1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/IntrinsicsRISCV.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "riscv-lower" 44 45 STATISTIC(NumTailCalls, "Number of tail calls"); 46 47 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 48 const RISCVSubtarget &STI) 49 : TargetLowering(TM), Subtarget(STI) { 50 51 if (Subtarget.isRV32E()) 52 report_fatal_error("Codegen not yet implemented for RV32E"); 53 54 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 55 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 56 57 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 58 !Subtarget.hasStdExtF()) { 59 errs() << "Hard-float 'f' ABI can't be used for a target that " 60 "doesn't support the F instruction set extension (ignoring " 61 "target-abi)\n"; 62 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 63 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 64 !Subtarget.hasStdExtD()) { 65 errs() << "Hard-float 'd' ABI can't be used for a target that " 66 "doesn't support the D instruction set extension (ignoring " 67 "target-abi)\n"; 68 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 69 } 70 71 switch (ABI) { 72 default: 73 report_fatal_error("Don't know how to lower this ABI"); 74 case RISCVABI::ABI_ILP32: 75 case RISCVABI::ABI_ILP32F: 76 case RISCVABI::ABI_ILP32D: 77 case RISCVABI::ABI_LP64: 78 case RISCVABI::ABI_LP64F: 79 case RISCVABI::ABI_LP64D: 80 break; 81 } 82 83 MVT XLenVT = Subtarget.getXLenVT(); 84 85 // Set up the register classes. 86 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 87 88 if (Subtarget.hasStdExtZfh()) 89 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 90 if (Subtarget.hasStdExtF()) 91 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 92 if (Subtarget.hasStdExtD()) 93 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 94 95 static const MVT::SimpleValueType BoolVecVTs[] = { 96 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 97 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 98 static const MVT::SimpleValueType IntVecVTs[] = { 99 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 100 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 101 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 102 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 103 MVT::nxv4i64, MVT::nxv8i64}; 104 static const MVT::SimpleValueType F16VecVTs[] = { 105 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 106 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 107 static const MVT::SimpleValueType F32VecVTs[] = { 108 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 109 static const MVT::SimpleValueType F64VecVTs[] = { 110 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 111 112 if (Subtarget.hasVInstructions()) { 113 auto addRegClassForRVV = [this](MVT VT) { 114 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 115 assert(Size <= 512 && isPowerOf2_32(Size)); 116 const TargetRegisterClass *RC; 117 if (Size <= 64) 118 RC = &RISCV::VRRegClass; 119 else if (Size == 128) 120 RC = &RISCV::VRM2RegClass; 121 else if (Size == 256) 122 RC = &RISCV::VRM4RegClass; 123 else 124 RC = &RISCV::VRM8RegClass; 125 126 addRegisterClass(VT, RC); 127 }; 128 129 for (MVT VT : BoolVecVTs) 130 addRegClassForRVV(VT); 131 for (MVT VT : IntVecVTs) { 132 if (VT.getVectorElementType() == MVT::i64 && 133 !Subtarget.hasVInstructionsI64()) 134 continue; 135 addRegClassForRVV(VT); 136 } 137 138 if (Subtarget.hasVInstructionsF16()) 139 for (MVT VT : F16VecVTs) 140 addRegClassForRVV(VT); 141 142 if (Subtarget.hasVInstructionsF32()) 143 for (MVT VT : F32VecVTs) 144 addRegClassForRVV(VT); 145 146 if (Subtarget.hasVInstructionsF64()) 147 for (MVT VT : F64VecVTs) 148 addRegClassForRVV(VT); 149 150 if (Subtarget.useRVVForFixedLengthVectors()) { 151 auto addRegClassForFixedVectors = [this](MVT VT) { 152 MVT ContainerVT = getContainerForFixedLengthVector(VT); 153 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 154 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 155 addRegisterClass(VT, TRI.getRegClass(RCID)); 156 }; 157 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 158 if (useRVVForFixedLengthVectorVT(VT)) 159 addRegClassForFixedVectors(VT); 160 161 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 162 if (useRVVForFixedLengthVectorVT(VT)) 163 addRegClassForFixedVectors(VT); 164 } 165 } 166 167 // Compute derived properties from the register classes. 168 computeRegisterProperties(STI.getRegisterInfo()); 169 170 setStackPointerRegisterToSaveRestore(RISCV::X2); 171 172 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 173 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 174 175 // TODO: add all necessary setOperationAction calls. 176 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 177 178 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 179 setOperationAction(ISD::BR_CC, XLenVT, Expand); 180 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 181 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 182 183 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 184 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 185 186 setOperationAction(ISD::VASTART, MVT::Other, Custom); 187 setOperationAction(ISD::VAARG, MVT::Other, Expand); 188 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 189 setOperationAction(ISD::VAEND, MVT::Other, Expand); 190 191 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 192 if (!Subtarget.hasStdExtZbb()) { 193 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 195 } 196 197 if (Subtarget.is64Bit()) { 198 setOperationAction(ISD::ADD, MVT::i32, Custom); 199 setOperationAction(ISD::SUB, MVT::i32, Custom); 200 setOperationAction(ISD::SHL, MVT::i32, Custom); 201 setOperationAction(ISD::SRA, MVT::i32, Custom); 202 setOperationAction(ISD::SRL, MVT::i32, Custom); 203 204 setOperationAction(ISD::UADDO, MVT::i32, Custom); 205 setOperationAction(ISD::USUBO, MVT::i32, Custom); 206 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 207 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 208 } else { 209 setLibcallName(RTLIB::SHL_I128, nullptr); 210 setLibcallName(RTLIB::SRL_I128, nullptr); 211 setLibcallName(RTLIB::SRA_I128, nullptr); 212 setLibcallName(RTLIB::MUL_I128, nullptr); 213 setLibcallName(RTLIB::MULO_I64, nullptr); 214 } 215 216 if (!Subtarget.hasStdExtM()) { 217 setOperationAction(ISD::MUL, XLenVT, Expand); 218 setOperationAction(ISD::MULHS, XLenVT, Expand); 219 setOperationAction(ISD::MULHU, XLenVT, Expand); 220 setOperationAction(ISD::SDIV, XLenVT, Expand); 221 setOperationAction(ISD::UDIV, XLenVT, Expand); 222 setOperationAction(ISD::SREM, XLenVT, Expand); 223 setOperationAction(ISD::UREM, XLenVT, Expand); 224 } else { 225 if (Subtarget.is64Bit()) { 226 setOperationAction(ISD::MUL, MVT::i32, Custom); 227 setOperationAction(ISD::MUL, MVT::i128, Custom); 228 229 setOperationAction(ISD::SDIV, MVT::i8, Custom); 230 setOperationAction(ISD::UDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UREM, MVT::i8, Custom); 232 setOperationAction(ISD::SDIV, MVT::i16, Custom); 233 setOperationAction(ISD::UDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UREM, MVT::i16, Custom); 235 setOperationAction(ISD::SDIV, MVT::i32, Custom); 236 setOperationAction(ISD::UDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UREM, MVT::i32, Custom); 238 } else { 239 setOperationAction(ISD::MUL, MVT::i64, Custom); 240 } 241 } 242 243 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 244 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 246 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 247 248 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 249 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 251 252 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 253 if (Subtarget.is64Bit()) { 254 setOperationAction(ISD::ROTL, MVT::i32, Custom); 255 setOperationAction(ISD::ROTR, MVT::i32, Custom); 256 } 257 } else { 258 setOperationAction(ISD::ROTL, XLenVT, Expand); 259 setOperationAction(ISD::ROTR, XLenVT, Expand); 260 } 261 262 if (Subtarget.hasStdExtZbp()) { 263 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 264 // more combining. 265 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 266 setOperationAction(ISD::BSWAP, XLenVT, Custom); 267 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 268 // BSWAP i8 doesn't exist. 269 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 270 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 271 272 if (Subtarget.is64Bit()) { 273 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 274 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 275 } 276 } else { 277 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 278 // pattern match it directly in isel. 279 setOperationAction(ISD::BSWAP, XLenVT, 280 Subtarget.hasStdExtZbb() ? Legal : Expand); 281 } 282 283 if (Subtarget.hasStdExtZbb()) { 284 setOperationAction(ISD::SMIN, XLenVT, Legal); 285 setOperationAction(ISD::SMAX, XLenVT, Legal); 286 setOperationAction(ISD::UMIN, XLenVT, Legal); 287 setOperationAction(ISD::UMAX, XLenVT, Legal); 288 289 if (Subtarget.is64Bit()) { 290 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 291 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 292 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 293 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 294 } 295 } else { 296 setOperationAction(ISD::CTTZ, XLenVT, Expand); 297 setOperationAction(ISD::CTLZ, XLenVT, Expand); 298 setOperationAction(ISD::CTPOP, XLenVT, Expand); 299 } 300 301 if (Subtarget.hasStdExtZbt()) { 302 setOperationAction(ISD::FSHL, XLenVT, Custom); 303 setOperationAction(ISD::FSHR, XLenVT, Custom); 304 setOperationAction(ISD::SELECT, XLenVT, Legal); 305 306 if (Subtarget.is64Bit()) { 307 setOperationAction(ISD::FSHL, MVT::i32, Custom); 308 setOperationAction(ISD::FSHR, MVT::i32, Custom); 309 } 310 } else { 311 setOperationAction(ISD::SELECT, XLenVT, Custom); 312 } 313 314 static const ISD::CondCode FPCCToExpand[] = { 315 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 316 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 317 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 318 319 static const ISD::NodeType FPOpToExpand[] = { 320 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 321 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 322 323 if (Subtarget.hasStdExtZfh()) 324 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 325 326 if (Subtarget.hasStdExtZfh()) { 327 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 328 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 329 setOperationAction(ISD::LRINT, MVT::f16, Legal); 330 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 331 setOperationAction(ISD::LROUND, MVT::f16, Legal); 332 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 333 for (auto CC : FPCCToExpand) 334 setCondCodeAction(CC, MVT::f16, Expand); 335 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 336 setOperationAction(ISD::SELECT, MVT::f16, Custom); 337 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 338 for (auto Op : FPOpToExpand) 339 setOperationAction(Op, MVT::f16, Expand); 340 341 setOperationAction(ISD::FREM, MVT::f16, Promote); 342 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 343 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 344 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 345 setOperationAction(ISD::FRINT, MVT::f16, Promote); 346 setOperationAction(ISD::FROUND, MVT::f16, Promote); 347 setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote); 348 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 349 } 350 351 if (Subtarget.hasStdExtF()) { 352 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 353 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 354 setOperationAction(ISD::LRINT, MVT::f32, Legal); 355 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 356 setOperationAction(ISD::LROUND, MVT::f32, Legal); 357 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 358 for (auto CC : FPCCToExpand) 359 setCondCodeAction(CC, MVT::f32, Expand); 360 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 361 setOperationAction(ISD::SELECT, MVT::f32, Custom); 362 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 363 for (auto Op : FPOpToExpand) 364 setOperationAction(Op, MVT::f32, Expand); 365 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 366 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 367 } 368 369 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 370 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 371 372 if (Subtarget.hasStdExtD()) { 373 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 374 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 375 setOperationAction(ISD::LRINT, MVT::f64, Legal); 376 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 377 setOperationAction(ISD::LROUND, MVT::f64, Legal); 378 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 379 for (auto CC : FPCCToExpand) 380 setCondCodeAction(CC, MVT::f64, Expand); 381 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 382 setOperationAction(ISD::SELECT, MVT::f64, Custom); 383 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 384 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 385 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 386 for (auto Op : FPOpToExpand) 387 setOperationAction(Op, MVT::f64, Expand); 388 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 389 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 390 } 391 392 if (Subtarget.is64Bit()) { 393 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 394 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 395 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 396 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 397 } 398 399 if (Subtarget.hasStdExtF()) { 400 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 401 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 402 403 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 404 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 405 } 406 407 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 408 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 409 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 410 setOperationAction(ISD::JumpTable, XLenVT, Custom); 411 412 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 413 414 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 415 // Unfortunately this can't be determined just from the ISA naming string. 416 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 417 Subtarget.is64Bit() ? Legal : Custom); 418 419 setOperationAction(ISD::TRAP, MVT::Other, Legal); 420 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 421 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 422 if (Subtarget.is64Bit()) 423 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 424 425 if (Subtarget.hasStdExtA()) { 426 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 427 setMinCmpXchgSizeInBits(32); 428 } else { 429 setMaxAtomicSizeInBitsSupported(0); 430 } 431 432 setBooleanContents(ZeroOrOneBooleanContent); 433 434 if (Subtarget.hasVInstructions()) { 435 setBooleanVectorContents(ZeroOrOneBooleanContent); 436 437 setOperationAction(ISD::VSCALE, XLenVT, Custom); 438 439 // RVV intrinsics may have illegal operands. 440 // We also need to custom legalize vmv.x.s. 441 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 442 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 443 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 444 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 445 if (Subtarget.is64Bit()) { 446 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 447 } else { 448 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 449 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 450 } 451 452 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 453 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 454 455 static const unsigned IntegerVPOps[] = { 456 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 457 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 458 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 459 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 460 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 461 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 462 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN}; 463 464 static const unsigned FloatingPointVPOps[] = { 465 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 466 ISD::VP_FDIV, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 467 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX}; 468 469 if (!Subtarget.is64Bit()) { 470 // We must custom-lower certain vXi64 operations on RV32 due to the vector 471 // element type being illegal. 472 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 473 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 474 475 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 476 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 477 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 478 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 479 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 480 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 481 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 482 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 483 484 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 485 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 486 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 487 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 488 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 489 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 490 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 491 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 492 } 493 494 for (MVT VT : BoolVecVTs) { 495 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 496 497 // Mask VTs are custom-expanded into a series of standard nodes 498 setOperationAction(ISD::TRUNCATE, VT, Custom); 499 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 500 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 501 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 502 503 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 504 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 505 506 setOperationAction(ISD::SELECT, VT, Custom); 507 setOperationAction(ISD::SELECT_CC, VT, Expand); 508 setOperationAction(ISD::VSELECT, VT, Expand); 509 510 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 511 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 512 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 513 514 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 515 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 516 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 517 518 // RVV has native int->float & float->int conversions where the 519 // element type sizes are within one power-of-two of each other. Any 520 // wider distances between type sizes have to be lowered as sequences 521 // which progressively narrow the gap in stages. 522 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 523 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 524 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 525 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 526 527 // Expand all extending loads to types larger than this, and truncating 528 // stores from types larger than this. 529 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 530 setTruncStoreAction(OtherVT, VT, Expand); 531 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 532 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 533 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 534 } 535 } 536 537 for (MVT VT : IntVecVTs) { 538 if (VT.getVectorElementType() == MVT::i64 && 539 !Subtarget.hasVInstructionsI64()) 540 continue; 541 542 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 543 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 544 545 // Vectors implement MULHS/MULHU. 546 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 547 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 548 549 setOperationAction(ISD::SMIN, VT, Legal); 550 setOperationAction(ISD::SMAX, VT, Legal); 551 setOperationAction(ISD::UMIN, VT, Legal); 552 setOperationAction(ISD::UMAX, VT, Legal); 553 554 setOperationAction(ISD::ROTL, VT, Expand); 555 setOperationAction(ISD::ROTR, VT, Expand); 556 557 setOperationAction(ISD::CTTZ, VT, Expand); 558 setOperationAction(ISD::CTLZ, VT, Expand); 559 setOperationAction(ISD::CTPOP, VT, Expand); 560 561 setOperationAction(ISD::BSWAP, VT, Expand); 562 563 // Custom-lower extensions and truncations from/to mask types. 564 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 565 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 566 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 567 568 // RVV has native int->float & float->int conversions where the 569 // element type sizes are within one power-of-two of each other. Any 570 // wider distances between type sizes have to be lowered as sequences 571 // which progressively narrow the gap in stages. 572 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 573 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 574 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 575 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 576 577 setOperationAction(ISD::SADDSAT, VT, Legal); 578 setOperationAction(ISD::UADDSAT, VT, Legal); 579 setOperationAction(ISD::SSUBSAT, VT, Legal); 580 setOperationAction(ISD::USUBSAT, VT, Legal); 581 582 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 583 // nodes which truncate by one power of two at a time. 584 setOperationAction(ISD::TRUNCATE, VT, Custom); 585 586 // Custom-lower insert/extract operations to simplify patterns. 587 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 588 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 589 590 // Custom-lower reduction operations to set up the corresponding custom 591 // nodes' operands. 592 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 593 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 594 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 595 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 596 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 597 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 598 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 599 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 600 601 for (unsigned VPOpc : IntegerVPOps) 602 setOperationAction(VPOpc, VT, Custom); 603 604 setOperationAction(ISD::LOAD, VT, Custom); 605 setOperationAction(ISD::STORE, VT, Custom); 606 607 setOperationAction(ISD::MLOAD, VT, Custom); 608 setOperationAction(ISD::MSTORE, VT, Custom); 609 setOperationAction(ISD::MGATHER, VT, Custom); 610 setOperationAction(ISD::MSCATTER, VT, Custom); 611 612 setOperationAction(ISD::VP_LOAD, VT, Custom); 613 setOperationAction(ISD::VP_STORE, VT, Custom); 614 setOperationAction(ISD::VP_GATHER, VT, Custom); 615 setOperationAction(ISD::VP_SCATTER, VT, Custom); 616 617 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 618 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 619 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 620 621 setOperationAction(ISD::SELECT, VT, Custom); 622 setOperationAction(ISD::SELECT_CC, VT, Expand); 623 624 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 625 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 626 627 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 628 setTruncStoreAction(VT, OtherVT, Expand); 629 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 630 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 631 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 632 } 633 } 634 635 // Expand various CCs to best match the RVV ISA, which natively supports UNE 636 // but no other unordered comparisons, and supports all ordered comparisons 637 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 638 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 639 // and we pattern-match those back to the "original", swapping operands once 640 // more. This way we catch both operations and both "vf" and "fv" forms with 641 // fewer patterns. 642 static const ISD::CondCode VFPCCToExpand[] = { 643 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 644 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 645 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 646 }; 647 648 // Sets common operation actions on RVV floating-point vector types. 649 const auto SetCommonVFPActions = [&](MVT VT) { 650 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 651 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 652 // sizes are within one power-of-two of each other. Therefore conversions 653 // between vXf16 and vXf64 must be lowered as sequences which convert via 654 // vXf32. 655 setOperationAction(ISD::FP_ROUND, VT, Custom); 656 setOperationAction(ISD::FP_EXTEND, VT, Custom); 657 // Custom-lower insert/extract operations to simplify patterns. 658 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 659 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 660 // Expand various condition codes (explained above). 661 for (auto CC : VFPCCToExpand) 662 setCondCodeAction(CC, VT, Expand); 663 664 setOperationAction(ISD::FMINNUM, VT, Legal); 665 setOperationAction(ISD::FMAXNUM, VT, Legal); 666 667 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 668 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 669 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 670 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 671 672 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 673 674 setOperationAction(ISD::LOAD, VT, Custom); 675 setOperationAction(ISD::STORE, VT, Custom); 676 677 setOperationAction(ISD::MLOAD, VT, Custom); 678 setOperationAction(ISD::MSTORE, VT, Custom); 679 setOperationAction(ISD::MGATHER, VT, Custom); 680 setOperationAction(ISD::MSCATTER, VT, Custom); 681 682 setOperationAction(ISD::VP_LOAD, VT, Custom); 683 setOperationAction(ISD::VP_STORE, VT, Custom); 684 setOperationAction(ISD::VP_GATHER, VT, Custom); 685 setOperationAction(ISD::VP_SCATTER, VT, Custom); 686 687 setOperationAction(ISD::SELECT, VT, Custom); 688 setOperationAction(ISD::SELECT_CC, VT, Expand); 689 690 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 691 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 692 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 693 694 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 695 696 for (unsigned VPOpc : FloatingPointVPOps) 697 setOperationAction(VPOpc, VT, Custom); 698 }; 699 700 // Sets common extload/truncstore actions on RVV floating-point vector 701 // types. 702 const auto SetCommonVFPExtLoadTruncStoreActions = 703 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 704 for (auto SmallVT : SmallerVTs) { 705 setTruncStoreAction(VT, SmallVT, Expand); 706 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 707 } 708 }; 709 710 if (Subtarget.hasVInstructionsF16()) 711 for (MVT VT : F16VecVTs) 712 SetCommonVFPActions(VT); 713 714 for (MVT VT : F32VecVTs) { 715 if (Subtarget.hasVInstructionsF32()) 716 SetCommonVFPActions(VT); 717 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 718 } 719 720 for (MVT VT : F64VecVTs) { 721 if (Subtarget.hasVInstructionsF64()) 722 SetCommonVFPActions(VT); 723 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 724 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 725 } 726 727 if (Subtarget.useRVVForFixedLengthVectors()) { 728 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 729 if (!useRVVForFixedLengthVectorVT(VT)) 730 continue; 731 732 // By default everything must be expanded. 733 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 734 setOperationAction(Op, VT, Expand); 735 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 736 setTruncStoreAction(VT, OtherVT, Expand); 737 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 738 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 739 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 740 } 741 742 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 743 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 744 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 745 746 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 747 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 748 749 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 750 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 751 752 setOperationAction(ISD::LOAD, VT, Custom); 753 setOperationAction(ISD::STORE, VT, Custom); 754 755 setOperationAction(ISD::SETCC, VT, Custom); 756 757 setOperationAction(ISD::SELECT, VT, Custom); 758 759 setOperationAction(ISD::TRUNCATE, VT, Custom); 760 761 setOperationAction(ISD::BITCAST, VT, Custom); 762 763 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 764 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 765 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 766 767 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 768 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 769 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 770 771 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 772 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 773 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 774 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 775 776 // Operations below are different for between masks and other vectors. 777 if (VT.getVectorElementType() == MVT::i1) { 778 setOperationAction(ISD::AND, VT, Custom); 779 setOperationAction(ISD::OR, VT, Custom); 780 setOperationAction(ISD::XOR, VT, Custom); 781 continue; 782 } 783 784 // Use SPLAT_VECTOR to prevent type legalization from destroying the 785 // splats when type legalizing i64 scalar on RV32. 786 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 787 // improvements first. 788 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 789 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 790 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 791 } 792 793 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 794 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 795 796 setOperationAction(ISD::MLOAD, VT, Custom); 797 setOperationAction(ISD::MSTORE, VT, Custom); 798 setOperationAction(ISD::MGATHER, VT, Custom); 799 setOperationAction(ISD::MSCATTER, VT, Custom); 800 801 setOperationAction(ISD::VP_LOAD, VT, Custom); 802 setOperationAction(ISD::VP_STORE, VT, Custom); 803 setOperationAction(ISD::VP_GATHER, VT, Custom); 804 setOperationAction(ISD::VP_SCATTER, VT, Custom); 805 806 setOperationAction(ISD::ADD, VT, Custom); 807 setOperationAction(ISD::MUL, VT, Custom); 808 setOperationAction(ISD::SUB, VT, Custom); 809 setOperationAction(ISD::AND, VT, Custom); 810 setOperationAction(ISD::OR, VT, Custom); 811 setOperationAction(ISD::XOR, VT, Custom); 812 setOperationAction(ISD::SDIV, VT, Custom); 813 setOperationAction(ISD::SREM, VT, Custom); 814 setOperationAction(ISD::UDIV, VT, Custom); 815 setOperationAction(ISD::UREM, VT, Custom); 816 setOperationAction(ISD::SHL, VT, Custom); 817 setOperationAction(ISD::SRA, VT, Custom); 818 setOperationAction(ISD::SRL, VT, Custom); 819 820 setOperationAction(ISD::SMIN, VT, Custom); 821 setOperationAction(ISD::SMAX, VT, Custom); 822 setOperationAction(ISD::UMIN, VT, Custom); 823 setOperationAction(ISD::UMAX, VT, Custom); 824 setOperationAction(ISD::ABS, VT, Custom); 825 826 setOperationAction(ISD::MULHS, VT, Custom); 827 setOperationAction(ISD::MULHU, VT, Custom); 828 829 setOperationAction(ISD::SADDSAT, VT, Custom); 830 setOperationAction(ISD::UADDSAT, VT, Custom); 831 setOperationAction(ISD::SSUBSAT, VT, Custom); 832 setOperationAction(ISD::USUBSAT, VT, Custom); 833 834 setOperationAction(ISD::VSELECT, VT, Custom); 835 setOperationAction(ISD::SELECT_CC, VT, Expand); 836 837 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 838 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 839 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 840 841 // Custom-lower reduction operations to set up the corresponding custom 842 // nodes' operands. 843 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 844 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 845 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 846 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 847 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 848 849 for (unsigned VPOpc : IntegerVPOps) 850 setOperationAction(VPOpc, VT, Custom); 851 } 852 853 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 854 if (!useRVVForFixedLengthVectorVT(VT)) 855 continue; 856 857 // By default everything must be expanded. 858 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 859 setOperationAction(Op, VT, Expand); 860 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 861 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 862 setTruncStoreAction(VT, OtherVT, Expand); 863 } 864 865 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 866 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 867 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 868 869 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 870 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 871 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 872 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 873 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 874 875 setOperationAction(ISD::LOAD, VT, Custom); 876 setOperationAction(ISD::STORE, VT, Custom); 877 setOperationAction(ISD::MLOAD, VT, Custom); 878 setOperationAction(ISD::MSTORE, VT, Custom); 879 setOperationAction(ISD::MGATHER, VT, Custom); 880 setOperationAction(ISD::MSCATTER, VT, Custom); 881 882 setOperationAction(ISD::VP_LOAD, VT, Custom); 883 setOperationAction(ISD::VP_STORE, VT, Custom); 884 setOperationAction(ISD::VP_GATHER, VT, Custom); 885 setOperationAction(ISD::VP_SCATTER, VT, Custom); 886 887 setOperationAction(ISD::FADD, VT, Custom); 888 setOperationAction(ISD::FSUB, VT, Custom); 889 setOperationAction(ISD::FMUL, VT, Custom); 890 setOperationAction(ISD::FDIV, VT, Custom); 891 setOperationAction(ISD::FNEG, VT, Custom); 892 setOperationAction(ISD::FABS, VT, Custom); 893 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 894 setOperationAction(ISD::FSQRT, VT, Custom); 895 setOperationAction(ISD::FMA, VT, Custom); 896 setOperationAction(ISD::FMINNUM, VT, Custom); 897 setOperationAction(ISD::FMAXNUM, VT, Custom); 898 899 setOperationAction(ISD::FP_ROUND, VT, Custom); 900 setOperationAction(ISD::FP_EXTEND, VT, Custom); 901 902 for (auto CC : VFPCCToExpand) 903 setCondCodeAction(CC, VT, Expand); 904 905 setOperationAction(ISD::VSELECT, VT, Custom); 906 setOperationAction(ISD::SELECT, VT, Custom); 907 setOperationAction(ISD::SELECT_CC, VT, Expand); 908 909 setOperationAction(ISD::BITCAST, VT, Custom); 910 911 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 912 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 913 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 914 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 915 916 for (unsigned VPOpc : FloatingPointVPOps) 917 setOperationAction(VPOpc, VT, Custom); 918 } 919 920 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 921 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 922 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 923 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 924 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 925 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 926 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 927 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 928 } 929 } 930 931 // Function alignments. 932 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 933 setMinFunctionAlignment(FunctionAlignment); 934 setPrefFunctionAlignment(FunctionAlignment); 935 936 setMinimumJumpTableEntries(5); 937 938 // Jumps are expensive, compared to logic 939 setJumpIsExpensive(); 940 941 // We can use any register for comparisons 942 setHasMultipleConditionRegisters(); 943 944 setTargetDAGCombine(ISD::ADD); 945 setTargetDAGCombine(ISD::SUB); 946 setTargetDAGCombine(ISD::AND); 947 setTargetDAGCombine(ISD::OR); 948 setTargetDAGCombine(ISD::XOR); 949 setTargetDAGCombine(ISD::ANY_EXTEND); 950 setTargetDAGCombine(ISD::ZERO_EXTEND); 951 if (Subtarget.hasVInstructions()) { 952 setTargetDAGCombine(ISD::FCOPYSIGN); 953 setTargetDAGCombine(ISD::MGATHER); 954 setTargetDAGCombine(ISD::MSCATTER); 955 setTargetDAGCombine(ISD::VP_GATHER); 956 setTargetDAGCombine(ISD::VP_SCATTER); 957 setTargetDAGCombine(ISD::SRA); 958 setTargetDAGCombine(ISD::SRL); 959 setTargetDAGCombine(ISD::SHL); 960 setTargetDAGCombine(ISD::STORE); 961 } 962 } 963 964 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 965 LLVMContext &Context, 966 EVT VT) const { 967 if (!VT.isVector()) 968 return getPointerTy(DL); 969 if (Subtarget.hasVInstructions() && 970 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 971 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 972 return VT.changeVectorElementTypeToInteger(); 973 } 974 975 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 976 return Subtarget.getXLenVT(); 977 } 978 979 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 980 const CallInst &I, 981 MachineFunction &MF, 982 unsigned Intrinsic) const { 983 auto &DL = I.getModule()->getDataLayout(); 984 switch (Intrinsic) { 985 default: 986 return false; 987 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 988 case Intrinsic::riscv_masked_atomicrmw_add_i32: 989 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 990 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 991 case Intrinsic::riscv_masked_atomicrmw_max_i32: 992 case Intrinsic::riscv_masked_atomicrmw_min_i32: 993 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 994 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 995 case Intrinsic::riscv_masked_cmpxchg_i32: { 996 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 997 Info.opc = ISD::INTRINSIC_W_CHAIN; 998 Info.memVT = MVT::getVT(PtrTy->getElementType()); 999 Info.ptrVal = I.getArgOperand(0); 1000 Info.offset = 0; 1001 Info.align = Align(4); 1002 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1003 MachineMemOperand::MOVolatile; 1004 return true; 1005 } 1006 case Intrinsic::riscv_masked_strided_load: 1007 Info.opc = ISD::INTRINSIC_W_CHAIN; 1008 Info.ptrVal = I.getArgOperand(1); 1009 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1010 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1011 Info.size = MemoryLocation::UnknownSize; 1012 Info.flags |= MachineMemOperand::MOLoad; 1013 return true; 1014 case Intrinsic::riscv_masked_strided_store: 1015 Info.opc = ISD::INTRINSIC_VOID; 1016 Info.ptrVal = I.getArgOperand(1); 1017 Info.memVT = 1018 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1019 Info.align = Align( 1020 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1021 8); 1022 Info.size = MemoryLocation::UnknownSize; 1023 Info.flags |= MachineMemOperand::MOStore; 1024 return true; 1025 } 1026 } 1027 1028 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1029 const AddrMode &AM, Type *Ty, 1030 unsigned AS, 1031 Instruction *I) const { 1032 // No global is ever allowed as a base. 1033 if (AM.BaseGV) 1034 return false; 1035 1036 // Require a 12-bit signed offset. 1037 if (!isInt<12>(AM.BaseOffs)) 1038 return false; 1039 1040 switch (AM.Scale) { 1041 case 0: // "r+i" or just "i", depending on HasBaseReg. 1042 break; 1043 case 1: 1044 if (!AM.HasBaseReg) // allow "r+i". 1045 break; 1046 return false; // disallow "r+r" or "r+r+i". 1047 default: 1048 return false; 1049 } 1050 1051 return true; 1052 } 1053 1054 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1055 return isInt<12>(Imm); 1056 } 1057 1058 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1059 return isInt<12>(Imm); 1060 } 1061 1062 // On RV32, 64-bit integers are split into their high and low parts and held 1063 // in two different registers, so the trunc is free since the low register can 1064 // just be used. 1065 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1066 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1067 return false; 1068 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1069 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1070 return (SrcBits == 64 && DestBits == 32); 1071 } 1072 1073 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1074 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1075 !SrcVT.isInteger() || !DstVT.isInteger()) 1076 return false; 1077 unsigned SrcBits = SrcVT.getSizeInBits(); 1078 unsigned DestBits = DstVT.getSizeInBits(); 1079 return (SrcBits == 64 && DestBits == 32); 1080 } 1081 1082 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1083 // Zexts are free if they can be combined with a load. 1084 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1085 EVT MemVT = LD->getMemoryVT(); 1086 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 1087 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 1088 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1089 LD->getExtensionType() == ISD::ZEXTLOAD)) 1090 return true; 1091 } 1092 1093 return TargetLowering::isZExtFree(Val, VT2); 1094 } 1095 1096 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1097 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1098 } 1099 1100 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1101 return Subtarget.hasStdExtZbb(); 1102 } 1103 1104 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1105 return Subtarget.hasStdExtZbb(); 1106 } 1107 1108 bool RISCVTargetLowering::hasAndNot(SDValue Y) const { 1109 EVT VT = Y.getValueType(); 1110 1111 // FIXME: Support vectors once we have tests. 1112 if (VT.isVector()) 1113 return false; 1114 1115 return Subtarget.hasStdExtZbb() && !isa<ConstantSDNode>(Y); 1116 } 1117 1118 /// Check if sinking \p I's operands to I's basic block is profitable, because 1119 /// the operands can be folded into a target instruction, e.g. 1120 /// splats of scalars can fold into vector instructions. 1121 bool RISCVTargetLowering::shouldSinkOperands( 1122 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1123 using namespace llvm::PatternMatch; 1124 1125 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1126 return false; 1127 1128 auto IsSinker = [&](Instruction *I, int Operand) { 1129 switch (I->getOpcode()) { 1130 case Instruction::Add: 1131 case Instruction::Sub: 1132 case Instruction::Mul: 1133 case Instruction::And: 1134 case Instruction::Or: 1135 case Instruction::Xor: 1136 case Instruction::FAdd: 1137 case Instruction::FSub: 1138 case Instruction::FMul: 1139 case Instruction::FDiv: 1140 case Instruction::ICmp: 1141 case Instruction::FCmp: 1142 return true; 1143 case Instruction::Shl: 1144 case Instruction::LShr: 1145 case Instruction::AShr: 1146 return Operand == 1; 1147 case Instruction::Call: 1148 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1149 switch (II->getIntrinsicID()) { 1150 case Intrinsic::fma: 1151 return Operand == 0 || Operand == 1; 1152 default: 1153 return false; 1154 } 1155 } 1156 return false; 1157 default: 1158 return false; 1159 } 1160 }; 1161 1162 for (auto OpIdx : enumerate(I->operands())) { 1163 if (!IsSinker(I, OpIdx.index())) 1164 continue; 1165 1166 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1167 // Make sure we are not already sinking this operand 1168 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1169 continue; 1170 1171 // We are looking for a splat that can be sunk. 1172 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1173 m_Undef(), m_ZeroMask()))) 1174 continue; 1175 1176 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1177 // and vector registers 1178 for (Use &U : Op->uses()) { 1179 Instruction *Insn = cast<Instruction>(U.getUser()); 1180 if (!IsSinker(Insn, U.getOperandNo())) 1181 return false; 1182 } 1183 1184 Ops.push_back(&Op->getOperandUse(0)); 1185 Ops.push_back(&OpIdx.value()); 1186 } 1187 return true; 1188 } 1189 1190 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1191 bool ForCodeSize) const { 1192 if (VT == MVT::f16 && !Subtarget.hasStdExtZfhmin()) 1193 return false; 1194 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1195 return false; 1196 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1197 return false; 1198 if (Imm.isNegZero()) 1199 return false; 1200 return Imm.isZero(); 1201 } 1202 1203 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1204 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1205 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1206 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1207 } 1208 1209 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1210 CallingConv::ID CC, 1211 EVT VT) const { 1212 // Use f32 to pass f16 if it is legal and Zfhmin/Zfh is not enabled. 1213 // We might still end up using a GPR but that will be decided based on ABI. 1214 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfhmin()) 1215 return MVT::f32; 1216 1217 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1218 } 1219 1220 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1221 CallingConv::ID CC, 1222 EVT VT) const { 1223 // Use f32 to pass f16 if it is legal and Zfhmin/Zfh is not enabled. 1224 // We might still end up using a GPR but that will be decided based on ABI. 1225 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfhmin()) 1226 return 1; 1227 1228 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1229 } 1230 1231 // Changes the condition code and swaps operands if necessary, so the SetCC 1232 // operation matches one of the comparisons supported directly by branches 1233 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1234 // with 1/-1. 1235 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1236 ISD::CondCode &CC, SelectionDAG &DAG) { 1237 // Convert X > -1 to X >= 0. 