819 IndexVT.getVectorElementCount()); 5820 } 5821 5822 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5823 5824 if (!IsUnmasked) { 5825 MVT MaskVT = 5826 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5827 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5828 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5829 } 5830 } 5831 5832 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 5833 IndexVT = IndexVT.changeVectorElementType(XLenVT); 5834 Index = DAG.getNode(ISD::TRUNCATE, DL, IndexVT, Index); 5835 } 5836 5837 if (!VL) 5838 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5839 5840 unsigned IntID = 5841 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 5842 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5843 if (IsUnmasked) 5844 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5845 else 5846 Ops.push_back(PassThru); 5847 Ops.push_back(BasePtr); 5848 Ops.push_back(Index); 5849 if (!IsUnmasked) 5850 Ops.push_back(Mask); 5851 Ops.push_back(VL); 5852 if (!IsUnmasked) 5853 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5854 5855 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5856 SDValue Result = 5857 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5858 Chain = Result.getValue(1); 5859 5860 if (VT.isFixedLengthVector()) 5861 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5862 5863 return DAG.getMergeValues({Result, Chain}, DL); 5864 } 5865 5866 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 5867 // matched to a RVV indexed store. The RVV indexed store instructions only 5868 // support the "unsigned unscaled" addressing mode; indices are implicitly 5869 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5870 // signed or scaled indexing is extended to the XLEN value type and scaled 5871 // accordingly. 5872 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 5873 SelectionDAG &DAG) const { 5874 SDLoc DL(Op); 5875 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5876 EVT MemVT = MemSD->getMemoryVT(); 5877 MachineMemOperand *MMO = MemSD->getMemOperand(); 5878 SDValue Chain = MemSD->getChain(); 5879 SDValue BasePtr = MemSD->getBasePtr(); 5880 5881 bool IsTruncatingStore = false; 5882 SDValue Index, Mask, Val, VL; 5883 5884 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 5885 Index = VPSN->getIndex(); 5886 Mask = VPSN->getMask(); 5887 Val = VPSN->getValue(); 5888 VL = VPSN->getVectorLength(); 5889 // VP doesn't support truncating stores. 5890 IsTruncatingStore = false; 5891 } else { 5892 // Else it must be a MSCATTER. 5893 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 5894 Index = MSN->getIndex(); 5895 Mask = MSN->getMask(); 5896 Val = MSN->getValue(); 5897 IsTruncatingStore = MSN->isTruncatingStore(); 5898 } 5899 5900 MVT VT = Val.getSimpleValueType(); 5901 MVT IndexVT = Index.getSimpleValueType(); 5902 MVT XLenVT = Subtarget.getXLenVT(); 5903 5904 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5905 "Unexpected VTs!"); 5906 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5907 // Targets have to explicitly opt-in for extending vector loads and 5908 // truncating vector stores. 5909 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 5910 (void)IsTruncatingStore; 5911 5912 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5913 // the selection of the masked intrinsics doesn't do this for us. 5914 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5915 5916 MVT ContainerVT = VT; 5917 if (VT.isFixedLengthVector()) { 5918 // We need to use the larger of the value and index type to determine the 5919 // scalable type to use so we don't increase LMUL for any operand/result. 5920 if (VT.bitsGE(IndexVT)) { 5921 ContainerVT = getContainerForFixedLengthVector(VT); 5922 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5923 ContainerVT.getVectorElementCount()); 5924 } else { 5925 IndexVT = getContainerForFixedLengthVector(IndexVT); 5926 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 5927 IndexVT.getVectorElementCount()); 5928 } 5929 5930 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5931 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5932 5933 if (!IsUnmasked) { 5934 MVT MaskVT = 5935 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5936 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5937 } 5938 } 5939 5940 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 5941 IndexVT = IndexVT.changeVectorElementType(XLenVT); 5942 Index = DAG.getNode(ISD::TRUNCATE, DL, IndexVT, Index); 5943 } 5944 5945 if (!VL) 5946 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5947 5948 unsigned IntID = 5949 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 5950 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5951 Ops.push_back(Val); 5952 Ops.push_back(BasePtr); 5953 Ops.push_back(Index); 5954 if (!IsUnmasked) 5955 Ops.push_back(Mask); 5956 Ops.push_back(VL); 5957 5958 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5959 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5960 } 5961 5962 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 5963 SelectionDAG &DAG) const { 5964 const MVT XLenVT = Subtarget.getXLenVT(); 5965 SDLoc DL(Op); 5966 SDValue Chain = Op->getOperand(0); 5967 SDValue SysRegNo = DAG.getTargetConstant( 5968 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5969 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 5970 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 5971 5972 // Encoding used for rounding mode in RISCV differs from that used in 5973 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 5974 // table, which consists of a sequence of 4-bit fields, each representing 5975 // corresponding FLT_ROUNDS mode. 5976 static const int Table = 5977 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 5978 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 5979 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 5980 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 5981 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 5982 5983 SDValue Shift = 5984 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 5985 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5986 DAG.getConstant(Table, DL, XLenVT), Shift); 5987 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5988 DAG.getConstant(7, DL, XLenVT)); 5989 5990 return DAG.getMergeValues({Masked, Chain}, DL); 5991 } 5992 5993 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 5994 SelectionDAG &DAG) const { 5995 const MVT XLenVT = Subtarget.getXLenVT(); 5996 SDLoc DL(Op); 5997 SDValue Chain = Op->getOperand(0); 5998 SDValue RMValue = Op->getOperand(1); 5999 SDValue SysRegNo = DAG.getTargetConstant( 6000 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6001 6002 // Encoding used for rounding mode in RISCV differs from that used in 6003 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 6004 // a table, which consists of a sequence of 4-bit fields, each representing 6005 // corresponding RISCV mode. 6006 static const unsigned Table = 6007 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 6008 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 6009 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 6010 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 6011 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 6012 6013 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 6014 DAG.getConstant(2, DL, XLenVT)); 6015 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6016 DAG.getConstant(Table, DL, XLenVT), Shift); 6017 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6018 DAG.getConstant(0x7, DL, XLenVT)); 6019 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 6020 RMValue); 6021 } 6022 6023 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) { 6024 switch (IntNo) { 6025 default: 6026 llvm_unreachable("Unexpected Intrinsic"); 6027 case Intrinsic::riscv_grev: 6028 return RISCVISD::GREVW; 6029 case Intrinsic::riscv_gorc: 6030 return RISCVISD::GORCW; 6031 case Intrinsic::riscv_bcompress: 6032 return RISCVISD::BCOMPRESSW; 6033 case Intrinsic::riscv_bdecompress: 6034 return RISCVISD::BDECOMPRESSW; 6035 case Intrinsic::riscv_bfp: 6036 return RISCVISD::BFPW; 6037 case Intrinsic::riscv_fsl: 6038 return RISCVISD::FSLW; 6039 case Intrinsic::riscv_fsr: 6040 return RISCVISD::FSRW; 6041 } 6042 } 6043 6044 // Converts the given intrinsic to a i64 operation with any extension. 6045 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG, 6046 unsigned IntNo) { 6047 SDLoc DL(N); 6048 RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo); 6049 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6050 SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6051 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2); 6052 // ReplaceNodeResults requires we maintain the same type for the return value. 6053 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6054 } 6055 6056 // Returns the opcode of the target-specific SDNode that implements the 32-bit 6057 // form of the given Opcode. 6058 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 6059 switch (Opcode) { 6060 default: 6061 llvm_unreachable("Unexpected opcode"); 6062 case ISD::SHL: 6063 return RISCVISD::SLLW; 6064 case ISD::SRA: 6065 return RISCVISD::SRAW; 6066 case ISD::SRL: 6067 return RISCVISD::SRLW; 6068 case ISD::SDIV: 6069 return RISCVISD::DIVW; 6070 case ISD::UDIV: 6071 return RISCVISD::DIVUW; 6072 case ISD::UREM: 6073 return RISCVISD::REMUW; 6074 case ISD::ROTL: 6075 return RISCVISD::ROLW; 6076 case ISD::ROTR: 6077 return RISCVISD::RORW; 6078 case RISCVISD::GREV: 6079 return RISCVISD::GREVW; 6080 case RISCVISD::GORC: 6081 return RISCVISD::GORCW; 6082 } 6083 } 6084 6085 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 6086 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 6087 // otherwise be promoted to i64, making it difficult to select the 6088 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 6089 // type i8/i16/i32 is lost. 6090 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 6091 unsigned ExtOpc = ISD::ANY_EXTEND) { 6092 SDLoc DL(N); 6093 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6094 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 6095 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 6096 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6097 // ReplaceNodeResults requires we maintain the same type for the return value. 6098 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6099 } 6100 6101 // Converts the given 32-bit operation to a i64 operation with signed extension 6102 // semantic to reduce the signed extension instructions. 6103 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 6104 SDLoc DL(N); 6105 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6106 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6107 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 6108 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6109 DAG.getValueType(MVT::i32)); 6110 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 6111 } 6112 6113 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 6114 SmallVectorImpl<SDValue> &Results, 6115 SelectionDAG &DAG) const { 6116 SDLoc DL(N); 6117 switch (N->getOpcode()) { 6118 default: 6119 llvm_unreachable("Don't know how to custom type legalize this operation!"); 6120 case ISD::STRICT_FP_TO_SINT: 6121 case ISD::STRICT_FP_TO_UINT: 6122 case ISD::FP_TO_SINT: 6123 case ISD::FP_TO_UINT: { 6124 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6125 "Unexpected custom legalisation"); 6126 bool IsStrict = N->isStrictFPOpcode(); 6127 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 6128 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 6129 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 6130 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 6131 TargetLowering::TypeSoftenFloat) { 6132 if (!isTypeLegal(Op0.getValueType())) 6133 return; 6134 if (IsStrict) { 6135 unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64 6136 : RISCVISD::STRICT_FCVT_WU_RV64; 6137 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 6138 SDValue Res = DAG.getNode( 6139 Opc, DL, VTs, N->getOperand(0), Op0, 6140 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6141 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6142 Results.push_back(Res.getValue(1)); 6143 return; 6144 } 6145 unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 6146 SDValue Res = 6147 DAG.getNode(Opc, DL, MVT::i64, Op0, 6148 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6149 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6150 return; 6151 } 6152 // If the FP type needs to be softened, emit a library call using the 'si' 6153 // version. If we left it to default legalization we'd end up with 'di'. If 6154 // the FP type doesn't need to be softened just let generic type 6155 // legalization promote the result type. 6156 RTLIB::Libcall LC; 6157 if (IsSigned) 6158 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 6159 else 6160 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 6161 MakeLibCallOptions CallOptions; 6162 EVT OpVT = Op0.getValueType(); 6163 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 6164 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 6165 SDValue Result; 6166 std::tie(Result, Chain) = 6167 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 6168 Results.push_back(Result); 6169 if (IsStrict) 6170 Results.push_back(Chain); 6171 break; 6172 } 6173 case ISD::READCYCLECOUNTER: { 6174 assert(!Subtarget.is64Bit() && 6175 "READCYCLECOUNTER only has custom type legalization on riscv32"); 6176 6177 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 6178 SDValue RCW = 6179 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 6180 6181 Results.push_back( 6182 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 6183 Results.push_back(RCW.getValue(2)); 6184 break; 6185 } 6186 case ISD::MUL: { 6187 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 6188 unsigned XLen = Subtarget.getXLen(); 6189 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 6190 if (Size > XLen) { 6191 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 6192 SDValue LHS = N->getOperand(0); 6193 SDValue RHS = N->getOperand(1); 6194 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 6195 6196 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 6197 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 6198 // We need exactly one side to be unsigned. 6199 if (LHSIsU == RHSIsU) 6200 return; 6201 6202 auto MakeMULPair = [&](SDValue S, SDValue U) { 6203 MVT XLenVT = Subtarget.getXLenVT(); 6204 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 6205 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 6206 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 6207 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 6208 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 6209 }; 6210 6211 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 6212 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 6213 6214 // The other operand should be signed, but still prefer MULH when 6215 // possible. 6216 if (RHSIsU && LHSIsS && !RHSIsS) 6217 Results.push_back(MakeMULPair(LHS, RHS)); 6218 else if (LHSIsU && RHSIsS && !LHSIsS) 6219 Results.push_back(MakeMULPair(RHS, LHS)); 6220 6221 return; 6222 } 6223 LLVM_FALLTHROUGH; 6224 } 6225 case ISD::ADD: 6226 case ISD::SUB: 6227 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6228 "Unexpected custom legalisation"); 6229 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 6230 break; 6231 case ISD::SHL: 6232 case ISD::SRA: 6233 case ISD::SRL: 6234 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6235 "Unexpected custom legalisation"); 6236 if (N->getOperand(1).getOpcode() != ISD::Constant) { 6237 Results.push_back(customLegalizeToWOp(N, DAG)); 6238 break; 6239 } 6240 6241 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 6242 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 6243 // shift amount. 6244 if (N->getOpcode() == ISD::SHL) { 6245 SDLoc DL(N); 6246 SDValue NewOp0 = 6247 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6248 SDValue NewOp1 = 6249 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 6250 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 6251 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6252 DAG.getValueType(MVT::i32)); 6253 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6254 } 6255 6256 break; 6257 case ISD::ROTL: 6258 case ISD::ROTR: 6259 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6260 "Unexpected custom legalisation"); 6261 Results.push_back(customLegalizeToWOp(N, DAG)); 6262 break; 6263 case ISD::CTTZ: 6264 case ISD::CTTZ_ZERO_UNDEF: 6265 case ISD::CTLZ: 6266 case ISD::CTLZ_ZERO_UNDEF: { 6267 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6268 "Unexpected custom legalisation"); 6269 6270 SDValue NewOp0 = 6271 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6272 bool IsCTZ = 6273 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 6274 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 6275 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 6276 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6277 return; 6278 } 6279 case ISD::SDIV: 6280 case ISD::UDIV: 6281 case ISD::UREM: { 6282 MVT VT = N->getSimpleValueType(0); 6283 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 6284 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 6285 "Unexpected custom legalisation"); 6286 // Don't promote division/remainder by constant since we should expand those 6287 // to multiply by magic constant. 6288 // FIXME: What if the expansion is disabled for minsize. 6289 if (N->getOperand(1).getOpcode() == ISD::Constant) 6290 return; 6291 6292 // If the input is i32, use ANY_EXTEND since the W instructions don't read 6293 // the upper 32 bits. For other types we need to sign or zero extend 6294 // based on the opcode. 6295 unsigned ExtOpc = ISD::ANY_EXTEND; 6296 if (VT != MVT::i32) 6297 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 6298 : ISD::ZERO_EXTEND; 6299 6300 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 6301 break; 6302 } 6303 case ISD::UADDO: 6304 case ISD::USUBO: { 6305 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6306 "Unexpected custom legalisation"); 6307 bool IsAdd = N->getOpcode() == ISD::UADDO; 6308 // Create an ADDW or SUBW. 6309 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6310 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6311 SDValue Res = 6312 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 6313 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 6314 DAG.getValueType(MVT::i32)); 6315 6316 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 6317 // Since the inputs are sign extended from i32, this is equivalent to 6318 // comparing the lower 32 bits. 6319 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6320 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 6321 IsAdd ? ISD::SETULT : ISD::SETUGT); 6322 6323 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6324 Results.push_back(Overflow); 6325 return; 6326 } 6327 case ISD::UADDSAT: 6328 case ISD::USUBSAT: { 6329 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6330 "Unexpected custom legalisation"); 6331 if (Subtarget.hasStdExtZbb()) { 6332 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 6333 // sign extend allows overflow of the lower 32 bits to be detected on 6334 // the promoted size. 6335 SDValue LHS = 6336 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6337 SDValue RHS = 6338 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 6339 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 6340 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6341 return; 6342 } 6343 6344 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 6345 // promotion for UADDO/USUBO. 6346 Results.push_back(expandAddSubSat(N, DAG)); 6347 return; 6348 } 6349 case ISD::BITCAST: { 6350 EVT VT = N->getValueType(0); 6351 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 6352 SDValue Op0 = N->getOperand(0); 6353 EVT Op0VT = Op0.getValueType(); 6354 MVT XLenVT = Subtarget.getXLenVT(); 6355 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 6356 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 6357 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 6358 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 6359 Subtarget.hasStdExtF()) { 6360 SDValue FPConv = 6361 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 6362 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 6363 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 6364 isTypeLegal(Op0VT)) { 6365 // Custom-legalize bitcasts from fixed-length vector types to illegal 6366 // scalar types in order to improve codegen. Bitcast the vector to a 6367 // one-element vector type whose element type is the same as the result 6368 // type, and extract the first element. 6369 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 6370 if (isTypeLegal(BVT)) { 6371 SDValue BVec = DAG.getBitcast(BVT, Op0); 6372 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 6373 DAG.getConstant(0, DL, XLenVT))); 6374 } 6375 } 6376 break; 6377 } 6378 case RISCVISD::GREV: 6379 case RISCVISD::GORC: { 6380 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6381 "Unexpected custom legalisation"); 6382 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6383 // This is similar to customLegalizeToWOp, except that we pass the second 6384 // operand (a TargetConstant) straight through: it is already of type 6385 // XLenVT. 6386 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6387 SDValue NewOp0 = 6388 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6389 SDValue NewOp1 = 6390 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6391 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6392 // ReplaceNodeResults requires we maintain the same type for the return 6393 // value. 6394 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6395 break; 6396 } 6397 case RISCVISD::SHFL: { 6398 // There is no SHFLIW instruction, but we can just promote the operation. 6399 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6400 "Unexpected custom legalisation"); 6401 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6402 SDValue NewOp0 = 6403 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6404 SDValue NewOp1 = 6405 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6406 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 6407 // ReplaceNodeResults requires we maintain the same type for the return 6408 // value. 6409 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6410 break; 6411 } 6412 case ISD::BSWAP: 6413 case ISD::BITREVERSE: { 6414 MVT VT = N->getSimpleValueType(0); 6415 MVT XLenVT = Subtarget.getXLenVT(); 6416 assert((VT == MVT::i8 || VT == MVT::i16 || 6417 (VT == MVT::i32 && Subtarget.is64Bit())) && 6418 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 6419 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 6420 unsigned Imm = VT.getSizeInBits() - 1; 6421 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 6422 if (N->getOpcode() == ISD::BSWAP) 6423 Imm &= ~0x7U; 6424 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 6425 SDValue GREVI = 6426 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 6427 // ReplaceNodeResults requires we maintain the same type for the return 6428 // value. 6429 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 6430 break; 6431 } 6432 case ISD::FSHL: 6433 case ISD::FSHR: { 6434 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6435 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 6436 SDValue NewOp0 = 6437 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6438 SDValue NewOp1 = 6439 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6440 SDValue NewShAmt = 6441 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6442 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 6443 // Mask the shift amount to 5 bits to prevent accidentally setting bit 5. 