1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/IntrinsicsRISCV.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/KnownBits.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "riscv-lower" 45 46 STATISTIC(NumTailCalls, "Number of tail calls"); 47 48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 49 const RISCVSubtarget &STI) 50 : TargetLowering(TM), Subtarget(STI) { 51 52 if (Subtarget.isRV32E()) 53 report_fatal_error("Codegen not yet implemented for RV32E"); 54 55 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 56 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 57 58 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 59 !Subtarget.hasStdExtF()) { 60 errs() << "Hard-float 'f' ABI can't be used for a target that " 61 "doesn't support the F instruction set extension (ignoring " 62 "target-abi)\n"; 63 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 64 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 65 !Subtarget.hasStdExtD()) { 66 errs() << "Hard-float 'd' ABI can't be used for a target that " 67 "doesn't support the D instruction set extension (ignoring " 68 "target-abi)\n"; 69 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 70 } 71 72 switch (ABI) { 73 default: 74 report_fatal_error("Don't know how to lower this ABI"); 75 case RISCVABI::ABI_ILP32: 76 case RISCVABI::ABI_ILP32F: 77 case RISCVABI::ABI_ILP32D: 78 case RISCVABI::ABI_LP64: 79 case RISCVABI::ABI_LP64F: 80 case RISCVABI::ABI_LP64D: 81 break; 82 } 83 84 MVT XLenVT = Subtarget.getXLenVT(); 85 86 // Set up the register classes. 87 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 88 89 if (Subtarget.hasStdExtZfh()) 90 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 91 if (Subtarget.hasStdExtF()) 92 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 93 if (Subtarget.hasStdExtD()) 94 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 95 96 static const MVT::SimpleValueType BoolVecVTs[] = { 97 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 98 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 99 static const MVT::SimpleValueType IntVecVTs[] = { 100 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 101 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 102 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 103 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 104 MVT::nxv4i64, MVT::nxv8i64}; 105 static const MVT::SimpleValueType F16VecVTs[] = { 106 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 107 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 108 static const MVT::SimpleValueType F32VecVTs[] = { 109 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 110 static const MVT::SimpleValueType F64VecVTs[] = { 111 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 112 113 if (Subtarget.hasVInstructions()) { 114 auto addRegClassForRVV = [this](MVT VT) { 115 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 116 assert(Size <= 512 && isPowerOf2_32(Size)); 117 const TargetRegisterClass *RC; 118 if (Size <= 64) 119 RC = &RISCV::VRRegClass; 120 else if (Size == 128) 121 RC = &RISCV::VRM2RegClass; 122 else if (Size == 256) 123 RC = &RISCV::VRM4RegClass; 124 else 125 RC = &RISCV::VRM8RegClass; 126 127 addRegisterClass(VT, RC); 128 }; 129 130 for (MVT VT : BoolVecVTs) 131 addRegClassForRVV(VT); 132 for (MVT VT : IntVecVTs) { 133 if (VT.getVectorElementType() == MVT::i64 && 134 !Subtarget.hasVInstructionsI64()) 135 continue; 136 addRegClassForRVV(VT); 137 } 138 139 if (Subtarget.hasVInstructionsF16()) 140 for (MVT VT : F16VecVTs) 141 addRegClassForRVV(VT); 142 143 if (Subtarget.hasVInstructionsF32()) 144 for (MVT VT : F32VecVTs) 145 addRegClassForRVV(VT); 146 147 if (Subtarget.hasVInstructionsF64()) 148 for (MVT VT : F64VecVTs) 149 addRegClassForRVV(VT); 150 151 if (Subtarget.useRVVForFixedLengthVectors()) { 152 auto addRegClassForFixedVectors = [this](MVT VT) { 153 MVT ContainerVT = getContainerForFixedLengthVector(VT); 154 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 155 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 156 addRegisterClass(VT, TRI.getRegClass(RCID)); 157 }; 158 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 159 if (useRVVForFixedLengthVectorVT(VT)) 160 addRegClassForFixedVectors(VT); 161 162 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 163 if (useRVVForFixedLengthVectorVT(VT)) 164 addRegClassForFixedVectors(VT); 165 } 166 } 167 168 // Compute derived properties from the register classes. 169 computeRegisterProperties(STI.getRegisterInfo()); 170 171 setStackPointerRegisterToSaveRestore(RISCV::X2); 172 173 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 174 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 175 176 // TODO: add all necessary setOperationAction calls. 177 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 178 179 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 180 setOperationAction(ISD::BR_CC, XLenVT, Expand); 181 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 182 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 183 184 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 185 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 186 187 setOperationAction(ISD::VASTART, MVT::Other, Custom); 188 setOperationAction(ISD::VAARG, MVT::Other, Expand); 189 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 190 setOperationAction(ISD::VAEND, MVT::Other, Expand); 191 192 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 193 if (!Subtarget.hasStdExtZbb()) { 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 195 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 196 } 197 198 if (Subtarget.is64Bit()) { 199 setOperationAction(ISD::ADD, MVT::i32, Custom); 200 setOperationAction(ISD::SUB, MVT::i32, Custom); 201 setOperationAction(ISD::SHL, MVT::i32, Custom); 202 setOperationAction(ISD::SRA, MVT::i32, Custom); 203 setOperationAction(ISD::SRL, MVT::i32, Custom); 204 205 setOperationAction(ISD::UADDO, MVT::i32, Custom); 206 setOperationAction(ISD::USUBO, MVT::i32, Custom); 207 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 208 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 209 } else { 210 setLibcallName(RTLIB::SHL_I128, nullptr); 211 setLibcallName(RTLIB::SRL_I128, nullptr); 212 setLibcallName(RTLIB::SRA_I128, nullptr); 213 setLibcallName(RTLIB::MUL_I128, nullptr); 214 setLibcallName(RTLIB::MULO_I64, nullptr); 215 } 216 217 if (!Subtarget.hasStdExtM()) { 218 setOperationAction(ISD::MUL, XLenVT, Expand); 219 setOperationAction(ISD::MULHS, XLenVT, Expand); 220 setOperationAction(ISD::MULHU, XLenVT, Expand); 221 setOperationAction(ISD::SDIV, XLenVT, Expand); 222 setOperationAction(ISD::UDIV, XLenVT, Expand); 223 setOperationAction(ISD::SREM, XLenVT, Expand); 224 setOperationAction(ISD::UREM, XLenVT, Expand); 225 } else { 226 if (Subtarget.is64Bit()) { 227 setOperationAction(ISD::MUL, MVT::i32, Custom); 228 setOperationAction(ISD::MUL, MVT::i128, Custom); 229 230 setOperationAction(ISD::SDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UDIV, MVT::i8, Custom); 232 setOperationAction(ISD::UREM, MVT::i8, Custom); 233 setOperationAction(ISD::SDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UDIV, MVT::i16, Custom); 235 setOperationAction(ISD::UREM, MVT::i16, Custom); 236 setOperationAction(ISD::SDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UDIV, MVT::i32, Custom); 238 setOperationAction(ISD::UREM, MVT::i32, Custom); 239 } else { 240 setOperationAction(ISD::MUL, MVT::i64, Custom); 241 } 242 } 243 244 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 246 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 247 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 248 249 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 251 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 252 253 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 254 Subtarget.hasStdExtZbkb()) { 255 if (Subtarget.is64Bit()) { 256 setOperationAction(ISD::ROTL, MVT::i32, Custom); 257 setOperationAction(ISD::ROTR, MVT::i32, Custom); 258 } 259 } else { 260 setOperationAction(ISD::ROTL, XLenVT, Expand); 261 setOperationAction(ISD::ROTR, XLenVT, Expand); 262 } 263 264 if (Subtarget.hasStdExtZbp()) { 265 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 266 // more combining. 267 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 268 setOperationAction(ISD::BSWAP, XLenVT, Custom); 269 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 270 // BSWAP i8 doesn't exist. 271 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 272 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 273 274 if (Subtarget.is64Bit()) { 275 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 276 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 277 } 278 } else { 279 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 280 // pattern match it directly in isel. 281 setOperationAction(ISD::BSWAP, XLenVT, 282 (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) 283 ? Legal 284 : Expand); 285 // Zbkb can use rev8+brev8 to implement bitreverse. 286 setOperationAction(ISD::BITREVERSE, XLenVT, 287 Subtarget.hasStdExtZbkb() ? Custom : Expand); 288 } 289 290 if (Subtarget.hasStdExtZbb()) { 291 setOperationAction(ISD::SMIN, XLenVT, Legal); 292 setOperationAction(ISD::SMAX, XLenVT, Legal); 293 setOperationAction(ISD::UMIN, XLenVT, Legal); 294 setOperationAction(ISD::UMAX, XLenVT, Legal); 295 296 if (Subtarget.is64Bit()) { 297 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 298 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 299 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 300 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 301 } 302 } else { 303 setOperationAction(ISD::CTTZ, XLenVT, Expand); 304 setOperationAction(ISD::CTLZ, XLenVT, Expand); 305 setOperationAction(ISD::CTPOP, XLenVT, Expand); 306 307 if (Subtarget.is64Bit()) 308 setOperationAction(ISD::ABS, MVT::i32, Custom); 309 } 310 311 if (Subtarget.hasStdExtZbt()) { 312 setOperationAction(ISD::FSHL, XLenVT, Custom); 313 setOperationAction(ISD::FSHR, XLenVT, Custom); 314 setOperationAction(ISD::SELECT, XLenVT, Legal); 315 316 if (Subtarget.is64Bit()) { 317 setOperationAction(ISD::FSHL, MVT::i32, Custom); 318 setOperationAction(ISD::FSHR, MVT::i32, Custom); 319 } 320 } else { 321 setOperationAction(ISD::SELECT, XLenVT, Custom); 322 } 323 324 static constexpr ISD::NodeType FPLegalNodeTypes[] = { 325 ISD::FMINNUM, ISD::FMAXNUM, ISD::LRINT, 326 ISD::LLRINT, ISD::LROUND, ISD::LLROUND, 327 ISD::STRICT_LRINT, ISD::STRICT_LLRINT, ISD::STRICT_LROUND, 328 ISD::STRICT_LLROUND, ISD::STRICT_FMA, ISD::STRICT_FADD, 329 ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV, 330 ISD::STRICT_FSQRT, ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS}; 331 332 static const ISD::CondCode FPCCToExpand[] = { 333 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 334 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 335 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 336 337 static const ISD::NodeType FPOpToExpand[] = { 338 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 339 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 340 341 if (Subtarget.hasStdExtZfh()) 342 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 343 344 if (Subtarget.hasStdExtZfh()) { 345 for (auto NT : FPLegalNodeTypes) 346 setOperationAction(NT, MVT::f16, Legal); 347 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); 348 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 349 for (auto CC : FPCCToExpand) 350 setCondCodeAction(CC, MVT::f16, Expand); 351 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 352 setOperationAction(ISD::SELECT, MVT::f16, Custom); 353 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 354 355 setOperationAction(ISD::FREM, MVT::f16, Promote); 356 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 357 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 358 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 359 setOperationAction(ISD::FRINT, MVT::f16, Promote); 360 setOperationAction(ISD::FROUND, MVT::f16, Promote); 361 setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote); 362 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 363 setOperationAction(ISD::FPOW, MVT::f16, Promote); 364 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 365 setOperationAction(ISD::FCOS, MVT::f16, Promote); 366 setOperationAction(ISD::FSIN, MVT::f16, Promote); 367 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 368 setOperationAction(ISD::FEXP, MVT::f16, Promote); 369 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 370 setOperationAction(ISD::FLOG, MVT::f16, Promote); 371 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 372 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 373 374 // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have 375 // complete support for all operations in LegalizeDAG. 376 377 // We need to custom promote this. 378 if (Subtarget.is64Bit()) 379 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 380 } 381 382 if (Subtarget.hasStdExtF()) { 383 for (auto NT : FPLegalNodeTypes) 384 setOperationAction(NT, MVT::f32, Legal); 385 for (auto CC : FPCCToExpand) 386 setCondCodeAction(CC, MVT::f32, Expand); 387 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 388 setOperationAction(ISD::SELECT, MVT::f32, Custom); 389 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 390 for (auto Op : FPOpToExpand) 391 setOperationAction(Op, MVT::f32, Expand); 392 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 393 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 394 } 395 396 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 397 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 398 399 if (Subtarget.hasStdExtD()) { 400 for (auto NT : FPLegalNodeTypes) 401 setOperationAction(NT, MVT::f64, Legal); 402 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 403 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 404 for (auto CC : FPCCToExpand) 405 setCondCodeAction(CC, MVT::f64, Expand); 406 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 407 setOperationAction(ISD::SELECT, MVT::f64, Custom); 408 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 409 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 410 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 411 for (auto Op : FPOpToExpand) 412 setOperationAction(Op, MVT::f64, Expand); 413 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 414 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 415 } 416 417 if (Subtarget.is64Bit()) { 418 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 419 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 420 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 421 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 422 } 423 424 if (Subtarget.hasStdExtF()) { 425 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 426 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 427 428 setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal); 429 setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal); 430 setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal); 431 setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal); 432 433 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 434 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 435 } 436 437 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 438 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 439 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 440 setOperationAction(ISD::JumpTable, XLenVT, Custom); 441 442 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 443 444 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 445 // Unfortunately this can't be determined just from the ISA naming string. 446 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 447 Subtarget.is64Bit() ? Legal : Custom); 448 449 setOperationAction(ISD::TRAP, MVT::Other, Legal); 450 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 451 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 452 if (Subtarget.is64Bit()) 453 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 454 455 if (Subtarget.hasStdExtA()) { 456 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 457 setMinCmpXchgSizeInBits(32); 458 } else { 459 setMaxAtomicSizeInBitsSupported(0); 460 } 461 462 setBooleanContents(ZeroOrOneBooleanContent); 463 464 if (Subtarget.hasVInstructions()) { 465 setBooleanVectorContents(ZeroOrOneBooleanContent); 466 467 setOperationAction(ISD::VSCALE, XLenVT, Custom); 468 469 // RVV intrinsics may have illegal operands. 470 // We also need to custom legalize vmv.x.s. 471 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 472 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 473 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 474 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 475 if (Subtarget.is64Bit()) { 476 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 477 } else { 478 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 479 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 480 } 481 482 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 483 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 484 485 static const unsigned IntegerVPOps[] = { 486 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 487 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 488 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 489 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 490 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 491 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 492 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 493 ISD::VP_MERGE, ISD::VP_SELECT}; 494 495 static const unsigned FloatingPointVPOps[] = { 496 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 497 ISD::VP_FDIV, ISD::VP_FNEG, ISD::VP_FMA, 498 ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, ISD::VP_REDUCE_FMIN, 499 ISD::VP_REDUCE_FMAX, ISD::VP_MERGE, ISD::VP_SELECT}; 500 501 if (!Subtarget.is64Bit()) { 502 // We must custom-lower certain vXi64 operations on RV32 due to the vector 503 // element type being illegal. 504 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 505 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 506 507 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 508 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 509 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 510 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 511 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 512 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 513 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 514 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 515 516 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 517 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 518 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 519 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 520 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 521 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 522 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 523 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 524 } 525 526 for (MVT VT : BoolVecVTs) { 527 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 528 529 // Mask VTs are custom-expanded into a series of standard nodes 530 setOperationAction(ISD::TRUNCATE, VT, Custom); 531 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 532 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 533 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 534 535 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 536 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 537 538 setOperationAction(ISD::SELECT, VT, Custom); 539 setOperationAction(ISD::SELECT_CC, VT, Expand); 540 setOperationAction(ISD::VSELECT, VT, Expand); 541 setOperationAction(ISD::VP_MERGE, VT, Expand); 542 setOperationAction(ISD::VP_SELECT, VT, Expand); 543 544 setOperationAction(ISD::VP_AND, VT, Custom); 545 setOperationAction(ISD::VP_OR, VT, Custom); 546 setOperationAction(ISD::VP_XOR, VT, Custom); 547 548 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 549 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 550 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 551 552 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 553 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 554 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 555 556 // RVV has native int->float & float->int conversions where the 557 // element type sizes are within one power-of-two of each other. Any 558 // wider distances between type sizes have to be lowered as sequences 559 // which progressively narrow the gap in stages. 560 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 561 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 562 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 563 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 564 565 // Expand all extending loads to types larger than this, and truncating 566 // stores from types larger than this. 567 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 568 setTruncStoreAction(OtherVT, VT, Expand); 569 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 570 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 571 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 572 } 573 } 574 575 for (MVT VT : IntVecVTs) { 576 if (VT.getVectorElementType() == MVT::i64 && 577 !Subtarget.hasVInstructionsI64()) 578 continue; 579 580 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 581 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 582 583 // Vectors implement MULHS/MULHU. 