1238 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1239 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1240 CC = ISD::SETGE; 1241 return; 1242 } 1243 // Convert X < 1 to 0 >= X. 1244 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1245 RHS = LHS; 1246 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1247 CC = ISD::SETGE; 1248 return; 1249 } 1250 1251 switch (CC) { 1252 default: 1253 break; 1254 case ISD::SETGT: 1255 case ISD::SETLE: 1256 case ISD::SETUGT: 1257 case ISD::SETULE: 1258 CC = ISD::getSetCCSwappedOperands(CC); 1259 std::swap(LHS, RHS); 1260 break; 1261 } 1262 } 1263 1264 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1265 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1266 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1267 if (VT.getVectorElementType() == MVT::i1) 1268 KnownSize *= 8; 1269 1270 switch (KnownSize) { 1271 default: 1272 llvm_unreachable("Invalid LMUL."); 1273 case 8: 1274 return RISCVII::VLMUL::LMUL_F8; 1275 case 16: 1276 return RISCVII::VLMUL::LMUL_F4; 1277 case 32: 1278 return RISCVII::VLMUL::LMUL_F2; 1279 case 64: 1280 return RISCVII::VLMUL::LMUL_1; 1281 case 128: 1282 return RISCVII::VLMUL::LMUL_2; 1283 case 256: 1284 return RISCVII::VLMUL::LMUL_4; 1285 case 512: 1286 return RISCVII::VLMUL::LMUL_8; 1287 } 1288 } 1289 1290 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1291 switch (LMul) { 1292 default: 1293 llvm_unreachable("Invalid LMUL."); 1294 case RISCVII::VLMUL::LMUL_F8: 1295 case RISCVII::VLMUL::LMUL_F4: 1296 case RISCVII::VLMUL::LMUL_F2: 1297 case RISCVII::VLMUL::LMUL_1: 1298 return RISCV::VRRegClassID; 1299 case RISCVII::VLMUL::LMUL_2: 1300 return RISCV::VRM2RegClassID; 1301 case RISCVII::VLMUL::LMUL_4: 1302 return RISCV::VRM4RegClassID; 1303 case RISCVII::VLMUL::LMUL_8: 1304 return RISCV::VRM8RegClassID; 1305 } 1306 } 1307 1308 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1309 RISCVII::VLMUL LMUL = getLMUL(VT); 1310 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1311 LMUL == RISCVII::VLMUL::LMUL_F4 || 1312 LMUL == RISCVII::VLMUL::LMUL_F2 || 1313 LMUL == RISCVII::VLMUL::LMUL_1) { 1314 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1315 "Unexpected subreg numbering"); 1316 return RISCV::sub_vrm1_0 + Index; 1317 } 1318 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1319 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1320 "Unexpected subreg numbering"); 1321 return RISCV::sub_vrm2_0 + Index; 1322 } 1323 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1324 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1325 "Unexpected subreg numbering"); 1326 return RISCV::sub_vrm4_0 + Index; 1327 } 1328 llvm_unreachable("Invalid vector type."); 1329 } 1330 1331 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1332 if (VT.getVectorElementType() == MVT::i1) 1333 return RISCV::VRRegClassID; 1334 return getRegClassIDForLMUL(getLMUL(VT)); 1335 } 1336 1337 // Attempt to decompose a subvector insert/extract between VecVT and 1338 // SubVecVT via subregister indices. Returns the subregister index that 1339 // can perform the subvector insert/extract with the given element index, as 1340 // well as the index corresponding to any leftover subvectors that must be 1341 // further inserted/extracted within the register class for SubVecVT. 1342 std::pair<unsigned, unsigned> 1343 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1344 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1345 const RISCVRegisterInfo *TRI) { 1346 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1347 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1348 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1349 "Register classes not ordered"); 1350 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1351 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1352 // Try to compose a subregister index that takes us from the incoming 1353 // LMUL>1 register class down to the outgoing one. At each step we half 1354 // the LMUL: 1355 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1356 // Note that this is not guaranteed to find a subregister index, such as 1357 // when we are extracting from one VR type to another. 1358 unsigned SubRegIdx = RISCV::NoSubRegister; 1359 for (const unsigned RCID : 1360 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1361 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1362 VecVT = VecVT.getHalfNumVectorElementsVT(); 1363 bool IsHi = 1364 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1365 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1366 getSubregIndexByMVT(VecVT, IsHi)); 1367 if (IsHi) 1368 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1369 } 1370 return {SubRegIdx, InsertExtractIdx}; 1371 } 1372 1373 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1374 // stores for those types. 1375 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1376 return !Subtarget.useRVVForFixedLengthVectors() || 1377 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1378 } 1379 1380 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1381 if (ScalarTy->isPointerTy()) 1382 return true; 1383 1384 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1385 ScalarTy->isIntegerTy(32)) 1386 return true; 1387 1388 if (ScalarTy->isIntegerTy(64)) 1389 return Subtarget.hasVInstructionsI64(); 1390 1391 if (ScalarTy->isHalfTy()) 1392 return Subtarget.hasVInstructionsF16(); 1393 if (ScalarTy->isFloatTy()) 1394 return Subtarget.hasVInstructionsF32(); 1395 if (ScalarTy->isDoubleTy()) 1396 return Subtarget.hasVInstructionsF64(); 1397 1398 return false; 1399 } 1400 1401 static bool useRVVForFixedLengthVectorVT(MVT VT, 1402 const RISCVSubtarget &Subtarget) { 1403 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1404 if (!Subtarget.useRVVForFixedLengthVectors()) 1405 return false; 1406 1407 // We only support a set of vector types with a consistent maximum fixed size 1408 // across all supported vector element types to avoid legalization issues. 1409 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1410 // fixed-length vector type we support is 1024 bytes. 1411 if (VT.getFixedSizeInBits() > 1024 * 8) 1412 return false; 1413 1414 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1415 1416 MVT EltVT = VT.getVectorElementType(); 1417 1418 // Don't use RVV for vectors we cannot scalarize if required. 1419 switch (EltVT.SimpleTy) { 1420 // i1 is supported but has different rules. 1421 default: 1422 return false; 1423 case MVT::i1: 1424 // Masks can only use a single register. 1425 if (VT.getVectorNumElements() > MinVLen) 1426 return false; 1427 MinVLen /= 8; 1428 break; 1429 case MVT::i8: 1430 case MVT::i16: 1431 case MVT::i32: 1432 break; 1433 case MVT::i64: 1434 if (!Subtarget.hasVInstructionsI64()) 1435 return false; 1436 break; 1437 case MVT::f16: 1438 if (!Subtarget.hasVInstructionsF16()) 1439 return false; 1440 break; 1441 case MVT::f32: 1442 if (!Subtarget.hasVInstructionsF32()) 1443 return false; 1444 break; 1445 case MVT::f64: 1446 if (!Subtarget.hasVInstructionsF64()) 1447 return false; 1448 break; 1449 } 1450 1451 // Reject elements larger than ELEN. 1452 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1453 return false; 1454 1455 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1456 // Don't use RVV for types that don't fit. 1457 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1458 return false; 1459 1460 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1461 // the base fixed length RVV support in place. 1462 if (!VT.isPow2VectorType()) 1463 return false; 1464 1465 return true; 1466 } 1467 1468 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1469 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1470 } 1471 1472 // Return the largest legal scalable vector type that matches VT's element type. 1473 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1474 const RISCVSubtarget &Subtarget) { 1475 // This may be called before legal types are setup. 1476 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1477 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1478 "Expected legal fixed length vector!"); 1479 1480 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1481 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1482 1483 MVT EltVT = VT.getVectorElementType(); 1484 switch (EltVT.SimpleTy) { 1485 default: 1486 llvm_unreachable("unexpected element type for RVV container"); 1487 case MVT::i1: 1488 case MVT::i8: 1489 case MVT::i16: 1490 case MVT::i32: 1491 case MVT::i64: 1492 case MVT::f16: 1493 case MVT::f32: 1494 case MVT::f64: { 1495 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1496 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1497 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1498 unsigned NumElts = 1499 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1500 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1501 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1502 return MVT::getScalableVectorVT(EltVT, NumElts); 1503 } 1504 } 1505 } 1506 1507 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1508 const RISCVSubtarget &Subtarget) { 1509 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1510 Subtarget); 1511 } 1512 1513 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1514 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1515 } 1516 1517 // Grow V to consume an entire RVV register. 1518 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1519 const RISCVSubtarget &Subtarget) { 1520 assert(VT.isScalableVector() && 1521 "Expected to convert into a scalable vector!"); 1522 assert(V.getValueType().isFixedLengthVector() && 1523 "Expected a fixed length vector operand!"); 1524 SDLoc DL(V); 1525 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1526 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1527 } 1528 1529 // Shrink V so it's just big enough to maintain a VT's worth of data. 1530 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1531 const RISCVSubtarget &Subtarget) { 1532 assert(VT.isFixedLengthVector() && 1533 "Expected to convert into a fixed length vector!"); 1534 assert(V.getValueType().isScalableVector() && 1535 "Expected a scalable vector operand!"); 1536 SDLoc DL(V); 1537 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1538 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1539 } 1540 1541 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1542 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1543 // the vector type that it is contained in. 1544 static std::pair<SDValue, SDValue> 1545 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1546 const RISCVSubtarget &Subtarget) { 1547 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1548 MVT XLenVT = Subtarget.getXLenVT(); 1549 SDValue VL = VecVT.isFixedLengthVector() 1550 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1551 : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 1552 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1553 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1554 return {Mask, VL}; 1555 } 1556 1557 // As above but assuming the given type is a scalable vector type. 1558 static std::pair<SDValue, SDValue> 1559 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1560 const RISCVSubtarget &Subtarget) { 1561 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1562 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1563 } 1564 1565 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1566 // of either is (currently) supported. This can get us into an infinite loop 1567 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1568 // as a ..., etc. 1569 // Until either (or both) of these can reliably lower any node, reporting that 1570 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1571 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1572 // which is not desirable. 1573 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1574 EVT VT, unsigned DefinedValues) const { 1575 return false; 1576 } 1577 1578 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1579 // Only splats are currently supported. 1580 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1581 return true; 1582 1583 return false; 1584 } 1585 1586 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) { 1587 // RISCV FP-to-int conversions saturate to the destination register size, but 1588 // don't produce 0 for nan. We can use a conversion instruction and fix the 1589 // nan case with a compare and a select. 1590 SDValue Src = Op.getOperand(0); 1591 1592 EVT DstVT = Op.getValueType(); 1593 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1594 1595 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1596 unsigned Opc; 1597 if (SatVT == DstVT) 1598 Opc = IsSigned ? RISCVISD::FCVT_X_RTZ : RISCVISD::FCVT_XU_RTZ; 1599 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1600 Opc = IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 1601 else 1602 return SDValue(); 1603 // FIXME: Support other SatVTs by clamping before or after the conversion. 1604 1605 SDLoc DL(Op); 1606 SDValue FpToInt = DAG.getNode(Opc, DL, DstVT, Src); 1607 1608 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1609 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1610 } 1611 1612 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1613 const RISCVSubtarget &Subtarget) { 1614 MVT VT = Op.getSimpleValueType(); 1615 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1616 1617 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1618 1619 SDLoc DL(Op); 1620 SDValue Mask, VL; 1621 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1622 1623 unsigned Opc = 1624 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1625 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1626 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1627 } 1628 1629 struct VIDSequence { 1630 int64_t StepNumerator; 1631 unsigned StepDenominator; 1632 int64_t Addend; 1633 }; 1634 1635 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1636 // to the (non-zero) step S and start value X. This can be then lowered as the 1637 // RVV sequence (VID * S) + X, for example. 1638 // The step S is represented as an integer numerator divided by a positive 1639 // denominator. Note that the implementation currently only identifies 1640 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1641 // cannot detect 2/3, for example. 1642 // Note that this method will also match potentially unappealing index 1643 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1644 // determine whether this is worth generating code for. 1645 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1646 unsigned NumElts = Op.getNumOperands(); 1647 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1648 if (!Op.getValueType().isInteger()) 1649 return None; 1650 1651 Optional<unsigned> SeqStepDenom; 1652 Optional<int64_t> SeqStepNum, SeqAddend; 1653 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1654 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1655 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1656 // Assume undef elements match the sequence; we just have to be careful 1657 // when interpolating across them. 1658 if (Op.getOperand(Idx).isUndef()) 1659 continue; 1660 // The BUILD_VECTOR must be all constants. 1661 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1662 return None; 1663 1664 uint64_t Val = Op.getConstantOperandVal(Idx) & 1665 maskTrailingOnes<uint64_t>(EltSizeInBits); 1666 1667 if (PrevElt) { 1668 // Calculate the step since the last non-undef element, and ensure 1669 // it's consistent across the entire sequence. 1670 unsigned IdxDiff = Idx - PrevElt->second; 1671 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1672 1673 // A zero-value value difference means that we're somewhere in the middle 1674 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1675 // step change before evaluating the sequence. 1676 if (ValDiff != 0) { 1677 int64_t Remainder = ValDiff % IdxDiff; 1678 // Normalize the step if it's greater than 1. 1679 if (Remainder != ValDiff) { 1680 // The difference must cleanly divide the element span. 1681 if (Remainder != 0) 1682 return None; 1683 ValDiff /= IdxDiff; 1684 IdxDiff = 1; 1685 } 1686 1687 if (!SeqStepNum) 1688 SeqStepNum = ValDiff; 1689 else if (ValDiff != SeqStepNum) 1690 return None; 1691 1692 if (!SeqStepDenom) 1693 SeqStepDenom = IdxDiff; 1694 else if (IdxDiff != *SeqStepDenom) 1695 return None; 1696 } 1697 } 1698 1699 // Record and/or check any addend. 1700 if (SeqStepNum && SeqStepDenom) { 1701 uint64_t ExpectedVal = 1702 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1703 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1704 if (!SeqAddend) 1705 SeqAddend = Addend; 1706 else if (SeqAddend != Addend) 1707 return None; 1708 } 1709 1710 // Record this non-undef element for later. 1711 if (!PrevElt || PrevElt->first != Val) 1712 PrevElt = std::make_pair(Val, Idx); 1713 } 1714 // We need to have logged both a step and an addend for this to count as 1715 // a legal index sequence. 1716 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1717 return None; 1718 1719 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1720 } 1721 1722 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1723 const RISCVSubtarget &Subtarget) { 1724 MVT VT = Op.getSimpleValueType(); 1725 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1726 1727 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1728 1729 SDLoc DL(Op); 1730 SDValue Mask, VL; 1731 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1732 1733 MVT XLenVT = Subtarget.getXLenVT(); 1734 unsigned NumElts = Op.getNumOperands(); 1735 1736 if (VT.getVectorElementType() == MVT::i1) { 1737 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1738 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1739 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1740 } 1741 1742 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1743 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1744 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1745 } 1746 1747 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1748 // scalar integer chunks whose bit-width depends on the number of mask 1749 // bits and XLEN. 1750 // First, determine the most appropriate scalar integer type to use. This 1751 // is at most XLenVT, but may be shrunk to a smaller vector element type 1752 // according to the size of the final vector - use i8 chunks rather than 1753 // XLenVT if we're producing a v8i1. This results in more consistent 1754 // codegen across RV32 and RV64. 1755 unsigned NumViaIntegerBits = 1756 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1757 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1758 // If we have to use more than one INSERT_VECTOR_ELT then this 1759 // optimization is likely to increase code size; avoid peforming it in 1760 // such a case. We can use a load from a constant pool in this case. 1761 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1762 return SDValue(); 1763 // Now we can create our integer vector type. Note that it may be larger 1764 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1765 MVT IntegerViaVecVT = 1766 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1767 divideCeil(NumElts, NumViaIntegerBits)); 1768 1769 uint64_t Bits = 0; 1770 unsigned BitPos = 0, IntegerEltIdx = 0; 1771 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1772 1773 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1774 // Once we accumulate enough bits to fill our scalar type, insert into 1775 // our vector and clear our accumulated data. 1776 if (I != 0 && I % NumViaIntegerBits == 0) { 1777 if (NumViaIntegerBits <= 32) 1778 Bits = SignExtend64(Bits, 32); 1779 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1780 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1781 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1782 Bits = 0; 1783 BitPos = 0; 1784 IntegerEltIdx++; 1785 } 1786 SDValue V = Op.getOperand(I); 1787 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1788 Bits |= ((uint64_t)BitValue << BitPos); 1789 } 1790 1791 // Insert the (remaining) scalar value into position in our integer 1792 // vector type. 1793 if (NumViaIntegerBits <= 32) 1794 Bits = SignExtend64(Bits, 32); 1795 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1796 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1797 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1798 1799 if (NumElts < NumViaIntegerBits) { 1800 // If we're producing a smaller vector than our minimum legal integer 1801 // type, bitcast to the equivalent (known-legal) mask type, and extract 1802 // our final mask. 1803 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1804 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1805 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1806 DAG.getConstant(0, DL, XLenVT)); 1807 } else { 1808 // Else we must have produced an integer type with the same size as the 1809 // mask type; bitcast for the final result. 1810 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1811 Vec = DAG.getBitcast(VT, Vec); 1812 } 1813 1814 return Vec; 1815 } 1816 1817 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 1818 // vector type, we have a legal equivalently-sized i8 type, so we can use 1819 // that. 1820 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 1821 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 1822 1823 SDValue WideVec; 1824 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1825 // For a splat, perform a scalar truncate before creating the wider 1826 // vector. 1827 assert(Splat.getValueType() == XLenVT && 1828 "Unexpected type for i1 splat value"); 1829 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 1830 DAG.getConstant(1, DL, XLenVT)); 1831 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 1832 } else { 1833 SmallVector<SDValue, 8> Ops(Op->op_values()); 1834 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 1835 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 1836 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 1837 } 1838 1839 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 1840 } 1841 1842 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1843 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1844 : RISCVISD::VMV_V_X_VL; 1845 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1846 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1847 } 1848 1849 // Try and match index sequences, which we can lower to the vid instruction 1850 // with optional modifications. An all-undef vector is matched by 1851 // getSplatValue, above. 1852 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 1853 int64_t StepNumerator = SimpleVID->StepNumerator; 1854 unsigned StepDenominator = SimpleVID->StepDenominator; 1855 int64_t Addend = SimpleVID->Addend; 1856 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 1857 // threshold since it's the immediate value many RVV instructions accept. 1858 if (isInt<5>(StepNumerator) && isPowerOf2_32(StepDenominator) && 1859 isInt<5>(Addend)) { 1860 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 1861 // Convert right out of the scalable type so we can use standard ISD 1862 // nodes for the rest of the computation. If we used scalable types with 1863 // these, we'd lose the fixed-length vector info and generate worse 1864 // vsetvli code. 1865 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 1866 assert(StepNumerator != 0 && "Invalid step"); 1867 bool Negate = false; 1868 if (StepNumerator != 1) { 1869 int64_t SplatStepVal = StepNumerator; 1870 unsigned Opcode = ISD::MUL; 1871 if (isPowerOf2_64(std::abs(StepNumerator))) { 1872 Negate = StepNumerator < 0; 1873 Opcode = ISD::SHL; 1874 SplatStepVal = Log2_64(std::abs(StepNumerator)); 1875 } 1876 SDValue SplatStep = DAG.getSplatVector( 1877 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 1878 VID = DAG.getNode(Opcode, DL, VT, VID, SplatStep); 1879 } 1880 if (StepDenominator != 1) { 1881 SDValue SplatStep = DAG.getSplatVector( 1882 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 1883 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 1884 } 1885 if (Addend != 0 || Negate) { 1886 SDValue SplatAddend = 1887 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 1888 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 1889 } 1890 return VID; 1891 } 1892 } 1893 1894 // Attempt to detect "hidden" splats, which only reveal themselves as splats 1895 // when re-interpreted as a vector with a larger element type. For example, 1896 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 1897 // could be instead splat as 1898 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 1899 // TODO: This optimization could also work on non-constant splats, but it 1900 // would require bit-manipulation instructions to construct the splat value. 1901 SmallVector<SDValue> Sequence; 1902 unsigned EltBitSize = VT.getScalarSizeInBits(); 1903 const auto *BV = cast<BuildVectorSDNode>(Op); 1904 if (VT.isInteger() && EltBitSize < 64 && 1905 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1906 BV->getRepeatedSequence(Sequence) && 1907 (Sequence.size() * EltBitSize) <= 64) { 1908 unsigned SeqLen = Sequence.size(); 1909 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 1910 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 1911 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 1912 ViaIntVT == MVT::i64) && 1913 "Unexpected sequence type"); 1914 1915 unsigned EltIdx = 0; 1916 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 1917 uint64_t SplatValue = 0; 1918 // Construct the amalgamated value which can be splatted as this larger 1919 // vector type. 1920 for (const auto &SeqV : Sequence) { 1921 if (!SeqV.isUndef()) 1922 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 1923 << (EltIdx * EltBitSize)); 1924 EltIdx++; 1925 } 1926 1927 // On RV64, sign-extend from 32 to 64 bits where possible in order to 1928 // achieve better constant materializion. 1929 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 1930 SplatValue = SignExtend64(SplatValue, 32); 1931 1932 // Since we can't introduce illegal i64 types at this stage, we can only 1933 // perform an i64 splat on RV32 if it is its own sign-extended value. That 1934 // way we can use RVV instructions to splat. 1935 assert((ViaIntVT.bitsLE(XLenVT) || 1936 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 1937 "Unexpected bitcast sequence"); 1938 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 1939 SDValue ViaVL = 1940 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 1941 MVT ViaContainerVT = 1942 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 1943 SDValue Splat = 1944 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 1945 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 1946 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 1947 return DAG.getBitcast(VT, Splat); 1948 } 1949 } 1950 1951 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 1952 // which constitute a large proportion of the elements. In such cases we can 1953 // splat a vector with the dominant element and make up the shortfall with 1954 // INSERT_VECTOR_ELTs. 1955 // Note that this includes vectors of 2 elements by association. The 1956 // upper-most element is the "dominant" one, allowing us to use a splat to 1957 // "insert" the upper element, and an insert of the lower element at position 1958 // 0, which improves codegen. 1959 SDValue DominantValue; 1960 unsigned MostCommonCount = 0; 1961 DenseMap<SDValue, unsigned> ValueCounts; 1962 unsigned NumUndefElts = 1963 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 1964 1965 // Track the number of scalar loads we know we'd be inserting, estimated as 1966 // any non-zero floating-point constant. Other kinds of element are either 1967 // already in registers or are materialized on demand. The threshold at which 1968 // a vector load is more desirable than several scalar materializion and 1969 // vector-insertion instructions is not known. 1970 unsigned NumScalarLoads = 0; 1971 1972 for (SDValue V : Op->op_values()) { 1973 if (V.isUndef()) 1974 continue; 1975 1976 ValueCounts.insert(std::make_pair(V, 0)); 1977 unsigned &Count = ValueCounts[V]; 1978 1979 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 1980 NumScalarLoads += !CFP->isExactlyValue(+0.0); 1981 1982 // Is this value dominant? In case of a tie, prefer the highest element as 1983 // it's cheaper to insert near the beginning of a vector than it is at the 1984 // end. 1985 if (++Count >= MostCommonCount) { 1986 DominantValue = V; 1987 MostCommonCount = Count; 1988 } 1989 } 1990 1991 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 1992 unsigned NumDefElts = NumElts - NumUndefElts; 1993 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 1994 1995 // Don't perform this optimization when optimizing for size, since 1996 // materializing elements and inserting them tends to cause code bloat. 1997 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 1998 ((MostCommonCount > DominantValueCountThreshold) || 1999 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2000 // Start by splatting the most common element. 2001 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2002 2003 DenseSet<SDValue> Processed{DominantValue}; 2004 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2005 for (const auto &OpIdx : enumerate(Op->ops())) { 2006 const SDValue &V = OpIdx.value(); 2007 if (V.isUndef() || !Processed.insert(V).second) 2008 continue; 2009 if (ValueCounts[V] == 1) { 2010 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2011 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2012 } else { 2013 // Blend in all instances of this value using a VSELECT, using a 2014 // mask where each bit signals whether that element is the one 2015 // we're after. 2016 SmallVector<SDValue> Ops; 2017 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2018 return DAG.getConstant(V == V1, DL, XLenVT); 2019 }); 2020 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2021 DAG.getBuildVector(SelMaskTy, DL, Ops), 2022 DAG.getSplatBuildVector(VT, DL, V), Vec); 2023 } 2024 } 2025 2026 return Vec; 2027 } 2028 2029 return SDValue(); 2030 } 2031 2032 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 2033 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 2034 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2035 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2036 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2037 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2038 // node in order to try and match RVV vector/scalar instructions. 2039 if ((LoC >> 31) == HiC) 2040 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 2041 } 2042 2043 // Fall back to a stack store and stride x0 vector load. 2044 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 2045 } 2046 2047 // Called by type legalization to handle splat of i64 on RV32. 2048 // FIXME: We can optimize this when the type has sign or zero bits in one 2049 // of the halves. 2050 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 2051 SDValue VL, SelectionDAG &DAG) { 2052 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2053 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2054 DAG.getConstant(0, DL, MVT::i32)); 2055 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2056 DAG.getConstant(1, DL, MVT::i32)); 2057 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 2058 } 2059 2060 // This function lowers a splat of a scalar operand Splat with the vector 2061 // length VL. It ensures the final sequence is type legal, which is useful when 2062 // lowering a splat after type legalization. 2063 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 2064 SelectionDAG &DAG, 2065 const RISCVSubtarget &Subtarget) { 2066 if (VT.isFloatingPoint()) 2067 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 2068 2069 MVT XLenVT = Subtarget.getXLenVT(); 2070 2071 // Simplest case is that the operand needs to be promoted to XLenVT. 2072 if (Scalar.getValueType().bitsLE(XLenVT)) { 2073 // If the operand is a constant, sign extend to increase our chances 2074 // of being able to use a .vi instruction. ANY_EXTEND would become a 2075 // a zero extend and the simm5 check in isel would fail. 2076 // FIXME: Should we ignore the upper bits in isel instead? 2077 unsigned ExtOpc = 2078 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2079 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2080 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 2081 } 2082 2083 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2084 "Unexpected scalar for splat lowering!"); 2085 2086 // Otherwise use the more complicated splatting algorithm. 2087 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 2088 } 2089 2090 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2091 const RISCVSubtarget &Subtarget) { 2092 SDValue V1 = Op.getOperand(0); 2093 SDValue V2 = Op.getOperand(1); 2094 SDLoc DL(Op); 2095 MVT XLenVT = Subtarget.getXLenVT(); 2096 MVT VT = Op.getSimpleValueType(); 2097 unsigned NumElts = VT.getVectorNumElements(); 2098 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2099 2100 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2101 2102 SDValue TrueMask, VL; 2103 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2104 2105 if (SVN->isSplat()) { 2106 const int Lane = SVN->getSplatIndex(); 2107 if (Lane >= 0) { 2108 MVT SVT = VT.getVectorElementType(); 2109 2110 // Turn splatted vector load into a strided load with an X0 stride. 2111 SDValue V = V1; 2112 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2113 // with undef. 2114 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2115 int Offset = Lane; 2116 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2117 int OpElements = 2118 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2119 V = V.getOperand(Offset / OpElements); 2120 Offset %= OpElements; 2121 } 2122 2123 // We need to ensure the load isn't atomic or volatile. 2124 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2125 auto *Ld = cast<LoadSDNode>(V); 2126 Offset *= SVT.getStoreSize(); 2127 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2128 TypeSize::Fixed(Offset), DL); 2129 2130 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2131 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2132 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2133 SDValue IntID = 2134 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2135 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 2136 DAG.getRegister(RISCV::X0, XLenVT), VL}; 2137 SDValue NewLoad = DAG.getMemIntrinsicNode( 2138 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2139 DAG.getMachineFunction().getMachineMemOperand( 2140 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2141 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2142 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2143 } 2144 2145 // Otherwise use a scalar load and splat. This will give the best 2146 // opportunity to fold a splat into the operation. ISel can turn it into 2147 // the x0 strided load if we aren't able to fold away the select. 2148 if (SVT.isFloatingPoint()) 2149 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2150 Ld->getPointerInfo().getWithOffset(Offset), 2151 Ld->getOriginalAlign(), 2152 Ld->getMemOperand()->getFlags()); 2153 else 2154 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2155 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2156 Ld->getOriginalAlign(), 2157 Ld->getMemOperand()->getFlags()); 2158 DAG.makeEquivalentMemoryOrdering(Ld, V); 2159 2160 unsigned Opc = 2161 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2162 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 2163 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2164 } 2165 2166 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2167 assert(Lane < (int)NumElts && "Unexpected lane!"); 2168 SDValue Gather = 2169 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2170 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2171 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2172 } 2173 } 2174 2175 // Detect shuffles which can be re-expressed as vector selects; these are 2176 // shuffles in which each element in the destination is taken from an element 2177 // at the corresponding index in either source vectors. 2178 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 2179 int MaskIndex = MaskIdx.value(); 2180 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2181 }); 2182 2183 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2184 2185 SmallVector<SDValue> MaskVals; 2186 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2187 // merged with a second vrgather. 2188 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2189 2190 // By default we preserve the original operand order, and use a mask to 2191 // select LHS as true and RHS as false. However, since RVV vector selects may 2192 // feature splats but only on the LHS, we may choose to invert our mask and 2193 // instead select between RHS and LHS. 2194 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2195 bool InvertMask = IsSelect == SwapOps; 2196 2197 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2198 // half. 2199 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2200 2201 // Now construct the mask that will be used by the vselect or blended 2202 // vrgather operation. For vrgathers, construct the appropriate indices into 2203 // each vector. 2204 for (int MaskIndex : SVN->getMask()) { 2205 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2206 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2207 if (!IsSelect) { 2208 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2209 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2210 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2211 : DAG.getUNDEF(XLenVT)); 2212 GatherIndicesRHS.push_back( 2213 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2214 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2215 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2216 ++LHSIndexCounts[MaskIndex]; 2217 if (!IsLHSOrUndefIndex) 2218 ++RHSIndexCounts[MaskIndex - NumElts]; 2219 } 2220 } 2221 2222 if (SwapOps) { 2223 std::swap(V1, V2); 2224 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2225 } 2226 2227 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2228 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2229 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2230 2231 if (IsSelect) 2232 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2233 2234 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2235 // On such a large vector we're unable to use i8 as the index type. 2236 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2237 // may involve vector splitting if we're already at LMUL=8, or our 2238 // user-supplied maximum fixed-length LMUL. 2239 return SDValue(); 2240 } 2241 2242 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2243 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2244 MVT IndexVT = VT.changeTypeToInteger(); 2245 // Since we can't introduce illegal index types at this stage, use i16 and 2246 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2247 // than XLenVT. 2248 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2249 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2250 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2251 } 2252 2253 MVT IndexContainerVT = 2254 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2255 2256 SDValue Gather; 2257 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2258 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2259 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2260 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2261 } else { 2262 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2263 // If only one index is used, we can use a "splat" vrgather. 2264 // TODO: We can splat the most-common index and fix-up any stragglers, if 2265 // that's beneficial. 2266 if (LHSIndexCounts.size() == 1) { 2267 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2268 Gather = 2269 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2270 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2271 } else { 2272 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2273 LHSIndices = 2274 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2275 2276 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2277 TrueMask, VL); 2278 } 2279 } 2280 2281 // If a second vector operand is used by this shuffle, blend it in with an 2282 // additional vrgather. 2283 if (!V2.isUndef()) { 2284 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2285 // If only one index is used, we can use a "splat" vrgather. 2286 // TODO: We can splat the most-common index and fix-up any stragglers, if 2287 // that's beneficial. 2288 if (RHSIndexCounts.size() == 1) { 2289 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2290 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2291 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2292 } else { 2293 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2294 RHSIndices = 2295 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2296 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2297 VL); 2298 } 2299 2300 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2301 SelectMask = 2302 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2303 2304 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2305 Gather, VL); 2306 } 2307 2308 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2309 } 2310 2311 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2312 SDLoc DL, SelectionDAG &DAG, 2313 const RISCVSubtarget &Subtarget) { 2314 if (VT.isScalableVector()) 2315 return DAG.getFPExtendOrRound(Op, DL, VT); 2316 assert(VT.isFixedLengthVector() && 2317 "Unexpected value type for RVV FP extend/round lowering"); 2318 SDValue Mask, VL; 2319 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2320 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2321 ? RISCVISD::FP_EXTEND_VL 2322 : RISCVISD::FP_ROUND_VL; 2323 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2324 } 2325 2326 // While RVV has alignment restrictions, we should always be able to load as a 2327 // legal equivalently-sized byte-typed vector instead. This method is 2328 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2329 // the load is already correctly-aligned, it returns SDValue(). 2330 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2331 SelectionDAG &DAG) const { 2332 auto *Load = cast<LoadSDNode>(Op); 2333 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2334 2335 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2336 Load->getMemoryVT(), 2337 *Load->getMemOperand())) 2338 return SDValue(); 2339 2340 SDLoc DL(Op); 2341 MVT VT = Op.getSimpleValueType(); 2342 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2343 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2344 "Unexpected unaligned RVV load type"); 2345 MVT NewVT = 2346 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2347 assert(NewVT.isValid() && 2348 "Expecting equally-sized RVV vector types to be legal"); 2349 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2350 Load->getPointerInfo(), Load->getOriginalAlign(), 2351 Load->getMemOperand()->getFlags()); 2352 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2353 } 2354 2355 // While RVV has alignment restrictions, we should always be able to store as a 2356 // legal equivalently-sized byte-typed vector instead. This method is 2357 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2358 // returns SDValue() if the store is already correctly aligned. 2359 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2360 SelectionDAG &DAG) const { 2361 auto *Store = cast<StoreSDNode>(Op); 2362 assert(Store && Store->getValue().getValueType().isVector() && 2363 "Expected vector store"); 2364 2365 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2366 Store->getMemoryVT(), 2367 *Store->getMemOperand())) 2368 return SDValue(); 2369 2370 SDLoc DL(Op); 2371 SDValue StoredVal = Store->getValue(); 2372 MVT VT = StoredVal.getSimpleValueType(); 2373 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2374 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2375 "Unexpected unaligned RVV store type"); 2376 MVT NewVT = 2377 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2378 assert(NewVT.isValid() && 2379 "Expecting equally-sized RVV vector types to be legal"); 2380 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2381 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2382 Store->getPointerInfo(), Store->getOriginalAlign(), 2383 Store->getMemOperand()->getFlags()); 2384 } 2385 2386 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2387 SelectionDAG &DAG) const { 2388 switch (Op.getOpcode()) { 2389 default: 2390 report_fatal_error("unimplemented operand"); 2391 case ISD::GlobalAddress: 2392 return lowerGlobalAddress(Op, DAG); 2393 case ISD::BlockAddress: 2394 return lowerBlockAddress(Op, DAG); 2395 case ISD::ConstantPool: 2396 return lowerConstantPool(Op, DAG); 2397 case ISD::JumpTable: 2398 return lowerJumpTable(Op, DAG); 2399 case ISD::GlobalTLSAddress: 2400 return lowerGlobalTLSAddress(Op, DAG); 2401 case ISD::SELECT: 2402 return lowerSELECT(Op, DAG); 2403 case ISD::BRCOND: 2404 return lowerBRCOND(Op, DAG); 2405 case ISD::VASTART: 2406 return lowerVASTART(Op, DAG); 2407 case ISD::FRAMEADDR: 2408 return lowerFRAMEADDR(Op, DAG); 2409 case ISD::RETURNADDR: 2410 return lowerRETURNADDR(Op, DAG); 2411 case ISD::SHL_PARTS: 2412 return lowerShiftLeftParts(Op, DAG); 2413 case ISD::SRA_PARTS: 2414 return lowerShiftRightParts(Op, DAG, true); 2415 case ISD::SRL_PARTS: 2416 return lowerShiftRightParts(Op, DAG, false); 2417 case ISD::BITCAST: { 2418 SDLoc DL(Op); 2419 EVT VT = Op.getValueType(); 2420 SDValue Op0 = Op.getOperand(0); 2421 EVT Op0VT = Op0.getValueType(); 2422 MVT XLenVT = Subtarget.getXLenVT(); 2423 if (VT.isFixedLengthVector()) { 2424 // We can handle fixed length vector bitcasts with a simple replacement 2425 // in isel. 2426 if (Op0VT.isFixedLengthVector()) 2427 return Op; 2428 // When bitcasting from scalar to fixed-length vector, insert the scalar 2429 // into a one-element vector of the result type, and perform a vector 2430 // bitcast. 2431 if (!Op0VT.isVector()) { 2432 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2433 if (!isTypeLegal(BVT)) 2434 return SDValue(); 2435 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2436 DAG.getUNDEF(BVT), Op0, 2437 DAG.getConstant(0, DL, XLenVT))); 2438 } 2439 return SDValue(); 2440 } 2441 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2442 // thus: bitcast the vector to a one-element vector type whose element type 2443 // is the same as the result type, and extract the first element. 2444 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2445 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 2446 if (!isTypeLegal(BVT)) 2447 return SDValue(); 2448 SDValue BVec = DAG.getBitcast(BVT, Op0); 2449 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2450 DAG.getConstant(0, DL, XLenVT)); 2451 } 2452 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2453 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2454 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2455 return FPConv; 2456 } 2457 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2458 Subtarget.hasStdExtF()) { 2459 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2460 SDValue FPConv = 2461 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2462 return FPConv; 2463 } 2464 return SDValue(); 2465 } 2466 case ISD::INTRINSIC_WO_CHAIN: 2467 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2468 case ISD::INTRINSIC_W_CHAIN: 2469 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2470 case ISD::INTRINSIC_VOID: 2471 return LowerINTRINSIC_VOID(Op, DAG); 2472 case ISD::BSWAP: 2473 case ISD::BITREVERSE: { 2474 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2475 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2476 MVT VT = Op.getSimpleValueType(); 2477 SDLoc DL(Op); 2478 // Start with the maximum immediate value which is the bitwidth - 1. 