1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "RISCV.h"
16 #include "RISCVMachineFunctionInfo.h"
17 #include "RISCVRegisterInfo.h"
18 #include "RISCVSubtarget.h"
19 #include "RISCVTargetMachine.h"
20 #include "Utils/RISCVMatInt.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/CodeGen/ValueTypes.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
32 #include "llvm/IR/IntrinsicsRISCV.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/Support/raw_ostream.h"
37 
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "riscv-lower"
41 
42 STATISTIC(NumTailCalls, "Number of tail calls");
43 
44 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
45                                          const RISCVSubtarget &STI)
46     : TargetLowering(TM), Subtarget(STI) {
47 
48   if (Subtarget.isRV32E())
49     report_fatal_error("Codegen not yet implemented for RV32E");
50 
51   RISCVABI::ABI ABI = Subtarget.getTargetABI();
52   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
53 
54   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
55       !Subtarget.hasStdExtF()) {
56     errs() << "Hard-float 'f' ABI can't be used for a target that "
57                 "doesn't support the F instruction set extension (ignoring "
58                           "target-abi)\n";
59     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
60   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
61              !Subtarget.hasStdExtD()) {
62     errs() << "Hard-float 'd' ABI can't be used for a target that "
63               "doesn't support the D instruction set extension (ignoring "
64               "target-abi)\n";
65     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
66   }
67 
68   switch (ABI) {
69   default:
70     report_fatal_error("Don't know how to lower this ABI");
71   case RISCVABI::ABI_ILP32:
72   case RISCVABI::ABI_ILP32F:
73   case RISCVABI::ABI_ILP32D:
74   case RISCVABI::ABI_LP64:
75   case RISCVABI::ABI_LP64F:
76   case RISCVABI::ABI_LP64D:
77     break;
78   }
79 
80   MVT XLenVT = Subtarget.getXLenVT();
81 
82   // Set up the register classes.
83   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
84 
85   if (Subtarget.hasStdExtF())
86     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
87   if (Subtarget.hasStdExtD())
88     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
89 
90   // Compute derived properties from the register classes.
91   computeRegisterProperties(STI.getRegisterInfo());
92 
93   setStackPointerRegisterToSaveRestore(RISCV::X2);
94 
95   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
96     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
97 
98   // TODO: add all necessary setOperationAction calls.
99   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
100 
101   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
102   setOperationAction(ISD::BR_CC, XLenVT, Expand);
103   setOperationAction(ISD::SELECT, XLenVT, Custom);
104   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
105 
106   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
107   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
108 
109   setOperationAction(ISD::VASTART, MVT::Other, Custom);
110   setOperationAction(ISD::VAARG, MVT::Other, Expand);
111   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
112   setOperationAction(ISD::VAEND, MVT::Other, Expand);
113 
114   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
115   if (!Subtarget.hasStdExtZbb()) {
116     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
117     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
118   }
119 
120   if (Subtarget.is64Bit()) {
121     setOperationAction(ISD::ADD, MVT::i32, Custom);
122     setOperationAction(ISD::SUB, MVT::i32, Custom);
123     setOperationAction(ISD::SHL, MVT::i32, Custom);
124     setOperationAction(ISD::SRA, MVT::i32, Custom);
125     setOperationAction(ISD::SRL, MVT::i32, Custom);
126   }
127 
128   if (!Subtarget.hasStdExtM()) {
129     setOperationAction(ISD::MUL, XLenVT, Expand);
130     setOperationAction(ISD::MULHS, XLenVT, Expand);
131     setOperationAction(ISD::MULHU, XLenVT, Expand);
132     setOperationAction(ISD::SDIV, XLenVT, Expand);
133     setOperationAction(ISD::UDIV, XLenVT, Expand);
134     setOperationAction(ISD::SREM, XLenVT, Expand);
135     setOperationAction(ISD::UREM, XLenVT, Expand);
136   }
137 
138   if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) {
139     setOperationAction(ISD::MUL, MVT::i32, Custom);
140     setOperationAction(ISD::SDIV, MVT::i32, Custom);
141     setOperationAction(ISD::UDIV, MVT::i32, Custom);
142     setOperationAction(ISD::UREM, MVT::i32, Custom);
143   }
144 
145   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
146   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
147   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
148   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
149 
150   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
151   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
152   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
153 
154   if (!(Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp())) {
155     setOperationAction(ISD::ROTL, XLenVT, Expand);
156     setOperationAction(ISD::ROTR, XLenVT, Expand);
157   }
158 
159   if (!Subtarget.hasStdExtZbp())
160     setOperationAction(ISD::BSWAP, XLenVT, Expand);
161 
162   if (!Subtarget.hasStdExtZbb()) {
163     setOperationAction(ISD::CTTZ, XLenVT, Expand);
164     setOperationAction(ISD::CTLZ, XLenVT, Expand);
165     setOperationAction(ISD::CTPOP, XLenVT, Expand);
166   }
167 
168   if (Subtarget.hasStdExtZbp())
169     setOperationAction(ISD::BITREVERSE, XLenVT, Legal);
170 
171   if (Subtarget.hasStdExtZbt()) {
172     setOperationAction(ISD::FSHL, XLenVT, Legal);
173     setOperationAction(ISD::FSHR, XLenVT, Legal);
174   }
175 
176   ISD::CondCode FPCCToExtend[] = {
177       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
178       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
179       ISD::SETGE,  ISD::SETNE};
180 
181   ISD::NodeType FPOpToExtend[] = {
182       ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP,
183       ISD::FP_TO_FP16};
184 
185   if (Subtarget.hasStdExtF()) {
186     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
187     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
188     for (auto CC : FPCCToExtend)
189       setCondCodeAction(CC, MVT::f32, Expand);
190     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
191     setOperationAction(ISD::SELECT, MVT::f32, Custom);
192     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
193     for (auto Op : FPOpToExtend)
194       setOperationAction(Op, MVT::f32, Expand);
195     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
196     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
197   }
198 
199   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
200     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
201 
202   if (Subtarget.hasStdExtD()) {
203     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
204     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
205     for (auto CC : FPCCToExtend)
206       setCondCodeAction(CC, MVT::f64, Expand);
207     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
208     setOperationAction(ISD::SELECT, MVT::f64, Custom);
209     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
210     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
211     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
212     for (auto Op : FPOpToExtend)
213       setOperationAction(Op, MVT::f64, Expand);
214     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
215     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
216   }
217 
218   if (Subtarget.is64Bit()) {
219     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
220     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
221     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
222     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
223   }
224 
225   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
226   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
227   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
228 
229   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
230 
231   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
232   // Unfortunately this can't be determined just from the ISA naming string.
233   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
234                      Subtarget.is64Bit() ? Legal : Custom);
235 
236   setOperationAction(ISD::TRAP, MVT::Other, Legal);
237   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
238   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
239 
240   if (Subtarget.hasStdExtA()) {
241     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
242     setMinCmpXchgSizeInBits(32);
243   } else {
244     setMaxAtomicSizeInBitsSupported(0);
245   }
246 
247   setBooleanContents(ZeroOrOneBooleanContent);
248 
249   // Function alignments.
250   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
251   setMinFunctionAlignment(FunctionAlignment);
252   setPrefFunctionAlignment(FunctionAlignment);
253 
254   // Effectively disable jump table generation.
255   setMinimumJumpTableEntries(INT_MAX);
256 
257   // Jumps are expensive, compared to logic
258   setJumpIsExpensive();
259 
260   // We can use any register for comparisons
261   setHasMultipleConditionRegisters();
262 }
263 
264 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
265                                             EVT VT) const {
266   if (!VT.isVector())
267     return getPointerTy(DL);
268   return VT.changeVectorElementTypeToInteger();
269 }
270 
271 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
272                                              const CallInst &I,
273                                              MachineFunction &MF,
274                                              unsigned Intrinsic) const {
275   switch (Intrinsic) {
276   default:
277     return false;
278   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
279   case Intrinsic::riscv_masked_atomicrmw_add_i32:
280   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
281   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
282   case Intrinsic::riscv_masked_atomicrmw_max_i32:
283   case Intrinsic::riscv_masked_atomicrmw_min_i32:
284   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
285   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
286   case Intrinsic::riscv_masked_cmpxchg_i32:
287     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
288     Info.opc = ISD::INTRINSIC_W_CHAIN;
289     Info.memVT = MVT::getVT(PtrTy->getElementType());
290     Info.ptrVal = I.getArgOperand(0);
291     Info.offset = 0;
292     Info.align = Align(4);
293     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
294                  MachineMemOperand::MOVolatile;
295     return true;
296   }
297 }
298 
299 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
300                                                 const AddrMode &AM, Type *Ty,
301                                                 unsigned AS,
302                                                 Instruction *I) const {
303   // No global is ever allowed as a base.
304   if (AM.BaseGV)
305     return false;
306 
307   // Require a 12-bit signed offset.
308   if (!isInt<12>(AM.BaseOffs))
309     return false;
310 
311   switch (AM.Scale) {
312   case 0: // "r+i" or just "i", depending on HasBaseReg.
313     break;
314   case 1:
315     if (!AM.HasBaseReg) // allow "r+i".
316       break;
317     return false; // disallow "r+r" or "r+r+i".
318   default:
319     return false;
320   }
321 
322   return true;
323 }
324 
325 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
326   return isInt<12>(Imm);
327 }
328 
329 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
330   return isInt<12>(Imm);
331 }
332 
333 // On RV32, 64-bit integers are split into their high and low parts and held
334 // in two different registers, so the trunc is free since the low register can
335 // just be used.
336 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
337   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
338     return false;
339   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
340   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
341   return (SrcBits == 64 && DestBits == 32);
342 }
343 
344 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
345   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
346       !SrcVT.isInteger() || !DstVT.isInteger())
347     return false;
348   unsigned SrcBits = SrcVT.getSizeInBits();
349   unsigned DestBits = DstVT.getSizeInBits();
350   return (SrcBits == 64 && DestBits == 32);
351 }
352 
353 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
354   // Zexts are free if they can be combined with a load.
355   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
356     EVT MemVT = LD->getMemoryVT();
357     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
358          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
359         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
360          LD->getExtensionType() == ISD::ZEXTLOAD))
361       return true;
362   }
363 
364   return TargetLowering::isZExtFree(Val, VT2);
365 }
366 
367 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
368   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
369 }
370 
371 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
372   return Subtarget.hasStdExtZbb();
373 }
374 
375 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
376   return Subtarget.hasStdExtZbb();
377 }
378 
379 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
380                                        bool ForCodeSize) const {
381   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
382     return false;
383   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
384     return false;
385   if (Imm.isNegZero())
386     return false;
387   return Imm.isZero();
388 }
389 
390 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
391   return (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
392          (VT == MVT::f64 && Subtarget.hasStdExtD());
393 }
394 
395 // Changes the condition code and swaps operands if necessary, so the SetCC
396 // operation matches one of the comparisons supported directly in the RISC-V
397 // ISA.
398 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
399   switch (CC) {
400   default:
401     break;
402   case ISD::SETGT:
403   case ISD::SETLE:
404   case ISD::SETUGT:
405   case ISD::SETULE:
406     CC = ISD::getSetCCSwappedOperands(CC);
407     std::swap(LHS, RHS);
408     break;
409   }
410 }
411 
412 // Return the RISC-V branch opcode that matches the given DAG integer
413 // condition code. The CondCode must be one of those supported by the RISC-V
414 // ISA (see normaliseSetCC).