6444 NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt, 6445 DAG.getConstant(0x1f, DL, MVT::i64)); 6446 // fshl and fshr concatenate their operands in the same order. fsrw and fslw 6447 // instruction use different orders. fshl will return its first operand for 6448 // shift of zero, fshr will return its second operand. fsl and fsr both 6449 // return rs1 so the ISD nodes need to have different operand orders. 6450 // Shift amount is in rs2. 6451 unsigned Opc = RISCVISD::FSLW; 6452 if (N->getOpcode() == ISD::FSHR) { 6453 std::swap(NewOp0, NewOp1); 6454 Opc = RISCVISD::FSRW; 6455 } 6456 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt); 6457 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 6458 break; 6459 } 6460 case ISD::EXTRACT_VECTOR_ELT: { 6461 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 6462 // type is illegal (currently only vXi64 RV32). 6463 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 6464 // transferred to the destination register. We issue two of these from the 6465 // upper- and lower- halves of the SEW-bit vector element, slid down to the 6466 // first element. 6467 SDValue Vec = N->getOperand(0); 6468 SDValue Idx = N->getOperand(1); 6469 6470 // The vector type hasn't been legalized yet so we can't issue target 6471 // specific nodes if it needs legalization. 6472 // FIXME: We would manually legalize if it's important. 6473 if (!isTypeLegal(Vec.getValueType())) 6474 return; 6475 6476 MVT VecVT = Vec.getSimpleValueType(); 6477 6478 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 6479 VecVT.getVectorElementType() == MVT::i64 && 6480 "Unexpected EXTRACT_VECTOR_ELT legalization"); 6481 6482 // If this is a fixed vector, we need to convert it to a scalable vector. 6483 MVT ContainerVT = VecVT; 6484 if (VecVT.isFixedLengthVector()) { 6485 ContainerVT = getContainerForFixedLengthVector(VecVT); 6486 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 6487 } 6488 6489 MVT XLenVT = Subtarget.getXLenVT(); 6490 6491 // Use a VL of 1 to avoid processing more elements than we need. 6492 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6493 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6494 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6495 6496 // Unless the index is known to be 0, we must slide the vector down to get 6497 // the desired element into index 0. 6498 if (!isNullConstant(Idx)) { 6499 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 6500 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 6501 } 6502 6503 // Extract the lower XLEN bits of the correct vector element. 6504 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6505 6506 // To extract the upper XLEN bits of the vector element, shift the first 6507 // element right by 32 bits and re-extract the lower XLEN bits. 6508 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6509 DAG.getConstant(32, DL, XLenVT), VL); 6510 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 6511 ThirtyTwoV, Mask, VL); 6512 6513 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6514 6515 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6516 break; 6517 } 6518 case ISD::INTRINSIC_WO_CHAIN: { 6519 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 6520 switch (IntNo) { 6521 default: 6522 llvm_unreachable( 6523 "Don't know how to custom type legalize this intrinsic!"); 6524 case Intrinsic::riscv_grev: 6525 case Intrinsic::riscv_gorc: 6526 case Intrinsic::riscv_bcompress: 6527 case Intrinsic::riscv_bdecompress: 6528 case Intrinsic::riscv_bfp: { 6529 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6530 "Unexpected custom legalisation"); 6531 Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo)); 6532 break; 6533 } 6534 case Intrinsic::riscv_fsl: 6535 case Intrinsic::riscv_fsr: { 6536 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6537 "Unexpected custom legalisation"); 6538 SDValue NewOp1 = 6539 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6540 SDValue NewOp2 = 6541 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6542 SDValue NewOp3 = 6543 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3)); 6544 unsigned Opc = getRISCVWOpcodeByIntr(IntNo); 6545 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3); 6546 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6547 break; 6548 } 6549 case Intrinsic::riscv_orc_b: { 6550 // Lower to the GORCI encoding for orc.b with the operand extended. 6551 SDValue NewOp = 6552 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6553 // If Zbp is enabled, use GORCIW which will sign extend the result. 6554 unsigned Opc = 6555 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 6556 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 6557 DAG.getConstant(7, DL, MVT::i64)); 6558 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6559 return; 6560 } 6561 case Intrinsic::riscv_shfl: 6562 case Intrinsic::riscv_unshfl: { 6563 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6564 "Unexpected custom legalisation"); 6565 SDValue NewOp1 = 6566 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6567 SDValue NewOp2 = 6568 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6569 unsigned Opc = 6570 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 6571 if (isa<ConstantSDNode>(N->getOperand(2))) { 6572 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 6573 DAG.getConstant(0xf, DL, MVT::i64)); 6574 Opc = 6575 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 6576 } 6577 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6578 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6579 break; 6580 } 6581 case Intrinsic::riscv_vmv_x_s: { 6582 EVT VT = N->getValueType(0); 6583 MVT XLenVT = Subtarget.getXLenVT(); 6584 if (VT.bitsLT(XLenVT)) { 6585 // Simple case just extract using vmv.x.s and truncate. 6586 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 6587 Subtarget.getXLenVT(), N->getOperand(1)); 6588 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 6589 return; 6590 } 6591 6592 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 6593 "Unexpected custom legalization"); 6594 6595 // We need to do the move in two steps. 6596 SDValue Vec = N->getOperand(1); 6597 MVT VecVT = Vec.getSimpleValueType(); 6598 6599 // First extract the lower XLEN bits of the element. 6600 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6601 6602 // To extract the upper XLEN bits of the vector element, shift the first 6603 // element right by 32 bits and re-extract the lower XLEN bits. 6604 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6605 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 6606 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6607 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 6608 DAG.getConstant(32, DL, XLenVT), VL); 6609 SDValue LShr32 = 6610 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 6611 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6612 6613 Results.push_back( 6614 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6615 break; 6616 } 6617 } 6618 break; 6619 } 6620 case ISD::VECREDUCE_ADD: 6621 case ISD::VECREDUCE_AND: 6622 case ISD::VECREDUCE_OR: 6623 case ISD::VECREDUCE_XOR: 6624 case ISD::VECREDUCE_SMAX: 6625 case ISD::VECREDUCE_UMAX: 6626 case ISD::VECREDUCE_SMIN: 6627 case ISD::VECREDUCE_UMIN: 6628 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 6629 Results.push_back(V); 6630 break; 6631 case ISD::VP_REDUCE_ADD: 6632 case ISD::VP_REDUCE_AND: 6633 case ISD::VP_REDUCE_OR: 6634 case ISD::VP_REDUCE_XOR: 6635 case ISD::VP_REDUCE_SMAX: 6636 case ISD::VP_REDUCE_UMAX: 6637 case ISD::VP_REDUCE_SMIN: 6638 case ISD::VP_REDUCE_UMIN: 6639 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 6640 Results.push_back(V); 6641 break; 6642 case ISD::FLT_ROUNDS_: { 6643 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 6644 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 6645 Results.push_back(Res.getValue(0)); 6646 Results.push_back(Res.getValue(1)); 6647 break; 6648 } 6649 } 6650 } 6651 6652 // A structure to hold one of the bit-manipulation patterns below. Together, a 6653 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 6654 // (or (and (shl x, 1), 0xAAAAAAAA), 6655 // (and (srl x, 1), 0x55555555)) 6656 struct RISCVBitmanipPat { 6657 SDValue Op; 6658 unsigned ShAmt; 6659 bool IsSHL; 6660 6661 bool formsPairWith(const RISCVBitmanipPat &Other) const { 6662 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 6663 } 6664 }; 6665 6666 // Matches patterns of the form 6667 // (and (shl x, C2), (C1 << C2)) 6668 // (and (srl x, C2), C1) 6669 // (shl (and x, C1), C2) 6670 // (srl (and x, (C1 << C2)), C2) 6671 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 6672 // The expected masks for each shift amount are specified in BitmanipMasks where 6673 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 6674 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 6675 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 6676 // XLen is 64. 6677 static Optional<RISCVBitmanipPat> 6678 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 6679 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 6680 "Unexpected number of masks"); 6681 Optional<uint64_t> Mask; 6682 // Optionally consume a mask around the shift operation. 6683 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 6684 Mask = Op.getConstantOperandVal(1); 6685 Op = Op.getOperand(0); 6686 } 6687 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 6688 return None; 6689 bool IsSHL = Op.getOpcode() == ISD::SHL; 6690 6691 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6692 return None; 6693 uint64_t ShAmt = Op.getConstantOperandVal(1); 6694 6695 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6696 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 6697 return None; 6698 // If we don't have enough masks for 64 bit, then we must be trying to 6699 // match SHFL so we're only allowed to shift 1/4 of the width. 6700 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 6701 return None; 6702 6703 SDValue Src = Op.getOperand(0); 6704 6705 // The expected mask is shifted left when the AND is found around SHL 6706 // patterns. 6707 // ((x >> 1) & 0x55555555) 6708 // ((x << 1) & 0xAAAAAAAA) 6709 bool SHLExpMask = IsSHL; 6710 6711 if (!Mask) { 6712 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 6713 // the mask is all ones: consume that now. 6714 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 6715 Mask = Src.getConstantOperandVal(1); 6716 Src = Src.getOperand(0); 6717 // The expected mask is now in fact shifted left for SRL, so reverse the 6718 // decision. 6719 // ((x & 0xAAAAAAAA) >> 1) 6720 // ((x & 0x55555555) << 1) 6721 SHLExpMask = !SHLExpMask; 6722 } else { 6723 // Use a default shifted mask of all-ones if there's no AND, truncated 6724 // down to the expected width. This simplifies the logic later on. 6725 Mask = maskTrailingOnes<uint64_t>(Width); 6726 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 6727 } 6728 } 6729 6730 unsigned MaskIdx = Log2_32(ShAmt); 6731 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6732 6733 if (SHLExpMask) 6734 ExpMask <<= ShAmt; 6735 6736 if (Mask != ExpMask) 6737 return None; 6738 6739 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 6740 } 6741 6742 // Matches any of the following bit-manipulation patterns: 6743 // (and (shl x, 1), (0x55555555 << 1)) 6744 // (and (srl x, 1), 0x55555555) 6745 // (shl (and x, 0x55555555), 1) 6746 // (srl (and x, (0x55555555 << 1)), 1) 6747 // where the shift amount and mask may vary thus: 6748 // [1] = 0x55555555 / 0xAAAAAAAA 6749 // [2] = 0x33333333 / 0xCCCCCCCC 6750 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 6751 // [8] = 0x00FF00FF / 0xFF00FF00 6752 // [16] = 0x0000FFFF / 0xFFFFFFFF 6753 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 6754 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 6755 // These are the unshifted masks which we use to match bit-manipulation 6756 // patterns. They may be shifted left in certain circumstances. 6757 static const uint64_t BitmanipMasks[] = { 6758 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 6759 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 6760 6761 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6762 } 6763 6764 // Match the following pattern as a GREVI(W) operation 6765 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 6766 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 6767 const RISCVSubtarget &Subtarget) { 6768 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6769 EVT VT = Op.getValueType(); 6770 6771 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6772 auto LHS = matchGREVIPat(Op.getOperand(0)); 6773 auto RHS = matchGREVIPat(Op.getOperand(1)); 6774 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 6775 SDLoc DL(Op); 6776 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 6777 DAG.getConstant(LHS->ShAmt, DL, VT)); 6778 } 6779 } 6780 return SDValue(); 6781 } 6782 6783 // Matches any the following pattern as a GORCI(W) operation 6784 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 6785 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 6786 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 6787 // Note that with the variant of 3., 6788 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 6789 // the inner pattern will first be matched as GREVI and then the outer 6790 // pattern will be matched to GORC via the first rule above. 6791 // 4. (or (rotl/rotr x, bitwidth/2), x) 6792 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 6793 const RISCVSubtarget &Subtarget) { 6794 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6795 EVT VT = Op.getValueType(); 6796 6797 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6798 SDLoc DL(Op); 6799 SDValue Op0 = Op.getOperand(0); 6800 SDValue Op1 = Op.getOperand(1); 6801 6802 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 6803 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 6804 isa<ConstantSDNode>(Reverse.getOperand(1)) && 6805 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 6806 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 6807 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 6808 if ((Reverse.getOpcode() == ISD::ROTL || 6809 Reverse.getOpcode() == ISD::ROTR) && 6810 Reverse.getOperand(0) == X && 6811 isa<ConstantSDNode>(Reverse.getOperand(1))) { 6812 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 6813 if (RotAmt == (VT.getSizeInBits() / 2)) 6814 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 6815 DAG.getConstant(RotAmt, DL, VT)); 6816 } 6817 return SDValue(); 6818 }; 6819 6820 // Check for either commutable permutation of (or (GREVI x, shamt), x) 6821 if (SDValue V = MatchOROfReverse(Op0, Op1)) 6822 return V; 6823 if (SDValue V = MatchOROfReverse(Op1, Op0)) 6824 return V; 6825 6826 // OR is commutable so canonicalize its OR operand to the left 6827 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 6828 std::swap(Op0, Op1); 6829 if (Op0.getOpcode() != ISD::OR) 6830 return SDValue(); 6831 SDValue OrOp0 = Op0.getOperand(0); 6832 SDValue OrOp1 = Op0.getOperand(1); 6833 auto LHS = matchGREVIPat(OrOp0); 6834 // OR is commutable so swap the operands and try again: x might have been 6835 // on the left 6836 if (!LHS) { 6837 std::swap(OrOp0, OrOp1); 6838 LHS = matchGREVIPat(OrOp0); 6839 } 6840 auto RHS = matchGREVIPat(Op1); 6841 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 6842 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 6843 DAG.getConstant(LHS->ShAmt, DL, VT)); 6844 } 6845 } 6846 return SDValue(); 6847 } 6848 6849 // Matches any of the following bit-manipulation patterns: 6850 // (and (shl x, 1), (0x22222222 << 1)) 6851 // (and (srl x, 1), 0x22222222) 6852 // (shl (and x, 0x22222222), 1) 6853 // (srl (and x, (0x22222222 << 1)), 1) 6854 // where the shift amount and mask may vary thus: 6855 // [1] = 0x22222222 / 0x44444444 6856 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 6857 // [4] = 0x00F000F0 / 0x0F000F00 6858 // [8] = 0x0000FF00 / 0x00FF0000 6859 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 6860 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 6861 // These are the unshifted masks which we use to match bit-manipulation 6862 // patterns. They may be shifted left in certain circumstances. 6863 static const uint64_t BitmanipMasks[] = { 6864 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 6865 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 6866 6867 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6868 } 6869 6870 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 6871 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 6872 const RISCVSubtarget &Subtarget) { 6873 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6874 EVT VT = Op.getValueType(); 6875 6876 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 6877 return SDValue(); 6878 6879 SDValue Op0 = Op.getOperand(0); 6880 SDValue Op1 = Op.getOperand(1); 6881 6882 // Or is commutable so canonicalize the second OR to the LHS. 6883 if (Op0.getOpcode() != ISD::OR) 6884 std::swap(Op0, Op1); 6885 if (Op0.getOpcode() != ISD::OR) 6886 return SDValue(); 6887 6888 // We found an inner OR, so our operands are the operands of the inner OR 6889 // and the other operand of the outer OR. 6890 SDValue A = Op0.getOperand(0); 6891 SDValue B = Op0.getOperand(1); 6892 SDValue C = Op1; 6893 6894 auto Match1 = matchSHFLPat(A); 6895 auto Match2 = matchSHFLPat(B); 6896 6897 // If neither matched, we failed. 6898 if (!Match1 && !Match2) 6899 return SDValue(); 6900 6901 // We had at least one match. if one failed, try the remaining C operand. 6902 if (!Match1) { 6903 std::swap(A, C); 6904 Match1 = matchSHFLPat(A); 6905 if (!Match1) 6906 return SDValue(); 6907 } else if (!Match2) { 6908 std::swap(B, C); 6909 Match2 = matchSHFLPat(B); 6910 if (!Match2) 6911 return SDValue(); 6912 } 6913 assert(Match1 && Match2); 6914 6915 // Make sure our matches pair up. 6916 if (!Match1->formsPairWith(*Match2)) 6917 return SDValue(); 6918 6919 // All the remains is to make sure C is an AND with the same input, that masks 6920 // out the bits that are being shuffled. 6921 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 6922 C.getOperand(0) != Match1->Op) 6923 return SDValue(); 6924 6925 uint64_t Mask = C.getConstantOperandVal(1); 6926 6927 static const uint64_t BitmanipMasks[] = { 6928 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 6929 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 6930 }; 6931 6932 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6933 unsigned MaskIdx = Log2_32(Match1->ShAmt); 6934 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6935 6936 if (Mask != ExpMask) 6937 return SDValue(); 6938 6939 SDLoc DL(Op); 6940 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 6941 DAG.getConstant(Match1->ShAmt, DL, VT)); 6942 } 6943 6944 // Optimize (add (shl x, c0), (shl y, c1)) -> 6945 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 6946 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 6947 const RISCVSubtarget &Subtarget) { 6948 // Perform this optimization only in the zba extension. 6949 if (!Subtarget.hasStdExtZba()) 6950 return SDValue(); 6951 6952 // Skip for vector types and larger types. 6953 EVT VT = N->getValueType(0); 6954 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6955 return SDValue(); 6956 6957 // The two operand nodes must be SHL and have no other use. 6958 SDValue N0 = N->getOperand(0); 6959 SDValue N1 = N->getOperand(1); 6960 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 6961 !N0->hasOneUse() || !N1->hasOneUse()) 6962 return SDValue(); 6963 6964 // Check c0 and c1. 6965 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6966 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 6967 if (!N0C || !N1C) 6968 return SDValue(); 6969 int64_t C0 = N0C->getSExtValue(); 6970 int64_t C1 = N1C->getSExtValue(); 6971 if (C0 <= 0 || C1 <= 0) 6972 return SDValue(); 6973 6974 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 6975 int64_t Bits = std::min(C0, C1); 6976 int64_t Diff = std::abs(C0 - C1); 6977 if (Diff != 1 && Diff != 2 && Diff != 3) 6978 return SDValue(); 6979 6980 // Build nodes. 6981 SDLoc DL(N); 6982 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 6983 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 6984 SDValue NA0 = 6985 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 6986 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 6987 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 6988 } 6989 6990 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 6991 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 6992 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 6993 // not undo itself, but they are redundant. 6994 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 6995 SDValue Src = N->getOperand(0); 6996 6997 if (Src.getOpcode() != N->getOpcode()) 6998 return SDValue(); 6999 7000 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7001 !isa<ConstantSDNode>(Src.getOperand(1))) 7002 return SDValue(); 7003 7004 unsigned ShAmt1 = N->getConstantOperandVal(1); 7005 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7006 Src = Src.getOperand(0); 7007 7008 unsigned CombinedShAmt; 7009 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 7010 CombinedShAmt = ShAmt1 | ShAmt2; 7011 else 7012 CombinedShAmt = ShAmt1 ^ ShAmt2; 7013 7014 if (CombinedShAmt == 0) 7015 return Src; 7016 7017 SDLoc DL(N); 7018 return DAG.getNode( 7019 N->getOpcode(), DL, N->getValueType(0), Src, 7020 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7021 } 7022 7023 // Combine a constant select operand into its use: 7024 // 7025 // (and (select cond, -1, c), x) 7026 // -> (select cond, x, (and x, c)) [AllOnes=1] 7027 // (or (select cond, 0, c), x) 7028 // -> (select cond, x, (or x, c)) [AllOnes=0] 7029 // (xor (select cond, 0, c), x) 7030 // -> (select cond, x, (xor x, c)) [AllOnes=0] 7031 // (add (select cond, 0, c), x) 7032 // -> (select cond, x, (add x, c)) [AllOnes=0] 7033 // (sub x, (select cond, 0, c)) 7034 // -> (select cond, x, (sub x, c)) [AllOnes=0] 7035 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 7036 SelectionDAG &DAG, bool AllOnes) { 7037 EVT VT = N->getValueType(0); 7038 7039 // Skip vectors. 7040 if (VT.isVector()) 7041 return SDValue(); 7042 7043 if ((Slct.getOpcode() != ISD::SELECT && 7044 Slct.getOpcode() != RISCVISD::SELECT_CC) || 7045 !Slct.hasOneUse()) 7046 return SDValue(); 7047 7048 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 7049 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 7050 }; 7051 7052 bool SwapSelectOps; 7053 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 7054 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 7055 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 7056 SDValue NonConstantVal; 7057 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 7058 SwapSelectOps = false; 7059 NonConstantVal = FalseVal; 7060 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 7061 SwapSelectOps = true; 7062 NonConstantVal = TrueVal; 7063 } else 7064 return SDValue(); 7065 7066 // Slct is now know to be the desired identity constant when CC is true. 7067 TrueVal = OtherOp; 7068 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 7069 // Unless SwapSelectOps says the condition should be false. 7070 if (SwapSelectOps) 7071 std::swap(TrueVal, FalseVal); 7072 7073 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 7074 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 7075 {Slct.getOperand(0), Slct.getOperand(1), 7076 Slct.getOperand(2), TrueVal, FalseVal}); 7077 7078 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 7079 {Slct.getOperand(0), TrueVal, FalseVal}); 7080 } 7081 7082 // Attempt combineSelectAndUse on each operand of a commutative operator N. 7083 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 7084 bool AllOnes) { 7085 SDValue N0 = N->getOperand(0); 7086 SDValue N1 = N->getOperand(1); 7087 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 7088 return Result; 7089 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 7090 return Result; 7091 return SDValue(); 7092 } 7093 7094 // Transform (add (mul x, c0), c1) -> 7095 // (add (mul (add x, c1/c0), c0), c1%c0). 