2479 unsigned Imm = VT.getSizeInBits() - 1; 2480 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2481 if (Op.getOpcode() == ISD::BSWAP) 2482 Imm &= ~0x7U; 2483 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2484 DAG.getConstant(Imm, DL, VT)); 2485 } 2486 case ISD::FSHL: 2487 case ISD::FSHR: { 2488 MVT VT = Op.getSimpleValueType(); 2489 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2490 SDLoc DL(Op); 2491 if (Op.getOperand(2).getOpcode() == ISD::Constant) 2492 return Op; 2493 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2494 // use log(XLen) bits. Mask the shift amount accordingly. 2495 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2496 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2497 DAG.getConstant(ShAmtWidth, DL, VT)); 2498 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 2499 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 2500 } 2501 case ISD::TRUNCATE: { 2502 SDLoc DL(Op); 2503 MVT VT = Op.getSimpleValueType(); 2504 // Only custom-lower vector truncates 2505 if (!VT.isVector()) 2506 return Op; 2507 2508 // Truncates to mask types are handled differently 2509 if (VT.getVectorElementType() == MVT::i1) 2510 return lowerVectorMaskTrunc(Op, DAG); 2511 2512 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2513 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2514 // truncate by one power of two at a time. 2515 MVT DstEltVT = VT.getVectorElementType(); 2516 2517 SDValue Src = Op.getOperand(0); 2518 MVT SrcVT = Src.getSimpleValueType(); 2519 MVT SrcEltVT = SrcVT.getVectorElementType(); 2520 2521 assert(DstEltVT.bitsLT(SrcEltVT) && 2522 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2523 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2524 "Unexpected vector truncate lowering"); 2525 2526 MVT ContainerVT = SrcVT; 2527 if (SrcVT.isFixedLengthVector()) { 2528 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2529 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2530 } 2531 2532 SDValue Result = Src; 2533 SDValue Mask, VL; 2534 std::tie(Mask, VL) = 2535 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2536 LLVMContext &Context = *DAG.getContext(); 2537 const ElementCount Count = ContainerVT.getVectorElementCount(); 2538 do { 2539 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2540 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2541 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2542 Mask, VL); 2543 } while (SrcEltVT != DstEltVT); 2544 2545 if (SrcVT.isFixedLengthVector()) 2546 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2547 2548 return Result; 2549 } 2550 case ISD::ANY_EXTEND: 2551 case ISD::ZERO_EXTEND: 2552 if (Op.getOperand(0).getValueType().isVector() && 2553 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2554 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2555 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2556 case ISD::SIGN_EXTEND: 2557 if (Op.getOperand(0).getValueType().isVector() && 2558 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2559 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2560 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2561 case ISD::SPLAT_VECTOR_PARTS: 2562 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2563 case ISD::INSERT_VECTOR_ELT: 2564 return lowerINSERT_VECTOR_ELT(Op, DAG); 2565 case ISD::EXTRACT_VECTOR_ELT: 2566 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2567 case ISD::VSCALE: { 2568 MVT VT = Op.getSimpleValueType(); 2569 SDLoc DL(Op); 2570 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2571 // We define our scalable vector types for lmul=1 to use a 64 bit known 2572 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2573 // vscale as VLENB / 8. 2574 assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!"); 2575 if (isa<ConstantSDNode>(Op.getOperand(0))) { 2576 // We assume VLENB is a multiple of 8. We manually choose the best shift 2577 // here because SimplifyDemandedBits isn't always able to simplify it. 2578 uint64_t Val = Op.getConstantOperandVal(0); 2579 if (isPowerOf2_64(Val)) { 2580 uint64_t Log2 = Log2_64(Val); 2581 if (Log2 < 3) 2582 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 2583 DAG.getConstant(3 - Log2, DL, VT)); 2584 if (Log2 > 3) 2585 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 2586 DAG.getConstant(Log2 - 3, DL, VT)); 2587 return VLENB; 2588 } 2589 // If the multiplier is a multiple of 8, scale it down to avoid needing 2590 // to shift the VLENB value. 2591 if ((Val % 8) == 0) 2592 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 2593 DAG.getConstant(Val / 8, DL, VT)); 2594 } 2595 2596 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2597 DAG.getConstant(3, DL, VT)); 2598 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2599 } 2600 case ISD::FP_EXTEND: { 2601 // RVV can only do fp_extend to types double the size as the source. We 2602 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2603 // via f32. 2604 SDLoc DL(Op); 2605 MVT VT = Op.getSimpleValueType(); 2606 SDValue Src = Op.getOperand(0); 2607 MVT SrcVT = Src.getSimpleValueType(); 2608 2609 // Prepare any fixed-length vector operands. 2610 MVT ContainerVT = VT; 2611 if (SrcVT.isFixedLengthVector()) { 2612 ContainerVT = getContainerForFixedLengthVector(VT); 2613 MVT SrcContainerVT = 2614 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2615 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2616 } 2617 2618 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2619 SrcVT.getVectorElementType() != MVT::f16) { 2620 // For scalable vectors, we only need to close the gap between 2621 // vXf16->vXf64. 2622 if (!VT.isFixedLengthVector()) 2623 return Op; 2624 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2625 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2626 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2627 } 2628 2629 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2630 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2631 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2632 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2633 2634 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2635 DL, DAG, Subtarget); 2636 if (VT.isFixedLengthVector()) 2637 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2638 return Extend; 2639 } 2640 case ISD::FP_ROUND: { 2641 // RVV can only do fp_round to types half the size as the source. We 2642 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2643 // conversion instruction. 2644 SDLoc DL(Op); 2645 MVT VT = Op.getSimpleValueType(); 2646 SDValue Src = Op.getOperand(0); 2647 MVT SrcVT = Src.getSimpleValueType(); 2648 2649 // Prepare any fixed-length vector operands. 2650 MVT ContainerVT = VT; 2651 if (VT.isFixedLengthVector()) { 2652 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2653 ContainerVT = 2654 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2655 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2656 } 2657 2658 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2659 SrcVT.getVectorElementType() != MVT::f64) { 2660 // For scalable vectors, we only need to close the gap between 2661 // vXf64<->vXf16. 2662 if (!VT.isFixedLengthVector()) 2663 return Op; 2664 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2665 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2666 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2667 } 2668 2669 SDValue Mask, VL; 2670 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2671 2672 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2673 SDValue IntermediateRound = 2674 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2675 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2676 DL, DAG, Subtarget); 2677 2678 if (VT.isFixedLengthVector()) 2679 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2680 return Round; 2681 } 2682 case ISD::FP_TO_SINT: 2683 case ISD::FP_TO_UINT: 2684 case ISD::SINT_TO_FP: 2685 case ISD::UINT_TO_FP: { 2686 // RVV can only do fp<->int conversions to types half/double the size as 2687 // the source. We custom-lower any conversions that do two hops into 2688 // sequences. 2689 MVT VT = Op.getSimpleValueType(); 2690 if (!VT.isVector()) 2691 return Op; 2692 SDLoc DL(Op); 2693 SDValue Src = Op.getOperand(0); 2694 MVT EltVT = VT.getVectorElementType(); 2695 MVT SrcVT = Src.getSimpleValueType(); 2696 MVT SrcEltVT = SrcVT.getVectorElementType(); 2697 unsigned EltSize = EltVT.getSizeInBits(); 2698 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2699 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 2700 "Unexpected vector element types"); 2701 2702 bool IsInt2FP = SrcEltVT.isInteger(); 2703 // Widening conversions 2704 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 2705 if (IsInt2FP) { 2706 // Do a regular integer sign/zero extension then convert to float. 2707 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 2708 VT.getVectorElementCount()); 2709 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 2710 ? ISD::ZERO_EXTEND 2711 : ISD::SIGN_EXTEND; 2712 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 2713 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 2714 } 2715 // FP2Int 2716 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 2717 // Do one doubling fp_extend then complete the operation by converting 2718 // to int. 2719 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2720 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 2721 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 2722 } 2723 2724 // Narrowing conversions 2725 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 2726 if (IsInt2FP) { 2727 // One narrowing int_to_fp, then an fp_round. 2728 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 2729 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2730 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 2731 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 2732 } 2733 // FP2Int 2734 // One narrowing fp_to_int, then truncate the integer. If the float isn't 2735 // representable by the integer, the result is poison. 2736 MVT IVecVT = 2737 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 2738 VT.getVectorElementCount()); 2739 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 2740 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 2741 } 2742 2743 // Scalable vectors can exit here. Patterns will handle equally-sized 2744 // conversions halving/doubling ones. 2745 if (!VT.isFixedLengthVector()) 2746 return Op; 2747 2748 // For fixed-length vectors we lower to a custom "VL" node. 2749 unsigned RVVOpc = 0; 2750 switch (Op.getOpcode()) { 2751 default: 2752 llvm_unreachable("Impossible opcode"); 2753 case ISD::FP_TO_SINT: 2754 RVVOpc = RISCVISD::FP_TO_SINT_VL; 2755 break; 2756 case ISD::FP_TO_UINT: 2757 RVVOpc = RISCVISD::FP_TO_UINT_VL; 2758 break; 2759 case ISD::SINT_TO_FP: 2760 RVVOpc = RISCVISD::SINT_TO_FP_VL; 2761 break; 2762 case ISD::UINT_TO_FP: 2763 RVVOpc = RISCVISD::UINT_TO_FP_VL; 2764 break; 2765 } 2766 2767 MVT ContainerVT, SrcContainerVT; 2768 // Derive the reference container type from the larger vector type. 2769 if (SrcEltSize > EltSize) { 2770 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2771 ContainerVT = 2772 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2773 } else { 2774 ContainerVT = getContainerForFixedLengthVector(VT); 2775 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 2776 } 2777 2778 SDValue Mask, VL; 2779 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2780 2781 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2782 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 2783 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2784 } 2785 case ISD::FP_TO_SINT_SAT: 2786 case ISD::FP_TO_UINT_SAT: 2787 return lowerFP_TO_INT_SAT(Op, DAG); 2788 case ISD::VECREDUCE_ADD: 2789 case ISD::VECREDUCE_UMAX: 2790 case ISD::VECREDUCE_SMAX: 2791 case ISD::VECREDUCE_UMIN: 2792 case ISD::VECREDUCE_SMIN: 2793 return lowerVECREDUCE(Op, DAG); 2794 case ISD::VECREDUCE_AND: 2795 case ISD::VECREDUCE_OR: 2796 case ISD::VECREDUCE_XOR: 2797 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2798 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 2799 return lowerVECREDUCE(Op, DAG); 2800 case ISD::VECREDUCE_FADD: 2801 case ISD::VECREDUCE_SEQ_FADD: 2802 case ISD::VECREDUCE_FMIN: 2803 case ISD::VECREDUCE_FMAX: 2804 return lowerFPVECREDUCE(Op, DAG); 2805 case ISD::VP_REDUCE_ADD: 2806 case ISD::VP_REDUCE_UMAX: 2807 case ISD::VP_REDUCE_SMAX: 2808 case ISD::VP_REDUCE_UMIN: 2809 case ISD::VP_REDUCE_SMIN: 2810 case ISD::VP_REDUCE_FADD: 2811 case ISD::VP_REDUCE_SEQ_FADD: 2812 case ISD::VP_REDUCE_FMIN: 2813 case ISD::VP_REDUCE_FMAX: 2814 return lowerVPREDUCE(Op, DAG); 2815 case ISD::VP_REDUCE_AND: 2816 case ISD::VP_REDUCE_OR: 2817 case ISD::VP_REDUCE_XOR: 2818 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 2819 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 2820 return lowerVPREDUCE(Op, DAG); 2821 case ISD::INSERT_SUBVECTOR: 2822 return lowerINSERT_SUBVECTOR(Op, DAG); 2823 case ISD::EXTRACT_SUBVECTOR: 2824 return lowerEXTRACT_SUBVECTOR(Op, DAG); 2825 case ISD::STEP_VECTOR: 2826 return lowerSTEP_VECTOR(Op, DAG); 2827 case ISD::VECTOR_REVERSE: 2828 return lowerVECTOR_REVERSE(Op, DAG); 2829 case ISD::BUILD_VECTOR: 2830 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 2831 case ISD::SPLAT_VECTOR: 2832 if (Op.getValueType().getVectorElementType() == MVT::i1) 2833 return lowerVectorMaskSplat(Op, DAG); 2834 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 2835 case ISD::VECTOR_SHUFFLE: 2836 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 2837 case ISD::CONCAT_VECTORS: { 2838 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 2839 // better than going through the stack, as the default expansion does. 2840 SDLoc DL(Op); 2841 MVT VT = Op.getSimpleValueType(); 2842 unsigned NumOpElts = 2843 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 2844 SDValue Vec = DAG.getUNDEF(VT); 2845 for (const auto &OpIdx : enumerate(Op->ops())) 2846 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 2847 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 2848 return Vec; 2849 } 2850 case ISD::LOAD: 2851 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 2852 return V; 2853 if (Op.getValueType().isFixedLengthVector()) 2854 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 2855 return Op; 2856 case ISD::STORE: 2857 if (auto V = expandUnalignedRVVStore(Op, DAG)) 2858 return V; 2859 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 2860 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 2861 return Op; 2862 case ISD::MLOAD: 2863 case ISD::VP_LOAD: 2864 return lowerMaskedLoad(Op, DAG); 2865 case ISD::MSTORE: 2866 case ISD::VP_STORE: 2867 return lowerMaskedStore(Op, DAG); 2868 case ISD::SETCC: 2869 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 2870 case ISD::ADD: 2871 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 2872 case ISD::SUB: 2873 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 2874 case ISD::MUL: 2875 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 2876 case ISD::MULHS: 2877 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 2878 case ISD::MULHU: 2879 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 2880 case ISD::AND: 2881 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 2882 RISCVISD::AND_VL); 2883 case ISD::OR: 2884 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 2885 RISCVISD::OR_VL); 2886 case ISD::XOR: 2887 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 2888 RISCVISD::XOR_VL); 2889 case ISD::SDIV: 2890 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 2891 case ISD::SREM: 2892 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 2893 case ISD::UDIV: 2894 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 2895 case ISD::UREM: 2896 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 2897 case ISD::SHL: 2898 case ISD::SRA: 2899 case ISD::SRL: 2900 if (Op.getSimpleValueType().isFixedLengthVector()) 2901 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 2902 // This can be called for an i32 shift amount that needs to be promoted. 2903 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 2904 "Unexpected custom legalisation"); 2905 return SDValue(); 2906 case ISD::SADDSAT: 2907 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 2908 case ISD::UADDSAT: 2909 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 2910 case ISD::SSUBSAT: 2911 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 2912 case ISD::USUBSAT: 2913 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 2914 case ISD::FADD: 2915 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 2916 case ISD::FSUB: 2917 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 2918 case ISD::FMUL: 2919 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 2920 case ISD::FDIV: 2921 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 2922 case ISD::FNEG: 2923 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 2924 case ISD::FABS: 2925 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 2926 case ISD::FSQRT: 2927 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 2928 case ISD::FMA: 2929 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 2930 case ISD::SMIN: 2931 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 2932 case ISD::SMAX: 2933 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 2934 case ISD::UMIN: 2935 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 2936 case ISD::UMAX: 2937 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 2938 case ISD::FMINNUM: 2939 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 2940 case ISD::FMAXNUM: 2941 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 2942 case ISD::ABS: 2943 return lowerABS(Op, DAG); 2944 case ISD::VSELECT: 2945 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 2946 case ISD::FCOPYSIGN: 2947 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 2948 case ISD::MGATHER: 2949 case ISD::VP_GATHER: 2950 return lowerMaskedGather(Op, DAG); 2951 case ISD::MSCATTER: 2952 case ISD::VP_SCATTER: 2953 return lowerMaskedScatter(Op, DAG); 2954 case ISD::FLT_ROUNDS_: 2955 return lowerGET_ROUNDING(Op, DAG); 2956 case ISD::SET_ROUNDING: 2957 return lowerSET_ROUNDING(Op, DAG); 2958 case ISD::VP_ADD: 2959 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 2960 case ISD::VP_SUB: 2961 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 2962 case ISD::VP_MUL: 2963 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 2964 case ISD::VP_SDIV: 2965 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 2966 case ISD::VP_UDIV: 2967 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 2968 case ISD::VP_SREM: 2969 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 2970 case ISD::VP_UREM: 2971 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 2972 case ISD::VP_AND: 2973 return lowerVPOp(Op, DAG, RISCVISD::AND_VL); 2974 case ISD::VP_OR: 2975 return lowerVPOp(Op, DAG, RISCVISD::OR_VL); 2976 case ISD::VP_XOR: 2977 return lowerVPOp(Op, DAG, RISCVISD::XOR_VL); 2978 case ISD::VP_ASHR: 2979 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 2980 case ISD::VP_LSHR: 2981 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 2982 case ISD::VP_SHL: 2983 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 2984 case ISD::VP_FADD: 2985 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 2986 case ISD::VP_FSUB: 2987 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 2988 case ISD::VP_FMUL: 2989 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 2990 case ISD::VP_FDIV: 2991 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 2992 } 2993 } 2994 2995 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 2996 SelectionDAG &DAG, unsigned Flags) { 2997 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 2998 } 2999 3000 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3001 SelectionDAG &DAG, unsigned Flags) { 3002 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3003 Flags); 3004 } 3005 3006 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3007 SelectionDAG &DAG, unsigned Flags) { 3008 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3009 N->getOffset(), Flags); 3010 } 3011 3012 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3013 SelectionDAG &DAG, unsigned Flags) { 3014 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3015 } 3016 3017 template <class NodeTy> 3018 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3019 bool IsLocal) const { 3020 SDLoc DL(N); 3021 EVT Ty = getPointerTy(DAG.getDataLayout()); 3022 3023 if (isPositionIndependent()) { 3024 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3025 if (IsLocal) 3026 // Use PC-relative addressing to access the symbol. This generates the 3027 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3028 // %pcrel_lo(auipc)). 3029 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3030 3031 // Use PC-relative addressing to access the GOT for this symbol, then load 3032 // the address from the GOT. This generates the pattern (PseudoLA sym), 3033 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3034 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3035 } 3036 3037 switch (getTargetMachine().getCodeModel()) { 3038 default: 3039 report_fatal_error("Unsupported code model for lowering"); 3040 case CodeModel::Small: { 3041 // Generate a sequence for accessing addresses within the first 2 GiB of 3042 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3043 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3044 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3045 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3046 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3047 } 3048 case CodeModel::Medium: { 3049 // Generate a sequence for accessing addresses within any 2GiB range within 3050 // the address space. This generates the pattern (PseudoLLA sym), which 3051 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3052 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3053 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3054 } 3055 } 3056 } 3057 3058 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3059 SelectionDAG &DAG) const { 3060 SDLoc DL(Op); 3061 EVT Ty = Op.getValueType(); 3062 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3063 int64_t Offset = N->getOffset(); 3064 MVT XLenVT = Subtarget.getXLenVT(); 3065 3066 const GlobalValue *GV = N->getGlobal(); 3067 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3068 SDValue Addr = getAddr(N, DAG, IsLocal); 3069 3070 // In order to maximise the opportunity for common subexpression elimination, 3071 // emit a separate ADD node for the global address offset instead of folding 3072 // it in the global address node. Later peephole optimisations may choose to 3073 // fold it back in when profitable. 3074 if (Offset != 0) 3075 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3076 DAG.getConstant(Offset, DL, XLenVT)); 3077 return Addr; 3078 } 3079 3080 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3081 SelectionDAG &DAG) const { 3082 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3083 3084 return getAddr(N, DAG); 3085 } 3086 3087 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3088 SelectionDAG &DAG) const { 3089 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3090 3091 return getAddr(N, DAG); 3092 } 3093 3094 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3095 SelectionDAG &DAG) const { 3096 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3097 3098 return getAddr(N, DAG); 3099 } 3100 3101 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3102 SelectionDAG &DAG, 3103 bool UseGOT) const { 3104 SDLoc DL(N); 3105 EVT Ty = getPointerTy(DAG.getDataLayout()); 3106 const GlobalValue *GV = N->getGlobal(); 3107 MVT XLenVT = Subtarget.getXLenVT(); 3108 3109 if (UseGOT) { 3110 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3111 // load the address from the GOT and add the thread pointer. This generates 3112 // the pattern (PseudoLA_TLS_IE sym), which expands to 3113 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3114 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3115 SDValue Load = 3116 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3117 3118 // Add the thread pointer. 3119 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3120 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3121 } 3122 3123 // Generate a sequence for accessing the address relative to the thread 3124 // pointer, with the appropriate adjustment for the thread pointer offset. 3125 // This generates the pattern 3126 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3127 SDValue AddrHi = 3128 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3129 SDValue AddrAdd = 3130 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3131 SDValue AddrLo = 3132 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3133 3134 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3135 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3136 SDValue MNAdd = SDValue( 3137 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3138 0); 3139 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3140 } 3141 3142 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3143 SelectionDAG &DAG) const { 3144 SDLoc DL(N); 3145 EVT Ty = getPointerTy(DAG.getDataLayout()); 3146 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3147 const GlobalValue *GV = N->getGlobal(); 3148 3149 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3150 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3151 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3152 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3153 SDValue Load = 3154 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3155 3156 // Prepare argument list to generate call. 3157 ArgListTy Args; 3158 ArgListEntry Entry; 3159 Entry.Node = Load; 3160 Entry.Ty = CallTy; 3161 Args.push_back(Entry); 3162 3163 // Setup call to __tls_get_addr. 3164 TargetLowering::CallLoweringInfo CLI(DAG); 3165 CLI.setDebugLoc(DL) 3166 .setChain(DAG.getEntryNode()) 3167 .setLibCallee(CallingConv::C, CallTy, 3168 DAG.getExternalSymbol("__tls_get_addr", Ty), 3169 std::move(Args)); 3170 3171 return LowerCallTo(CLI).first; 3172 } 3173 3174 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3175 SelectionDAG &DAG) const { 3176 SDLoc DL(Op); 3177 EVT Ty = Op.getValueType(); 3178 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3179 int64_t Offset = N->getOffset(); 3180 MVT XLenVT = Subtarget.getXLenVT(); 3181 3182 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3183 3184 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3185 CallingConv::GHC) 3186 report_fatal_error("In GHC calling convention TLS is not supported"); 3187 3188 SDValue Addr; 3189 switch (Model) { 3190 case TLSModel::LocalExec: 3191 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3192 break; 3193 case TLSModel::InitialExec: 3194 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3195 break; 3196 case TLSModel::LocalDynamic: 3197 case TLSModel::GeneralDynamic: 3198 Addr = getDynamicTLSAddr(N, DAG); 3199 break; 3200 } 3201 3202 // In order to maximise the opportunity for common subexpression elimination, 3203 // emit a separate ADD node for the global address offset instead of folding 3204 // it in the global address node. Later peephole optimisations may choose to 3205 // fold it back in when profitable. 3206 if (Offset != 0) 3207 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3208 DAG.getConstant(Offset, DL, XLenVT)); 3209 return Addr; 3210 } 3211 3212 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3213 SDValue CondV = Op.getOperand(0); 3214 SDValue TrueV = Op.getOperand(1); 3215 SDValue FalseV = Op.getOperand(2); 3216 SDLoc DL(Op); 3217 MVT VT = Op.getSimpleValueType(); 3218 MVT XLenVT = Subtarget.getXLenVT(); 3219 3220 // Lower vector SELECTs to VSELECTs by splatting the condition. 3221 if (VT.isVector()) { 3222 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3223 SDValue CondSplat = VT.isScalableVector() 3224 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3225 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3226 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3227 } 3228 3229 // If the result type is XLenVT and CondV is the output of a SETCC node 3230 // which also operated on XLenVT inputs, then merge the SETCC node into the 3231 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3232 // compare+branch instructions. i.e.: 3233 // (select (setcc lhs, rhs, cc), truev, falsev) 3234 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3235 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3236 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3237 SDValue LHS = CondV.getOperand(0); 3238 SDValue RHS = CondV.getOperand(1); 3239 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3240 ISD::CondCode CCVal = CC->get(); 3241 3242 // Special case for a select of 2 constants that have a diffence of 1. 3243 // Normally this is done by DAGCombine, but if the select is introduced by 3244 // type legalization or op legalization, we miss it. Restricting to SETLT 3245 // case for now because that is what signed saturating add/sub need. 3246 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3247 // but we would probably want to swap the true/false values if the condition 3248 // is SETGE/SETLE to avoid an XORI. 3249 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3250 CCVal == ISD::SETLT) { 3251 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3252 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3253 if (TrueVal - 1 == FalseVal) 3254 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3255 if (TrueVal + 1 == FalseVal) 3256 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3257 } 3258 3259 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3260 3261 SDValue TargetCC = DAG.getCondCode(CCVal); 3262 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3263 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3264 } 3265 3266 // Otherwise: 3267 // (select condv, truev, falsev) 3268 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3269 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3270 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3271 3272 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3273 3274 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3275 } 3276 3277 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3278 SDValue CondV = Op.getOperand(1); 3279 SDLoc DL(Op); 3280 MVT XLenVT = Subtarget.getXLenVT(); 3281 3282 if (CondV.getOpcode() == ISD::SETCC && 3283 CondV.getOperand(0).getValueType() == XLenVT) { 3284 SDValue LHS = CondV.getOperand(0); 3285 SDValue RHS = CondV.getOperand(1); 3286 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3287 3288 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3289 3290 SDValue TargetCC = DAG.getCondCode(CCVal); 3291 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3292 LHS, RHS, TargetCC, Op.getOperand(2)); 3293 } 3294 3295 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3296 CondV, DAG.getConstant(0, DL, XLenVT), 3297 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3298 } 3299 3300 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3301 MachineFunction &MF = DAG.getMachineFunction(); 3302 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3303 3304 SDLoc DL(Op); 3305 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3306 getPointerTy(MF.getDataLayout())); 3307 3308 // vastart just stores the address of the VarArgsFrameIndex slot into the 3309 // memory location argument. 3310 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3311 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3312 MachinePointerInfo(SV)); 3313 } 3314 3315 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3316 SelectionDAG &DAG) const { 3317 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3318 MachineFunction &MF = DAG.getMachineFunction(); 3319 MachineFrameInfo &MFI = MF.getFrameInfo(); 3320 MFI.setFrameAddressIsTaken(true); 3321 Register FrameReg = RI.getFrameRegister(MF); 3322 int XLenInBytes = Subtarget.getXLen() / 8; 3323 3324 EVT VT = Op.getValueType(); 3325 SDLoc DL(Op); 3326 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3327 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3328 while (Depth--) { 3329 int Offset = -(XLenInBytes * 2); 3330 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3331 DAG.getIntPtrConstant(Offset, DL)); 3332 FrameAddr = 3333 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3334 } 3335 return FrameAddr; 3336 } 3337 3338 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3339 SelectionDAG &DAG) const { 3340 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3341 MachineFunction &MF = DAG.getMachineFunction(); 3342 MachineFrameInfo &MFI = MF.getFrameInfo(); 3343 MFI.setReturnAddressIsTaken(true); 3344 MVT XLenVT = Subtarget.getXLenVT(); 3345 int XLenInBytes = Subtarget.getXLen() / 8; 3346 3347 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3348 return SDValue(); 3349 3350 EVT VT = Op.getValueType(); 3351 SDLoc DL(Op); 3352 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3353 if (Depth) { 3354 int Off = -XLenInBytes; 3355 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3356 SDValue Offset = DAG.getConstant(Off, DL, VT); 3357 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3358 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3359 MachinePointerInfo()); 3360 } 3361 3362 // Return the value of the return address register, marking it an implicit 3363 // live-in. 3364 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3365 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3366 } 3367 3368 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3369 SelectionDAG &DAG) const { 3370 SDLoc DL(Op); 3371 SDValue Lo = Op.getOperand(0); 3372 SDValue Hi = Op.getOperand(1); 3373 SDValue Shamt = Op.getOperand(2); 3374 EVT VT = Lo.getValueType(); 3375 3376 // if Shamt-XLEN < 0: // Shamt < XLEN 3377 // Lo = Lo << Shamt 3378 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 3379 // else: 3380 // Lo = 0 3381 // Hi = Lo << (Shamt-XLEN) 3382 3383 SDValue Zero = DAG.getConstant(0, DL, VT); 3384 SDValue One = DAG.getConstant(1, DL, VT); 3385 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3386 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3387 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3388 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3389 3390 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3391 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3392 SDValue ShiftRightLo = 3393 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3394 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3395 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3396 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3397 3398 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3399 3400 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3401 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3402 3403 SDValue Parts[2] = {Lo, Hi}; 3404 return DAG.getMergeValues(Parts, DL); 3405 } 3406 3407 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3408 bool IsSRA) const { 3409 SDLoc DL(Op); 3410 SDValue Lo = Op.getOperand(0); 3411 SDValue Hi = Op.getOperand(1); 3412 SDValue Shamt = Op.getOperand(2); 3413 EVT VT = Lo.getValueType(); 3414 3415 // SRA expansion: 3416 // if Shamt-XLEN < 0: // Shamt < XLEN 3417 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3418 // Hi = Hi >>s Shamt 3419 // else: 3420 // Lo = Hi >>s (Shamt-XLEN); 3421 // Hi = Hi >>s (XLEN-1) 3422 // 3423 // SRL expansion: 3424 // if Shamt-XLEN < 0: // Shamt < XLEN 3425 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3426 // Hi = Hi >>u Shamt 3427 // else: 3428 // Lo = Hi >>u (Shamt-XLEN); 3429 // Hi = 0; 3430 3431 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3432 3433 SDValue Zero = DAG.getConstant(0, DL, VT); 3434 SDValue One = DAG.getConstant(1, DL, VT); 3435 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3436 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3437 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3438 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3439 3440 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3441 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3442 SDValue ShiftLeftHi = 3443 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 3444 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3445 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3446 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 3447 SDValue HiFalse = 3448 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 3449 3450 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3451 3452 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3453 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3454 3455 SDValue Parts[2] = {Lo, Hi}; 3456 return DAG.getMergeValues(Parts, DL); 3457 } 3458 3459 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 3460 // legal equivalently-sized i8 type, so we can use that as a go-between. 3461 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3462 SelectionDAG &DAG) const { 3463 SDLoc DL(Op); 3464 MVT VT = Op.getSimpleValueType(); 3465 SDValue SplatVal = Op.getOperand(0); 3466 // All-zeros or all-ones splats are handled specially. 3467 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 3468 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3469 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 3470 } 3471 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 3472 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3473 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3474 } 3475 MVT XLenVT = Subtarget.getXLenVT(); 3476 assert(SplatVal.getValueType() == XLenVT && 3477 "Unexpected type for i1 splat value"); 3478 MVT InterVT = VT.changeVectorElementType(MVT::i8); 3479 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 3480 DAG.getConstant(1, DL, XLenVT)); 3481 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 3482 SDValue Zero = DAG.getConstant(0, DL, InterVT); 3483 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 3484 } 3485 3486 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 3487 // illegal (currently only vXi64 RV32). 3488 // FIXME: We could also catch non-constant sign-extended i32 values and lower 3489 // them to SPLAT_VECTOR_I64 3490 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 3491 SelectionDAG &DAG) const { 3492 SDLoc DL(Op); 3493 MVT VecVT = Op.getSimpleValueType(); 3494 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 3495 "Unexpected SPLAT_VECTOR_PARTS lowering"); 3496 3497 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 3498 SDValue Lo = Op.getOperand(0); 3499 SDValue Hi = Op.getOperand(1); 3500 3501 if (VecVT.isFixedLengthVector()) { 3502 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3503 SDLoc DL(Op); 3504 SDValue Mask, VL; 3505 std::tie(Mask, VL) = 3506 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3507 3508 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 3509 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 3510 } 3511 3512 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 3513 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 3514 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 3515 // If Hi constant is all the same sign bit as Lo, lower this as a custom 3516 // node in order to try and match RVV vector/scalar instructions. 3517 if ((LoC >> 31) == HiC) 3518 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3519 } 3520 3521 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 3522 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 3523 isa<ConstantSDNode>(Hi.getOperand(1)) && 3524 Hi.getConstantOperandVal(1) == 31) 3525 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3526 3527 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 3528 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 3529 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64)); 3530 } 3531 3532 // Custom-lower extensions from mask vectors by using a vselect either with 1 3533 // for zero/any-extension or -1 for sign-extension: 3534 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 3535 // Note that any-extension is lowered identically to zero-extension. 3536 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 3537 int64_t ExtTrueVal) const { 3538 SDLoc DL(Op); 3539 MVT VecVT = Op.getSimpleValueType(); 3540 SDValue Src = Op.getOperand(0); 3541 // Only custom-lower extensions from mask types 3542 assert(Src.getValueType().isVector() && 3543 Src.getValueType().getVectorElementType() == MVT::i1); 3544 3545 MVT XLenVT = Subtarget.getXLenVT(); 3546 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 3547 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 3548 3549 if (VecVT.isScalableVector()) { 3550 // Be careful not to introduce illegal scalar types at this stage, and be 3551 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 3552 // illegal and must be expanded. Since we know that the constants are 3553 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 3554 bool IsRV32E64 = 3555 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 3556 3557 if (!IsRV32E64) { 3558 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 3559 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 3560 } else { 3561 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 3562 SplatTrueVal = 3563 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 3564 } 3565 3566 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 3567 } 3568 3569 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3570 MVT I1ContainerVT = 3571 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3572 3573 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 3574 3575 SDValue Mask, VL; 3576 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3577 3578 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 3579 SplatTrueVal = 3580 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 3581 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 3582 SplatTrueVal, SplatZero, VL); 3583 3584 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 3585 } 3586 3587 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 3588 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 3589 MVT ExtVT = Op.getSimpleValueType(); 3590 // Only custom-lower extensions from fixed-length vector types. 3591 if (!ExtVT.isFixedLengthVector()) 3592 return Op; 3593 MVT VT = Op.getOperand(0).getSimpleValueType(); 3594 // Grab the canonical container type for the extended type. Infer the smaller 3595 // type from that to ensure the same number of vector elements, as we know 3596 // the LMUL will be sufficient to hold the smaller type. 3597 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3598 // Get the extended container type manually to ensure the same number of 3599 // vector elements between source and dest. 3600 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3601 ContainerExtVT.getVectorElementCount()); 3602 3603 SDValue Op1 = 3604 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3605 3606 SDLoc DL(Op); 3607 SDValue Mask, VL; 3608 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3609 3610 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3611 3612 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3613 } 3614 3615 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3616 // setcc operation: 3617 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3618 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3619 SelectionDAG &DAG) const { 3620 SDLoc DL(Op); 3621 EVT MaskVT = Op.getValueType(); 3622 // Only expect to custom-lower truncations to mask types 3623 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3624 "Unexpected type for vector mask lowering"); 3625 SDValue Src = Op.getOperand(0); 3626 MVT VecVT = Src.getSimpleValueType(); 3627 3628 // If this is a fixed vector, we need to convert it to a scalable vector. 3629 MVT ContainerVT = VecVT; 3630 if (VecVT.isFixedLengthVector()) { 3631 ContainerVT = getContainerForFixedLengthVector(VecVT); 3632 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3633 } 3634 3635 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3636 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3637 3638 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3639 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3640 3641 if (VecVT.isScalableVector()) { 3642 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3643 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3644 } 3645 3646 SDValue Mask, VL; 3647 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3648 3649 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3650 SDValue Trunc = 3651 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3652 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3653 DAG.getCondCode(ISD::SETNE), Mask, VL); 3654 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3655 } 3656 3657 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 3658 // first position of a vector, and that vector is slid up to the insert index. 3659 // By limiting the active vector length to index+1 and merging with the 3660 // original vector (with an undisturbed tail policy for elements >= VL), we 3661 // achieve the desired result of leaving all elements untouched except the one 3662 // at VL-1, which is replaced with the desired value. 3663 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3664 SelectionDAG &DAG) const { 3665 SDLoc DL(Op); 3666 MVT VecVT = Op.getSimpleValueType(); 3667 SDValue Vec = Op.getOperand(0); 3668 SDValue Val = Op.getOperand(1); 3669 SDValue Idx = Op.getOperand(2); 3670 3671 if (VecVT.getVectorElementType() == MVT::i1) { 3672 // FIXME: For now we just promote to an i8 vector and insert into that, 3673 // but this is probably not optimal. 3674 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3675 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3676 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 3677 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 3678 } 3679 3680 MVT ContainerVT = VecVT; 3681 // If the operand is a fixed-length vector, convert to a scalable one. 3682 if (VecVT.isFixedLengthVector()) { 3683 ContainerVT = getContainerForFixedLengthVector(VecVT); 3684 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3685 } 3686 3687 MVT XLenVT = Subtarget.getXLenVT(); 3688 3689 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3690 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 3691 // Even i64-element vectors on RV32 can be lowered without scalar 3692 // legalization if the most-significant 32 bits of the value are not affected 3693 // by the sign-extension of the lower 32 bits. 3694 // TODO: We could also catch sign extensions of a 32-bit value. 