415 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
416   switch (CC) {
417   default:
418     llvm_unreachable("Unsupported CondCode");
419   case ISD::SETEQ:
420     return RISCV::BEQ;
421   case ISD::SETNE:
422     return RISCV::BNE;
423   case ISD::SETLT:
424     return RISCV::BLT;
425   case ISD::SETGE:
426     return RISCV::BGE;
427   case ISD::SETULT:
428     return RISCV::BLTU;
429   case ISD::SETUGE:
430     return RISCV::BGEU;
431   }
432 }
433 
434 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
435                                             SelectionDAG &DAG) const {
436   switch (Op.getOpcode()) {
437   default:
438     report_fatal_error("unimplemented operand");
439   case ISD::GlobalAddress:
440     return lowerGlobalAddress(Op, DAG);
441   case ISD::BlockAddress:
442     return lowerBlockAddress(Op, DAG);
443   case ISD::ConstantPool:
444     return lowerConstantPool(Op, DAG);
445   case ISD::GlobalTLSAddress:
446     return lowerGlobalTLSAddress(Op, DAG);
447   case ISD::SELECT:
448     return lowerSELECT(Op, DAG);
449   case ISD::VASTART:
450     return lowerVASTART(Op, DAG);
451   case ISD::FRAMEADDR:
452     return lowerFRAMEADDR(Op, DAG);
453   case ISD::RETURNADDR:
454     return lowerRETURNADDR(Op, DAG);
455   case ISD::SHL_PARTS:
456     return lowerShiftLeftParts(Op, DAG);
457   case ISD::SRA_PARTS:
458     return lowerShiftRightParts(Op, DAG, true);
459   case ISD::SRL_PARTS:
460     return lowerShiftRightParts(Op, DAG, false);
461   case ISD::BITCAST: {
462     assert(Subtarget.is64Bit() && Subtarget.hasStdExtF() &&
463            "Unexpected custom legalisation");
464     SDLoc DL(Op);
465     SDValue Op0 = Op.getOperand(0);
466     if (Op.getValueType() != MVT::f32 || Op0.getValueType() != MVT::i32)
467       return SDValue();
468     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
469     SDValue FPConv = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
470     return FPConv;
471   }
472   case ISD::INTRINSIC_WO_CHAIN:
473     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
474   }
475 }
476 
477 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
478                              SelectionDAG &DAG, unsigned Flags) {
479   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
480 }
481 
482 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
483                              SelectionDAG &DAG, unsigned Flags) {
484   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
485                                    Flags);
486 }
487 
488 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
489                              SelectionDAG &DAG, unsigned Flags) {
490   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
491                                    N->getOffset(), Flags);
492 }
493 
494 template <class NodeTy>
495 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
496                                      bool IsLocal) const {
497   SDLoc DL(N);
498   EVT Ty = getPointerTy(DAG.getDataLayout());
499 
500   if (isPositionIndependent()) {
501     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
502     if (IsLocal)
503       // Use PC-relative addressing to access the symbol. This generates the
504       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
505       // %pcrel_lo(auipc)).
506       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
507 
508     // Use PC-relative addressing to access the GOT for this symbol, then load
509     // the address from the GOT. This generates the pattern (PseudoLA sym),
510     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
511     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
512   }
513 
514   switch (getTargetMachine().getCodeModel()) {
515   default:
516     report_fatal_error("Unsupported code model for lowering");
517   case CodeModel::Small: {
518     // Generate a sequence for accessing addresses within the first 2 GiB of
519     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
520     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
521     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
522     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
523     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
524   }
525   case CodeModel::Medium: {
526     // Generate a sequence for accessing addresses within any 2GiB range within
527     // the address space. This generates the pattern (PseudoLLA sym), which
528     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
529     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
530     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
531   }
532   }
533 }
534 
535 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
536                                                 SelectionDAG &DAG) const {
537   SDLoc DL(Op);
538   EVT Ty = Op.getValueType();
539   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
540   int64_t Offset = N->getOffset();
541   MVT XLenVT = Subtarget.getXLenVT();
542 
543   const GlobalValue *GV = N->getGlobal();
544   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
545   SDValue Addr = getAddr(N, DAG, IsLocal);
546 
547   // In order to maximise the opportunity for common subexpression elimination,
548   // emit a separate ADD node for the global address offset instead of folding
549   // it in the global address node. Later peephole optimisations may choose to
550   // fold it back in when profitable.
551   if (Offset != 0)
552     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
553                        DAG.getConstant(Offset, DL, XLenVT));
554   return Addr;
555 }
556 
557 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
558                                                SelectionDAG &DAG) const {
559   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
560 
561   return getAddr(N, DAG);
562 }
563 
564 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
565                                                SelectionDAG &DAG) const {
566   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
567 
568   return getAddr(N, DAG);
569 }
570 
571 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
572                                               SelectionDAG &DAG,
573                                               bool UseGOT) const {
574   SDLoc DL(N);
575   EVT Ty = getPointerTy(DAG.getDataLayout());
576   const GlobalValue *GV = N->getGlobal();
577   MVT XLenVT = Subtarget.getXLenVT();
578 
579   if (UseGOT) {
580     // Use PC-relative addressing to access the GOT for this TLS symbol, then
581     // load the address from the GOT and add the thread pointer. This generates
582     // the pattern (PseudoLA_TLS_IE sym), which expands to
583     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
584     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
585     SDValue Load =
586         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
587 
588     // Add the thread pointer.
589     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
590     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
591   }
592 
593   // Generate a sequence for accessing the address relative to the thread
594   // pointer, with the appropriate adjustment for the thread pointer offset.
595   // This generates the pattern
596   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
597   SDValue AddrHi =
598       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
599   SDValue AddrAdd =
600       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
601   SDValue AddrLo =
602       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
603 
604   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
605   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
606   SDValue MNAdd = SDValue(
607       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
608       0);
609   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
610 }
611 
612 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
613                                                SelectionDAG &DAG) const {
614   SDLoc DL(N);
615   EVT Ty = getPointerTy(DAG.getDataLayout());
616   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
617   const GlobalValue *GV = N->getGlobal();
618 
619   // Use a PC-relative addressing mode to access the global dynamic GOT address.
620   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
621   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
622   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
623   SDValue Load =
624       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
625 
626   // Prepare argument list to generate call.
627   ArgListTy Args;
628   ArgListEntry Entry;
629   Entry.Node = Load;
630   Entry.Ty = CallTy;
631   Args.push_back(Entry);
632 
633   // Setup call to __tls_get_addr.
634   TargetLowering::CallLoweringInfo CLI(DAG);
635   CLI.setDebugLoc(DL)
636       .setChain(DAG.getEntryNode())
637       .setLibCallee(CallingConv::C, CallTy,
638                     DAG.getExternalSymbol("__tls_get_addr", Ty),
639                     std::move(Args));
640 
641   return LowerCallTo(CLI).first;
642 }
643 
644 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
645                                                    SelectionDAG &DAG) const {
646   SDLoc DL(Op);
647   EVT Ty = Op.getValueType();
648   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
649   int64_t Offset = N->getOffset();
650   MVT XLenVT = Subtarget.getXLenVT();
651 
652   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
653 
654   SDValue Addr;
655   switch (Model) {
656   case TLSModel::LocalExec:
657     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
658     break;
659   case TLSModel::InitialExec:
660     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
661     break;
662   case TLSModel::LocalDynamic:
663   case TLSModel::GeneralDynamic:
664     Addr = getDynamicTLSAddr(N, DAG);
665     break;
666   }
667 
668   // In order to maximise the opportunity for common subexpression elimination,
669   // emit a separate ADD node for the global address offset instead of folding
670   // it in the global address node. Later peephole optimisations may choose to
671   // fold it back in when profitable.
672   if (Offset != 0)
673     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
674                        DAG.getConstant(Offset, DL, XLenVT));
675   return Addr;
676 }
677 
678 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
679   SDValue CondV = Op.getOperand(0);
680   SDValue TrueV = Op.getOperand(1);
681   SDValue FalseV = Op.getOperand(2);
682   SDLoc DL(Op);
683   MVT XLenVT = Subtarget.getXLenVT();
684 
685   // If the result type is XLenVT and CondV is the output of a SETCC node
686   // which also operated on XLenVT inputs, then merge the SETCC node into the
687   // lowered RISCVISD::SELECT_CC to take advantage of the integer
688   // compare+branch instructions. i.e.:
689   // (select (setcc lhs, rhs, cc), truev, falsev)
690   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
691   if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
692       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
693     SDValue LHS = CondV.getOperand(0);
694     SDValue RHS = CondV.getOperand(1);
695     auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
696     ISD::CondCode CCVal = CC->get();
697 
698     normaliseSetCC(LHS, RHS, CCVal);
699 
700     SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT);
701     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
702     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
703   }
704 
705   // Otherwise:
706   // (select condv, truev, falsev)
707   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
708   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
709   SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT);
710 
711   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
712 
713   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
714 }
715 
716 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
717   MachineFunction &MF = DAG.getMachineFunction();
718   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
719 
720   SDLoc DL(Op);
721   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
722                                  getPointerTy(MF.getDataLayout()));
723 
724   // vastart just stores the address of the VarArgsFrameIndex slot into the
725   // memory location argument.
726   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
727   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
728                       MachinePointerInfo(SV));
729 }
730 
731 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
732                                             SelectionDAG &DAG) const {
733   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
734   MachineFunction &MF = DAG.getMachineFunction();
735   MachineFrameInfo &MFI = MF.getFrameInfo();
736   MFI.setFrameAddressIsTaken(true);
737   Register FrameReg = RI.getFrameRegister(MF);
738   int XLenInBytes = Subtarget.getXLen() / 8;
739 
740   EVT VT = Op.getValueType();
741   SDLoc DL(Op);
742   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
743   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
744   while (Depth--) {
745     int Offset = -(XLenInBytes * 2);
746     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
747                               DAG.getIntPtrConstant(Offset, DL));
748     FrameAddr =
749         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
750   }
751   return FrameAddr;
752 }
753 
754 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
755                                              SelectionDAG &DAG) const {
756   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
757   MachineFunction &MF = DAG.getMachineFunction();
758   MachineFrameInfo &MFI = MF.getFrameInfo();
759   MFI.setReturnAddressIsTaken(true);
760   MVT XLenVT = Subtarget.getXLenVT();
761   int XLenInBytes = Subtarget.getXLen() / 8;
762 
763   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
764     return SDValue();
765 
766   EVT VT = Op.getValueType();
767   SDLoc DL(Op);
768   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
769   if (Depth) {
770     int Off = -XLenInBytes;
771     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
772     SDValue Offset = DAG.getConstant(Off, DL, VT);
773     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
774                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
775                        MachinePointerInfo());
776   }
777 
778   // Return the value of the return address register, marking it an implicit
779   // live-in.
780   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
781   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
782 }
783 
784 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
785                                                  SelectionDAG &DAG) const {
786   SDLoc DL(Op);
787   SDValue Lo = Op.getOperand(0);
788   SDValue Hi = Op.getOperand(1);
789   SDValue Shamt = Op.getOperand(2);
790   EVT VT = Lo.getValueType();
791 
792   // if Shamt-XLEN < 0: // Shamt < XLEN
793   //   Lo = Lo << Shamt
794   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
795   // else:
796   //   Lo = 0
797   //   Hi = Lo << (Shamt-XLEN)
798 
799   SDValue Zero = DAG.getConstant(0, DL, VT);
800   SDValue One = DAG.getConstant(1, DL, VT);
801   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
802   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
803   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
804   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
805 
806   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
807   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
808   SDValue ShiftRightLo =
809       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
810   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
811   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
812   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
813 
814   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
815 
816   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
817   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
818 
819   SDValue Parts[2] = {Lo, Hi};
820   return DAG.getMergeValues(Parts, DL);
821 }
822 
823 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
824                                                   bool IsSRA) const {
825   SDLoc DL(Op);
826   SDValue Lo = Op.getOperand(0);
827   SDValue Hi = Op.getOperand(1);
828   SDValue Shamt = Op.getOperand(2);
829   EVT VT = Lo.getValueType();
830 
831   // SRA expansion:
832   //   if Shamt-XLEN < 0: // Shamt < XLEN
833   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
834   //     Hi = Hi >>s Shamt
835   //   else:
836   //     Lo = Hi >>s (Shamt-XLEN);
837   //     Hi = Hi >>s (XLEN-1)
838   //
839   // SRL expansion:
840   //   if Shamt-XLEN < 0: // Shamt < XLEN
841   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
842   //     Hi = Hi >>u Shamt
843   //   else:
844   //     Lo = Hi >>u (Shamt-XLEN);
845   //     Hi = 0;
846 
847   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
848 
849   SDValue Zero = DAG.getConstant(0, DL, VT);
850   SDValue One = DAG.getConstant(1, DL, VT);
851   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
852   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
853   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
854   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
855 
856   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
857   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
858   SDValue ShiftLeftHi =
859       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
860   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
861   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
862   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
863   SDValue HiFalse =
864       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
865 
866   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
867 
868   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
869   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
870 
871   SDValue Parts[2] = {Lo, Hi};
872   return DAG.getMergeValues(Parts, DL);
873 }
874 
875 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
876                                                      SelectionDAG &DAG) const {
877   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
878   SDLoc DL(Op);
879   switch (IntNo) {
880   default:
881     return SDValue();    // Don't custom lower most intrinsics.