7096 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 7097 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 7098 // to an infinite loop in DAGCombine if transformed. 7099 // Or transform (add (mul x, c0), c1) -> 7100 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 7101 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 7102 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 7103 // lead to an infinite loop in DAGCombine if transformed. 7104 // Or transform (add (mul x, c0), c1) -> 7105 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 7106 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 7107 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 7108 // lead to an infinite loop in DAGCombine if transformed. 7109 // Or transform (add (mul x, c0), c1) -> 7110 // (mul (add x, c1/c0), c0). 7111 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 7112 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 7113 const RISCVSubtarget &Subtarget) { 7114 // Skip for vector types and larger types. 7115 EVT VT = N->getValueType(0); 7116 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7117 return SDValue(); 7118 // The first operand node must be a MUL and has no other use. 7119 SDValue N0 = N->getOperand(0); 7120 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 7121 return SDValue(); 7122 // Check if c0 and c1 match above conditions. 7123 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7124 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7125 if (!N0C || !N1C) 7126 return SDValue(); 7127 int64_t C0 = N0C->getSExtValue(); 7128 int64_t C1 = N1C->getSExtValue(); 7129 int64_t CA, CB; 7130 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 7131 return SDValue(); 7132 // Search for proper CA (non-zero) and CB that both are simm12. 7133 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 7134 !isInt<12>(C0 * (C1 / C0))) { 7135 CA = C1 / C0; 7136 CB = C1 % C0; 7137 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 7138 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 7139 CA = C1 / C0 + 1; 7140 CB = C1 % C0 - C0; 7141 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 7142 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 7143 CA = C1 / C0 - 1; 7144 CB = C1 % C0 + C0; 7145 } else 7146 return SDValue(); 7147 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 7148 SDLoc DL(N); 7149 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 7150 DAG.getConstant(CA, DL, VT)); 7151 SDValue New1 = 7152 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 7153 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 7154 } 7155 7156 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 7157 const RISCVSubtarget &Subtarget) { 7158 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 7159 return V; 7160 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 7161 return V; 7162 // fold (add (select lhs, rhs, cc, 0, y), x) -> 7163 // (select lhs, rhs, cc, x, (add x, y)) 7164 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7165 } 7166 7167 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 7168 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 7169 // (select lhs, rhs, cc, x, (sub x, y)) 7170 SDValue N0 = N->getOperand(0); 7171 SDValue N1 = N->getOperand(1); 7172 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 7173 } 7174 7175 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 7176 // fold (and (select lhs, rhs, cc, -1, y), x) -> 7177 // (select lhs, rhs, cc, x, (and x, y)) 7178 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 7179 } 7180 7181 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 7182 const RISCVSubtarget &Subtarget) { 7183 if (Subtarget.hasStdExtZbp()) { 7184 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 7185 return GREV; 7186 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 7187 return GORC; 7188 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 7189 return SHFL; 7190 } 7191 7192 // fold (or (select cond, 0, y), x) -> 7193 // (select cond, x, (or x, y)) 7194 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7195 } 7196 7197 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 7198 // fold (xor (select cond, 0, y), x) -> 7199 // (select cond, x, (xor x, y)) 7200 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7201 } 7202 7203 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 7204 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 7205 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 7206 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 7207 // ADDW/SUBW/MULW. 7208 static SDValue performANY_EXTENDCombine(SDNode *N, 7209 TargetLowering::DAGCombinerInfo &DCI, 7210 const RISCVSubtarget &Subtarget) { 7211 if (!Subtarget.is64Bit()) 7212 return SDValue(); 7213 7214 SelectionDAG &DAG = DCI.DAG; 7215 7216 SDValue Src = N->getOperand(0); 7217 EVT VT = N->getValueType(0); 7218 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 7219 return SDValue(); 7220 7221 // The opcode must be one that can implicitly sign_extend. 7222 // FIXME: Additional opcodes. 7223 switch (Src.getOpcode()) { 7224 default: 7225 return SDValue(); 7226 case ISD::MUL: 7227 if (!Subtarget.hasStdExtM()) 7228 return SDValue(); 7229 LLVM_FALLTHROUGH; 7230 case ISD::ADD: 7231 case ISD::SUB: 7232 break; 7233 } 7234 7235 // Only handle cases where the result is used by a CopyToReg. That likely 7236 // means the value is a liveout of the basic block. This helps prevent 7237 // infinite combine loops like PR51206. 7238 if (none_of(N->uses(), 7239 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 7240 return SDValue(); 7241 7242 SmallVector<SDNode *, 4> SetCCs; 7243 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 7244 UE = Src.getNode()->use_end(); 7245 UI != UE; ++UI) { 7246 SDNode *User = *UI; 7247 if (User == N) 7248 continue; 7249 if (UI.getUse().getResNo() != Src.getResNo()) 7250 continue; 7251 // All i32 setccs are legalized by sign extending operands. 7252 if (User->getOpcode() == ISD::SETCC) { 7253 SetCCs.push_back(User); 7254 continue; 7255 } 7256 // We don't know if we can extend this user. 7257 break; 7258 } 7259 7260 // If we don't have any SetCCs, this isn't worthwhile. 7261 if (SetCCs.empty()) 7262 return SDValue(); 7263 7264 SDLoc DL(N); 7265 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 7266 DCI.CombineTo(N, SExt); 7267 7268 // Promote all the setccs. 7269 for (SDNode *SetCC : SetCCs) { 7270 SmallVector<SDValue, 4> Ops; 7271 7272 for (unsigned j = 0; j != 2; ++j) { 7273 SDValue SOp = SetCC->getOperand(j); 7274 if (SOp == Src) 7275 Ops.push_back(SExt); 7276 else 7277 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 7278 } 7279 7280 Ops.push_back(SetCC->getOperand(2)); 7281 DCI.CombineTo(SetCC, 7282 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 7283 } 7284 return SDValue(N, 0); 7285 } 7286 7287 // Try to form VWMUL or VWMULU. 7288 // FIXME: Support VWMULSU. 7289 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG, 7290 bool Commute) { 7291 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 7292 SDValue Op0 = N->getOperand(0); 7293 SDValue Op1 = N->getOperand(1); 7294 if (Commute) 7295 std::swap(Op0, Op1); 7296 7297 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 7298 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 7299 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 7300 return SDValue(); 7301 7302 SDValue Mask = N->getOperand(2); 7303 SDValue VL = N->getOperand(3); 7304 7305 // Make sure the mask and VL match. 7306 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 7307 return SDValue(); 7308 7309 MVT VT = N->getSimpleValueType(0); 7310 7311 // Determine the narrow size for a widening multiply. 7312 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 7313 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 7314 VT.getVectorElementCount()); 7315 7316 SDLoc DL(N); 7317 7318 // See if the other operand is the same opcode. 7319 if (Op0.getOpcode() == Op1.getOpcode()) { 7320 if (!Op1.hasOneUse()) 7321 return SDValue(); 7322 7323 // Make sure the mask and VL match. 7324 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 7325 return SDValue(); 7326 7327 Op1 = Op1.getOperand(0); 7328 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 7329 // The operand is a splat of a scalar. 7330 7331 // The VL must be the same. 7332 if (Op1.getOperand(1) != VL) 7333 return SDValue(); 7334 7335 // Get the scalar value. 7336 Op1 = Op1.getOperand(0); 7337 7338 // See if have enough sign bits or zero bits in the scalar to use a 7339 // widening multiply by splatting to smaller element size. 7340 unsigned EltBits = VT.getScalarSizeInBits(); 7341 unsigned ScalarBits = Op1.getValueSizeInBits(); 7342 // Make sure we're getting all element bits from the scalar register. 7343 // FIXME: Support implicit sign extension of vmv.v.x? 7344 if (ScalarBits < EltBits) 7345 return SDValue(); 7346 7347 if (IsSignExt) { 7348 if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize)) 7349 return SDValue(); 7350 } else { 7351 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 7352 if (!DAG.MaskedValueIsZero(Op1, Mask)) 7353 return SDValue(); 7354 } 7355 7356 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL); 7357 } else 7358 return SDValue(); 7359 7360 Op0 = Op0.getOperand(0); 7361 7362 // Re-introduce narrower extends if needed. 7363 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 7364 if (Op0.getValueType() != NarrowVT) 7365 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 7366 if (Op1.getValueType() != NarrowVT) 7367 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 7368 7369 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 7370 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 7371 } 7372 7373 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) { 7374 switch (Op.getOpcode()) { 7375 case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE; 7376 case ISD::FTRUNC: return RISCVFPRndMode::RTZ; 7377 case ISD::FFLOOR: return RISCVFPRndMode::RDN; 7378 case ISD::FCEIL: return RISCVFPRndMode::RUP; 7379 case ISD::FROUND: return RISCVFPRndMode::RMM; 7380 } 7381 7382 return RISCVFPRndMode::Invalid; 7383 } 7384 7385 // Fold 7386 // (fp_to_int (froundeven X)) -> fcvt X, rne 7387 // (fp_to_int (ftrunc X)) -> fcvt X, rtz 7388 // (fp_to_int (ffloor X)) -> fcvt X, rdn 7389 // (fp_to_int (fceil X)) -> fcvt X, rup 7390 // (fp_to_int (fround X)) -> fcvt X, rmm 7391 static SDValue performFP_TO_INTCombine(SDNode *N, 7392 TargetLowering::DAGCombinerInfo &DCI, 7393 const RISCVSubtarget &Subtarget) { 7394 SelectionDAG &DAG = DCI.DAG; 7395 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7396 MVT XLenVT = Subtarget.getXLenVT(); 7397 7398 // Only handle XLen or i32 types. Other types narrower than XLen will 7399 // eventually be legalized to XLenVT. 7400 EVT VT = N->getValueType(0); 7401 if (VT != MVT::i32 && VT != XLenVT) 7402 return SDValue(); 7403 7404 SDValue Src = N->getOperand(0); 7405 7406 // Ensure the FP type is also legal. 7407 if (!TLI.isTypeLegal(Src.getValueType())) 7408 return SDValue(); 7409 7410 // Don't do this for f16 with Zfhmin and not Zfh. 7411 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 7412 return SDValue(); 7413 7414 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 7415 if (FRM == RISCVFPRndMode::Invalid) 7416 return SDValue(); 7417 7418 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; 7419 7420 unsigned Opc; 7421 if (VT == XLenVT) 7422 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 7423 else 7424 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 7425 7426 SDLoc DL(N); 7427 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0), 7428 DAG.getTargetConstant(FRM, DL, XLenVT)); 7429 return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt); 7430 } 7431 7432 // Fold 7433 // (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne)) 7434 // (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz)) 7435 // (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn)) 7436 // (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup)) 7437 // (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm)) 7438 static SDValue performFP_TO_INT_SATCombine(SDNode *N, 7439 TargetLowering::DAGCombinerInfo &DCI, 7440 const RISCVSubtarget &Subtarget) { 7441 SelectionDAG &DAG = DCI.DAG; 7442 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7443 MVT XLenVT = Subtarget.getXLenVT(); 7444 7445 // Only handle XLen types. Other types narrower than XLen will eventually be 7446 // legalized to XLenVT. 7447 EVT DstVT = N->getValueType(0); 7448 if (DstVT != XLenVT) 7449 return SDValue(); 7450 7451 SDValue Src = N->getOperand(0); 7452 7453 // Ensure the FP type is also legal. 7454 if (!TLI.isTypeLegal(Src.getValueType())) 7455 return SDValue(); 7456 7457 // Don't do this for f16 with Zfhmin and not Zfh. 7458 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 7459 return SDValue(); 7460 7461 EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 7462 7463 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 7464 if (FRM == RISCVFPRndMode::Invalid) 7465 return SDValue(); 7466 7467 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT; 7468 7469 unsigned Opc; 7470 if (SatVT == DstVT) 7471 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 7472 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 7473 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 7474 else 7475 return SDValue(); 7476 // FIXME: Support other SatVTs by clamping before or after the conversion. 7477 7478 Src = Src.getOperand(0); 7479 7480 SDLoc DL(N); 7481 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src, 7482 DAG.getTargetConstant(FRM, DL, XLenVT)); 7483 7484 // RISCV FP-to-int conversions saturate to the destination register size, but 7485 // don't produce 0 for nan. 7486 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 7487 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 7488 } 7489 7490 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 7491 DAGCombinerInfo &DCI) const { 7492 SelectionDAG &DAG = DCI.DAG; 7493 7494 // Helper to call SimplifyDemandedBits on an operand of N where only some low 7495 // bits are demanded. N will be added to the Worklist if it was not deleted. 7496 // Caller should return SDValue(N, 0) if this returns true. 7497 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 7498 SDValue Op = N->getOperand(OpNo); 7499 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 7500 if (!SimplifyDemandedBits(Op, Mask, DCI)) 7501 return false; 7502 7503 if (N->getOpcode() != ISD::DELETED_NODE) 7504 DCI.AddToWorklist(N); 7505 return true; 7506 }; 7507 7508 switch (N->getOpcode()) { 7509 default: 7510 break; 7511 case RISCVISD::SplitF64: { 7512 SDValue Op0 = N->getOperand(0); 7513 // If the input to SplitF64 is just BuildPairF64 then the operation is 7514 // redundant. Instead, use BuildPairF64's operands directly. 7515 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 7516 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 7517 7518 SDLoc DL(N); 7519 7520 // It's cheaper to materialise two 32-bit integers than to load a double 7521 // from the constant pool and transfer it to integer registers through the 7522 // stack. 7523 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 7524 APInt V = C->getValueAPF().bitcastToAPInt(); 7525 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 7526 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 7527 return DCI.CombineTo(N, Lo, Hi); 7528 } 7529 7530 // This is a target-specific version of a DAGCombine performed in 7531 // DAGCombiner::visitBITCAST. It performs the equivalent of: 7532 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7533 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7534 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 7535 !Op0.getNode()->hasOneUse()) 7536 break; 7537 SDValue NewSplitF64 = 7538 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 7539 Op0.getOperand(0)); 7540 SDValue Lo = NewSplitF64.getValue(0); 7541 SDValue Hi = NewSplitF64.getValue(1); 7542 APInt SignBit = APInt::getSignMask(32); 7543 if (Op0.getOpcode() == ISD::FNEG) { 7544 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 7545 DAG.getConstant(SignBit, DL, MVT::i32)); 7546 return DCI.CombineTo(N, Lo, NewHi); 7547 } 7548 assert(Op0.getOpcode() == ISD::FABS); 7549 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 7550 DAG.getConstant(~SignBit, DL, MVT::i32)); 7551 return DCI.CombineTo(N, Lo, NewHi); 7552 } 7553 case RISCVISD::SLLW: 7554 case RISCVISD::SRAW: 7555 case RISCVISD::SRLW: 7556 case RISCVISD::ROLW: 7557 case RISCVISD::RORW: { 7558 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7559 if (SimplifyDemandedLowBitsHelper(0, 32) || 7560 SimplifyDemandedLowBitsHelper(1, 5)) 7561 return SDValue(N, 0); 7562 break; 7563 } 7564 case RISCVISD::CLZW: 7565 case RISCVISD::CTZW: { 7566 // Only the lower 32 bits of the first operand are read 7567 if (SimplifyDemandedLowBitsHelper(0, 32)) 7568 return SDValue(N, 0); 7569 break; 7570 } 7571 case RISCVISD::GREV: 7572 case RISCVISD::GORC: { 7573 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 7574 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7575 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7576 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 7577 return SDValue(N, 0); 7578 7579 return combineGREVI_GORCI(N, DAG); 7580 } 7581 case RISCVISD::GREVW: 7582 case RISCVISD::GORCW: { 7583 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7584 if (SimplifyDemandedLowBitsHelper(0, 32) || 7585 SimplifyDemandedLowBitsHelper(1, 5)) 7586 return SDValue(N, 0); 7587 7588 return combineGREVI_GORCI(N, DAG); 7589 } 7590 case RISCVISD::SHFL: 7591 case RISCVISD::UNSHFL: { 7592 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 7593 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7594 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7595 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 7596 return SDValue(N, 0); 7597 7598 break; 7599 } 7600 case RISCVISD::SHFLW: 7601 case RISCVISD::UNSHFLW: { 7602 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 7603 SDValue LHS = N->getOperand(0); 7604 SDValue RHS = N->getOperand(1); 7605 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 7606 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 7607 if (SimplifyDemandedLowBitsHelper(0, 32) || 7608 SimplifyDemandedLowBitsHelper(1, 4)) 7609 return SDValue(N, 0); 7610 7611 break; 7612 } 7613 case RISCVISD::BCOMPRESSW: 7614 case RISCVISD::BDECOMPRESSW: { 7615 // Only the lower 32 bits of LHS and RHS are read. 7616 if (SimplifyDemandedLowBitsHelper(0, 32) || 7617 SimplifyDemandedLowBitsHelper(1, 32)) 7618 return SDValue(N, 0); 7619 7620 break; 7621 } 7622 case RISCVISD::FMV_X_ANYEXTH: 7623 case RISCVISD::FMV_X_ANYEXTW_RV64: { 7624 SDLoc DL(N); 7625 SDValue Op0 = N->getOperand(0); 7626 MVT VT = N->getSimpleValueType(0); 7627 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 7628 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 7629 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 7630 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 7631 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 7632 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 7633 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 7634 assert(Op0.getOperand(0).getValueType() == VT && 7635 "Unexpected value type!"); 7636 return Op0.getOperand(0); 7637 } 7638 7639 // This is a target-specific version of a DAGCombine performed in 7640 // DAGCombiner::visitBITCAST. It performs the equivalent of: 7641 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7642 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7643 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 7644 !Op0.getNode()->hasOneUse()) 7645 break; 7646 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 7647 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 7648 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 7649 if (Op0.getOpcode() == ISD::FNEG) 7650 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 7651 DAG.getConstant(SignBit, DL, VT)); 7652 7653 assert(Op0.getOpcode() == ISD::FABS); 7654 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 7655 DAG.getConstant(~SignBit, DL, VT)); 7656 } 7657 case ISD::ADD: 7658 return performADDCombine(N, DAG, Subtarget); 7659 case ISD::SUB: 7660 return performSUBCombine(N, DAG); 7661 case ISD::AND: 7662 return performANDCombine(N, DAG); 7663 case ISD::OR: 7664 return performORCombine(N, DAG, Subtarget); 7665 case ISD::XOR: 7666 return performXORCombine(N, DAG); 7667 case ISD::ANY_EXTEND: 7668 return performANY_EXTENDCombine(N, DCI, Subtarget); 7669 case ISD::ZERO_EXTEND: 7670 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 7671 // type legalization. This is safe because fp_to_uint produces poison if 7672 // it overflows. 7673 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { 7674 SDValue Src = N->getOperand(0); 7675 if (Src.getOpcode() == ISD::FP_TO_UINT && 7676 isTypeLegal(Src.getOperand(0).getValueType())) 7677 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 7678 Src.getOperand(0)); 7679 if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && 7680 isTypeLegal(Src.getOperand(1).getValueType())) { 7681 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 7682 SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, 7683 Src.getOperand(0), Src.getOperand(1)); 7684 DCI.CombineTo(N, Res); 7685 DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); 7686 DCI.recursivelyDeleteUnusedNodes(Src.getNode()); 7687 return SDValue(N, 0); // Return N so it doesn't get rechecked. 7688 } 7689 } 7690 return SDValue(); 7691 case RISCVISD::SELECT_CC: { 7692 // Transform 7693 SDValue LHS = N->getOperand(0); 7694 SDValue RHS = N->getOperand(1); 7695 SDValue TrueV = N->getOperand(3); 7696 SDValue FalseV = N->getOperand(4); 7697 7698 // If the True and False values are the same, we don't need a select_cc. 7699 if (TrueV == FalseV) 7700 return TrueV; 7701 7702 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 7703 if (!ISD::isIntEqualitySetCC(CCVal)) 7704 break; 7705 7706 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 7707 // (select_cc X, Y, lt, trueV, falseV) 7708 // Sometimes the setcc is introduced after select_cc has been formed. 7709 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7710 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7711 // If we're looking for eq 0 instead of ne 0, we need to invert the 7712 // condition. 7713 bool Invert = CCVal == ISD::SETEQ; 7714 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7715 if (Invert) 7716 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7717 7718 SDLoc DL(N); 7719 RHS = LHS.getOperand(1); 7720 LHS = LHS.getOperand(0); 7721 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7722 7723 SDValue TargetCC = DAG.getCondCode(CCVal); 7724 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7725 {LHS, RHS, TargetCC, TrueV, FalseV}); 7726 } 7727 7728 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 7729 // (select_cc X, Y, eq/ne, trueV, falseV) 7730 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7731 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 7732 {LHS.getOperand(0), LHS.getOperand(1), 7733 N->getOperand(2), TrueV, FalseV}); 7734 // (select_cc X, 1, setne, trueV, falseV) -> 7735 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 7736 // This can occur when legalizing some floating point comparisons. 