3695 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 3696 const auto *CVal = cast<ConstantSDNode>(Val); 3697 if (isInt<32>(CVal->getSExtValue())) { 3698 IsLegalInsert = true; 3699 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3700 } 3701 } 3702 3703 SDValue Mask, VL; 3704 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3705 3706 SDValue ValInVec; 3707 3708 if (IsLegalInsert) { 3709 unsigned Opc = 3710 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 3711 if (isNullConstant(Idx)) { 3712 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 3713 if (!VecVT.isFixedLengthVector()) 3714 return Vec; 3715 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 3716 } 3717 ValInVec = 3718 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 3719 } else { 3720 // On RV32, i64-element vectors must be specially handled to place the 3721 // value at element 0, by using two vslide1up instructions in sequence on 3722 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 3723 // this. 3724 SDValue One = DAG.getConstant(1, DL, XLenVT); 3725 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 3726 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 3727 MVT I32ContainerVT = 3728 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 3729 SDValue I32Mask = 3730 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 3731 // Limit the active VL to two. 3732 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 3733 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 3734 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 3735 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 3736 InsertI64VL); 3737 // First slide in the hi value, then the lo in underneath it. 3738 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3739 ValHi, I32Mask, InsertI64VL); 3740 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3741 ValLo, I32Mask, InsertI64VL); 3742 // Bitcast back to the right container type. 3743 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 3744 } 3745 3746 // Now that the value is in a vector, slide it into position. 3747 SDValue InsertVL = 3748 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 3749 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3750 ValInVec, Idx, Mask, InsertVL); 3751 if (!VecVT.isFixedLengthVector()) 3752 return Slideup; 3753 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3754 } 3755 3756 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 3757 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 3758 // types this is done using VMV_X_S to allow us to glean information about the 3759 // sign bits of the result. 3760 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 3761 SelectionDAG &DAG) const { 3762 SDLoc DL(Op); 3763 SDValue Idx = Op.getOperand(1); 3764 SDValue Vec = Op.getOperand(0); 3765 EVT EltVT = Op.getValueType(); 3766 MVT VecVT = Vec.getSimpleValueType(); 3767 MVT XLenVT = Subtarget.getXLenVT(); 3768 3769 if (VecVT.getVectorElementType() == MVT::i1) { 3770 // FIXME: For now we just promote to an i8 vector and extract from that, 3771 // but this is probably not optimal. 3772 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3773 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3774 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 3775 } 3776 3777 // If this is a fixed vector, we need to convert it to a scalable vector. 3778 MVT ContainerVT = VecVT; 3779 if (VecVT.isFixedLengthVector()) { 3780 ContainerVT = getContainerForFixedLengthVector(VecVT); 3781 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3782 } 3783 3784 // If the index is 0, the vector is already in the right position. 3785 if (!isNullConstant(Idx)) { 3786 // Use a VL of 1 to avoid processing more elements than we need. 3787 SDValue VL = DAG.getConstant(1, DL, XLenVT); 3788 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3789 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3790 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3791 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 3792 } 3793 3794 if (!EltVT.isInteger()) { 3795 // Floating-point extracts are handled in TableGen. 3796 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 3797 DAG.getConstant(0, DL, XLenVT)); 3798 } 3799 3800 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 3801 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 3802 } 3803 3804 // Some RVV intrinsics may claim that they want an integer operand to be 3805 // promoted or expanded. 3806 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 3807 const RISCVSubtarget &Subtarget) { 3808 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3809 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 3810 "Unexpected opcode"); 3811 3812 if (!Subtarget.hasVInstructions()) 3813 return SDValue(); 3814 3815 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 3816 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 3817 SDLoc DL(Op); 3818 3819 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 3820 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 3821 if (!II || !II->SplatOperand) 3822 return SDValue(); 3823 3824 unsigned SplatOp = II->SplatOperand + HasChain; 3825 assert(SplatOp < Op.getNumOperands()); 3826 3827 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 3828 SDValue &ScalarOp = Operands[SplatOp]; 3829 MVT OpVT = ScalarOp.getSimpleValueType(); 3830 MVT XLenVT = Subtarget.getXLenVT(); 3831 3832 // If this isn't a scalar, or its type is XLenVT we're done. 3833 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 3834 return SDValue(); 3835 3836 // Simplest case is that the operand needs to be promoted to XLenVT. 3837 if (OpVT.bitsLT(XLenVT)) { 3838 // If the operand is a constant, sign extend to increase our chances 3839 // of being able to use a .vi instruction. ANY_EXTEND would become a 3840 // a zero extend and the simm5 check in isel would fail. 3841 // FIXME: Should we ignore the upper bits in isel instead? 3842 unsigned ExtOpc = 3843 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 3844 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 3845 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3846 } 3847 3848 // Use the previous operand to get the vXi64 VT. The result might be a mask 3849 // VT for compares. Using the previous operand assumes that the previous 3850 // operand will never have a smaller element size than a scalar operand and 3851 // that a widening operation never uses SEW=64. 3852 // NOTE: If this fails the below assert, we can probably just find the 3853 // element count from any operand or result and use it to construct the VT. 3854 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 3855 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 3856 3857 // The more complex case is when the scalar is larger than XLenVT. 3858 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 3859 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 3860 3861 // If this is a sign-extended 32-bit constant, we can truncate it and rely 3862 // on the instruction to sign-extend since SEW>XLEN. 3863 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 3864 if (isInt<32>(CVal->getSExtValue())) { 3865 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3866 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3867 } 3868 } 3869 3870 // We need to convert the scalar to a splat vector. 3871 // FIXME: Can we implicitly truncate the scalar if it is known to 3872 // be sign extended? 3873 // VL should be the last operand. 3874 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 3875 assert(VL.getValueType() == XLenVT); 3876 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 3877 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3878 } 3879 3880 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3881 SelectionDAG &DAG) const { 3882 unsigned IntNo = Op.getConstantOperandVal(0); 3883 SDLoc DL(Op); 3884 MVT XLenVT = Subtarget.getXLenVT(); 3885 3886 switch (IntNo) { 3887 default: 3888 break; // Don't custom lower most intrinsics. 3889 case Intrinsic::thread_pointer: { 3890 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3891 return DAG.getRegister(RISCV::X4, PtrVT); 3892 } 3893 case Intrinsic::riscv_orc_b: 3894 // Lower to the GORCI encoding for orc.b. 3895 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 3896 DAG.getConstant(7, DL, XLenVT)); 3897 case Intrinsic::riscv_grev: 3898 case Intrinsic::riscv_gorc: { 3899 unsigned Opc = 3900 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 3901 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3902 } 3903 case Intrinsic::riscv_shfl: 3904 case Intrinsic::riscv_unshfl: { 3905 unsigned Opc = 3906 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 3907 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3908 } 3909 case Intrinsic::riscv_bcompress: 3910 case Intrinsic::riscv_bdecompress: { 3911 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 3912 : RISCVISD::BDECOMPRESS; 3913 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3914 } 3915 case Intrinsic::riscv_vmv_x_s: 3916 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 3917 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 3918 Op.getOperand(1)); 3919 case Intrinsic::riscv_vmv_v_x: 3920 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 3921 Op.getSimpleValueType(), DL, DAG, Subtarget); 3922 case Intrinsic::riscv_vfmv_v_f: 3923 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 3924 Op.getOperand(1), Op.getOperand(2)); 3925 case Intrinsic::riscv_vmv_s_x: { 3926 SDValue Scalar = Op.getOperand(2); 3927 3928 if (Scalar.getValueType().bitsLE(XLenVT)) { 3929 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 3930 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 3931 Op.getOperand(1), Scalar, Op.getOperand(3)); 3932 } 3933 3934 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 3935 3936 // This is an i64 value that lives in two scalar registers. We have to 3937 // insert this in a convoluted way. First we build vXi64 splat containing 3938 // the/ two values that we assemble using some bit math. Next we'll use 3939 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 3940 // to merge element 0 from our splat into the source vector. 3941 // FIXME: This is probably not the best way to do this, but it is 3942 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 3943 // point. 3944 // sw lo, (a0) 3945 // sw hi, 4(a0) 3946 // vlse vX, (a0) 3947 // 3948 // vid.v vVid 3949 // vmseq.vx mMask, vVid, 0 3950 // vmerge.vvm vDest, vSrc, vVal, mMask 3951 MVT VT = Op.getSimpleValueType(); 3952 SDValue Vec = Op.getOperand(1); 3953 SDValue VL = Op.getOperand(3); 3954 3955 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 3956 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 3957 DAG.getConstant(0, DL, MVT::i32), VL); 3958 3959 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 3960 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3961 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3962 SDValue SelectCond = 3963 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 3964 DAG.getCondCode(ISD::SETEQ), Mask, VL); 3965 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 3966 Vec, VL); 3967 } 3968 case Intrinsic::riscv_vslide1up: 3969 case Intrinsic::riscv_vslide1down: 3970 case Intrinsic::riscv_vslide1up_mask: 3971 case Intrinsic::riscv_vslide1down_mask: { 3972 // We need to special case these when the scalar is larger than XLen. 3973 unsigned NumOps = Op.getNumOperands(); 3974 bool IsMasked = NumOps == 7; 3975 unsigned OpOffset = IsMasked ? 1 : 0; 3976 SDValue Scalar = Op.getOperand(2 + OpOffset); 3977 if (Scalar.getValueType().bitsLE(XLenVT)) 3978 break; 3979 3980 // Splatting a sign extended constant is fine. 3981 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 3982 if (isInt<32>(CVal->getSExtValue())) 3983 break; 3984 3985 MVT VT = Op.getSimpleValueType(); 3986 assert(VT.getVectorElementType() == MVT::i64 && 3987 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 3988 3989 // Convert the vector source to the equivalent nxvXi32 vector. 3990 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 3991 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 3992 3993 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3994 DAG.getConstant(0, DL, XLenVT)); 3995 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3996 DAG.getConstant(1, DL, XLenVT)); 3997 3998 // Double the VL since we halved SEW. 3999 SDValue VL = Op.getOperand(NumOps - (1 + OpOffset)); 4000 SDValue I32VL = 4001 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4002 4003 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 4004 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 4005 4006 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4007 // instructions. 4008 if (IntNo == Intrinsic::riscv_vslide1up || 4009 IntNo == Intrinsic::riscv_vslide1up_mask) { 4010 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 4011 I32Mask, I32VL); 4012 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 4013 I32Mask, I32VL); 4014 } else { 4015 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 4016 I32Mask, I32VL); 4017 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 4018 I32Mask, I32VL); 4019 } 4020 4021 // Convert back to nxvXi64. 4022 Vec = DAG.getBitcast(VT, Vec); 4023 4024 if (!IsMasked) 4025 return Vec; 4026 4027 // Apply mask after the operation. 4028 SDValue Mask = Op.getOperand(NumOps - 3); 4029 SDValue MaskedOff = Op.getOperand(1); 4030 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 4031 } 4032 } 4033 4034 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4035 } 4036 4037 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4038 SelectionDAG &DAG) const { 4039 unsigned IntNo = Op.getConstantOperandVal(1); 4040 switch (IntNo) { 4041 default: 4042 break; 4043 case Intrinsic::riscv_masked_strided_load: { 4044 SDLoc DL(Op); 4045 MVT XLenVT = Subtarget.getXLenVT(); 4046 4047 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4048 // the selection of the masked intrinsics doesn't do this for us. 4049 SDValue Mask = Op.getOperand(5); 4050 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4051 4052 MVT VT = Op->getSimpleValueType(0); 4053 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4054 4055 SDValue PassThru = Op.getOperand(2); 4056 if (!IsUnmasked) { 4057 MVT MaskVT = 4058 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4059 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4060 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4061 } 4062 4063 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4064 4065 SDValue IntID = DAG.getTargetConstant( 4066 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4067 XLenVT); 4068 4069 auto *Load = cast<MemIntrinsicSDNode>(Op); 4070 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4071 if (!IsUnmasked) 4072 Ops.push_back(PassThru); 4073 Ops.push_back(Op.getOperand(3)); // Ptr 4074 Ops.push_back(Op.getOperand(4)); // Stride 4075 if (!IsUnmasked) 4076 Ops.push_back(Mask); 4077 Ops.push_back(VL); 4078 if (!IsUnmasked) { 4079 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4080 Ops.push_back(Policy); 4081 } 4082 4083 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4084 SDValue Result = 4085 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4086 Load->getMemoryVT(), Load->getMemOperand()); 4087 SDValue Chain = Result.getValue(1); 4088 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4089 return DAG.getMergeValues({Result, Chain}, DL); 4090 } 4091 } 4092 4093 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4094 } 4095 4096 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4097 SelectionDAG &DAG) const { 4098 unsigned IntNo = Op.getConstantOperandVal(1); 4099 switch (IntNo) { 4100 default: 4101 break; 4102 case Intrinsic::riscv_masked_strided_store: { 4103 SDLoc DL(Op); 4104 MVT XLenVT = Subtarget.getXLenVT(); 4105 4106 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4107 // the selection of the masked intrinsics doesn't do this for us. 4108 SDValue Mask = Op.getOperand(5); 4109 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4110 4111 SDValue Val = Op.getOperand(2); 4112 MVT VT = Val.getSimpleValueType(); 4113 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4114 4115 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4116 if (!IsUnmasked) { 4117 MVT MaskVT = 4118 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4119 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4120 } 4121 4122 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4123 4124 SDValue IntID = DAG.getTargetConstant( 4125 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4126 XLenVT); 4127 4128 auto *Store = cast<MemIntrinsicSDNode>(Op); 4129 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4130 Ops.push_back(Val); 4131 Ops.push_back(Op.getOperand(3)); // Ptr 4132 Ops.push_back(Op.getOperand(4)); // Stride 4133 if (!IsUnmasked) 4134 Ops.push_back(Mask); 4135 Ops.push_back(VL); 4136 4137 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 4138 Ops, Store->getMemoryVT(), 4139 Store->getMemOperand()); 4140 } 4141 } 4142 4143 return SDValue(); 4144 } 4145 4146 static MVT getLMUL1VT(MVT VT) { 4147 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 4148 "Unexpected vector MVT"); 4149 return MVT::getScalableVectorVT( 4150 VT.getVectorElementType(), 4151 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 4152 } 4153 4154 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 4155 switch (ISDOpcode) { 4156 default: 4157 llvm_unreachable("Unhandled reduction"); 4158 case ISD::VECREDUCE_ADD: 4159 return RISCVISD::VECREDUCE_ADD_VL; 4160 case ISD::VECREDUCE_UMAX: 4161 return RISCVISD::VECREDUCE_UMAX_VL; 4162 case ISD::VECREDUCE_SMAX: 4163 return RISCVISD::VECREDUCE_SMAX_VL; 4164 case ISD::VECREDUCE_UMIN: 4165 return RISCVISD::VECREDUCE_UMIN_VL; 4166 case ISD::VECREDUCE_SMIN: 4167 return RISCVISD::VECREDUCE_SMIN_VL; 4168 case ISD::VECREDUCE_AND: 4169 return RISCVISD::VECREDUCE_AND_VL; 4170 case ISD::VECREDUCE_OR: 4171 return RISCVISD::VECREDUCE_OR_VL; 4172 case ISD::VECREDUCE_XOR: 4173 return RISCVISD::VECREDUCE_XOR_VL; 4174 } 4175 } 4176 4177 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 4178 SelectionDAG &DAG, 4179 bool IsVP) const { 4180 SDLoc DL(Op); 4181 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 4182 MVT VecVT = Vec.getSimpleValueType(); 4183 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 4184 Op.getOpcode() == ISD::VECREDUCE_OR || 4185 Op.getOpcode() == ISD::VECREDUCE_XOR || 4186 Op.getOpcode() == ISD::VP_REDUCE_AND || 4187 Op.getOpcode() == ISD::VP_REDUCE_OR || 4188 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 4189 "Unexpected reduction lowering"); 4190 4191 MVT XLenVT = Subtarget.getXLenVT(); 4192 assert(Op.getValueType() == XLenVT && 4193 "Expected reduction output to be legalized to XLenVT"); 4194 4195 MVT ContainerVT = VecVT; 4196 if (VecVT.isFixedLengthVector()) { 4197 ContainerVT = getContainerForFixedLengthVector(VecVT); 4198 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4199 } 4200 4201 SDValue Mask, VL; 4202 if (IsVP) { 4203 Mask = Op.getOperand(2); 4204 VL = Op.getOperand(3); 4205 } else { 4206 std::tie(Mask, VL) = 4207 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4208 } 4209 4210 unsigned BaseOpc; 4211 ISD::CondCode CC; 4212 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4213 4214 switch (Op.getOpcode()) { 4215 default: 4216 llvm_unreachable("Unhandled reduction"); 4217 case ISD::VECREDUCE_AND: 4218 case ISD::VP_REDUCE_AND: { 4219 // vcpop ~x == 0 4220 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 4221 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 4222 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4223 CC = ISD::SETEQ; 4224 BaseOpc = ISD::AND; 4225 break; 4226 } 4227 case ISD::VECREDUCE_OR: 4228 case ISD::VP_REDUCE_OR: 4229 // vcpop x != 0 4230 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4231 CC = ISD::SETNE; 4232 BaseOpc = ISD::OR; 4233 break; 4234 case ISD::VECREDUCE_XOR: 4235 case ISD::VP_REDUCE_XOR: { 4236 // ((vcpop x) & 1) != 0 4237 SDValue One = DAG.getConstant(1, DL, XLenVT); 4238 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4239 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 4240 CC = ISD::SETNE; 4241 BaseOpc = ISD::XOR; 4242 break; 4243 } 4244 } 4245 4246 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 4247 4248 if (!IsVP) 4249 return SetCC; 4250 4251 // Now include the start value in the operation. 4252 // Note that we must return the start value when no elements are operated 4253 // upon. The vcpop instructions we've emitted in each case above will return 4254 // 0 for an inactive vector, and so we've already received the neutral value: 4255 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 4256 // can simply include the start value. 4257 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 4258 } 4259 4260 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 4261 SelectionDAG &DAG) const { 4262 SDLoc DL(Op); 4263 SDValue Vec = Op.getOperand(0); 4264 EVT VecEVT = Vec.getValueType(); 4265 4266 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 4267 4268 // Due to ordering in legalize types we may have a vector type that needs to 4269 // be split. Do that manually so we can get down to a legal type. 4270 while (getTypeAction(*DAG.getContext(), VecEVT) == 4271 TargetLowering::TypeSplitVector) { 4272 SDValue Lo, Hi; 4273 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 4274 VecEVT = Lo.getValueType(); 4275 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 4276 } 4277 4278 // TODO: The type may need to be widened rather than split. Or widened before 4279 // it can be split. 4280 if (!isTypeLegal(VecEVT)) 4281 return SDValue(); 4282 4283 MVT VecVT = VecEVT.getSimpleVT(); 4284 MVT VecEltVT = VecVT.getVectorElementType(); 4285 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 4286 4287 MVT ContainerVT = VecVT; 4288 if (VecVT.isFixedLengthVector()) { 4289 ContainerVT = getContainerForFixedLengthVector(VecVT); 4290 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4291 } 4292 4293 MVT M1VT = getLMUL1VT(ContainerVT); 4294 4295 SDValue Mask, VL; 4296 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4297 4298 // FIXME: This is a VLMAX splat which might be too large and can prevent 4299 // vsetvli removal. 4300 SDValue NeutralElem = 4301 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 4302 SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem); 4303 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 4304 IdentitySplat, Mask, VL); 4305 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4306 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4307 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4308 } 4309 4310 // Given a reduction op, this function returns the matching reduction opcode, 4311 // the vector SDValue and the scalar SDValue required to lower this to a 4312 // RISCVISD node. 4313 static std::tuple<unsigned, SDValue, SDValue> 4314 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 4315 SDLoc DL(Op); 4316 auto Flags = Op->getFlags(); 4317 unsigned Opcode = Op.getOpcode(); 4318 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 4319 switch (Opcode) { 4320 default: 4321 llvm_unreachable("Unhandled reduction"); 4322 case ISD::VECREDUCE_FADD: 4323 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), 4324 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4325 case ISD::VECREDUCE_SEQ_FADD: 4326 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 4327 Op.getOperand(0)); 4328 case ISD::VECREDUCE_FMIN: 4329 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 4330 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4331 case ISD::VECREDUCE_FMAX: 4332 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 4333 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4334 } 4335 } 4336 4337 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 4338 SelectionDAG &DAG) const { 4339 SDLoc DL(Op); 4340 MVT VecEltVT = Op.getSimpleValueType(); 4341 4342 unsigned RVVOpcode; 4343 SDValue VectorVal, ScalarVal; 4344 std::tie(RVVOpcode, VectorVal, ScalarVal) = 4345 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 4346 MVT VecVT = VectorVal.getSimpleValueType(); 4347 4348 MVT ContainerVT = VecVT; 4349 if (VecVT.isFixedLengthVector()) { 4350 ContainerVT = getContainerForFixedLengthVector(VecVT); 4351 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 4352 } 4353 4354 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 4355 4356 SDValue Mask, VL; 4357 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4358 4359 // FIXME: This is a VLMAX splat which might be too large and can prevent 4360 // vsetvli removal. 4361 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal); 4362 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 4363 VectorVal, ScalarSplat, Mask, VL); 4364 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4365 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4366 } 4367 4368 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 4369 switch (ISDOpcode) { 4370 default: 4371 llvm_unreachable("Unhandled reduction"); 4372 case ISD::VP_REDUCE_ADD: 4373 return RISCVISD::VECREDUCE_ADD_VL; 4374 case ISD::VP_REDUCE_UMAX: 4375 return RISCVISD::VECREDUCE_UMAX_VL; 4376 case ISD::VP_REDUCE_SMAX: 4377 return RISCVISD::VECREDUCE_SMAX_VL; 4378 case ISD::VP_REDUCE_UMIN: 4379 return RISCVISD::VECREDUCE_UMIN_VL; 4380 case ISD::VP_REDUCE_SMIN: 4381 return RISCVISD::VECREDUCE_SMIN_VL; 4382 case ISD::VP_REDUCE_AND: 4383 return RISCVISD::VECREDUCE_AND_VL; 4384 case ISD::VP_REDUCE_OR: 4385 return RISCVISD::VECREDUCE_OR_VL; 4386 case ISD::VP_REDUCE_XOR: 4387 return RISCVISD::VECREDUCE_XOR_VL; 4388 case ISD::VP_REDUCE_FADD: 4389 return RISCVISD::VECREDUCE_FADD_VL; 4390 case ISD::VP_REDUCE_SEQ_FADD: 4391 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 4392 case ISD::VP_REDUCE_FMAX: 4393 return RISCVISD::VECREDUCE_FMAX_VL; 4394 case ISD::VP_REDUCE_FMIN: 4395 return RISCVISD::VECREDUCE_FMIN_VL; 4396 } 4397 } 4398 4399 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 4400 SelectionDAG &DAG) const { 4401 SDLoc DL(Op); 4402 SDValue Vec = Op.getOperand(1); 4403 EVT VecEVT = Vec.getValueType(); 4404 4405 // TODO: The type may need to be widened rather than split. Or widened before 4406 // it can be split. 4407 if (!isTypeLegal(VecEVT)) 4408 return SDValue(); 4409 4410 MVT VecVT = VecEVT.getSimpleVT(); 4411 MVT VecEltVT = VecVT.getVectorElementType(); 4412 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 4413 4414 MVT ContainerVT = VecVT; 4415 if (VecVT.isFixedLengthVector()) { 4416 ContainerVT = getContainerForFixedLengthVector(VecVT); 4417 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4418 } 4419 4420 SDValue VL = Op.getOperand(3); 4421 SDValue Mask = Op.getOperand(2); 4422 4423 MVT M1VT = getLMUL1VT(ContainerVT); 4424 MVT XLenVT = Subtarget.getXLenVT(); 4425 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 4426 4427 // FIXME: This is a VLMAX splat which might be too large and can prevent 4428 // vsetvli removal. 4429 SDValue StartSplat = DAG.getSplatVector(M1VT, DL, Op.getOperand(0)); 4430 SDValue Reduction = 4431 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 4432 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 4433 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4434 if (!VecVT.isInteger()) 4435 return Elt0; 4436 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4437 } 4438 4439 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 4440 SelectionDAG &DAG) const { 4441 SDValue Vec = Op.getOperand(0); 4442 SDValue SubVec = Op.getOperand(1); 4443 MVT VecVT = Vec.getSimpleValueType(); 4444 MVT SubVecVT = SubVec.getSimpleValueType(); 4445 4446 SDLoc DL(Op); 4447 MVT XLenVT = Subtarget.getXLenVT(); 4448 unsigned OrigIdx = Op.getConstantOperandVal(2); 4449 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4450 4451 // We don't have the ability to slide mask vectors up indexed by their i1 4452 // elements; the smallest we can do is i8. Often we are able to bitcast to 4453 // equivalent i8 vectors. Note that when inserting a fixed-length vector 4454 // into a scalable one, we might not necessarily have enough scalable 4455 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 4456 if (SubVecVT.getVectorElementType() == MVT::i1 && 4457 (OrigIdx != 0 || !Vec.isUndef())) { 4458 if (VecVT.getVectorMinNumElements() >= 8 && 4459 SubVecVT.getVectorMinNumElements() >= 8) { 4460 assert(OrigIdx % 8 == 0 && "Invalid index"); 4461 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4462 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4463 "Unexpected mask vector lowering"); 4464 OrigIdx /= 8; 4465 SubVecVT = 4466 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4467 SubVecVT.isScalableVector()); 4468 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4469 VecVT.isScalableVector()); 4470 Vec = DAG.getBitcast(VecVT, Vec); 4471 SubVec = DAG.getBitcast(SubVecVT, SubVec); 4472 } else { 4473 // We can't slide this mask vector up indexed by its i1 elements. 4474 // This poses a problem when we wish to insert a scalable vector which 4475 // can't be re-expressed as a larger type. Just choose the slow path and 4476 // extend to a larger type, then truncate back down. 4477 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4478 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4479 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4480 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 4481 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 4482 Op.getOperand(2)); 4483 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 4484 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 4485 } 4486 } 4487 4488 // If the subvector vector is a fixed-length type, we cannot use subregister 4489 // manipulation to simplify the codegen; we don't know which register of a 4490 // LMUL group contains the specific subvector as we only know the minimum 4491 // register size. Therefore we must slide the vector group up the full 4492 // amount. 4493 if (SubVecVT.isFixedLengthVector()) { 4494 if (OrigIdx == 0 && Vec.isUndef()) 4495 return Op; 4496 MVT ContainerVT = VecVT; 4497 if (VecVT.isFixedLengthVector()) { 4498 ContainerVT = getContainerForFixedLengthVector(VecVT); 4499 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4500 } 4501 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 4502 DAG.getUNDEF(ContainerVT), SubVec, 4503 DAG.getConstant(0, DL, XLenVT)); 4504 SDValue Mask = 4505 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4506 // Set the vector length to only the number of elements we care about. Note 4507 // that for slideup this includes the offset. 4508 SDValue VL = 4509 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 4510 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4511 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4512 SubVec, SlideupAmt, Mask, VL); 4513 if (VecVT.isFixedLengthVector()) 4514 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4515 return DAG.getBitcast(Op.getValueType(), Slideup); 4516 } 4517 4518 unsigned SubRegIdx, RemIdx; 4519 std::tie(SubRegIdx, RemIdx) = 4520 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4521 VecVT, SubVecVT, OrigIdx, TRI); 4522 4523 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 4524 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 4525 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 4526 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 4527 4528 // 1. If the Idx has been completely eliminated and this subvector's size is 4529 // a vector register or a multiple thereof, or the surrounding elements are 4530 // undef, then this is a subvector insert which naturally aligns to a vector 4531 // register. These can easily be handled using subregister manipulation. 4532 // 2. If the subvector is smaller than a vector register, then the insertion 4533 // must preserve the undisturbed elements of the register. We do this by 4534 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 4535 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 4536 // subvector within the vector register, and an INSERT_SUBVECTOR of that 4537 // LMUL=1 type back into the larger vector (resolving to another subregister 4538 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 4539 // to avoid allocating a large register group to hold our subvector. 4540 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 4541 return Op; 4542 4543 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 4544 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 4545 // (in our case undisturbed). This means we can set up a subvector insertion 4546 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 4547 // size of the subvector. 4548 MVT InterSubVT = VecVT; 4549 SDValue AlignedExtract = Vec; 4550 unsigned AlignedIdx = OrigIdx - RemIdx; 4551 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4552 InterSubVT = getLMUL1VT(VecVT); 4553 // Extract a subvector equal to the nearest full vector register type. This 4554 // should resolve to a EXTRACT_SUBREG instruction. 4555 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4556 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4557 } 4558 4559 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4560 // For scalable vectors this must be further multiplied by vscale. 4561 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 4562 4563 SDValue Mask, VL; 4564 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4565 4566 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 4567 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 4568 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 4569 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 4570 4571 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 4572 DAG.getUNDEF(InterSubVT), SubVec, 4573 DAG.getConstant(0, DL, XLenVT)); 4574 4575 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 4576 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 4577 4578 // If required, insert this subvector back into the correct vector register. 4579 // This should resolve to an INSERT_SUBREG instruction. 4580 if (VecVT.bitsGT(InterSubVT)) 4581 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 4582 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4583 4584 // We might have bitcast from a mask type: cast back to the original type if 4585 // required. 4586 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 4587 } 4588 4589 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 4590 SelectionDAG &DAG) const { 4591 SDValue Vec = Op.getOperand(0); 4592 MVT SubVecVT = Op.getSimpleValueType(); 4593 MVT VecVT = Vec.getSimpleValueType(); 4594 4595 SDLoc DL(Op); 4596 MVT XLenVT = Subtarget.getXLenVT(); 4597 unsigned OrigIdx = Op.getConstantOperandVal(1); 4598 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4599 4600 // We don't have the ability to slide mask vectors down indexed by their i1 4601 // elements; the smallest we can do is i8. Often we are able to bitcast to 4602 // equivalent i8 vectors. Note that when extracting a fixed-length vector 4603 // from a scalable one, we might not necessarily have enough scalable 4604 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 4605 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 4606 if (VecVT.getVectorMinNumElements() >= 8 && 4607 SubVecVT.getVectorMinNumElements() >= 8) { 4608 assert(OrigIdx % 8 == 0 && "Invalid index"); 4609 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4610 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4611 "Unexpected mask vector lowering"); 4612 OrigIdx /= 8; 4613 SubVecVT = 4614 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4615 SubVecVT.isScalableVector()); 4616 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4617 VecVT.isScalableVector()); 4618 Vec = DAG.getBitcast(VecVT, Vec); 4619 } else { 4620 // We can't slide this mask vector down, indexed by its i1 elements. 4621 // This poses a problem when we wish to extract a scalable vector which 4622 // can't be re-expressed as a larger type. Just choose the slow path and 4623 // extend to a larger type, then truncate back down. 4624 // TODO: We could probably improve this when extracting certain fixed 4625 // from fixed, where we can extract as i8 and shift the correct element 4626 // right to reach the desired subvector? 4627 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4628 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4629 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4630 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 4631 Op.getOperand(1)); 4632 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 4633 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 4634 } 4635 } 4636 4637 // If the subvector vector is a fixed-length type, we cannot use subregister 4638 // manipulation to simplify the codegen; we don't know which register of a 4639 // LMUL group contains the specific subvector as we only know the minimum 4640 // register size. Therefore we must slide the vector group down the full 4641 // amount. 4642 if (SubVecVT.isFixedLengthVector()) { 4643 // With an index of 0 this is a cast-like subvector, which can be performed 4644 // with subregister operations. 4645 if (OrigIdx == 0) 4646 return Op; 4647 MVT ContainerVT = VecVT; 4648 if (VecVT.isFixedLengthVector()) { 4649 ContainerVT = getContainerForFixedLengthVector(VecVT); 4650 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4651 } 4652 SDValue Mask = 4653 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4654 // Set the vector length to only the number of elements we care about. This 4655 // avoids sliding down elements we're going to discard straight away. 4656 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 4657 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4658 SDValue Slidedown = 4659 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4660 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 4661 // Now we can use a cast-like subvector extract to get the result. 4662 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4663 DAG.getConstant(0, DL, XLenVT)); 4664 return DAG.getBitcast(Op.getValueType(), Slidedown); 4665 } 4666 4667 unsigned SubRegIdx, RemIdx; 4668 std::tie(SubRegIdx, RemIdx) = 4669 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4670 VecVT, SubVecVT, OrigIdx, TRI); 4671 4672 // If the Idx has been completely eliminated then this is a subvector extract 4673 // which naturally aligns to a vector register. These can easily be handled 4674 // using subregister manipulation. 4675 if (RemIdx == 0) 4676 return Op; 4677 4678 // Else we must shift our vector register directly to extract the subvector. 4679 // Do this using VSLIDEDOWN. 4680 4681 // If the vector type is an LMUL-group type, extract a subvector equal to the 4682 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 4683 // instruction. 4684 MVT InterSubVT = VecVT; 4685 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4686 InterSubVT = getLMUL1VT(VecVT); 4687 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4688 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 4689 } 4690 4691 // Slide this vector register down by the desired number of elements in order 4692 // to place the desired subvector starting at element 0. 4693 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4694 // For scalable vectors this must be further multiplied by vscale. 4695 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 4696 4697 SDValue Mask, VL; 4698 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 4699 SDValue Slidedown = 4700 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 4701 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 4702 4703 // Now the vector is in the right position, extract our final subvector. This 4704 // should resolve to a COPY. 4705 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4706 DAG.getConstant(0, DL, XLenVT)); 4707 4708 // We might have bitcast from a mask type: cast back to the original type if 4709 // required. 4710 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 4711 } 4712 4713 // Lower step_vector to the vid instruction. Any non-identity step value must 4714 // be accounted for my manual expansion. 4715 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 4716 SelectionDAG &DAG) const { 4717 SDLoc DL(Op); 4718 MVT VT = Op.getSimpleValueType(); 4719 MVT XLenVT = Subtarget.getXLenVT(); 4720 SDValue Mask, VL; 4721 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 4722 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4723 uint64_t StepValImm = Op.getConstantOperandVal(0); 4724 if (StepValImm != 1) { 4725 if (isPowerOf2_64(StepValImm)) { 4726 SDValue StepVal = 4727 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4728 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 4729 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 4730 } else { 4731 SDValue StepVal = lowerScalarSplat( 4732 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 4733 DL, DAG, Subtarget); 4734 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 4735 } 4736 } 4737 return StepVec; 4738 } 4739 4740 // Implement vector_reverse using vrgather.vv with indices determined by 4741 // subtracting the id of each element from (VLMAX-1). This will convert 4742 // the indices like so: 4743 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 4744 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 4745 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 4746 SelectionDAG &DAG) const { 4747 SDLoc DL(Op); 4748 MVT VecVT = Op.getSimpleValueType(); 4749 unsigned EltSize = VecVT.getScalarSizeInBits(); 4750 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 4751 4752 unsigned MaxVLMAX = 0; 4753 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 4754 if (VectorBitsMax != 0) 4755 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 4756 4757 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 4758 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 4759 4760 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 4761 // to use vrgatherei16.vv. 4762 // TODO: It's also possible to use vrgatherei16.vv for other types to 4763 // decrease register width for the index calculation. 4764 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 4765 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 4766 // Reverse each half, then reassemble them in reverse order. 4767 // NOTE: It's also possible that after splitting that VLMAX no longer 4768 // requires vrgatherei16.vv. 4769 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 4770 SDValue Lo, Hi; 4771 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4772 EVT LoVT, HiVT; 4773 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 4774 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 4775 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 4776 // Reassemble the low and high pieces reversed. 4777 // FIXME: This is a CONCAT_VECTORS. 