882   case Intrinsic::thread_pointer: {
883     EVT PtrVT = getPointerTy(DAG.getDataLayout());
884     return DAG.getRegister(RISCV::X4, PtrVT);
885   }
886   }
887 }
888 
889 // Returns the opcode of the target-specific SDNode that implements the 32-bit
890 // form of the given Opcode.
891 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
892   switch (Opcode) {
893   default:
894     llvm_unreachable("Unexpected opcode");
895   case ISD::SHL:
896     return RISCVISD::SLLW;
897   case ISD::SRA:
898     return RISCVISD::SRAW;
899   case ISD::SRL:
900     return RISCVISD::SRLW;
901   case ISD::SDIV:
902     return RISCVISD::DIVW;
903   case ISD::UDIV:
904     return RISCVISD::DIVUW;
905   case ISD::UREM:
906     return RISCVISD::REMUW;
907   }
908 }
909 
910 // Converts the given 32-bit operation to a target-specific SelectionDAG node.
911 // Because i32 isn't a legal type for RV64, these operations would otherwise
912 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W
913 // later one because the fact the operation was originally of type i32 is
914 // lost.
915 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG) {
916   SDLoc DL(N);
917   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
918   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
919   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
920   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
921   // ReplaceNodeResults requires we maintain the same type for the return value.
922   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
923 }
924 
925 // Converts the given 32-bit operation to a i64 operation with signed extension
926 // semantic to reduce the signed extension instructions.
927 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
928   SDLoc DL(N);
929   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
930   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
931   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
932   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
933                                DAG.getValueType(MVT::i32));
934   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
935 }
936 
937 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
938                                              SmallVectorImpl<SDValue> &Results,
939                                              SelectionDAG &DAG) const {
940   SDLoc DL(N);
941   switch (N->getOpcode()) {
942   default:
943     llvm_unreachable("Don't know how to custom type legalize this operation!");
944   case ISD::STRICT_FP_TO_SINT:
945   case ISD::STRICT_FP_TO_UINT:
946   case ISD::FP_TO_SINT:
947   case ISD::FP_TO_UINT: {
948     bool IsStrict = N->isStrictFPOpcode();
949     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
950            "Unexpected custom legalisation");
951     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
952     // If the FP type needs to be softened, emit a library call using the 'si'
953     // version. If we left it to default legalization we'd end up with 'di'. If
954     // the FP type doesn't need to be softened just let generic type
955     // legalization promote the result type.
956     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
957         TargetLowering::TypeSoftenFloat)
958       return;
959     RTLIB::Libcall LC;
960     if (N->getOpcode() == ISD::FP_TO_SINT ||
961         N->getOpcode() == ISD::STRICT_FP_TO_SINT)
962       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
963     else
964       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
965     MakeLibCallOptions CallOptions;
966     EVT OpVT = Op0.getValueType();
967     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
968     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
969     SDValue Result;
970     std::tie(Result, Chain) =
971         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
972     Results.push_back(Result);
973     if (IsStrict)
974       Results.push_back(Chain);
975     break;
976   }
977   case ISD::READCYCLECOUNTER: {
978     assert(!Subtarget.is64Bit() &&
979            "READCYCLECOUNTER only has custom type legalization on riscv32");
980 
981     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
982     SDValue RCW =
983         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
984 
985     Results.push_back(
986         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
987     Results.push_back(RCW.getValue(2));
988     break;
989   }
990   case ISD::ADD:
991   case ISD::SUB:
992   case ISD::MUL:
993     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
994            "Unexpected custom legalisation");
995     if (N->getOperand(1).getOpcode() == ISD::Constant)
996       return;
997     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
998     break;
999   case ISD::SHL:
1000   case ISD::SRA:
1001   case ISD::SRL:
1002     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
1003            "Unexpected custom legalisation");
1004     if (N->getOperand(1).getOpcode() == ISD::Constant)
1005       return;
1006     Results.push_back(customLegalizeToWOp(N, DAG));
1007     break;
1008   case ISD::SDIV:
1009   case ISD::UDIV:
1010   case ISD::UREM:
1011     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
1012            Subtarget.hasStdExtM() && "Unexpected custom legalisation");
1013     if (N->getOperand(0).getOpcode() == ISD::Constant ||
1014         N->getOperand(1).getOpcode() == ISD::Constant)
1015       return;
1016     Results.push_back(customLegalizeToWOp(N, DAG));
1017     break;
1018   case ISD::BITCAST: {
1019     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
1020            Subtarget.hasStdExtF() && "Unexpected custom legalisation");
1021     SDValue Op0 = N->getOperand(0);
1022     if (Op0.getValueType() != MVT::f32)
1023       return;
1024     SDValue FPConv =
1025         DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
1026     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
1027     break;
1028   }
1029   }
1030 }
1031 
1032 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
1033                                                DAGCombinerInfo &DCI) const {
1034   SelectionDAG &DAG = DCI.DAG;
1035 
1036   switch (N->getOpcode()) {
1037   default:
1038     break;
1039   case RISCVISD::SplitF64: {
1040     SDValue Op0 = N->getOperand(0);
1041     // If the input to SplitF64 is just BuildPairF64 then the operation is
1042     // redundant. Instead, use BuildPairF64's operands directly.
1043     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
1044       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
1045 
1046     SDLoc DL(N);
1047 
1048     // It's cheaper to materialise two 32-bit integers than to load a double
1049     // from the constant pool and transfer it to integer registers through the
1050     // stack.
1051     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
1052       APInt V = C->getValueAPF().bitcastToAPInt();
1053       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
1054       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
1055       return DCI.CombineTo(N, Lo, Hi);
1056     }
1057 
1058     // This is a target-specific version of a DAGCombine performed in
1059     // DAGCombiner::visitBITCAST. It performs the equivalent of:
1060     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
1061     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
1062     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
1063         !Op0.getNode()->hasOneUse())
1064       break;
1065     SDValue NewSplitF64 =
1066         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
1067                     Op0.getOperand(0));
1068     SDValue Lo = NewSplitF64.getValue(0);
1069     SDValue Hi = NewSplitF64.getValue(1);
1070     APInt SignBit = APInt::getSignMask(32);
1071     if (Op0.getOpcode() == ISD::FNEG) {
1072       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
1073                                   DAG.getConstant(SignBit, DL, MVT::i32));
1074       return DCI.CombineTo(N, Lo, NewHi);
1075     }
1076     assert(Op0.getOpcode() == ISD::FABS);
1077     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
1078                                 DAG.getConstant(~SignBit, DL, MVT::i32));
1079     return DCI.CombineTo(N, Lo, NewHi);
1080   }
1081   case RISCVISD::SLLW:
1082   case RISCVISD::SRAW:
1083   case RISCVISD::SRLW: {
1084     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
1085     SDValue LHS = N->getOperand(0);
1086     SDValue RHS = N->getOperand(1);
1087     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
1088     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
1089     if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) ||
1090         SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) {
1091       if (N->getOpcode() != ISD::DELETED_NODE)
1092         DCI.AddToWorklist(N);
1093       return SDValue(N, 0);
1094     }
1095     break;
1096   }
1097   case RISCVISD::FMV_X_ANYEXTW_RV64: {
1098     SDLoc DL(N);
1099     SDValue Op0 = N->getOperand(0);
1100     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
1101     // conversion is unnecessary and can be replaced with an ANY_EXTEND
1102     // of the FMV_W_X_RV64 operand.
1103     if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) {
1104       assert(Op0.getOperand(0).getValueType() == MVT::i64 &&
1105              "Unexpected value type!");
1106       return Op0.getOperand(0);
1107     }
1108 
1109     // This is a target-specific version of a DAGCombine performed in
1110     // DAGCombiner::visitBITCAST. It performs the equivalent of:
1111     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
1112     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
1113     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
1114         !Op0.getNode()->hasOneUse())
1115       break;
1116     SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64,
1117                                  Op0.getOperand(0));
1118     APInt SignBit = APInt::getSignMask(32).sext(64);
1119     if (Op0.getOpcode() == ISD::FNEG)
1120       return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV,
1121                          DAG.getConstant(SignBit, DL, MVT::i64));
1122 
1123     assert(Op0.getOpcode() == ISD::FABS);
1124     return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV,
1125                        DAG.getConstant(~SignBit, DL, MVT::i64));
1126   }
1127   }
1128 
1129   return SDValue();
1130 }
1131 
1132 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
1133     const SDNode *N, CombineLevel Level) const {
1134   // The following folds are only desirable if `(OP _, c1 << c2)` can be
1135   // materialised in fewer instructions than `(OP _, c1)`:
1136   //
1137   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
1138   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
1139   SDValue N0 = N->getOperand(0);
1140   EVT Ty = N0.getValueType();
1141   if (Ty.isScalarInteger() &&
1142       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
1143     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
1144     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
1145     if (C1 && C2) {
1146       APInt C1Int = C1->getAPIntValue();
1147       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
1148 
1149       // We can materialise `c1 << c2` into an add immediate, so it's "free",
1150       // and the combine should happen, to potentially allow further combines
1151       // later.
1152       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
1153           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
1154         return true;
1155 
1156       // We can materialise `c1` in an add immediate, so it's "free", and the
1157       // combine should be prevented.
1158       if (C1Int.getMinSignedBits() <= 64 &&
1159           isLegalAddImmediate(C1Int.getSExtValue()))
1160         return false;
1161 
1162       // Neither constant will fit into an immediate, so find materialisation
1163       // costs.
1164       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
1165                                               Subtarget.is64Bit());
1166       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
1167           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit());
1168 
1169       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
1170       // combine should be prevented.
1171       if (C1Cost < ShiftedC1Cost)
1172         return false;
1173     }
1174   }
1175   return true;
1176 }
1177 
1178 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
1179     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
1180     unsigned Depth) const {
1181   switch (Op.getOpcode()) {
1182   default:
1183     break;
1184   case RISCVISD::SLLW:
1185   case RISCVISD::SRAW:
1186   case RISCVISD::SRLW:
1187   case RISCVISD::DIVW:
1188   case RISCVISD::DIVUW:
1189   case RISCVISD::REMUW:
1190     // TODO: As the result is sign-extended, this is conservatively correct. A
1191     // more precise answer could be calculated for SRAW depending on known
1192     // bits in the shift amount.
1193     return 33;
1194   }
1195 
1196   return 1;
1197 }
1198 
1199 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
1200                                                   MachineBasicBlock *BB) {
1201   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
1202 
1203   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
1204   // Should the count have wrapped while it was being read, we need to try
1205   // again.
1206   // ...
1207   // read:
1208   // rdcycleh x3 # load high word of cycle
1209   // rdcycle  x2 # load low word of cycle
1210   // rdcycleh x4 # load high word of cycle
1211   // bne x3, x4, read # check if high word reads match, otherwise try again
1212   // ...
1213 
1214   MachineFunction &MF = *BB->getParent();
1215   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1216   MachineFunction::iterator It = ++BB->getIterator();
1217 
1218   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
1219   MF.insert(It, LoopMBB);
1220 
1221   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
1222   MF.insert(It, DoneMBB);
1223 
1224   // Transfer the remainder of BB and its successor edges to DoneMBB.