584 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 585 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 586 587 // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*. 588 if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) { 589 setOperationAction(ISD::MULHU, VT, Expand); 590 setOperationAction(ISD::MULHS, VT, Expand); 591 } 592 593 setOperationAction(ISD::SMIN, VT, Legal); 594 setOperationAction(ISD::SMAX, VT, Legal); 595 setOperationAction(ISD::UMIN, VT, Legal); 596 setOperationAction(ISD::UMAX, VT, Legal); 597 598 setOperationAction(ISD::ROTL, VT, Expand); 599 setOperationAction(ISD::ROTR, VT, Expand); 600 601 setOperationAction(ISD::CTTZ, VT, Expand); 602 setOperationAction(ISD::CTLZ, VT, Expand); 603 setOperationAction(ISD::CTPOP, VT, Expand); 604 605 setOperationAction(ISD::BSWAP, VT, Expand); 606 607 // Custom-lower extensions and truncations from/to mask types. 608 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 609 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 610 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 611 612 // RVV has native int->float & float->int conversions where the 613 // element type sizes are within one power-of-two of each other. Any 614 // wider distances between type sizes have to be lowered as sequences 615 // which progressively narrow the gap in stages. 616 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 617 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 618 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 619 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 620 621 setOperationAction(ISD::SADDSAT, VT, Legal); 622 setOperationAction(ISD::UADDSAT, VT, Legal); 623 setOperationAction(ISD::SSUBSAT, VT, Legal); 624 setOperationAction(ISD::USUBSAT, VT, Legal); 625 626 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 627 // nodes which truncate by one power of two at a time. 628 setOperationAction(ISD::TRUNCATE, VT, Custom); 629 630 // Custom-lower insert/extract operations to simplify patterns. 631 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 632 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 633 634 // Custom-lower reduction operations to set up the corresponding custom 635 // nodes' operands. 636 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 637 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 638 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 639 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 640 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 641 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 642 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 643 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 644 645 for (unsigned VPOpc : IntegerVPOps) 646 setOperationAction(VPOpc, VT, Custom); 647 648 setOperationAction(ISD::LOAD, VT, Custom); 649 setOperationAction(ISD::STORE, VT, Custom); 650 651 setOperationAction(ISD::MLOAD, VT, Custom); 652 setOperationAction(ISD::MSTORE, VT, Custom); 653 setOperationAction(ISD::MGATHER, VT, Custom); 654 setOperationAction(ISD::MSCATTER, VT, Custom); 655 656 setOperationAction(ISD::VP_LOAD, VT, Custom); 657 setOperationAction(ISD::VP_STORE, VT, Custom); 658 setOperationAction(ISD::VP_GATHER, VT, Custom); 659 setOperationAction(ISD::VP_SCATTER, VT, Custom); 660 661 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 662 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 663 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 664 665 setOperationAction(ISD::SELECT, VT, Custom); 666 setOperationAction(ISD::SELECT_CC, VT, Expand); 667 668 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 669 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 670 671 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 672 setTruncStoreAction(VT, OtherVT, Expand); 673 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 674 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 675 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 676 } 677 678 // Splice 679 setOperationAction(ISD::VECTOR_SPLICE, VT, Custom); 680 681 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 682 // type that can represent the value exactly. 683 if (VT.getVectorElementType() != MVT::i64) { 684 MVT FloatEltVT = 685 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 686 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 687 if (isTypeLegal(FloatVT)) { 688 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 689 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 690 } 691 } 692 } 693 694 // Expand various CCs to best match the RVV ISA, which natively supports UNE 695 // but no other unordered comparisons, and supports all ordered comparisons 696 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 697 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 698 // and we pattern-match those back to the "original", swapping operands once 699 // more. This way we catch both operations and both "vf" and "fv" forms with 700 // fewer patterns. 701 static const ISD::CondCode VFPCCToExpand[] = { 702 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 703 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 704 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 705 }; 706 707 // Sets common operation actions on RVV floating-point vector types. 708 const auto SetCommonVFPActions = [&](MVT VT) { 709 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 710 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 711 // sizes are within one power-of-two of each other. Therefore conversions 712 // between vXf16 and vXf64 must be lowered as sequences which convert via 713 // vXf32. 714 setOperationAction(ISD::FP_ROUND, VT, Custom); 715 setOperationAction(ISD::FP_EXTEND, VT, Custom); 716 // Custom-lower insert/extract operations to simplify patterns. 717 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 718 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 719 // Expand various condition codes (explained above). 720 for (auto CC : VFPCCToExpand) 721 setCondCodeAction(CC, VT, Expand); 722 723 setOperationAction(ISD::FMINNUM, VT, Legal); 724 setOperationAction(ISD::FMAXNUM, VT, Legal); 725 726 setOperationAction(ISD::FTRUNC, VT, Custom); 727 setOperationAction(ISD::FCEIL, VT, Custom); 728 setOperationAction(ISD::FFLOOR, VT, Custom); 729 setOperationAction(ISD::FROUND, VT, Custom); 730 731 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 732 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 733 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 734 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 735 736 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 737 738 setOperationAction(ISD::LOAD, VT, Custom); 739 setOperationAction(ISD::STORE, VT, Custom); 740 741 setOperationAction(ISD::MLOAD, VT, Custom); 742 setOperationAction(ISD::MSTORE, VT, Custom); 743 setOperationAction(ISD::MGATHER, VT, Custom); 744 setOperationAction(ISD::MSCATTER, VT, Custom); 745 746 setOperationAction(ISD::VP_LOAD, VT, Custom); 747 setOperationAction(ISD::VP_STORE, VT, Custom); 748 setOperationAction(ISD::VP_GATHER, VT, Custom); 749 setOperationAction(ISD::VP_SCATTER, VT, Custom); 750 751 setOperationAction(ISD::SELECT, VT, Custom); 752 setOperationAction(ISD::SELECT_CC, VT, Expand); 753 754 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 755 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 756 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 757 758 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 759 setOperationAction(ISD::VECTOR_SPLICE, VT, Custom); 760 761 for (unsigned VPOpc : FloatingPointVPOps) 762 setOperationAction(VPOpc, VT, Custom); 763 }; 764 765 // Sets common extload/truncstore actions on RVV floating-point vector 766 // types. 767 const auto SetCommonVFPExtLoadTruncStoreActions = 768 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 769 for (auto SmallVT : SmallerVTs) { 770 setTruncStoreAction(VT, SmallVT, Expand); 771 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 772 } 773 }; 774 775 if (Subtarget.hasVInstructionsF16()) 776 for (MVT VT : F16VecVTs) 777 SetCommonVFPActions(VT); 778 779 for (MVT VT : F32VecVTs) { 780 if (Subtarget.hasVInstructionsF32()) 781 SetCommonVFPActions(VT); 782 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 783 } 784 785 for (MVT VT : F64VecVTs) { 786 if (Subtarget.hasVInstructionsF64()) 787 SetCommonVFPActions(VT); 788 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 789 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 790 } 791 792 if (Subtarget.useRVVForFixedLengthVectors()) { 793 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 794 if (!useRVVForFixedLengthVectorVT(VT)) 795 continue; 796 797 // By default everything must be expanded. 798 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 799 setOperationAction(Op, VT, Expand); 800 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 801 setTruncStoreAction(VT, OtherVT, Expand); 802 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 803 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 804 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 805 } 806 807 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 808 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 809 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 810 811 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 812 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 813 814 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 815 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 816 817 setOperationAction(ISD::LOAD, VT, Custom); 818 setOperationAction(ISD::STORE, VT, Custom); 819 820 setOperationAction(ISD::SETCC, VT, Custom); 821 822 setOperationAction(ISD::SELECT, VT, Custom); 823 824 setOperationAction(ISD::TRUNCATE, VT, Custom); 825 826 setOperationAction(ISD::BITCAST, VT, Custom); 827 828 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 829 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 830 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 831 832 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 833 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 834 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 835 836 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 837 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 838 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 839 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 840 841 // Operations below are different for between masks and other vectors. 842 if (VT.getVectorElementType() == MVT::i1) { 843 setOperationAction(ISD::VP_AND, VT, Custom); 844 setOperationAction(ISD::VP_OR, VT, Custom); 845 setOperationAction(ISD::VP_XOR, VT, Custom); 846 setOperationAction(ISD::AND, VT, Custom); 847 setOperationAction(ISD::OR, VT, Custom); 848 setOperationAction(ISD::XOR, VT, Custom); 849 continue; 850 } 851 852 // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to 853 // it before type legalization for i64 vectors on RV32. It will then be 854 // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle. 855 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 856 // improvements first. 857 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 858 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 859 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 860 } 861 862 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 863 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 864 865 setOperationAction(ISD::MLOAD, VT, Custom); 866 setOperationAction(ISD::MSTORE, VT, Custom); 867 setOperationAction(ISD::MGATHER, VT, Custom); 868 setOperationAction(ISD::MSCATTER, VT, Custom); 869 870 setOperationAction(ISD::VP_LOAD, VT, Custom); 871 setOperationAction(ISD::VP_STORE, VT, Custom); 872 setOperationAction(ISD::VP_GATHER, VT, Custom); 873 setOperationAction(ISD::VP_SCATTER, VT, Custom); 874 875 setOperationAction(ISD::ADD, VT, Custom); 876 setOperationAction(ISD::MUL, VT, Custom); 877 setOperationAction(ISD::SUB, VT, Custom); 878 setOperationAction(ISD::AND, VT, Custom); 879 setOperationAction(ISD::OR, VT, Custom); 880 setOperationAction(ISD::XOR, VT, Custom); 881 setOperationAction(ISD::SDIV, VT, Custom); 882 setOperationAction(ISD::SREM, VT, Custom); 883 setOperationAction(ISD::UDIV, VT, Custom); 884 setOperationAction(ISD::UREM, VT, Custom); 885 setOperationAction(ISD::SHL, VT, Custom); 886 setOperationAction(ISD::SRA, VT, Custom); 887 setOperationAction(ISD::SRL, VT, Custom); 888 889 setOperationAction(ISD::SMIN, VT, Custom); 890 setOperationAction(ISD::SMAX, VT, Custom); 891 setOperationAction(ISD::UMIN, VT, Custom); 892 setOperationAction(ISD::UMAX, VT, Custom); 893 setOperationAction(ISD::ABS, VT, Custom); 894 895 // vXi64 MULHS/MULHU requires the V extension instead of Zve64*. 896 if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) { 897 setOperationAction(ISD::MULHS, VT, Custom); 898 setOperationAction(ISD::MULHU, VT, Custom); 899 } 900 901 setOperationAction(ISD::SADDSAT, VT, Custom); 902 setOperationAction(ISD::UADDSAT, VT, Custom); 903 setOperationAction(ISD::SSUBSAT, VT, Custom); 904 setOperationAction(ISD::USUBSAT, VT, Custom); 905 906 setOperationAction(ISD::VSELECT, VT, Custom); 907 setOperationAction(ISD::SELECT_CC, VT, Expand); 908 909 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 910 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 911 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 912 913 // Custom-lower reduction operations to set up the corresponding custom 914 // nodes' operands. 915 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 916 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 917 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 918 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 919 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 920 921 for (unsigned VPOpc : IntegerVPOps) 922 setOperationAction(VPOpc, VT, Custom); 923 924 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 925 // type that can represent the value exactly. 926 if (VT.getVectorElementType() != MVT::i64) { 927 MVT FloatEltVT = 928 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 929 EVT FloatVT = 930 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 931 if (isTypeLegal(FloatVT)) { 932 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 933 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 934 } 935 } 936 } 937 938 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 939 if (!useRVVForFixedLengthVectorVT(VT)) 940 continue; 941 942 // By default everything must be expanded. 943 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 944 setOperationAction(Op, VT, Expand); 945 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 946 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 947 setTruncStoreAction(VT, OtherVT, Expand); 948 } 949 950 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 951 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 952 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 953 954 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 955 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 956 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 957 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 958 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 959 960 setOperationAction(ISD::LOAD, VT, Custom); 961 setOperationAction(ISD::STORE, VT, Custom); 962 setOperationAction(ISD::MLOAD, VT, Custom); 963 setOperationAction(ISD::MSTORE, VT, Custom); 964 setOperationAction(ISD::MGATHER, VT, Custom); 965 setOperationAction(ISD::MSCATTER, VT, Custom); 966 967 setOperationAction(ISD::VP_LOAD, VT, Custom); 968 setOperationAction(ISD::VP_STORE, VT, Custom); 969 setOperationAction(ISD::VP_GATHER, VT, Custom); 970 setOperationAction(ISD::VP_SCATTER, VT, Custom); 971 972 setOperationAction(ISD::FADD, VT, Custom); 973 setOperationAction(ISD::FSUB, VT, Custom); 974 setOperationAction(ISD::FMUL, VT, Custom); 975 setOperationAction(ISD::FDIV, VT, Custom); 976 setOperationAction(ISD::FNEG, VT, Custom); 977 setOperationAction(ISD::FABS, VT, Custom); 978 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 979 setOperationAction(ISD::FSQRT, VT, Custom); 980 setOperationAction(ISD::FMA, VT, Custom); 981 setOperationAction(ISD::FMINNUM, VT, Custom); 982 setOperationAction(ISD::FMAXNUM, VT, Custom); 983 984 setOperationAction(ISD::FP_ROUND, VT, Custom); 985 setOperationAction(ISD::FP_EXTEND, VT, Custom); 986 987 setOperationAction(ISD::FTRUNC, VT, Custom); 988 setOperationAction(ISD::FCEIL, VT, Custom); 989 setOperationAction(ISD::FFLOOR, VT, Custom); 990 setOperationAction(ISD::FROUND, VT, Custom); 991 992 for (auto CC : VFPCCToExpand) 993 setCondCodeAction(CC, VT, Expand); 994 995 setOperationAction(ISD::VSELECT, VT, Custom); 996 setOperationAction(ISD::SELECT, VT, Custom); 997 setOperationAction(ISD::SELECT_CC, VT, Expand); 998 999 setOperationAction(ISD::BITCAST, VT, Custom); 1000 1001 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 1002 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 1003 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 1004 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 1005 1006 for (unsigned VPOpc : FloatingPointVPOps) 1007 setOperationAction(VPOpc, VT, Custom); 1008 } 1009 1010 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 1011 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 1012 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 1013 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 1014 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 1015 if (Subtarget.hasStdExtZfh()) 1016 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 1017 if (Subtarget.hasStdExtF()) 1018 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 1019 if (Subtarget.hasStdExtD()) 1020 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 1021 } 1022 } 1023 1024 // Function alignments. 1025 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 1026 setMinFunctionAlignment(FunctionAlignment); 1027 setPrefFunctionAlignment(FunctionAlignment); 1028 1029 setMinimumJumpTableEntries(5); 1030 1031 // Jumps are expensive, compared to logic 1032 setJumpIsExpensive(); 1033 1034 setTargetDAGCombine(ISD::ADD); 1035 setTargetDAGCombine(ISD::SUB); 1036 setTargetDAGCombine(ISD::AND); 1037 setTargetDAGCombine(ISD::OR); 1038 setTargetDAGCombine(ISD::XOR); 1039 if (Subtarget.hasStdExtZbp()) { 1040 setTargetDAGCombine(ISD::ROTL); 1041 setTargetDAGCombine(ISD::ROTR); 1042 } 1043 if (Subtarget.hasStdExtZbkb()) 1044 setTargetDAGCombine(ISD::BITREVERSE); 1045 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1046 if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb()) 1047 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 1048 if (Subtarget.hasStdExtF()) { 1049 setTargetDAGCombine(ISD::ZERO_EXTEND); 1050 setTargetDAGCombine(ISD::FP_TO_SINT); 1051 setTargetDAGCombine(ISD::FP_TO_UINT); 1052 setTargetDAGCombine(ISD::FP_TO_SINT_SAT); 1053 setTargetDAGCombine(ISD::FP_TO_UINT_SAT); 1054 } 1055 if (Subtarget.hasVInstructions()) { 1056 setTargetDAGCombine(ISD::FCOPYSIGN); 1057 setTargetDAGCombine(ISD::MGATHER); 1058 setTargetDAGCombine(ISD::MSCATTER); 1059 setTargetDAGCombine(ISD::VP_GATHER); 1060 setTargetDAGCombine(ISD::VP_SCATTER); 1061 setTargetDAGCombine(ISD::SRA); 1062 setTargetDAGCombine(ISD::SRL); 1063 setTargetDAGCombine(ISD::SHL); 1064 setTargetDAGCombine(ISD::STORE); 1065 setTargetDAGCombine(ISD::SPLAT_VECTOR); 1066 } 1067 1068 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 1069 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 1070 } 1071 1072 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 1073 LLVMContext &Context, 1074 EVT VT) const { 1075 if (!VT.isVector()) 1076 return getPointerTy(DL); 1077 if (Subtarget.hasVInstructions() && 1078 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 1079 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 1080 return VT.changeVectorElementTypeToInteger(); 1081 } 1082 1083 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 1084 return Subtarget.getXLenVT(); 1085 } 1086 1087 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1088 const CallInst &I, 1089 MachineFunction &MF, 1090 unsigned Intrinsic) const { 1091 auto &DL = I.getModule()->getDataLayout(); 1092 switch (Intrinsic) { 1093 default: 1094 return false; 1095 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 1096 case Intrinsic::riscv_masked_atomicrmw_add_i32: 1097 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 1098 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 1099 case Intrinsic::riscv_masked_atomicrmw_max_i32: 1100 case Intrinsic::riscv_masked_atomicrmw_min_i32: 1101 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 1102 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 1103 case Intrinsic::riscv_masked_cmpxchg_i32: 1104 Info.opc = ISD::INTRINSIC_W_CHAIN; 1105 Info.memVT = MVT::i32; 1106 Info.ptrVal = I.getArgOperand(0); 1107 Info.offset = 0; 1108 Info.align = Align(4); 1109 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1110 MachineMemOperand::MOVolatile; 1111 return true; 1112 case Intrinsic::riscv_masked_strided_load: 1113 Info.opc = ISD::INTRINSIC_W_CHAIN; 1114 Info.ptrVal = I.getArgOperand(1); 1115 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1116 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1117 Info.size = MemoryLocation::UnknownSize; 1118 Info.flags |= MachineMemOperand::MOLoad; 1119 return true; 1120 case Intrinsic::riscv_masked_strided_store: 1121 Info.opc = ISD::INTRINSIC_VOID; 1122 Info.ptrVal = I.getArgOperand(1); 1123 Info.memVT = 1124 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1125 Info.align = Align( 1126 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1127 8); 1128 Info.size = MemoryLocation::UnknownSize; 1129 Info.flags |= MachineMemOperand::MOStore; 1130 return true; 1131 case Intrinsic::riscv_seg2_load: 1132 case Intrinsic::riscv_seg3_load: 1133 case Intrinsic::riscv_seg4_load: 1134 case Intrinsic::riscv_seg5_load: 1135 case Intrinsic::riscv_seg6_load: 1136 case Intrinsic::riscv_seg7_load: 1137 case Intrinsic::riscv_seg8_load: 1138 Info.opc = ISD::INTRINSIC_W_CHAIN; 1139 Info.ptrVal = I.getArgOperand(0); 1140 Info.memVT = 1141 getValueType(DL, I.getType()->getStructElementType(0)->getScalarType()); 1142 Info.align = 1143 Align(DL.getTypeSizeInBits( 1144 I.getType()->getStructElementType(0)->getScalarType()) / 1145 8); 1146 Info.size = MemoryLocation::UnknownSize; 1147 Info.flags |= MachineMemOperand::MOLoad; 1148 return true; 1149 } 1150 } 1151 1152 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1153 const AddrMode &AM, Type *Ty, 1154 unsigned AS, 1155 Instruction *I) const { 1156 // No global is ever allowed as a base. 1157 if (AM.BaseGV) 1158 return false; 1159 1160 // Require a 12-bit signed offset. 