4778 SDValue Res = 4779 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 4780 DAG.getIntPtrConstant(0, DL)); 4781 return DAG.getNode( 4782 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 4783 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 4784 } 4785 4786 // Just promote the int type to i16 which will double the LMUL. 4787 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 4788 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 4789 } 4790 4791 MVT XLenVT = Subtarget.getXLenVT(); 4792 SDValue Mask, VL; 4793 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4794 4795 // Calculate VLMAX-1 for the desired SEW. 4796 unsigned MinElts = VecVT.getVectorMinNumElements(); 4797 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 4798 DAG.getConstant(MinElts, DL, XLenVT)); 4799 SDValue VLMinus1 = 4800 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 4801 4802 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 4803 bool IsRV32E64 = 4804 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 4805 SDValue SplatVL; 4806 if (!IsRV32E64) 4807 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 4808 else 4809 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 4810 4811 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 4812 SDValue Indices = 4813 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 4814 4815 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 4816 } 4817 4818 SDValue 4819 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 4820 SelectionDAG &DAG) const { 4821 SDLoc DL(Op); 4822 auto *Load = cast<LoadSDNode>(Op); 4823 4824 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4825 Load->getMemoryVT(), 4826 *Load->getMemOperand()) && 4827 "Expecting a correctly-aligned load"); 4828 4829 MVT VT = Op.getSimpleValueType(); 4830 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4831 4832 SDValue VL = 4833 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4834 4835 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4836 SDValue NewLoad = DAG.getMemIntrinsicNode( 4837 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 4838 Load->getMemoryVT(), Load->getMemOperand()); 4839 4840 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 4841 return DAG.getMergeValues({Result, Load->getChain()}, DL); 4842 } 4843 4844 SDValue 4845 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 4846 SelectionDAG &DAG) const { 4847 SDLoc DL(Op); 4848 auto *Store = cast<StoreSDNode>(Op); 4849 4850 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4851 Store->getMemoryVT(), 4852 *Store->getMemOperand()) && 4853 "Expecting a correctly-aligned store"); 4854 4855 SDValue StoreVal = Store->getValue(); 4856 MVT VT = StoreVal.getSimpleValueType(); 4857 4858 // If the size less than a byte, we need to pad with zeros to make a byte. 4859 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 4860 VT = MVT::v8i1; 4861 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 4862 DAG.getConstant(0, DL, VT), StoreVal, 4863 DAG.getIntPtrConstant(0, DL)); 4864 } 4865 4866 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4867 4868 SDValue VL = 4869 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4870 4871 SDValue NewValue = 4872 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 4873 return DAG.getMemIntrinsicNode( 4874 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 4875 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 4876 Store->getMemoryVT(), Store->getMemOperand()); 4877 } 4878 4879 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 4880 SelectionDAG &DAG) const { 4881 SDLoc DL(Op); 4882 MVT VT = Op.getSimpleValueType(); 4883 4884 const auto *MemSD = cast<MemSDNode>(Op); 4885 EVT MemVT = MemSD->getMemoryVT(); 4886 MachineMemOperand *MMO = MemSD->getMemOperand(); 4887 SDValue Chain = MemSD->getChain(); 4888 SDValue BasePtr = MemSD->getBasePtr(); 4889 4890 SDValue Mask, PassThru, VL; 4891 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 4892 Mask = VPLoad->getMask(); 4893 PassThru = DAG.getUNDEF(VT); 4894 VL = VPLoad->getVectorLength(); 4895 } else { 4896 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 4897 Mask = MLoad->getMask(); 4898 PassThru = MLoad->getPassThru(); 4899 } 4900 4901 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4902 4903 MVT XLenVT = Subtarget.getXLenVT(); 4904 4905 MVT ContainerVT = VT; 4906 if (VT.isFixedLengthVector()) { 4907 ContainerVT = getContainerForFixedLengthVector(VT); 4908 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4909 if (!IsUnmasked) { 4910 MVT MaskVT = 4911 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4912 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4913 } 4914 } 4915 4916 if (!VL) 4917 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 4918 4919 unsigned IntID = 4920 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 4921 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 4922 if (!IsUnmasked) 4923 Ops.push_back(PassThru); 4924 Ops.push_back(BasePtr); 4925 if (!IsUnmasked) 4926 Ops.push_back(Mask); 4927 Ops.push_back(VL); 4928 if (!IsUnmasked) 4929 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 4930 4931 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4932 4933 SDValue Result = 4934 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 4935 Chain = Result.getValue(1); 4936 4937 if (VT.isFixedLengthVector()) 4938 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4939 4940 return DAG.getMergeValues({Result, Chain}, DL); 4941 } 4942 4943 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 4944 SelectionDAG &DAG) const { 4945 SDLoc DL(Op); 4946 4947 const auto *MemSD = cast<MemSDNode>(Op); 4948 EVT MemVT = MemSD->getMemoryVT(); 4949 MachineMemOperand *MMO = MemSD->getMemOperand(); 4950 SDValue Chain = MemSD->getChain(); 4951 SDValue BasePtr = MemSD->getBasePtr(); 4952 SDValue Val, Mask, VL; 4953 4954 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 4955 Val = VPStore->getValue(); 4956 Mask = VPStore->getMask(); 4957 VL = VPStore->getVectorLength(); 4958 } else { 4959 const auto *MStore = cast<MaskedStoreSDNode>(Op); 4960 Val = MStore->getValue(); 4961 Mask = MStore->getMask(); 4962 } 4963 4964 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4965 4966 MVT VT = Val.getSimpleValueType(); 4967 MVT XLenVT = Subtarget.getXLenVT(); 4968 4969 MVT ContainerVT = VT; 4970 if (VT.isFixedLengthVector()) { 4971 ContainerVT = getContainerForFixedLengthVector(VT); 4972 4973 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4974 if (!IsUnmasked) { 4975 MVT MaskVT = 4976 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4977 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4978 } 4979 } 4980 4981 if (!VL) 4982 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 4983 4984 unsigned IntID = 4985 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 4986 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 4987 Ops.push_back(Val); 4988 Ops.push_back(BasePtr); 4989 if (!IsUnmasked) 4990 Ops.push_back(Mask); 4991 Ops.push_back(VL); 4992 4993 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 4994 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 4995 } 4996 4997 SDValue 4998 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 4999 SelectionDAG &DAG) const { 5000 MVT InVT = Op.getOperand(0).getSimpleValueType(); 5001 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 5002 5003 MVT VT = Op.getSimpleValueType(); 5004 5005 SDValue Op1 = 5006 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 5007 SDValue Op2 = 5008 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5009 5010 SDLoc DL(Op); 5011 SDValue VL = 5012 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5013 5014 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5015 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5016 5017 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 5018 Op.getOperand(2), Mask, VL); 5019 5020 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 5021 } 5022 5023 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5024 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5025 MVT VT = Op.getSimpleValueType(); 5026 5027 if (VT.getVectorElementType() == MVT::i1) 5028 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5029 5030 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5031 } 5032 5033 SDValue 5034 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5035 SelectionDAG &DAG) const { 5036 unsigned Opc; 5037 switch (Op.getOpcode()) { 5038 default: llvm_unreachable("Unexpected opcode!"); 5039 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5040 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5041 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5042 } 5043 5044 return lowerToScalableOp(Op, DAG, Opc); 5045 } 5046 5047 // Lower vector ABS to smax(X, sub(0, X)). 5048 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5049 SDLoc DL(Op); 5050 MVT VT = Op.getSimpleValueType(); 5051 SDValue X = Op.getOperand(0); 5052 5053 assert(VT.isFixedLengthVector() && "Unexpected type"); 5054 5055 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5056 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5057 5058 SDValue Mask, VL; 5059 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5060 5061 SDValue SplatZero = 5062 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5063 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 5064 SDValue NegX = 5065 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 5066 SDValue Max = 5067 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 5068 5069 return convertFromScalableVector(VT, Max, DAG, Subtarget); 5070 } 5071 5072 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 5073 SDValue Op, SelectionDAG &DAG) const { 5074 SDLoc DL(Op); 5075 MVT VT = Op.getSimpleValueType(); 5076 SDValue Mag = Op.getOperand(0); 5077 SDValue Sign = Op.getOperand(1); 5078 assert(Mag.getValueType() == Sign.getValueType() && 5079 "Can only handle COPYSIGN with matching types."); 5080 5081 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5082 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 5083 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 5084 5085 SDValue Mask, VL; 5086 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5087 5088 SDValue CopySign = 5089 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 5090 5091 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 5092 } 5093 5094 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 5095 SDValue Op, SelectionDAG &DAG) const { 5096 MVT VT = Op.getSimpleValueType(); 5097 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5098 5099 MVT I1ContainerVT = 5100 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5101 5102 SDValue CC = 5103 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 5104 SDValue Op1 = 5105 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5106 SDValue Op2 = 5107 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 5108 5109 SDLoc DL(Op); 5110 SDValue Mask, VL; 5111 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5112 5113 SDValue Select = 5114 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 5115 5116 return convertFromScalableVector(VT, Select, DAG, Subtarget); 5117 } 5118 5119 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 5120 unsigned NewOpc, 5121 bool HasMask) const { 5122 MVT VT = Op.getSimpleValueType(); 5123 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5124 5125 // Create list of operands by converting existing ones to scalable types. 5126 SmallVector<SDValue, 6> Ops; 5127 for (const SDValue &V : Op->op_values()) { 5128 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5129 5130 // Pass through non-vector operands. 5131 if (!V.getValueType().isVector()) { 5132 Ops.push_back(V); 5133 continue; 5134 } 5135 5136 // "cast" fixed length vector to a scalable vector. 5137 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 5138 "Only fixed length vectors are supported!"); 5139 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5140 } 5141 5142 SDLoc DL(Op); 5143 SDValue Mask, VL; 5144 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5145 if (HasMask) 5146 Ops.push_back(Mask); 5147 Ops.push_back(VL); 5148 5149 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 5150 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 5151 } 5152 5153 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 5154 // * Operands of each node are assumed to be in the same order. 5155 // * The EVL operand is promoted from i32 to i64 on RV64. 5156 // * Fixed-length vectors are converted to their scalable-vector container 5157 // types. 5158 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 5159 unsigned RISCVISDOpc) const { 5160 SDLoc DL(Op); 5161 MVT VT = Op.getSimpleValueType(); 5162 SmallVector<SDValue, 4> Ops; 5163 5164 for (const auto &OpIdx : enumerate(Op->ops())) { 5165 SDValue V = OpIdx.value(); 5166 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5167 // Pass through operands which aren't fixed-length vectors. 5168 if (!V.getValueType().isFixedLengthVector()) { 5169 Ops.push_back(V); 5170 continue; 5171 } 5172 // "cast" fixed length vector to a scalable vector. 5173 MVT OpVT = V.getSimpleValueType(); 5174 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 5175 assert(useRVVForFixedLengthVectorVT(OpVT) && 5176 "Only fixed length vectors are supported!"); 5177 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5178 } 5179 5180 if (!VT.isFixedLengthVector()) 5181 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 5182 5183 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5184 5185 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 5186 5187 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 5188 } 5189 5190 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 5191 // matched to a RVV indexed load. The RVV indexed load instructions only 5192 // support the "unsigned unscaled" addressing mode; indices are implicitly 5193 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5194 // signed or scaled indexing is extended to the XLEN value type and scaled 5195 // accordingly. 5196 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 5197 SelectionDAG &DAG) const { 5198 SDLoc DL(Op); 5199 MVT VT = Op.getSimpleValueType(); 5200 5201 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5202 EVT MemVT = MemSD->getMemoryVT(); 5203 MachineMemOperand *MMO = MemSD->getMemOperand(); 5204 SDValue Chain = MemSD->getChain(); 5205 SDValue BasePtr = MemSD->getBasePtr(); 5206 5207 ISD::LoadExtType LoadExtType; 5208 SDValue Index, Mask, PassThru, VL; 5209 5210 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 5211 Index = VPGN->getIndex(); 5212 Mask = VPGN->getMask(); 5213 PassThru = DAG.getUNDEF(VT); 5214 VL = VPGN->getVectorLength(); 5215 // VP doesn't support extending loads. 5216 LoadExtType = ISD::NON_EXTLOAD; 5217 } else { 5218 // Else it must be a MGATHER. 5219 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 5220 Index = MGN->getIndex(); 5221 Mask = MGN->getMask(); 5222 PassThru = MGN->getPassThru(); 5223 LoadExtType = MGN->getExtensionType(); 5224 } 5225 5226 MVT IndexVT = Index.getSimpleValueType(); 5227 MVT XLenVT = Subtarget.getXLenVT(); 5228 5229 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5230 "Unexpected VTs!"); 5231 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5232 // Targets have to explicitly opt-in for extending vector loads. 5233 assert(LoadExtType == ISD::NON_EXTLOAD && 5234 "Unexpected extending MGATHER/VP_GATHER"); 5235 (void)LoadExtType; 5236 5237 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5238 // the selection of the masked intrinsics doesn't do this for us. 5239 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5240 5241 MVT ContainerVT = VT; 5242 if (VT.isFixedLengthVector()) { 5243 // We need to use the larger of the result and index type to determine the 5244 // scalable type to use so we don't increase LMUL for any operand/result. 5245 if (VT.bitsGE(IndexVT)) { 5246 ContainerVT = getContainerForFixedLengthVector(VT); 5247 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5248 ContainerVT.getVectorElementCount()); 5249 } else { 5250 IndexVT = getContainerForFixedLengthVector(IndexVT); 5251 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 5252 IndexVT.getVectorElementCount()); 5253 } 5254 5255 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5256 5257 if (!IsUnmasked) { 5258 MVT MaskVT = 5259 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5260 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5261 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5262 } 5263 } 5264 5265 if (!VL) 5266 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5267 5268 unsigned IntID = 5269 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 5270 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5271 if (!IsUnmasked) 5272 Ops.push_back(PassThru); 5273 Ops.push_back(BasePtr); 5274 Ops.push_back(Index); 5275 if (!IsUnmasked) 5276 Ops.push_back(Mask); 5277 Ops.push_back(VL); 5278 if (!IsUnmasked) 5279 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5280 5281 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5282 SDValue Result = 5283 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5284 Chain = Result.getValue(1); 5285 5286 if (VT.isFixedLengthVector()) 5287 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5288 5289 return DAG.getMergeValues({Result, Chain}, DL); 5290 } 5291 5292 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 5293 // matched to a RVV indexed store. The RVV indexed store instructions only 5294 // support the "unsigned unscaled" addressing mode; indices are implicitly 5295 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5296 // signed or scaled indexing is extended to the XLEN value type and scaled 5297 // accordingly. 5298 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 5299 SelectionDAG &DAG) const { 5300 SDLoc DL(Op); 5301 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5302 EVT MemVT = MemSD->getMemoryVT(); 5303 MachineMemOperand *MMO = MemSD->getMemOperand(); 5304 SDValue Chain = MemSD->getChain(); 5305 SDValue BasePtr = MemSD->getBasePtr(); 5306 5307 bool IsTruncatingStore = false; 5308 SDValue Index, Mask, Val, VL; 5309 5310 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 5311 Index = VPSN->getIndex(); 5312 Mask = VPSN->getMask(); 5313 Val = VPSN->getValue(); 5314 VL = VPSN->getVectorLength(); 5315 // VP doesn't support truncating stores. 5316 IsTruncatingStore = false; 5317 } else { 5318 // Else it must be a MSCATTER. 5319 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 5320 Index = MSN->getIndex(); 5321 Mask = MSN->getMask(); 5322 Val = MSN->getValue(); 5323 IsTruncatingStore = MSN->isTruncatingStore(); 5324 } 5325 5326 MVT VT = Val.getSimpleValueType(); 5327 MVT IndexVT = Index.getSimpleValueType(); 5328 MVT XLenVT = Subtarget.getXLenVT(); 5329 5330 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5331 "Unexpected VTs!"); 5332 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5333 // Targets have to explicitly opt-in for extending vector loads and 5334 // truncating vector stores. 5335 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 5336 (void)IsTruncatingStore; 5337 5338 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5339 // the selection of the masked intrinsics doesn't do this for us. 5340 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5341 5342 MVT ContainerVT = VT; 5343 if (VT.isFixedLengthVector()) { 5344 // We need to use the larger of the value and index type to determine the 5345 // scalable type to use so we don't increase LMUL for any operand/result. 5346 if (VT.bitsGE(IndexVT)) { 5347 ContainerVT = getContainerForFixedLengthVector(VT); 5348 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5349 ContainerVT.getVectorElementCount()); 5350 } else { 5351 IndexVT = getContainerForFixedLengthVector(IndexVT); 5352 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 5353 IndexVT.getVectorElementCount()); 5354 } 5355 5356 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5357 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5358 5359 if (!IsUnmasked) { 5360 MVT MaskVT = 5361 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5362 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5363 } 5364 } 5365 5366 if (!VL) 5367 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5368 5369 unsigned IntID = 5370 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 5371 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5372 Ops.push_back(Val); 5373 Ops.push_back(BasePtr); 5374 Ops.push_back(Index); 5375 if (!IsUnmasked) 5376 Ops.push_back(Mask); 5377 Ops.push_back(VL); 5378 5379 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5380 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5381 } 5382 5383 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 5384 SelectionDAG &DAG) const { 5385 const MVT XLenVT = Subtarget.getXLenVT(); 5386 SDLoc DL(Op); 5387 SDValue Chain = Op->getOperand(0); 5388 SDValue SysRegNo = DAG.getTargetConstant( 5389 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5390 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 5391 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 5392 5393 // Encoding used for rounding mode in RISCV differs from that used in 5394 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 5395 // table, which consists of a sequence of 4-bit fields, each representing 5396 // corresponding FLT_ROUNDS mode. 5397 static const int Table = 5398 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 5399 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 5400 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 5401 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 5402 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 5403 5404 SDValue Shift = 5405 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 5406 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5407 DAG.getConstant(Table, DL, XLenVT), Shift); 5408 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5409 DAG.getConstant(7, DL, XLenVT)); 5410 5411 return DAG.getMergeValues({Masked, Chain}, DL); 5412 } 5413 5414 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 5415 SelectionDAG &DAG) const { 5416 const MVT XLenVT = Subtarget.getXLenVT(); 5417 SDLoc DL(Op); 5418 SDValue Chain = Op->getOperand(0); 5419 SDValue RMValue = Op->getOperand(1); 5420 SDValue SysRegNo = DAG.getTargetConstant( 5421 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5422 5423 // Encoding used for rounding mode in RISCV differs from that used in 5424 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 5425 // a table, which consists of a sequence of 4-bit fields, each representing 5426 // corresponding RISCV mode. 5427 static const unsigned Table = 5428 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 5429 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 5430 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 5431 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 5432 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 5433 5434 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 5435 DAG.getConstant(2, DL, XLenVT)); 5436 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5437 DAG.getConstant(Table, DL, XLenVT), Shift); 5438 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5439 DAG.getConstant(0x7, DL, XLenVT)); 5440 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 5441 RMValue); 5442 } 5443 5444 // Returns the opcode of the target-specific SDNode that implements the 32-bit 5445 // form of the given Opcode. 5446 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 5447 switch (Opcode) { 5448 default: 5449 llvm_unreachable("Unexpected opcode"); 5450 case ISD::SHL: 5451 return RISCVISD::SLLW; 5452 case ISD::SRA: 5453 return RISCVISD::SRAW; 5454 case ISD::SRL: 5455 return RISCVISD::SRLW; 5456 case ISD::SDIV: 5457 return RISCVISD::DIVW; 5458 case ISD::UDIV: 5459 return RISCVISD::DIVUW; 5460 case ISD::UREM: 5461 return RISCVISD::REMUW; 5462 case ISD::ROTL: 5463 return RISCVISD::ROLW; 5464 case ISD::ROTR: 5465 return RISCVISD::RORW; 5466 case RISCVISD::GREV: 5467 return RISCVISD::GREVW; 5468 case RISCVISD::GORC: 5469 return RISCVISD::GORCW; 5470 } 5471 } 5472 5473 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 5474 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 5475 // otherwise be promoted to i64, making it difficult to select the 5476 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 5477 // type i8/i16/i32 is lost. 5478 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 5479 unsigned ExtOpc = ISD::ANY_EXTEND) { 5480 SDLoc DL(N); 5481 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5482 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 5483 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 5484 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5485 // ReplaceNodeResults requires we maintain the same type for the return value. 5486 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 5487 } 5488 5489 // Converts the given 32-bit operation to a i64 operation with signed extension 5490 // semantic to reduce the signed extension instructions. 5491 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 5492 SDLoc DL(N); 5493 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5494 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5495 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 5496 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5497 DAG.getValueType(MVT::i32)); 5498 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 5499 } 5500 5501 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 5502 SmallVectorImpl<SDValue> &Results, 5503 SelectionDAG &DAG) const { 5504 SDLoc DL(N); 5505 switch (N->getOpcode()) { 5506 default: 5507 llvm_unreachable("Don't know how to custom type legalize this operation!"); 5508 case ISD::STRICT_FP_TO_SINT: 5509 case ISD::STRICT_FP_TO_UINT: 5510 case ISD::FP_TO_SINT: 5511 case ISD::FP_TO_UINT: { 5512 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5513 "Unexpected custom legalisation"); 5514 bool IsStrict = N->isStrictFPOpcode(); 5515 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 5516 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 5517 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 5518 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 5519 TargetLowering::TypeSoftenFloat) { 5520 // FIXME: Support strict FP. 5521 if (IsStrict) 5522 return; 5523 if (!isTypeLegal(Op0.getValueType())) 5524 return; 5525 unsigned Opc = 5526 IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 5527 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0); 5528 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5529 return; 5530 } 5531 // If the FP type needs to be softened, emit a library call using the 'si' 5532 // version. If we left it to default legalization we'd end up with 'di'. If 5533 // the FP type doesn't need to be softened just let generic type 5534 // legalization promote the result type. 5535 RTLIB::Libcall LC; 5536 if (IsSigned) 5537 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 5538 else 5539 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 5540 MakeLibCallOptions CallOptions; 5541 EVT OpVT = Op0.getValueType(); 5542 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 5543 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 5544 SDValue Result; 5545 std::tie(Result, Chain) = 5546 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 5547 Results.push_back(Result); 5548 if (IsStrict) 5549 Results.push_back(Chain); 5550 break; 5551 } 5552 case ISD::READCYCLECOUNTER: { 5553 assert(!Subtarget.is64Bit() && 5554 "READCYCLECOUNTER only has custom type legalization on riscv32"); 5555 5556 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 5557 SDValue RCW = 5558 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 5559 5560 Results.push_back( 5561 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 5562 Results.push_back(RCW.getValue(2)); 5563 break; 5564 } 5565 case ISD::MUL: { 5566 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 5567 unsigned XLen = Subtarget.getXLen(); 5568 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 5569 if (Size > XLen) { 5570 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 5571 SDValue LHS = N->getOperand(0); 5572 SDValue RHS = N->getOperand(1); 5573 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 5574 5575 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 5576 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 5577 // We need exactly one side to be unsigned. 5578 if (LHSIsU == RHSIsU) 5579 return; 5580 5581 auto MakeMULPair = [&](SDValue S, SDValue U) { 5582 MVT XLenVT = Subtarget.getXLenVT(); 5583 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 5584 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 5585 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 5586 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 5587 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 5588 }; 5589 5590 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 5591 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 5592 5593 // The other operand should be signed, but still prefer MULH when 5594 // possible. 5595 if (RHSIsU && LHSIsS && !RHSIsS) 5596 Results.push_back(MakeMULPair(LHS, RHS)); 5597 else if (LHSIsU && RHSIsS && !LHSIsS) 5598 Results.push_back(MakeMULPair(RHS, LHS)); 5599 5600 return; 5601 } 5602 LLVM_FALLTHROUGH; 5603 } 5604 case ISD::ADD: 5605 case ISD::SUB: 5606 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5607 "Unexpected custom legalisation"); 5608 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 5609 break; 5610 case ISD::SHL: 5611 case ISD::SRA: 5612 case ISD::SRL: 5613 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5614 "Unexpected custom legalisation"); 5615 if (N->getOperand(1).getOpcode() != ISD::Constant) { 5616 Results.push_back(customLegalizeToWOp(N, DAG)); 5617 break; 5618 } 5619 5620 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 5621 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 5622 // shift amount. 5623 if (N->getOpcode() == ISD::SHL) { 5624 SDLoc DL(N); 5625 SDValue NewOp0 = 5626 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5627 SDValue NewOp1 = 5628 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 5629 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 5630 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5631 DAG.getValueType(MVT::i32)); 5632 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5633 } 5634 5635 break; 5636 case ISD::ROTL: 5637 case ISD::ROTR: 5638 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5639 "Unexpected custom legalisation"); 5640 Results.push_back(customLegalizeToWOp(N, DAG)); 5641 break; 5642 case ISD::CTTZ: 5643 case ISD::CTTZ_ZERO_UNDEF: 5644 case ISD::CTLZ: 5645 case ISD::CTLZ_ZERO_UNDEF: { 5646 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5647 "Unexpected custom legalisation"); 5648 5649 SDValue NewOp0 = 5650 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5651 bool IsCTZ = 5652 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 5653 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 5654 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 5655 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5656 return; 5657 } 5658 case ISD::SDIV: 5659 case ISD::UDIV: 5660 case ISD::UREM: { 5661 MVT VT = N->getSimpleValueType(0); 5662 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 5663 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 5664 "Unexpected custom legalisation"); 5665 // Don't promote division/remainder by constant since we should expand those 5666 // to multiply by magic constant. 5667 // FIXME: What if the expansion is disabled for minsize. 5668 if (N->getOperand(1).getOpcode() == ISD::Constant) 5669 return; 5670 5671 // If the input is i32, use ANY_EXTEND since the W instructions don't read 5672 // the upper 32 bits. For other types we need to sign or zero extend 5673 // based on the opcode. 5674 unsigned ExtOpc = ISD::ANY_EXTEND; 5675 if (VT != MVT::i32) 5676 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 5677 : ISD::ZERO_EXTEND; 5678 5679 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 5680 break; 5681 } 5682 case ISD::UADDO: 5683 case ISD::USUBO: { 5684 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5685 "Unexpected custom legalisation"); 5686 bool IsAdd = N->getOpcode() == ISD::UADDO; 5687 // Create an ADDW or SUBW. 5688 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5689 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5690 SDValue Res = 5691 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 5692 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 5693 DAG.getValueType(MVT::i32)); 5694 5695 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 5696 // Since the inputs are sign extended from i32, this is equivalent to 5697 // comparing the lower 32 bits. 5698 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5699 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 5700 IsAdd ? ISD::SETULT : ISD::SETUGT); 5701 5702 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5703 Results.push_back(Overflow); 5704 return; 5705 } 5706 case ISD::UADDSAT: 5707 case ISD::USUBSAT: { 5708 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5709 "Unexpected custom legalisation"); 5710 if (Subtarget.hasStdExtZbb()) { 5711 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 5712 // sign extend allows overflow of the lower 32 bits to be detected on 5713 // the promoted size. 5714 SDValue LHS = 5715 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5716 SDValue RHS = 5717 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 5718 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 5719 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5720 return; 5721 } 5722 5723 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 5724 // promotion for UADDO/USUBO. 5725 Results.push_back(expandAddSubSat(N, DAG)); 5726 return; 5727 } 5728 case ISD::BITCAST: { 5729 EVT VT = N->getValueType(0); 5730 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 5731 SDValue Op0 = N->getOperand(0); 5732 EVT Op0VT = Op0.getValueType(); 5733 MVT XLenVT = Subtarget.getXLenVT(); 5734 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 5735 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 5736 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 5737 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 5738 Subtarget.hasStdExtF()) { 5739 SDValue FPConv = 5740 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 5741 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 5742 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 5743 isTypeLegal(Op0VT)) { 5744 // Custom-legalize bitcasts from fixed-length vector types to illegal 5745 // scalar types in order to improve codegen. Bitcast the vector to a 5746 // one-element vector type whose element type is the same as the result 5747 // type, and extract the first element. 5748 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 5749 if (isTypeLegal(BVT)) { 5750 SDValue BVec = DAG.getBitcast(BVT, Op0); 5751 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 5752 DAG.getConstant(0, DL, XLenVT))); 5753 } 5754 } 5755 break; 5756 } 5757 case RISCVISD::GREV: 5758 case RISCVISD::GORC: { 5759 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5760 "Unexpected custom legalisation"); 5761 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5762 // This is similar to customLegalizeToWOp, except that we pass the second 5763 // operand (a TargetConstant) straight through: it is already of type 5764 // XLenVT. 5765 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5766 SDValue NewOp0 = 5767 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5768 SDValue NewOp1 = 5769 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5770 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5771 // ReplaceNodeResults requires we maintain the same type for the return 5772 // value. 5773 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5774 break; 5775 } 5776 case RISCVISD::SHFL: { 5777 // There is no SHFLIW instruction, but we can just promote the operation. 5778 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5779 "Unexpected custom legalisation"); 5780 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5781 SDValue NewOp0 = 5782 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5783 SDValue NewOp1 = 5784 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5785 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 5786 // ReplaceNodeResults requires we maintain the same type for the return 5787 // value. 5788 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5789 break; 5790 } 5791 case ISD::BSWAP: 5792 case ISD::BITREVERSE: { 5793 MVT VT = N->getSimpleValueType(0); 5794 MVT XLenVT = Subtarget.getXLenVT(); 5795 assert((VT == MVT::i8 || VT == MVT::i16 || 5796 (VT == MVT::i32 && Subtarget.is64Bit())) && 5797 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 5798 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 5799 unsigned Imm = VT.getSizeInBits() - 1; 5800 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 5801 if (N->getOpcode() == ISD::BSWAP) 5802 Imm &= ~0x7U; 5803 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 5804 SDValue GREVI = 5805 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 5806 // ReplaceNodeResults requires we maintain the same type for the return 5807 // value. 5808 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 5809 break; 5810 } 5811 case ISD::FSHL: 5812 case ISD::FSHR: { 5813 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5814 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 5815 SDValue NewOp0 = 5816 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5817 SDValue NewOp1 = 5818 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5819 SDValue NewOp2 = 5820 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5821 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 5822 // Mask the shift amount to 5 bits. 5823 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5824 DAG.getConstant(0x1f, DL, MVT::i64)); 5825 unsigned Opc = 5826 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 5827 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 5828 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 5829 break; 5830 } 5831 case ISD::EXTRACT_VECTOR_ELT: { 5832 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 5833 // type is illegal (currently only vXi64 RV32). 5834 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 5835 // transferred to the destination register. We issue two of these from the 5836 // upper- and lower- halves of the SEW-bit vector element, slid down to the 5837 // first element. 5838 SDValue Vec = N->getOperand(0); 5839 SDValue Idx = N->getOperand(1); 5840 5841 // The vector type hasn't been legalized yet so we can't issue target 5842 // specific nodes if it needs legalization. 5843 // FIXME: We would manually legalize if it's important. 5844 if (!isTypeLegal(Vec.getValueType())) 5845 return; 5846 5847 MVT VecVT = Vec.getSimpleValueType(); 5848 5849 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 5850 VecVT.getVectorElementType() == MVT::i64 && 5851 "Unexpected EXTRACT_VECTOR_ELT legalization"); 5852 5853 // If this is a fixed vector, we need to convert it to a scalable vector. 5854 MVT ContainerVT = VecVT; 5855 if (VecVT.isFixedLengthVector()) { 5856 ContainerVT = getContainerForFixedLengthVector(VecVT); 5857 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5858 } 5859 5860 MVT XLenVT = Subtarget.getXLenVT(); 5861 5862 // Use a VL of 1 to avoid processing more elements than we need. 5863 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5864 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5865 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5866 5867 // Unless the index is known to be 0, we must slide the vector down to get 5868 // the desired element into index 0. 5869 if (!isNullConstant(Idx)) { 5870 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5871 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 5872 } 5873 5874 // Extract the lower XLEN bits of the correct vector element. 5875 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5876 5877 // To extract the upper XLEN bits of the vector element, shift the first 5878 // element right by 32 bits and re-extract the lower XLEN bits. 5879 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5880 DAG.getConstant(32, DL, XLenVT), VL); 5881 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 5882 ThirtyTwoV, Mask, VL); 5883 5884 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5885 5886 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5887 break; 5888 } 5889 case ISD::INTRINSIC_WO_CHAIN: { 5890 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 5891 switch (IntNo) { 5892 default: 5893 llvm_unreachable( 5894 "Don't know how to custom type legalize this intrinsic!"); 5895 case Intrinsic::riscv_orc_b: { 5896 // Lower to the GORCI encoding for orc.b with the operand extended. 5897 SDValue NewOp = 5898 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5899 // If Zbp is enabled, use GORCIW which will sign extend the result. 5900 unsigned Opc = 5901 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 5902 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 5903 DAG.getConstant(7, DL, MVT::i64)); 5904 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5905 return; 5906 } 5907 case Intrinsic::riscv_grev: 5908 case Intrinsic::riscv_gorc: { 5909 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5910 "Unexpected custom legalisation"); 5911 SDValue NewOp1 = 5912 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5913 SDValue NewOp2 = 5914 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5915 unsigned Opc = 5916 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 5917 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5918 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5919 break; 5920 } 5921 case Intrinsic::riscv_shfl: 5922 case Intrinsic::riscv_unshfl: { 5923 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5924 "Unexpected custom legalisation"); 5925 SDValue NewOp1 = 5926 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5927 SDValue NewOp2 = 5928 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5929 unsigned Opc = 5930 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 5931 if (isa<ConstantSDNode>(N->getOperand(2))) { 5932 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5933 DAG.getConstant(0xf, DL, MVT::i64)); 5934 Opc = 5935 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 5936 } 5937 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5938 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5939 break; 5940 } 5941 case Intrinsic::riscv_bcompress: 5942 case Intrinsic::riscv_bdecompress: { 5943 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5944 "Unexpected custom legalisation"); 5945 SDValue NewOp1 = 5946 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5947 SDValue NewOp2 = 5948 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5949 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 5950 ? RISCVISD::BCOMPRESSW 5951 : RISCVISD::BDECOMPRESSW; 5952 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5953 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5954 break; 5955 } 5956 case Intrinsic::riscv_vmv_x_s: { 5957 EVT VT = N->getValueType(0); 5958 MVT XLenVT = Subtarget.getXLenVT(); 5959 if (VT.bitsLT(XLenVT)) { 5960 // Simple case just extract using vmv.x.s and truncate. 5961 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 5962 Subtarget.getXLenVT(), N->getOperand(1)); 5963 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 5964 return; 5965 } 5966 5967 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 5968 "Unexpected custom legalization"); 5969 5970 // We need to do the move in two steps. 5971 SDValue Vec = N->getOperand(1); 5972 MVT VecVT = Vec.getSimpleValueType(); 5973 5974 // First extract the lower XLEN bits of the element. 5975 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5976 5977 // To extract the upper XLEN bits of the vector element, shift the first 5978 // element right by 32 bits and re-extract the lower XLEN bits. 5979 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5980 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5981 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5982 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 5983 DAG.getConstant(32, DL, XLenVT), VL); 5984 SDValue LShr32 = 5985 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 5986 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5987 5988 Results.push_back( 5989 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5990 break; 5991 } 5992 } 5993 break; 5994 } 5995 case ISD::VECREDUCE_ADD: 5996 case ISD::VECREDUCE_AND: 5997 case ISD::VECREDUCE_OR: 5998 case ISD::VECREDUCE_XOR: 5999 case ISD::VECREDUCE_SMAX: 6000 case ISD::VECREDUCE_UMAX: 6001 case ISD::VECREDUCE_SMIN: 6002 case ISD::VECREDUCE_UMIN: 6003 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 6004 Results.push_back(V); 6005 break; 6006 case ISD::VP_REDUCE_ADD: 6007 case ISD::VP_REDUCE_AND: 6008 case ISD::VP_REDUCE_OR: 6009 case ISD::VP_REDUCE_XOR: 6010 case ISD::VP_REDUCE_SMAX: 6011 case ISD::VP_REDUCE_UMAX: 6012 case ISD::VP_REDUCE_SMIN: 6013 case ISD::VP_REDUCE_UMIN: 6014 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 6015 Results.push_back(V); 6016 break; 6017 case ISD::FLT_ROUNDS_: { 6018 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 6019 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 6020 Results.push_back(Res.getValue(0)); 6021 Results.push_back(Res.getValue(1)); 6022 break; 6023 } 6024 } 6025 } 6026 6027 // A structure to hold one of the bit-manipulation patterns below. Together, a 6028 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 6029 // (or (and (shl x, 1), 0xAAAAAAAA), 6030 // (and (srl x, 1), 0x55555555)) 6031 struct RISCVBitmanipPat { 6032 SDValue Op; 6033 unsigned ShAmt; 6034 bool IsSHL; 6035 6036 bool formsPairWith(const RISCVBitmanipPat &Other) const { 6037 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 6038 } 6039 }; 6040 6041 // Matches patterns of the form 6042 // (and (shl x, C2), (C1 << C2)) 6043 // (and (srl x, C2), C1) 6044 // (shl (and x, C1), C2) 6045 // (srl (and x, (C1 << C2)), C2) 6046 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 6047 // The expected masks for each shift amount are specified in BitmanipMasks where 6048 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 6049 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 6050 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 6051 // XLen is 64. 6052 static Optional<RISCVBitmanipPat> 6053 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 6054 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 6055 "Unexpected number of masks"); 6056 Optional<uint64_t> Mask; 6057 // Optionally consume a mask around the shift operation. 6058 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 6059 Mask = Op.getConstantOperandVal(1); 6060 Op = Op.getOperand(0); 6061 } 6062 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 6063 return None; 6064 bool IsSHL = Op.getOpcode() == ISD::SHL; 6065 6066 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6067 return None; 6068 uint64_t ShAmt = Op.getConstantOperandVal(1); 6069 6070 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6071 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 6072 return None; 6073 // If we don't have enough masks for 64 bit, then we must be trying to 6074 // match SHFL so we're only allowed to shift 1/4 of the width. 6075 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 6076 return None; 6077 6078 SDValue Src = Op.getOperand(0); 6079 6080 // The expected mask is shifted left when the AND is found around SHL 6081 // patterns. 6082 // ((x >> 1) & 0x55555555) 6083 // ((x << 1) & 0xAAAAAAAA) 6084 bool SHLExpMask = IsSHL; 6085 6086 if (!Mask) { 6087 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 6088 // the mask is all ones: consume that now. 6089 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 6090 Mask = Src.getConstantOperandVal(1); 6091 Src = Src.getOperand(0); 6092 // The expected mask is now in fact shifted left for SRL, so reverse the 6093 // decision. 6094 // ((x & 0xAAAAAAAA) >> 1) 6095 // ((x & 0x55555555) << 1) 6096 SHLExpMask = !SHLExpMask; 6097 } else { 6098 // Use a default shifted mask of all-ones if there's no AND, truncated 6099 // down to the expected width. This simplifies the logic later on. 6100 Mask = maskTrailingOnes<uint64_t>(Width); 6101 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 6102 } 6103 } 6104 6105 unsigned MaskIdx = Log2_32(ShAmt); 6106 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6107 6108 if (SHLExpMask) 6109 ExpMask <<= ShAmt; 6110 6111 if (Mask != ExpMask) 6112 return None; 6113 6114 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 6115 } 6116 6117 // Matches any of the following bit-manipulation patterns: 6118 // (and (shl x, 1), (0x55555555 << 1)) 6119 // (and (srl x, 1), 0x55555555) 6120 // (shl (and x, 0x55555555), 1) 6121 // (srl (and x, (0x55555555 << 1)), 1) 6122 // where the shift amount and mask may vary thus: 6123 // [1] = 0x55555555 / 0xAAAAAAAA 6124 // [2] = 0x33333333 / 0xCCCCCCCC 6125 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 6126 // [8] = 0x00FF00FF / 0xFF00FF00 6127 // [16] = 0x0000FFFF / 0xFFFFFFFF 6128 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 6129 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 6130 // These are the unshifted masks which we use to match bit-manipulation 6131 // patterns. They may be shifted left in certain circumstances. 6132 static const uint64_t BitmanipMasks[] = { 6133 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 6134 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 6135 6136 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6137 } 6138 6139 // Match the following pattern as a GREVI(W) operation 6140 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 6141 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 6142 const RISCVSubtarget &Subtarget) { 6143 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6144 EVT VT = Op.getValueType(); 6145 6146 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6147 auto LHS = matchGREVIPat(Op.getOperand(0)); 6148 auto RHS = matchGREVIPat(Op.getOperand(1)); 6149 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 6150 SDLoc DL(Op); 6151 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 6152 DAG.getConstant(LHS->ShAmt, DL, VT)); 6153 } 6154 } 6155 return SDValue(); 6156 } 6157 6158 // Matches any the following pattern as a GORCI(W) operation 6159 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 6160 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 6161 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 6162 // Note that with the variant of 3., 6163 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 6164 // the inner pattern will first be matched as GREVI and then the outer 6165 // pattern will be matched to GORC via the first rule above. 