1225   DoneMBB->splice(DoneMBB->begin(), BB,
1226                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
1227   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
1228 
1229   BB->addSuccessor(LoopMBB);
1230 
1231   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1232   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
1233   Register LoReg = MI.getOperand(0).getReg();
1234   Register HiReg = MI.getOperand(1).getReg();
1235   DebugLoc DL = MI.getDebugLoc();
1236 
1237   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1238   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
1239       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
1240       .addReg(RISCV::X0);
1241   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
1242       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
1243       .addReg(RISCV::X0);
1244   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
1245       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
1246       .addReg(RISCV::X0);
1247 
1248   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
1249       .addReg(HiReg)
1250       .addReg(ReadAgainReg)
1251       .addMBB(LoopMBB);
1252 
1253   LoopMBB->addSuccessor(LoopMBB);
1254   LoopMBB->addSuccessor(DoneMBB);
1255 
1256   MI.eraseFromParent();
1257 
1258   return DoneMBB;
1259 }
1260 
1261 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
1262                                              MachineBasicBlock *BB) {
1263   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
1264 
1265   MachineFunction &MF = *BB->getParent();
1266   DebugLoc DL = MI.getDebugLoc();
1267   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1268   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
1269   Register LoReg = MI.getOperand(0).getReg();
1270   Register HiReg = MI.getOperand(1).getReg();
1271   Register SrcReg = MI.getOperand(2).getReg();
1272   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
1273   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
1274 
1275   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
1276                           RI);
1277   MachineMemOperand *MMO =
1278       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
1279                               MachineMemOperand::MOLoad, 8, Align(8));
1280   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
1281       .addFrameIndex(FI)
1282       .addImm(0)
1283       .addMemOperand(MMO);
1284   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
1285       .addFrameIndex(FI)
1286       .addImm(4)
1287       .addMemOperand(MMO);
1288   MI.eraseFromParent(); // The pseudo instruction is gone now.
1289   return BB;
1290 }
1291 
1292 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
1293                                                  MachineBasicBlock *BB) {
1294   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
1295          "Unexpected instruction");
1296 
1297   MachineFunction &MF = *BB->getParent();
1298   DebugLoc DL = MI.getDebugLoc();
1299   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1300   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
1301   Register DstReg = MI.getOperand(0).getReg();
1302   Register LoReg = MI.getOperand(1).getReg();
1303   Register HiReg = MI.getOperand(2).getReg();
1304   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
1305   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
1306 
1307   MachineMemOperand *MMO =
1308       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
1309                               MachineMemOperand::MOStore, 8, Align(8));
1310   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
1311       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
1312       .addFrameIndex(FI)
1313       .addImm(0)
1314       .addMemOperand(MMO);
1315   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
1316       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
1317       .addFrameIndex(FI)
1318       .addImm(4)
1319       .addMemOperand(MMO);
1320   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
1321   MI.eraseFromParent(); // The pseudo instruction is gone now.
1322   return BB;
1323 }
1324 
1325 static bool isSelectPseudo(MachineInstr &MI) {
1326   switch (MI.getOpcode()) {
1327   default:
1328     return false;
1329   case RISCV::Select_GPR_Using_CC_GPR:
1330   case RISCV::Select_FPR32_Using_CC_GPR:
1331   case RISCV::Select_FPR64_Using_CC_GPR:
1332     return true;
1333   }
1334 }
1335 
1336 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
1337                                            MachineBasicBlock *BB) {
1338   // To "insert" Select_* instructions, we actually have to insert the triangle
1339   // control-flow pattern.  The incoming instructions know the destination vreg
1340   // to set, the condition code register to branch on, the true/false values to
1341   // select between, and the condcode to use to select the appropriate branch.
1342   //
1343   // We produce the following control flow:
1344   //     HeadMBB
1345   //     |  \
1346   //     |  IfFalseMBB
1347   //     | /
1348   //    TailMBB
1349   //
1350   // When we find a sequence of selects we attempt to optimize their emission
1351   // by sharing the control flow. Currently we only handle cases where we have
1352   // multiple selects with the exact same condition (same LHS, RHS and CC).
1353   // The selects may be interleaved with other instructions if the other
1354   // instructions meet some requirements we deem safe:
1355   // - They are debug instructions. Otherwise,
1356   // - They do not have side-effects, do not access memory and their inputs do
1357   //   not depend on the results of the select pseudo-instructions.
1358   // The TrueV/FalseV operands of the selects cannot depend on the result of
1359   // previous selects in the sequence.
1360   // These conditions could be further relaxed. See the X86 target for a
1361   // related approach and more information.
1362   Register LHS = MI.getOperand(1).getReg();
1363   Register RHS = MI.getOperand(2).getReg();
1364   auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
1365 
1366   SmallVector<MachineInstr *, 4> SelectDebugValues;
1367   SmallSet<Register, 4> SelectDests;
1368   SelectDests.insert(MI.getOperand(0).getReg());
1369 
1370   MachineInstr *LastSelectPseudo = &MI;
1371 
1372   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
1373        SequenceMBBI != E; ++SequenceMBBI) {
1374     if (SequenceMBBI->isDebugInstr())
1375       continue;
1376     else if (isSelectPseudo(*SequenceMBBI)) {
1377       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
1378           SequenceMBBI->getOperand(2).getReg() != RHS ||
1379           SequenceMBBI->getOperand(3).getImm() != CC ||
1380           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
1381           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
1382         break;
1383       LastSelectPseudo = &*SequenceMBBI;
1384       SequenceMBBI->collectDebugValues(SelectDebugValues);
1385       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
1386     } else {
1387       if (SequenceMBBI->hasUnmodeledSideEffects() ||
1388           SequenceMBBI->mayLoadOrStore())
1389         break;
1390       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
1391             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
1392           }))
1393         break;
1394     }
1395   }
1396 
1397   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
1398   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1399   DebugLoc DL = MI.getDebugLoc();
1400   MachineFunction::iterator I = ++BB->getIterator();
1401 
1402   MachineBasicBlock *HeadMBB = BB;
1403   MachineFunction *F = BB->getParent();
1404   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
1405   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
1406 
1407   F->insert(I, IfFalseMBB);
1408   F->insert(I, TailMBB);
1409 
1410   // Transfer debug instructions associated with the selects to TailMBB.
1411   for (MachineInstr *DebugInstr : SelectDebugValues) {
1412     TailMBB->push_back(DebugInstr->removeFromParent());
1413   }
1414 
1415   // Move all instructions after the sequence to TailMBB.
1416   TailMBB->splice(TailMBB->end(), HeadMBB,
1417                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
1418   // Update machine-CFG edges by transferring all successors of the current
1419   // block to the new block which will contain the Phi nodes for the selects.
1420   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
1421   // Set the successors for HeadMBB.
1422   HeadMBB->addSuccessor(IfFalseMBB);
1423   HeadMBB->addSuccessor(TailMBB);
1424 
1425   // Insert appropriate branch.
1426   unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
1427 
1428   BuildMI(HeadMBB, DL, TII.get(Opcode))
1429     .addReg(LHS)
1430     .addReg(RHS)
1431     .addMBB(TailMBB);
1432 
1433   // IfFalseMBB just falls through to TailMBB.
1434   IfFalseMBB->addSuccessor(TailMBB);
1435 
1436   // Create PHIs for all of the select pseudo-instructions.
1437   auto SelectMBBI = MI.getIterator();
1438   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
1439   auto InsertionPoint = TailMBB->begin();
1440   while (SelectMBBI != SelectEnd) {
1441     auto Next = std::next(SelectMBBI);
1442     if (isSelectPseudo(*SelectMBBI)) {
1443       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
1444       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
1445               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
1446           .addReg(SelectMBBI->getOperand(4).getReg())
1447           .addMBB(HeadMBB)
1448           .addReg(SelectMBBI->getOperand(5).getReg())
1449           .addMBB(IfFalseMBB);
1450       SelectMBBI->eraseFromParent();
1451     }
1452     SelectMBBI = Next;
1453   }
1454 
1455   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
1456   return TailMBB;
1457 }
1458 
1459 MachineBasicBlock *
1460 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1461                                                  MachineBasicBlock *BB) const {
1462   switch (MI.getOpcode()) {
1463   default:
1464     llvm_unreachable("Unexpected instr type to insert");
1465   case RISCV::ReadCycleWide:
1466     assert(!Subtarget.is64Bit() &&
1467            "ReadCycleWrite is only to be used on riscv32");
1468     return emitReadCycleWidePseudo(MI, BB);
1469   case RISCV::Select_GPR_Using_CC_GPR:
1470   case RISCV::Select_FPR32_Using_CC_GPR:
1471   case RISCV::Select_FPR64_Using_CC_GPR:
1472     return emitSelectPseudo(MI, BB);
1473   case RISCV::BuildPairF64Pseudo:
1474     return emitBuildPairF64Pseudo(MI, BB);
1475   case RISCV::SplitF64Pseudo:
1476     return emitSplitF64Pseudo(MI, BB);
1477   }
1478 }
1479 
1480 // Calling Convention Implementation.
1481 // The expectations for frontend ABI lowering vary from target to target.
1482 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
1483 // details, but this is a longer term goal. For now, we simply try to keep the
1484 // role of the frontend as simple and well-defined as possible. The rules can
1485 // be summarised as:
1486 // * Never split up large scalar arguments. We handle them here.
1487 // * If a hardfloat calling convention is being used, and the struct may be
1488 // passed in a pair of registers (fp+fp, int+fp), and both registers are
1489 // available, then pass as two separate arguments. If either the GPRs or FPRs
1490 // are exhausted, then pass according to the rule below.
1491 // * If a struct could never be passed in registers or directly in a stack
1492 // slot (as it is larger than 2*XLEN and the floating point rules don't
1493 // apply), then pass it using a pointer with the byval attribute.
1494 // * If a struct is less than 2*XLEN, then coerce to either a two-element
1495 // word-sized array or a 2*XLEN scalar (depending on alignment).
1496 // * The frontend can determine whether a struct is returned by reference or
1497 // not based on its size and fields. If it will be returned by reference, the
1498 // frontend must modify the prototype so a pointer with the sret annotation is
1499 // passed as the first argument. This is not necessary for large scalar
1500 // returns.
1501 // * Struct return values and varargs should be coerced to structs containing
1502 // register-size fields in the same situations they would be for fixed
1503 // arguments.
1504 
1505 static const MCPhysReg ArgGPRs[] = {
1506   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
1507   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
1508 };
1509 static const MCPhysReg ArgFPR32s[] = {
1510   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
1511   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
1512 };
1513 static const MCPhysReg ArgFPR64s[] = {
1514   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
1515   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
1516 };
1517 
1518 // Pass a 2*XLEN argument that has been split into two XLEN values through
1519 // registers or the stack as necessary.
1520 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
1521                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
1522                                 MVT ValVT2, MVT LocVT2,
1523                                 ISD::ArgFlagsTy ArgFlags2) {
1524   unsigned XLenInBytes = XLen / 8;
1525   if (Register Reg = State.AllocateReg(ArgGPRs)) {
1526     // At least one half can be passed via register.
1527     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
1528                                      VA1.getLocVT(), CCValAssign::Full));
1529   } else {
1530     // Both halves must be passed on the stack, with proper alignment.
1531     Align StackAlign =
1532         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
1533     State.addLoc(
1534         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
1535                             State.AllocateStack(XLenInBytes, StackAlign),
1536                             VA1.getLocVT(), CCValAssign::Full));
1537     State.addLoc(CCValAssign::getMem(
1538         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
1539         LocVT2, CCValAssign::Full));
1540     return false;
1541   }
1542 
1543   if (Register Reg = State.AllocateReg(ArgGPRs)) {
1544     // The second half can also be passed via register.
1545     State.addLoc(
1546         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
1547   } else {
1548     // The second half is passed via the stack, without additional alignment.
1549     State.addLoc(CCValAssign::getMem(
1550         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
1551         LocVT2, CCValAssign::Full));
1552   }
1553 
1554   return false;
1555 }
1556 
1557 // Implements the RISC-V calling convention. Returns true upon failure.
1558 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
1559                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
1560                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
1561                      bool IsRet, Type *OrigTy) {
1562   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
1563   assert(XLen == 32 || XLen == 64);
1564   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
1565 
1566   // Any return value split in to more than two values can't be returned
1567   // directly.