7737 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7738 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7739 SDLoc DL(N); 7740 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7741 SDValue TargetCC = DAG.getCondCode(CCVal); 7742 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7743 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7744 {LHS, RHS, TargetCC, TrueV, FalseV}); 7745 } 7746 7747 break; 7748 } 7749 case RISCVISD::BR_CC: { 7750 SDValue LHS = N->getOperand(1); 7751 SDValue RHS = N->getOperand(2); 7752 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 7753 if (!ISD::isIntEqualitySetCC(CCVal)) 7754 break; 7755 7756 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 7757 // (br_cc X, Y, lt, dest) 7758 // Sometimes the setcc is introduced after br_cc has been formed. 7759 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7760 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7761 // If we're looking for eq 0 instead of ne 0, we need to invert the 7762 // condition. 7763 bool Invert = CCVal == ISD::SETEQ; 7764 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7765 if (Invert) 7766 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7767 7768 SDLoc DL(N); 7769 RHS = LHS.getOperand(1); 7770 LHS = LHS.getOperand(0); 7771 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7772 7773 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7774 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 7775 N->getOperand(4)); 7776 } 7777 7778 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 7779 // (br_cc X, Y, eq/ne, trueV, falseV) 7780 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7781 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 7782 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 7783 N->getOperand(3), N->getOperand(4)); 7784 7785 // (br_cc X, 1, setne, br_cc) -> 7786 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 7787 // This can occur when legalizing some floating point comparisons. 7788 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7789 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7790 SDLoc DL(N); 7791 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7792 SDValue TargetCC = DAG.getCondCode(CCVal); 7793 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7794 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7795 N->getOperand(0), LHS, RHS, TargetCC, 7796 N->getOperand(4)); 7797 } 7798 break; 7799 } 7800 case ISD::FP_TO_SINT: 7801 case ISD::FP_TO_UINT: 7802 return performFP_TO_INTCombine(N, DCI, Subtarget); 7803 case ISD::FP_TO_SINT_SAT: 7804 case ISD::FP_TO_UINT_SAT: 7805 return performFP_TO_INT_SATCombine(N, DCI, Subtarget); 7806 case ISD::FCOPYSIGN: { 7807 EVT VT = N->getValueType(0); 7808 if (!VT.isVector()) 7809 break; 7810 // There is a form of VFSGNJ which injects the negated sign of its second 7811 // operand. Try and bubble any FNEG up after the extend/round to produce 7812 // this optimized pattern. Avoid modifying cases where FP_ROUND and 7813 // TRUNC=1. 7814 SDValue In2 = N->getOperand(1); 7815 // Avoid cases where the extend/round has multiple uses, as duplicating 7816 // those is typically more expensive than removing a fneg. 7817 if (!In2.hasOneUse()) 7818 break; 7819 if (In2.getOpcode() != ISD::FP_EXTEND && 7820 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 7821 break; 7822 In2 = In2.getOperand(0); 7823 if (In2.getOpcode() != ISD::FNEG) 7824 break; 7825 SDLoc DL(N); 7826 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 7827 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 7828 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 7829 } 7830 case ISD::MGATHER: 7831 case ISD::MSCATTER: 7832 case ISD::VP_GATHER: 7833 case ISD::VP_SCATTER: { 7834 if (!DCI.isBeforeLegalize()) 7835 break; 7836 SDValue Index, ScaleOp; 7837 bool IsIndexScaled = false; 7838 bool IsIndexSigned = false; 7839 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 7840 Index = VPGSN->getIndex(); 7841 ScaleOp = VPGSN->getScale(); 7842 IsIndexScaled = VPGSN->isIndexScaled(); 7843 IsIndexSigned = VPGSN->isIndexSigned(); 7844 } else { 7845 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 7846 Index = MGSN->getIndex(); 7847 ScaleOp = MGSN->getScale(); 7848 IsIndexScaled = MGSN->isIndexScaled(); 7849 IsIndexSigned = MGSN->isIndexSigned(); 7850 } 7851 EVT IndexVT = Index.getValueType(); 7852 MVT XLenVT = Subtarget.getXLenVT(); 7853 // RISCV indexed loads only support the "unsigned unscaled" addressing 7854 // mode, so anything else must be manually legalized. 7855 bool NeedsIdxLegalization = 7856 IsIndexScaled || 7857 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 7858 if (!NeedsIdxLegalization) 7859 break; 7860 7861 SDLoc DL(N); 7862 7863 // Any index legalization should first promote to XLenVT, so we don't lose 7864 // bits when scaling. This may create an illegal index type so we let 7865 // LLVM's legalization take care of the splitting. 7866 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 7867 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 7868 IndexVT = IndexVT.changeVectorElementType(XLenVT); 7869 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 7870 DL, IndexVT, Index); 7871 } 7872 7873 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 7874 if (IsIndexScaled && Scale != 1) { 7875 // Manually scale the indices by the element size. 7876 // TODO: Sanitize the scale operand here? 7877 // TODO: For VP nodes, should we use VP_SHL here? 7878 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 7879 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 7880 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 7881 } 7882 7883 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 7884 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 7885 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 7886 {VPGN->getChain(), VPGN->getBasePtr(), Index, 7887 VPGN->getScale(), VPGN->getMask(), 7888 VPGN->getVectorLength()}, 7889 VPGN->getMemOperand(), NewIndexTy); 7890 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 7891 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 7892 {VPSN->getChain(), VPSN->getValue(), 7893 VPSN->getBasePtr(), Index, VPSN->getScale(), 7894 VPSN->getMask(), VPSN->getVectorLength()}, 7895 VPSN->getMemOperand(), NewIndexTy); 7896 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 7897 return DAG.getMaskedGather( 7898 N->getVTList(), MGN->getMemoryVT(), DL, 7899 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 7900 MGN->getBasePtr(), Index, MGN->getScale()}, 7901 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 7902 const auto *MSN = cast<MaskedScatterSDNode>(N); 7903 return DAG.getMaskedScatter( 7904 N->getVTList(), MSN->getMemoryVT(), DL, 7905 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 7906 Index, MSN->getScale()}, 7907 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 7908 } 7909 case RISCVISD::SRA_VL: 7910 case RISCVISD::SRL_VL: 7911 case RISCVISD::SHL_VL: { 7912 SDValue ShAmt = N->getOperand(1); 7913 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7914 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7915 SDLoc DL(N); 7916 SDValue VL = N->getOperand(3); 7917 EVT VT = N->getValueType(0); 7918 ShAmt = 7919 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 7920 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 7921 N->getOperand(2), N->getOperand(3)); 7922 } 7923 break; 7924 } 7925 case ISD::SRA: 7926 case ISD::SRL: 7927 case ISD::SHL: { 7928 SDValue ShAmt = N->getOperand(1); 7929 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7930 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7931 SDLoc DL(N); 7932 EVT VT = N->getValueType(0); 7933 ShAmt = 7934 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 7935 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 7936 } 7937 break; 7938 } 7939 case RISCVISD::MUL_VL: 7940 if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false)) 7941 return V; 7942 // Mul is commutative. 7943 return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true); 7944 case ISD::STORE: { 7945 auto *Store = cast<StoreSDNode>(N); 7946 SDValue Val = Store->getValue(); 7947 // Combine store of vmv.x.s to vse with VL of 1. 7948 // FIXME: Support FP. 7949 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 7950 SDValue Src = Val.getOperand(0); 7951 EVT VecVT = Src.getValueType(); 7952 EVT MemVT = Store->getMemoryVT(); 7953 // The memory VT and the element type must match. 7954 if (VecVT.getVectorElementType() == MemVT) { 7955 SDLoc DL(N); 7956 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 7957 return DAG.getStoreVP( 7958 Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(), 7959 DAG.getConstant(1, DL, MaskVT), 7960 DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT, 7961 Store->getMemOperand(), Store->getAddressingMode(), 7962 Store->isTruncatingStore(), /*IsCompress*/ false); 7963 } 7964 } 7965 7966 break; 7967 } 7968 } 7969 7970 return SDValue(); 7971 } 7972 7973 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 7974 const SDNode *N, CombineLevel Level) const { 7975 // The following folds are only desirable if `(OP _, c1 << c2)` can be 7976 // materialised in fewer instructions than `(OP _, c1)`: 7977 // 7978 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 7979 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 7980 SDValue N0 = N->getOperand(0); 7981 EVT Ty = N0.getValueType(); 7982 if (Ty.isScalarInteger() && 7983 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 7984 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7985 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7986 if (C1 && C2) { 7987 const APInt &C1Int = C1->getAPIntValue(); 7988 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 7989 7990 // We can materialise `c1 << c2` into an add immediate, so it's "free", 7991 // and the combine should happen, to potentially allow further combines 7992 // later. 7993 if (ShiftedC1Int.getMinSignedBits() <= 64 && 7994 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 7995 return true; 7996 7997 // We can materialise `c1` in an add immediate, so it's "free", and the 7998 // combine should be prevented. 7999 if (C1Int.getMinSignedBits() <= 64 && 8000 isLegalAddImmediate(C1Int.getSExtValue())) 8001 return false; 8002 8003 // Neither constant will fit into an immediate, so find materialisation 8004 // costs. 8005 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 8006 Subtarget.getFeatureBits(), 8007 /*CompressionCost*/true); 8008 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 8009 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 8010 /*CompressionCost*/true); 8011 8012 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 8013 // combine should be prevented. 8014 if (C1Cost < ShiftedC1Cost) 8015 return false; 8016 } 8017 } 8018 return true; 8019 } 8020 8021 bool RISCVTargetLowering::targetShrinkDemandedConstant( 8022 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 8023 TargetLoweringOpt &TLO) const { 8024 // Delay this optimization as late as possible. 8025 if (!TLO.LegalOps) 8026 return false; 8027 8028 EVT VT = Op.getValueType(); 8029 if (VT.isVector()) 8030 return false; 8031 8032 // Only handle AND for now. 8033 if (Op.getOpcode() != ISD::AND) 8034 return false; 8035 8036 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 8037 if (!C) 8038 return false; 8039 8040 const APInt &Mask = C->getAPIntValue(); 8041 8042 // Clear all non-demanded bits initially. 8043 APInt ShrunkMask = Mask & DemandedBits; 8044 8045 // Try to make a smaller immediate by setting undemanded bits. 8046 8047 APInt ExpandedMask = Mask | ~DemandedBits; 8048 8049 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 8050 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 8051 }; 8052 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 8053 if (NewMask == Mask) 8054 return true; 8055 SDLoc DL(Op); 8056 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 8057 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 8058 return TLO.CombineTo(Op, NewOp); 8059 }; 8060 8061 // If the shrunk mask fits in sign extended 12 bits, let the target 8062 // independent code apply it. 8063 if (ShrunkMask.isSignedIntN(12)) 8064 return false; 8065 8066 // Preserve (and X, 0xffff) when zext.h is supported. 8067 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 8068 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 8069 if (IsLegalMask(NewMask)) 8070 return UseMask(NewMask); 8071 } 8072 8073 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 8074 if (VT == MVT::i64) { 8075 APInt NewMask = APInt(64, 0xffffffff); 8076 if (IsLegalMask(NewMask)) 8077 return UseMask(NewMask); 8078 } 8079 8080 // For the remaining optimizations, we need to be able to make a negative 8081 // number through a combination of mask and undemanded bits. 8082 if (!ExpandedMask.isNegative()) 8083 return false; 8084 8085 // What is the fewest number of bits we need to represent the negative number. 8086 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 8087 8088 // Try to make a 12 bit negative immediate. If that fails try to make a 32 8089 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 8090 APInt NewMask = ShrunkMask; 8091 if (MinSignedBits <= 12) 8092 NewMask.setBitsFrom(11); 8093 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 8094 NewMask.setBitsFrom(31); 8095 else 8096 return false; 8097 8098 // Check that our new mask is a subset of the demanded mask. 8099 assert(IsLegalMask(NewMask)); 8100 return UseMask(NewMask); 8101 } 8102 8103 static void computeGREV(APInt &Src, unsigned ShAmt) { 8104 ShAmt &= Src.getBitWidth() - 1; 8105 uint64_t x = Src.getZExtValue(); 8106 if (ShAmt & 1) 8107 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 8108 if (ShAmt & 2) 8109 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 8110 if (ShAmt & 4) 8111 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 8112 if (ShAmt & 8) 8113 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 8114 if (ShAmt & 16) 8115 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 8116 if (ShAmt & 32) 8117 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 8118 Src = x; 8119 } 8120 8121 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 8122 KnownBits &Known, 8123 const APInt &DemandedElts, 8124 const SelectionDAG &DAG, 8125 unsigned Depth) const { 8126 unsigned BitWidth = Known.getBitWidth(); 8127 unsigned Opc = Op.getOpcode(); 8128 assert((Opc >= ISD::BUILTIN_OP_END || 8129 Opc == ISD::INTRINSIC_WO_CHAIN || 8130 Opc == ISD::INTRINSIC_W_CHAIN || 8131 Opc == ISD::INTRINSIC_VOID) && 8132 "Should use MaskedValueIsZero if you don't know whether Op" 8133 " is a target node!"); 8134 8135 Known.resetAll(); 8136 switch (Opc) { 8137 default: break; 8138 case RISCVISD::SELECT_CC: { 8139 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 8140 // If we don't know any bits, early out. 8141 if (Known.isUnknown()) 8142 break; 8143 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 8144 8145 // Only known if known in both the LHS and RHS. 8146 Known = KnownBits::commonBits(Known, Known2); 8147 break; 8148 } 8149 case RISCVISD::REMUW: { 8150 KnownBits Known2; 8151 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 8152 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 8153 // We only care about the lower 32 bits. 8154 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 8155 // Restore the original width by sign extending. 8156 Known = Known.sext(BitWidth); 8157 break; 8158 } 8159 case RISCVISD::DIVUW: { 8160 KnownBits Known2; 8161 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 8162 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 8163 // We only care about the lower 32 bits. 8164 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 8165 // Restore the original width by sign extending. 8166 Known = Known.sext(BitWidth); 8167 break; 8168 } 8169 case RISCVISD::CTZW: { 8170 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8171 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 8172 unsigned LowBits = Log2_32(PossibleTZ) + 1; 8173 Known.Zero.setBitsFrom(LowBits); 8174 break; 8175 } 8176 case RISCVISD::CLZW: { 8177 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8178 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 8179 unsigned LowBits = Log2_32(PossibleLZ) + 1; 8180 Known.Zero.setBitsFrom(LowBits); 8181 break; 8182 } 8183 case RISCVISD::GREV: 8184 case RISCVISD::GREVW: { 8185 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8186 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8187 if (Opc == RISCVISD::GREVW) 8188 Known = Known.trunc(32); 8189 unsigned ShAmt = C->getZExtValue(); 8190 computeGREV(Known.Zero, ShAmt); 8191 computeGREV(Known.One, ShAmt); 8192 if (Opc == RISCVISD::GREVW) 8193 Known = Known.sext(BitWidth); 8194 } 8195 break; 8196 } 8197 case RISCVISD::READ_VLENB: 8198 // We assume VLENB is at least 16 bytes. 8199 Known.Zero.setLowBits(4); 8200 // We assume VLENB is no more than 65536 / 8 bytes. 8201 Known.Zero.setBitsFrom(14); 8202 break; 8203 case ISD::INTRINSIC_W_CHAIN: 8204 case ISD::INTRINSIC_WO_CHAIN: { 8205 unsigned IntNo = 8206 Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1); 8207 switch (IntNo) { 8208 default: 8209 // We can't do anything for most intrinsics. 8210 break; 8211 case Intrinsic::riscv_vsetvli: 8212 case Intrinsic::riscv_vsetvlimax: 8213 case Intrinsic::riscv_vsetvli_opt: 8214 case Intrinsic::riscv_vsetvlimax_opt: 8215 // Assume that VL output is positive and would fit in an int32_t. 8216 // TODO: VLEN might be capped at 16 bits in a future V spec update. 8217 if (BitWidth >= 32) 8218 Known.Zero.setBitsFrom(31); 8219 break; 8220 } 8221 break; 8222 } 8223 } 8224 } 8225 8226 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 8227 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 8228 unsigned Depth) const { 8229 switch (Op.getOpcode()) { 8230 default: 8231 break; 8232 case RISCVISD::SELECT_CC: { 8233 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 8234 if (Tmp == 1) return 1; // Early out. 8235 unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 8236 return std::min(Tmp, Tmp2); 8237 } 8238 case RISCVISD::SLLW: 8239 case RISCVISD::SRAW: 8240 case RISCVISD::SRLW: 8241 case RISCVISD::DIVW: 8242 case RISCVISD::DIVUW: 8243 case RISCVISD::REMUW: 8244 case RISCVISD::ROLW: 8245 case RISCVISD::RORW: 8246 case RISCVISD::GREVW: 8247 case RISCVISD::GORCW: 8248 case RISCVISD::FSLW: 8249 case RISCVISD::FSRW: 8250 case RISCVISD::SHFLW: 8251 case RISCVISD::UNSHFLW: 8252 case RISCVISD::BCOMPRESSW: 8253 case RISCVISD::BDECOMPRESSW: 8254 case RISCVISD::BFPW: 8255 case RISCVISD::FCVT_W_RV64: 8256 case RISCVISD::FCVT_WU_RV64: 8257 case RISCVISD::STRICT_FCVT_W_RV64: 8258 case RISCVISD::STRICT_FCVT_WU_RV64: 8259 // TODO: As the result is sign-extended, this is conservatively correct. A 8260 // more precise answer could be calculated for SRAW depending on known 8261 // bits in the shift amount. 8262 return 33; 8263 case RISCVISD::SHFL: 8264 case RISCVISD::UNSHFL: { 8265 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 8266 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 8267 // will stay within the upper 32 bits. If there were more than 32 sign bits 8268 // before there will be at least 33 sign bits after. 8269 if (Op.getValueType() == MVT::i64 && 8270 isa<ConstantSDNode>(Op.getOperand(1)) && 8271 (Op.getConstantOperandVal(1) & 0x10) == 0) { 8272 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 8273 if (Tmp > 32) 8274 return 33; 8275 } 8276 break; 8277 } 8278 case RISCVISD::VMV_X_S: 8279 // The number of sign bits of the scalar result is computed by obtaining the 8280 // element type of the input vector operand, subtracting its width from the 8281 // XLEN, and then adding one (sign bit within the element type). If the 8282 // element type is wider than XLen, the least-significant XLEN bits are 8283 // taken. 8284 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 8285 return 1; 8286 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 8287 } 8288 8289 return 1; 8290 } 8291 8292 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 8293 MachineBasicBlock *BB) { 8294 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 8295 8296 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 8297 // Should the count have wrapped while it was being read, we need to try 8298 // again. 8299 // ... 8300 // read: 8301 // rdcycleh x3 # load high word of cycle 8302 // rdcycle x2 # load low word of cycle 8303 // rdcycleh x4 # load high word of cycle 8304 // bne x3, x4, read # check if high word reads match, otherwise try again 8305 // ... 8306 8307 MachineFunction &MF = *BB->getParent(); 8308 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8309 MachineFunction::iterator It = ++BB->getIterator(); 8310 8311 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 8312 MF.insert(It, LoopMBB); 8313 8314 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 8315 MF.insert(It, DoneMBB); 8316 8317 // Transfer the remainder of BB and its successor edges to DoneMBB. 8318 DoneMBB->splice(DoneMBB->begin(), BB, 8319 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8320 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 8321 8322 BB->addSuccessor(LoopMBB); 8323 8324 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8325 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8326 Register LoReg = MI.getOperand(0).getReg(); 8327 Register HiReg = MI.getOperand(1).getReg(); 8328 DebugLoc DL = MI.getDebugLoc(); 8329 8330 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 8331 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 8332 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 8333 .addReg(RISCV::X0); 8334 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 8335 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 8336 .addReg(RISCV::X0); 8337 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 8338 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 8339 .addReg(RISCV::X0); 8340 8341 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 8342 .addReg(HiReg) 8343 .addReg(ReadAgainReg) 8344 .addMBB(LoopMBB); 8345 8346 LoopMBB->addSuccessor(LoopMBB); 8347 LoopMBB->addSuccessor(DoneMBB); 8348 8349 MI.eraseFromParent(); 8350 8351 return DoneMBB; 8352 } 8353 8354 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 8355 MachineBasicBlock *BB) { 8356 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 8357 8358 MachineFunction &MF = *BB->getParent(); 8359 DebugLoc DL = MI.getDebugLoc(); 8360 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 8361 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 8362 Register LoReg = MI.getOperand(0).getReg(); 8363 Register HiReg = MI.getOperand(1).getReg(); 8364 Register SrcReg = MI.getOperand(2).getReg(); 8365 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 8366 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 8367 8368 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 8369 RI); 8370 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 8371 MachineMemOperand *MMOLo = 8372 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 8373 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 8374 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 8375 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 8376 .addFrameIndex(FI) 8377 .addImm(0) 8378 .addMemOperand(MMOLo); 8379 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 8380 .addFrameIndex(FI) 8381 .addImm(4) 8382 .addMemOperand(MMOHi); 8383 MI.eraseFromParent(); // The pseudo instruction is gone now. 8384 return BB; 8385 } 8386 8387 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 8388 MachineBasicBlock *BB) { 8389 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 8390 "Unexpected instruction"); 8391 8392 MachineFunction &MF = *BB->getParent(); 8393 DebugLoc DL = MI.getDebugLoc(); 8394 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 8395 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 8396 Register DstReg = MI.getOperand(0).getReg(); 8397 Register LoReg = MI.getOperand(1).getReg(); 8398 Register HiReg = MI.getOperand(2).getReg(); 8399 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 8400 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 8401 8402 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 8403 MachineMemOperand *MMOLo = 8404 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 8405 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 8406 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 8407 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 8408 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 8409 .addFrameIndex(FI) 8410 .addImm(0) 8411 .addMemOperand(MMOLo); 8412 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 8413 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 8414 .addFrameIndex(FI) 8415 .addImm(4) 8416 .addMemOperand(MMOHi); 8417 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 8418 MI.eraseFromParent(); // The pseudo instruction is gone now. 8419 return BB; 8420 } 8421 8422 static bool isSelectPseudo(MachineInstr &MI) { 8423 switch (MI.getOpcode()) { 8424 default: 8425 return false; 8426 case RISCV::Select_GPR_Using_CC_GPR: 8427 case RISCV::Select_FPR16_Using_CC_GPR: 8428 case RISCV::Select_FPR32_Using_CC_GPR: 8429 case RISCV::Select_FPR64_Using_CC_GPR: 8430 return true; 8431 } 8432 } 8433 8434 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB, 8435 unsigned RelOpcode, unsigned EqOpcode, 8436 const RISCVSubtarget &Subtarget) { 8437 DebugLoc DL = MI.getDebugLoc(); 8438 Register DstReg = MI.getOperand(0).getReg(); 8439 Register Src1Reg = MI.getOperand(1).getReg(); 8440 Register Src2Reg = MI.getOperand(2).getReg(); 8441 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 8442 Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass); 8443 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 8444 8445 // Save the current FFLAGS. 