6166 // 4. (or (rotl/rotr x, bitwidth/2), x) 6167 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 6168 const RISCVSubtarget &Subtarget) { 6169 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6170 EVT VT = Op.getValueType(); 6171 6172 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6173 SDLoc DL(Op); 6174 SDValue Op0 = Op.getOperand(0); 6175 SDValue Op1 = Op.getOperand(1); 6176 6177 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 6178 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 6179 isa<ConstantSDNode>(Reverse.getOperand(1)) && 6180 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 6181 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 6182 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 6183 if ((Reverse.getOpcode() == ISD::ROTL || 6184 Reverse.getOpcode() == ISD::ROTR) && 6185 Reverse.getOperand(0) == X && 6186 isa<ConstantSDNode>(Reverse.getOperand(1))) { 6187 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 6188 if (RotAmt == (VT.getSizeInBits() / 2)) 6189 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 6190 DAG.getConstant(RotAmt, DL, VT)); 6191 } 6192 return SDValue(); 6193 }; 6194 6195 // Check for either commutable permutation of (or (GREVI x, shamt), x) 6196 if (SDValue V = MatchOROfReverse(Op0, Op1)) 6197 return V; 6198 if (SDValue V = MatchOROfReverse(Op1, Op0)) 6199 return V; 6200 6201 // OR is commutable so canonicalize its OR operand to the left 6202 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 6203 std::swap(Op0, Op1); 6204 if (Op0.getOpcode() != ISD::OR) 6205 return SDValue(); 6206 SDValue OrOp0 = Op0.getOperand(0); 6207 SDValue OrOp1 = Op0.getOperand(1); 6208 auto LHS = matchGREVIPat(OrOp0); 6209 // OR is commutable so swap the operands and try again: x might have been 6210 // on the left 6211 if (!LHS) { 6212 std::swap(OrOp0, OrOp1); 6213 LHS = matchGREVIPat(OrOp0); 6214 } 6215 auto RHS = matchGREVIPat(Op1); 6216 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 6217 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 6218 DAG.getConstant(LHS->ShAmt, DL, VT)); 6219 } 6220 } 6221 return SDValue(); 6222 } 6223 6224 // Matches any of the following bit-manipulation patterns: 6225 // (and (shl x, 1), (0x22222222 << 1)) 6226 // (and (srl x, 1), 0x22222222) 6227 // (shl (and x, 0x22222222), 1) 6228 // (srl (and x, (0x22222222 << 1)), 1) 6229 // where the shift amount and mask may vary thus: 6230 // [1] = 0x22222222 / 0x44444444 6231 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 6232 // [4] = 0x00F000F0 / 0x0F000F00 6233 // [8] = 0x0000FF00 / 0x00FF0000 6234 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 6235 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 6236 // These are the unshifted masks which we use to match bit-manipulation 6237 // patterns. They may be shifted left in certain circumstances. 6238 static const uint64_t BitmanipMasks[] = { 6239 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 6240 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 6241 6242 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6243 } 6244 6245 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 6246 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 6247 const RISCVSubtarget &Subtarget) { 6248 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6249 EVT VT = Op.getValueType(); 6250 6251 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 6252 return SDValue(); 6253 6254 SDValue Op0 = Op.getOperand(0); 6255 SDValue Op1 = Op.getOperand(1); 6256 6257 // Or is commutable so canonicalize the second OR to the LHS. 6258 if (Op0.getOpcode() != ISD::OR) 6259 std::swap(Op0, Op1); 6260 if (Op0.getOpcode() != ISD::OR) 6261 return SDValue(); 6262 6263 // We found an inner OR, so our operands are the operands of the inner OR 6264 // and the other operand of the outer OR. 6265 SDValue A = Op0.getOperand(0); 6266 SDValue B = Op0.getOperand(1); 6267 SDValue C = Op1; 6268 6269 auto Match1 = matchSHFLPat(A); 6270 auto Match2 = matchSHFLPat(B); 6271 6272 // If neither matched, we failed. 6273 if (!Match1 && !Match2) 6274 return SDValue(); 6275 6276 // We had at least one match. if one failed, try the remaining C operand. 6277 if (!Match1) { 6278 std::swap(A, C); 6279 Match1 = matchSHFLPat(A); 6280 if (!Match1) 6281 return SDValue(); 6282 } else if (!Match2) { 6283 std::swap(B, C); 6284 Match2 = matchSHFLPat(B); 6285 if (!Match2) 6286 return SDValue(); 6287 } 6288 assert(Match1 && Match2); 6289 6290 // Make sure our matches pair up. 6291 if (!Match1->formsPairWith(*Match2)) 6292 return SDValue(); 6293 6294 // All the remains is to make sure C is an AND with the same input, that masks 6295 // out the bits that are being shuffled. 6296 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 6297 C.getOperand(0) != Match1->Op) 6298 return SDValue(); 6299 6300 uint64_t Mask = C.getConstantOperandVal(1); 6301 6302 static const uint64_t BitmanipMasks[] = { 6303 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 6304 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 6305 }; 6306 6307 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6308 unsigned MaskIdx = Log2_32(Match1->ShAmt); 6309 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6310 6311 if (Mask != ExpMask) 6312 return SDValue(); 6313 6314 SDLoc DL(Op); 6315 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 6316 DAG.getConstant(Match1->ShAmt, DL, VT)); 6317 } 6318 6319 // Optimize (add (shl x, c0), (shl y, c1)) -> 6320 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 6321 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 6322 const RISCVSubtarget &Subtarget) { 6323 // Perform this optimization only in the zba extension. 6324 if (!Subtarget.hasStdExtZba()) 6325 return SDValue(); 6326 6327 // Skip for vector types and larger types. 6328 EVT VT = N->getValueType(0); 6329 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6330 return SDValue(); 6331 6332 // The two operand nodes must be SHL and have no other use. 6333 SDValue N0 = N->getOperand(0); 6334 SDValue N1 = N->getOperand(1); 6335 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 6336 !N0->hasOneUse() || !N1->hasOneUse()) 6337 return SDValue(); 6338 6339 // Check c0 and c1. 6340 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6341 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 6342 if (!N0C || !N1C) 6343 return SDValue(); 6344 int64_t C0 = N0C->getSExtValue(); 6345 int64_t C1 = N1C->getSExtValue(); 6346 if (C0 <= 0 || C1 <= 0) 6347 return SDValue(); 6348 6349 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 6350 int64_t Bits = std::min(C0, C1); 6351 int64_t Diff = std::abs(C0 - C1); 6352 if (Diff != 1 && Diff != 2 && Diff != 3) 6353 return SDValue(); 6354 6355 // Build nodes. 6356 SDLoc DL(N); 6357 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 6358 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 6359 SDValue NA0 = 6360 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 6361 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 6362 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 6363 } 6364 6365 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 6366 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 6367 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 6368 // not undo itself, but they are redundant. 6369 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 6370 SDValue Src = N->getOperand(0); 6371 6372 if (Src.getOpcode() != N->getOpcode()) 6373 return SDValue(); 6374 6375 if (!isa<ConstantSDNode>(N->getOperand(1)) || 6376 !isa<ConstantSDNode>(Src.getOperand(1))) 6377 return SDValue(); 6378 6379 unsigned ShAmt1 = N->getConstantOperandVal(1); 6380 unsigned ShAmt2 = Src.getConstantOperandVal(1); 6381 Src = Src.getOperand(0); 6382 6383 unsigned CombinedShAmt; 6384 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 6385 CombinedShAmt = ShAmt1 | ShAmt2; 6386 else 6387 CombinedShAmt = ShAmt1 ^ ShAmt2; 6388 6389 if (CombinedShAmt == 0) 6390 return Src; 6391 6392 SDLoc DL(N); 6393 return DAG.getNode( 6394 N->getOpcode(), DL, N->getValueType(0), Src, 6395 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 6396 } 6397 6398 // Combine a constant select operand into its use: 6399 // 6400 // (and (select cond, -1, c), x) 6401 // -> (select cond, x, (and x, c)) [AllOnes=1] 6402 // (or (select cond, 0, c), x) 6403 // -> (select cond, x, (or x, c)) [AllOnes=0] 6404 // (xor (select cond, 0, c), x) 6405 // -> (select cond, x, (xor x, c)) [AllOnes=0] 6406 // (add (select cond, 0, c), x) 6407 // -> (select cond, x, (add x, c)) [AllOnes=0] 6408 // (sub x, (select cond, 0, c)) 6409 // -> (select cond, x, (sub x, c)) [AllOnes=0] 6410 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 6411 SelectionDAG &DAG, bool AllOnes) { 6412 EVT VT = N->getValueType(0); 6413 6414 // Skip vectors. 6415 if (VT.isVector()) 6416 return SDValue(); 6417 6418 if ((Slct.getOpcode() != ISD::SELECT && 6419 Slct.getOpcode() != RISCVISD::SELECT_CC) || 6420 !Slct.hasOneUse()) 6421 return SDValue(); 6422 6423 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 6424 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 6425 }; 6426 6427 bool SwapSelectOps; 6428 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 6429 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 6430 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 6431 SDValue NonConstantVal; 6432 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 6433 SwapSelectOps = false; 6434 NonConstantVal = FalseVal; 6435 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 6436 SwapSelectOps = true; 6437 NonConstantVal = TrueVal; 6438 } else 6439 return SDValue(); 6440 6441 // Slct is now know to be the desired identity constant when CC is true. 6442 TrueVal = OtherOp; 6443 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 6444 // Unless SwapSelectOps says the condition should be false. 6445 if (SwapSelectOps) 6446 std::swap(TrueVal, FalseVal); 6447 6448 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 6449 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 6450 {Slct.getOperand(0), Slct.getOperand(1), 6451 Slct.getOperand(2), TrueVal, FalseVal}); 6452 6453 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 6454 {Slct.getOperand(0), TrueVal, FalseVal}); 6455 } 6456 6457 // Attempt combineSelectAndUse on each operand of a commutative operator N. 6458 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 6459 bool AllOnes) { 6460 SDValue N0 = N->getOperand(0); 6461 SDValue N1 = N->getOperand(1); 6462 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 6463 return Result; 6464 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 6465 return Result; 6466 return SDValue(); 6467 } 6468 6469 // Transform (add (mul x, c0), c1) -> 6470 // (add (mul (add x, c1/c0), c0), c1%c0). 6471 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 6472 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 6473 // to an infinite loop in DAGCombine if transformed. 6474 // Or transform (add (mul x, c0), c1) -> 6475 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 6476 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 6477 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 6478 // lead to an infinite loop in DAGCombine if transformed. 6479 // Or transform (add (mul x, c0), c1) -> 6480 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 6481 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 6482 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 6483 // lead to an infinite loop in DAGCombine if transformed. 6484 // Or transform (add (mul x, c0), c1) -> 6485 // (mul (add x, c1/c0), c0). 6486 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 6487 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 6488 const RISCVSubtarget &Subtarget) { 6489 // Skip for vector types and larger types. 6490 EVT VT = N->getValueType(0); 6491 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6492 return SDValue(); 6493 // The first operand node must be a MUL and has no other use. 6494 SDValue N0 = N->getOperand(0); 6495 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 6496 return SDValue(); 6497 // Check if c0 and c1 match above conditions. 6498 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6499 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6500 if (!N0C || !N1C) 6501 return SDValue(); 6502 int64_t C0 = N0C->getSExtValue(); 6503 int64_t C1 = N1C->getSExtValue(); 6504 int64_t CA, CB; 6505 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 6506 return SDValue(); 6507 // Search for proper CA (non-zero) and CB that both are simm12. 6508 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 6509 !isInt<12>(C0 * (C1 / C0))) { 6510 CA = C1 / C0; 6511 CB = C1 % C0; 6512 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 6513 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 6514 CA = C1 / C0 + 1; 6515 CB = C1 % C0 - C0; 6516 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 6517 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 6518 CA = C1 / C0 - 1; 6519 CB = C1 % C0 + C0; 6520 } else 6521 return SDValue(); 6522 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 6523 SDLoc DL(N); 6524 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 6525 DAG.getConstant(CA, DL, VT)); 6526 SDValue New1 = 6527 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 6528 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 6529 } 6530 6531 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 6532 const RISCVSubtarget &Subtarget) { 6533 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 6534 return V; 6535 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 6536 return V; 6537 // fold (add (select lhs, rhs, cc, 0, y), x) -> 6538 // (select lhs, rhs, cc, x, (add x, y)) 6539 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6540 } 6541 6542 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 6543 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 6544 // (select lhs, rhs, cc, x, (sub x, y)) 6545 SDValue N0 = N->getOperand(0); 6546 SDValue N1 = N->getOperand(1); 6547 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 6548 } 6549 6550 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 6551 // fold (and (select lhs, rhs, cc, -1, y), x) -> 6552 // (select lhs, rhs, cc, x, (and x, y)) 6553 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 6554 } 6555 6556 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 6557 const RISCVSubtarget &Subtarget) { 6558 if (Subtarget.hasStdExtZbp()) { 6559 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 6560 return GREV; 6561 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 6562 return GORC; 6563 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 6564 return SHFL; 6565 } 6566 6567 // fold (or (select cond, 0, y), x) -> 6568 // (select cond, x, (or x, y)) 6569 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6570 } 6571 6572 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 6573 // fold (xor (select cond, 0, y), x) -> 6574 // (select cond, x, (xor x, y)) 6575 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6576 } 6577 6578 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 6579 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 6580 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 6581 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 6582 // ADDW/SUBW/MULW. 6583 static SDValue performANY_EXTENDCombine(SDNode *N, 6584 TargetLowering::DAGCombinerInfo &DCI, 6585 const RISCVSubtarget &Subtarget) { 6586 if (!Subtarget.is64Bit()) 6587 return SDValue(); 6588 6589 SelectionDAG &DAG = DCI.DAG; 6590 6591 SDValue Src = N->getOperand(0); 6592 EVT VT = N->getValueType(0); 6593 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 6594 return SDValue(); 6595 6596 // The opcode must be one that can implicitly sign_extend. 6597 // FIXME: Additional opcodes. 6598 switch (Src.getOpcode()) { 6599 default: 6600 return SDValue(); 6601 case ISD::MUL: 6602 if (!Subtarget.hasStdExtM()) 6603 return SDValue(); 6604 LLVM_FALLTHROUGH; 6605 case ISD::ADD: 6606 case ISD::SUB: 6607 break; 6608 } 6609 6610 // Only handle cases where the result is used by a CopyToReg. That likely 6611 // means the value is a liveout of the basic block. This helps prevent 6612 // infinite combine loops like PR51206. 6613 if (none_of(N->uses(), 6614 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 6615 return SDValue(); 6616 6617 SmallVector<SDNode *, 4> SetCCs; 6618 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 6619 UE = Src.getNode()->use_end(); 6620 UI != UE; ++UI) { 6621 SDNode *User = *UI; 6622 if (User == N) 6623 continue; 6624 if (UI.getUse().getResNo() != Src.getResNo()) 6625 continue; 6626 // All i32 setccs are legalized by sign extending operands. 6627 if (User->getOpcode() == ISD::SETCC) { 6628 SetCCs.push_back(User); 6629 continue; 6630 } 6631 // We don't know if we can extend this user. 6632 break; 6633 } 6634 6635 // If we don't have any SetCCs, this isn't worthwhile. 6636 if (SetCCs.empty()) 6637 return SDValue(); 6638 6639 SDLoc DL(N); 6640 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 6641 DCI.CombineTo(N, SExt); 6642 6643 // Promote all the setccs. 6644 for (SDNode *SetCC : SetCCs) { 6645 SmallVector<SDValue, 4> Ops; 6646 6647 for (unsigned j = 0; j != 2; ++j) { 6648 SDValue SOp = SetCC->getOperand(j); 6649 if (SOp == Src) 6650 Ops.push_back(SExt); 6651 else 6652 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 6653 } 6654 6655 Ops.push_back(SetCC->getOperand(2)); 6656 DCI.CombineTo(SetCC, 6657 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 6658 } 6659 return SDValue(N, 0); 6660 } 6661 6662 // Try to form VWMUL or VWMULU. 6663 // FIXME: Support VWMULSU. 6664 static SDValue combineMUL_VLToVWMUL(SDNode *N, SDValue Op0, SDValue Op1, 6665 SelectionDAG &DAG) { 6666 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 6667 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 6668 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 6669 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 6670 return SDValue(); 6671 6672 SDValue Mask = N->getOperand(2); 6673 SDValue VL = N->getOperand(3); 6674 6675 // Make sure the mask and VL match. 6676 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 6677 return SDValue(); 6678 6679 MVT VT = N->getSimpleValueType(0); 6680 6681 // Determine the narrow size for a widening multiply. 6682 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 6683 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 6684 VT.getVectorElementCount()); 6685 6686 SDLoc DL(N); 6687 6688 // See if the other operand is the same opcode. 6689 if (Op0.getOpcode() == Op1.getOpcode()) { 6690 if (!Op1.hasOneUse()) 6691 return SDValue(); 6692 6693 // Make sure the mask and VL match. 6694 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 6695 return SDValue(); 6696 6697 Op1 = Op1.getOperand(0); 6698 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 6699 // The operand is a splat of a scalar. 6700 6701 // The VL must be the same. 6702 if (Op1.getOperand(1) != VL) 6703 return SDValue(); 6704 6705 // Get the scalar value. 6706 Op1 = Op1.getOperand(0); 6707 6708 // See if have enough sign bits or zero bits in the scalar to use a 6709 // widening multiply by splatting to smaller element size. 6710 unsigned EltBits = VT.getScalarSizeInBits(); 6711 unsigned ScalarBits = Op1.getValueSizeInBits(); 6712 // Make sure we're getting all element bits from the scalar register. 6713 // FIXME: Support implicit sign extension of vmv.v.x? 6714 if (ScalarBits < EltBits) 6715 return SDValue(); 6716 6717 if (IsSignExt) { 6718 if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize)) 6719 return SDValue(); 6720 } else { 6721 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 6722 if (!DAG.MaskedValueIsZero(Op1, Mask)) 6723 return SDValue(); 6724 } 6725 6726 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL); 6727 } else 6728 return SDValue(); 6729 6730 Op0 = Op0.getOperand(0); 6731 6732 // Re-introduce narrower extends if needed. 6733 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 6734 if (Op0.getValueType() != NarrowVT) 6735 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 6736 if (Op1.getValueType() != NarrowVT) 6737 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 6738 6739 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 6740 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 6741 } 6742 6743 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 6744 DAGCombinerInfo &DCI) const { 6745 SelectionDAG &DAG = DCI.DAG; 6746 6747 // Helper to call SimplifyDemandedBits on an operand of N where only some low 6748 // bits are demanded. N will be added to the Worklist if it was not deleted. 6749 // Caller should return SDValue(N, 0) if this returns true. 6750 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 6751 SDValue Op = N->getOperand(OpNo); 6752 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 6753 if (!SimplifyDemandedBits(Op, Mask, DCI)) 6754 return false; 6755 6756 if (N->getOpcode() != ISD::DELETED_NODE) 6757 DCI.AddToWorklist(N); 6758 return true; 6759 }; 6760 6761 switch (N->getOpcode()) { 6762 default: 6763 break; 6764 case RISCVISD::SplitF64: { 6765 SDValue Op0 = N->getOperand(0); 6766 // If the input to SplitF64 is just BuildPairF64 then the operation is 6767 // redundant. Instead, use BuildPairF64's operands directly. 6768 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 6769 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 6770 6771 SDLoc DL(N); 6772 6773 // It's cheaper to materialise two 32-bit integers than to load a double 6774 // from the constant pool and transfer it to integer registers through the 6775 // stack. 6776 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 6777 APInt V = C->getValueAPF().bitcastToAPInt(); 6778 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 6779 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 6780 return DCI.CombineTo(N, Lo, Hi); 6781 } 6782 6783 // This is a target-specific version of a DAGCombine performed in 6784 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6785 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6786 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6787 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6788 !Op0.getNode()->hasOneUse()) 6789 break; 6790 SDValue NewSplitF64 = 6791 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 6792 Op0.getOperand(0)); 6793 SDValue Lo = NewSplitF64.getValue(0); 6794 SDValue Hi = NewSplitF64.getValue(1); 6795 APInt SignBit = APInt::getSignMask(32); 6796 if (Op0.getOpcode() == ISD::FNEG) { 6797 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 6798 DAG.getConstant(SignBit, DL, MVT::i32)); 6799 return DCI.CombineTo(N, Lo, NewHi); 6800 } 6801 assert(Op0.getOpcode() == ISD::FABS); 6802 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 6803 DAG.getConstant(~SignBit, DL, MVT::i32)); 6804 return DCI.CombineTo(N, Lo, NewHi); 6805 } 6806 case RISCVISD::SLLW: 6807 case RISCVISD::SRAW: 6808 case RISCVISD::SRLW: 6809 case RISCVISD::ROLW: 6810 case RISCVISD::RORW: { 6811 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 6812 if (SimplifyDemandedLowBitsHelper(0, 32) || 6813 SimplifyDemandedLowBitsHelper(1, 5)) 6814 return SDValue(N, 0); 6815 break; 6816 } 6817 case RISCVISD::CLZW: 6818 case RISCVISD::CTZW: { 6819 // Only the lower 32 bits of the first operand are read 6820 if (SimplifyDemandedLowBitsHelper(0, 32)) 6821 return SDValue(N, 0); 6822 break; 6823 } 6824 case RISCVISD::FSL: 6825 case RISCVISD::FSR: { 6826 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 6827 unsigned BitWidth = N->getOperand(2).getValueSizeInBits(); 6828 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6829 if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1)) 6830 return SDValue(N, 0); 6831 break; 6832 } 6833 case RISCVISD::FSLW: 6834 case RISCVISD::FSRW: { 6835 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 6836 // read. 6837 if (SimplifyDemandedLowBitsHelper(0, 32) || 6838 SimplifyDemandedLowBitsHelper(1, 32) || 6839 SimplifyDemandedLowBitsHelper(2, 6)) 6840 return SDValue(N, 0); 6841 break; 6842 } 6843 case RISCVISD::GREV: 6844 case RISCVISD::GORC: { 6845 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 6846 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 6847 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6848 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 6849 return SDValue(N, 0); 6850 6851 return combineGREVI_GORCI(N, DCI.DAG); 6852 } 6853 case RISCVISD::GREVW: 6854 case RISCVISD::GORCW: { 6855 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 6856 if (SimplifyDemandedLowBitsHelper(0, 32) || 6857 SimplifyDemandedLowBitsHelper(1, 5)) 6858 return SDValue(N, 0); 6859 6860 return combineGREVI_GORCI(N, DCI.DAG); 6861 } 6862 case RISCVISD::SHFL: 6863 case RISCVISD::UNSHFL: { 6864 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 6865 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 6866 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6867 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 6868 return SDValue(N, 0); 6869 6870 break; 6871 } 6872 case RISCVISD::SHFLW: 6873 case RISCVISD::UNSHFLW: { 6874 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 6875 SDValue LHS = N->getOperand(0); 6876 SDValue RHS = N->getOperand(1); 6877 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 6878 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 6879 if (SimplifyDemandedLowBitsHelper(0, 32) || 6880 SimplifyDemandedLowBitsHelper(1, 4)) 6881 return SDValue(N, 0); 6882 6883 break; 6884 } 6885 case RISCVISD::BCOMPRESSW: 6886 case RISCVISD::BDECOMPRESSW: { 6887 // Only the lower 32 bits of LHS and RHS are read. 6888 if (SimplifyDemandedLowBitsHelper(0, 32) || 6889 SimplifyDemandedLowBitsHelper(1, 32)) 6890 return SDValue(N, 0); 6891 6892 break; 6893 } 6894 case RISCVISD::FMV_X_ANYEXTH: 6895 case RISCVISD::FMV_X_ANYEXTW_RV64: { 6896 SDLoc DL(N); 6897 SDValue Op0 = N->getOperand(0); 6898 MVT VT = N->getSimpleValueType(0); 6899 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 6900 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 6901 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 6902 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 6903 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 6904 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 6905 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 6906 assert(Op0.getOperand(0).getValueType() == VT && 6907 "Unexpected value type!"); 6908 return Op0.getOperand(0); 6909 } 6910 6911 // This is a target-specific version of a DAGCombine performed in 6912 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6913 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6914 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6915 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6916 !Op0.getNode()->hasOneUse()) 6917 break; 6918 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 6919 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 6920 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 6921 if (Op0.getOpcode() == ISD::FNEG) 6922 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 6923 DAG.getConstant(SignBit, DL, VT)); 6924 6925 assert(Op0.getOpcode() == ISD::FABS); 6926 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 6927 DAG.getConstant(~SignBit, DL, VT)); 6928 } 6929 case ISD::ADD: 6930 return performADDCombine(N, DAG, Subtarget); 6931 case ISD::SUB: 6932 return performSUBCombine(N, DAG); 6933 case ISD::AND: 6934 return performANDCombine(N, DAG); 6935 case ISD::OR: 6936 return performORCombine(N, DAG, Subtarget); 6937 case ISD::XOR: 6938 return performXORCombine(N, DAG); 6939 case ISD::ANY_EXTEND: 6940 return performANY_EXTENDCombine(N, DCI, Subtarget); 6941 case ISD::ZERO_EXTEND: 6942 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 6943 // type legalization. This is safe because fp_to_uint produces poison if 6944 // it overflows. 6945 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit() && 6946 N->getOperand(0).getOpcode() == ISD::FP_TO_UINT && 6947 isTypeLegal(N->getOperand(0).getOperand(0).getValueType())) 6948 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 6949 N->getOperand(0).getOperand(0)); 6950 return SDValue(); 6951 case RISCVISD::SELECT_CC: { 6952 // Transform 6953 SDValue LHS = N->getOperand(0); 6954 SDValue RHS = N->getOperand(1); 6955 SDValue TrueV = N->getOperand(3); 6956 SDValue FalseV = N->getOperand(4); 6957 6958 // If the True and False values are the same, we don't need a select_cc. 6959 if (TrueV == FalseV) 6960 return TrueV; 6961 6962 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 6963 if (!ISD::isIntEqualitySetCC(CCVal)) 6964 break; 6965 6966 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 6967 // (select_cc X, Y, lt, trueV, falseV) 6968 // Sometimes the setcc is introduced after select_cc has been formed. 6969 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 6970 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 6971 // If we're looking for eq 0 instead of ne 0, we need to invert the 6972 // condition. 6973 bool Invert = CCVal == ISD::SETEQ; 6974 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 6975 if (Invert) 6976 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6977 6978 SDLoc DL(N); 6979 RHS = LHS.getOperand(1); 6980 LHS = LHS.getOperand(0); 6981 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 6982 6983 SDValue TargetCC = DAG.getCondCode(CCVal); 6984 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 6985 {LHS, RHS, TargetCC, TrueV, FalseV}); 6986 } 6987 6988 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 6989 // (select_cc X, Y, eq/ne, trueV, falseV) 6990 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 6991 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 6992 {LHS.getOperand(0), LHS.getOperand(1), 6993 N->getOperand(2), TrueV, FalseV}); 6994 // (select_cc X, 1, setne, trueV, falseV) -> 6995 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 6996 // This can occur when legalizing some floating point comparisons. 6997 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 6998 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 6999 SDLoc DL(N); 7000 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7001 SDValue TargetCC = DAG.getCondCode(CCVal); 7002 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7003 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7004 {LHS, RHS, TargetCC, TrueV, FalseV}); 7005 } 7006 7007 break; 7008 } 7009 case RISCVISD::BR_CC: { 7010 SDValue LHS = N->getOperand(1); 7011 SDValue RHS = N->getOperand(2); 7012 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 7013 if (!ISD::isIntEqualitySetCC(CCVal)) 7014 break; 7015 7016 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 7017 // (br_cc X, Y, lt, dest) 7018 // Sometimes the setcc is introduced after br_cc has been formed. 7019 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7020 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7021 // If we're looking for eq 0 instead of ne 0, we need to invert the 7022 // condition. 7023 bool Invert = CCVal == ISD::SETEQ; 7024 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7025 if (Invert) 7026 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7027 7028 SDLoc DL(N); 7029 RHS = LHS.getOperand(1); 7030 LHS = LHS.getOperand(0); 7031 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7032 7033 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7034 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 7035 N->getOperand(4)); 7036 } 7037 7038 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 7039 // (br_cc X, Y, eq/ne, trueV, falseV) 7040 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7041 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 7042 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 7043 N->getOperand(3), N->getOperand(4)); 7044 7045 // (br_cc X, 1, setne, br_cc) -> 7046 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 7047 // This can occur when legalizing some floating point comparisons. 7048 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7049 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7050 SDLoc DL(N); 7051 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7052 SDValue TargetCC = DAG.getCondCode(CCVal); 7053 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7054 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7055 N->getOperand(0), LHS, RHS, TargetCC, 7056 N->getOperand(4)); 7057 } 7058 break; 7059 } 7060 case ISD::FCOPYSIGN: { 7061 EVT VT = N->getValueType(0); 7062 if (!VT.isVector()) 7063 break; 7064 // There is a form of VFSGNJ which injects the negated sign of its second 7065 // operand. Try and bubble any FNEG up after the extend/round to produce 7066 // this optimized pattern. Avoid modifying cases where FP_ROUND and 7067 // TRUNC=1. 7068 SDValue In2 = N->getOperand(1); 7069 // Avoid cases where the extend/round has multiple uses, as duplicating 7070 // those is typically more expensive than removing a fneg. 7071 if (!In2.hasOneUse()) 7072 break; 7073 if (In2.getOpcode() != ISD::FP_EXTEND && 7074 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 7075 break; 7076 In2 = In2.getOperand(0); 7077 if (In2.getOpcode() != ISD::FNEG) 7078 break; 7079 SDLoc DL(N); 7080 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 7081 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 7082 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 7083 } 7084 case ISD::MGATHER: 7085 case ISD::MSCATTER: 7086 case ISD::VP_GATHER: 7087 case ISD::VP_SCATTER: { 7088 if (!DCI.isBeforeLegalize()) 7089 break; 7090 SDValue Index, ScaleOp; 7091 bool IsIndexScaled = false; 7092 bool IsIndexSigned = false; 7093 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 7094 Index = VPGSN->getIndex(); 7095 ScaleOp = VPGSN->getScale(); 7096 IsIndexScaled = VPGSN->isIndexScaled(); 7097 IsIndexSigned = VPGSN->isIndexSigned(); 7098 } else { 7099 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 7100 Index = MGSN->getIndex(); 7101 ScaleOp = MGSN->getScale(); 7102 IsIndexScaled = MGSN->isIndexScaled(); 7103 IsIndexSigned = MGSN->isIndexSigned(); 7104 } 7105 EVT IndexVT = Index.getValueType(); 7106 MVT XLenVT = Subtarget.getXLenVT(); 7107 // RISCV indexed loads only support the "unsigned unscaled" addressing 7108 // mode, so anything else must be manually legalized. 7109 bool NeedsIdxLegalization = 7110 IsIndexScaled || 7111 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 7112 if (!NeedsIdxLegalization) 7113 break; 7114 7115 SDLoc DL(N); 7116 7117 // Any index legalization should first promote to XLenVT, so we don't lose 7118 // bits when scaling. This may create an illegal index type so we let 7119 // LLVM's legalization take care of the splitting. 7120 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 7121 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 7122 IndexVT = IndexVT.changeVectorElementType(XLenVT); 7123 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 7124 DL, IndexVT, Index); 7125 } 7126 7127 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 7128 if (IsIndexScaled && Scale != 1) { 7129 // Manually scale the indices by the element size. 7130 // TODO: Sanitize the scale operand here? 7131 // TODO: For VP nodes, should we use VP_SHL here? 7132 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 7133 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 7134 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 7135 } 7136 7137 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 7138 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 7139 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 7140 {VPGN->getChain(), VPGN->getBasePtr(), Index, 7141 VPGN->getScale(), VPGN->getMask(), 7142 VPGN->getVectorLength()}, 7143 VPGN->getMemOperand(), NewIndexTy); 7144 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 7145 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 7146 {VPSN->getChain(), VPSN->getValue(), 7147 VPSN->getBasePtr(), Index, VPSN->getScale(), 7148 VPSN->getMask(), VPSN->getVectorLength()}, 7149 VPSN->getMemOperand(), NewIndexTy); 7150 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 7151 return DAG.getMaskedGather( 7152 N->getVTList(), MGN->getMemoryVT(), DL, 7153 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 7154 MGN->getBasePtr(), Index, MGN->getScale()}, 7155 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 7156 const auto *MSN = cast<MaskedScatterSDNode>(N); 7157 return DAG.getMaskedScatter( 7158 N->getVTList(), MSN->getMemoryVT(), DL, 7159 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 7160 Index, MSN->getScale()}, 7161 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 7162 } 7163 case RISCVISD::SRA_VL: 7164 case RISCVISD::SRL_VL: 7165 case RISCVISD::SHL_VL: { 7166 SDValue ShAmt = N->getOperand(1); 7167 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7168 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7169 SDLoc DL(N); 7170 SDValue VL = N->getOperand(3); 7171 EVT VT = N->getValueType(0); 7172 ShAmt = 7173 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 7174 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 7175 N->getOperand(2), N->getOperand(3)); 7176 } 7177 break; 7178 } 7179 case ISD::SRA: 7180 case ISD::SRL: 7181 case ISD::SHL: { 7182 SDValue ShAmt = N->getOperand(1); 7183 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7184 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7185 SDLoc DL(N); 7186 EVT VT = N->getValueType(0); 7187 ShAmt = 7188 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 7189 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 7190 } 7191 break; 7192 } 7193 case RISCVISD::MUL_VL: { 7194 SDValue Op0 = N->getOperand(0); 7195 SDValue Op1 = N->getOperand(1); 7196 if (SDValue V = combineMUL_VLToVWMUL(N, Op0, Op1, DAG)) 7197 return V; 7198 if (SDValue V = combineMUL_VLToVWMUL(N, Op1, Op0, DAG)) 7199 return V; 7200 return SDValue(); 7201 } 7202 case ISD::STORE: { 7203 auto *Store = cast<StoreSDNode>(N); 7204 SDValue Val = Store->getValue(); 7205 // Combine store of vmv.x.s to vse with VL of 1. 7206 // FIXME: Support FP. 7207 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 7208 SDValue Src = Val.getOperand(0); 7209 EVT VecVT = Src.getValueType(); 7210 EVT MemVT = Store->getMemoryVT(); 7211 // The memory VT and the element type must match. 7212 if (VecVT.getVectorElementType() == MemVT) { 7213 SDLoc DL(N); 7214 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 7215 return DAG.getStoreVP(Store->getChain(), DL, Src, Store->getBasePtr(), 7216 DAG.getConstant(1, DL, MaskVT), 7217 DAG.getConstant(1, DL, Subtarget.getXLenVT()), 7218 Store->getPointerInfo(), 7219 Store->getOriginalAlign(), 7220 Store->getMemOperand()->getFlags()); 7221 } 7222 } 7223 7224 break; 7225 } 7226 } 7227 7228 return SDValue(); 7229 } 7230 7231 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 7232 const SDNode *N, CombineLevel Level) const { 7233 // The following folds are only desirable if `(OP _, c1 << c2)` can be 7234 // materialised in fewer instructions than `(OP _, c1)`: 7235 // 7236 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 7237 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 7238 SDValue N0 = N->getOperand(0); 7239 EVT Ty = N0.getValueType(); 7240 if (Ty.isScalarInteger() && 7241 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 7242 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7243 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7244 if (C1 && C2) { 7245 const APInt &C1Int = C1->getAPIntValue(); 7246 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 7247 7248 // We can materialise `c1 << c2` into an add immediate, so it's "free", 7249 // and the combine should happen, to potentially allow further combines 7250 // later. 7251 if (ShiftedC1Int.getMinSignedBits() <= 64 && 7252 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 7253 return true; 7254 7255 // We can materialise `c1` in an add immediate, so it's "free", and the 7256 // combine should be prevented. 7257 if (C1Int.getMinSignedBits() <= 64 && 7258 isLegalAddImmediate(C1Int.getSExtValue())) 7259 return false; 7260 7261 // Neither constant will fit into an immediate, so find materialisation 7262 // costs. 7263 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 7264 Subtarget.getFeatureBits(), 7265 /*CompressionCost*/true); 7266 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 7267 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 7268 /*CompressionCost*/true); 7269 7270 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 7271 // combine should be prevented. 7272 if (C1Cost < ShiftedC1Cost) 7273 return false; 7274 } 7275 } 7276 return true; 7277 } 7278 7279 bool RISCVTargetLowering::targetShrinkDemandedConstant( 7280 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 7281 TargetLoweringOpt &TLO) const { 7282 // Delay this optimization as late as possible. 7283 if (!TLO.LegalOps) 7284 return false; 7285 7286 EVT VT = Op.getValueType(); 7287 if (VT.isVector()) 7288 return false; 7289 7290 // Only handle AND for now. 7291 if (Op.getOpcode() != ISD::AND) 7292 return false; 7293 7294 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 7295 if (!C) 7296 return false; 7297 7298 const APInt &Mask = C->getAPIntValue(); 7299 7300 // Clear all non-demanded bits initially. 7301 APInt ShrunkMask = Mask & DemandedBits; 7302 7303 // Try to make a smaller immediate by setting undemanded bits. 7304 7305 APInt ExpandedMask = Mask | ~DemandedBits; 7306 7307 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 7308 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 7309 }; 7310 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 7311 if (NewMask == Mask) 7312 return true; 7313 SDLoc DL(Op); 7314 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 7315 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 7316 return TLO.CombineTo(Op, NewOp); 7317 }; 7318 7319 // If the shrunk mask fits in sign extended 12 bits, let the target 7320 // independent code apply it. 7321 if (ShrunkMask.isSignedIntN(12)) 7322 return false; 7323 7324 // Preserve (and X, 0xffff) when zext.h is supported. 7325 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 7326 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 7327 if (IsLegalMask(NewMask)) 7328 return UseMask(NewMask); 7329 } 7330 7331 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 7332 if (VT == MVT::i64) { 7333 APInt NewMask = APInt(64, 0xffffffff); 7334 if (IsLegalMask(NewMask)) 7335 return UseMask(NewMask); 7336 } 7337 7338 // For the remaining optimizations, we need to be able to make a negative 7339 // number through a combination of mask and undemanded bits. 7340 if (!ExpandedMask.isNegative()) 7341 return false; 7342 7343 // What is the fewest number of bits we need to represent the negative number. 7344 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 7345 7346 // Try to make a 12 bit negative immediate. If that fails try to make a 32 7347 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 7348 APInt NewMask = ShrunkMask; 7349 if (MinSignedBits <= 12) 7350 NewMask.setBitsFrom(11); 7351 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 7352 NewMask.setBitsFrom(31); 7353 else 7354 return false; 7355 7356 // Sanity check that our new mask is a subset of the demanded mask. 7357 assert(IsLegalMask(NewMask)); 7358 return UseMask(NewMask); 7359 } 7360 7361 static void computeGREV(APInt &Src, unsigned ShAmt) { 7362 ShAmt &= Src.getBitWidth() - 1; 7363 uint64_t x = Src.getZExtValue(); 7364 if (ShAmt & 1) 7365 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 7366 if (ShAmt & 2) 7367 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 7368 if (ShAmt & 4) 7369 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 7370 if (ShAmt & 8) 7371 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 7372 if (ShAmt & 16) 7373 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 7374 if (ShAmt & 32) 7375 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 7376 Src = x; 7377 } 7378 7379 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 7380 KnownBits &Known, 7381 const APInt &DemandedElts, 7382 const SelectionDAG &DAG, 7383 unsigned Depth) const { 7384 unsigned BitWidth = Known.getBitWidth(); 7385 unsigned Opc = Op.getOpcode(); 7386 assert((Opc >= ISD::BUILTIN_OP_END || 7387 Opc == ISD::INTRINSIC_WO_CHAIN || 7388 Opc == ISD::INTRINSIC_W_CHAIN || 7389 Opc == ISD::INTRINSIC_VOID) && 7390 "Should use MaskedValueIsZero if you don't know whether Op" 7391 " is a target node!"); 7392 7393 Known.resetAll(); 7394 switch (Opc) { 7395 default: break; 7396 case RISCVISD::SELECT_CC: { 7397 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 7398 // If we don't know any bits, early out. 7399 if (Known.isUnknown()) 7400 break; 7401 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 7402 7403 // Only known if known in both the LHS and RHS. 7404 Known = KnownBits::commonBits(Known, Known2); 7405 break; 7406 } 7407 case RISCVISD::REMUW: { 7408 KnownBits Known2; 7409 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7410 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7411 // We only care about the lower 32 bits. 7412 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 7413 // Restore the original width by sign extending. 7414 Known = Known.sext(BitWidth); 7415 break; 7416 } 7417 case RISCVISD::DIVUW: { 7418 KnownBits Known2; 7419 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7420 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7421 // We only care about the lower 32 bits. 7422 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 7423 // Restore the original width by sign extending. 7424 Known = Known.sext(BitWidth); 7425 break; 7426 } 7427 case RISCVISD::CTZW: { 7428 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7429 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 7430 unsigned LowBits = Log2_32(PossibleTZ) + 1; 7431 Known.Zero.setBitsFrom(LowBits); 7432 break; 7433 } 7434 case RISCVISD::CLZW: { 7435 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7436 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 7437 unsigned LowBits = Log2_32(PossibleLZ) + 1; 7438 Known.Zero.setBitsFrom(LowBits); 7439 break; 7440 } 7441 case RISCVISD::GREV: 7442 case RISCVISD::GREVW: { 7443 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7444 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7445 if (Opc == RISCVISD::GREVW) 7446 Known = Known.trunc(32); 7447 unsigned ShAmt = C->getZExtValue(); 7448 computeGREV(Known.Zero, ShAmt); 7449 computeGREV(Known.One, ShAmt); 7450 if (Opc == RISCVISD::GREVW) 7451 Known = Known.sext(BitWidth); 7452 } 7453 break; 7454 } 7455 case RISCVISD::READ_VLENB: 7456 // We assume VLENB is at least 16 bytes. 7457 Known.Zero.setLowBits(4); 7458 // We assume VLENB is no more than 65536 / 8 bytes. 7459 Known.Zero.setBitsFrom(14); 7460 break; 7461 case ISD::INTRINSIC_W_CHAIN: { 7462 unsigned IntNo = Op.getConstantOperandVal(1); 7463 switch (IntNo) { 7464 default: 7465 // We can't do anything for most intrinsics. 