1568   if (IsRet && ValNo > 1)
1569     return true;
1570 
1571   // UseGPRForF32 if targeting one of the soft-float ABIs, if passing a
1572   // variadic argument, or if no F32 argument registers are available.
1573   bool UseGPRForF32 = true;
1574   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
1575   // variadic argument, or if no F64 argument registers are available.
1576   bool UseGPRForF64 = true;
1577 
1578   switch (ABI) {
1579   default:
1580     llvm_unreachable("Unexpected ABI");
1581   case RISCVABI::ABI_ILP32:
1582   case RISCVABI::ABI_LP64:
1583     break;
1584   case RISCVABI::ABI_ILP32F:
1585   case RISCVABI::ABI_LP64F:
1586     UseGPRForF32 = !IsFixed;
1587     break;
1588   case RISCVABI::ABI_ILP32D:
1589   case RISCVABI::ABI_LP64D:
1590     UseGPRForF32 = !IsFixed;
1591     UseGPRForF64 = !IsFixed;
1592     break;
1593   }
1594 
1595   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s))
1596     UseGPRForF32 = true;
1597   if (State.getFirstUnallocated(ArgFPR64s) == array_lengthof(ArgFPR64s))
1598     UseGPRForF64 = true;
1599 
1600   // From this point on, rely on UseGPRForF32, UseGPRForF64 and similar local
1601   // variables rather than directly checking against the target ABI.
1602 
1603   if (UseGPRForF32 && ValVT == MVT::f32) {
1604     LocVT = XLenVT;
1605     LocInfo = CCValAssign::BCvt;
1606   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
1607     LocVT = MVT::i64;
1608     LocInfo = CCValAssign::BCvt;
1609   }
1610 
1611   // If this is a variadic argument, the RISC-V calling convention requires
1612   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
1613   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
1614   // be used regardless of whether the original argument was split during
1615   // legalisation or not. The argument will not be passed by registers if the
1616   // original type is larger than 2*XLEN, so the register alignment rule does
1617   // not apply.
1618   unsigned TwoXLenInBytes = (2 * XLen) / 8;
1619   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
1620       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
1621     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
1622     // Skip 'odd' register if necessary.
1623     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
1624       State.AllocateReg(ArgGPRs);
1625   }
1626 
1627   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
1628   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
1629       State.getPendingArgFlags();
1630 
1631   assert(PendingLocs.size() == PendingArgFlags.size() &&
1632          "PendingLocs and PendingArgFlags out of sync");
1633 
1634   // Handle passing f64 on RV32D with a soft float ABI or when floating point
1635   // registers are exhausted.
1636   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
1637     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
1638            "Can't lower f64 if it is split");
1639     // Depending on available argument GPRS, f64 may be passed in a pair of
1640     // GPRs, split between a GPR and the stack, or passed completely on the
1641     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
1642     // cases.
1643     Register Reg = State.AllocateReg(ArgGPRs);
1644     LocVT = MVT::i32;
1645     if (!Reg) {
1646       unsigned StackOffset = State.AllocateStack(8, Align(8));
1647       State.addLoc(
1648           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
1649       return false;
1650     }
1651     if (!State.AllocateReg(ArgGPRs))
1652       State.AllocateStack(4, Align(4));
1653     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1654     return false;
1655   }
1656 
1657   // Split arguments might be passed indirectly, so keep track of the pending
1658   // values.
1659   if (ArgFlags.isSplit() || !PendingLocs.empty()) {
1660     LocVT = XLenVT;
1661     LocInfo = CCValAssign::Indirect;
1662     PendingLocs.push_back(
1663         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
1664     PendingArgFlags.push_back(ArgFlags);
1665     if (!ArgFlags.isSplitEnd()) {
1666       return false;
1667     }
1668   }
1669 
1670   // If the split argument only had two elements, it should be passed directly
1671   // in registers or on the stack.
1672   if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
1673     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
1674     // Apply the normal calling convention rules to the first half of the
1675     // split argument.
1676     CCValAssign VA = PendingLocs[0];
1677     ISD::ArgFlagsTy AF = PendingArgFlags[0];
1678     PendingLocs.clear();
1679     PendingArgFlags.clear();
1680     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
1681                                ArgFlags);
1682   }
1683 
1684   // Allocate to a register if possible, or else a stack slot.
1685   Register Reg;
1686   if (ValVT == MVT::f32 && !UseGPRForF32)
1687     Reg = State.AllocateReg(ArgFPR32s);
1688   else if (ValVT == MVT::f64 && !UseGPRForF64)
1689     Reg = State.AllocateReg(ArgFPR64s);
1690   else
1691     Reg = State.AllocateReg(ArgGPRs);
1692   unsigned StackOffset =
1693       Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8));
1694 
1695   // If we reach this point and PendingLocs is non-empty, we must be at the
1696   // end of a split argument that must be passed indirectly.
1697   if (!PendingLocs.empty()) {
1698     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
1699     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
1700 
1701     for (auto &It : PendingLocs) {
1702       if (Reg)
1703         It.convertToReg(Reg);
1704       else
1705         It.convertToMem(StackOffset);
1706       State.addLoc(It);
1707     }
1708     PendingLocs.clear();
1709     PendingArgFlags.clear();
1710     return false;
1711   }
1712 
1713   assert((!UseGPRForF32 || !UseGPRForF64 || LocVT == XLenVT) &&
1714          "Expected an XLenVT at this stage");
1715 
1716   if (Reg) {
1717     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1718     return false;
1719   }
1720 
1721   // When an f32 or f64 is passed on the stack, no bit-conversion is needed.
1722   if (ValVT == MVT::f32 || ValVT == MVT::f64) {
1723     LocVT = ValVT;
1724     LocInfo = CCValAssign::Full;
1725   }
1726   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
1727   return false;
1728 }
1729 
1730 void RISCVTargetLowering::analyzeInputArgs(
1731     MachineFunction &MF, CCState &CCInfo,
1732     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const {
1733   unsigned NumArgs = Ins.size();
1734   FunctionType *FType = MF.getFunction().getFunctionType();
1735 
1736   for (unsigned i = 0; i != NumArgs; ++i) {
1737     MVT ArgVT = Ins[i].VT;
1738     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
1739 
1740     Type *ArgTy = nullptr;
1741     if (IsRet)
1742       ArgTy = FType->getReturnType();
1743     else if (Ins[i].isOrigArg())
1744       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
1745 
1746     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
1747     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
1748                  ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy)) {
1749       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
1750                         << EVT(ArgVT).getEVTString() << '\n');
1751       llvm_unreachable(nullptr);
1752     }
1753   }
1754 }
1755 
1756 void RISCVTargetLowering::analyzeOutputArgs(
1757     MachineFunction &MF, CCState &CCInfo,
1758     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
1759     CallLoweringInfo *CLI) const {
1760   unsigned NumArgs = Outs.size();
1761 
1762   for (unsigned i = 0; i != NumArgs; i++) {
1763     MVT ArgVT = Outs[i].VT;
1764     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
1765     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
1766 
1767     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
1768     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
1769                  ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) {
1770       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
1771                         << EVT(ArgVT).getEVTString() << "\n");
1772       llvm_unreachable(nullptr);
1773     }
1774   }
1775 }
1776 
1777 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
1778 // values.
1779 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
1780                                    const CCValAssign &VA, const SDLoc &DL) {
1781   switch (VA.getLocInfo()) {
1782   default:
1783     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1784   case CCValAssign::Full:
1785     break;
1786   case CCValAssign::BCvt:
1787     if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) {
1788       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
1789       break;
1790     }
1791     Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
1792     break;
1793   }
1794   return Val;
1795 }
1796 
1797 // The caller is responsible for loading the full value if the argument is
1798 // passed with CCValAssign::Indirect.
1799 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
1800                                 const CCValAssign &VA, const SDLoc &DL) {
1801   MachineFunction &MF = DAG.getMachineFunction();
1802   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1803   EVT LocVT = VA.getLocVT();
1804   SDValue Val;
1805   const TargetRegisterClass *RC;
1806 
1807   switch (LocVT.getSimpleVT().SimpleTy) {
1808   default:
1809     llvm_unreachable("Unexpected register type");
1810   case MVT::i32:
1811   case MVT::i64:
1812     RC = &RISCV::GPRRegClass;
1813     break;
1814   case MVT::f32:
1815     RC = &RISCV::FPR32RegClass;
1816     break;
1817   case MVT::f64:
1818     RC = &RISCV::FPR64RegClass;
1819     break;
1820   }
1821 
1822   Register VReg = RegInfo.createVirtualRegister(RC);
1823   RegInfo.addLiveIn(VA.getLocReg(), VReg);
1824   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1825 
1826   if (VA.getLocInfo() == CCValAssign::Indirect)
1827     return Val;
1828 
1829   return convertLocVTToValVT(DAG, Val, VA, DL);
1830 }
1831 
1832 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
1833                                    const CCValAssign &VA, const SDLoc &DL) {
1834   EVT LocVT = VA.getLocVT();
1835 
1836   switch (VA.getLocInfo()) {
1837   default:
1838     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1839   case CCValAssign::Full:
1840     break;
1841   case CCValAssign::BCvt:
1842     if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) {
1843       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
1844       break;
1845     }
1846     Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
1847     break;
1848   }
1849   return Val;
1850 }
1851 
1852 // The caller is responsible for loading the full value if the argument is
1853 // passed with CCValAssign::Indirect.
1854 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
1855                                 const CCValAssign &VA, const SDLoc &DL) {
1856   MachineFunction &MF = DAG.getMachineFunction();
1857   MachineFrameInfo &MFI = MF.getFrameInfo();
1858   EVT LocVT = VA.getLocVT();
1859   EVT ValVT = VA.getValVT();
1860   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
1861   int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
1862                                  VA.getLocMemOffset(), /*Immutable=*/true);
1863   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1864   SDValue Val;
1865 
1866   ISD::LoadExtType ExtType;
1867   switch (VA.getLocInfo()) {
1868   default:
1869     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1870   case CCValAssign::Full:
1871   case CCValAssign::Indirect:
1872   case CCValAssign::BCvt:
1873     ExtType = ISD::NON_EXTLOAD;
1874     break;
1875   }
1876   Val = DAG.getExtLoad(
1877       ExtType, DL, LocVT, Chain, FIN,
1878       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
1879   return Val;
1880 }
1881 
1882 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
1883                                        const CCValAssign &VA, const SDLoc &DL) {
1884   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
1885          "Unexpected VA");
1886   MachineFunction &MF = DAG.getMachineFunction();
1887   MachineFrameInfo &MFI = MF.getFrameInfo();
1888   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1889 
1890   if (VA.isMemLoc()) {
1891     // f64 is passed on the stack.
1892     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
1893     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1894     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
1895                        MachinePointerInfo::getFixedStack(MF, FI));
1896   }
1897 
1898   assert(VA.isRegLoc() && "Expected register VA assignment");
1899 
1900   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
1901   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
1902   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
1903   SDValue Hi;
1904   if (VA.getLocReg() == RISCV::X17) {
1905     // Second half of f64 is passed on the stack.
1906     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
1907     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1908     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
1909                      MachinePointerInfo::getFixedStack(MF, FI));
1910   } else {
1911     // Second half of f64 is passed in another GPR.
1912     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
1913     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
1914     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
1915   }
1916   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1917 }
1918 
1919 // FastCC has less than 1% performance improvement for some particular
1920 // benchmark. But theoretically, it may has benenfit for some cases.
1921 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT,
1922                             CCValAssign::LocInfo LocInfo,
1923                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
1924 
1925   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
1926     // X5 and X6 might be used for save-restore libcall.