8446 BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags); 8447 8448 auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg) 8449 .addReg(Src1Reg) 8450 .addReg(Src2Reg); 8451 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 8452 MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); 8453 8454 // Restore the FFLAGS. 8455 BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) 8456 .addReg(SavedFFlags, RegState::Kill); 8457 8458 // Issue a dummy FEQ opcode to raise exception for signaling NaNs. 8459 auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0) 8460 .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill())) 8461 .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill())); 8462 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 8463 MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept); 8464 8465 // Erase the pseudoinstruction. 8466 MI.eraseFromParent(); 8467 return BB; 8468 } 8469 8470 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 8471 MachineBasicBlock *BB, 8472 const RISCVSubtarget &Subtarget) { 8473 // To "insert" Select_* instructions, we actually have to insert the triangle 8474 // control-flow pattern. The incoming instructions know the destination vreg 8475 // to set, the condition code register to branch on, the true/false values to 8476 // select between, and the condcode to use to select the appropriate branch. 8477 // 8478 // We produce the following control flow: 8479 // HeadMBB 8480 // | \ 8481 // | IfFalseMBB 8482 // | / 8483 // TailMBB 8484 // 8485 // When we find a sequence of selects we attempt to optimize their emission 8486 // by sharing the control flow. Currently we only handle cases where we have 8487 // multiple selects with the exact same condition (same LHS, RHS and CC). 8488 // The selects may be interleaved with other instructions if the other 8489 // instructions meet some requirements we deem safe: 8490 // - They are debug instructions. Otherwise, 8491 // - They do not have side-effects, do not access memory and their inputs do 8492 // not depend on the results of the select pseudo-instructions. 8493 // The TrueV/FalseV operands of the selects cannot depend on the result of 8494 // previous selects in the sequence. 8495 // These conditions could be further relaxed. See the X86 target for a 8496 // related approach and more information. 8497 Register LHS = MI.getOperand(1).getReg(); 8498 Register RHS = MI.getOperand(2).getReg(); 8499 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 8500 8501 SmallVector<MachineInstr *, 4> SelectDebugValues; 8502 SmallSet<Register, 4> SelectDests; 8503 SelectDests.insert(MI.getOperand(0).getReg()); 8504 8505 MachineInstr *LastSelectPseudo = &MI; 8506 8507 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 8508 SequenceMBBI != E; ++SequenceMBBI) { 8509 if (SequenceMBBI->isDebugInstr()) 8510 continue; 8511 else if (isSelectPseudo(*SequenceMBBI)) { 8512 if (SequenceMBBI->getOperand(1).getReg() != LHS || 8513 SequenceMBBI->getOperand(2).getReg() != RHS || 8514 SequenceMBBI->getOperand(3).getImm() != CC || 8515 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 8516 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 8517 break; 8518 LastSelectPseudo = &*SequenceMBBI; 8519 SequenceMBBI->collectDebugValues(SelectDebugValues); 8520 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 8521 } else { 8522 if (SequenceMBBI->hasUnmodeledSideEffects() || 8523 SequenceMBBI->mayLoadOrStore()) 8524 break; 8525 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 8526 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 8527 })) 8528 break; 8529 } 8530 } 8531 8532 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 8533 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8534 DebugLoc DL = MI.getDebugLoc(); 8535 MachineFunction::iterator I = ++BB->getIterator(); 8536 8537 MachineBasicBlock *HeadMBB = BB; 8538 MachineFunction *F = BB->getParent(); 8539 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 8540 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 8541 8542 F->insert(I, IfFalseMBB); 8543 F->insert(I, TailMBB); 8544 8545 // Transfer debug instructions associated with the selects to TailMBB. 8546 for (MachineInstr *DebugInstr : SelectDebugValues) { 8547 TailMBB->push_back(DebugInstr->removeFromParent()); 8548 } 8549 8550 // Move all instructions after the sequence to TailMBB. 8551 TailMBB->splice(TailMBB->end(), HeadMBB, 8552 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 8553 // Update machine-CFG edges by transferring all successors of the current 8554 // block to the new block which will contain the Phi nodes for the selects. 8555 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 8556 // Set the successors for HeadMBB. 8557 HeadMBB->addSuccessor(IfFalseMBB); 8558 HeadMBB->addSuccessor(TailMBB); 8559 8560 // Insert appropriate branch. 8561 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 8562 .addReg(LHS) 8563 .addReg(RHS) 8564 .addMBB(TailMBB); 8565 8566 // IfFalseMBB just falls through to TailMBB. 8567 IfFalseMBB->addSuccessor(TailMBB); 8568 8569 // Create PHIs for all of the select pseudo-instructions. 8570 auto SelectMBBI = MI.getIterator(); 8571 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 8572 auto InsertionPoint = TailMBB->begin(); 8573 while (SelectMBBI != SelectEnd) { 8574 auto Next = std::next(SelectMBBI); 8575 if (isSelectPseudo(*SelectMBBI)) { 8576 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 8577 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 8578 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 8579 .addReg(SelectMBBI->getOperand(4).getReg()) 8580 .addMBB(HeadMBB) 8581 .addReg(SelectMBBI->getOperand(5).getReg()) 8582 .addMBB(IfFalseMBB); 8583 SelectMBBI->eraseFromParent(); 8584 } 8585 SelectMBBI = Next; 8586 } 8587 8588 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 8589 return TailMBB; 8590 } 8591 8592 MachineBasicBlock * 8593 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 8594 MachineBasicBlock *BB) const { 8595 switch (MI.getOpcode()) { 8596 default: 8597 llvm_unreachable("Unexpected instr type to insert"); 8598 case RISCV::ReadCycleWide: 8599 assert(!Subtarget.is64Bit() && 8600 "ReadCycleWrite is only to be used on riscv32"); 8601 return emitReadCycleWidePseudo(MI, BB); 8602 case RISCV::Select_GPR_Using_CC_GPR: 8603 case RISCV::Select_FPR16_Using_CC_GPR: 8604 case RISCV::Select_FPR32_Using_CC_GPR: 8605 case RISCV::Select_FPR64_Using_CC_GPR: 8606 return emitSelectPseudo(MI, BB, Subtarget); 8607 case RISCV::BuildPairF64Pseudo: 8608 return emitBuildPairF64Pseudo(MI, BB); 8609 case RISCV::SplitF64Pseudo: 8610 return emitSplitF64Pseudo(MI, BB); 8611 case RISCV::PseudoQuietFLE_H: 8612 return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget); 8613 case RISCV::PseudoQuietFLT_H: 8614 return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget); 8615 case RISCV::PseudoQuietFLE_S: 8616 return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget); 8617 case RISCV::PseudoQuietFLT_S: 8618 return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget); 8619 case RISCV::PseudoQuietFLE_D: 8620 return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget); 8621 case RISCV::PseudoQuietFLT_D: 8622 return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget); 8623 } 8624 } 8625 8626 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 8627 SDNode *Node) const { 8628 // Add FRM dependency to any instructions with dynamic rounding mode. 8629 unsigned Opc = MI.getOpcode(); 8630 auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); 8631 if (Idx < 0) 8632 return; 8633 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) 8634 return; 8635 // If the instruction already reads FRM, don't add another read. 8636 if (MI.readsRegister(RISCV::FRM)) 8637 return; 8638 MI.addOperand( 8639 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); 8640 } 8641 8642 // Calling Convention Implementation. 8643 // The expectations for frontend ABI lowering vary from target to target. 8644 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 8645 // details, but this is a longer term goal. For now, we simply try to keep the 8646 // role of the frontend as simple and well-defined as possible. The rules can 8647 // be summarised as: 8648 // * Never split up large scalar arguments. We handle them here. 8649 // * If a hardfloat calling convention is being used, and the struct may be 8650 // passed in a pair of registers (fp+fp, int+fp), and both registers are 8651 // available, then pass as two separate arguments. If either the GPRs or FPRs 8652 // are exhausted, then pass according to the rule below. 8653 // * If a struct could never be passed in registers or directly in a stack 8654 // slot (as it is larger than 2*XLEN and the floating point rules don't 8655 // apply), then pass it using a pointer with the byval attribute. 8656 // * If a struct is less than 2*XLEN, then coerce to either a two-element 8657 // word-sized array or a 2*XLEN scalar (depending on alignment). 8658 // * The frontend can determine whether a struct is returned by reference or 8659 // not based on its size and fields. If it will be returned by reference, the 8660 // frontend must modify the prototype so a pointer with the sret annotation is 8661 // passed as the first argument. This is not necessary for large scalar 8662 // returns. 8663 // * Struct return values and varargs should be coerced to structs containing 8664 // register-size fields in the same situations they would be for fixed 8665 // arguments. 8666 8667 static const MCPhysReg ArgGPRs[] = { 8668 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 8669 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 8670 }; 8671 static const MCPhysReg ArgFPR16s[] = { 8672 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 8673 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 8674 }; 8675 static const MCPhysReg ArgFPR32s[] = { 8676 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 8677 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 8678 }; 8679 static const MCPhysReg ArgFPR64s[] = { 8680 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 8681 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 8682 }; 8683 // This is an interim calling convention and it may be changed in the future. 8684 static const MCPhysReg ArgVRs[] = { 8685 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 8686 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 8687 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 8688 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 8689 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 8690 RISCV::V20M2, RISCV::V22M2}; 8691 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 8692 RISCV::V20M4}; 8693 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 8694 8695 // Pass a 2*XLEN argument that has been split into two XLEN values through 8696 // registers or the stack as necessary. 8697 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 8698 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 8699 MVT ValVT2, MVT LocVT2, 8700 ISD::ArgFlagsTy ArgFlags2) { 8701 unsigned XLenInBytes = XLen / 8; 8702 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8703 // At least one half can be passed via register. 8704 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 8705 VA1.getLocVT(), CCValAssign::Full)); 8706 } else { 8707 // Both halves must be passed on the stack, with proper alignment. 8708 Align StackAlign = 8709 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 8710 State.addLoc( 8711 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 8712 State.AllocateStack(XLenInBytes, StackAlign), 8713 VA1.getLocVT(), CCValAssign::Full)); 8714 State.addLoc(CCValAssign::getMem( 8715 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8716 LocVT2, CCValAssign::Full)); 8717 return false; 8718 } 8719 8720 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8721 // The second half can also be passed via register. 8722 State.addLoc( 8723 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 8724 } else { 8725 // The second half is passed via the stack, without additional alignment. 8726 State.addLoc(CCValAssign::getMem( 8727 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8728 LocVT2, CCValAssign::Full)); 8729 } 8730 8731 return false; 8732 } 8733 8734 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 8735 Optional<unsigned> FirstMaskArgument, 8736 CCState &State, const RISCVTargetLowering &TLI) { 8737 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 8738 if (RC == &RISCV::VRRegClass) { 8739 // Assign the first mask argument to V0. 8740 // This is an interim calling convention and it may be changed in the 8741 // future. 8742 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 8743 return State.AllocateReg(RISCV::V0); 8744 return State.AllocateReg(ArgVRs); 8745 } 8746 if (RC == &RISCV::VRM2RegClass) 8747 return State.AllocateReg(ArgVRM2s); 8748 if (RC == &RISCV::VRM4RegClass) 8749 return State.AllocateReg(ArgVRM4s); 8750 if (RC == &RISCV::VRM8RegClass) 8751 return State.AllocateReg(ArgVRM8s); 8752 llvm_unreachable("Unhandled register class for ValueType"); 8753 } 8754 8755 // Implements the RISC-V calling convention. Returns true upon failure. 8756 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 8757 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 8758 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 8759 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 8760 Optional<unsigned> FirstMaskArgument) { 8761 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 8762 assert(XLen == 32 || XLen == 64); 8763 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 8764 8765 // Any return value split in to more than two values can't be returned 8766 // directly. Vectors are returned via the available vector registers. 8767 if (!LocVT.isVector() && IsRet && ValNo > 1) 8768 return true; 8769 8770 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 8771 // variadic argument, or if no F16/F32 argument registers are available. 8772 bool UseGPRForF16_F32 = true; 8773 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 8774 // variadic argument, or if no F64 argument registers are available. 8775 bool UseGPRForF64 = true; 8776 8777 switch (ABI) { 8778 default: 8779 llvm_unreachable("Unexpected ABI"); 8780 case RISCVABI::ABI_ILP32: 8781 case RISCVABI::ABI_LP64: 8782 break; 8783 case RISCVABI::ABI_ILP32F: 8784 case RISCVABI::ABI_LP64F: 8785 UseGPRForF16_F32 = !IsFixed; 8786 break; 8787 case RISCVABI::ABI_ILP32D: 8788 case RISCVABI::ABI_LP64D: 8789 UseGPRForF16_F32 = !IsFixed; 8790 UseGPRForF64 = !IsFixed; 8791 break; 8792 } 8793 8794 // FPR16, FPR32, and FPR64 alias each other. 8795 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 8796 UseGPRForF16_F32 = true; 8797 UseGPRForF64 = true; 8798 } 8799 8800 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 8801 // similar local variables rather than directly checking against the target 8802 // ABI. 8803 8804 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 8805 LocVT = XLenVT; 8806 LocInfo = CCValAssign::BCvt; 8807 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 8808 LocVT = MVT::i64; 8809 LocInfo = CCValAssign::BCvt; 8810 } 8811 8812 // If this is a variadic argument, the RISC-V calling convention requires 8813 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 8814 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 8815 // be used regardless of whether the original argument was split during 8816 // legalisation or not. The argument will not be passed by registers if the 8817 // original type is larger than 2*XLEN, so the register alignment rule does 8818 // not apply. 8819 unsigned TwoXLenInBytes = (2 * XLen) / 8; 8820 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 8821 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 8822 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 8823 // Skip 'odd' register if necessary. 8824 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 8825 State.AllocateReg(ArgGPRs); 8826 } 8827 8828 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 8829 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 8830 State.getPendingArgFlags(); 8831 8832 assert(PendingLocs.size() == PendingArgFlags.size() && 8833 "PendingLocs and PendingArgFlags out of sync"); 8834 8835 // Handle passing f64 on RV32D with a soft float ABI or when floating point 8836 // registers are exhausted. 8837 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 8838 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 8839 "Can't lower f64 if it is split"); 8840 // Depending on available argument GPRS, f64 may be passed in a pair of 8841 // GPRs, split between a GPR and the stack, or passed completely on the 8842 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 8843 // cases. 8844 Register Reg = State.AllocateReg(ArgGPRs); 8845 LocVT = MVT::i32; 8846 if (!Reg) { 8847 unsigned StackOffset = State.AllocateStack(8, Align(8)); 8848 State.addLoc( 8849 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8850 return false; 8851 } 8852 if (!State.AllocateReg(ArgGPRs)) 8853 State.AllocateStack(4, Align(4)); 8854 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8855 return false; 8856 } 8857 8858 // Fixed-length vectors are located in the corresponding scalable-vector 8859 // container types. 8860 if (ValVT.isFixedLengthVector()) 8861 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8862 8863 // Split arguments might be passed indirectly, so keep track of the pending 8864 // values. Split vectors are passed via a mix of registers and indirectly, so 8865 // treat them as we would any other argument. 8866 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 8867 LocVT = XLenVT; 8868 LocInfo = CCValAssign::Indirect; 8869 PendingLocs.push_back( 8870 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 8871 PendingArgFlags.push_back(ArgFlags); 8872 if (!ArgFlags.isSplitEnd()) { 8873 return false; 8874 } 8875 } 8876 8877 // If the split argument only had two elements, it should be passed directly 8878 // in registers or on the stack. 8879 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 8880 PendingLocs.size() <= 2) { 8881 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 8882 // Apply the normal calling convention rules to the first half of the 8883 // split argument. 8884 CCValAssign VA = PendingLocs[0]; 8885 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 8886 PendingLocs.clear(); 8887 PendingArgFlags.clear(); 8888 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 8889 ArgFlags); 8890 } 8891 8892 // Allocate to a register if possible, or else a stack slot. 8893 Register Reg; 8894 unsigned StoreSizeBytes = XLen / 8; 8895 Align StackAlign = Align(XLen / 8); 8896 8897 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 8898 Reg = State.AllocateReg(ArgFPR16s); 8899 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 8900 Reg = State.AllocateReg(ArgFPR32s); 8901 else if (ValVT == MVT::f64 && !UseGPRForF64) 8902 Reg = State.AllocateReg(ArgFPR64s); 8903 else if (ValVT.isVector()) { 8904 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 8905 if (!Reg) { 8906 // For return values, the vector must be passed fully via registers or 8907 // via the stack. 8908 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 8909 // but we're using all of them. 8910 if (IsRet) 8911 return true; 8912 // Try using a GPR to pass the address 8913 if ((Reg = State.AllocateReg(ArgGPRs))) { 8914 LocVT = XLenVT; 8915 LocInfo = CCValAssign::Indirect; 8916 } else if (ValVT.isScalableVector()) { 8917 LocVT = XLenVT; 8918 LocInfo = CCValAssign::Indirect; 8919 } else { 8920 // Pass fixed-length vectors on the stack. 8921 LocVT = ValVT; 8922 StoreSizeBytes = ValVT.getStoreSize(); 8923 // Align vectors to their element sizes, being careful for vXi1 8924 // vectors. 8925 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8926 } 8927 } 8928 } else { 8929 Reg = State.AllocateReg(ArgGPRs); 8930 } 8931 8932 unsigned StackOffset = 8933 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 8934 8935 // If we reach this point and PendingLocs is non-empty, we must be at the 8936 // end of a split argument that must be passed indirectly. 8937 if (!PendingLocs.empty()) { 8938 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 8939 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 8940 8941 for (auto &It : PendingLocs) { 8942 if (Reg) 8943 It.convertToReg(Reg); 8944 else 8945 It.convertToMem(StackOffset); 8946 State.addLoc(It); 8947 } 8948 PendingLocs.clear(); 8949 PendingArgFlags.clear(); 8950 return false; 8951 } 8952 8953 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 8954 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 8955 "Expected an XLenVT or vector types at this stage"); 8956 8957 if (Reg) { 8958 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8959 return false; 8960 } 8961 8962 // When a floating-point value is passed on the stack, no bit-conversion is 8963 // needed. 