1161 if (!isInt<12>(AM.BaseOffs)) 1162 return false; 1163 1164 switch (AM.Scale) { 1165 case 0: // "r+i" or just "i", depending on HasBaseReg. 1166 break; 1167 case 1: 1168 if (!AM.HasBaseReg) // allow "r+i". 1169 break; 1170 return false; // disallow "r+r" or "r+r+i". 1171 default: 1172 return false; 1173 } 1174 1175 return true; 1176 } 1177 1178 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1179 return isInt<12>(Imm); 1180 } 1181 1182 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1183 return isInt<12>(Imm); 1184 } 1185 1186 // On RV32, 64-bit integers are split into their high and low parts and held 1187 // in two different registers, so the trunc is free since the low register can 1188 // just be used. 1189 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1190 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1191 return false; 1192 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1193 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1194 return (SrcBits == 64 && DestBits == 32); 1195 } 1196 1197 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1198 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1199 !SrcVT.isInteger() || !DstVT.isInteger()) 1200 return false; 1201 unsigned SrcBits = SrcVT.getSizeInBits(); 1202 unsigned DestBits = DstVT.getSizeInBits(); 1203 return (SrcBits == 64 && DestBits == 32); 1204 } 1205 1206 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1207 // Zexts are free if they can be combined with a load. 1208 // Don't advertise i32->i64 zextload as being free for RV64. It interacts 1209 // poorly with type legalization of compares preferring sext. 1210 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1211 EVT MemVT = LD->getMemoryVT(); 1212 if ((MemVT == MVT::i8 || MemVT == MVT::i16) && 1213 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1214 LD->getExtensionType() == ISD::ZEXTLOAD)) 1215 return true; 1216 } 1217 1218 return TargetLowering::isZExtFree(Val, VT2); 1219 } 1220 1221 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1222 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1223 } 1224 1225 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1226 return Subtarget.hasStdExtZbb(); 1227 } 1228 1229 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1230 return Subtarget.hasStdExtZbb(); 1231 } 1232 1233 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { 1234 EVT VT = Y.getValueType(); 1235 1236 // FIXME: Support vectors once we have tests. 1237 if (VT.isVector()) 1238 return false; 1239 1240 return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 1241 Subtarget.hasStdExtZbkb()) && 1242 !isa<ConstantSDNode>(Y); 1243 } 1244 1245 /// Check if sinking \p I's operands to I's basic block is profitable, because 1246 /// the operands can be folded into a target instruction, e.g. 1247 /// splats of scalars can fold into vector instructions. 1248 bool RISCVTargetLowering::shouldSinkOperands( 1249 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1250 using namespace llvm::PatternMatch; 1251 1252 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1253 return false; 1254 1255 auto IsSinker = [&](Instruction *I, int Operand) { 1256 switch (I->getOpcode()) { 1257 case Instruction::Add: 1258 case Instruction::Sub: 1259 case Instruction::Mul: 1260 case Instruction::And: 1261 case Instruction::Or: 1262 case Instruction::Xor: 1263 case Instruction::FAdd: 1264 case Instruction::FSub: 1265 case Instruction::FMul: 1266 case Instruction::FDiv: 1267 case Instruction::ICmp: 1268 case Instruction::FCmp: 1269 return true; 1270 case Instruction::Shl: 1271 case Instruction::LShr: 1272 case Instruction::AShr: 1273 case Instruction::UDiv: 1274 case Instruction::SDiv: 1275 case Instruction::URem: 1276 case Instruction::SRem: 1277 return Operand == 1; 1278 case Instruction::Call: 1279 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1280 switch (II->getIntrinsicID()) { 1281 case Intrinsic::fma: 1282 case Intrinsic::vp_fma: 1283 return Operand == 0 || Operand == 1; 1284 // FIXME: Our patterns can only match vx/vf instructions when the splat 1285 // it on the RHS, because TableGen doesn't recognize our VP operations 1286 // as commutative. 1287 case Intrinsic::vp_add: 1288 case Intrinsic::vp_mul: 1289 case Intrinsic::vp_and: 1290 case Intrinsic::vp_or: 1291 case Intrinsic::vp_xor: 1292 case Intrinsic::vp_fadd: 1293 case Intrinsic::vp_fmul: 1294 case Intrinsic::vp_shl: 1295 case Intrinsic::vp_lshr: 1296 case Intrinsic::vp_ashr: 1297 case Intrinsic::vp_udiv: 1298 case Intrinsic::vp_sdiv: 1299 case Intrinsic::vp_urem: 1300 case Intrinsic::vp_srem: 1301 return Operand == 1; 1302 // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have 1303 // explicit patterns for both LHS and RHS (as 'vr' versions). 1304 case Intrinsic::vp_sub: 1305 case Intrinsic::vp_fsub: 1306 case Intrinsic::vp_fdiv: 1307 return Operand == 0 || Operand == 1; 1308 default: 1309 return false; 1310 } 1311 } 1312 return false; 1313 default: 1314 return false; 1315 } 1316 }; 1317 1318 for (auto OpIdx : enumerate(I->operands())) { 1319 if (!IsSinker(I, OpIdx.index())) 1320 continue; 1321 1322 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1323 // Make sure we are not already sinking this operand 1324 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1325 continue; 1326 1327 // We are looking for a splat that can be sunk. 1328 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1329 m_Undef(), m_ZeroMask()))) 1330 continue; 1331 1332 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1333 // and vector registers 1334 for (Use &U : Op->uses()) { 1335 Instruction *Insn = cast<Instruction>(U.getUser()); 1336 if (!IsSinker(Insn, U.getOperandNo())) 1337 return false; 1338 } 1339 1340 Ops.push_back(&Op->getOperandUse(0)); 1341 Ops.push_back(&OpIdx.value()); 1342 } 1343 return true; 1344 } 1345 1346 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1347 bool ForCodeSize) const { 1348 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1349 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1350 return false; 1351 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1352 return false; 1353 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1354 return false; 1355 return Imm.isZero(); 1356 } 1357 1358 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1359 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1360 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1361 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1362 } 1363 1364 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1365 CallingConv::ID CC, 1366 EVT VT) const { 1367 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1368 // We might still end up using a GPR but that will be decided based on ABI. 1369 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1370 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1371 return MVT::f32; 1372 1373 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1374 } 1375 1376 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1377 CallingConv::ID CC, 1378 EVT VT) const { 1379 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1380 // We might still end up using a GPR but that will be decided based on ABI. 1381 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1382 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1383 return 1; 1384 1385 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1386 } 1387 1388 // Changes the condition code and swaps operands if necessary, so the SetCC 1389 // operation matches one of the comparisons supported directly by branches 1390 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1391 // with 1/-1. 1392 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1393 ISD::CondCode &CC, SelectionDAG &DAG) { 1394 // Convert X > -1 to X >= 0. 1395 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1396 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1397 CC = ISD::SETGE; 1398 return; 1399 } 1400 // Convert X < 1 to 0 >= X. 1401 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1402 RHS = LHS; 1403 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1404 CC = ISD::SETGE; 1405 return; 1406 } 1407 1408 switch (CC) { 1409 default: 1410 break; 1411 case ISD::SETGT: 1412 case ISD::SETLE: 1413 case ISD::SETUGT: 1414 case ISD::SETULE: 1415 CC = ISD::getSetCCSwappedOperands(CC); 1416 std::swap(LHS, RHS); 1417 break; 1418 } 1419 } 1420 1421 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1422 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1423 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1424 if (VT.getVectorElementType() == MVT::i1) 1425 KnownSize *= 8; 1426 1427 switch (KnownSize) { 1428 default: 1429 llvm_unreachable("Invalid LMUL."); 1430 case 8: 1431 return RISCVII::VLMUL::LMUL_F8; 1432 case 16: 1433 return RISCVII::VLMUL::LMUL_F4; 1434 case 32: 1435 return RISCVII::VLMUL::LMUL_F2; 1436 case 64: 1437 return RISCVII::VLMUL::LMUL_1; 1438 case 128: 1439 return RISCVII::VLMUL::LMUL_2; 1440 case 256: 1441 return RISCVII::VLMUL::LMUL_4; 1442 case 512: 1443 return RISCVII::VLMUL::LMUL_8; 1444 } 1445 } 1446 1447 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1448 switch (LMul) { 1449 default: 1450 llvm_unreachable("Invalid LMUL."); 1451 case RISCVII::VLMUL::LMUL_F8: 1452 case RISCVII::VLMUL::LMUL_F4: 1453 case RISCVII::VLMUL::LMUL_F2: 1454 case RISCVII::VLMUL::LMUL_1: 1455 return RISCV::VRRegClassID; 1456 case RISCVII::VLMUL::LMUL_2: 1457 return RISCV::VRM2RegClassID; 1458 case RISCVII::VLMUL::LMUL_4: 1459 return RISCV::VRM4RegClassID; 1460 case RISCVII::VLMUL::LMUL_8: 1461 return RISCV::VRM8RegClassID; 1462 } 1463 } 1464 1465 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1466 RISCVII::VLMUL LMUL = getLMUL(VT); 1467 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1468 LMUL == RISCVII::VLMUL::LMUL_F4 || 1469 LMUL == RISCVII::VLMUL::LMUL_F2 || 1470 LMUL == RISCVII::VLMUL::LMUL_1) { 1471 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1472 "Unexpected subreg numbering"); 1473 return RISCV::sub_vrm1_0 + Index; 1474 } 1475 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1476 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1477 "Unexpected subreg numbering"); 1478 return RISCV::sub_vrm2_0 + Index; 1479 } 1480 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1481 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1482 "Unexpected subreg numbering"); 1483 return RISCV::sub_vrm4_0 + Index; 1484 } 1485 llvm_unreachable("Invalid vector type."); 1486 } 1487 1488 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1489 if (VT.getVectorElementType() == MVT::i1) 1490 return RISCV::VRRegClassID; 1491 return getRegClassIDForLMUL(getLMUL(VT)); 1492 } 1493 1494 // Attempt to decompose a subvector insert/extract between VecVT and 1495 // SubVecVT via subregister indices. Returns the subregister index that 1496 // can perform the subvector insert/extract with the given element index, as 1497 // well as the index corresponding to any leftover subvectors that must be 1498 // further inserted/extracted within the register class for SubVecVT. 1499 std::pair<unsigned, unsigned> 1500 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1501 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1502 const RISCVRegisterInfo *TRI) { 1503 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1504 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1505 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1506 "Register classes not ordered"); 1507 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1508 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1509 // Try to compose a subregister index that takes us from the incoming 1510 // LMUL>1 register class down to the outgoing one. At each step we half 1511 // the LMUL: 1512 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1513 // Note that this is not guaranteed to find a subregister index, such as 1514 // when we are extracting from one VR type to another. 1515 unsigned SubRegIdx = RISCV::NoSubRegister; 1516 for (const unsigned RCID : 1517 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1518 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1519 VecVT = VecVT.getHalfNumVectorElementsVT(); 1520 bool IsHi = 1521 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1522 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1523 getSubregIndexByMVT(VecVT, IsHi)); 1524 if (IsHi) 1525 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1526 } 1527 return {SubRegIdx, InsertExtractIdx}; 1528 } 1529 1530 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1531 // stores for those types. 1532 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1533 return !Subtarget.useRVVForFixedLengthVectors() || 1534 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1535 } 1536 1537 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1538 if (ScalarTy->isPointerTy()) 1539 return true; 1540 1541 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1542 ScalarTy->isIntegerTy(32)) 1543 return true; 1544 1545 if (ScalarTy->isIntegerTy(64)) 1546 return Subtarget.hasVInstructionsI64(); 1547 1548 if (ScalarTy->isHalfTy()) 1549 return Subtarget.hasVInstructionsF16(); 1550 if (ScalarTy->isFloatTy()) 1551 return Subtarget.hasVInstructionsF32(); 1552 if (ScalarTy->isDoubleTy()) 1553 return Subtarget.hasVInstructionsF64(); 1554 1555 return false; 1556 } 1557 1558 static SDValue getVLOperand(SDValue Op) { 1559 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1560 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 1561 "Unexpected opcode"); 1562 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 1563 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 1564 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1565 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 1566 if (!II) 1567 return SDValue(); 1568 return Op.getOperand(II->VLOperand + 1 + HasChain); 1569 } 1570 1571 static bool useRVVForFixedLengthVectorVT(MVT VT, 1572 const RISCVSubtarget &Subtarget) { 1573 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1574 if (!Subtarget.useRVVForFixedLengthVectors()) 1575 return false; 1576 1577 // We only support a set of vector types with a consistent maximum fixed size 1578 // across all supported vector element types to avoid legalization issues. 1579 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1580 // fixed-length vector type we support is 1024 bytes. 1581 if (VT.getFixedSizeInBits() > 1024 * 8) 1582 return false; 1583 1584 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1585 1586 MVT EltVT = VT.getVectorElementType(); 1587 1588 // Don't use RVV for vectors we cannot scalarize if required. 1589 switch (EltVT.SimpleTy) { 1590 // i1 is supported but has different rules. 1591 default: 1592 return false; 1593 case MVT::i1: 1594 // Masks can only use a single register. 1595 if (VT.getVectorNumElements() > MinVLen) 1596 return false; 1597 MinVLen /= 8; 1598 break; 1599 case MVT::i8: 1600 case MVT::i16: 1601 case MVT::i32: 1602 break; 1603 case MVT::i64: 1604 if (!Subtarget.hasVInstructionsI64()) 1605 return false; 1606 break; 1607 case MVT::f16: 1608 if (!Subtarget.hasVInstructionsF16()) 1609 return false; 1610 break; 1611 case MVT::f32: 1612 if (!Subtarget.hasVInstructionsF32()) 1613 return false; 1614 break; 1615 case MVT::f64: 1616 if (!Subtarget.hasVInstructionsF64()) 1617 return false; 1618 break; 1619 } 1620 1621 // Reject elements larger than ELEN. 1622 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1623 return false; 1624 1625 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1626 // Don't use RVV for types that don't fit. 1627 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1628 return false; 1629 1630 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1631 // the base fixed length RVV support in place. 1632 if (!VT.isPow2VectorType()) 1633 return false; 1634 1635 return true; 1636 } 1637 1638 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1639 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1640 } 1641 1642 // Return the largest legal scalable vector type that matches VT's element type. 1643 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1644 const RISCVSubtarget &Subtarget) { 1645 // This may be called before legal types are setup. 1646 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1647 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1648 "Expected legal fixed length vector!"); 1649 1650 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1651 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1652 1653 MVT EltVT = VT.getVectorElementType(); 1654 switch (EltVT.SimpleTy) { 1655 default: 1656 llvm_unreachable("unexpected element type for RVV container"); 1657 case MVT::i1: 1658 case MVT::i8: 1659 case MVT::i16: 1660 case MVT::i32: 1661 case MVT::i64: 1662 case MVT::f16: 1663 case MVT::f32: 1664 case MVT::f64: { 1665 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1666 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1667 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1668 unsigned NumElts = 1669 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1670 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1671 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1672 return MVT::getScalableVectorVT(EltVT, NumElts); 1673 } 1674 } 1675 } 1676 1677 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1678 const RISCVSubtarget &Subtarget) { 1679 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1680 Subtarget); 1681 } 1682 1683 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1684 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1685 } 1686 1687 // Grow V to consume an entire RVV register. 1688 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1689 const RISCVSubtarget &Subtarget) { 1690 assert(VT.isScalableVector() && 1691 "Expected to convert into a scalable vector!"); 1692 assert(V.getValueType().isFixedLengthVector() && 1693 "Expected a fixed length vector operand!"); 1694 SDLoc DL(V); 1695 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1696 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1697 } 1698 1699 // Shrink V so it's just big enough to maintain a VT's worth of data. 1700 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1701 const RISCVSubtarget &Subtarget) { 1702 assert(VT.isFixedLengthVector() && 1703 "Expected to convert into a fixed length vector!"); 1704 assert(V.getValueType().isScalableVector() && 1705 "Expected a scalable vector operand!"); 1706 SDLoc DL(V); 1707 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1708 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1709 } 1710 1711 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1712 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1713 // the vector type that it is contained in. 1714 static std::pair<SDValue, SDValue> 1715 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1716 const RISCVSubtarget &Subtarget) { 1717 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1718 MVT XLenVT = Subtarget.getXLenVT(); 1719 SDValue VL = VecVT.isFixedLengthVector() 1720 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1721 : DAG.getRegister(RISCV::X0, XLenVT); 1722 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1723 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1724 return {Mask, VL}; 1725 } 1726 1727 // As above but assuming the given type is a scalable vector type. 1728 static std::pair<SDValue, SDValue> 1729 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1730 const RISCVSubtarget &Subtarget) { 1731 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1732 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1733 } 1734 1735 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1736 // of either is (currently) supported. This can get us into an infinite loop 1737 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1738 // as a ..., etc. 1739 // Until either (or both) of these can reliably lower any node, reporting that 1740 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1741 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1742 // which is not desirable. 