1927     static const MCPhysReg GPRList[] = {
1928         RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
1929         RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
1930         RISCV::X29, RISCV::X30, RISCV::X31};
1931     if (unsigned Reg = State.AllocateReg(GPRList)) {
1932       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1933       return false;
1934     }
1935   }
1936 
1937   if (LocVT == MVT::f32) {
1938     static const MCPhysReg FPR32List[] = {
1939         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
1940         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
1941         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
1942         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
1943     if (unsigned Reg = State.AllocateReg(FPR32List)) {
1944       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1945       return false;
1946     }
1947   }
1948 
1949   if (LocVT == MVT::f64) {
1950     static const MCPhysReg FPR64List[] = {
1951         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
1952         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
1953         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
1954         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
1955     if (unsigned Reg = State.AllocateReg(FPR64List)) {
1956       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1957       return false;
1958     }
1959   }
1960 
1961   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
1962     unsigned Offset4 = State.AllocateStack(4, Align(4));
1963     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
1964     return false;
1965   }
1966 
1967   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
1968     unsigned Offset5 = State.AllocateStack(8, Align(8));
1969     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
1970     return false;
1971   }
1972 
1973   return true; // CC didn't match.
1974 }
1975 
1976 // Transform physical registers into virtual registers.
1977 SDValue RISCVTargetLowering::LowerFormalArguments(
1978     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1979     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1980     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1981 
1982   switch (CallConv) {
1983   default:
1984     report_fatal_error("Unsupported calling convention");
1985   case CallingConv::C:
1986   case CallingConv::Fast:
1987     break;
1988   }
1989 
1990   MachineFunction &MF = DAG.getMachineFunction();
1991 
1992   const Function &Func = MF.getFunction();
1993   if (Func.hasFnAttribute("interrupt")) {
1994     if (!Func.arg_empty())
1995       report_fatal_error(
1996         "Functions with the interrupt attribute cannot have arguments!");
1997 
1998     StringRef Kind =
1999       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
2000 
2001     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
2002       report_fatal_error(
2003         "Function interrupt attribute argument not supported!");
2004   }
2005 
2006   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2007   MVT XLenVT = Subtarget.getXLenVT();
2008   unsigned XLenInBytes = Subtarget.getXLen() / 8;
2009   // Used with vargs to acumulate store chains.
2010   std::vector<SDValue> OutChains;
2011 
2012   // Assign locations to all of the incoming arguments.
2013   SmallVector<CCValAssign, 16> ArgLocs;
2014   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
2015 
2016   if (CallConv == CallingConv::Fast)
2017     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC);
2018   else
2019     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false);
2020 
2021   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2022     CCValAssign &VA = ArgLocs[i];
2023     SDValue ArgValue;
2024     // Passing f64 on RV32D with a soft float ABI must be handled as a special
2025     // case.
2026     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
2027       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
2028     else if (VA.isRegLoc())
2029       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL);
2030     else
2031       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
2032 
2033     if (VA.getLocInfo() == CCValAssign::Indirect) {
2034       // If the original argument was split and passed by reference (e.g. i128
2035       // on RV32), we need to load all parts of it here (using the same
2036       // address).
2037       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
2038                                    MachinePointerInfo()));
2039       unsigned ArgIndex = Ins[i].OrigArgIndex;
2040       assert(Ins[i].PartOffset == 0);
2041       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
2042         CCValAssign &PartVA = ArgLocs[i + 1];
2043         unsigned PartOffset = Ins[i + 1].PartOffset;
2044         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
2045                                       DAG.getIntPtrConstant(PartOffset, DL));
2046         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
2047                                      MachinePointerInfo()));
2048         ++i;
2049       }
2050       continue;
2051     }
2052     InVals.push_back(ArgValue);
2053   }
2054 
2055   if (IsVarArg) {
2056     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
2057     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
2058     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
2059     MachineFrameInfo &MFI = MF.getFrameInfo();
2060     MachineRegisterInfo &RegInfo = MF.getRegInfo();
2061     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
2062 
2063     // Offset of the first variable argument from stack pointer, and size of
2064     // the vararg save area. For now, the varargs save area is either zero or
2065     // large enough to hold a0-a7.
2066     int VaArgOffset, VarArgsSaveSize;
2067 
2068     // If all registers are allocated, then all varargs must be passed on the
2069     // stack and we don't need to save any argregs.
2070     if (ArgRegs.size() == Idx) {
2071       VaArgOffset = CCInfo.getNextStackOffset();
2072       VarArgsSaveSize = 0;
2073     } else {
2074       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
2075       VaArgOffset = -VarArgsSaveSize;
2076     }
2077 
2078     // Record the frame index of the first variable argument
2079     // which is a value necessary to VASTART.
2080     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
2081     RVFI->setVarArgsFrameIndex(FI);
2082 
2083     // If saving an odd number of registers then create an extra stack slot to
2084     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
2085     // offsets to even-numbered registered remain 2*XLEN-aligned.
2086     if (Idx % 2) {
2087       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
2088       VarArgsSaveSize += XLenInBytes;
2089     }
2090 
2091     // Copy the integer registers that may have been used for passing varargs
2092     // to the vararg save area.
2093     for (unsigned I = Idx; I < ArgRegs.size();
2094          ++I, VaArgOffset += XLenInBytes) {
2095       const Register Reg = RegInfo.createVirtualRegister(RC);
2096       RegInfo.addLiveIn(ArgRegs[I], Reg);
2097       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
2098       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
2099       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2100       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
2101                                    MachinePointerInfo::getFixedStack(MF, FI));
2102       cast<StoreSDNode>(Store.getNode())
2103           ->getMemOperand()
2104           ->setValue((Value *)nullptr);
2105       OutChains.push_back(Store);
2106     }
2107     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
2108   }
2109 
2110   // All stores are grouped in one node to allow the matching between
2111   // the size of Ins and InVals. This only happens for vararg functions.
2112   if (!OutChains.empty()) {
2113     OutChains.push_back(Chain);
2114     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
2115   }
2116 
2117   return Chain;
2118 }
2119 
2120 /// isEligibleForTailCallOptimization - Check whether the call is eligible
2121 /// for tail call optimization.
2122 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
2123 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
2124     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
2125     const SmallVector<CCValAssign, 16> &ArgLocs) const {
2126 
2127   auto &Callee = CLI.Callee;
2128   auto CalleeCC = CLI.CallConv;
2129   auto &Outs = CLI.Outs;
2130   auto &Caller = MF.getFunction();
2131   auto CallerCC = Caller.getCallingConv();
2132 
2133   // Exception-handling functions need a special set of instructions to
2134   // indicate a return to the hardware. Tail-calling another function would
2135   // probably break this.
2136   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
2137   // should be expanded as new function attributes are introduced.
2138   if (Caller.hasFnAttribute("interrupt"))
2139     return false;
2140 
2141   // Do not tail call opt if the stack is used to pass parameters.
2142   if (CCInfo.getNextStackOffset() != 0)
2143     return false;
2144 
2145   // Do not tail call opt if any parameters need to be passed indirectly.
2146   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
2147   // passed indirectly. So the address of the value will be passed in a
2148   // register, or if not available, then the address is put on the stack. In
2149   // order to pass indirectly, space on the stack often needs to be allocated
2150   // in order to store the value. In this case the CCInfo.getNextStackOffset()
2151   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
2152   // are passed CCValAssign::Indirect.
2153   for (auto &VA : ArgLocs)
2154     if (VA.getLocInfo() == CCValAssign::Indirect)
2155       return false;
2156 
2157   // Do not tail call opt if either caller or callee uses struct return
2158   // semantics.
2159   auto IsCallerStructRet = Caller.hasStructRetAttr();
2160   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
2161   if (IsCallerStructRet || IsCalleeStructRet)
2162     return false;
2163 
2164   // Externally-defined functions with weak linkage should not be
2165   // tail-called. The behaviour of branch instructions in this situation (as
2166   // used for tail calls) is implementation-defined, so we cannot rely on the
2167   // linker replacing the tail call with a return.
2168   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2169     const GlobalValue *GV = G->getGlobal();
2170     if (GV->hasExternalWeakLinkage())
2171       return false;
2172   }
2173 
2174   // The callee has to preserve all registers the caller needs to preserve.
2175   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
2176   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2177   if (CalleeCC != CallerCC) {
2178     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2179     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2180       return false;
2181   }
2182 
2183   // Byval parameters hand the function a pointer directly into the stack area
2184   // we want to reuse during a tail call. Working around this *is* possible
2185   // but less efficient and uglier in LowerCall.
2186   for (auto &Arg : Outs)
2187     if (Arg.Flags.isByVal())
2188       return false;
2189 
2190   return true;
2191 }
2192 
2193 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
2194 // and output parameter nodes.
2195 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
2196                                        SmallVectorImpl<SDValue> &InVals) const {
2197   SelectionDAG &DAG = CLI.DAG;
2198   SDLoc &DL = CLI.DL;
2199   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2200   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
2201   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
2202   SDValue Chain = CLI.Chain;
2203   SDValue Callee = CLI.Callee;
2204   bool &IsTailCall = CLI.IsTailCall;
2205   CallingConv::ID CallConv = CLI.CallConv;
2206   bool IsVarArg = CLI.IsVarArg;
2207   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2208   MVT XLenVT = Subtarget.getXLenVT();
2209 
2210   MachineFunction &MF = DAG.getMachineFunction();
2211 
2212   // Analyze the operands of the call, assigning locations to each operand.
2213   SmallVector<CCValAssign, 16> ArgLocs;
2214   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
2215 
2216   if (CallConv == CallingConv::Fast)
2217     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC);
2218   else
2219     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI);
2220 
2221   // Check if it's really possible to do a tail call.
2222   if (IsTailCall)
2223     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
2224 
2225   if (IsTailCall)
2226     ++NumTailCalls;
2227   else if (CLI.CB && CLI.CB->isMustTailCall())
2228     report_fatal_error("failed to perform tail call elimination on a call "
2229                        "site marked musttail");
2230 
2231   // Get a count of how many bytes are to be pushed on the stack.
2232   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
2233 
2234   // Create local copies for byval args
2235   SmallVector<SDValue, 8> ByValArgs;
2236   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
2237     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2238     if (!Flags.isByVal())
2239       continue;
2240 
2241     SDValue Arg = OutVals[i];
2242     unsigned Size = Flags.getByValSize();
2243     Align Alignment = Flags.getNonZeroByValAlign();
2244 
2245     int FI =
2246         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
2247     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2248     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
2249 
2250     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
2251                           /*IsVolatile=*/false,
2252                           /*AlwaysInline=*/false, IsTailCall,
2253                           MachinePointerInfo(), MachinePointerInfo());
2254     ByValArgs.push_back(FIPtr);
2255   }
2256 
2257   if (!IsTailCall)
2258     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
2259 
2260   // Copy argument values to their designated locations.
2261   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
2262   SmallVector<SDValue, 8> MemOpChains;
2263   SDValue StackPtr;
2264   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
2265     CCValAssign &VA = ArgLocs[i];
2266     SDValue ArgValue = OutVals[i];
2267     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2268 
2269     // Handle passing f64 on RV32D with a soft float ABI as a special case.
2270     bool IsF64OnRV32DSoftABI =
2271         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
2272     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
2273       SDValue SplitF64 = DAG.getNode(
2274           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
2275       SDValue Lo = SplitF64.getValue(0);
2276       SDValue Hi = SplitF64.getValue(1);
2277 
2278       Register RegLo = VA.getLocReg();
2279       RegsToPass.push_back(std::make_pair(RegLo, Lo));
2280 
2281       if (RegLo == RISCV::X17) {
2282         // Second half of f64 is passed on the stack.
2283         // Work out the address of the stack slot.
2284         if (!StackPtr.getNode())
2285           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
2286         // Emit the store.
2287         MemOpChains.push_back(
2288             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
2289       } else {
2290         // Second half of f64 is passed in another GPR.
2291         assert(RegLo < RISCV::X31 && "Invalid register pair");
2292         Register RegHigh = RegLo + 1;
2293         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
2294       }
2295       continue;
2296     }
2297 
2298     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
2299     // as any other MemLoc.
2300 
2301     // Promote the value if needed.
2302     // For now, only handle fully promoted and indirect arguments.
2303     if (VA.getLocInfo() == CCValAssign::Indirect) {
2304       // Store the argument in a stack slot and pass its address.
2305       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT);
2306       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2307       MemOpChains.push_back(
2308           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
2309                        MachinePointerInfo::getFixedStack(MF, FI)));
2310       // If the original argument was split (e.g. i128), we need
2311       // to store all parts of it here (and pass just one address).