7466 break; 7467 case Intrinsic::riscv_vsetvli: 7468 case Intrinsic::riscv_vsetvlimax: 7469 // Assume that VL output is positive and would fit in an int32_t. 7470 // TODO: VLEN might be capped at 16 bits in a future V spec update. 7471 if (BitWidth >= 32) 7472 Known.Zero.setBitsFrom(31); 7473 break; 7474 } 7475 break; 7476 } 7477 } 7478 } 7479 7480 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 7481 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 7482 unsigned Depth) const { 7483 switch (Op.getOpcode()) { 7484 default: 7485 break; 7486 case RISCVISD::SELECT_CC: { 7487 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 7488 if (Tmp == 1) return 1; // Early out. 7489 unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 7490 return std::min(Tmp, Tmp2); 7491 } 7492 case RISCVISD::SLLW: 7493 case RISCVISD::SRAW: 7494 case RISCVISD::SRLW: 7495 case RISCVISD::DIVW: 7496 case RISCVISD::DIVUW: 7497 case RISCVISD::REMUW: 7498 case RISCVISD::ROLW: 7499 case RISCVISD::RORW: 7500 case RISCVISD::GREVW: 7501 case RISCVISD::GORCW: 7502 case RISCVISD::FSLW: 7503 case RISCVISD::FSRW: 7504 case RISCVISD::SHFLW: 7505 case RISCVISD::UNSHFLW: 7506 case RISCVISD::BCOMPRESSW: 7507 case RISCVISD::BDECOMPRESSW: 7508 case RISCVISD::FCVT_W_RTZ_RV64: 7509 case RISCVISD::FCVT_WU_RTZ_RV64: 7510 // TODO: As the result is sign-extended, this is conservatively correct. A 7511 // more precise answer could be calculated for SRAW depending on known 7512 // bits in the shift amount. 7513 return 33; 7514 case RISCVISD::SHFL: 7515 case RISCVISD::UNSHFL: { 7516 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 7517 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 7518 // will stay within the upper 32 bits. If there were more than 32 sign bits 7519 // before there will be at least 33 sign bits after. 7520 if (Op.getValueType() == MVT::i64 && 7521 isa<ConstantSDNode>(Op.getOperand(1)) && 7522 (Op.getConstantOperandVal(1) & 0x10) == 0) { 7523 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 7524 if (Tmp > 32) 7525 return 33; 7526 } 7527 break; 7528 } 7529 case RISCVISD::VMV_X_S: 7530 // The number of sign bits of the scalar result is computed by obtaining the 7531 // element type of the input vector operand, subtracting its width from the 7532 // XLEN, and then adding one (sign bit within the element type). If the 7533 // element type is wider than XLen, the least-significant XLEN bits are 7534 // taken. 7535 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 7536 return 1; 7537 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 7538 } 7539 7540 return 1; 7541 } 7542 7543 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 7544 MachineBasicBlock *BB) { 7545 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 7546 7547 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 7548 // Should the count have wrapped while it was being read, we need to try 7549 // again. 7550 // ... 7551 // read: 7552 // rdcycleh x3 # load high word of cycle 7553 // rdcycle x2 # load low word of cycle 7554 // rdcycleh x4 # load high word of cycle 7555 // bne x3, x4, read # check if high word reads match, otherwise try again 7556 // ... 7557 7558 MachineFunction &MF = *BB->getParent(); 7559 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7560 MachineFunction::iterator It = ++BB->getIterator(); 7561 7562 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7563 MF.insert(It, LoopMBB); 7564 7565 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7566 MF.insert(It, DoneMBB); 7567 7568 // Transfer the remainder of BB and its successor edges to DoneMBB. 7569 DoneMBB->splice(DoneMBB->begin(), BB, 7570 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 7571 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 7572 7573 BB->addSuccessor(LoopMBB); 7574 7575 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7576 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7577 Register LoReg = MI.getOperand(0).getReg(); 7578 Register HiReg = MI.getOperand(1).getReg(); 7579 DebugLoc DL = MI.getDebugLoc(); 7580 7581 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 7582 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 7583 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7584 .addReg(RISCV::X0); 7585 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 7586 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 7587 .addReg(RISCV::X0); 7588 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 7589 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7590 .addReg(RISCV::X0); 7591 7592 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 7593 .addReg(HiReg) 7594 .addReg(ReadAgainReg) 7595 .addMBB(LoopMBB); 7596 7597 LoopMBB->addSuccessor(LoopMBB); 7598 LoopMBB->addSuccessor(DoneMBB); 7599 7600 MI.eraseFromParent(); 7601 7602 return DoneMBB; 7603 } 7604 7605 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 7606 MachineBasicBlock *BB) { 7607 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 7608 7609 MachineFunction &MF = *BB->getParent(); 7610 DebugLoc DL = MI.getDebugLoc(); 7611 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7612 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7613 Register LoReg = MI.getOperand(0).getReg(); 7614 Register HiReg = MI.getOperand(1).getReg(); 7615 Register SrcReg = MI.getOperand(2).getReg(); 7616 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 7617 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7618 7619 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 7620 RI); 7621 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7622 MachineMemOperand *MMOLo = 7623 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 7624 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7625 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 7626 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 7627 .addFrameIndex(FI) 7628 .addImm(0) 7629 .addMemOperand(MMOLo); 7630 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 7631 .addFrameIndex(FI) 7632 .addImm(4) 7633 .addMemOperand(MMOHi); 7634 MI.eraseFromParent(); // The pseudo instruction is gone now. 7635 return BB; 7636 } 7637 7638 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 7639 MachineBasicBlock *BB) { 7640 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 7641 "Unexpected instruction"); 7642 7643 MachineFunction &MF = *BB->getParent(); 7644 DebugLoc DL = MI.getDebugLoc(); 7645 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7646 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7647 Register DstReg = MI.getOperand(0).getReg(); 7648 Register LoReg = MI.getOperand(1).getReg(); 7649 Register HiReg = MI.getOperand(2).getReg(); 7650 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 7651 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7652 7653 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7654 MachineMemOperand *MMOLo = 7655 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 7656 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7657 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 7658 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7659 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 7660 .addFrameIndex(FI) 7661 .addImm(0) 7662 .addMemOperand(MMOLo); 7663 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7664 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 7665 .addFrameIndex(FI) 7666 .addImm(4) 7667 .addMemOperand(MMOHi); 7668 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 7669 MI.eraseFromParent(); // The pseudo instruction is gone now. 7670 return BB; 7671 } 7672 7673 static bool isSelectPseudo(MachineInstr &MI) { 7674 switch (MI.getOpcode()) { 7675 default: 7676 return false; 7677 case RISCV::Select_GPR_Using_CC_GPR: 7678 case RISCV::Select_FPR16_Using_CC_GPR: 7679 case RISCV::Select_FPR32_Using_CC_GPR: 7680 case RISCV::Select_FPR64_Using_CC_GPR: 7681 return true; 7682 } 7683 } 7684 7685 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 7686 MachineBasicBlock *BB, 7687 const RISCVSubtarget &Subtarget) { 7688 // To "insert" Select_* instructions, we actually have to insert the triangle 7689 // control-flow pattern. The incoming instructions know the destination vreg 7690 // to set, the condition code register to branch on, the true/false values to 7691 // select between, and the condcode to use to select the appropriate branch. 7692 // 7693 // We produce the following control flow: 7694 // HeadMBB 7695 // | \ 7696 // | IfFalseMBB 7697 // | / 7698 // TailMBB 7699 // 7700 // When we find a sequence of selects we attempt to optimize their emission 7701 // by sharing the control flow. Currently we only handle cases where we have 7702 // multiple selects with the exact same condition (same LHS, RHS and CC). 7703 // The selects may be interleaved with other instructions if the other 7704 // instructions meet some requirements we deem safe: 7705 // - They are debug instructions. Otherwise, 7706 // - They do not have side-effects, do not access memory and their inputs do 7707 // not depend on the results of the select pseudo-instructions. 7708 // The TrueV/FalseV operands of the selects cannot depend on the result of 7709 // previous selects in the sequence. 7710 // These conditions could be further relaxed. See the X86 target for a 7711 // related approach and more information. 7712 Register LHS = MI.getOperand(1).getReg(); 7713 Register RHS = MI.getOperand(2).getReg(); 7714 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 7715 7716 SmallVector<MachineInstr *, 4> SelectDebugValues; 7717 SmallSet<Register, 4> SelectDests; 7718 SelectDests.insert(MI.getOperand(0).getReg()); 7719 7720 MachineInstr *LastSelectPseudo = &MI; 7721 7722 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 7723 SequenceMBBI != E; ++SequenceMBBI) { 7724 if (SequenceMBBI->isDebugInstr()) 7725 continue; 7726 else if (isSelectPseudo(*SequenceMBBI)) { 7727 if (SequenceMBBI->getOperand(1).getReg() != LHS || 7728 SequenceMBBI->getOperand(2).getReg() != RHS || 7729 SequenceMBBI->getOperand(3).getImm() != CC || 7730 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 7731 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 7732 break; 7733 LastSelectPseudo = &*SequenceMBBI; 7734 SequenceMBBI->collectDebugValues(SelectDebugValues); 7735 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 7736 } else { 7737 if (SequenceMBBI->hasUnmodeledSideEffects() || 7738 SequenceMBBI->mayLoadOrStore()) 7739 break; 7740 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 7741 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 7742 })) 7743 break; 7744 } 7745 } 7746 7747 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 7748 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7749 DebugLoc DL = MI.getDebugLoc(); 7750 MachineFunction::iterator I = ++BB->getIterator(); 7751 7752 MachineBasicBlock *HeadMBB = BB; 7753 MachineFunction *F = BB->getParent(); 7754 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 7755 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 7756 7757 F->insert(I, IfFalseMBB); 7758 F->insert(I, TailMBB); 7759 7760 // Transfer debug instructions associated with the selects to TailMBB. 7761 for (MachineInstr *DebugInstr : SelectDebugValues) { 7762 TailMBB->push_back(DebugInstr->removeFromParent()); 7763 } 7764 7765 // Move all instructions after the sequence to TailMBB. 7766 TailMBB->splice(TailMBB->end(), HeadMBB, 7767 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 7768 // Update machine-CFG edges by transferring all successors of the current 7769 // block to the new block which will contain the Phi nodes for the selects. 7770 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 7771 // Set the successors for HeadMBB. 7772 HeadMBB->addSuccessor(IfFalseMBB); 7773 HeadMBB->addSuccessor(TailMBB); 7774 7775 // Insert appropriate branch. 7776 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 7777 .addReg(LHS) 7778 .addReg(RHS) 7779 .addMBB(TailMBB); 7780 7781 // IfFalseMBB just falls through to TailMBB. 7782 IfFalseMBB->addSuccessor(TailMBB); 7783 7784 // Create PHIs for all of the select pseudo-instructions. 7785 auto SelectMBBI = MI.getIterator(); 7786 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 7787 auto InsertionPoint = TailMBB->begin(); 7788 while (SelectMBBI != SelectEnd) { 7789 auto Next = std::next(SelectMBBI); 7790 if (isSelectPseudo(*SelectMBBI)) { 7791 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 7792 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 7793 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 7794 .addReg(SelectMBBI->getOperand(4).getReg()) 7795 .addMBB(HeadMBB) 7796 .addReg(SelectMBBI->getOperand(5).getReg()) 7797 .addMBB(IfFalseMBB); 7798 SelectMBBI->eraseFromParent(); 7799 } 7800 SelectMBBI = Next; 7801 } 7802 7803 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 7804 return TailMBB; 7805 } 7806 7807 MachineBasicBlock * 7808 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 7809 MachineBasicBlock *BB) const { 7810 switch (MI.getOpcode()) { 7811 default: 7812 llvm_unreachable("Unexpected instr type to insert"); 7813 case RISCV::ReadCycleWide: 7814 assert(!Subtarget.is64Bit() && 7815 "ReadCycleWrite is only to be used on riscv32"); 7816 return emitReadCycleWidePseudo(MI, BB); 7817 case RISCV::Select_GPR_Using_CC_GPR: 7818 case RISCV::Select_FPR16_Using_CC_GPR: 7819 case RISCV::Select_FPR32_Using_CC_GPR: 7820 case RISCV::Select_FPR64_Using_CC_GPR: 7821 return emitSelectPseudo(MI, BB, Subtarget); 7822 case RISCV::BuildPairF64Pseudo: 7823 return emitBuildPairF64Pseudo(MI, BB); 7824 case RISCV::SplitF64Pseudo: 7825 return emitSplitF64Pseudo(MI, BB); 7826 } 7827 } 7828 7829 // Calling Convention Implementation. 7830 // The expectations for frontend ABI lowering vary from target to target. 7831 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 7832 // details, but this is a longer term goal. For now, we simply try to keep the 7833 // role of the frontend as simple and well-defined as possible. The rules can 7834 // be summarised as: 7835 // * Never split up large scalar arguments. We handle them here. 7836 // * If a hardfloat calling convention is being used, and the struct may be 7837 // passed in a pair of registers (fp+fp, int+fp), and both registers are 7838 // available, then pass as two separate arguments. If either the GPRs or FPRs 7839 // are exhausted, then pass according to the rule below. 7840 // * If a struct could never be passed in registers or directly in a stack 7841 // slot (as it is larger than 2*XLEN and the floating point rules don't 7842 // apply), then pass it using a pointer with the byval attribute. 7843 // * If a struct is less than 2*XLEN, then coerce to either a two-element 7844 // word-sized array or a 2*XLEN scalar (depending on alignment). 7845 // * The frontend can determine whether a struct is returned by reference or 7846 // not based on its size and fields. If it will be returned by reference, the 7847 // frontend must modify the prototype so a pointer with the sret annotation is 7848 // passed as the first argument. This is not necessary for large scalar 7849 // returns. 7850 // * Struct return values and varargs should be coerced to structs containing 7851 // register-size fields in the same situations they would be for fixed 7852 // arguments. 7853 7854 static const MCPhysReg ArgGPRs[] = { 7855 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 7856 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 7857 }; 7858 static const MCPhysReg ArgFPR16s[] = { 7859 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 7860 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 7861 }; 7862 static const MCPhysReg ArgFPR32s[] = { 7863 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 7864 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 7865 }; 7866 static const MCPhysReg ArgFPR64s[] = { 7867 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 7868 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 7869 }; 7870 // This is an interim calling convention and it may be changed in the future. 7871 static const MCPhysReg ArgVRs[] = { 7872 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 7873 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 7874 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 7875 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 7876 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 7877 RISCV::V20M2, RISCV::V22M2}; 7878 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 7879 RISCV::V20M4}; 7880 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 7881 7882 // Pass a 2*XLEN argument that has been split into two XLEN values through 7883 // registers or the stack as necessary. 7884 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 7885 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 7886 MVT ValVT2, MVT LocVT2, 7887 ISD::ArgFlagsTy ArgFlags2) { 7888 unsigned XLenInBytes = XLen / 8; 7889 if (Register Reg = State.AllocateReg(ArgGPRs)) { 7890 // At least one half can be passed via register. 7891 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 7892 VA1.getLocVT(), CCValAssign::Full)); 7893 } else { 7894 // Both halves must be passed on the stack, with proper alignment. 7895 Align StackAlign = 7896 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 7897 State.addLoc( 7898 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 7899 State.AllocateStack(XLenInBytes, StackAlign), 7900 VA1.getLocVT(), CCValAssign::Full)); 7901 State.addLoc(CCValAssign::getMem( 7902 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 7903 LocVT2, CCValAssign::Full)); 7904 return false; 7905 } 7906 7907 if (Register Reg = State.AllocateReg(ArgGPRs)) { 7908 // The second half can also be passed via register. 7909 State.addLoc( 7910 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 7911 } else { 7912 // The second half is passed via the stack, without additional alignment. 7913 State.addLoc(CCValAssign::getMem( 7914 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 7915 LocVT2, CCValAssign::Full)); 7916 } 7917 7918 return false; 7919 } 7920 7921 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 7922 Optional<unsigned> FirstMaskArgument, 7923 CCState &State, const RISCVTargetLowering &TLI) { 7924 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 7925 if (RC == &RISCV::VRRegClass) { 7926 // Assign the first mask argument to V0. 7927 // This is an interim calling convention and it may be changed in the 7928 // future. 7929 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 7930 return State.AllocateReg(RISCV::V0); 7931 return State.AllocateReg(ArgVRs); 7932 } 7933 if (RC == &RISCV::VRM2RegClass) 7934 return State.AllocateReg(ArgVRM2s); 7935 if (RC == &RISCV::VRM4RegClass) 7936 return State.AllocateReg(ArgVRM4s); 7937 if (RC == &RISCV::VRM8RegClass) 7938 return State.AllocateReg(ArgVRM8s); 7939 llvm_unreachable("Unhandled register class for ValueType"); 7940 } 7941 7942 // Implements the RISC-V calling convention. Returns true upon failure. 7943 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 7944 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 7945 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 7946 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 7947 Optional<unsigned> FirstMaskArgument) { 7948 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 7949 assert(XLen == 32 || XLen == 64); 7950 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 7951 7952 // Any return value split in to more than two values can't be returned 7953 // directly. Vectors are returned via the available vector registers. 7954 if (!LocVT.isVector() && IsRet && ValNo > 1) 7955 return true; 7956 7957 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 7958 // variadic argument, or if no F16/F32 argument registers are available. 7959 bool UseGPRForF16_F32 = true; 7960 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 7961 // variadic argument, or if no F64 argument registers are available. 7962 bool UseGPRForF64 = true; 7963 7964 switch (ABI) { 7965 default: 7966 llvm_unreachable("Unexpected ABI"); 7967 case RISCVABI::ABI_ILP32: 7968 case RISCVABI::ABI_LP64: 7969 break; 7970 case RISCVABI::ABI_ILP32F: 7971 case RISCVABI::ABI_LP64F: 7972 UseGPRForF16_F32 = !IsFixed; 7973 break; 7974 case RISCVABI::ABI_ILP32D: 7975 case RISCVABI::ABI_LP64D: 7976 UseGPRForF16_F32 = !IsFixed; 7977 UseGPRForF64 = !IsFixed; 7978 break; 7979 } 7980 7981 // FPR16, FPR32, and FPR64 alias each other. 7982 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 7983 UseGPRForF16_F32 = true; 7984 UseGPRForF64 = true; 7985 } 7986 7987 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 7988 // similar local variables rather than directly checking against the target 7989 // ABI. 7990 7991 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 7992 LocVT = XLenVT; 7993 LocInfo = CCValAssign::BCvt; 7994 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 7995 LocVT = MVT::i64; 7996 LocInfo = CCValAssign::BCvt; 7997 } 7998 7999 // If this is a variadic argument, the RISC-V calling convention requires 8000 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 8001 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 8002 // be used regardless of whether the original argument was split during 8003 // legalisation or not. The argument will not be passed by registers if the 8004 // original type is larger than 2*XLEN, so the register alignment rule does 8005 // not apply. 8006 unsigned TwoXLenInBytes = (2 * XLen) / 8; 8007 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 8008 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 8009 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 8010 // Skip 'odd' register if necessary. 8011 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 8012 State.AllocateReg(ArgGPRs); 8013 } 8014 8015 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 8016 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 8017 State.getPendingArgFlags(); 8018 8019 assert(PendingLocs.size() == PendingArgFlags.size() && 8020 "PendingLocs and PendingArgFlags out of sync"); 8021 8022 // Handle passing f64 on RV32D with a soft float ABI or when floating point 8023 // registers are exhausted. 8024 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 8025 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 8026 "Can't lower f64 if it is split"); 8027 // Depending on available argument GPRS, f64 may be passed in a pair of 8028 // GPRs, split between a GPR and the stack, or passed completely on the 8029 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 8030 // cases. 8031 Register Reg = State.AllocateReg(ArgGPRs); 8032 LocVT = MVT::i32; 8033 if (!Reg) { 8034 unsigned StackOffset = State.AllocateStack(8, Align(8)); 8035 State.addLoc( 8036 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8037 return false; 8038 } 8039 if (!State.AllocateReg(ArgGPRs)) 8040 State.AllocateStack(4, Align(4)); 8041 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8042 return false; 8043 } 8044 8045 // Fixed-length vectors are located in the corresponding scalable-vector 8046 // container types. 8047 if (ValVT.isFixedLengthVector()) 8048 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8049 8050 // Split arguments might be passed indirectly, so keep track of the pending 8051 // values. Split vectors are passed via a mix of registers and indirectly, so 8052 // treat them as we would any other argument. 8053 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 8054 LocVT = XLenVT; 8055 LocInfo = CCValAssign::Indirect; 8056 PendingLocs.push_back( 8057 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 8058 PendingArgFlags.push_back(ArgFlags); 8059 if (!ArgFlags.isSplitEnd()) { 8060 return false; 8061 } 8062 } 8063 8064 // If the split argument only had two elements, it should be passed directly 8065 // in registers or on the stack. 8066 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 8067 PendingLocs.size() <= 2) { 8068 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 8069 // Apply the normal calling convention rules to the first half of the 8070 // split argument. 8071 CCValAssign VA = PendingLocs[0]; 8072 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 8073 PendingLocs.clear(); 8074 PendingArgFlags.clear(); 8075 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 8076 ArgFlags); 8077 } 8078 8079 // Allocate to a register if possible, or else a stack slot. 8080 Register Reg; 8081 unsigned StoreSizeBytes = XLen / 8; 8082 Align StackAlign = Align(XLen / 8); 8083 8084 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 8085 Reg = State.AllocateReg(ArgFPR16s); 8086 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 8087 Reg = State.AllocateReg(ArgFPR32s); 8088 else if (ValVT == MVT::f64 && !UseGPRForF64) 8089 Reg = State.AllocateReg(ArgFPR64s); 8090 else if (ValVT.isVector()) { 8091 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 8092 if (!Reg) { 8093 // For return values, the vector must be passed fully via registers or 8094 // via the stack. 8095 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 8096 // but we're using all of them. 8097 if (IsRet) 8098 return true; 8099 // Try using a GPR to pass the address 8100 if ((Reg = State.AllocateReg(ArgGPRs))) { 8101 LocVT = XLenVT; 8102 LocInfo = CCValAssign::Indirect; 8103 } else if (ValVT.isScalableVector()) { 8104 report_fatal_error("Unable to pass scalable vector types on the stack"); 8105 } else { 8106 // Pass fixed-length vectors on the stack. 8107 LocVT = ValVT; 8108 StoreSizeBytes = ValVT.getStoreSize(); 8109 // Align vectors to their element sizes, being careful for vXi1 8110 // vectors. 8111 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8112 } 8113 } 8114 } else { 8115 Reg = State.AllocateReg(ArgGPRs); 8116 } 8117 8118 unsigned StackOffset = 8119 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 8120 8121 // If we reach this point and PendingLocs is non-empty, we must be at the 8122 // end of a split argument that must be passed indirectly. 8123 if (!PendingLocs.empty()) { 8124 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 8125 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 8126 8127 for (auto &It : PendingLocs) { 8128 if (Reg) 8129 It.convertToReg(Reg); 8130 else 8131 It.convertToMem(StackOffset); 8132 State.addLoc(It); 8133 } 8134 PendingLocs.clear(); 8135 PendingArgFlags.clear(); 8136 return false; 8137 } 8138 8139 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 8140 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 8141 "Expected an XLenVT or vector types at this stage"); 8142 8143 if (Reg) { 8144 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8145 return false; 8146 } 8147 8148 // When a floating-point value is passed on the stack, no bit-conversion is 8149 // needed. 8150 if (ValVT.isFloatingPoint()) { 8151 LocVT = ValVT; 8152 LocInfo = CCValAssign::Full; 8153 } 8154 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8155 return false; 8156 } 8157 8158 template <typename ArgTy> 8159 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 8160 for (const auto &ArgIdx : enumerate(Args)) { 8161 MVT ArgVT = ArgIdx.value().VT; 8162 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 8163 return ArgIdx.index(); 8164 } 8165 return None; 8166 } 8167 8168 void RISCVTargetLowering::analyzeInputArgs( 8169 MachineFunction &MF, CCState &CCInfo, 8170 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 8171 RISCVCCAssignFn Fn) const { 8172 unsigned NumArgs = Ins.size(); 8173 FunctionType *FType = MF.getFunction().getFunctionType(); 8174 8175 Optional<unsigned> FirstMaskArgument; 8176 if (Subtarget.hasVInstructions()) 8177 FirstMaskArgument = preAssignMask(Ins); 8178 8179 for (unsigned i = 0; i != NumArgs; ++i) { 8180 MVT ArgVT = Ins[i].VT; 8181 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 8182 8183 Type *ArgTy = nullptr; 8184 if (IsRet) 8185 ArgTy = FType->getReturnType(); 8186 else if (Ins[i].isOrigArg()) 8187 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 8188 8189 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8190 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8191 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 8192 FirstMaskArgument)) { 8193 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 8194 << EVT(ArgVT).getEVTString() << '\n'); 8195 llvm_unreachable(nullptr); 8196 } 8197 } 8198 } 8199 8200 void RISCVTargetLowering::analyzeOutputArgs( 8201 MachineFunction &MF, CCState &CCInfo, 8202 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 8203 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 8204 unsigned NumArgs = Outs.size(); 8205 8206 Optional<unsigned> FirstMaskArgument; 8207 if (Subtarget.hasVInstructions()) 8208 FirstMaskArgument = preAssignMask(Outs); 8209 8210 for (unsigned i = 0; i != NumArgs; i++) { 8211 MVT ArgVT = Outs[i].VT; 8212 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8213 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 8214 8215 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8216 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8217 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 8218 FirstMaskArgument)) { 8219 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 8220 << EVT(ArgVT).getEVTString() << "\n"); 8221 llvm_unreachable(nullptr); 8222 } 8223 } 8224 } 8225 8226 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 8227 // values. 8228 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 8229 const CCValAssign &VA, const SDLoc &DL, 8230 const RISCVSubtarget &Subtarget) { 8231 switch (VA.getLocInfo()) { 8232 default: 8233 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8234 case CCValAssign::Full: 8235 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 8236 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 8237 break; 8238 case CCValAssign::BCvt: 8239 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8240 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 8241 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8242 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 8243 else 8244 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 8245 break; 8246 } 8247 return Val; 8248 } 8249 8250 // The caller is responsible for loading the full value if the argument is 8251 // passed with CCValAssign::Indirect. 8252 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 8253 const CCValAssign &VA, const SDLoc &DL, 8254 const RISCVTargetLowering &TLI) { 8255 MachineFunction &MF = DAG.getMachineFunction(); 8256 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8257 EVT LocVT = VA.getLocVT(); 8258 SDValue Val; 8259 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 8260 Register VReg = RegInfo.createVirtualRegister(RC); 8261 RegInfo.addLiveIn(VA.getLocReg(), VReg); 8262 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 8263 8264 if (VA.getLocInfo() == CCValAssign::Indirect) 8265 return Val; 8266 8267 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 8268 } 8269 8270 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 8271 const CCValAssign &VA, const SDLoc &DL, 8272 const RISCVSubtarget &Subtarget) { 8273 EVT LocVT = VA.getLocVT(); 8274 8275 switch (VA.getLocInfo()) { 8276 default: 8277 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8278 case CCValAssign::Full: 8279 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 8280 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 8281 break; 8282 case CCValAssign::BCvt: 8283 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8284 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 8285 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8286 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 8287 else 8288 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 8289 break; 8290 } 8291 return Val; 8292 } 8293 8294 // The caller is responsible for loading the full value if the argument is 8295 // passed with CCValAssign::Indirect. 8296 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 8297 const CCValAssign &VA, const SDLoc &DL) { 8298 MachineFunction &MF = DAG.getMachineFunction(); 8299 MachineFrameInfo &MFI = MF.getFrameInfo(); 8300 EVT LocVT = VA.getLocVT(); 8301 EVT ValVT = VA.getValVT(); 8302 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 8303 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 8304 /*Immutable=*/true); 8305 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 8306 SDValue Val; 8307 8308 ISD::LoadExtType ExtType; 8309 switch (VA.getLocInfo()) { 8310 default: 8311 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8312 case CCValAssign::Full: 8313 case CCValAssign::Indirect: 8314 case CCValAssign::BCvt: 8315 ExtType = ISD::NON_EXTLOAD; 8316 break; 8317 } 8318 Val = DAG.getExtLoad( 8319 ExtType, DL, LocVT, Chain, FIN, 8320 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 8321 return Val; 8322 } 8323 8324 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 8325 const CCValAssign &VA, const SDLoc &DL) { 8326 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 8327 "Unexpected VA"); 8328 MachineFunction &MF = DAG.getMachineFunction(); 8329 MachineFrameInfo &MFI = MF.getFrameInfo(); 8330 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8331 8332 if (VA.isMemLoc()) { 8333 // f64 is passed on the stack. 8334 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 8335 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8336 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 8337 MachinePointerInfo::getFixedStack(MF, FI)); 8338 } 8339 8340 assert(VA.isRegLoc() && "Expected register VA assignment"); 8341 8342 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8343 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 8344 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 8345 SDValue Hi; 8346 if (VA.getLocReg() == RISCV::X17) { 8347 // Second half of f64 is passed on the stack. 8348 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 8349 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8350 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 8351 MachinePointerInfo::getFixedStack(MF, FI)); 8352 } else { 8353 // Second half of f64 is passed in another GPR. 8354 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8355 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 8356 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 8357 } 8358 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 8359 } 8360 8361 // FastCC has less than 1% performance improvement for some particular 8362 // benchmark. But theoretically, it may has benenfit for some cases. 8363 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 8364 unsigned ValNo, MVT ValVT, MVT LocVT, 8365 CCValAssign::LocInfo LocInfo, 8366 ISD::ArgFlagsTy ArgFlags, CCState &State, 8367 bool IsFixed, bool IsRet, Type *OrigTy, 8368 const RISCVTargetLowering &TLI, 8369 Optional<unsigned> FirstMaskArgument) { 8370 8371 // X5 and X6 might be used for save-restore libcall. 8372 static const MCPhysReg GPRList[] = { 8373 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 8374 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 8375 RISCV::X29, RISCV::X30, RISCV::X31}; 8376 8377 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8378 if (unsigned Reg = State.AllocateReg(GPRList)) { 8379 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8380 return false; 8381 } 8382 } 8383 8384 if (LocVT == MVT::f16) { 8385 static const MCPhysReg FPR16List[] = { 8386 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 8387 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 8388 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 8389 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 8390 if (unsigned Reg = State.AllocateReg(FPR16List)) { 8391 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8392 return false; 8393 } 8394 } 8395 8396 if (LocVT == MVT::f32) { 8397 static const MCPhysReg FPR32List[] = { 8398 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 8399 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 8400 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 8401 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 8402 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8403 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8404 return false; 8405 } 8406 } 8407 8408 if (LocVT == MVT::f64) { 8409 static const MCPhysReg FPR64List[] = { 8410 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 8411 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 8412 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 8413 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 8414 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8415 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8416 return false; 8417 } 8418 } 8419 8420 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 8421 unsigned Offset4 = State.AllocateStack(4, Align(4)); 8422 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 8423 return false; 8424 } 8425 8426 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 8427 unsigned Offset5 = State.AllocateStack(8, Align(8)); 8428 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 8429 return false; 8430 } 8431 8432 if (LocVT.isVector()) { 8433 if (unsigned Reg = 8434 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 8435 // Fixed-length vectors are located in the corresponding scalable-vector 8436 // container types. 8437 if (ValVT.isFixedLengthVector()) 8438 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8439 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8440 } else { 8441 // Try and pass the address via a "fast" GPR. 8442 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 8443 LocInfo = CCValAssign::Indirect; 8444 LocVT = TLI.getSubtarget().getXLenVT(); 8445 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 8446 } else if (ValVT.isFixedLengthVector()) { 8447 auto StackAlign = 8448 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8449 unsigned StackOffset = 8450 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 8451 State.addLoc( 8452 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8453 } else { 8454 // Can't pass scalable vectors on the stack. 8455 return true; 8456 } 8457 } 8458 8459 return false; 8460 } 8461 8462 return true; // CC didn't match. 8463 } 8464 8465 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 8466 CCValAssign::LocInfo LocInfo, 8467 ISD::ArgFlagsTy ArgFlags, CCState &State) { 8468 8469 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8470 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 8471 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 8472 static const MCPhysReg GPRList[] = { 8473 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 8474 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 8475 if (unsigned Reg = State.AllocateReg(GPRList)) { 8476 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8477 return false; 8478 } 8479 } 8480 8481 if (LocVT == MVT::f32) { 8482 // Pass in STG registers: F1, ..., F6 8483 // fs0 ... fs5 8484 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 8485 RISCV::F18_F, RISCV::F19_F, 8486 RISCV::F20_F, RISCV::F21_F}; 8487 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8488 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8489 return false; 8490 } 8491 } 8492 8493 if (LocVT == MVT::f64) { 8494 // Pass in STG registers: D1, ..., D6 8495 // fs6 ... fs11 8496 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 8497 RISCV::F24_D, RISCV::F25_D, 8498 RISCV::F26_D, RISCV::F27_D}; 8499 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8500 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8501 return false; 8502 } 8503 } 8504 8505 report_fatal_error("No registers left in GHC calling convention"); 8506 return true; 8507 } 8508 8509 // Transform physical registers into virtual registers. 8510 SDValue RISCVTargetLowering::LowerFormalArguments( 8511 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 8512 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 8513 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 8514 8515 MachineFunction &MF = DAG.getMachineFunction(); 8516 8517 switch (CallConv) { 8518 default: 8519 report_fatal_error("Unsupported calling convention"); 8520 case CallingConv::C: 8521 case CallingConv::Fast: 8522 break; 8523 case CallingConv::GHC: 8524 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 8525 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 8526 report_fatal_error( 8527 "GHC calling convention requires the F and D instruction set extensions"); 8528 } 8529 8530 const Function &Func = MF.getFunction(); 8531 if (Func.hasFnAttribute("interrupt")) { 8532 if (!Func.arg_empty()) 8533 report_fatal_error( 8534 "Functions with the interrupt attribute cannot have arguments!"); 8535 8536 StringRef Kind = 8537 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 8538 8539 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 8540 report_fatal_error( 8541 "Function interrupt attribute argument not supported!"); 8542 } 8543 8544 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8545 MVT XLenVT = Subtarget.getXLenVT(); 8546 unsigned XLenInBytes = Subtarget.getXLen() / 8; 8547 // Used with vargs to acumulate store chains. 8548 std::vector<SDValue> OutChains; 8549 8550 // Assign locations to all of the incoming arguments. 8551 SmallVector<CCValAssign, 16> ArgLocs; 8552 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8553 8554 if (CallConv == CallingConv::GHC) 8555 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 8556 else 8557 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 8558 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8559 : CC_RISCV); 8560 8561 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 8562 CCValAssign &VA = ArgLocs[i]; 8563 SDValue ArgValue; 8564 // Passing f64 on RV32D with a soft float ABI must be handled as a special 8565 // case. 8566 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 8567 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 8568 else if (VA.isRegLoc()) 8569 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 8570 else 8571 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 8572 8573 if (VA.getLocInfo() == CCValAssign::Indirect) { 8574 // If the original argument was split and passed by reference (e.g. i128 8575 // on RV32), we need to load all parts of it here (using the same 8576 // address). Vectors may be partly split to registers and partly to the 8577 // stack, in which case the base address is partly offset and subsequent 8578 // stores are relative to that. 8579 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 8580 MachinePointerInfo())); 8581 unsigned ArgIndex = Ins[i].OrigArgIndex; 8582 unsigned ArgPartOffset = Ins[i].PartOffset; 8583 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 8584 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 8585 CCValAssign &PartVA = ArgLocs[i + 1]; 8586 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 8587 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 8588 if (PartVA.getValVT().isScalableVector()) 8589 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8590 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 8591 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 8592 MachinePointerInfo())); 8593 ++i; 8594 } 8595 continue; 8596 } 8597 InVals.push_back(ArgValue); 8598 } 8599 8600 if (IsVarArg) { 8601 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 8602 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 8603 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 8604 MachineFrameInfo &MFI = MF.getFrameInfo(); 8605 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8606 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 8607 8608 // Offset of the first variable argument from stack pointer, and size of 8609 // the vararg save area. For now, the varargs save area is either zero or 8610 // large enough to hold a0-a7. 8611 int VaArgOffset, VarArgsSaveSize; 8612 8613 // If all registers are allocated, then all varargs must be passed on the 8614 // stack and we don't need to save any argregs. 8615 if (ArgRegs.size() == Idx) { 8616 VaArgOffset = CCInfo.getNextStackOffset(); 8617 VarArgsSaveSize = 0; 8618 } else { 8619 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 8620 VaArgOffset = -VarArgsSaveSize; 8621 } 8622 8623 // Record the frame index of the first variable argument 8624 // which is a value necessary to VASTART. 8625 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8626 RVFI->setVarArgsFrameIndex(FI); 8627 8628 // If saving an odd number of registers then create an extra stack slot to 8629 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 8630 // offsets to even-numbered registered remain 2*XLEN-aligned. 8631 if (Idx % 2) { 8632 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 8633 VarArgsSaveSize += XLenInBytes; 8634 } 8635 8636 // Copy the integer registers that may have been used for passing varargs 8637 // to the vararg save area. 8638 for (unsigned I = Idx; I < ArgRegs.size(); 8639 ++I, VaArgOffset += XLenInBytes) { 8640 const Register Reg = RegInfo.createVirtualRegister(RC); 8641 RegInfo.addLiveIn(ArgRegs[I], Reg); 8642 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 8643 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8644 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8645 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 8646 MachinePointerInfo::getFixedStack(MF, FI)); 8647 cast<StoreSDNode>(Store.getNode()) 8648 ->getMemOperand() 8649 ->setValue((Value *)nullptr); 8650 OutChains.push_back(Store); 8651 } 8652 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 8653 } 8654 8655 // All stores are grouped in one node to allow the matching between 8656 // the size of Ins and InVals. This only happens for vararg functions. 8657 if (!OutChains.empty()) { 8658 OutChains.push_back(Chain); 8659 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 8660 } 8661 8662 return Chain; 8663 } 8664 8665 /// isEligibleForTailCallOptimization - Check whether the call is eligible 8666 /// for tail call optimization. 8667 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 8668 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 8669 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 8670 const SmallVector<CCValAssign, 16> &ArgLocs) const { 8671 8672 auto &Callee = CLI.Callee; 8673 auto CalleeCC = CLI.CallConv; 8674 auto &Outs = CLI.Outs; 8675 auto &Caller = MF.getFunction(); 8676 auto CallerCC = Caller.getCallingConv(); 8677 8678 // Exception-handling functions need a special set of instructions to 8679 // indicate a return to the hardware. Tail-calling another function would 8680 // probably break this. 8681 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 8682 // should be expanded as new function attributes are introduced. 8683 if (Caller.hasFnAttribute("interrupt")) 8684 return false; 8685 8686 // Do not tail call opt if the stack is used to pass parameters. 8687 if (CCInfo.getNextStackOffset() != 0) 8688 return false; 8689 8690 // Do not tail call opt if any parameters need to be passed indirectly. 