1743 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1744 EVT VT, unsigned DefinedValues) const { 1745 return false; 1746 } 1747 1748 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, 1749 const RISCVSubtarget &Subtarget) { 1750 // RISCV FP-to-int conversions saturate to the destination register size, but 1751 // don't produce 0 for nan. We can use a conversion instruction and fix the 1752 // nan case with a compare and a select. 1753 SDValue Src = Op.getOperand(0); 1754 1755 EVT DstVT = Op.getValueType(); 1756 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1757 1758 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1759 unsigned Opc; 1760 if (SatVT == DstVT) 1761 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 1762 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1763 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 1764 else 1765 return SDValue(); 1766 // FIXME: Support other SatVTs by clamping before or after the conversion. 1767 1768 SDLoc DL(Op); 1769 SDValue FpToInt = DAG.getNode( 1770 Opc, DL, DstVT, Src, 1771 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT())); 1772 1773 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1774 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1775 } 1776 1777 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1778 // and back. Taking care to avoid converting values that are nan or already 1779 // correct. 1780 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1781 // have FRM dependencies modeled yet. 1782 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1783 MVT VT = Op.getSimpleValueType(); 1784 assert(VT.isVector() && "Unexpected type"); 1785 1786 SDLoc DL(Op); 1787 1788 // Freeze the source since we are increasing the number of uses. 1789 SDValue Src = DAG.getFreeze(Op.getOperand(0)); 1790 1791 // Truncate to integer and convert back to FP. 1792 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1793 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1794 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1795 1796 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1797 1798 if (Op.getOpcode() == ISD::FCEIL) { 1799 // If the truncated value is the greater than or equal to the original 1800 // value, we've computed the ceil. Otherwise, we went the wrong way and 1801 // need to increase by 1. 1802 // FIXME: This should use a masked operation. Handle here or in isel? 1803 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1804 DAG.getConstantFP(1.0, DL, VT)); 1805 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1806 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1807 } else if (Op.getOpcode() == ISD::FFLOOR) { 1808 // If the truncated value is the less than or equal to the original value, 1809 // we've computed the floor. Otherwise, we went the wrong way and need to 1810 // decrease by 1. 1811 // FIXME: This should use a masked operation. Handle here or in isel? 1812 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1813 DAG.getConstantFP(1.0, DL, VT)); 1814 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1815 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1816 } 1817 1818 // Restore the original sign so that -0.0 is preserved. 1819 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1820 1821 // Determine the largest integer that can be represented exactly. This and 1822 // values larger than it don't have any fractional bits so don't need to 1823 // be converted. 1824 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1825 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1826 APFloat MaxVal = APFloat(FltSem); 1827 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1828 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1829 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1830 1831 // If abs(Src) was larger than MaxVal or nan, keep it. 1832 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1833 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1834 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1835 } 1836 1837 // ISD::FROUND is defined to round to nearest with ties rounding away from 0. 1838 // This mode isn't supported in vector hardware on RISCV. But as long as we 1839 // aren't compiling with trapping math, we can emulate this with 1840 // floor(X + copysign(nextafter(0.5, 0.0), X)). 1841 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM 1842 // dependencies modeled yet. 1843 // FIXME: Use masked operations to avoid final merge. 1844 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) { 1845 MVT VT = Op.getSimpleValueType(); 1846 assert(VT.isVector() && "Unexpected type"); 1847 1848 SDLoc DL(Op); 1849 1850 // Freeze the source since we are increasing the number of uses. 1851 SDValue Src = DAG.getFreeze(Op.getOperand(0)); 1852 1853 // We do the conversion on the absolute value and fix the sign at the end. 1854 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1855 1856 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1857 bool Ignored; 1858 APFloat Point5Pred = APFloat(0.5f); 1859 Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored); 1860 Point5Pred.next(/*nextDown*/ true); 1861 1862 // Add the adjustment. 1863 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs, 1864 DAG.getConstantFP(Point5Pred, DL, VT)); 1865 1866 // Truncate to integer and convert back to fp. 1867 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1868 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust); 1869 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1870 1871 // Restore the original sign. 1872 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1873 1874 // Determine the largest integer that can be represented exactly. This and 1875 // values larger than it don't have any fractional bits so don't need to 1876 // be converted. 1877 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1878 APFloat MaxVal = APFloat(FltSem); 1879 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1880 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1881 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1882 1883 // If abs(Src) was larger than MaxVal or nan, keep it. 1884 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1885 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1886 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1887 } 1888 1889 struct VIDSequence { 1890 int64_t StepNumerator; 1891 unsigned StepDenominator; 1892 int64_t Addend; 1893 }; 1894 1895 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1896 // to the (non-zero) step S and start value X. This can be then lowered as the 1897 // RVV sequence (VID * S) + X, for example. 1898 // The step S is represented as an integer numerator divided by a positive 1899 // denominator. Note that the implementation currently only identifies 1900 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1901 // cannot detect 2/3, for example. 1902 // Note that this method will also match potentially unappealing index 1903 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1904 // determine whether this is worth generating code for. 1905 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1906 unsigned NumElts = Op.getNumOperands(); 1907 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1908 if (!Op.getValueType().isInteger()) 1909 return None; 1910 1911 Optional<unsigned> SeqStepDenom; 1912 Optional<int64_t> SeqStepNum, SeqAddend; 1913 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1914 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1915 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1916 // Assume undef elements match the sequence; we just have to be careful 1917 // when interpolating across them. 1918 if (Op.getOperand(Idx).isUndef()) 1919 continue; 1920 // The BUILD_VECTOR must be all constants. 1921 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1922 return None; 1923 1924 uint64_t Val = Op.getConstantOperandVal(Idx) & 1925 maskTrailingOnes<uint64_t>(EltSizeInBits); 1926 1927 if (PrevElt) { 1928 // Calculate the step since the last non-undef element, and ensure 1929 // it's consistent across the entire sequence. 1930 unsigned IdxDiff = Idx - PrevElt->second; 1931 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1932 1933 // A zero-value value difference means that we're somewhere in the middle 1934 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1935 // step change before evaluating the sequence. 1936 if (ValDiff != 0) { 1937 int64_t Remainder = ValDiff % IdxDiff; 1938 // Normalize the step if it's greater than 1. 1939 if (Remainder != ValDiff) { 1940 // The difference must cleanly divide the element span. 1941 if (Remainder != 0) 1942 return None; 1943 ValDiff /= IdxDiff; 1944 IdxDiff = 1; 1945 } 1946 1947 if (!SeqStepNum) 1948 SeqStepNum = ValDiff; 1949 else if (ValDiff != SeqStepNum) 1950 return None; 1951 1952 if (!SeqStepDenom) 1953 SeqStepDenom = IdxDiff; 1954 else if (IdxDiff != *SeqStepDenom) 1955 return None; 1956 } 1957 } 1958 1959 // Record and/or check any addend. 1960 if (SeqStepNum && SeqStepDenom) { 1961 uint64_t ExpectedVal = 1962 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1963 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1964 if (!SeqAddend) 1965 SeqAddend = Addend; 1966 else if (SeqAddend != Addend) 1967 return None; 1968 } 1969 1970 // Record this non-undef element for later. 1971 if (!PrevElt || PrevElt->first != Val) 1972 PrevElt = std::make_pair(Val, Idx); 1973 } 1974 // We need to have logged both a step and an addend for this to count as 1975 // a legal index sequence. 1976 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1977 return None; 1978 1979 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1980 } 1981 1982 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT 1983 // and lower it as a VRGATHER_VX_VL from the source vector. 1984 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL, 1985 SelectionDAG &DAG, 1986 const RISCVSubtarget &Subtarget) { 1987 if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1988 return SDValue(); 1989 SDValue Vec = SplatVal.getOperand(0); 1990 // Only perform this optimization on vectors of the same size for simplicity. 1991 if (Vec.getValueType() != VT) 1992 return SDValue(); 1993 SDValue Idx = SplatVal.getOperand(1); 1994 // The index must be a legal type. 1995 if (Idx.getValueType() != Subtarget.getXLenVT()) 1996 return SDValue(); 1997 1998 MVT ContainerVT = VT; 1999 if (VT.isFixedLengthVector()) { 2000 ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2001 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 2002 } 2003 2004 SDValue Mask, VL; 2005 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2006 2007 SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec, 2008 Idx, Mask, VL); 2009 2010 if (!VT.isFixedLengthVector()) 2011 return Gather; 2012 2013 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2014 } 2015 2016 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 2017 const RISCVSubtarget &Subtarget) { 2018 MVT VT = Op.getSimpleValueType(); 2019 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 2020 2021 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2022 2023 SDLoc DL(Op); 2024 SDValue Mask, VL; 2025 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2026 2027 MVT XLenVT = Subtarget.getXLenVT(); 2028 unsigned NumElts = Op.getNumOperands(); 2029 2030 if (VT.getVectorElementType() == MVT::i1) { 2031 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 2032 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 2033 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 2034 } 2035 2036 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 2037 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 2038 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 2039 } 2040 2041 // Lower constant mask BUILD_VECTORs via an integer vector type, in 2042 // scalar integer chunks whose bit-width depends on the number of mask 2043 // bits and XLEN. 2044 // First, determine the most appropriate scalar integer type to use. This 2045 // is at most XLenVT, but may be shrunk to a smaller vector element type 2046 // according to the size of the final vector - use i8 chunks rather than 2047 // XLenVT if we're producing a v8i1. This results in more consistent 2048 // codegen across RV32 and RV64. 2049 unsigned NumViaIntegerBits = 2050 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 2051 NumViaIntegerBits = std::min(NumViaIntegerBits, 2052 Subtarget.getMaxELENForFixedLengthVectors()); 2053 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 2054 // If we have to use more than one INSERT_VECTOR_ELT then this 2055 // optimization is likely to increase code size; avoid peforming it in 2056 // such a case. We can use a load from a constant pool in this case. 2057 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 2058 return SDValue(); 2059 // Now we can create our integer vector type. Note that it may be larger 2060 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 2061 MVT IntegerViaVecVT = 2062 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 2063 divideCeil(NumElts, NumViaIntegerBits)); 2064 2065 uint64_t Bits = 0; 2066 unsigned BitPos = 0, IntegerEltIdx = 0; 2067 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 2068 2069 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 2070 // Once we accumulate enough bits to fill our scalar type, insert into 2071 // our vector and clear our accumulated data. 2072 if (I != 0 && I % NumViaIntegerBits == 0) { 2073 if (NumViaIntegerBits <= 32) 2074 Bits = SignExtend64(Bits, 32); 2075 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2076 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 2077 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2078 Bits = 0; 2079 BitPos = 0; 2080 IntegerEltIdx++; 2081 } 2082 SDValue V = Op.getOperand(I); 2083 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 2084 Bits |= ((uint64_t)BitValue << BitPos); 2085 } 2086 2087 // Insert the (remaining) scalar value into position in our integer 2088 // vector type. 2089 if (NumViaIntegerBits <= 32) 2090 Bits = SignExtend64(Bits, 32); 2091 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2092 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 2093 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2094 2095 if (NumElts < NumViaIntegerBits) { 2096 // If we're producing a smaller vector than our minimum legal integer 2097 // type, bitcast to the equivalent (known-legal) mask type, and extract 2098 // our final mask. 2099 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 2100 Vec = DAG.getBitcast(MVT::v8i1, Vec); 2101 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 2102 DAG.getConstant(0, DL, XLenVT)); 2103 } else { 2104 // Else we must have produced an integer type with the same size as the 2105 // mask type; bitcast for the final result. 2106 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 2107 Vec = DAG.getBitcast(VT, Vec); 2108 } 2109 2110 return Vec; 2111 } 2112 2113 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 2114 // vector type, we have a legal equivalently-sized i8 type, so we can use 2115 // that. 2116 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 2117 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 2118 2119 SDValue WideVec; 2120 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2121 // For a splat, perform a scalar truncate before creating the wider 2122 // vector. 2123 assert(Splat.getValueType() == XLenVT && 2124 "Unexpected type for i1 splat value"); 2125 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 2126 DAG.getConstant(1, DL, XLenVT)); 2127 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 2128 } else { 2129 SmallVector<SDValue, 8> Ops(Op->op_values()); 2130 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 2131 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 2132 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 2133 } 2134 2135 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 2136 } 2137 2138 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2139 if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget)) 2140 return Gather; 2141 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 2142 : RISCVISD::VMV_V_X_VL; 2143 Splat = 2144 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL); 2145 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2146 } 2147 2148 // Try and match index sequences, which we can lower to the vid instruction 2149 // with optional modifications. An all-undef vector is matched by 2150 // getSplatValue, above. 2151 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 2152 int64_t StepNumerator = SimpleVID->StepNumerator; 2153 unsigned StepDenominator = SimpleVID->StepDenominator; 2154 int64_t Addend = SimpleVID->Addend; 2155 2156 assert(StepNumerator != 0 && "Invalid step"); 2157 bool Negate = false; 2158 int64_t SplatStepVal = StepNumerator; 2159 unsigned StepOpcode = ISD::MUL; 2160 if (StepNumerator != 1) { 2161 if (isPowerOf2_64(std::abs(StepNumerator))) { 2162 Negate = StepNumerator < 0; 2163 StepOpcode = ISD::SHL; 2164 SplatStepVal = Log2_64(std::abs(StepNumerator)); 2165 } 2166 } 2167 2168 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 2169 // threshold since it's the immediate value many RVV instructions accept. 2170 // There is no vmul.vi instruction so ensure multiply constant can fit in 2171 // a single addi instruction. 2172 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 2173 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 2174 isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) { 2175 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 2176 // Convert right out of the scalable type so we can use standard ISD 2177 // nodes for the rest of the computation. If we used scalable types with 2178 // these, we'd lose the fixed-length vector info and generate worse 2179 // vsetvli code. 2180 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 2181 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 2182 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 2183 SDValue SplatStep = DAG.getSplatVector( 2184 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 2185 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); 2186 } 2187 if (StepDenominator != 1) { 2188 SDValue SplatStep = DAG.getSplatVector( 2189 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 2190 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 2191 } 2192 if (Addend != 0 || Negate) { 2193 SDValue SplatAddend = 2194 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 2195 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 2196 } 2197 return VID; 2198 } 2199 } 2200 2201 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2202 // when re-interpreted as a vector with a larger element type. For example, 2203 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2204 // could be instead splat as 2205 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2206 // TODO: This optimization could also work on non-constant splats, but it 2207 // would require bit-manipulation instructions to construct the splat value. 2208 SmallVector<SDValue> Sequence; 2209 unsigned EltBitSize = VT.getScalarSizeInBits(); 2210 const auto *BV = cast<BuildVectorSDNode>(Op); 2211 if (VT.isInteger() && EltBitSize < 64 && 2212 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2213 BV->getRepeatedSequence(Sequence) && 2214 (Sequence.size() * EltBitSize) <= 64) { 2215 unsigned SeqLen = Sequence.size(); 2216 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2217 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2218 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2219 ViaIntVT == MVT::i64) && 2220 "Unexpected sequence type"); 2221 2222 unsigned EltIdx = 0; 2223 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2224 uint64_t SplatValue = 0; 2225 // Construct the amalgamated value which can be splatted as this larger 2226 // vector type. 2227 for (const auto &SeqV : Sequence) { 2228 if (!SeqV.isUndef()) 2229 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2230 << (EltIdx * EltBitSize)); 2231 EltIdx++; 2232 } 2233 2234 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2235 // achieve better constant materializion. 2236 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2237 SplatValue = SignExtend64(SplatValue, 32); 2238 2239 // Since we can't introduce illegal i64 types at this stage, we can only 2240 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2241 // way we can use RVV instructions to splat. 