2312       unsigned ArgIndex = Outs[i].OrigArgIndex;
2313       assert(Outs[i].PartOffset == 0);
2314       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
2315         SDValue PartValue = OutVals[i + 1];
2316         unsigned PartOffset = Outs[i + 1].PartOffset;
2317         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
2318                                       DAG.getIntPtrConstant(PartOffset, DL));
2319         MemOpChains.push_back(
2320             DAG.getStore(Chain, DL, PartValue, Address,
2321                          MachinePointerInfo::getFixedStack(MF, FI)));
2322         ++i;
2323       }
2324       ArgValue = SpillSlot;
2325     } else {
2326       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL);
2327     }
2328 
2329     // Use local copy if it is a byval arg.
2330     if (Flags.isByVal())
2331       ArgValue = ByValArgs[j++];
2332 
2333     if (VA.isRegLoc()) {
2334       // Queue up the argument copies and emit them at the end.
2335       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
2336     } else {
2337       assert(VA.isMemLoc() && "Argument not register or memory");
2338       assert(!IsTailCall && "Tail call not allowed if stack is used "
2339                             "for passing parameters");
2340 
2341       // Work out the address of the stack slot.
2342       if (!StackPtr.getNode())
2343         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
2344       SDValue Address =
2345           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
2346                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
2347 
2348       // Emit the store.
2349       MemOpChains.push_back(
2350           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
2351     }
2352   }
2353 
2354   // Join the stores, which are independent of one another.
2355   if (!MemOpChains.empty())
2356     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2357 
2358   SDValue Glue;
2359 
2360   // Build a sequence of copy-to-reg nodes, chained and glued together.
2361   for (auto &Reg : RegsToPass) {
2362     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
2363     Glue = Chain.getValue(1);
2364   }
2365 
2366   // Validate that none of the argument registers have been marked as
2367   // reserved, if so report an error. Do the same for the return address if this
2368   // is not a tailcall.
2369   validateCCReservedRegs(RegsToPass, MF);
2370   if (!IsTailCall &&
2371       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
2372     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
2373         MF.getFunction(),
2374         "Return address register required, but has been reserved."});
2375 
2376   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
2377   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
2378   // split it and then direct call can be matched by PseudoCALL.
2379   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
2380     const GlobalValue *GV = S->getGlobal();
2381 
2382     unsigned OpFlags = RISCVII::MO_CALL;
2383     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
2384       OpFlags = RISCVII::MO_PLT;
2385 
2386     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
2387   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2388     unsigned OpFlags = RISCVII::MO_CALL;
2389 
2390     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
2391                                                  nullptr))
2392       OpFlags = RISCVII::MO_PLT;
2393 
2394     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
2395   }
2396 
2397   // The first call operand is the chain and the second is the target address.
2398   SmallVector<SDValue, 8> Ops;
2399   Ops.push_back(Chain);
2400   Ops.push_back(Callee);
2401 
2402   // Add argument registers to the end of the list so that they are
2403   // known live into the call.
2404   for (auto &Reg : RegsToPass)
2405     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
2406 
2407   if (!IsTailCall) {
2408     // Add a register mask operand representing the call-preserved registers.
2409     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2410     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
2411     assert(Mask && "Missing call preserved mask for calling convention");
2412     Ops.push_back(DAG.getRegisterMask(Mask));
2413   }
2414 
2415   // Glue the call to the argument copies, if any.
2416   if (Glue.getNode())
2417     Ops.push_back(Glue);
2418 
2419   // Emit the call.
2420   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2421 
2422   if (IsTailCall) {
2423     MF.getFrameInfo().setHasTailCall();
2424     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
2425   }
2426 
2427   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
2428   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
2429   Glue = Chain.getValue(1);
2430 
2431   // Mark the end of the call, which is glued to the call itself.
2432   Chain = DAG.getCALLSEQ_END(Chain,
2433                              DAG.getConstant(NumBytes, DL, PtrVT, true),
2434                              DAG.getConstant(0, DL, PtrVT, true),
2435                              Glue, DL);
2436   Glue = Chain.getValue(1);
2437 
2438   // Assign locations to each value returned by this call.
2439   SmallVector<CCValAssign, 16> RVLocs;
2440   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
2441   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true);
2442 
2443   // Copy all of the result registers out of their specified physreg.
2444   for (auto &VA : RVLocs) {
2445     // Copy the value out
2446     SDValue RetValue =
2447         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
2448     // Glue the RetValue to the end of the call sequence
2449     Chain = RetValue.getValue(1);
2450     Glue = RetValue.getValue(2);
2451 
2452     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
2453       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
2454       SDValue RetValue2 =
2455           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
2456       Chain = RetValue2.getValue(1);
2457       Glue = RetValue2.getValue(2);
2458       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
2459                              RetValue2);
2460     }
2461 
2462     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL);
2463 
2464     InVals.push_back(RetValue);
2465   }
2466 
2467   return Chain;
2468 }
2469 
2470 bool RISCVTargetLowering::CanLowerReturn(
2471     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
2472     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
2473   SmallVector<CCValAssign, 16> RVLocs;
2474   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2475   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
2476     MVT VT = Outs[i].VT;
2477     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2478     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
2479     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
2480                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr))
2481       return false;
2482   }
2483   return true;
2484 }
2485 
2486 SDValue
2487 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2488                                  bool IsVarArg,
2489                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2490                                  const SmallVectorImpl<SDValue> &OutVals,
2491                                  const SDLoc &DL, SelectionDAG &DAG) const {
2492   const MachineFunction &MF = DAG.getMachineFunction();
2493   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
2494 
2495   // Stores the assignment of the return value to a location.
2496   SmallVector<CCValAssign, 16> RVLocs;
2497 
2498   // Info about the registers and stack slot.
2499   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2500                  *DAG.getContext());
2501 
2502   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
2503                     nullptr);
2504 
2505   SDValue Glue;
2506   SmallVector<SDValue, 4> RetOps(1, Chain);
2507 
2508   // Copy the result values into the output registers.
2509   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
2510     SDValue Val = OutVals[i];
2511     CCValAssign &VA = RVLocs[i];
2512     assert(VA.isRegLoc() && "Can only return in registers!");
2513 
2514     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
2515       // Handle returning f64 on RV32D with a soft float ABI.
2516       assert(VA.isRegLoc() && "Expected return via registers");
2517       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
2518                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
2519       SDValue Lo = SplitF64.getValue(0);
2520       SDValue Hi = SplitF64.getValue(1);
2521       Register RegLo = VA.getLocReg();
2522       assert(RegLo < RISCV::X31 && "Invalid register pair");
2523       Register RegHi = RegLo + 1;
2524 
2525       if (STI.isRegisterReservedByUser(RegLo) ||
2526           STI.isRegisterReservedByUser(RegHi))
2527         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
2528             MF.getFunction(),
2529             "Return value register required, but has been reserved."});
2530 
2531       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
2532       Glue = Chain.getValue(1);
2533       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
2534       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
2535       Glue = Chain.getValue(1);
2536       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
2537     } else {
2538       // Handle a 'normal' return.
2539       Val = convertValVTToLocVT(DAG, Val, VA, DL);
2540       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
2541 
2542       if (STI.isRegisterReservedByUser(VA.getLocReg()))
2543         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
2544             MF.getFunction(),
2545             "Return value register required, but has been reserved."});
2546 
2547       // Guarantee that all emitted copies are stuck together.
2548       Glue = Chain.getValue(1);
2549       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2550     }
2551   }
2552 
2553   RetOps[0] = Chain; // Update chain.
2554 
2555   // Add the glue node if we have it.
2556   if (Glue.getNode()) {
2557     RetOps.push_back(Glue);
2558   }
2559 
2560   // Interrupt service routines use different return instructions.
2561   const Function &Func = DAG.getMachineFunction().getFunction();
2562   if (Func.hasFnAttribute("interrupt")) {
2563     if (!Func.getReturnType()->isVoidTy())
2564       report_fatal_error(
2565           "Functions with the interrupt attribute must have void return type!");
2566 
2567     MachineFunction &MF = DAG.getMachineFunction();
2568     StringRef Kind =
2569       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
2570 
2571     unsigned RetOpc;
2572     if (Kind == "user")
2573       RetOpc = RISCVISD::URET_FLAG;
2574     else if (Kind == "supervisor")
2575       RetOpc = RISCVISD::SRET_FLAG;
2576     else
2577       RetOpc = RISCVISD::MRET_FLAG;
2578 
2579     return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
2580   }
2581 
2582   return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
2583 }
2584 
2585 void RISCVTargetLowering::validateCCReservedRegs(
2586     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
2587     MachineFunction &MF) const {
2588   const Function &F = MF.getFunction();
2589   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
2590 
2591   if (std::any_of(std::begin(Regs), std::end(Regs), [&STI](auto Reg) {
2592         return STI.isRegisterReservedByUser(Reg.first);
2593       }))
2594     F.getContext().diagnose(DiagnosticInfoUnsupported{
2595         F, "Argument register required, but has been reserved."});
2596 }
2597 
2598 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2599   return CI->isTailCall();
2600 }
2601 
2602 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
2603   switch ((RISCVISD::NodeType)Opcode) {
2604   case RISCVISD::FIRST_NUMBER:
2605     break;
2606   case RISCVISD::RET_FLAG:
2607     return "RISCVISD::RET_FLAG";
2608   case RISCVISD::URET_FLAG:
2609     return "RISCVISD::URET_FLAG";
2610   case RISCVISD::SRET_FLAG:
2611     return "RISCVISD::SRET_FLAG";
2612   case RISCVISD::MRET_FLAG:
2613     return "RISCVISD::MRET_FLAG";
2614   case RISCVISD::CALL:
2615     return "RISCVISD::CALL";
2616   case RISCVISD::SELECT_CC:
2617     return "RISCVISD::SELECT_CC";
2618   case RISCVISD::BuildPairF64:
2619     return "RISCVISD::BuildPairF64";
2620   case RISCVISD::SplitF64:
2621     return "RISCVISD::SplitF64";
2622   case RISCVISD::TAIL:
2623     return "RISCVISD::TAIL";
2624   case RISCVISD::SLLW:
2625     return "RISCVISD::SLLW";
2626   case RISCVISD::SRAW:
2627     return "RISCVISD::SRAW";
2628   case RISCVISD::SRLW:
2629     return "RISCVISD::SRLW";
2630   case RISCVISD::DIVW:
2631     return "RISCVISD::DIVW";
2632   case RISCVISD::DIVUW:
2633     return "RISCVISD::DIVUW";
2634   case RISCVISD::REMUW:
2635     return "RISCVISD::REMUW";
2636   case RISCVISD::FMV_W_X_RV64:
2637     return "RISCVISD::FMV_W_X_RV64";
2638   case RISCVISD::FMV_X_ANYEXTW_RV64:
2639     return "RISCVISD::FMV_X_ANYEXTW_RV64";
2640   case RISCVISD::READ_CYCLE_WIDE:
2641     return "RISCVISD::READ_CYCLE_WIDE";
2642   }
2643   return nullptr;
2644 }
2645 
2646 /// getConstraintType - Given a constraint letter, return the type of
2647 /// constraint it is for this target.
2648 RISCVTargetLowering::ConstraintType
2649 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
2650   if (Constraint.size() == 1) {
2651     switch (Constraint[0]) {
2652     default:
2653       break;
2654     case 'f':
2655       return C_RegisterClass;
2656     case 'I':
2657     case 'J':
2658     case 'K':
2659       return C_Immediate;
2660     case 'A':
2661       return C_Memory;
2662     }
2663   }
2664   return TargetLowering::getConstraintType(Constraint);
2665 }
2666 
2667 std::pair<unsigned, const TargetRegisterClass *>
2668 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
2669                                                   StringRef Constraint,
2670                                                   MVT VT) const {
2671   // First, see if this is a constraint that directly corresponds to a
2672   // RISCV register class.