8964 if (ValVT.isFloatingPoint()) { 8965 LocVT = ValVT; 8966 LocInfo = CCValAssign::Full; 8967 } 8968 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8969 return false; 8970 } 8971 8972 template <typename ArgTy> 8973 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 8974 for (const auto &ArgIdx : enumerate(Args)) { 8975 MVT ArgVT = ArgIdx.value().VT; 8976 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 8977 return ArgIdx.index(); 8978 } 8979 return None; 8980 } 8981 8982 void RISCVTargetLowering::analyzeInputArgs( 8983 MachineFunction &MF, CCState &CCInfo, 8984 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 8985 RISCVCCAssignFn Fn) const { 8986 unsigned NumArgs = Ins.size(); 8987 FunctionType *FType = MF.getFunction().getFunctionType(); 8988 8989 Optional<unsigned> FirstMaskArgument; 8990 if (Subtarget.hasVInstructions()) 8991 FirstMaskArgument = preAssignMask(Ins); 8992 8993 for (unsigned i = 0; i != NumArgs; ++i) { 8994 MVT ArgVT = Ins[i].VT; 8995 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 8996 8997 Type *ArgTy = nullptr; 8998 if (IsRet) 8999 ArgTy = FType->getReturnType(); 9000 else if (Ins[i].isOrigArg()) 9001 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 9002 9003 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9004 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 9005 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 9006 FirstMaskArgument)) { 9007 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 9008 << EVT(ArgVT).getEVTString() << '\n'); 9009 llvm_unreachable(nullptr); 9010 } 9011 } 9012 } 9013 9014 void RISCVTargetLowering::analyzeOutputArgs( 9015 MachineFunction &MF, CCState &CCInfo, 9016 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 9017 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 9018 unsigned NumArgs = Outs.size(); 9019 9020 Optional<unsigned> FirstMaskArgument; 9021 if (Subtarget.hasVInstructions()) 9022 FirstMaskArgument = preAssignMask(Outs); 9023 9024 for (unsigned i = 0; i != NumArgs; i++) { 9025 MVT ArgVT = Outs[i].VT; 9026 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9027 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 9028 9029 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9030 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 9031 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 9032 FirstMaskArgument)) { 9033 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 9034 << EVT(ArgVT).getEVTString() << "\n"); 9035 llvm_unreachable(nullptr); 9036 } 9037 } 9038 } 9039 9040 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 9041 // values. 9042 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 9043 const CCValAssign &VA, const SDLoc &DL, 9044 const RISCVSubtarget &Subtarget) { 9045 switch (VA.getLocInfo()) { 9046 default: 9047 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9048 case CCValAssign::Full: 9049 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 9050 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 9051 break; 9052 case CCValAssign::BCvt: 9053 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9054 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 9055 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9056 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 9057 else 9058 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 9059 break; 9060 } 9061 return Val; 9062 } 9063 9064 // The caller is responsible for loading the full value if the argument is 9065 // passed with CCValAssign::Indirect. 9066 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 9067 const CCValAssign &VA, const SDLoc &DL, 9068 const RISCVTargetLowering &TLI) { 9069 MachineFunction &MF = DAG.getMachineFunction(); 9070 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9071 EVT LocVT = VA.getLocVT(); 9072 SDValue Val; 9073 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 9074 Register VReg = RegInfo.createVirtualRegister(RC); 9075 RegInfo.addLiveIn(VA.getLocReg(), VReg); 9076 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 9077 9078 if (VA.getLocInfo() == CCValAssign::Indirect) 9079 return Val; 9080 9081 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 9082 } 9083 9084 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 9085 const CCValAssign &VA, const SDLoc &DL, 9086 const RISCVSubtarget &Subtarget) { 9087 EVT LocVT = VA.getLocVT(); 9088 9089 switch (VA.getLocInfo()) { 9090 default: 9091 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9092 case CCValAssign::Full: 9093 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 9094 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 9095 break; 9096 case CCValAssign::BCvt: 9097 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9098 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 9099 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9100 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 9101 else 9102 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 9103 break; 9104 } 9105 return Val; 9106 } 9107 9108 // The caller is responsible for loading the full value if the argument is 9109 // passed with CCValAssign::Indirect. 9110 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 9111 const CCValAssign &VA, const SDLoc &DL) { 9112 MachineFunction &MF = DAG.getMachineFunction(); 9113 MachineFrameInfo &MFI = MF.getFrameInfo(); 9114 EVT LocVT = VA.getLocVT(); 9115 EVT ValVT = VA.getValVT(); 9116 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 9117 if (ValVT.isScalableVector()) { 9118 // When the value is a scalable vector, we save the pointer which points to 9119 // the scalable vector value in the stack. The ValVT will be the pointer 9120 // type, instead of the scalable vector type. 9121 ValVT = LocVT; 9122 } 9123 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 9124 /*IsImmutable=*/true); 9125 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 9126 SDValue Val; 9127 9128 ISD::LoadExtType ExtType; 9129 switch (VA.getLocInfo()) { 9130 default: 9131 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9132 case CCValAssign::Full: 9133 case CCValAssign::Indirect: 9134 case CCValAssign::BCvt: 9135 ExtType = ISD::NON_EXTLOAD; 9136 break; 9137 } 9138 Val = DAG.getExtLoad( 9139 ExtType, DL, LocVT, Chain, FIN, 9140 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 9141 return Val; 9142 } 9143 9144 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 9145 const CCValAssign &VA, const SDLoc &DL) { 9146 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 9147 "Unexpected VA"); 9148 MachineFunction &MF = DAG.getMachineFunction(); 9149 MachineFrameInfo &MFI = MF.getFrameInfo(); 9150 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9151 9152 if (VA.isMemLoc()) { 9153 // f64 is passed on the stack. 9154 int FI = 9155 MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true); 9156 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 9157 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 9158 MachinePointerInfo::getFixedStack(MF, FI)); 9159 } 9160 9161 assert(VA.isRegLoc() && "Expected register VA assignment"); 9162 9163 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9164 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 9165 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 9166 SDValue Hi; 9167 if (VA.getLocReg() == RISCV::X17) { 9168 // Second half of f64 is passed on the stack. 9169 int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true); 9170 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 9171 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 9172 MachinePointerInfo::getFixedStack(MF, FI)); 9173 } else { 9174 // Second half of f64 is passed in another GPR. 9175 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9176 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 9177 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 9178 } 9179 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 9180 } 9181 9182 // FastCC has less than 1% performance improvement for some particular 9183 // benchmark. But theoretically, it may has benenfit for some cases. 9184 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 9185 unsigned ValNo, MVT ValVT, MVT LocVT, 9186 CCValAssign::LocInfo LocInfo, 9187 ISD::ArgFlagsTy ArgFlags, CCState &State, 9188 bool IsFixed, bool IsRet, Type *OrigTy, 9189 const RISCVTargetLowering &TLI, 9190 Optional<unsigned> FirstMaskArgument) { 9191 9192 // X5 and X6 might be used for save-restore libcall. 9193 static const MCPhysReg GPRList[] = { 9194 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 9195 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 9196 RISCV::X29, RISCV::X30, RISCV::X31}; 9197 9198 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 9199 if (unsigned Reg = State.AllocateReg(GPRList)) { 9200 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9201 return false; 9202 } 9203 } 9204 9205 if (LocVT == MVT::f16) { 9206 static const MCPhysReg FPR16List[] = { 9207 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 9208 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 9209 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 9210 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 9211 if (unsigned Reg = State.AllocateReg(FPR16List)) { 9212 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9213 return false; 9214 } 9215 } 9216 9217 if (LocVT == MVT::f32) { 9218 static const MCPhysReg FPR32List[] = { 9219 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 9220 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 9221 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 9222 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 9223 if (unsigned Reg = State.AllocateReg(FPR32List)) { 9224 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9225 return false; 9226 } 9227 } 9228 9229 if (LocVT == MVT::f64) { 9230 static const MCPhysReg FPR64List[] = { 9231 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 9232 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 9233 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 9234 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 9235 if (unsigned Reg = State.AllocateReg(FPR64List)) { 9236 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9237 return false; 9238 } 9239 } 9240 9241 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 9242 unsigned Offset4 = State.AllocateStack(4, Align(4)); 9243 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 9244 return false; 9245 } 9246 9247 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 9248 unsigned Offset5 = State.AllocateStack(8, Align(8)); 9249 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 9250 return false; 9251 } 9252 9253 if (LocVT.isVector()) { 9254 if (unsigned Reg = 9255 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 9256 // Fixed-length vectors are located in the corresponding scalable-vector 9257 // container types. 9258 if (ValVT.isFixedLengthVector()) 9259 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 9260 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9261 } else { 9262 // Try and pass the address via a "fast" GPR. 9263 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 9264 LocInfo = CCValAssign::Indirect; 9265 LocVT = TLI.getSubtarget().getXLenVT(); 9266 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 9267 } else if (ValVT.isFixedLengthVector()) { 9268 auto StackAlign = 9269 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 9270 unsigned StackOffset = 9271 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 9272 State.addLoc( 9273 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9274 } else { 9275 // Can't pass scalable vectors on the stack. 9276 return true; 9277 } 9278 } 9279 9280 return false; 9281 } 9282 9283 return true; // CC didn't match. 9284 } 9285 9286 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 9287 CCValAssign::LocInfo LocInfo, 9288 ISD::ArgFlagsTy ArgFlags, CCState &State) { 9289 9290 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 9291 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 9292 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 9293 static const MCPhysReg GPRList[] = { 9294 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 9295 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 9296 if (unsigned Reg = State.AllocateReg(GPRList)) { 9297 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9298 return false; 9299 } 9300 } 9301 9302 if (LocVT == MVT::f32) { 9303 // Pass in STG registers: F1, ..., F6 9304 // fs0 ... fs5 9305 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 9306 RISCV::F18_F, RISCV::F19_F, 9307 RISCV::F20_F, RISCV::F21_F}; 9308 if (unsigned Reg = State.AllocateReg(FPR32List)) { 9309 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9310 return false; 9311 } 9312 } 9313 9314 if (LocVT == MVT::f64) { 9315 // Pass in STG registers: D1, ..., D6 9316 // fs6 ... fs11 9317 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 9318 RISCV::F24_D, RISCV::F25_D, 9319 RISCV::F26_D, RISCV::F27_D}; 9320 if (unsigned Reg = State.AllocateReg(FPR64List)) { 9321 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9322 return false; 9323 } 9324 } 9325 9326 report_fatal_error("No registers left in GHC calling convention"); 9327 return true; 9328 } 9329 9330 // Transform physical registers into virtual registers. 9331 SDValue RISCVTargetLowering::LowerFormalArguments( 9332 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 9333 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 9334 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 9335 9336 MachineFunction &MF = DAG.getMachineFunction(); 9337 9338 switch (CallConv) { 9339 default: 9340 report_fatal_error("Unsupported calling convention"); 9341 case CallingConv::C: 9342 case CallingConv::Fast: 9343 break; 9344 case CallingConv::GHC: 9345 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 9346 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 9347 report_fatal_error( 9348 "GHC calling convention requires the F and D instruction set extensions"); 9349 } 9350 9351 const Function &Func = MF.getFunction(); 9352 if (Func.hasFnAttribute("interrupt")) { 9353 if (!Func.arg_empty()) 9354 report_fatal_error( 9355 "Functions with the interrupt attribute cannot have arguments!"); 9356 9357 StringRef Kind = 9358 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9359 9360 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 9361 report_fatal_error( 9362 "Function interrupt attribute argument not supported!"); 9363 } 9364 9365 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9366 MVT XLenVT = Subtarget.getXLenVT(); 9367 unsigned XLenInBytes = Subtarget.getXLen() / 8; 9368 // Used with vargs to acumulate store chains. 9369 std::vector<SDValue> OutChains; 9370 9371 // Assign locations to all of the incoming arguments. 9372 SmallVector<CCValAssign, 16> ArgLocs; 9373 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 9374 9375 if (CallConv == CallingConv::GHC) 9376 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 9377 else 9378 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 9379 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 9380 : CC_RISCV); 9381 9382 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 9383 CCValAssign &VA = ArgLocs[i]; 9384 SDValue ArgValue; 9385 // Passing f64 on RV32D with a soft float ABI must be handled as a special 9386 // case. 9387 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 9388 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 9389 else if (VA.isRegLoc()) 9390 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 9391 else 9392 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 9393 9394 if (VA.getLocInfo() == CCValAssign::Indirect) { 9395 // If the original argument was split and passed by reference (e.g. i128 9396 // on RV32), we need to load all parts of it here (using the same 9397 // address). Vectors may be partly split to registers and partly to the 9398 // stack, in which case the base address is partly offset and subsequent 9399 // stores are relative to that. 9400 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 9401 MachinePointerInfo())); 9402 unsigned ArgIndex = Ins[i].OrigArgIndex; 9403 unsigned ArgPartOffset = Ins[i].PartOffset; 9404 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 9405 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 9406 CCValAssign &PartVA = ArgLocs[i + 1]; 9407 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 9408 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 9409 if (PartVA.getValVT().isScalableVector()) 9410 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 9411 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 9412 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 9413 MachinePointerInfo())); 9414 ++i; 9415 } 9416 continue; 9417 } 9418 InVals.push_back(ArgValue); 9419 } 9420 9421 if (IsVarArg) { 9422 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 9423 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 9424 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 9425 MachineFrameInfo &MFI = MF.getFrameInfo(); 9426 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9427 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 9428 9429 // Offset of the first variable argument from stack pointer, and size of 9430 // the vararg save area. For now, the varargs save area is either zero or 9431 // large enough to hold a0-a7. 9432 int VaArgOffset, VarArgsSaveSize; 9433 9434 // If all registers are allocated, then all varargs must be passed on the 9435 // stack and we don't need to save any argregs. 9436 if (ArgRegs.size() == Idx) { 9437 VaArgOffset = CCInfo.getNextStackOffset(); 9438 VarArgsSaveSize = 0; 9439 } else { 9440 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 9441 VaArgOffset = -VarArgsSaveSize; 9442 } 9443 9444 // Record the frame index of the first variable argument 9445 // which is a value necessary to VASTART. 9446 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 9447 RVFI->setVarArgsFrameIndex(FI); 9448 9449 // If saving an odd number of registers then create an extra stack slot to 9450 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 9451 // offsets to even-numbered registered remain 2*XLEN-aligned. 9452 if (Idx % 2) { 9453 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 9454 VarArgsSaveSize += XLenInBytes; 9455 } 9456 9457 // Copy the integer registers that may have been used for passing varargs 9458 // to the vararg save area. 9459 for (unsigned I = Idx; I < ArgRegs.size(); 9460 ++I, VaArgOffset += XLenInBytes) { 9461 const Register Reg = RegInfo.createVirtualRegister(RC); 9462 RegInfo.addLiveIn(ArgRegs[I], Reg); 9463 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 9464 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 9465 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 9466 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 9467 MachinePointerInfo::getFixedStack(MF, FI)); 9468 cast<StoreSDNode>(Store.getNode()) 9469 ->getMemOperand() 9470 ->setValue((Value *)nullptr); 9471 OutChains.push_back(Store); 9472 } 9473 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 9474 } 9475 9476 // All stores are grouped in one node to allow the matching between 9477 // the size of Ins and InVals. This only happens for vararg functions. 9478 if (!OutChains.empty()) { 9479 OutChains.push_back(Chain); 9480 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 9481 } 9482 9483 return Chain; 9484 } 9485 9486 /// isEligibleForTailCallOptimization - Check whether the call is eligible 9487 /// for tail call optimization. 9488 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 9489 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 9490 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 9491 const SmallVector<CCValAssign, 16> &ArgLocs) const { 9492 9493 auto &Callee = CLI.Callee; 9494 auto CalleeCC = CLI.CallConv; 9495 auto &Outs = CLI.Outs; 9496 auto &Caller = MF.getFunction(); 9497 auto CallerCC = Caller.getCallingConv(); 9498 9499 // Exception-handling functions need a special set of instructions to 9500 // indicate a return to the hardware. Tail-calling another function would 9501 // probably break this. 9502 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 9503 // should be expanded as new function attributes are introduced. 9504 if (Caller.hasFnAttribute("interrupt")) 9505 return false; 9506 9507 // Do not tail call opt if the stack is used to pass parameters. 9508 if (CCInfo.getNextStackOffset() != 0) 9509 return false; 9510 9511 // Do not tail call opt if any parameters need to be passed indirectly. 9512 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 9513 // passed indirectly. So the address of the value will be passed in a 9514 // register, or if not available, then the address is put on the stack. In 9515 // order to pass indirectly, space on the stack often needs to be allocated 9516 // in order to store the value. In this case the CCInfo.getNextStackOffset() 9517 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 9518 // are passed CCValAssign::Indirect. 9519 for (auto &VA : ArgLocs) 9520 if (VA.getLocInfo() == CCValAssign::Indirect) 9521 return false; 9522 9523 // Do not tail call opt if either caller or callee uses struct return 9524 // semantics. 9525 auto IsCallerStructRet = Caller.hasStructRetAttr(); 9526 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 9527 if (IsCallerStructRet || IsCalleeStructRet) 9528 return false; 9529 9530 // Externally-defined functions with weak linkage should not be 9531 // tail-called. The behaviour of branch instructions in this situation (as 9532 // used for tail calls) is implementation-defined, so we cannot rely on the 9533 // linker replacing the tail call with a return. 9534 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 9535 const GlobalValue *GV = G->getGlobal(); 9536 if (GV->hasExternalWeakLinkage()) 9537 return false; 9538 } 9539 9540 // The callee has to preserve all registers the caller needs to preserve. 9541 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9542 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 9543 if (CalleeCC != CallerCC) { 9544 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 9545 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 9546 return false; 9547 } 9548 9549 // Byval parameters hand the function a pointer directly into the stack area 9550 // we want to reuse during a tail call. Working around this *is* possible 9551 // but less efficient and uglier in LowerCall. 9552 for (auto &Arg : Outs) 9553 if (Arg.Flags.isByVal()) 9554 return false; 9555 9556 return true; 9557 } 9558 9559 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 9560 return DAG.getDataLayout().getPrefTypeAlign( 9561 VT.getTypeForEVT(*DAG.getContext())); 9562 } 9563 9564 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 9565 // and output parameter nodes. 9566 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 9567 SmallVectorImpl<SDValue> &InVals) const { 9568 SelectionDAG &DAG = CLI.DAG; 9569 SDLoc &DL = CLI.DL; 9570 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 9571 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 9572 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 9573 SDValue Chain = CLI.Chain; 9574 SDValue Callee = CLI.Callee; 9575 bool &IsTailCall = CLI.IsTailCall; 9576 CallingConv::ID CallConv = CLI.CallConv; 9577 bool IsVarArg = CLI.IsVarArg; 9578 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9579 MVT XLenVT = Subtarget.getXLenVT(); 9580 9581 MachineFunction &MF = DAG.getMachineFunction(); 9582 9583 // Analyze the operands of the call, assigning locations to each operand. 9584 SmallVector<CCValAssign, 16> ArgLocs; 9585 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 9586 9587 if (CallConv == CallingConv::GHC) 9588 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 9589 else 9590 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 9591 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 9592 : CC_RISCV); 9593 9594 // Check if it's really possible to do a tail call. 9595 if (IsTailCall) 9596 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 9597 9598 if (IsTailCall) 9599 ++NumTailCalls; 9600 else if (CLI.CB && CLI.CB->isMustTailCall()) 9601 report_fatal_error("failed to perform tail call elimination on a call " 9602 "site marked musttail"); 9603 9604 // Get a count of how many bytes are to be pushed on the stack. 9605 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 9606 9607 // Create local copies for byval args 9608 SmallVector<SDValue, 8> ByValArgs; 9609 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9610 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9611 if (!Flags.isByVal()) 9612 continue; 9613 9614 SDValue Arg = OutVals[i]; 9615 unsigned Size = Flags.getByValSize(); 9616 Align Alignment = Flags.getNonZeroByValAlign(); 9617 9618 int FI = 9619 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 9620 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 9621 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 9622 9623 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 9624 /*IsVolatile=*/false, 9625 /*AlwaysInline=*/false, IsTailCall, 9626 MachinePointerInfo(), MachinePointerInfo()); 9627 ByValArgs.push_back(FIPtr); 9628 } 9629 9630 if (!IsTailCall) 9631 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 9632 9633 // Copy argument values to their designated locations. 