2242 assert((ViaIntVT.bitsLE(XLenVT) || 2243 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2244 "Unexpected bitcast sequence"); 2245 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2246 SDValue ViaVL = 2247 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2248 MVT ViaContainerVT = 2249 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2250 SDValue Splat = 2251 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2252 DAG.getUNDEF(ViaContainerVT), 2253 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2254 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2255 return DAG.getBitcast(VT, Splat); 2256 } 2257 } 2258 2259 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2260 // which constitute a large proportion of the elements. In such cases we can 2261 // splat a vector with the dominant element and make up the shortfall with 2262 // INSERT_VECTOR_ELTs. 2263 // Note that this includes vectors of 2 elements by association. The 2264 // upper-most element is the "dominant" one, allowing us to use a splat to 2265 // "insert" the upper element, and an insert of the lower element at position 2266 // 0, which improves codegen. 2267 SDValue DominantValue; 2268 unsigned MostCommonCount = 0; 2269 DenseMap<SDValue, unsigned> ValueCounts; 2270 unsigned NumUndefElts = 2271 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2272 2273 // Track the number of scalar loads we know we'd be inserting, estimated as 2274 // any non-zero floating-point constant. Other kinds of element are either 2275 // already in registers or are materialized on demand. The threshold at which 2276 // a vector load is more desirable than several scalar materializion and 2277 // vector-insertion instructions is not known. 2278 unsigned NumScalarLoads = 0; 2279 2280 for (SDValue V : Op->op_values()) { 2281 if (V.isUndef()) 2282 continue; 2283 2284 ValueCounts.insert(std::make_pair(V, 0)); 2285 unsigned &Count = ValueCounts[V]; 2286 2287 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2288 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2289 2290 // Is this value dominant? In case of a tie, prefer the highest element as 2291 // it's cheaper to insert near the beginning of a vector than it is at the 2292 // end. 2293 if (++Count >= MostCommonCount) { 2294 DominantValue = V; 2295 MostCommonCount = Count; 2296 } 2297 } 2298 2299 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2300 unsigned NumDefElts = NumElts - NumUndefElts; 2301 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2302 2303 // Don't perform this optimization when optimizing for size, since 2304 // materializing elements and inserting them tends to cause code bloat. 2305 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2306 ((MostCommonCount > DominantValueCountThreshold) || 2307 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2308 // Start by splatting the most common element. 2309 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2310 2311 DenseSet<SDValue> Processed{DominantValue}; 2312 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2313 for (const auto &OpIdx : enumerate(Op->ops())) { 2314 const SDValue &V = OpIdx.value(); 2315 if (V.isUndef() || !Processed.insert(V).second) 2316 continue; 2317 if (ValueCounts[V] == 1) { 2318 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2319 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2320 } else { 2321 // Blend in all instances of this value using a VSELECT, using a 2322 // mask where each bit signals whether that element is the one 2323 // we're after. 2324 SmallVector<SDValue> Ops; 2325 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2326 return DAG.getConstant(V == V1, DL, XLenVT); 2327 }); 2328 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2329 DAG.getBuildVector(SelMaskTy, DL, Ops), 2330 DAG.getSplatBuildVector(VT, DL, V), Vec); 2331 } 2332 } 2333 2334 return Vec; 2335 } 2336 2337 return SDValue(); 2338 } 2339 2340 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, 2341 SDValue Lo, SDValue Hi, SDValue VL, 2342 SelectionDAG &DAG) { 2343 if (!Passthru) 2344 Passthru = DAG.getUNDEF(VT); 2345 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2346 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2347 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2348 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2349 // node in order to try and match RVV vector/scalar instructions. 2350 if ((LoC >> 31) == HiC) 2351 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL); 2352 2353 // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use 2354 // vmv.v.x whose EEW = 32 to lower it. 2355 auto *Const = dyn_cast<ConstantSDNode>(VL); 2356 if (LoC == HiC && Const && Const->isAllOnesValue()) { 2357 MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 2358 // TODO: if vl <= min(VLMAX), we can also do this. But we could not 2359 // access the subtarget here now. 2360 auto InterVec = DAG.getNode( 2361 RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo, 2362 DAG.getRegister(RISCV::X0, MVT::i32)); 2363 return DAG.getNode(ISD::BITCAST, DL, VT, InterVec); 2364 } 2365 } 2366 2367 // Fall back to a stack store and stride x0 vector load. 2368 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo, 2369 Hi, VL); 2370 } 2371 2372 // Called by type legalization to handle splat of i64 on RV32. 2373 // FIXME: We can optimize this when the type has sign or zero bits in one 2374 // of the halves. 2375 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, 2376 SDValue Scalar, SDValue VL, 2377 SelectionDAG &DAG) { 2378 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2379 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2380 DAG.getConstant(0, DL, MVT::i32)); 2381 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2382 DAG.getConstant(1, DL, MVT::i32)); 2383 return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG); 2384 } 2385 2386 // This function lowers a splat of a scalar operand Splat with the vector 2387 // length VL. It ensures the final sequence is type legal, which is useful when 2388 // lowering a splat after type legalization. 2389 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL, 2390 MVT VT, SDLoc DL, SelectionDAG &DAG, 2391 const RISCVSubtarget &Subtarget) { 2392 bool HasPassthru = Passthru && !Passthru.isUndef(); 2393 if (!HasPassthru && !Passthru) 2394 Passthru = DAG.getUNDEF(VT); 2395 if (VT.isFloatingPoint()) { 2396 // If VL is 1, we could use vfmv.s.f. 2397 if (isOneConstant(VL)) 2398 return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL); 2399 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL); 2400 } 2401 2402 MVT XLenVT = Subtarget.getXLenVT(); 2403 2404 // Simplest case is that the operand needs to be promoted to XLenVT. 2405 if (Scalar.getValueType().bitsLE(XLenVT)) { 2406 // If the operand is a constant, sign extend to increase our chances 2407 // of being able to use a .vi instruction. ANY_EXTEND would become a 2408 // a zero extend and the simm5 check in isel would fail. 2409 // FIXME: Should we ignore the upper bits in isel instead? 2410 unsigned ExtOpc = 2411 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2412 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2413 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar); 2414 // If VL is 1 and the scalar value won't benefit from immediate, we could 2415 // use vmv.s.x. 2416 if (isOneConstant(VL) && 2417 (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue()))) 2418 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL); 2419 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL); 2420 } 2421 2422 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2423 "Unexpected scalar for splat lowering!"); 2424 2425 if (isOneConstant(VL) && isNullConstant(Scalar)) 2426 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, 2427 DAG.getConstant(0, DL, XLenVT), VL); 2428 2429 // Otherwise use the more complicated splatting algorithm. 2430 return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG); 2431 } 2432 2433 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources, 2434 const RISCVSubtarget &Subtarget) { 2435 // We need to be able to widen elements to the next larger integer type. 2436 if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors()) 2437 return false; 2438 2439 int Size = Mask.size(); 2440 assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); 2441 2442 int Srcs[] = {-1, -1}; 2443 for (int i = 0; i != Size; ++i) { 2444 // Ignore undef elements. 2445 if (Mask[i] < 0) 2446 continue; 2447 2448 // Is this an even or odd element. 2449 int Pol = i % 2; 2450 2451 // Ensure we consistently use the same source for this element polarity. 2452 int Src = Mask[i] / Size; 2453 if (Srcs[Pol] < 0) 2454 Srcs[Pol] = Src; 2455 if (Srcs[Pol] != Src) 2456 return false; 2457 2458 // Make sure the element within the source is appropriate for this element 2459 // in the destination. 2460 int Elt = Mask[i] % Size; 2461 if (Elt != i / 2) 2462 return false; 2463 } 2464 2465 // We need to find a source for each polarity and they can't be the same. 2466 if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1]) 2467 return false; 2468 2469 // Swap the sources if the second source was in the even polarity. 2470 SwapSources = Srcs[0] > Srcs[1]; 2471 2472 return true; 2473 } 2474 2475 /// Match shuffles that concatenate two vectors, rotate the concatenation, 2476 /// and then extract the original number of elements from the rotated result. 2477 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The 2478 /// returned rotation amount is for a rotate right, where elements move from 2479 /// higher elements to lower elements. \p LoSrc indicates the first source 2480 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector 2481 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be 2482 /// 0 or 1 if a rotation is found. 2483 /// 2484 /// NOTE: We talk about rotate to the right which matches how bit shift and 2485 /// rotate instructions are described where LSBs are on the right, but LLVM IR 2486 /// and the table below write vectors with the lowest elements on the left. 2487 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) { 2488 int Size = Mask.size(); 2489 2490 // We need to detect various ways of spelling a rotation: 2491 // [11, 12, 13, 14, 15, 0, 1, 2] 2492 // [-1, 12, 13, 14, -1, -1, 1, -1] 2493 // [-1, -1, -1, -1, -1, -1, 1, 2] 2494 // [ 3, 4, 5, 6, 7, 8, 9, 10] 2495 // [-1, 4, 5, 6, -1, -1, 9, -1] 2496 // [-1, 4, 5, 6, -1, -1, -1, -1] 2497 int Rotation = 0; 2498 LoSrc = -1; 2499 HiSrc = -1; 2500 for (int i = 0; i != Size; ++i) { 2501 int M = Mask[i]; 2502 if (M < 0) 2503 continue; 2504 2505 // Determine where a rotate vector would have started. 2506 int StartIdx = i - (M % Size); 2507 // The identity rotation isn't interesting, stop. 2508 if (StartIdx == 0) 2509 return -1; 2510 2511 // If we found the tail of a vector the rotation must be the missing 2512 // front. If we found the head of a vector, it must be how much of the 2513 // head. 2514 int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx; 2515 2516 if (Rotation == 0) 2517 Rotation = CandidateRotation; 2518 else if (Rotation != CandidateRotation) 2519 // The rotations don't match, so we can't match this mask. 2520 return -1; 2521 2522 // Compute which value this mask is pointing at. 2523 int MaskSrc = M < Size ? 0 : 1; 2524 2525 // Compute which of the two target values this index should be assigned to. 2526 // This reflects whether the high elements are remaining or the low elemnts 2527 // are remaining. 2528 int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc; 2529 2530 // Either set up this value if we've not encountered it before, or check 2531 // that it remains consistent. 2532 if (TargetSrc < 0) 2533 TargetSrc = MaskSrc; 2534 else if (TargetSrc != MaskSrc) 2535 // This may be a rotation, but it pulls from the inputs in some 2536 // unsupported interleaving. 2537 return -1; 2538 } 2539 2540 // Check that we successfully analyzed the mask, and normalize the results. 2541 assert(Rotation != 0 && "Failed to locate a viable rotation!"); 2542 assert((LoSrc >= 0 || HiSrc >= 0) && 2543 "Failed to find a rotated input vector!"); 2544 2545 return Rotation; 2546 } 2547 2548 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2549 const RISCVSubtarget &Subtarget) { 2550 SDValue V1 = Op.getOperand(0); 2551 SDValue V2 = Op.getOperand(1); 2552 SDLoc DL(Op); 2553 MVT XLenVT = Subtarget.getXLenVT(); 2554 MVT VT = Op.getSimpleValueType(); 2555 unsigned NumElts = VT.getVectorNumElements(); 2556 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2557 2558 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2559 2560 SDValue TrueMask, VL; 2561 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2562 2563 if (SVN->isSplat()) { 2564 const int Lane = SVN->getSplatIndex(); 2565 if (Lane >= 0) { 2566 MVT SVT = VT.getVectorElementType(); 2567 2568 // Turn splatted vector load into a strided load with an X0 stride. 2569 SDValue V = V1; 2570 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2571 // with undef. 2572 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2573 int Offset = Lane; 2574 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2575 int OpElements = 2576 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2577 V = V.getOperand(Offset / OpElements); 2578 Offset %= OpElements; 2579 } 2580 2581 // We need to ensure the load isn't atomic or volatile. 2582 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2583 auto *Ld = cast<LoadSDNode>(V); 2584 Offset *= SVT.getStoreSize(); 2585 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2586 TypeSize::Fixed(Offset), DL); 2587 2588 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2589 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2590 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2591 SDValue IntID = 2592 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2593 SDValue Ops[] = {Ld->getChain(), 2594 IntID, 2595 DAG.getUNDEF(ContainerVT), 2596 NewAddr, 2597 DAG.getRegister(RISCV::X0, XLenVT), 2598 VL}; 2599 SDValue NewLoad = DAG.getMemIntrinsicNode( 2600 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2601 DAG.getMachineFunction().getMachineMemOperand( 2602 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2603 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2604 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2605 } 2606 2607 // Otherwise use a scalar load and splat. This will give the best 2608 // opportunity to fold a splat into the operation. ISel can turn it into 2609 // the x0 strided load if we aren't able to fold away the select. 2610 if (SVT.isFloatingPoint()) 2611 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2612 Ld->getPointerInfo().getWithOffset(Offset), 2613 Ld->getOriginalAlign(), 2614 Ld->getMemOperand()->getFlags()); 2615 else 2616 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2617 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2618 Ld->getOriginalAlign(), 2619 Ld->getMemOperand()->getFlags()); 2620 DAG.makeEquivalentMemoryOrdering(Ld, V); 2621 2622 unsigned Opc = 2623 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2624 SDValue Splat = 2625 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL); 2626 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2627 } 2628 2629 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2630 assert(Lane < (int)NumElts && "Unexpected lane!"); 2631 SDValue Gather = 2632 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2633 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2634 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2635 } 2636 } 2637 2638 ArrayRef<int> Mask = SVN->getMask(); 2639 2640 // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may 2641 // be undef which can be handled with a single SLIDEDOWN/UP. 2642 int LoSrc, HiSrc; 2643 int Rotation = isElementRotate(LoSrc, HiSrc, Mask); 2644 if (Rotation > 0) { 2645 SDValue LoV, HiV; 2646 if (LoSrc >= 0) { 2647 LoV = LoSrc == 0 ? V1 : V2; 2648 LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget); 2649 } 2650 if (HiSrc >= 0) { 2651 HiV = HiSrc == 0 ? V1 : V2; 2652 HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget); 2653 } 2654 2655 // We found a rotation. We need to slide HiV down by Rotation. Then we need 2656 // to slide LoV up by (NumElts - Rotation). 2657 unsigned InvRotate = NumElts - Rotation; 2658 2659 SDValue Res = DAG.getUNDEF(ContainerVT); 2660 if (HiV) { 2661 // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN. 2662 // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it 2663 // causes multiple vsetvlis in some test cases such as lowering 2664 // reduce.mul 2665 SDValue DownVL = VL; 2666 if (LoV) 2667 DownVL = DAG.getConstant(InvRotate, DL, XLenVT); 2668 Res = 2669 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV, 2670 DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL); 2671 } 2672 if (LoV) 2673 Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV, 2674 DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL); 2675 2676 return convertFromScalableVector(VT, Res, DAG, Subtarget); 2677 } 2678 2679 // Detect an interleave shuffle and lower to 2680 // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1)) 2681 bool SwapSources; 2682 if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) { 2683 // Swap sources if needed. 2684 if (SwapSources) 2685 std::swap(V1, V2); 2686 2687 // Extract the lower half of the vectors. 2688 MVT HalfVT = VT.getHalfNumVectorElementsVT(); 2689 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1, 2690 DAG.getConstant(0, DL, XLenVT)); 2691 V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2, 2692 DAG.getConstant(0, DL, XLenVT)); 2693 2694 // Double the element width and halve the number of elements in an int type. 2695 unsigned EltBits = VT.getScalarSizeInBits(); 2696 MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2); 2697 MVT WideIntVT = 2698 MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2); 2699 // Convert this to a scalable vector. We need to base this on the 2700 // destination size to ensure there's always a type with a smaller LMUL. 2701 MVT WideIntContainerVT = 2702 getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget); 2703 2704 // Convert sources to scalable vectors with the same element count as the 2705 // larger type. 2706 MVT HalfContainerVT = MVT::getVectorVT( 2707 VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount()); 2708 V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget); 2709 V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget); 2710 2711 // Cast sources to integer. 2712 MVT IntEltVT = MVT::getIntegerVT(EltBits); 2713 MVT IntHalfVT = 2714 MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount()); 2715 V1 = DAG.getBitcast(IntHalfVT, V1); 2716 V2 = DAG.getBitcast(IntHalfVT, V2); 2717 2718 // Freeze V2 since we use it twice and we need to be sure that the add and 2719 // multiply see the same value. 2720 V2 = DAG.getFreeze(V2); 2721 2722 // Recreate TrueMask using the widened type's element count. 2723 MVT MaskVT = 2724 MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount()); 2725 TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 2726 2727 // Widen V1 and V2 with 0s and add one copy of V2 to V1. 2728 SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1, 2729 V2, TrueMask, VL); 2730 // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer. 2731 SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT, 2732 DAG.getUNDEF(IntHalfVT), 2733 DAG.getAllOnesConstant(DL, XLenVT)); 2734 SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT, 2735 V2, Multiplier, TrueMask, VL); 2736 // Add the new copies to our previous addition giving us 2^eltbits copies of 2737 // V2. This is equivalent to shifting V2 left by eltbits. This should 2738 // combine with the vwmulu.vv above to form vwmaccu.vv. 2739 Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul, 2740 TrueMask, VL); 2741 // Cast back to ContainerVT. We need to re-create a new ContainerVT in case 2742 // WideIntContainerVT is a larger fractional LMUL than implied by the fixed 2743 // vector VT. 2744 ContainerVT = 2745 MVT::getVectorVT(VT.getVectorElementType(), 2746 WideIntContainerVT.getVectorElementCount() * 2); 2747 Add = DAG.getBitcast(ContainerVT, Add); 2748 return convertFromScalableVector(VT, Add, DAG, Subtarget); 2749 } 2750 2751 // Detect shuffles which can be re-expressed as vector selects; these are 2752 // shuffles in which each element in the destination is taken from an element 2753 // at the corresponding index in either source vectors. 2754 bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) { 2755 int MaskIndex = MaskIdx.value(); 2756 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2757 }); 2758 2759 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2760 2761 SmallVector<SDValue> MaskVals; 2762 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2763 // merged with a second vrgather. 2764 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2765 2766 // By default we preserve the original operand order, and use a mask to 2767 // select LHS as true and RHS as false. However, since RVV vector selects may 2768 // feature splats but only on the LHS, we may choose to invert our mask and 2769 // instead select between RHS and LHS. 2770 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2771 bool InvertMask = IsSelect == SwapOps; 2772 2773 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2774 // half. 2775 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2776 2777 // Now construct the mask that will be used by the vselect or blended 2778 // vrgather operation. For vrgathers, construct the appropriate indices into 2779 // each vector. 