2673   if (Constraint.size() == 1) {
2674     switch (Constraint[0]) {
2675     case 'r':
2676       return std::make_pair(0U, &RISCV::GPRRegClass);
2677     case 'f':
2678       if (Subtarget.hasStdExtF() && VT == MVT::f32)
2679         return std::make_pair(0U, &RISCV::FPR32RegClass);
2680       if (Subtarget.hasStdExtD() && VT == MVT::f64)
2681         return std::make_pair(0U, &RISCV::FPR64RegClass);
2682       break;
2683     default:
2684       break;
2685     }
2686   }
2687 
2688   // Clang will correctly decode the usage of register name aliases into their
2689   // official names. However, other frontends like `rustc` do not. This allows
2690   // users of these frontends to use the ABI names for registers in LLVM-style
2691   // register constraints.
2692   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
2693                                .Case("{zero}", RISCV::X0)
2694                                .Case("{ra}", RISCV::X1)
2695                                .Case("{sp}", RISCV::X2)
2696                                .Case("{gp}", RISCV::X3)
2697                                .Case("{tp}", RISCV::X4)
2698                                .Case("{t0}", RISCV::X5)
2699                                .Case("{t1}", RISCV::X6)
2700                                .Case("{t2}", RISCV::X7)
2701                                .Cases("{s0}", "{fp}", RISCV::X8)
2702                                .Case("{s1}", RISCV::X9)
2703                                .Case("{a0}", RISCV::X10)
2704                                .Case("{a1}", RISCV::X11)
2705                                .Case("{a2}", RISCV::X12)
2706                                .Case("{a3}", RISCV::X13)
2707                                .Case("{a4}", RISCV::X14)
2708                                .Case("{a5}", RISCV::X15)
2709                                .Case("{a6}", RISCV::X16)
2710                                .Case("{a7}", RISCV::X17)
2711                                .Case("{s2}", RISCV::X18)
2712                                .Case("{s3}", RISCV::X19)
2713                                .Case("{s4}", RISCV::X20)
2714                                .Case("{s5}", RISCV::X21)
2715                                .Case("{s6}", RISCV::X22)
2716                                .Case("{s7}", RISCV::X23)
2717                                .Case("{s8}", RISCV::X24)
2718                                .Case("{s9}", RISCV::X25)
2719                                .Case("{s10}", RISCV::X26)
2720                                .Case("{s11}", RISCV::X27)
2721                                .Case("{t3}", RISCV::X28)
2722                                .Case("{t4}", RISCV::X29)
2723                                .Case("{t5}", RISCV::X30)
2724                                .Case("{t6}", RISCV::X31)
2725                                .Default(RISCV::NoRegister);
2726   if (XRegFromAlias != RISCV::NoRegister)
2727     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
2728 
2729   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
2730   // TableGen record rather than the AsmName to choose registers for InlineAsm
2731   // constraints, plus we want to match those names to the widest floating point
2732   // register type available, manually select floating point registers here.
2733   //
2734   // The second case is the ABI name of the register, so that frontends can also
2735   // use the ABI names in register constraint lists.
2736   if (Subtarget.hasStdExtF() || Subtarget.hasStdExtD()) {
2737     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
2738                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
2739                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
2740                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
2741                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
2742                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
2743                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
2744                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
2745                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
2746                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
2747                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
2748                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
2749                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
2750                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
2751                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
2752                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
2753                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
2754                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
2755                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
2756                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
2757                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
2758                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
2759                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
2760                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
2761                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
2762                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
2763                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
2764                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
2765                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
2766                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
2767                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
2768                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
2769                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
2770                         .Default(RISCV::NoRegister);
2771     if (FReg != RISCV::NoRegister) {
2772       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
2773       if (Subtarget.hasStdExtD()) {
2774         unsigned RegNo = FReg - RISCV::F0_F;
2775         unsigned DReg = RISCV::F0_D + RegNo;
2776         return std::make_pair(DReg, &RISCV::FPR64RegClass);
2777       }
2778       return std::make_pair(FReg, &RISCV::FPR32RegClass);
2779     }
2780   }
2781 
2782   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
2783 }
2784 
2785 unsigned
2786 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
2787   // Currently only support length 1 constraints.
2788   if (ConstraintCode.size() == 1) {
2789     switch (ConstraintCode[0]) {
2790     case 'A':
2791       return InlineAsm::Constraint_A;
2792     default:
2793       break;
2794     }
2795   }
2796 
2797   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
2798 }
2799 
2800 void RISCVTargetLowering::LowerAsmOperandForConstraint(
2801     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
2802     SelectionDAG &DAG) const {
2803   // Currently only support length 1 constraints.
2804   if (Constraint.length() == 1) {
2805     switch (Constraint[0]) {
2806     case 'I':
2807       // Validate & create a 12-bit signed immediate operand.
2808       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2809         uint64_t CVal = C->getSExtValue();
2810         if (isInt<12>(CVal))
2811           Ops.push_back(
2812               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
2813       }
2814       return;
2815     case 'J':
2816       // Validate & create an integer zero operand.
2817       if (auto *C = dyn_cast<ConstantSDNode>(Op))
2818         if (C->getZExtValue() == 0)
2819           Ops.push_back(
2820               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
2821       return;
2822     case 'K':
2823       // Validate & create a 5-bit unsigned immediate operand.
2824       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2825         uint64_t CVal = C->getZExtValue();
2826         if (isUInt<5>(CVal))
2827           Ops.push_back(
2828               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
2829       }
2830       return;
2831     default:
2832       break;
2833     }
2834   }
2835   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2836 }
2837 
2838 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
2839                                                    Instruction *Inst,
2840                                                    AtomicOrdering Ord) const {
2841   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
2842     return Builder.CreateFence(Ord);
2843   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
2844     return Builder.CreateFence(AtomicOrdering::Release);
2845   return nullptr;
2846 }
2847 
2848 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
2849                                                     Instruction *Inst,
2850                                                     AtomicOrdering Ord) const {
2851   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
2852     return Builder.CreateFence(AtomicOrdering::Acquire);
2853   return nullptr;
2854 }
2855 
2856 TargetLowering::AtomicExpansionKind
2857 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
2858   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
2859   // point operations can't be used in an lr/sc sequence without breaking the
2860   // forward-progress guarantee.
2861   if (AI->isFloatingPointOperation())
2862     return AtomicExpansionKind::CmpXChg;
2863 
2864   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
2865   if (Size == 8 || Size == 16)
2866     return AtomicExpansionKind::MaskedIntrinsic;
2867   return AtomicExpansionKind::None;
2868 }
2869 
2870 static Intrinsic::ID
2871 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
2872   if (XLen == 32) {
2873     switch (BinOp) {
2874     default:
2875       llvm_unreachable("Unexpected AtomicRMW BinOp");
2876     case AtomicRMWInst::Xchg:
2877       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
2878     case AtomicRMWInst::Add:
2879       return Intrinsic::riscv_masked_atomicrmw_add_i32;
2880     case AtomicRMWInst::Sub:
2881       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
2882     case AtomicRMWInst::Nand:
2883       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
2884     case AtomicRMWInst::Max:
2885       return Intrinsic::riscv_masked_atomicrmw_max_i32;
2886     case AtomicRMWInst::Min:
2887       return Intrinsic::riscv_masked_atomicrmw_min_i32;
2888     case AtomicRMWInst::UMax:
2889       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
2890     case AtomicRMWInst::UMin:
2891       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
2892     }
2893   }
2894 
2895   if (XLen == 64) {
2896     switch (BinOp) {
2897     default:
2898       llvm_unreachable("Unexpected AtomicRMW BinOp");
2899     case AtomicRMWInst::Xchg:
2900       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
2901     case AtomicRMWInst::Add:
2902       return Intrinsic::riscv_masked_atomicrmw_add_i64;
2903     case AtomicRMWInst::Sub:
2904       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
2905     case AtomicRMWInst::Nand:
2906       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
2907     case AtomicRMWInst::Max:
2908       return Intrinsic::riscv_masked_atomicrmw_max_i64;
2909     case AtomicRMWInst::Min:
2910       return Intrinsic::riscv_masked_atomicrmw_min_i64;
2911     case AtomicRMWInst::UMax:
2912       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
2913     case AtomicRMWInst::UMin:
2914       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
2915     }
2916   }
2917 
2918   llvm_unreachable("Unexpected XLen\n");
2919 }
2920 
2921 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
2922     IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
2923     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
2924   unsigned XLen = Subtarget.getXLen();
2925   Value *Ordering =
2926       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
2927   Type *Tys[] = {AlignedAddr->getType()};
2928   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
2929       AI->getModule(),
2930       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
2931 
2932   if (XLen == 64) {
2933     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
2934     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
2935     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
2936   }
2937 
2938   Value *Result;
2939 
2940   // Must pass the shift amount needed to sign extend the loaded value prior
2941   // to performing a signed comparison for min/max. ShiftAmt is the number of
2942   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
2943   // is the number of bits to left+right shift the value in order to
2944   // sign-extend.
2945   if (AI->getOperation() == AtomicRMWInst::Min ||
2946       AI->getOperation() == AtomicRMWInst::Max) {
2947     const DataLayout &DL = AI->getModule()->getDataLayout();
2948     unsigned ValWidth =
2949         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
2950     Value *SextShamt =
2951         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
2952     Result = Builder.CreateCall(LrwOpScwLoop,
2953                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
2954   } else {
2955     Result =
2956         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
2957   }
2958 
2959   if (XLen == 64)
2960     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
2961   return Result;
2962 }
2963 
2964 TargetLowering::AtomicExpansionKind
2965 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
2966     AtomicCmpXchgInst *CI) const {
2967   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
2968   if (Size == 8 || Size == 16)
2969     return AtomicExpansionKind::MaskedIntrinsic;
2970   return AtomicExpansionKind::None;
2971 }
2972 
2973 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
2974     IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
2975     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
2976   unsigned XLen = Subtarget.getXLen();
2977   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
2978   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
2979   if (XLen == 64) {
2980     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
2981     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
2982     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
2983     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
2984   }
2985   Type *Tys[] = {AlignedAddr->getType()};
2986   Function *MaskedCmpXchg =
2987       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
2988   Value *Result = Builder.CreateCall(
2989       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
2990   if (XLen == 64)
2991     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
2992   return Result;
2993 }
2994 
2995 Register RISCVTargetLowering::getExceptionPointerRegister(
2996     const Constant *PersonalityFn) const {
2997   return RISCV::X10;
2998 }
2999 
3000 Register RISCVTargetLowering::getExceptionSelectorRegister(
3001     const Constant *PersonalityFn) const {
3002   return RISCV::X11;
3003 }
3004 
3005 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
3006   // Return false to suppress the unnecessary extensions if the LibCall
3007   // arguments or return value is f32 type for LP64 ABI.
3008   RISCVABI::ABI ABI = Subtarget.getTargetABI();
3009   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
3010     return false;
3011 
3012   return true;
3013 }
3014 
3015 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
3016                                                  SDValue C) const {
3017   // Check integral scalar types.
3018   if (VT.isScalarInteger()) {
3019     // Do not perform the transformation on riscv32 with the M extension.
3020     if (!Subtarget.is64Bit() && Subtarget.hasStdExtM())
3021       return false;
3022     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
3023       if (ConstNode->getAPIntValue().getBitWidth() > 8 * sizeof(int64_t))
3024         return false;
3025       int64_t Imm = ConstNode->getSExtValue();
3026       if (isPowerOf2_64(Imm + 1) || isPowerOf2_64(Imm - 1) ||
3027           isPowerOf2_64(1 - Imm) || isPowerOf2_64(-1 - Imm))
3028         return true;
3029     }
3030   }
3031 
3032   return false;
3033 }
3034 
3035 #define GET_REGISTER_MATCHER
3036 #include "RISCVGenAsmMatcher.inc"
3037 
3038 Register
3039 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
3040                                        const MachineFunction &MF) const {
3041   Register Reg = MatchRegisterAltName(RegName);
3042   if (Reg == RISCV::NoRegister)
3043     Reg = MatchRegisterName(RegName);
3044   if (Reg == RISCV::NoRegister)
3045     report_fatal_error(
3046         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
3047   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
3048   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
3049     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
3050                              StringRef(RegName) + "\"."));
3051   return Reg;
3052 }
3053