8691 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 8692 // passed indirectly. So the address of the value will be passed in a 8693 // register, or if not available, then the address is put on the stack. In 8694 // order to pass indirectly, space on the stack often needs to be allocated 8695 // in order to store the value. In this case the CCInfo.getNextStackOffset() 8696 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 8697 // are passed CCValAssign::Indirect. 8698 for (auto &VA : ArgLocs) 8699 if (VA.getLocInfo() == CCValAssign::Indirect) 8700 return false; 8701 8702 // Do not tail call opt if either caller or callee uses struct return 8703 // semantics. 8704 auto IsCallerStructRet = Caller.hasStructRetAttr(); 8705 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 8706 if (IsCallerStructRet || IsCalleeStructRet) 8707 return false; 8708 8709 // Externally-defined functions with weak linkage should not be 8710 // tail-called. The behaviour of branch instructions in this situation (as 8711 // used for tail calls) is implementation-defined, so we cannot rely on the 8712 // linker replacing the tail call with a return. 8713 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 8714 const GlobalValue *GV = G->getGlobal(); 8715 if (GV->hasExternalWeakLinkage()) 8716 return false; 8717 } 8718 8719 // The callee has to preserve all registers the caller needs to preserve. 8720 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8721 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 8722 if (CalleeCC != CallerCC) { 8723 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 8724 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 8725 return false; 8726 } 8727 8728 // Byval parameters hand the function a pointer directly into the stack area 8729 // we want to reuse during a tail call. Working around this *is* possible 8730 // but less efficient and uglier in LowerCall. 8731 for (auto &Arg : Outs) 8732 if (Arg.Flags.isByVal()) 8733 return false; 8734 8735 return true; 8736 } 8737 8738 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 8739 return DAG.getDataLayout().getPrefTypeAlign( 8740 VT.getTypeForEVT(*DAG.getContext())); 8741 } 8742 8743 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 8744 // and output parameter nodes. 8745 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 8746 SmallVectorImpl<SDValue> &InVals) const { 8747 SelectionDAG &DAG = CLI.DAG; 8748 SDLoc &DL = CLI.DL; 8749 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 8750 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 8751 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 8752 SDValue Chain = CLI.Chain; 8753 SDValue Callee = CLI.Callee; 8754 bool &IsTailCall = CLI.IsTailCall; 8755 CallingConv::ID CallConv = CLI.CallConv; 8756 bool IsVarArg = CLI.IsVarArg; 8757 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8758 MVT XLenVT = Subtarget.getXLenVT(); 8759 8760 MachineFunction &MF = DAG.getMachineFunction(); 8761 8762 // Analyze the operands of the call, assigning locations to each operand. 8763 SmallVector<CCValAssign, 16> ArgLocs; 8764 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8765 8766 if (CallConv == CallingConv::GHC) 8767 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 8768 else 8769 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 8770 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8771 : CC_RISCV); 8772 8773 // Check if it's really possible to do a tail call. 8774 if (IsTailCall) 8775 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 8776 8777 if (IsTailCall) 8778 ++NumTailCalls; 8779 else if (CLI.CB && CLI.CB->isMustTailCall()) 8780 report_fatal_error("failed to perform tail call elimination on a call " 8781 "site marked musttail"); 8782 8783 // Get a count of how many bytes are to be pushed on the stack. 8784 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 8785 8786 // Create local copies for byval args 8787 SmallVector<SDValue, 8> ByValArgs; 8788 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 8789 ISD::ArgFlagsTy Flags = Outs[i].Flags; 8790 if (!Flags.isByVal()) 8791 continue; 8792 8793 SDValue Arg = OutVals[i]; 8794 unsigned Size = Flags.getByValSize(); 8795 Align Alignment = Flags.getNonZeroByValAlign(); 8796 8797 int FI = 8798 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 8799 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8800 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 8801 8802 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 8803 /*IsVolatile=*/false, 8804 /*AlwaysInline=*/false, IsTailCall, 8805 MachinePointerInfo(), MachinePointerInfo()); 8806 ByValArgs.push_back(FIPtr); 8807 } 8808 8809 if (!IsTailCall) 8810 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 8811 8812 // Copy argument values to their designated locations. 8813 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 8814 SmallVector<SDValue, 8> MemOpChains; 8815 SDValue StackPtr; 8816 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 8817 CCValAssign &VA = ArgLocs[i]; 8818 SDValue ArgValue = OutVals[i]; 8819 ISD::ArgFlagsTy Flags = Outs[i].Flags; 8820 8821 // Handle passing f64 on RV32D with a soft float ABI as a special case. 8822 bool IsF64OnRV32DSoftABI = 8823 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 8824 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 8825 SDValue SplitF64 = DAG.getNode( 8826 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 8827 SDValue Lo = SplitF64.getValue(0); 8828 SDValue Hi = SplitF64.getValue(1); 8829 8830 Register RegLo = VA.getLocReg(); 8831 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 8832 8833 if (RegLo == RISCV::X17) { 8834 // Second half of f64 is passed on the stack. 8835 // Work out the address of the stack slot. 8836 if (!StackPtr.getNode()) 8837 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 8838 // Emit the store. 8839 MemOpChains.push_back( 8840 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 8841 } else { 8842 // Second half of f64 is passed in another GPR. 8843 assert(RegLo < RISCV::X31 && "Invalid register pair"); 8844 Register RegHigh = RegLo + 1; 8845 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 8846 } 8847 continue; 8848 } 8849 8850 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 8851 // as any other MemLoc. 8852 8853 // Promote the value if needed. 8854 // For now, only handle fully promoted and indirect arguments. 8855 if (VA.getLocInfo() == CCValAssign::Indirect) { 8856 // Store the argument in a stack slot and pass its address. 8857 Align StackAlign = 8858 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 8859 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 8860 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 8861 // If the original argument was split (e.g. i128), we need 8862 // to store the required parts of it here (and pass just one address). 8863 // Vectors may be partly split to registers and partly to the stack, in 8864 // which case the base address is partly offset and subsequent stores are 8865 // relative to that. 8866 unsigned ArgIndex = Outs[i].OrigArgIndex; 8867 unsigned ArgPartOffset = Outs[i].PartOffset; 8868 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 8869 // Calculate the total size to store. We don't have access to what we're 8870 // actually storing other than performing the loop and collecting the 8871 // info. 8872 SmallVector<std::pair<SDValue, SDValue>> Parts; 8873 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 8874 SDValue PartValue = OutVals[i + 1]; 8875 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 8876 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 8877 EVT PartVT = PartValue.getValueType(); 8878 if (PartVT.isScalableVector()) 8879 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8880 StoredSize += PartVT.getStoreSize(); 8881 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 8882 Parts.push_back(std::make_pair(PartValue, Offset)); 8883 ++i; 8884 } 8885 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 8886 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 8887 MemOpChains.push_back( 8888 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 8889 MachinePointerInfo::getFixedStack(MF, FI))); 8890 for (const auto &Part : Parts) { 8891 SDValue PartValue = Part.first; 8892 SDValue PartOffset = Part.second; 8893 SDValue Address = 8894 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 8895 MemOpChains.push_back( 8896 DAG.getStore(Chain, DL, PartValue, Address, 8897 MachinePointerInfo::getFixedStack(MF, FI))); 8898 } 8899 ArgValue = SpillSlot; 8900 } else { 8901 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 8902 } 8903 8904 // Use local copy if it is a byval arg. 8905 if (Flags.isByVal()) 8906 ArgValue = ByValArgs[j++]; 8907 8908 if (VA.isRegLoc()) { 8909 // Queue up the argument copies and emit them at the end. 8910 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 8911 } else { 8912 assert(VA.isMemLoc() && "Argument not register or memory"); 8913 assert(!IsTailCall && "Tail call not allowed if stack is used " 8914 "for passing parameters"); 8915 8916 // Work out the address of the stack slot. 8917 if (!StackPtr.getNode()) 8918 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 8919 SDValue Address = 8920 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 8921 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 8922 8923 // Emit the store. 8924 MemOpChains.push_back( 8925 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 8926 } 8927 } 8928 8929 // Join the stores, which are independent of one another. 8930 if (!MemOpChains.empty()) 8931 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 8932 8933 SDValue Glue; 8934 8935 // Build a sequence of copy-to-reg nodes, chained and glued together. 8936 for (auto &Reg : RegsToPass) { 8937 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 8938 Glue = Chain.getValue(1); 8939 } 8940 8941 // Validate that none of the argument registers have been marked as 8942 // reserved, if so report an error. Do the same for the return address if this 8943 // is not a tailcall. 8944 validateCCReservedRegs(RegsToPass, MF); 8945 if (!IsTailCall && 8946 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 8947 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8948 MF.getFunction(), 8949 "Return address register required, but has been reserved."}); 8950 8951 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 8952 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 8953 // split it and then direct call can be matched by PseudoCALL. 8954 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 8955 const GlobalValue *GV = S->getGlobal(); 8956 8957 unsigned OpFlags = RISCVII::MO_CALL; 8958 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 8959 OpFlags = RISCVII::MO_PLT; 8960 8961 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 8962 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 8963 unsigned OpFlags = RISCVII::MO_CALL; 8964 8965 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 8966 nullptr)) 8967 OpFlags = RISCVII::MO_PLT; 8968 8969 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 8970 } 8971 8972 // The first call operand is the chain and the second is the target address. 8973 SmallVector<SDValue, 8> Ops; 8974 Ops.push_back(Chain); 8975 Ops.push_back(Callee); 8976 8977 // Add argument registers to the end of the list so that they are 8978 // known live into the call. 8979 for (auto &Reg : RegsToPass) 8980 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 8981 8982 if (!IsTailCall) { 8983 // Add a register mask operand representing the call-preserved registers. 8984 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8985 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 8986 assert(Mask && "Missing call preserved mask for calling convention"); 8987 Ops.push_back(DAG.getRegisterMask(Mask)); 8988 } 8989 8990 // Glue the call to the argument copies, if any. 8991 if (Glue.getNode()) 8992 Ops.push_back(Glue); 8993 8994 // Emit the call. 8995 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8996 8997 if (IsTailCall) { 8998 MF.getFrameInfo().setHasTailCall(); 8999 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 9000 } 9001 9002 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 9003 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 9004 Glue = Chain.getValue(1); 9005 9006 // Mark the end of the call, which is glued to the call itself. 9007 Chain = DAG.getCALLSEQ_END(Chain, 9008 DAG.getConstant(NumBytes, DL, PtrVT, true), 9009 DAG.getConstant(0, DL, PtrVT, true), 9010 Glue, DL); 9011 Glue = Chain.getValue(1); 9012 9013 // Assign locations to each value returned by this call. 9014 SmallVector<CCValAssign, 16> RVLocs; 9015 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 9016 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 9017 9018 // Copy all of the result registers out of their specified physreg. 9019 for (auto &VA : RVLocs) { 9020 // Copy the value out 9021 SDValue RetValue = 9022 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 9023 // Glue the RetValue to the end of the call sequence 9024 Chain = RetValue.getValue(1); 9025 Glue = RetValue.getValue(2); 9026 9027 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9028 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 9029 SDValue RetValue2 = 9030 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 9031 Chain = RetValue2.getValue(1); 9032 Glue = RetValue2.getValue(2); 9033 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 9034 RetValue2); 9035 } 9036 9037 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 9038 9039 InVals.push_back(RetValue); 9040 } 9041 9042 return Chain; 9043 } 9044 9045 bool RISCVTargetLowering::CanLowerReturn( 9046 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 9047 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 9048 SmallVector<CCValAssign, 16> RVLocs; 9049 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 9050 9051 Optional<unsigned> FirstMaskArgument; 9052 if (Subtarget.hasVInstructions()) 9053 FirstMaskArgument = preAssignMask(Outs); 9054 9055 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9056 MVT VT = Outs[i].VT; 9057 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9058 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9059 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 9060 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 9061 *this, FirstMaskArgument)) 9062 return false; 9063 } 9064 return true; 9065 } 9066 9067 SDValue 9068 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 9069 bool IsVarArg, 9070 const SmallVectorImpl<ISD::OutputArg> &Outs, 9071 const SmallVectorImpl<SDValue> &OutVals, 9072 const SDLoc &DL, SelectionDAG &DAG) const { 9073 const MachineFunction &MF = DAG.getMachineFunction(); 9074 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9075 9076 // Stores the assignment of the return value to a location. 9077 SmallVector<CCValAssign, 16> RVLocs; 9078 9079 // Info about the registers and stack slot. 9080 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 9081 *DAG.getContext()); 9082 9083 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 9084 nullptr, CC_RISCV); 9085 9086 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 9087 report_fatal_error("GHC functions return void only"); 9088 9089 SDValue Glue; 9090 SmallVector<SDValue, 4> RetOps(1, Chain); 9091 9092 // Copy the result values into the output registers. 9093 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 9094 SDValue Val = OutVals[i]; 9095 CCValAssign &VA = RVLocs[i]; 9096 assert(VA.isRegLoc() && "Can only return in registers!"); 9097 9098 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9099 // Handle returning f64 on RV32D with a soft float ABI. 9100 assert(VA.isRegLoc() && "Expected return via registers"); 9101 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 9102 DAG.getVTList(MVT::i32, MVT::i32), Val); 9103 SDValue Lo = SplitF64.getValue(0); 9104 SDValue Hi = SplitF64.getValue(1); 9105 Register RegLo = VA.getLocReg(); 9106 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9107 Register RegHi = RegLo + 1; 9108 9109 if (STI.isRegisterReservedByUser(RegLo) || 9110 STI.isRegisterReservedByUser(RegHi)) 9111 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9112 MF.getFunction(), 9113 "Return value register required, but has been reserved."}); 9114 9115 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 9116 Glue = Chain.getValue(1); 9117 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 9118 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 9119 Glue = Chain.getValue(1); 9120 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 9121 } else { 9122 // Handle a 'normal' return. 9123 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 9124 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 9125 9126 if (STI.isRegisterReservedByUser(VA.getLocReg())) 9127 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9128 MF.getFunction(), 9129 "Return value register required, but has been reserved."}); 9130 9131 // Guarantee that all emitted copies are stuck together. 9132 Glue = Chain.getValue(1); 9133 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 9134 } 9135 } 9136 9137 RetOps[0] = Chain; // Update chain. 9138 9139 // Add the glue node if we have it. 9140 if (Glue.getNode()) { 9141 RetOps.push_back(Glue); 9142 } 9143 9144 unsigned RetOpc = RISCVISD::RET_FLAG; 9145 // Interrupt service routines use different return instructions. 9146 const Function &Func = DAG.getMachineFunction().getFunction(); 9147 if (Func.hasFnAttribute("interrupt")) { 9148 if (!Func.getReturnType()->isVoidTy()) 9149 report_fatal_error( 9150 "Functions with the interrupt attribute must have void return type!"); 9151 9152 MachineFunction &MF = DAG.getMachineFunction(); 9153 StringRef Kind = 9154 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9155 9156 if (Kind == "user") 9157 RetOpc = RISCVISD::URET_FLAG; 9158 else if (Kind == "supervisor") 9159 RetOpc = RISCVISD::SRET_FLAG; 9160 else 9161 RetOpc = RISCVISD::MRET_FLAG; 9162 } 9163 9164 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 9165 } 9166 9167 void RISCVTargetLowering::validateCCReservedRegs( 9168 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 9169 MachineFunction &MF) const { 9170 const Function &F = MF.getFunction(); 9171 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9172 9173 if (llvm::any_of(Regs, [&STI](auto Reg) { 9174 return STI.isRegisterReservedByUser(Reg.first); 9175 })) 9176 F.getContext().diagnose(DiagnosticInfoUnsupported{ 9177 F, "Argument register required, but has been reserved."}); 9178 } 9179 9180 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 9181 return CI->isTailCall(); 9182 } 9183 9184 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 9185 #define NODE_NAME_CASE(NODE) \ 9186 case RISCVISD::NODE: \ 9187 return "RISCVISD::" #NODE; 9188 // clang-format off 9189 switch ((RISCVISD::NodeType)Opcode) { 9190 case RISCVISD::FIRST_NUMBER: 9191 break; 9192 NODE_NAME_CASE(RET_FLAG) 9193 NODE_NAME_CASE(URET_FLAG) 9194 NODE_NAME_CASE(SRET_FLAG) 9195 NODE_NAME_CASE(MRET_FLAG) 9196 NODE_NAME_CASE(CALL) 9197 NODE_NAME_CASE(SELECT_CC) 9198 NODE_NAME_CASE(BR_CC) 9199 NODE_NAME_CASE(BuildPairF64) 9200 NODE_NAME_CASE(SplitF64) 9201 NODE_NAME_CASE(TAIL) 9202 NODE_NAME_CASE(MULHSU) 9203 NODE_NAME_CASE(SLLW) 9204 NODE_NAME_CASE(SRAW) 9205 NODE_NAME_CASE(SRLW) 9206 NODE_NAME_CASE(DIVW) 9207 NODE_NAME_CASE(DIVUW) 9208 NODE_NAME_CASE(REMUW) 9209 NODE_NAME_CASE(ROLW) 9210 NODE_NAME_CASE(RORW) 9211 NODE_NAME_CASE(CLZW) 9212 NODE_NAME_CASE(CTZW) 9213 NODE_NAME_CASE(FSLW) 9214 NODE_NAME_CASE(FSRW) 9215 NODE_NAME_CASE(FSL) 9216 NODE_NAME_CASE(FSR) 9217 NODE_NAME_CASE(FMV_H_X) 9218 NODE_NAME_CASE(FMV_X_ANYEXTH) 9219 NODE_NAME_CASE(FMV_W_X_RV64) 9220 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 9221 NODE_NAME_CASE(FCVT_X_RTZ) 9222 NODE_NAME_CASE(FCVT_XU_RTZ) 9223 NODE_NAME_CASE(FCVT_W_RTZ_RV64) 9224 NODE_NAME_CASE(FCVT_WU_RTZ_RV64) 9225 NODE_NAME_CASE(READ_CYCLE_WIDE) 9226 NODE_NAME_CASE(GREV) 9227 NODE_NAME_CASE(GREVW) 9228 NODE_NAME_CASE(GORC) 9229 NODE_NAME_CASE(GORCW) 9230 NODE_NAME_CASE(SHFL) 9231 NODE_NAME_CASE(SHFLW) 9232 NODE_NAME_CASE(UNSHFL) 9233 NODE_NAME_CASE(UNSHFLW) 9234 NODE_NAME_CASE(BCOMPRESS) 9235 NODE_NAME_CASE(BCOMPRESSW) 9236 NODE_NAME_CASE(BDECOMPRESS) 9237 NODE_NAME_CASE(BDECOMPRESSW) 9238 NODE_NAME_CASE(VMV_V_X_VL) 9239 NODE_NAME_CASE(VFMV_V_F_VL) 9240 NODE_NAME_CASE(VMV_X_S) 9241 NODE_NAME_CASE(VMV_S_X_VL) 9242 NODE_NAME_CASE(VFMV_S_F_VL) 9243 NODE_NAME_CASE(SPLAT_VECTOR_I64) 9244 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 9245 NODE_NAME_CASE(READ_VLENB) 9246 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 9247 NODE_NAME_CASE(VSLIDEUP_VL) 9248 NODE_NAME_CASE(VSLIDE1UP_VL) 9249 NODE_NAME_CASE(VSLIDEDOWN_VL) 9250 NODE_NAME_CASE(VSLIDE1DOWN_VL) 9251 NODE_NAME_CASE(VID_VL) 9252 NODE_NAME_CASE(VFNCVT_ROD_VL) 9253 NODE_NAME_CASE(VECREDUCE_ADD_VL) 9254 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 9255 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 9256 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 9257 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 9258 NODE_NAME_CASE(VECREDUCE_AND_VL) 9259 NODE_NAME_CASE(VECREDUCE_OR_VL) 9260 NODE_NAME_CASE(VECREDUCE_XOR_VL) 9261 NODE_NAME_CASE(VECREDUCE_FADD_VL) 9262 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 9263 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 9264 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 9265 NODE_NAME_CASE(ADD_VL) 9266 NODE_NAME_CASE(AND_VL) 9267 NODE_NAME_CASE(MUL_VL) 9268 NODE_NAME_CASE(OR_VL) 9269 NODE_NAME_CASE(SDIV_VL) 9270 NODE_NAME_CASE(SHL_VL) 9271 NODE_NAME_CASE(SREM_VL) 9272 NODE_NAME_CASE(SRA_VL) 9273 NODE_NAME_CASE(SRL_VL) 9274 NODE_NAME_CASE(SUB_VL) 9275 NODE_NAME_CASE(UDIV_VL) 9276 NODE_NAME_CASE(UREM_VL) 9277 NODE_NAME_CASE(XOR_VL) 9278 NODE_NAME_CASE(SADDSAT_VL) 9279 NODE_NAME_CASE(UADDSAT_VL) 9280 NODE_NAME_CASE(SSUBSAT_VL) 9281 NODE_NAME_CASE(USUBSAT_VL) 9282 NODE_NAME_CASE(FADD_VL) 9283 NODE_NAME_CASE(FSUB_VL) 9284 NODE_NAME_CASE(FMUL_VL) 9285 NODE_NAME_CASE(FDIV_VL) 9286 NODE_NAME_CASE(FNEG_VL) 9287 NODE_NAME_CASE(FABS_VL) 9288 NODE_NAME_CASE(FSQRT_VL) 9289 NODE_NAME_CASE(FMA_VL) 9290 NODE_NAME_CASE(FCOPYSIGN_VL) 9291 NODE_NAME_CASE(SMIN_VL) 9292 NODE_NAME_CASE(SMAX_VL) 9293 NODE_NAME_CASE(UMIN_VL) 9294 NODE_NAME_CASE(UMAX_VL) 9295 NODE_NAME_CASE(FMINNUM_VL) 9296 NODE_NAME_CASE(FMAXNUM_VL) 9297 NODE_NAME_CASE(MULHS_VL) 9298 NODE_NAME_CASE(MULHU_VL) 9299 NODE_NAME_CASE(FP_TO_SINT_VL) 9300 NODE_NAME_CASE(FP_TO_UINT_VL) 9301 NODE_NAME_CASE(SINT_TO_FP_VL) 9302 NODE_NAME_CASE(UINT_TO_FP_VL) 9303 NODE_NAME_CASE(FP_EXTEND_VL) 9304 NODE_NAME_CASE(FP_ROUND_VL) 9305 NODE_NAME_CASE(VWMUL_VL) 9306 NODE_NAME_CASE(VWMULU_VL) 9307 NODE_NAME_CASE(SETCC_VL) 9308 NODE_NAME_CASE(VSELECT_VL) 9309 NODE_NAME_CASE(VMAND_VL) 9310 NODE_NAME_CASE(VMOR_VL) 9311 NODE_NAME_CASE(VMXOR_VL) 9312 NODE_NAME_CASE(VMCLR_VL) 9313 NODE_NAME_CASE(VMSET_VL) 9314 NODE_NAME_CASE(VRGATHER_VX_VL) 9315 NODE_NAME_CASE(VRGATHER_VV_VL) 9316 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 9317 NODE_NAME_CASE(VSEXT_VL) 9318 NODE_NAME_CASE(VZEXT_VL) 9319 NODE_NAME_CASE(VCPOP_VL) 9320 NODE_NAME_CASE(VLE_VL) 9321 NODE_NAME_CASE(VSE_VL) 9322 NODE_NAME_CASE(READ_CSR) 9323 NODE_NAME_CASE(WRITE_CSR) 9324 NODE_NAME_CASE(SWAP_CSR) 9325 } 9326 // clang-format on 9327 return nullptr; 9328 #undef NODE_NAME_CASE 9329 } 9330 9331 /// getConstraintType - Given a constraint letter, return the type of 9332 /// constraint it is for this target. 9333 RISCVTargetLowering::ConstraintType 9334 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 9335 if (Constraint.size() == 1) { 9336 switch (Constraint[0]) { 9337 default: 9338 break; 9339 case 'f': 9340 return C_RegisterClass; 9341 case 'I': 9342 case 'J': 9343 case 'K': 9344 return C_Immediate; 9345 case 'A': 9346 return C_Memory; 9347 case 'S': // A symbolic address 9348 return C_Other; 9349 } 9350 } else { 9351 if (Constraint == "vr" || Constraint == "vm") 9352 return C_RegisterClass; 9353 } 9354 return TargetLowering::getConstraintType(Constraint); 9355 } 9356 9357 std::pair<unsigned, const TargetRegisterClass *> 9358 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 9359 StringRef Constraint, 9360 MVT VT) const { 9361 // First, see if this is a constraint that directly corresponds to a 9362 // RISCV register class. 9363 if (Constraint.size() == 1) { 9364 switch (Constraint[0]) { 9365 case 'r': 9366 return std::make_pair(0U, &RISCV::GPRRegClass); 9367 case 'f': 9368 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 9369 return std::make_pair(0U, &RISCV::FPR16RegClass); 9370 if (Subtarget.hasStdExtF() && VT == MVT::f32) 9371 return std::make_pair(0U, &RISCV::FPR32RegClass); 9372 if (Subtarget.hasStdExtD() && VT == MVT::f64) 9373 return std::make_pair(0U, &RISCV::FPR64RegClass); 9374 break; 9375 default: 9376 break; 9377 } 9378 } else { 9379 if (Constraint == "vr") { 9380 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 9381 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9382 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 9383 return std::make_pair(0U, RC); 9384 } 9385 } else if (Constraint == "vm") { 9386 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 9387 return std::make_pair(0U, &RISCV::VMRegClass); 9388 } 9389 } 9390 9391 // Clang will correctly decode the usage of register name aliases into their 9392 // official names. However, other frontends like `rustc` do not. This allows 9393 // users of these frontends to use the ABI names for registers in LLVM-style 9394 // register constraints. 9395 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 9396 .Case("{zero}", RISCV::X0) 9397 .Case("{ra}", RISCV::X1) 9398 .Case("{sp}", RISCV::X2) 9399 .Case("{gp}", RISCV::X3) 9400 .Case("{tp}", RISCV::X4) 9401 .Case("{t0}", RISCV::X5) 9402 .Case("{t1}", RISCV::X6) 9403 .Case("{t2}", RISCV::X7) 9404 .Cases("{s0}", "{fp}", RISCV::X8) 9405 .Case("{s1}", RISCV::X9) 9406 .Case("{a0}", RISCV::X10) 9407 .Case("{a1}", RISCV::X11) 9408 .Case("{a2}", RISCV::X12) 9409 .Case("{a3}", RISCV::X13) 9410 .Case("{a4}", RISCV::X14) 9411 .Case("{a5}", RISCV::X15) 9412 .Case("{a6}", RISCV::X16) 9413 .Case("{a7}", RISCV::X17) 9414 .Case("{s2}", RISCV::X18) 9415 .Case("{s3}", RISCV::X19) 9416 .Case("{s4}", RISCV::X20) 9417 .Case("{s5}", RISCV::X21) 9418 .Case("{s6}", RISCV::X22) 9419 .Case("{s7}", RISCV::X23) 9420 .Case("{s8}", RISCV::X24) 9421 .Case("{s9}", RISCV::X25) 9422 .Case("{s10}", RISCV::X26) 9423 .Case("{s11}", RISCV::X27) 9424 .Case("{t3}", RISCV::X28) 9425 .Case("{t4}", RISCV::X29) 9426 .Case("{t5}", RISCV::X30) 9427 .Case("{t6}", RISCV::X31) 9428 .Default(RISCV::NoRegister); 9429 if (XRegFromAlias != RISCV::NoRegister) 9430 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 9431 9432 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 9433 // TableGen record rather than the AsmName to choose registers for InlineAsm 9434 // constraints, plus we want to match those names to the widest floating point 9435 // register type available, manually select floating point registers here. 9436 // 9437 // The second case is the ABI name of the register, so that frontends can also 9438 // use the ABI names in register constraint lists. 9439 if (Subtarget.hasStdExtF()) { 9440 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 9441 .Cases("{f0}", "{ft0}", RISCV::F0_F) 9442 .Cases("{f1}", "{ft1}", RISCV::F1_F) 9443 .Cases("{f2}", "{ft2}", RISCV::F2_F) 9444 .Cases("{f3}", "{ft3}", RISCV::F3_F) 9445 .Cases("{f4}", "{ft4}", RISCV::F4_F) 9446 .Cases("{f5}", "{ft5}", RISCV::F5_F) 9447 .Cases("{f6}", "{ft6}", RISCV::F6_F) 9448 .Cases("{f7}", "{ft7}", RISCV::F7_F) 9449 .Cases("{f8}", "{fs0}", RISCV::F8_F) 9450 .Cases("{f9}", "{fs1}", RISCV::F9_F) 9451 .Cases("{f10}", "{fa0}", RISCV::F10_F) 9452 .Cases("{f11}", "{fa1}", RISCV::F11_F) 9453 .Cases("{f12}", "{fa2}", RISCV::F12_F) 9454 .Cases("{f13}", "{fa3}", RISCV::F13_F) 9455 .Cases("{f14}", "{fa4}", RISCV::F14_F) 9456 .Cases("{f15}", "{fa5}", RISCV::F15_F) 9457 .Cases("{f16}", "{fa6}", RISCV::F16_F) 9458 .Cases("{f17}", "{fa7}", RISCV::F17_F) 9459 .Cases("{f18}", "{fs2}", RISCV::F18_F) 9460 .Cases("{f19}", "{fs3}", RISCV::F19_F) 9461 .Cases("{f20}", "{fs4}", RISCV::F20_F) 9462 .Cases("{f21}", "{fs5}", RISCV::F21_F) 9463 .Cases("{f22}", "{fs6}", RISCV::F22_F) 9464 .Cases("{f23}", "{fs7}", RISCV::F23_F) 9465 .Cases("{f24}", "{fs8}", RISCV::F24_F) 9466 .Cases("{f25}", "{fs9}", RISCV::F25_F) 9467 .Cases("{f26}", "{fs10}", RISCV::F26_F) 9468 .Cases("{f27}", "{fs11}", RISCV::F27_F) 9469 .Cases("{f28}", "{ft8}", RISCV::F28_F) 9470 .Cases("{f29}", "{ft9}", RISCV::F29_F) 9471 .Cases("{f30}", "{ft10}", RISCV::F30_F) 9472 .Cases("{f31}", "{ft11}", RISCV::F31_F) 9473 .Default(RISCV::NoRegister); 9474 if (FReg != RISCV::NoRegister) { 9475 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 9476 if (Subtarget.hasStdExtD()) { 9477 unsigned RegNo = FReg - RISCV::F0_F; 9478 unsigned DReg = RISCV::F0_D + RegNo; 9479 return std::make_pair(DReg, &RISCV::FPR64RegClass); 9480 } 9481 return std::make_pair(FReg, &RISCV::FPR32RegClass); 9482 } 9483 } 9484 9485 if (Subtarget.hasVInstructions()) { 9486 Register VReg = StringSwitch<Register>(Constraint.lower()) 9487 .Case("{v0}", RISCV::V0) 9488 .Case("{v1}", RISCV::V1) 9489 .Case("{v2}", RISCV::V2) 9490 .Case("{v3}", RISCV::V3) 9491 .Case("{v4}", RISCV::V4) 9492 .Case("{v5}", RISCV::V5) 9493 .Case("{v6}", RISCV::V6) 9494 .Case("{v7}", RISCV::V7) 9495 .Case("{v8}", RISCV::V8) 9496 .Case("{v9}", RISCV::V9) 9497 .Case("{v10}", RISCV::V10) 9498 .Case("{v11}", RISCV::V11) 9499 .Case("{v12}", RISCV::V12) 9500 .Case("{v13}", RISCV::V13) 9501 .Case("{v14}", RISCV::V14) 9502 .Case("{v15}", RISCV::V15) 9503 .Case("{v16}", RISCV::V16) 9504 .Case("{v17}", RISCV::V17) 9505 .Case("{v18}", RISCV::V18) 9506 .Case("{v19}", RISCV::V19) 9507 .Case("{v20}", RISCV::V20) 9508 .Case("{v21}", RISCV::V21) 9509 .Case("{v22}", RISCV::V22) 9510 .Case("{v23}", RISCV::V23) 9511 .Case("{v24}", RISCV::V24) 9512 .Case("{v25}", RISCV::V25) 9513 .Case("{v26}", RISCV::V26) 9514 .Case("{v27}", RISCV::V27) 9515 .Case("{v28}", RISCV::V28) 9516 .Case("{v29}", RISCV::V29) 9517 .Case("{v30}", RISCV::V30) 9518 .Case("{v31}", RISCV::V31) 9519 .Default(RISCV::NoRegister); 9520 if (VReg != RISCV::NoRegister) { 9521 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 9522 return std::make_pair(VReg, &RISCV::VMRegClass); 9523 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 9524 return std::make_pair(VReg, &RISCV::VRRegClass); 9525 for (const auto *RC : 9526 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9527 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 9528 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 9529 return std::make_pair(VReg, RC); 9530 } 9531 } 9532 } 9533 } 9534 9535 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 9536 } 9537 9538 unsigned 9539 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 9540 // Currently only support length 1 constraints. 9541 if (ConstraintCode.size() == 1) { 9542 switch (ConstraintCode[0]) { 9543 case 'A': 9544 return InlineAsm::Constraint_A; 9545 default: 9546 break; 9547 } 9548 } 9549 9550 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 9551 } 9552 9553 void RISCVTargetLowering::LowerAsmOperandForConstraint( 9554 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 9555 SelectionDAG &DAG) const { 9556 // Currently only support length 1 constraints. 9557 if (Constraint.length() == 1) { 9558 switch (Constraint[0]) { 9559 case 'I': 9560 // Validate & create a 12-bit signed immediate operand. 9561 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9562 uint64_t CVal = C->getSExtValue(); 9563 if (isInt<12>(CVal)) 9564 Ops.push_back( 9565 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9566 } 9567 return; 9568 case 'J': 9569 // Validate & create an integer zero operand. 9570 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 9571 if (C->getZExtValue() == 0) 9572 Ops.push_back( 9573 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 9574 return; 9575 case 'K': 9576 // Validate & create a 5-bit unsigned immediate operand. 9577 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9578 uint64_t CVal = C->getZExtValue(); 9579 if (isUInt<5>(CVal)) 9580 Ops.push_back( 9581 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9582 } 9583 return; 9584 case 'S': 9585 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9586 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 9587 GA->getValueType(0))); 9588 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 9589 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 9590 BA->getValueType(0))); 9591 } 9592 return; 9593 default: 9594 break; 9595 } 9596 } 9597 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 9598 } 9599 9600 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 9601 Instruction *Inst, 9602 AtomicOrdering Ord) const { 9603 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 9604 return Builder.CreateFence(Ord); 9605 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 9606 return Builder.CreateFence(AtomicOrdering::Release); 9607 return nullptr; 9608 } 9609 9610 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 9611 Instruction *Inst, 9612 AtomicOrdering Ord) const { 9613 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 9614 return Builder.CreateFence(AtomicOrdering::Acquire); 9615 return nullptr; 9616 } 9617 9618 TargetLowering::AtomicExpansionKind 9619 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 9620 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 9621 // point operations can't be used in an lr/sc sequence without breaking the 9622 // forward-progress guarantee. 9623 if (AI->isFloatingPointOperation()) 9624 return AtomicExpansionKind::CmpXChg; 9625 9626 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 9627 if (Size == 8 || Size == 16) 9628 return AtomicExpansionKind::MaskedIntrinsic; 9629 return AtomicExpansionKind::None; 9630 } 9631 9632 static Intrinsic::ID 9633 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 9634 if (XLen == 32) { 9635 switch (BinOp) { 9636 default: 9637 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9638 case AtomicRMWInst::Xchg: 9639 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 9640 case AtomicRMWInst::Add: 9641 return Intrinsic::riscv_masked_atomicrmw_add_i32; 9642 case AtomicRMWInst::Sub: 9643 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 9644 case AtomicRMWInst::Nand: 9645 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 9646 case AtomicRMWInst::Max: 9647 return Intrinsic::riscv_masked_atomicrmw_max_i32; 9648 case AtomicRMWInst::Min: 9649 return Intrinsic::riscv_masked_atomicrmw_min_i32; 9650 case AtomicRMWInst::UMax: 9651 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 9652 case AtomicRMWInst::UMin: 9653 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 9654 } 9655 } 9656 9657 if (XLen == 64) { 9658 switch (BinOp) { 9659 default: 9660 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9661 case AtomicRMWInst::Xchg: 9662 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 9663 case AtomicRMWInst::Add: 9664 return Intrinsic::riscv_masked_atomicrmw_add_i64; 9665 case AtomicRMWInst::Sub: 9666 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 9667 case AtomicRMWInst::Nand: 9668 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 9669 case AtomicRMWInst::Max: 9670 return Intrinsic::riscv_masked_atomicrmw_max_i64; 9671 case AtomicRMWInst::Min: 9672 return Intrinsic::riscv_masked_atomicrmw_min_i64; 9673 case AtomicRMWInst::UMax: 9674 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 9675 case AtomicRMWInst::UMin: 9676 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 9677 } 9678 } 9679 9680 llvm_unreachable("Unexpected XLen\n"); 9681 } 9682 9683 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 9684 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 9685 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 9686 unsigned XLen = Subtarget.getXLen(); 9687 Value *Ordering = 9688 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 9689 Type *Tys[] = {AlignedAddr->getType()}; 9690 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 9691 AI->getModule(), 9692 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 9693 9694 if (XLen == 64) { 9695 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 9696 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9697 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 9698 } 9699 9700 Value *Result; 9701 9702 // Must pass the shift amount needed to sign extend the loaded value prior 9703 // to performing a signed comparison for min/max. ShiftAmt is the number of 9704 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 9705 // is the number of bits to left+right shift the value in order to 9706 // sign-extend. 9707 if (AI->getOperation() == AtomicRMWInst::Min || 9708 AI->getOperation() == AtomicRMWInst::Max) { 9709 const DataLayout &DL = AI->getModule()->getDataLayout(); 9710 unsigned ValWidth = 9711 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 9712 Value *SextShamt = 9713 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 9714 Result = Builder.CreateCall(LrwOpScwLoop, 9715 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 9716 } else { 9717 Result = 9718 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 9719 } 9720 9721 if (XLen == 64) 9722 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9723 return Result; 9724 } 9725 9726 TargetLowering::AtomicExpansionKind 9727 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 9728 AtomicCmpXchgInst *CI) const { 9729 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 9730 if (Size == 8 || Size == 16) 9731 return AtomicExpansionKind::MaskedIntrinsic; 9732 return AtomicExpansionKind::None; 9733 } 9734 9735 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 9736 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 9737 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 9738 unsigned XLen = Subtarget.getXLen(); 9739 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 9740 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 9741 if (XLen == 64) { 9742 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 9743 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 9744 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9745 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 9746 } 9747 Type *Tys[] = {AlignedAddr->getType()}; 9748 Function *MaskedCmpXchg = 9749 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 9750 Value *Result = Builder.CreateCall( 9751 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 9752 if (XLen == 64) 9753 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9754 return Result; 9755 } 9756 9757 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 9758 return false; 9759 } 9760 9761 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 9762 EVT VT) const { 9763 VT = VT.getScalarType(); 9764 9765 if (!VT.isSimple()) 9766 return false; 9767 9768 switch (VT.getSimpleVT().SimpleTy) { 9769 case MVT::f16: 9770 return Subtarget.hasStdExtZfh(); 9771 case MVT::f32: 9772 return Subtarget.hasStdExtF(); 9773 case MVT::f64: 9774 return Subtarget.hasStdExtD(); 9775 default: 9776 break; 9777 } 9778 9779 return false; 9780 } 9781 9782 Register RISCVTargetLowering::getExceptionPointerRegister( 9783 const Constant *PersonalityFn) const { 9784 return RISCV::X10; 9785 } 9786 9787 Register RISCVTargetLowering::getExceptionSelectorRegister( 9788 const Constant *PersonalityFn) const { 9789 return RISCV::X11; 9790 } 9791 9792 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 9793 // Return false to suppress the unnecessary extensions if the LibCall 9794 // arguments or return value is f32 type for LP64 ABI. 9795 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 9796 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 9797 return false; 9798 9799 return true; 9800 } 9801 9802 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 9803 if (Subtarget.is64Bit() && Type == MVT::i32) 9804 return true; 9805 9806 return IsSigned; 9807 } 9808 9809 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 9810 SDValue C) const { 9811 // Check integral scalar types. 9812 if (VT.isScalarInteger()) { 9813 // Omit the optimization if the sub target has the M extension and the data 9814 // size exceeds XLen. 9815 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 9816 return false; 9817 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 9818 // Break the MUL to a SLLI and an ADD/SUB. 9819 const APInt &Imm = ConstNode->getAPIntValue(); 9820 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 9821 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 9822 return true; 9823 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 9824 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 9825 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 9826 (Imm - 8).isPowerOf2())) 9827 return true; 9828 // Omit the following optimization if the sub target has the M extension 9829 // and the data size >= XLen. 9830 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 9831 return false; 9832 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 9833 // a pair of LUI/ADDI. 9834 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 9835 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 9836 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 9837 (1 - ImmS).isPowerOf2()) 9838 return true; 9839 } 9840 } 9841 } 9842 9843 return false; 9844 } 9845 9846 bool RISCVTargetLowering::isMulAddWithConstProfitable( 9847 const SDValue &AddNode, const SDValue &ConstNode) const { 9848 // Let the DAGCombiner decide for vectors. 9849 EVT VT = AddNode.getValueType(); 9850 if (VT.isVector()) 9851 return true; 9852 9853 // Let the DAGCombiner decide for larger types. 9854 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 9855 return true; 9856 9857 // It is worse if c1 is simm12 while c1*c2 is not. 9858 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 9859 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 9860 const APInt &C1 = C1Node->getAPIntValue(); 9861 const APInt &C2 = C2Node->getAPIntValue(); 9862 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 9863 return false; 9864 9865 // Default to true and let the DAGCombiner decide. 9866 return true; 9867 } 9868 9869 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 9870 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 9871 bool *Fast) const { 9872 if (!VT.isVector()) 9873 return false; 9874 9875 EVT ElemVT = VT.getVectorElementType(); 9876 if (Alignment >= ElemVT.getStoreSize()) { 9877 if (Fast) 9878 *Fast = true; 9879 return true; 9880 } 9881 9882 return false; 9883 } 9884 9885 bool RISCVTargetLowering::splitValueIntoRegisterParts( 9886 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 9887 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 9888 bool IsABIRegCopy = CC.hasValue(); 9889 EVT ValueVT = Val.getValueType(); 9890 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 9891 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 9892 // and cast to f32. 9893 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 9894 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 9895 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 9896 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 9897 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 9898 Parts[0] = Val; 9899 return true; 9900 } 9901 9902 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 9903 LLVMContext &Context = *DAG.getContext(); 9904 EVT ValueEltVT = ValueVT.getVectorElementType(); 9905 EVT PartEltVT = PartVT.getVectorElementType(); 9906 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 9907 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 9908 if (PartVTBitSize % ValueVTBitSize == 0) { 9909 // If the element types are different, bitcast to the same element type of 9910 // PartVT first. 9911 if (ValueEltVT != PartEltVT) { 9912 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 9913 assert(Count != 0 && "The number of element should not be zero."); 9914 EVT SameEltTypeVT = 9915 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 9916 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 9917 } 9918 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 9919 Val, DAG.getConstant(0, DL, Subtarget.getXLenVT())); 9920 Parts[0] = Val; 9921 return true; 9922 } 9923 } 9924 return false; 9925 } 9926 9927 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 9928 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 9929 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 9930 bool IsABIRegCopy = CC.hasValue(); 9931 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 9932 SDValue Val = Parts[0]; 9933 9934 // Cast the f32 to i32, truncate to i16, and cast back to f16. 9935 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 9936 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 9937 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 9938 return Val; 9939 } 9940 9941 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 9942 LLVMContext &Context = *DAG.getContext(); 9943 SDValue Val = Parts[0]; 9944 EVT ValueEltVT = ValueVT.getVectorElementType(); 9945 EVT PartEltVT = PartVT.getVectorElementType(); 9946 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 9947 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 9948 if (PartVTBitSize % ValueVTBitSize == 0) { 9949 EVT SameEltTypeVT = ValueVT; 9950 // If the element types are different, convert it to the same element type 9951 // of PartVT. 9952 if (ValueEltVT != PartEltVT) { 9953 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 9954 assert(Count != 0 && "The number of element should not be zero."); 9955 SameEltTypeVT = 9956 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 9957 } 9958 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val, 9959 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 9960 if (ValueEltVT != PartEltVT) 9961 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 9962 return Val; 9963 } 9964 } 9965 return SDValue(); 9966 } 9967 9968 #define GET_REGISTER_MATCHER 9969 #include "RISCVGenAsmMatcher.inc" 9970 9971 Register 9972 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 9973 const MachineFunction &MF) const { 9974 Register Reg = MatchRegisterAltName(RegName); 9975 if (Reg == RISCV::NoRegister) 9976 Reg = MatchRegisterName(RegName); 9977 if (Reg == RISCV::NoRegister) 9978 report_fatal_error( 9979 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 9980 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 9981 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 9982 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 9983 StringRef(RegName) + "\".")); 9984 return Reg; 9985 } 9986 9987 namespace llvm { 9988 namespace RISCVVIntrinsicsTable { 9989 9990 #define GET_RISCVVIntrinsicsTable_IMPL 9991 #include "RISCVGenSearchableTables.inc" 9992 9993 } // namespace RISCVVIntrinsicsTable 9994 9995 } // namespace llvm 9996