2780 for (int MaskIndex : Mask) { 2781 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2782 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2783 if (!IsSelect) { 2784 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2785 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2786 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2787 : DAG.getUNDEF(XLenVT)); 2788 GatherIndicesRHS.push_back( 2789 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2790 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2791 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2792 ++LHSIndexCounts[MaskIndex]; 2793 if (!IsLHSOrUndefIndex) 2794 ++RHSIndexCounts[MaskIndex - NumElts]; 2795 } 2796 } 2797 2798 if (SwapOps) { 2799 std::swap(V1, V2); 2800 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2801 } 2802 2803 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2804 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2805 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2806 2807 if (IsSelect) 2808 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2809 2810 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2811 // On such a large vector we're unable to use i8 as the index type. 2812 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2813 // may involve vector splitting if we're already at LMUL=8, or our 2814 // user-supplied maximum fixed-length LMUL. 2815 return SDValue(); 2816 } 2817 2818 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2819 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2820 MVT IndexVT = VT.changeTypeToInteger(); 2821 // Since we can't introduce illegal index types at this stage, use i16 and 2822 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2823 // than XLenVT. 2824 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2825 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2826 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2827 } 2828 2829 MVT IndexContainerVT = 2830 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2831 2832 SDValue Gather; 2833 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2834 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2835 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2836 Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG, 2837 Subtarget); 2838 } else { 2839 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2840 // If only one index is used, we can use a "splat" vrgather. 2841 // TODO: We can splat the most-common index and fix-up any stragglers, if 2842 // that's beneficial. 2843 if (LHSIndexCounts.size() == 1) { 2844 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2845 Gather = 2846 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2847 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2848 } else { 2849 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2850 LHSIndices = 2851 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2852 2853 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2854 TrueMask, VL); 2855 } 2856 } 2857 2858 // If a second vector operand is used by this shuffle, blend it in with an 2859 // additional vrgather. 2860 if (!V2.isUndef()) { 2861 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2862 // If only one index is used, we can use a "splat" vrgather. 2863 // TODO: We can splat the most-common index and fix-up any stragglers, if 2864 // that's beneficial. 2865 if (RHSIndexCounts.size() == 1) { 2866 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2867 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2868 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2869 } else { 2870 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2871 RHSIndices = 2872 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2873 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2874 VL); 2875 } 2876 2877 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2878 SelectMask = 2879 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2880 2881 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2882 Gather, VL); 2883 } 2884 2885 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2886 } 2887 2888 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 2889 // Support splats for any type. These should type legalize well. 2890 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 2891 return true; 2892 2893 // Only support legal VTs for other shuffles for now. 2894 if (!isTypeLegal(VT)) 2895 return false; 2896 2897 MVT SVT = VT.getSimpleVT(); 2898 2899 bool SwapSources; 2900 int LoSrc, HiSrc; 2901 return (isElementRotate(LoSrc, HiSrc, M) > 0) || 2902 isInterleaveShuffle(M, SVT, SwapSources, Subtarget); 2903 } 2904 2905 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2906 SDLoc DL, SelectionDAG &DAG, 2907 const RISCVSubtarget &Subtarget) { 2908 if (VT.isScalableVector()) 2909 return DAG.getFPExtendOrRound(Op, DL, VT); 2910 assert(VT.isFixedLengthVector() && 2911 "Unexpected value type for RVV FP extend/round lowering"); 2912 SDValue Mask, VL; 2913 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2914 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2915 ? RISCVISD::FP_EXTEND_VL 2916 : RISCVISD::FP_ROUND_VL; 2917 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2918 } 2919 2920 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2921 // the exponent. 2922 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2923 MVT VT = Op.getSimpleValueType(); 2924 unsigned EltSize = VT.getScalarSizeInBits(); 2925 SDValue Src = Op.getOperand(0); 2926 SDLoc DL(Op); 2927 2928 // We need a FP type that can represent the value. 2929 // TODO: Use f16 for i8 when possible? 2930 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2931 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2932 2933 // Legal types should have been checked in the RISCVTargetLowering 2934 // constructor. 2935 // TODO: Splitting may make sense in some cases. 2936 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2937 "Expected legal float type!"); 2938 2939 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2940 // The trailing zero count is equal to log2 of this single bit value. 2941 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2942 SDValue Neg = 2943 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2944 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2945 } 2946 2947 // We have a legal FP type, convert to it. 2948 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2949 // Bitcast to integer and shift the exponent to the LSB. 2950 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2951 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2952 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2953 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2954 DAG.getConstant(ShiftAmt, DL, IntVT)); 2955 // Truncate back to original type to allow vnsrl. 2956 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2957 // The exponent contains log2 of the value in biased form. 2958 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2959 2960 // For trailing zeros, we just need to subtract the bias. 2961 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2962 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2963 DAG.getConstant(ExponentBias, DL, VT)); 2964 2965 // For leading zeros, we need to remove the bias and convert from log2 to 2966 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 2967 unsigned Adjust = ExponentBias + (EltSize - 1); 2968 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 2969 } 2970 2971 // While RVV has alignment restrictions, we should always be able to load as a 2972 // legal equivalently-sized byte-typed vector instead. This method is 2973 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2974 // the load is already correctly-aligned, it returns SDValue(). 2975 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2976 SelectionDAG &DAG) const { 2977 auto *Load = cast<LoadSDNode>(Op); 2978 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2979 2980 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2981 Load->getMemoryVT(), 2982 *Load->getMemOperand())) 2983 return SDValue(); 2984 2985 SDLoc DL(Op); 2986 MVT VT = Op.getSimpleValueType(); 2987 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2988 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2989 "Unexpected unaligned RVV load type"); 2990 MVT NewVT = 2991 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2992 assert(NewVT.isValid() && 2993 "Expecting equally-sized RVV vector types to be legal"); 2994 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2995 Load->getPointerInfo(), Load->getOriginalAlign(), 2996 Load->getMemOperand()->getFlags()); 2997 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2998 } 2999 3000 // While RVV has alignment restrictions, we should always be able to store as a 3001 // legal equivalently-sized byte-typed vector instead. This method is 3002 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 3003 // returns SDValue() if the store is already correctly aligned. 3004 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 3005 SelectionDAG &DAG) const { 3006 auto *Store = cast<StoreSDNode>(Op); 3007 assert(Store && Store->getValue().getValueType().isVector() && 3008 "Expected vector store"); 3009 3010 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 3011 Store->getMemoryVT(), 3012 *Store->getMemOperand())) 3013 return SDValue(); 3014 3015 SDLoc DL(Op); 3016 SDValue StoredVal = Store->getValue(); 3017 MVT VT = StoredVal.getSimpleValueType(); 3018 unsigned EltSizeBits = VT.getScalarSizeInBits(); 3019 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 3020 "Unexpected unaligned RVV store type"); 3021 MVT NewVT = 3022 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 3023 assert(NewVT.isValid() && 3024 "Expecting equally-sized RVV vector types to be legal"); 3025 StoredVal = DAG.getBitcast(NewVT, StoredVal); 3026 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 3027 Store->getPointerInfo(), Store->getOriginalAlign(), 3028 Store->getMemOperand()->getFlags()); 3029 } 3030 3031 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 3032 SelectionDAG &DAG) const { 3033 switch (Op.getOpcode()) { 3034 default: 3035 report_fatal_error("unimplemented operand"); 3036 case ISD::GlobalAddress: 3037 return lowerGlobalAddress(Op, DAG); 3038 case ISD::BlockAddress: 3039 return lowerBlockAddress(Op, DAG); 3040 case ISD::ConstantPool: 3041 return lowerConstantPool(Op, DAG); 3042 case ISD::JumpTable: 3043 return lowerJumpTable(Op, DAG); 3044 case ISD::GlobalTLSAddress: 3045 return lowerGlobalTLSAddress(Op, DAG); 3046 case ISD::SELECT: 3047 return lowerSELECT(Op, DAG); 3048 case ISD::BRCOND: 3049 return lowerBRCOND(Op, DAG); 3050 case ISD::VASTART: 3051 return lowerVASTART(Op, DAG); 3052 case ISD::FRAMEADDR: 3053 return lowerFRAMEADDR(Op, DAG); 3054 case ISD::RETURNADDR: 3055 return lowerRETURNADDR(Op, DAG); 3056 case ISD::SHL_PARTS: 3057 return lowerShiftLeftParts(Op, DAG); 3058 case ISD::SRA_PARTS: 3059 return lowerShiftRightParts(Op, DAG, true); 3060 case ISD::SRL_PARTS: 3061 return lowerShiftRightParts(Op, DAG, false); 3062 case ISD::BITCAST: { 3063 SDLoc DL(Op); 3064 EVT VT = Op.getValueType(); 3065 SDValue Op0 = Op.getOperand(0); 3066 EVT Op0VT = Op0.getValueType(); 3067 MVT XLenVT = Subtarget.getXLenVT(); 3068 if (VT.isFixedLengthVector()) { 3069 // We can handle fixed length vector bitcasts with a simple replacement 3070 // in isel. 3071 if (Op0VT.isFixedLengthVector()) 3072 return Op; 3073 // When bitcasting from scalar to fixed-length vector, insert the scalar 3074 // into a one-element vector of the result type, and perform a vector 3075 // bitcast. 3076 if (!Op0VT.isVector()) { 3077 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 3078 if (!isTypeLegal(BVT)) 3079 return SDValue(); 3080 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 3081 DAG.getUNDEF(BVT), Op0, 3082 DAG.getConstant(0, DL, XLenVT))); 3083 } 3084 return SDValue(); 3085 } 3086 // Custom-legalize bitcasts from fixed-length vector types to scalar types 3087 // thus: bitcast the vector to a one-element vector type whose element type 3088 // is the same as the result type, and extract the first element. 3089 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 3090 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 3091 if (!isTypeLegal(BVT)) 3092 return SDValue(); 3093 SDValue BVec = DAG.getBitcast(BVT, Op0); 3094 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 3095 DAG.getConstant(0, DL, XLenVT)); 3096 } 3097 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 3098 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 3099 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 3100 return FPConv; 3101 } 3102 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 3103 Subtarget.hasStdExtF()) { 3104 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3105 SDValue FPConv = 3106 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 3107 return FPConv; 3108 } 3109 return SDValue(); 3110 } 3111 case ISD::INTRINSIC_WO_CHAIN: 3112 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 3113 case ISD::INTRINSIC_W_CHAIN: 3114 return LowerINTRINSIC_W_CHAIN(Op, DAG); 3115 case ISD::INTRINSIC_VOID: 3116 return LowerINTRINSIC_VOID(Op, DAG); 3117 case ISD::BSWAP: 3118 case ISD::BITREVERSE: { 3119 MVT VT = Op.getSimpleValueType(); 3120 SDLoc DL(Op); 3121 if (Subtarget.hasStdExtZbp()) { 3122 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 3123 // Start with the maximum immediate value which is the bitwidth - 1. 3124 unsigned Imm = VT.getSizeInBits() - 1; 3125 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 3126 if (Op.getOpcode() == ISD::BSWAP) 3127 Imm &= ~0x7U; 3128 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 3129 DAG.getConstant(Imm, DL, VT)); 3130 } 3131 assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization"); 3132 assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode"); 3133 // Expand bitreverse to a bswap(rev8) followed by brev8. 3134 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0)); 3135 // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized 3136 // as brev8 by an isel pattern. 3137 return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap, 3138 DAG.getConstant(7, DL, VT)); 3139 } 3140 case ISD::FSHL: 3141 case ISD::FSHR: { 3142 MVT VT = Op.getSimpleValueType(); 3143 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 3144 SDLoc DL(Op); 3145 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 3146 // use log(XLen) bits. Mask the shift amount accordingly to prevent 3147 // accidentally setting the extra bit. 3148 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 3149 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 3150 DAG.getConstant(ShAmtWidth, DL, VT)); 3151 // fshl and fshr concatenate their operands in the same order. fsr and fsl 3152 // instruction use different orders. fshl will return its first operand for 3153 // shift of zero, fshr will return its second operand. fsl and fsr both 3154 // return rs1 so the ISD nodes need to have different operand orders. 3155 // Shift amount is in rs2. 3156 SDValue Op0 = Op.getOperand(0); 3157 SDValue Op1 = Op.getOperand(1); 3158 unsigned Opc = RISCVISD::FSL; 3159 if (Op.getOpcode() == ISD::FSHR) { 3160 std::swap(Op0, Op1); 3161 Opc = RISCVISD::FSR; 3162 } 3163 return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt); 3164 } 3165 case ISD::TRUNCATE: { 3166 SDLoc DL(Op); 3167 MVT VT = Op.getSimpleValueType(); 3168 // Only custom-lower vector truncates 3169 if (!VT.isVector()) 3170 return Op; 3171 3172 // Truncates to mask types are handled differently 3173 if (VT.getVectorElementType() == MVT::i1) 3174 return lowerVectorMaskTrunc(Op, DAG); 3175 3176 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 3177 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 3178 // truncate by one power of two at a time. 3179 MVT DstEltVT = VT.getVectorElementType(); 3180 3181 SDValue Src = Op.getOperand(0); 3182 MVT SrcVT = Src.getSimpleValueType(); 3183 MVT SrcEltVT = SrcVT.getVectorElementType(); 3184 3185 assert(DstEltVT.bitsLT(SrcEltVT) && 3186 isPowerOf2_64(DstEltVT.getSizeInBits()) && 3187 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 3188 "Unexpected vector truncate lowering"); 3189 3190 MVT ContainerVT = SrcVT; 3191 if (SrcVT.isFixedLengthVector()) { 3192 ContainerVT = getContainerForFixedLengthVector(SrcVT); 3193 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3194 } 3195 3196 SDValue Result = Src; 3197 SDValue Mask, VL; 3198 std::tie(Mask, VL) = 3199 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 3200 LLVMContext &Context = *DAG.getContext(); 3201 const ElementCount Count = ContainerVT.getVectorElementCount(); 3202 do { 3203 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 3204 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 3205 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 3206 Mask, VL); 3207 } while (SrcEltVT != DstEltVT); 3208 3209 if (SrcVT.isFixedLengthVector()) 3210 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 3211 3212 return Result; 3213 } 3214 case ISD::ANY_EXTEND: 3215 case ISD::ZERO_EXTEND: 3216 if (Op.getOperand(0).getValueType().isVector() && 3217 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3218 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 3219 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 3220 case ISD::SIGN_EXTEND: 3221 if (Op.getOperand(0).getValueType().isVector() && 3222 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3223 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 3224 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 3225 case ISD::SPLAT_VECTOR_PARTS: 3226 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 3227 case ISD::INSERT_VECTOR_ELT: 3228 return lowerINSERT_VECTOR_ELT(Op, DAG); 3229 case ISD::EXTRACT_VECTOR_ELT: 3230 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 3231 case ISD::VSCALE: { 3232 MVT VT = Op.getSimpleValueType(); 3233 SDLoc DL(Op); 3234 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 3235 // We define our scalable vector types for lmul=1 to use a 64 bit known 3236 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 3237 // vscale as VLENB / 8. 3238 static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); 3239 if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock) 3240 report_fatal_error("Support for VLEN==32 is incomplete."); 3241 if (isa<ConstantSDNode>(Op.getOperand(0))) { 3242 // We assume VLENB is a multiple of 8. We manually choose the best shift 3243 // here because SimplifyDemandedBits isn't always able to simplify it. 3244 uint64_t Val = Op.getConstantOperandVal(0); 3245 if (isPowerOf2_64(Val)) { 3246 uint64_t Log2 = Log2_64(Val); 3247 if (Log2 < 3) 3248 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 3249 DAG.getConstant(3 - Log2, DL, VT)); 3250 if (Log2 > 3) 3251 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 3252 DAG.getConstant(Log2 - 3, DL, VT)); 3253 return VLENB; 3254 } 3255 // If the multiplier is a multiple of 8, scale it down to avoid needing 3256 // to shift the VLENB value. 3257 if ((Val % 8) == 0) 3258 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 3259 DAG.getConstant(Val / 8, DL, VT)); 3260 } 3261 3262 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 3263 DAG.getConstant(3, DL, VT)); 3264 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 3265 } 3266 case ISD::FPOWI: { 3267 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 3268 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 3269 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 3270 Op.getOperand(1).getValueType() == MVT::i32) { 3271 SDLoc DL(Op); 3272 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 3273 SDValue Powi = 3274 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 3275 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 3276 DAG.getIntPtrConstant(0, DL)); 3277 } 3278 return SDValue(); 3279 } 3280 case ISD::FP_EXTEND: { 3281 // RVV can only do fp_extend to types double the size as the source. We 3282 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 3283 // via f32. 3284 SDLoc DL(Op); 3285 MVT VT = Op.getSimpleValueType(); 3286 SDValue Src = Op.getOperand(0); 3287 MVT SrcVT = Src.getSimpleValueType(); 3288 3289 // Prepare any fixed-length vector operands. 3290 MVT ContainerVT = VT; 3291 if (SrcVT.isFixedLengthVector()) { 3292 ContainerVT = getContainerForFixedLengthVector(VT); 3293 MVT SrcContainerVT = 3294 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 3295 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3296 } 3297 3298 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 3299 SrcVT.getVectorElementType() != MVT::f16) { 3300 // For scalable vectors, we only need to close the gap between 3301 // vXf16->vXf64. 