9634 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 9635 SmallVector<SDValue, 8> MemOpChains; 9636 SDValue StackPtr; 9637 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 9638 CCValAssign &VA = ArgLocs[i]; 9639 SDValue ArgValue = OutVals[i]; 9640 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9641 9642 // Handle passing f64 on RV32D with a soft float ABI as a special case. 9643 bool IsF64OnRV32DSoftABI = 9644 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 9645 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 9646 SDValue SplitF64 = DAG.getNode( 9647 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 9648 SDValue Lo = SplitF64.getValue(0); 9649 SDValue Hi = SplitF64.getValue(1); 9650 9651 Register RegLo = VA.getLocReg(); 9652 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 9653 9654 if (RegLo == RISCV::X17) { 9655 // Second half of f64 is passed on the stack. 9656 // Work out the address of the stack slot. 9657 if (!StackPtr.getNode()) 9658 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9659 // Emit the store. 9660 MemOpChains.push_back( 9661 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 9662 } else { 9663 // Second half of f64 is passed in another GPR. 9664 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9665 Register RegHigh = RegLo + 1; 9666 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 9667 } 9668 continue; 9669 } 9670 9671 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 9672 // as any other MemLoc. 9673 9674 // Promote the value if needed. 9675 // For now, only handle fully promoted and indirect arguments. 9676 if (VA.getLocInfo() == CCValAssign::Indirect) { 9677 // Store the argument in a stack slot and pass its address. 9678 Align StackAlign = 9679 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 9680 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 9681 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 9682 // If the original argument was split (e.g. i128), we need 9683 // to store the required parts of it here (and pass just one address). 9684 // Vectors may be partly split to registers and partly to the stack, in 9685 // which case the base address is partly offset and subsequent stores are 9686 // relative to that. 9687 unsigned ArgIndex = Outs[i].OrigArgIndex; 9688 unsigned ArgPartOffset = Outs[i].PartOffset; 9689 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 9690 // Calculate the total size to store. We don't have access to what we're 9691 // actually storing other than performing the loop and collecting the 9692 // info. 9693 SmallVector<std::pair<SDValue, SDValue>> Parts; 9694 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 9695 SDValue PartValue = OutVals[i + 1]; 9696 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 9697 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 9698 EVT PartVT = PartValue.getValueType(); 9699 if (PartVT.isScalableVector()) 9700 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 9701 StoredSize += PartVT.getStoreSize(); 9702 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 9703 Parts.push_back(std::make_pair(PartValue, Offset)); 9704 ++i; 9705 } 9706 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 9707 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 9708 MemOpChains.push_back( 9709 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 9710 MachinePointerInfo::getFixedStack(MF, FI))); 9711 for (const auto &Part : Parts) { 9712 SDValue PartValue = Part.first; 9713 SDValue PartOffset = Part.second; 9714 SDValue Address = 9715 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 9716 MemOpChains.push_back( 9717 DAG.getStore(Chain, DL, PartValue, Address, 9718 MachinePointerInfo::getFixedStack(MF, FI))); 9719 } 9720 ArgValue = SpillSlot; 9721 } else { 9722 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 9723 } 9724 9725 // Use local copy if it is a byval arg. 9726 if (Flags.isByVal()) 9727 ArgValue = ByValArgs[j++]; 9728 9729 if (VA.isRegLoc()) { 9730 // Queue up the argument copies and emit them at the end. 9731 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 9732 } else { 9733 assert(VA.isMemLoc() && "Argument not register or memory"); 9734 assert(!IsTailCall && "Tail call not allowed if stack is used " 9735 "for passing parameters"); 9736 9737 // Work out the address of the stack slot. 9738 if (!StackPtr.getNode()) 9739 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9740 SDValue Address = 9741 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 9742 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 9743 9744 // Emit the store. 9745 MemOpChains.push_back( 9746 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 9747 } 9748 } 9749 9750 // Join the stores, which are independent of one another. 9751 if (!MemOpChains.empty()) 9752 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 9753 9754 SDValue Glue; 9755 9756 // Build a sequence of copy-to-reg nodes, chained and glued together. 9757 for (auto &Reg : RegsToPass) { 9758 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 9759 Glue = Chain.getValue(1); 9760 } 9761 9762 // Validate that none of the argument registers have been marked as 9763 // reserved, if so report an error. Do the same for the return address if this 9764 // is not a tailcall. 9765 validateCCReservedRegs(RegsToPass, MF); 9766 if (!IsTailCall && 9767 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 9768 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9769 MF.getFunction(), 9770 "Return address register required, but has been reserved."}); 9771 9772 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 9773 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 9774 // split it and then direct call can be matched by PseudoCALL. 9775 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 9776 const GlobalValue *GV = S->getGlobal(); 9777 9778 unsigned OpFlags = RISCVII::MO_CALL; 9779 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 9780 OpFlags = RISCVII::MO_PLT; 9781 9782 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 9783 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 9784 unsigned OpFlags = RISCVII::MO_CALL; 9785 9786 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 9787 nullptr)) 9788 OpFlags = RISCVII::MO_PLT; 9789 9790 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 9791 } 9792 9793 // The first call operand is the chain and the second is the target address. 9794 SmallVector<SDValue, 8> Ops; 9795 Ops.push_back(Chain); 9796 Ops.push_back(Callee); 9797 9798 // Add argument registers to the end of the list so that they are 9799 // known live into the call. 9800 for (auto &Reg : RegsToPass) 9801 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 9802 9803 if (!IsTailCall) { 9804 // Add a register mask operand representing the call-preserved registers. 9805 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9806 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 9807 assert(Mask && "Missing call preserved mask for calling convention"); 9808 Ops.push_back(DAG.getRegisterMask(Mask)); 9809 } 9810 9811 // Glue the call to the argument copies, if any. 9812 if (Glue.getNode()) 9813 Ops.push_back(Glue); 9814 9815 // Emit the call. 9816 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9817 9818 if (IsTailCall) { 9819 MF.getFrameInfo().setHasTailCall(); 9820 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 9821 } 9822 9823 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 9824 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 9825 Glue = Chain.getValue(1); 9826 9827 // Mark the end of the call, which is glued to the call itself. 9828 Chain = DAG.getCALLSEQ_END(Chain, 9829 DAG.getConstant(NumBytes, DL, PtrVT, true), 9830 DAG.getConstant(0, DL, PtrVT, true), 9831 Glue, DL); 9832 Glue = Chain.getValue(1); 9833 9834 // Assign locations to each value returned by this call. 9835 SmallVector<CCValAssign, 16> RVLocs; 9836 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 9837 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 9838 9839 // Copy all of the result registers out of their specified physreg. 9840 for (auto &VA : RVLocs) { 9841 // Copy the value out 9842 SDValue RetValue = 9843 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 9844 // Glue the RetValue to the end of the call sequence 9845 Chain = RetValue.getValue(1); 9846 Glue = RetValue.getValue(2); 9847 9848 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9849 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 9850 SDValue RetValue2 = 9851 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 9852 Chain = RetValue2.getValue(1); 9853 Glue = RetValue2.getValue(2); 9854 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 9855 RetValue2); 9856 } 9857 9858 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 9859 9860 InVals.push_back(RetValue); 9861 } 9862 9863 return Chain; 9864 } 9865 9866 bool RISCVTargetLowering::CanLowerReturn( 9867 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 9868 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 9869 SmallVector<CCValAssign, 16> RVLocs; 9870 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 9871 9872 Optional<unsigned> FirstMaskArgument; 9873 if (Subtarget.hasVInstructions()) 9874 FirstMaskArgument = preAssignMask(Outs); 9875 9876 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9877 MVT VT = Outs[i].VT; 9878 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9879 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9880 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 9881 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 9882 *this, FirstMaskArgument)) 9883 return false; 9884 } 9885 return true; 9886 } 9887 9888 SDValue 9889 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 9890 bool IsVarArg, 9891 const SmallVectorImpl<ISD::OutputArg> &Outs, 9892 const SmallVectorImpl<SDValue> &OutVals, 9893 const SDLoc &DL, SelectionDAG &DAG) const { 9894 const MachineFunction &MF = DAG.getMachineFunction(); 9895 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9896 9897 // Stores the assignment of the return value to a location. 9898 SmallVector<CCValAssign, 16> RVLocs; 9899 9900 // Info about the registers and stack slot. 9901 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 9902 *DAG.getContext()); 9903 9904 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 9905 nullptr, CC_RISCV); 9906 9907 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 9908 report_fatal_error("GHC functions return void only"); 9909 9910 SDValue Glue; 9911 SmallVector<SDValue, 4> RetOps(1, Chain); 9912 9913 // Copy the result values into the output registers. 9914 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 9915 SDValue Val = OutVals[i]; 9916 CCValAssign &VA = RVLocs[i]; 9917 assert(VA.isRegLoc() && "Can only return in registers!"); 9918 9919 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9920 // Handle returning f64 on RV32D with a soft float ABI. 9921 assert(VA.isRegLoc() && "Expected return via registers"); 9922 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 9923 DAG.getVTList(MVT::i32, MVT::i32), Val); 9924 SDValue Lo = SplitF64.getValue(0); 9925 SDValue Hi = SplitF64.getValue(1); 9926 Register RegLo = VA.getLocReg(); 9927 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9928 Register RegHi = RegLo + 1; 9929 9930 if (STI.isRegisterReservedByUser(RegLo) || 9931 STI.isRegisterReservedByUser(RegHi)) 9932 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9933 MF.getFunction(), 9934 "Return value register required, but has been reserved."}); 9935 9936 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 9937 Glue = Chain.getValue(1); 9938 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 9939 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 9940 Glue = Chain.getValue(1); 9941 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 9942 } else { 9943 // Handle a 'normal' return. 9944 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 9945 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 9946 9947 if (STI.isRegisterReservedByUser(VA.getLocReg())) 9948 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9949 MF.getFunction(), 9950 "Return value register required, but has been reserved."}); 9951 9952 // Guarantee that all emitted copies are stuck together. 9953 Glue = Chain.getValue(1); 9954 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 9955 } 9956 } 9957 9958 RetOps[0] = Chain; // Update chain. 9959 9960 // Add the glue node if we have it. 9961 if (Glue.getNode()) { 9962 RetOps.push_back(Glue); 9963 } 9964 9965 unsigned RetOpc = RISCVISD::RET_FLAG; 9966 // Interrupt service routines use different return instructions. 9967 const Function &Func = DAG.getMachineFunction().getFunction(); 9968 if (Func.hasFnAttribute("interrupt")) { 9969 if (!Func.getReturnType()->isVoidTy()) 9970 report_fatal_error( 9971 "Functions with the interrupt attribute must have void return type!"); 9972 9973 MachineFunction &MF = DAG.getMachineFunction(); 9974 StringRef Kind = 9975 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9976 9977 if (Kind == "user") 9978 RetOpc = RISCVISD::URET_FLAG; 9979 else if (Kind == "supervisor") 9980 RetOpc = RISCVISD::SRET_FLAG; 9981 else 9982 RetOpc = RISCVISD::MRET_FLAG; 9983 } 9984 9985 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 9986 } 9987 9988 void RISCVTargetLowering::validateCCReservedRegs( 9989 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 9990 MachineFunction &MF) const { 9991 const Function &F = MF.getFunction(); 9992 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9993 9994 if (llvm::any_of(Regs, [&STI](auto Reg) { 9995 return STI.isRegisterReservedByUser(Reg.first); 9996 })) 9997 F.getContext().diagnose(DiagnosticInfoUnsupported{ 9998 F, "Argument register required, but has been reserved."}); 9999 } 10000 10001 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 10002 return CI->isTailCall(); 10003 } 10004 10005 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 10006 #define NODE_NAME_CASE(NODE) \ 10007 case RISCVISD::NODE: \ 10008 return "RISCVISD::" #NODE; 10009 // clang-format off 10010 switch ((RISCVISD::NodeType)Opcode) { 10011 case RISCVISD::FIRST_NUMBER: 10012 break; 10013 NODE_NAME_CASE(RET_FLAG) 10014 NODE_NAME_CASE(URET_FLAG) 10015 NODE_NAME_CASE(SRET_FLAG) 10016 NODE_NAME_CASE(MRET_FLAG) 10017 NODE_NAME_CASE(CALL) 10018 NODE_NAME_CASE(SELECT_CC) 10019 NODE_NAME_CASE(BR_CC) 10020 NODE_NAME_CASE(BuildPairF64) 10021 NODE_NAME_CASE(SplitF64) 10022 NODE_NAME_CASE(TAIL) 10023 NODE_NAME_CASE(MULHSU) 10024 NODE_NAME_CASE(SLLW) 10025 NODE_NAME_CASE(SRAW) 10026 NODE_NAME_CASE(SRLW) 10027 NODE_NAME_CASE(DIVW) 10028 NODE_NAME_CASE(DIVUW) 10029 NODE_NAME_CASE(REMUW) 10030 NODE_NAME_CASE(ROLW) 10031 NODE_NAME_CASE(RORW) 10032 NODE_NAME_CASE(CLZW) 10033 NODE_NAME_CASE(CTZW) 10034 NODE_NAME_CASE(FSLW) 10035 NODE_NAME_CASE(FSRW) 10036 NODE_NAME_CASE(FSL) 10037 NODE_NAME_CASE(FSR) 10038 NODE_NAME_CASE(FMV_H_X) 10039 NODE_NAME_CASE(FMV_X_ANYEXTH) 10040 NODE_NAME_CASE(FMV_W_X_RV64) 10041 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 10042 NODE_NAME_CASE(FCVT_X) 10043 NODE_NAME_CASE(FCVT_XU) 10044 NODE_NAME_CASE(FCVT_W_RV64) 10045 NODE_NAME_CASE(FCVT_WU_RV64) 10046 NODE_NAME_CASE(STRICT_FCVT_W_RV64) 10047 NODE_NAME_CASE(STRICT_FCVT_WU_RV64) 10048 NODE_NAME_CASE(READ_CYCLE_WIDE) 10049 NODE_NAME_CASE(GREV) 10050 NODE_NAME_CASE(GREVW) 10051 NODE_NAME_CASE(GORC) 10052 NODE_NAME_CASE(GORCW) 10053 NODE_NAME_CASE(SHFL) 10054 NODE_NAME_CASE(SHFLW) 10055 NODE_NAME_CASE(UNSHFL) 10056 NODE_NAME_CASE(UNSHFLW) 10057 NODE_NAME_CASE(BFP) 10058 NODE_NAME_CASE(BFPW) 10059 NODE_NAME_CASE(BCOMPRESS) 10060 NODE_NAME_CASE(BCOMPRESSW) 10061 NODE_NAME_CASE(BDECOMPRESS) 10062 NODE_NAME_CASE(BDECOMPRESSW) 10063 NODE_NAME_CASE(VMV_V_X_VL) 10064 NODE_NAME_CASE(VFMV_V_F_VL) 10065 NODE_NAME_CASE(VMV_X_S) 10066 NODE_NAME_CASE(VMV_S_X_VL) 10067 NODE_NAME_CASE(VFMV_S_F_VL) 10068 NODE_NAME_CASE(SPLAT_VECTOR_I64) 10069 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 10070 NODE_NAME_CASE(READ_VLENB) 10071 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 10072 NODE_NAME_CASE(VSLIDEUP_VL) 10073 NODE_NAME_CASE(VSLIDE1UP_VL) 10074 NODE_NAME_CASE(VSLIDEDOWN_VL) 10075 NODE_NAME_CASE(VSLIDE1DOWN_VL) 10076 NODE_NAME_CASE(VID_VL) 10077 NODE_NAME_CASE(VFNCVT_ROD_VL) 10078 NODE_NAME_CASE(VECREDUCE_ADD_VL) 10079 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 10080 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 10081 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 10082 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 10083 NODE_NAME_CASE(VECREDUCE_AND_VL) 10084 NODE_NAME_CASE(VECREDUCE_OR_VL) 10085 NODE_NAME_CASE(VECREDUCE_XOR_VL) 10086 NODE_NAME_CASE(VECREDUCE_FADD_VL) 10087 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 10088 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 10089 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 10090 NODE_NAME_CASE(ADD_VL) 10091 NODE_NAME_CASE(AND_VL) 10092 NODE_NAME_CASE(MUL_VL) 10093 NODE_NAME_CASE(OR_VL) 10094 NODE_NAME_CASE(SDIV_VL) 10095 NODE_NAME_CASE(SHL_VL) 10096 NODE_NAME_CASE(SREM_VL) 10097 NODE_NAME_CASE(SRA_VL) 10098 NODE_NAME_CASE(SRL_VL) 10099 NODE_NAME_CASE(SUB_VL) 10100 NODE_NAME_CASE(UDIV_VL) 10101 NODE_NAME_CASE(UREM_VL) 10102 NODE_NAME_CASE(XOR_VL) 10103 NODE_NAME_CASE(SADDSAT_VL) 10104 NODE_NAME_CASE(UADDSAT_VL) 10105 NODE_NAME_CASE(SSUBSAT_VL) 10106 NODE_NAME_CASE(USUBSAT_VL) 10107 NODE_NAME_CASE(FADD_VL) 10108 NODE_NAME_CASE(FSUB_VL) 10109 NODE_NAME_CASE(FMUL_VL) 10110 NODE_NAME_CASE(FDIV_VL) 10111 NODE_NAME_CASE(FNEG_VL) 10112 NODE_NAME_CASE(FABS_VL) 10113 NODE_NAME_CASE(FSQRT_VL) 10114 NODE_NAME_CASE(FMA_VL) 10115 NODE_NAME_CASE(FCOPYSIGN_VL) 10116 NODE_NAME_CASE(SMIN_VL) 10117 NODE_NAME_CASE(SMAX_VL) 10118 NODE_NAME_CASE(UMIN_VL) 10119 NODE_NAME_CASE(UMAX_VL) 10120 NODE_NAME_CASE(FMINNUM_VL) 10121 NODE_NAME_CASE(FMAXNUM_VL) 10122 NODE_NAME_CASE(MULHS_VL) 10123 NODE_NAME_CASE(MULHU_VL) 10124 NODE_NAME_CASE(FP_TO_SINT_VL) 10125 NODE_NAME_CASE(FP_TO_UINT_VL) 10126 NODE_NAME_CASE(SINT_TO_FP_VL) 10127 NODE_NAME_CASE(UINT_TO_FP_VL) 10128 NODE_NAME_CASE(FP_EXTEND_VL) 10129 NODE_NAME_CASE(FP_ROUND_VL) 10130 NODE_NAME_CASE(VWMUL_VL) 10131 NODE_NAME_CASE(VWMULU_VL) 10132 NODE_NAME_CASE(VWADDU_VL) 10133 NODE_NAME_CASE(SETCC_VL) 10134 NODE_NAME_CASE(VSELECT_VL) 10135 NODE_NAME_CASE(VP_MERGE_VL) 10136 NODE_NAME_CASE(VMAND_VL) 10137 NODE_NAME_CASE(VMOR_VL) 10138 NODE_NAME_CASE(VMXOR_VL) 10139 NODE_NAME_CASE(VMCLR_VL) 10140 NODE_NAME_CASE(VMSET_VL) 10141 NODE_NAME_CASE(VRGATHER_VX_VL) 10142 NODE_NAME_CASE(VRGATHER_VV_VL) 10143 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 10144 NODE_NAME_CASE(VSEXT_VL) 10145 NODE_NAME_CASE(VZEXT_VL) 10146 NODE_NAME_CASE(VCPOP_VL) 10147 NODE_NAME_CASE(VLE_VL) 10148 NODE_NAME_CASE(VSE_VL) 10149 NODE_NAME_CASE(READ_CSR) 10150 NODE_NAME_CASE(WRITE_CSR) 10151 NODE_NAME_CASE(SWAP_CSR) 10152 } 10153 // clang-format on 10154 return nullptr; 10155 #undef NODE_NAME_CASE 10156 } 10157 10158 /// getConstraintType - Given a constraint letter, return the type of 10159 /// constraint it is for this target. 10160 RISCVTargetLowering::ConstraintType 10161 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 10162 if (Constraint.size() == 1) { 10163 switch (Constraint[0]) { 10164 default: 10165 break; 10166 case 'f': 10167 return C_RegisterClass; 10168 case 'I': 10169 case 'J': 10170 case 'K': 10171 return C_Immediate; 10172 case 'A': 10173 return C_Memory; 10174 case 'S': // A symbolic address 10175 return C_Other; 10176 } 10177 } else { 10178 if (Constraint == "vr" || Constraint == "vm") 10179 return C_RegisterClass; 10180 } 10181 return TargetLowering::getConstraintType(Constraint); 10182 } 10183 10184 std::pair<unsigned, const TargetRegisterClass *> 10185 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 10186 StringRef Constraint, 10187 MVT VT) const { 10188 // First, see if this is a constraint that directly corresponds to a 10189 // RISCV register class. 10190 if (Constraint.size() == 1) { 10191 switch (Constraint[0]) { 10192 case 'r': 10193 // TODO: Support fixed vectors up to XLen for P extension? 10194 if (VT.isVector()) 10195 break; 10196 return std::make_pair(0U, &RISCV::GPRRegClass); 10197 case 'f': 10198 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 10199 return std::make_pair(0U, &RISCV::FPR16RegClass); 10200 if (Subtarget.hasStdExtF() && VT == MVT::f32) 10201 return std::make_pair(0U, &RISCV::FPR32RegClass); 10202 if (Subtarget.hasStdExtD() && VT == MVT::f64) 10203 return std::make_pair(0U, &RISCV::FPR64RegClass); 10204 break; 10205 default: 10206 break; 10207 } 10208 } else if (Constraint == "vr") { 10209 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 10210 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 10211 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 10212 return std::make_pair(0U, RC); 10213 } 10214 } else if (Constraint == "vm") { 10215 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 10216 return std::make_pair(0U, &RISCV::VMV0RegClass); 10217 } 10218 10219 // Clang will correctly decode the usage of register name aliases into their 10220 // official names. However, other frontends like `rustc` do not. This allows 10221 // users of these frontends to use the ABI names for registers in LLVM-style 10222 // register constraints. 10223 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 10224 .Case("{zero}", RISCV::X0) 10225 .Case("{ra}", RISCV::X1) 10226 .Case("{sp}", RISCV::X2) 10227 .Case("{gp}", RISCV::X3) 10228 .Case("{tp}", RISCV::X4) 10229 .Case("{t0}", RISCV::X5) 10230 .Case("{t1}", RISCV::X6) 10231 .Case("{t2}", RISCV::X7) 10232 .Cases("{s0}", "{fp}", RISCV::X8) 10233 .Case("{s1}", RISCV::X9) 10234 .Case("{a0}", RISCV::X10) 10235 .Case("{a1}", RISCV::X11) 10236 .Case("{a2}", RISCV::X12) 10237 .Case("{a3}", RISCV::X13) 10238 .Case("{a4}", RISCV::X14) 10239 .Case("{a5}", RISCV::X15) 10240 .Case("{a6}", RISCV::X16) 10241 .Case("{a7}", RISCV::X17) 10242 .Case("{s2}", RISCV::X18) 10243 .Case("{s3}", RISCV::X19) 10244 .Case("{s4}", RISCV::X20) 10245 .Case("{s5}", RISCV::X21) 10246 .Case("{s6}", RISCV::X22) 10247 .Case("{s7}", RISCV::X23) 10248 .Case("{s8}", RISCV::X24) 10249 .Case("{s9}", RISCV::X25) 10250 .Case("{s10}", RISCV::X26) 10251 .Case("{s11}", RISCV::X27) 10252 .Case("{t3}", RISCV::X28) 10253 .Case("{t4}", RISCV::X29) 10254 .Case("{t5}", RISCV::X30) 10255 .Case("{t6}", RISCV::X31) 10256 .Default(RISCV::NoRegister); 10257 if (XRegFromAlias != RISCV::NoRegister) 10258 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 10259 10260 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 10261 // TableGen record rather than the AsmName to choose registers for InlineAsm 10262 // constraints, plus we want to match those names to the widest floating point 10263 // register type available, manually select floating point registers here. 10264 // 10265 // The second case is the ABI name of the register, so that frontends can also 10266 // use the ABI names in register constraint lists. 