3302 if (!VT.isFixedLengthVector()) 3303 return Op; 3304 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 3305 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3306 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3307 } 3308 3309 MVT InterVT = VT.changeVectorElementType(MVT::f32); 3310 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 3311 SDValue IntermediateExtend = getRVVFPExtendOrRound( 3312 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 3313 3314 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 3315 DL, DAG, Subtarget); 3316 if (VT.isFixedLengthVector()) 3317 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 3318 return Extend; 3319 } 3320 case ISD::FP_ROUND: { 3321 // RVV can only do fp_round to types half the size as the source. We 3322 // custom-lower f64->f16 rounds via RVV's round-to-odd float 3323 // conversion instruction. 3324 SDLoc DL(Op); 3325 MVT VT = Op.getSimpleValueType(); 3326 SDValue Src = Op.getOperand(0); 3327 MVT SrcVT = Src.getSimpleValueType(); 3328 3329 // Prepare any fixed-length vector operands. 3330 MVT ContainerVT = VT; 3331 if (VT.isFixedLengthVector()) { 3332 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3333 ContainerVT = 3334 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3335 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3336 } 3337 3338 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 3339 SrcVT.getVectorElementType() != MVT::f64) { 3340 // For scalable vectors, we only need to close the gap between 3341 // vXf64<->vXf16. 3342 if (!VT.isFixedLengthVector()) 3343 return Op; 3344 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 3345 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3346 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3347 } 3348 3349 SDValue Mask, VL; 3350 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3351 3352 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 3353 SDValue IntermediateRound = 3354 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 3355 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 3356 DL, DAG, Subtarget); 3357 3358 if (VT.isFixedLengthVector()) 3359 return convertFromScalableVector(VT, Round, DAG, Subtarget); 3360 return Round; 3361 } 3362 case ISD::FP_TO_SINT: 3363 case ISD::FP_TO_UINT: 3364 case ISD::SINT_TO_FP: 3365 case ISD::UINT_TO_FP: { 3366 // RVV can only do fp<->int conversions to types half/double the size as 3367 // the source. We custom-lower any conversions that do two hops into 3368 // sequences. 3369 MVT VT = Op.getSimpleValueType(); 3370 if (!VT.isVector()) 3371 return Op; 3372 SDLoc DL(Op); 3373 SDValue Src = Op.getOperand(0); 3374 MVT EltVT = VT.getVectorElementType(); 3375 MVT SrcVT = Src.getSimpleValueType(); 3376 MVT SrcEltVT = SrcVT.getVectorElementType(); 3377 unsigned EltSize = EltVT.getSizeInBits(); 3378 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 3379 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 3380 "Unexpected vector element types"); 3381 3382 bool IsInt2FP = SrcEltVT.isInteger(); 3383 // Widening conversions 3384 if (EltSize > (2 * SrcEltSize)) { 3385 if (IsInt2FP) { 3386 // Do a regular integer sign/zero extension then convert to float. 3387 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), 3388 VT.getVectorElementCount()); 3389 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 3390 ? ISD::ZERO_EXTEND 3391 : ISD::SIGN_EXTEND; 3392 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 3393 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 3394 } 3395 // FP2Int 3396 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 3397 // Do one doubling fp_extend then complete the operation by converting 3398 // to int. 3399 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3400 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 3401 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 3402 } 3403 3404 // Narrowing conversions 3405 if (SrcEltSize > (2 * EltSize)) { 3406 if (IsInt2FP) { 3407 // One narrowing int_to_fp, then an fp_round. 3408 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 3409 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3410 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 3411 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 3412 } 3413 // FP2Int 3414 // One narrowing fp_to_int, then truncate the integer. If the float isn't 3415 // representable by the integer, the result is poison. 3416 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), 3417 VT.getVectorElementCount()); 3418 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 3419 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 3420 } 3421 3422 // Scalable vectors can exit here. Patterns will handle equally-sized 3423 // conversions halving/doubling ones. 3424 if (!VT.isFixedLengthVector()) 3425 return Op; 3426 3427 // For fixed-length vectors we lower to a custom "VL" node. 3428 unsigned RVVOpc = 0; 3429 switch (Op.getOpcode()) { 3430 default: 3431 llvm_unreachable("Impossible opcode"); 3432 case ISD::FP_TO_SINT: 3433 RVVOpc = RISCVISD::FP_TO_SINT_VL; 3434 break; 3435 case ISD::FP_TO_UINT: 3436 RVVOpc = RISCVISD::FP_TO_UINT_VL; 3437 break; 3438 case ISD::SINT_TO_FP: 3439 RVVOpc = RISCVISD::SINT_TO_FP_VL; 3440 break; 3441 case ISD::UINT_TO_FP: 3442 RVVOpc = RISCVISD::UINT_TO_FP_VL; 3443 break; 3444 } 3445 3446 MVT ContainerVT, SrcContainerVT; 3447 // Derive the reference container type from the larger vector type. 3448 if (SrcEltSize > EltSize) { 3449 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3450 ContainerVT = 3451 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3452 } else { 3453 ContainerVT = getContainerForFixedLengthVector(VT); 3454 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 3455 } 3456 3457 SDValue Mask, VL; 3458 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3459 3460 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3461 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 3462 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3463 } 3464 case ISD::FP_TO_SINT_SAT: 3465 case ISD::FP_TO_UINT_SAT: 3466 return lowerFP_TO_INT_SAT(Op, DAG, Subtarget); 3467 case ISD::FTRUNC: 3468 case ISD::FCEIL: 3469 case ISD::FFLOOR: 3470 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 3471 case ISD::FROUND: 3472 return lowerFROUND(Op, DAG); 3473 case ISD::VECREDUCE_ADD: 3474 case ISD::VECREDUCE_UMAX: 3475 case ISD::VECREDUCE_SMAX: 3476 case ISD::VECREDUCE_UMIN: 3477 case ISD::VECREDUCE_SMIN: 3478 return lowerVECREDUCE(Op, DAG); 3479 case ISD::VECREDUCE_AND: 3480 case ISD::VECREDUCE_OR: 3481 case ISD::VECREDUCE_XOR: 3482 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3483 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 3484 return lowerVECREDUCE(Op, DAG); 3485 case ISD::VECREDUCE_FADD: 3486 case ISD::VECREDUCE_SEQ_FADD: 3487 case ISD::VECREDUCE_FMIN: 3488 case ISD::VECREDUCE_FMAX: 3489 return lowerFPVECREDUCE(Op, DAG); 3490 case ISD::VP_REDUCE_ADD: 3491 case ISD::VP_REDUCE_UMAX: 3492 case ISD::VP_REDUCE_SMAX: 3493 case ISD::VP_REDUCE_UMIN: 3494 case ISD::VP_REDUCE_SMIN: 3495 case ISD::VP_REDUCE_FADD: 3496 case ISD::VP_REDUCE_SEQ_FADD: 3497 case ISD::VP_REDUCE_FMIN: 3498 case ISD::VP_REDUCE_FMAX: 3499 return lowerVPREDUCE(Op, DAG); 3500 case ISD::VP_REDUCE_AND: 3501 case ISD::VP_REDUCE_OR: 3502 case ISD::VP_REDUCE_XOR: 3503 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 3504 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 3505 return lowerVPREDUCE(Op, DAG); 3506 case ISD::INSERT_SUBVECTOR: 3507 return lowerINSERT_SUBVECTOR(Op, DAG); 3508 case ISD::EXTRACT_SUBVECTOR: 3509 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3510 case ISD::STEP_VECTOR: 3511 return lowerSTEP_VECTOR(Op, DAG); 3512 case ISD::VECTOR_REVERSE: 3513 return lowerVECTOR_REVERSE(Op, DAG); 3514 case ISD::VECTOR_SPLICE: 3515 return lowerVECTOR_SPLICE(Op, DAG); 3516 case ISD::BUILD_VECTOR: 3517 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3518 case ISD::SPLAT_VECTOR: 3519 if (Op.getValueType().getVectorElementType() == MVT::i1) 3520 return lowerVectorMaskSplat(Op, DAG); 3521 return SDValue(); 3522 case ISD::VECTOR_SHUFFLE: 3523 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3524 case ISD::CONCAT_VECTORS: { 3525 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3526 // better than going through the stack, as the default expansion does. 3527 SDLoc DL(Op); 3528 MVT VT = Op.getSimpleValueType(); 3529 unsigned NumOpElts = 3530 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3531 SDValue Vec = DAG.getUNDEF(VT); 3532 for (const auto &OpIdx : enumerate(Op->ops())) { 3533 SDValue SubVec = OpIdx.value(); 3534 // Don't insert undef subvectors. 3535 if (SubVec.isUndef()) 3536 continue; 3537 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec, 3538 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3539 } 3540 return Vec; 3541 } 3542 case ISD::LOAD: 3543 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3544 return V; 3545 if (Op.getValueType().isFixedLengthVector()) 3546 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3547 return Op; 3548 case ISD::STORE: 3549 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3550 return V; 3551 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3552 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3553 return Op; 3554 case ISD::MLOAD: 3555 case ISD::VP_LOAD: 3556 return lowerMaskedLoad(Op, DAG); 3557 case ISD::MSTORE: 3558 case ISD::VP_STORE: 3559 return lowerMaskedStore(Op, DAG); 3560 case ISD::SETCC: 3561 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3562 case ISD::ADD: 3563 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3564 case ISD::SUB: 3565 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3566 case ISD::MUL: 3567 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3568 case ISD::MULHS: 3569 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3570 case ISD::MULHU: 3571 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3572 case ISD::AND: 3573 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3574 RISCVISD::AND_VL); 3575 case ISD::OR: 3576 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3577 RISCVISD::OR_VL); 3578 case ISD::XOR: 3579 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3580 RISCVISD::XOR_VL); 3581 case ISD::SDIV: 3582 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3583 case ISD::SREM: 3584 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3585 case ISD::UDIV: 3586 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3587 case ISD::UREM: 3588 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3589 case ISD::SHL: 3590 case ISD::SRA: 3591 case ISD::SRL: 3592 if (Op.getSimpleValueType().isFixedLengthVector()) 3593 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3594 // This can be called for an i32 shift amount that needs to be promoted. 3595 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3596 "Unexpected custom legalisation"); 3597 return SDValue(); 3598 case ISD::SADDSAT: 3599 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3600 case ISD::UADDSAT: 3601 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3602 case ISD::SSUBSAT: 3603 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3604 case ISD::USUBSAT: 3605 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3606 case ISD::FADD: 3607 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3608 case ISD::FSUB: 3609 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3610 case ISD::FMUL: 3611 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3612 case ISD::FDIV: 3613 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3614 case ISD::FNEG: 3615 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3616 case ISD::FABS: 3617 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3618 case ISD::FSQRT: 3619 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3620 case ISD::FMA: 3621 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 3622 case ISD::SMIN: 3623 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3624 case ISD::SMAX: 3625 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3626 case ISD::UMIN: 3627 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3628 case ISD::UMAX: 3629 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3630 case ISD::FMINNUM: 3631 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3632 case ISD::FMAXNUM: 3633 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3634 case ISD::ABS: 3635 return lowerABS(Op, DAG); 3636 case ISD::CTLZ_ZERO_UNDEF: 3637 case ISD::CTTZ_ZERO_UNDEF: 3638 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3639 case ISD::VSELECT: 3640 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3641 case ISD::FCOPYSIGN: 3642 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3643 case ISD::MGATHER: 3644 case ISD::VP_GATHER: 3645 return lowerMaskedGather(Op, DAG); 3646 case ISD::MSCATTER: 3647 case ISD::VP_SCATTER: 3648 return lowerMaskedScatter(Op, DAG); 3649 case ISD::FLT_ROUNDS_: 3650 return lowerGET_ROUNDING(Op, DAG); 3651 case ISD::SET_ROUNDING: 3652 return lowerSET_ROUNDING(Op, DAG); 3653 case ISD::VP_SELECT: 3654 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3655 case ISD::VP_MERGE: 3656 return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL); 3657 case ISD::VP_ADD: 3658 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3659 case ISD::VP_SUB: 3660 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3661 case ISD::VP_MUL: 3662 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3663 case ISD::VP_SDIV: 3664 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3665 case ISD::VP_UDIV: 3666 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3667 case ISD::VP_SREM: 3668 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3669 case ISD::VP_UREM: 3670 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3671 case ISD::VP_AND: 3672 return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL); 3673 case ISD::VP_OR: 3674 return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL); 3675 case ISD::VP_XOR: 3676 return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL); 3677 case ISD::VP_ASHR: 3678 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3679 case ISD::VP_LSHR: 3680 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3681 case ISD::VP_SHL: 3682 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3683 case ISD::VP_FADD: 3684 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3685 case ISD::VP_FSUB: 3686 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3687 case ISD::VP_FMUL: 3688 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3689 case ISD::VP_FDIV: 3690 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3691 case ISD::VP_FNEG: 3692 return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL); 3693 case ISD::VP_FMA: 3694 return lowerVPOp(Op, DAG, RISCVISD::FMA_VL); 3695 } 3696 } 3697 3698 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3699 SelectionDAG &DAG, unsigned Flags) { 3700 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3701 } 3702 3703 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3704 SelectionDAG &DAG, unsigned Flags) { 3705 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3706 Flags); 3707 } 3708 3709 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3710 SelectionDAG &DAG, unsigned Flags) { 3711 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3712 N->getOffset(), Flags); 3713 } 3714 3715 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3716 SelectionDAG &DAG, unsigned Flags) { 3717 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3718 } 3719 3720 template <class NodeTy> 3721 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3722 bool IsLocal) const { 3723 SDLoc DL(N); 3724 EVT Ty = getPointerTy(DAG.getDataLayout()); 3725 3726 if (isPositionIndependent()) { 3727 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3728 if (IsLocal) 3729 // Use PC-relative addressing to access the symbol. This generates the 3730 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3731 // %pcrel_lo(auipc)). 3732 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3733 3734 // Use PC-relative addressing to access the GOT for this symbol, then load 3735 // the address from the GOT. This generates the pattern (PseudoLA sym), 3736 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3737 SDValue Load = 3738 SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3739 MachineFunction &MF = DAG.getMachineFunction(); 3740 MachineMemOperand *MemOp = MF.getMachineMemOperand( 3741 MachinePointerInfo::getGOT(MF), 3742 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 3743 MachineMemOperand::MOInvariant, 3744 LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); 3745 DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp}); 3746 return Load; 3747 } 3748 3749 switch (getTargetMachine().getCodeModel()) { 3750 default: 3751 report_fatal_error("Unsupported code model for lowering"); 3752 case CodeModel::Small: { 3753 // Generate a sequence for accessing addresses within the first 2 GiB of 3754 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3755 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3756 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3757 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3758 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3759 } 3760 case CodeModel::Medium: { 3761 // Generate a sequence for accessing addresses within any 2GiB range within 3762 // the address space. This generates the pattern (PseudoLLA sym), which 3763 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3764 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3765 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3766 } 3767 } 3768 } 3769 3770 template SDValue RISCVTargetLowering::getAddr<GlobalAddressSDNode>( 3771 GlobalAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const; 3772 template SDValue RISCVTargetLowering::getAddr<BlockAddressSDNode>( 3773 BlockAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const; 3774 template SDValue RISCVTargetLowering::getAddr<ConstantPoolSDNode>( 3775 ConstantPoolSDNode *N, SelectionDAG &DAG, bool IsLocal) const; 3776 template SDValue RISCVTargetLowering::getAddr<JumpTableSDNode>( 3777 JumpTableSDNode *N, SelectionDAG &DAG, bool IsLocal) const; 3778 3779 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3780 SelectionDAG &DAG) const { 3781 SDLoc DL(Op); 3782 EVT Ty = Op.getValueType(); 3783 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3784 int64_t Offset = N->getOffset(); 3785 MVT XLenVT = Subtarget.getXLenVT(); 3786 3787 const GlobalValue *GV = N->getGlobal(); 3788 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3789 SDValue Addr = getAddr(N, DAG, IsLocal); 3790 3791 // In order to maximise the opportunity for common subexpression elimination, 3792 // emit a separate ADD node for the global address offset instead of folding 3793 // it in the global address node. Later peephole optimisations may choose to 3794 // fold it back in when profitable. 3795 if (Offset != 0) 3796 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3797 DAG.getConstant(Offset, DL, XLenVT)); 3798 return Addr; 3799 } 3800 3801 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3802 SelectionDAG &DAG) const { 3803 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3804 3805 return getAddr(N, DAG); 3806 } 3807 3808 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3809 SelectionDAG &DAG) const { 3810 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3811 3812 return getAddr(N, DAG); 3813 } 3814 3815 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3816 SelectionDAG &DAG) const { 3817 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3818 3819 return getAddr(N, DAG); 3820 } 3821 3822 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3823 SelectionDAG &DAG, 3824 bool UseGOT) const { 3825 SDLoc DL(N); 3826 EVT Ty = getPointerTy(DAG.getDataLayout()); 3827 const GlobalValue *GV = N->getGlobal(); 3828 MVT XLenVT = Subtarget.getXLenVT(); 3829 3830 if (UseGOT) { 3831 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3832 // load the address from the GOT and add the thread pointer. This generates 3833 // the pattern (PseudoLA_TLS_IE sym), which expands to 3834 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3835 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3836 SDValue Load = 3837 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3838 MachineFunction &MF = DAG.getMachineFunction(); 3839 MachineMemOperand *MemOp = MF.getMachineMemOperand( 3840 MachinePointerInfo::getGOT(MF), 3841 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 3842 MachineMemOperand::MOInvariant, 3843 LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); 3844 DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp}); 3845 3846 // Add the thread pointer. 3847 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3848 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3849 } 3850 3851 // Generate a sequence for accessing the address relative to the thread 3852 // pointer, with the appropriate adjustment for the thread pointer offset. 