10267 if (Subtarget.hasStdExtF()) { 10268 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 10269 .Cases("{f0}", "{ft0}", RISCV::F0_F) 10270 .Cases("{f1}", "{ft1}", RISCV::F1_F) 10271 .Cases("{f2}", "{ft2}", RISCV::F2_F) 10272 .Cases("{f3}", "{ft3}", RISCV::F3_F) 10273 .Cases("{f4}", "{ft4}", RISCV::F4_F) 10274 .Cases("{f5}", "{ft5}", RISCV::F5_F) 10275 .Cases("{f6}", "{ft6}", RISCV::F6_F) 10276 .Cases("{f7}", "{ft7}", RISCV::F7_F) 10277 .Cases("{f8}", "{fs0}", RISCV::F8_F) 10278 .Cases("{f9}", "{fs1}", RISCV::F9_F) 10279 .Cases("{f10}", "{fa0}", RISCV::F10_F) 10280 .Cases("{f11}", "{fa1}", RISCV::F11_F) 10281 .Cases("{f12}", "{fa2}", RISCV::F12_F) 10282 .Cases("{f13}", "{fa3}", RISCV::F13_F) 10283 .Cases("{f14}", "{fa4}", RISCV::F14_F) 10284 .Cases("{f15}", "{fa5}", RISCV::F15_F) 10285 .Cases("{f16}", "{fa6}", RISCV::F16_F) 10286 .Cases("{f17}", "{fa7}", RISCV::F17_F) 10287 .Cases("{f18}", "{fs2}", RISCV::F18_F) 10288 .Cases("{f19}", "{fs3}", RISCV::F19_F) 10289 .Cases("{f20}", "{fs4}", RISCV::F20_F) 10290 .Cases("{f21}", "{fs5}", RISCV::F21_F) 10291 .Cases("{f22}", "{fs6}", RISCV::F22_F) 10292 .Cases("{f23}", "{fs7}", RISCV::F23_F) 10293 .Cases("{f24}", "{fs8}", RISCV::F24_F) 10294 .Cases("{f25}", "{fs9}", RISCV::F25_F) 10295 .Cases("{f26}", "{fs10}", RISCV::F26_F) 10296 .Cases("{f27}", "{fs11}", RISCV::F27_F) 10297 .Cases("{f28}", "{ft8}", RISCV::F28_F) 10298 .Cases("{f29}", "{ft9}", RISCV::F29_F) 10299 .Cases("{f30}", "{ft10}", RISCV::F30_F) 10300 .Cases("{f31}", "{ft11}", RISCV::F31_F) 10301 .Default(RISCV::NoRegister); 10302 if (FReg != RISCV::NoRegister) { 10303 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 10304 if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) { 10305 unsigned RegNo = FReg - RISCV::F0_F; 10306 unsigned DReg = RISCV::F0_D + RegNo; 10307 return std::make_pair(DReg, &RISCV::FPR64RegClass); 10308 } 10309 if (VT == MVT::f32 || VT == MVT::Other) 10310 return std::make_pair(FReg, &RISCV::FPR32RegClass); 10311 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) { 10312 unsigned RegNo = FReg - RISCV::F0_F; 10313 unsigned HReg = RISCV::F0_H + RegNo; 10314 return std::make_pair(HReg, &RISCV::FPR16RegClass); 10315 } 10316 } 10317 } 10318 10319 if (Subtarget.hasVInstructions()) { 10320 Register VReg = StringSwitch<Register>(Constraint.lower()) 10321 .Case("{v0}", RISCV::V0) 10322 .Case("{v1}", RISCV::V1) 10323 .Case("{v2}", RISCV::V2) 10324 .Case("{v3}", RISCV::V3) 10325 .Case("{v4}", RISCV::V4) 10326 .Case("{v5}", RISCV::V5) 10327 .Case("{v6}", RISCV::V6) 10328 .Case("{v7}", RISCV::V7) 10329 .Case("{v8}", RISCV::V8) 10330 .Case("{v9}", RISCV::V9) 10331 .Case("{v10}", RISCV::V10) 10332 .Case("{v11}", RISCV::V11) 10333 .Case("{v12}", RISCV::V12) 10334 .Case("{v13}", RISCV::V13) 10335 .Case("{v14}", RISCV::V14) 10336 .Case("{v15}", RISCV::V15) 10337 .Case("{v16}", RISCV::V16) 10338 .Case("{v17}", RISCV::V17) 10339 .Case("{v18}", RISCV::V18) 10340 .Case("{v19}", RISCV::V19) 10341 .Case("{v20}", RISCV::V20) 10342 .Case("{v21}", RISCV::V21) 10343 .Case("{v22}", RISCV::V22) 10344 .Case("{v23}", RISCV::V23) 10345 .Case("{v24}", RISCV::V24) 10346 .Case("{v25}", RISCV::V25) 10347 .Case("{v26}", RISCV::V26) 10348 .Case("{v27}", RISCV::V27) 10349 .Case("{v28}", RISCV::V28) 10350 .Case("{v29}", RISCV::V29) 10351 .Case("{v30}", RISCV::V30) 10352 .Case("{v31}", RISCV::V31) 10353 .Default(RISCV::NoRegister); 10354 if (VReg != RISCV::NoRegister) { 10355 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 10356 return std::make_pair(VReg, &RISCV::VMRegClass); 10357 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 10358 return std::make_pair(VReg, &RISCV::VRRegClass); 10359 for (const auto *RC : 10360 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 10361 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 10362 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 10363 return std::make_pair(VReg, RC); 10364 } 10365 } 10366 } 10367 } 10368 10369 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 10370 } 10371 10372 unsigned 10373 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 10374 // Currently only support length 1 constraints. 10375 if (ConstraintCode.size() == 1) { 10376 switch (ConstraintCode[0]) { 10377 case 'A': 10378 return InlineAsm::Constraint_A; 10379 default: 10380 break; 10381 } 10382 } 10383 10384 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 10385 } 10386 10387 void RISCVTargetLowering::LowerAsmOperandForConstraint( 10388 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 10389 SelectionDAG &DAG) const { 10390 // Currently only support length 1 constraints. 10391 if (Constraint.length() == 1) { 10392 switch (Constraint[0]) { 10393 case 'I': 10394 // Validate & create a 12-bit signed immediate operand. 10395 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 10396 uint64_t CVal = C->getSExtValue(); 10397 if (isInt<12>(CVal)) 10398 Ops.push_back( 10399 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 10400 } 10401 return; 10402 case 'J': 10403 // Validate & create an integer zero operand. 10404 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 10405 if (C->getZExtValue() == 0) 10406 Ops.push_back( 10407 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 10408 return; 10409 case 'K': 10410 // Validate & create a 5-bit unsigned immediate operand. 10411 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 10412 uint64_t CVal = C->getZExtValue(); 10413 if (isUInt<5>(CVal)) 10414 Ops.push_back( 10415 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 10416 } 10417 return; 10418 case 'S': 10419 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 10420 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 10421 GA->getValueType(0))); 10422 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 10423 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 10424 BA->getValueType(0))); 10425 } 10426 return; 10427 default: 10428 break; 10429 } 10430 } 10431 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 10432 } 10433 10434 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 10435 Instruction *Inst, 10436 AtomicOrdering Ord) const { 10437 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 10438 return Builder.CreateFence(Ord); 10439 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 10440 return Builder.CreateFence(AtomicOrdering::Release); 10441 return nullptr; 10442 } 10443 10444 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 10445 Instruction *Inst, 10446 AtomicOrdering Ord) const { 10447 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 10448 return Builder.CreateFence(AtomicOrdering::Acquire); 10449 return nullptr; 10450 } 10451 10452 TargetLowering::AtomicExpansionKind 10453 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 10454 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 10455 // point operations can't be used in an lr/sc sequence without breaking the 10456 // forward-progress guarantee. 10457 if (AI->isFloatingPointOperation()) 10458 return AtomicExpansionKind::CmpXChg; 10459 10460 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 10461 if (Size == 8 || Size == 16) 10462 return AtomicExpansionKind::MaskedIntrinsic; 10463 return AtomicExpansionKind::None; 10464 } 10465 10466 static Intrinsic::ID 10467 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 10468 if (XLen == 32) { 10469 switch (BinOp) { 10470 default: 10471 llvm_unreachable("Unexpected AtomicRMW BinOp"); 10472 case AtomicRMWInst::Xchg: 10473 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 10474 case AtomicRMWInst::Add: 10475 return Intrinsic::riscv_masked_atomicrmw_add_i32; 10476 case AtomicRMWInst::Sub: 10477 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 10478 case AtomicRMWInst::Nand: 10479 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 10480 case AtomicRMWInst::Max: 10481 return Intrinsic::riscv_masked_atomicrmw_max_i32; 10482 case AtomicRMWInst::Min: 10483 return Intrinsic::riscv_masked_atomicrmw_min_i32; 10484 case AtomicRMWInst::UMax: 10485 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 10486 case AtomicRMWInst::UMin: 10487 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 10488 } 10489 } 10490 10491 if (XLen == 64) { 10492 switch (BinOp) { 10493 default: 10494 llvm_unreachable("Unexpected AtomicRMW BinOp"); 10495 case AtomicRMWInst::Xchg: 10496 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 10497 case AtomicRMWInst::Add: 10498 return Intrinsic::riscv_masked_atomicrmw_add_i64; 10499 case AtomicRMWInst::Sub: 10500 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 10501 case AtomicRMWInst::Nand: 10502 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 10503 case AtomicRMWInst::Max: 10504 return Intrinsic::riscv_masked_atomicrmw_max_i64; 10505 case AtomicRMWInst::Min: 10506 return Intrinsic::riscv_masked_atomicrmw_min_i64; 10507 case AtomicRMWInst::UMax: 10508 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 10509 case AtomicRMWInst::UMin: 10510 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 10511 } 10512 } 10513 10514 llvm_unreachable("Unexpected XLen\n"); 10515 } 10516 10517 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 10518 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 10519 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 10520 unsigned XLen = Subtarget.getXLen(); 10521 Value *Ordering = 10522 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 10523 Type *Tys[] = {AlignedAddr->getType()}; 10524 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 10525 AI->getModule(), 10526 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 10527 10528 if (XLen == 64) { 10529 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 10530 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 10531 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 10532 } 10533 10534 Value *Result; 10535 10536 // Must pass the shift amount needed to sign extend the loaded value prior 10537 // to performing a signed comparison for min/max. ShiftAmt is the number of 10538 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 10539 // is the number of bits to left+right shift the value in order to 10540 // sign-extend. 10541 if (AI->getOperation() == AtomicRMWInst::Min || 10542 AI->getOperation() == AtomicRMWInst::Max) { 10543 const DataLayout &DL = AI->getModule()->getDataLayout(); 10544 unsigned ValWidth = 10545 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 10546 Value *SextShamt = 10547 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 10548 Result = Builder.CreateCall(LrwOpScwLoop, 10549 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 10550 } else { 10551 Result = 10552 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 10553 } 10554 10555 if (XLen == 64) 10556 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 10557 return Result; 10558 } 10559 10560 TargetLowering::AtomicExpansionKind 10561 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 10562 AtomicCmpXchgInst *CI) const { 10563 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 10564 if (Size == 8 || Size == 16) 10565 return AtomicExpansionKind::MaskedIntrinsic; 10566 return AtomicExpansionKind::None; 10567 } 10568 10569 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 10570 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 10571 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 10572 unsigned XLen = Subtarget.getXLen(); 10573 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 10574 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 10575 if (XLen == 64) { 10576 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 10577 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 10578 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 10579 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 10580 } 10581 Type *Tys[] = {AlignedAddr->getType()}; 10582 Function *MaskedCmpXchg = 10583 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 10584 Value *Result = Builder.CreateCall( 10585 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 10586 if (XLen == 64) 10587 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 10588 return Result; 10589 } 10590 10591 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 10592 return false; 10593 } 10594 10595 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 10596 EVT VT) const { 10597 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 10598 return false; 10599 10600 switch (FPVT.getSimpleVT().SimpleTy) { 10601 case MVT::f16: 10602 return Subtarget.hasStdExtZfh(); 10603 case MVT::f32: 10604 return Subtarget.hasStdExtF(); 10605 case MVT::f64: 10606 return Subtarget.hasStdExtD(); 10607 default: 10608 return false; 10609 } 10610 } 10611 10612 unsigned RISCVTargetLowering::getJumpTableEncoding() const { 10613 // If we are using the small code model, we can reduce size of jump table 10614 // entry to 4 bytes. 10615 if (Subtarget.is64Bit() && !isPositionIndependent() && 10616 getTargetMachine().getCodeModel() == CodeModel::Small) { 10617 return MachineJumpTableInfo::EK_Custom32; 10618 } 10619 return TargetLowering::getJumpTableEncoding(); 10620 } 10621 10622 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry( 10623 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 10624 unsigned uid, MCContext &Ctx) const { 10625 assert(Subtarget.is64Bit() && !isPositionIndependent() && 10626 getTargetMachine().getCodeModel() == CodeModel::Small); 10627 return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 10628 } 10629 10630 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 10631 EVT VT) const { 10632 VT = VT.getScalarType(); 10633 10634 if (!VT.isSimple()) 10635 return false; 10636 10637 switch (VT.getSimpleVT().SimpleTy) { 10638 case MVT::f16: 10639 return Subtarget.hasStdExtZfh(); 10640 case MVT::f32: 10641 return Subtarget.hasStdExtF(); 10642 case MVT::f64: 10643 return Subtarget.hasStdExtD(); 10644 default: 10645 break; 10646 } 10647 10648 return false; 10649 } 10650 10651 Register RISCVTargetLowering::getExceptionPointerRegister( 10652 const Constant *PersonalityFn) const { 10653 return RISCV::X10; 10654 } 10655 10656 Register RISCVTargetLowering::getExceptionSelectorRegister( 10657 const Constant *PersonalityFn) const { 10658 return RISCV::X11; 10659 } 10660 10661 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 10662 // Return false to suppress the unnecessary extensions if the LibCall 10663 // arguments or return value is f32 type for LP64 ABI. 10664 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 10665 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 10666 return false; 10667 10668 return true; 10669 } 10670 10671 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 10672 if (Subtarget.is64Bit() && Type == MVT::i32) 10673 return true; 10674 10675 return IsSigned; 10676 } 10677 10678 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 10679 SDValue C) const { 10680 // Check integral scalar types. 10681 if (VT.isScalarInteger()) { 10682 // Omit the optimization if the sub target has the M extension and the data 10683 // size exceeds XLen. 10684 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 10685 return false; 10686 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 10687 // Break the MUL to a SLLI and an ADD/SUB. 10688 const APInt &Imm = ConstNode->getAPIntValue(); 10689 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 10690 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 10691 return true; 10692 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 10693 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 10694 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 10695 (Imm - 8).isPowerOf2())) 10696 return true; 10697 // Omit the following optimization if the sub target has the M extension 10698 // and the data size >= XLen. 10699 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 10700 return false; 10701 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 10702 // a pair of LUI/ADDI. 10703 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 10704 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 10705 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 10706 (1 - ImmS).isPowerOf2()) 10707 return true; 10708 } 10709 } 10710 } 10711 10712 return false; 10713 } 10714 10715 bool RISCVTargetLowering::isMulAddWithConstProfitable( 10716 const SDValue &AddNode, const SDValue &ConstNode) const { 10717 // Let the DAGCombiner decide for vectors. 10718 EVT VT = AddNode.getValueType(); 10719 if (VT.isVector()) 10720 return true; 10721 10722 // Let the DAGCombiner decide for larger types. 10723 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 10724 return true; 10725 10726 // It is worse if c1 is simm12 while c1*c2 is not. 10727 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 10728 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 10729 const APInt &C1 = C1Node->getAPIntValue(); 10730 const APInt &C2 = C2Node->getAPIntValue(); 10731 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 10732 return false; 10733 10734 // Default to true and let the DAGCombiner decide. 10735 return true; 10736 } 10737 10738 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 10739 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 10740 bool *Fast) const { 10741 if (!VT.isVector()) 10742 return false; 10743 10744 EVT ElemVT = VT.getVectorElementType(); 10745 if (Alignment >= ElemVT.getStoreSize()) { 10746 if (Fast) 10747 *Fast = true; 10748 return true; 10749 } 10750 10751 return false; 10752 } 10753 10754 bool RISCVTargetLowering::splitValueIntoRegisterParts( 10755 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 10756 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 10757 bool IsABIRegCopy = CC.hasValue(); 10758 EVT ValueVT = Val.getValueType(); 10759 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10760 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 10761 // and cast to f32. 10762 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 10763 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 10764 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 10765 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 10766 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 10767 Parts[0] = Val; 10768 return true; 10769 } 10770 10771 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10772 LLVMContext &Context = *DAG.getContext(); 10773 EVT ValueEltVT = ValueVT.getVectorElementType(); 10774 EVT PartEltVT = PartVT.getVectorElementType(); 10775 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10776 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10777 if (PartVTBitSize % ValueVTBitSize == 0) { 10778 assert(PartVTBitSize >= ValueVTBitSize); 10779 // If the element types are different, bitcast to the same element type of 10780 // PartVT first. 10781 // Give an example here, we want copy a <vscale x 1 x i8> value to 10782 // <vscale x 4 x i16>. 10783 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 10784 // subvector, then we can bitcast to <vscale x 4 x i16>. 10785 if (ValueEltVT != PartEltVT) { 10786 if (PartVTBitSize > ValueVTBitSize) { 10787 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 10788 assert(Count != 0 && "The number of element should not be zero."); 10789 EVT SameEltTypeVT = 10790 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 10791 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 10792 DAG.getUNDEF(SameEltTypeVT), Val, 10793 DAG.getVectorIdxConstant(0, DL)); 10794 } 10795 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 10796 } else { 10797 Val = 10798 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 10799 Val, DAG.getVectorIdxConstant(0, DL)); 10800 } 10801 Parts[0] = Val; 10802 return true; 10803 } 10804 } 10805 return false; 10806 } 10807 10808 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 10809 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 10810 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 10811 bool IsABIRegCopy = CC.hasValue(); 10812 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10813 SDValue Val = Parts[0]; 10814 10815 // Cast the f32 to i32, truncate to i16, and cast back to f16. 10816 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 10817 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 10818 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 10819 return Val; 10820 } 10821 10822 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10823 LLVMContext &Context = *DAG.getContext(); 10824 SDValue Val = Parts[0]; 10825 EVT ValueEltVT = ValueVT.getVectorElementType(); 10826 EVT PartEltVT = PartVT.getVectorElementType(); 10827 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10828 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10829 if (PartVTBitSize % ValueVTBitSize == 0) { 10830 assert(PartVTBitSize >= ValueVTBitSize); 10831 EVT SameEltTypeVT = ValueVT; 10832 // If the element types are different, convert it to the same element type 10833 // of PartVT. 10834 // Give an example here, we want copy a <vscale x 1 x i8> value from 10835 // <vscale x 4 x i16>. 10836 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 10837 // then we can extract <vscale x 1 x i8>. 10838 if (ValueEltVT != PartEltVT) { 10839 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 10840 assert(Count != 0 && "The number of element should not be zero."); 10841 SameEltTypeVT = 10842 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 10843 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 10844 } 10845 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 10846 DAG.getVectorIdxConstant(0, DL)); 10847 return Val; 10848 } 10849 } 10850 return SDValue(); 10851 } 10852 10853 SDValue 10854 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 10855 SelectionDAG &DAG, 10856 SmallVectorImpl<SDNode *> &Created) const { 10857 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 10858 if (isIntDivCheap(N->getValueType(0), Attr)) 10859 return SDValue(N, 0); // Lower SDIV as SDIV 10860 10861 assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) && 10862 "Unexpected divisor!"); 10863 10864 // Conditional move is needed, so do the transformation iff Zbt is enabled. 10865 if (!Subtarget.hasStdExtZbt()) 10866 return SDValue(); 10867 10868 // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation. 10869 // Besides, more critical path instructions will be generated when dividing 10870 // by 2. So we keep using the original DAGs for these cases. 10871 unsigned Lg2 = Divisor.countTrailingZeros(); 10872 if (Lg2 == 1 || Lg2 >= 12) 10873 return SDValue(); 10874 10875 // fold (sdiv X, pow2) 10876 EVT VT = N->getValueType(0); 10877 if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64)) 10878 return SDValue(); 10879 10880 SDLoc DL(N); 10881 SDValue N0 = N->getOperand(0); 10882 SDValue Zero = DAG.getConstant(0, DL, VT); 10883 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); 10884 10885 // Add (N0 < 0) ? Pow2 - 1 : 0; 10886 SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT); 10887 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 10888 SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 10889 10890 Created.push_back(Cmp.getNode()); 10891 Created.push_back(Add.getNode()); 10892 Created.push_back(Sel.getNode()); 10893 10894 // Divide by pow2. 10895 SDValue SRA = 10896 DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT)); 10897 10898 // If we're dividing by a positive value, we're done. Otherwise, we must 10899 // negate the result. 10900 if (Divisor.isNonNegative()) 10901 return SRA; 10902 10903 Created.push_back(SRA.getNode()); 10904 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 10905 } 10906 10907 #define GET_REGISTER_MATCHER 10908 #include "RISCVGenAsmMatcher.inc" 10909 10910 Register 10911 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 10912 const MachineFunction &MF) const { 10913 Register Reg = MatchRegisterAltName(RegName); 10914 if (Reg == RISCV::NoRegister) 10915 Reg = MatchRegisterName(RegName); 10916 if (Reg == RISCV::NoRegister) 10917 report_fatal_error( 10918 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 10919 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 10920 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 10921 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 10922 StringRef(RegName) + "\".")); 10923 return Reg; 10924 } 10925 10926 namespace llvm { 10927 namespace RISCVVIntrinsicsTable { 10928 10929 #define GET_RISCVVIntrinsicsTable_IMPL 10930 #include "RISCVGenSearchableTables.inc" 10931 10932 } // namespace RISCVVIntrinsicsTable 10933 10934 } // namespace llvm 10935