3853 // This generates the pattern 3854 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3855 SDValue AddrHi = 3856 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3857 SDValue AddrAdd = 3858 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3859 SDValue AddrLo = 3860 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3861 3862 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3863 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3864 SDValue MNAdd = SDValue( 3865 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3866 0); 3867 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3868 } 3869 3870 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3871 SelectionDAG &DAG) const { 3872 SDLoc DL(N); 3873 EVT Ty = getPointerTy(DAG.getDataLayout()); 3874 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3875 const GlobalValue *GV = N->getGlobal(); 3876 3877 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3878 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3879 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3880 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3881 SDValue Load = 3882 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3883 3884 // Prepare argument list to generate call. 3885 ArgListTy Args; 3886 ArgListEntry Entry; 3887 Entry.Node = Load; 3888 Entry.Ty = CallTy; 3889 Args.push_back(Entry); 3890 3891 // Setup call to __tls_get_addr. 3892 TargetLowering::CallLoweringInfo CLI(DAG); 3893 CLI.setDebugLoc(DL) 3894 .setChain(DAG.getEntryNode()) 3895 .setLibCallee(CallingConv::C, CallTy, 3896 DAG.getExternalSymbol("__tls_get_addr", Ty), 3897 std::move(Args)); 3898 3899 return LowerCallTo(CLI).first; 3900 } 3901 3902 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3903 SelectionDAG &DAG) const { 3904 SDLoc DL(Op); 3905 EVT Ty = Op.getValueType(); 3906 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3907 int64_t Offset = N->getOffset(); 3908 MVT XLenVT = Subtarget.getXLenVT(); 3909 3910 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3911 3912 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3913 CallingConv::GHC) 3914 report_fatal_error("In GHC calling convention TLS is not supported"); 3915 3916 SDValue Addr; 3917 switch (Model) { 3918 case TLSModel::LocalExec: 3919 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3920 break; 3921 case TLSModel::InitialExec: 3922 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3923 break; 3924 case TLSModel::LocalDynamic: 3925 case TLSModel::GeneralDynamic: 3926 Addr = getDynamicTLSAddr(N, DAG); 3927 break; 3928 } 3929 3930 // In order to maximise the opportunity for common subexpression elimination, 3931 // emit a separate ADD node for the global address offset instead of folding 3932 // it in the global address node. Later peephole optimisations may choose to 3933 // fold it back in when profitable. 3934 if (Offset != 0) 3935 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3936 DAG.getConstant(Offset, DL, XLenVT)); 3937 return Addr; 3938 } 3939 3940 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3941 SDValue CondV = Op.getOperand(0); 3942 SDValue TrueV = Op.getOperand(1); 3943 SDValue FalseV = Op.getOperand(2); 3944 SDLoc DL(Op); 3945 MVT VT = Op.getSimpleValueType(); 3946 MVT XLenVT = Subtarget.getXLenVT(); 3947 3948 // Lower vector SELECTs to VSELECTs by splatting the condition. 3949 if (VT.isVector()) { 3950 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3951 SDValue CondSplat = VT.isScalableVector() 3952 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3953 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3954 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3955 } 3956 3957 // If the result type is XLenVT and CondV is the output of a SETCC node 3958 // which also operated on XLenVT inputs, then merge the SETCC node into the 3959 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3960 // compare+branch instructions. i.e.: 3961 // (select (setcc lhs, rhs, cc), truev, falsev) 3962 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3963 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3964 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3965 SDValue LHS = CondV.getOperand(0); 3966 SDValue RHS = CondV.getOperand(1); 3967 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3968 ISD::CondCode CCVal = CC->get(); 3969 3970 // Special case for a select of 2 constants that have a diffence of 1. 3971 // Normally this is done by DAGCombine, but if the select is introduced by 3972 // type legalization or op legalization, we miss it. Restricting to SETLT 3973 // case for now because that is what signed saturating add/sub need. 3974 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3975 // but we would probably want to swap the true/false values if the condition 3976 // is SETGE/SETLE to avoid an XORI. 3977 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3978 CCVal == ISD::SETLT) { 3979 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3980 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3981 if (TrueVal - 1 == FalseVal) 3982 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3983 if (TrueVal + 1 == FalseVal) 3984 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3985 } 3986 3987 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3988 3989 SDValue TargetCC = DAG.getCondCode(CCVal); 3990 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3991 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3992 } 3993 3994 // Otherwise: 3995 // (select condv, truev, falsev) 3996 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3997 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3998 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3999 4000 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 4001 4002 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 4003 } 4004 4005 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 4006 SDValue CondV = Op.getOperand(1); 4007 SDLoc DL(Op); 4008 MVT XLenVT = Subtarget.getXLenVT(); 4009 4010 if (CondV.getOpcode() == ISD::SETCC && 4011 CondV.getOperand(0).getValueType() == XLenVT) { 4012 SDValue LHS = CondV.getOperand(0); 4013 SDValue RHS = CondV.getOperand(1); 4014 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 4015 4016 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 4017 4018 SDValue TargetCC = DAG.getCondCode(CCVal); 4019 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 4020 LHS, RHS, TargetCC, Op.getOperand(2)); 4021 } 4022 4023 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 4024 CondV, DAG.getConstant(0, DL, XLenVT), 4025 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 4026 } 4027 4028 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 4029 MachineFunction &MF = DAG.getMachineFunction(); 4030 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 4031 4032 SDLoc DL(Op); 4033 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 4034 getPointerTy(MF.getDataLayout())); 4035 4036 // vastart just stores the address of the VarArgsFrameIndex slot into the 4037 // memory location argument. 4038 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 4039 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 4040 MachinePointerInfo(SV)); 4041 } 4042 4043 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 4044 SelectionDAG &DAG) const { 4045 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 4046 MachineFunction &MF = DAG.getMachineFunction(); 4047 MachineFrameInfo &MFI = MF.getFrameInfo(); 4048 MFI.setFrameAddressIsTaken(true); 4049 Register FrameReg = RI.getFrameRegister(MF); 4050 int XLenInBytes = Subtarget.getXLen() / 8; 4051 4052 EVT VT = Op.getValueType(); 4053 SDLoc DL(Op); 4054 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 4055 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4056 while (Depth--) { 4057 int Offset = -(XLenInBytes * 2); 4058 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 4059 DAG.getIntPtrConstant(Offset, DL)); 4060 FrameAddr = 4061 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 4062 } 4063 return FrameAddr; 4064 } 4065 4066 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 4067 SelectionDAG &DAG) const { 4068 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 4069 MachineFunction &MF = DAG.getMachineFunction(); 4070 MachineFrameInfo &MFI = MF.getFrameInfo(); 4071 MFI.setReturnAddressIsTaken(true); 4072 MVT XLenVT = Subtarget.getXLenVT(); 4073 int XLenInBytes = Subtarget.getXLen() / 8; 4074 4075 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 4076 return SDValue(); 4077 4078 EVT VT = Op.getValueType(); 4079 SDLoc DL(Op); 4080 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4081 if (Depth) { 4082 int Off = -XLenInBytes; 4083 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 4084 SDValue Offset = DAG.getConstant(Off, DL, VT); 4085 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 4086 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 4087 MachinePointerInfo()); 4088 } 4089 4090 // Return the value of the return address register, marking it an implicit 4091 // live-in. 4092 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 4093 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 4094 } 4095 4096 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 4097 SelectionDAG &DAG) const { 4098 SDLoc DL(Op); 4099 SDValue Lo = Op.getOperand(0); 4100 SDValue Hi = Op.getOperand(1); 4101 SDValue Shamt = Op.getOperand(2); 4102 EVT VT = Lo.getValueType(); 4103 4104 // if Shamt-XLEN < 0: // Shamt < XLEN 4105 // Lo = Lo << Shamt 4106 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt)) 4107 // else: 4108 // Lo = 0 4109 // Hi = Lo << (Shamt-XLEN) 4110 4111 SDValue Zero = DAG.getConstant(0, DL, VT); 4112 SDValue One = DAG.getConstant(1, DL, VT); 4113 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 4114 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 4115 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 4116 SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1); 4117 4118 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 4119 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 4120 SDValue ShiftRightLo = 4121 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 4122 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 4123 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 4124 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 4125 4126 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 4127 4128 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 4129 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 4130 4131 SDValue Parts[2] = {Lo, Hi}; 4132 return DAG.getMergeValues(Parts, DL); 4133 } 4134 4135 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 4136 bool IsSRA) const { 4137 SDLoc DL(Op); 4138 SDValue Lo = Op.getOperand(0); 4139 SDValue Hi = Op.getOperand(1); 4140 SDValue Shamt = Op.getOperand(2); 4141 EVT VT = Lo.getValueType(); 4142 4143 // SRA expansion: 4144 // if Shamt-XLEN < 0: // Shamt < XLEN 4145 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1)) 4146 // Hi = Hi >>s Shamt 4147 // else: 4148 // Lo = Hi >>s (Shamt-XLEN); 4149 // Hi = Hi >>s (XLEN-1) 4150 // 4151 // SRL expansion: 4152 // if Shamt-XLEN < 0: // Shamt < XLEN 4153 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1)) 4154 // Hi = Hi >>u Shamt 4155 // else: 4156 // Lo = Hi >>u (Shamt-XLEN); 4157 // Hi = 0; 4158 4159 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 4160 4161 SDValue Zero = DAG.getConstant(0, DL, VT); 4162 SDValue One = DAG.getConstant(1, DL, VT); 4163 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 4164 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 4165 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 4166 SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1); 4167 4168 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 4169 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 4170 SDValue ShiftLeftHi = 4171 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 4172 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 4173 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 4174 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 4175 SDValue HiFalse = 4176 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 4177 4178 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 4179 4180 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 4181 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 4182 4183 SDValue Parts[2] = {Lo, Hi}; 4184 return DAG.getMergeValues(Parts, DL); 4185 } 4186 4187 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 4188 // legal equivalently-sized i8 type, so we can use that as a go-between. 4189 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 4190 SelectionDAG &DAG) const { 4191 SDLoc DL(Op); 4192 MVT VT = Op.getSimpleValueType(); 4193 SDValue SplatVal = Op.getOperand(0); 4194 // All-zeros or all-ones splats are handled specially. 4195 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 4196 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4197 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 4198 } 4199 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 4200 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4201 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 4202 } 4203 MVT XLenVT = Subtarget.getXLenVT(); 4204 assert(SplatVal.getValueType() == XLenVT && 4205 "Unexpected type for i1 splat value"); 4206 MVT InterVT = VT.changeVectorElementType(MVT::i8); 4207 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 4208 DAG.getConstant(1, DL, XLenVT)); 4209 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 4210 SDValue Zero = DAG.getConstant(0, DL, InterVT); 4211 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 4212 } 4213 4214 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 4215 // illegal (currently only vXi64 RV32). 4216 // FIXME: We could also catch non-constant sign-extended i32 values and lower 4217 // them to VMV_V_X_VL. 4218 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 4219 SelectionDAG &DAG) const { 4220 SDLoc DL(Op); 4221 MVT VecVT = Op.getSimpleValueType(); 4222 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 4223 "Unexpected SPLAT_VECTOR_PARTS lowering"); 4224 4225 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 4226 SDValue Lo = Op.getOperand(0); 4227 SDValue Hi = Op.getOperand(1); 4228 4229 if (VecVT.isFixedLengthVector()) { 4230 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4231 SDLoc DL(Op); 4232 SDValue Mask, VL; 4233 std::tie(Mask, VL) = 4234 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4235 4236 SDValue Res = 4237 splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG); 4238 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 4239 } 4240 4241 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 4242 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 4243 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 4244 // If Hi constant is all the same sign bit as Lo, lower this as a custom 4245 // node in order to try and match RVV vector/scalar instructions. 4246 if ((LoC >> 31) == HiC) 4247 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 4248 Lo, DAG.getRegister(RISCV::X0, MVT::i32)); 4249 } 4250 4251 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 4252 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 4253 isa<ConstantSDNode>(Hi.getOperand(1)) && 4254 Hi.getConstantOperandVal(1) == 31) 4255 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo, 4256 DAG.getRegister(RISCV::X0, MVT::i32)); 4257 4258 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 4259 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, 4260 DAG.getUNDEF(VecVT), Lo, Hi, 4261 DAG.getRegister(RISCV::X0, MVT::i32)); 4262 } 4263 4264 // Custom-lower extensions from mask vectors by using a vselect either with 1 4265 // for zero/any-extension or -1 for sign-extension: 4266 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 4267 // Note that any-extension is lowered identically to zero-extension. 4268 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 4269 int64_t ExtTrueVal) const { 4270 SDLoc DL(Op); 4271 MVT VecVT = Op.getSimpleValueType(); 4272 SDValue Src = Op.getOperand(0); 4273 // Only custom-lower extensions from mask types 4274 assert(Src.getValueType().isVector() && 4275 Src.getValueType().getVectorElementType() == MVT::i1); 4276 4277 if (VecVT.isScalableVector()) { 4278 SDValue SplatZero = DAG.getConstant(0, DL, VecVT); 4279 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT); 4280 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 4281 } 4282 4283 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4284 MVT I1ContainerVT = 4285 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4286 4287 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 4288 4289 SDValue Mask, VL; 4290 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4291 4292 MVT XLenVT = Subtarget.getXLenVT(); 4293 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 4294 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 4295 4296 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4297 DAG.getUNDEF(ContainerVT), SplatZero, VL); 4298 SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4299 DAG.getUNDEF(ContainerVT), SplatTrueVal, VL); 4300 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 4301 SplatTrueVal, SplatZero, VL); 4302 4303 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 4304 } 4305 4306 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 4307 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 4308 MVT ExtVT = Op.getSimpleValueType(); 4309 // Only custom-lower extensions from fixed-length vector types. 4310 if (!ExtVT.isFixedLengthVector()) 4311 return Op; 4312 MVT VT = Op.getOperand(0).getSimpleValueType(); 4313 // Grab the canonical container type for the extended type. Infer the smaller 4314 // type from that to ensure the same number of vector elements, as we know 4315 // the LMUL will be sufficient to hold the smaller type. 4316 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 4317 // Get the extended container type manually to ensure the same number of 4318 // vector elements between source and dest. 4319 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4320 ContainerExtVT.getVectorElementCount()); 4321 4322 SDValue Op1 = 4323 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4324 4325 SDLoc DL(Op); 4326 SDValue Mask, VL; 4327 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4328 4329 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 4330 4331 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 4332 } 4333 4334 // Custom-lower truncations from vectors to mask vectors by using a mask and a 4335 // setcc operation: 4336 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 4337 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 4338 SelectionDAG &DAG) const { 4339 SDLoc DL(Op); 4340 EVT MaskVT = Op.getValueType(); 4341 // Only expect to custom-lower truncations to mask types 4342 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 4343 "Unexpected type for vector mask lowering"); 4344 SDValue Src = Op.getOperand(0); 4345 MVT VecVT = Src.getSimpleValueType(); 4346 4347 // If this is a fixed vector, we need to convert it to a scalable vector. 4348 MVT ContainerVT = VecVT; 4349 if (VecVT.isFixedLengthVector()) { 4350 ContainerVT = getContainerForFixedLengthVector(VecVT); 4351 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 4352 } 4353 4354 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 4355 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 4356 4357 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4358 DAG.getUNDEF(ContainerVT), SplatOne); 4359 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4360 DAG.getUNDEF(ContainerVT), SplatZero); 4361 4362 if (VecVT.isScalableVector()) { 4363 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 4364 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 4365 } 4366 4367 SDValue Mask, VL; 4368 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4369 4370 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 4371 SDValue Trunc = 4372 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 4373 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 4374 DAG.getCondCode(ISD::SETNE), Mask, VL); 4375 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 4376 } 4377 4378 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 4379 // first position of a vector, and that vector is slid up to the insert index. 4380 // By limiting the active vector length to index+1 and merging with the 4381 // original vector (with an undisturbed tail policy for elements >= VL), we 4382 // achieve the desired result of leaving all elements untouched except the one 4383 // at VL-1, which is replaced with the desired value. 4384 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4385 SelectionDAG &DAG) const { 4386 SDLoc DL(Op); 4387 MVT VecVT = Op.getSimpleValueType(); 4388 SDValue Vec = Op.getOperand(0); 4389 SDValue Val = Op.getOperand(1); 4390 SDValue Idx = Op.getOperand(2); 4391 4392 if (VecVT.getVectorElementType() == MVT::i1) { 4393 // FIXME: For now we just promote to an i8 vector and insert into that, 4394 // but this is probably not optimal. 4395 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4396 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4397 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 4398 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 4399 } 4400 4401 MVT ContainerVT = VecVT; 4402 // If the operand is a fixed-length vector, convert to a scalable one. 4403 if (VecVT.isFixedLengthVector()) { 4404 ContainerVT = getContainerForFixedLengthVector(VecVT); 4405 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4406 } 4407 4408 MVT XLenVT = Subtarget.getXLenVT(); 4409 4410 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4411 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 4412 // Even i64-element vectors on RV32 can be lowered without scalar 4413 // legalization if the most-significant 32 bits of the value are not affected 4414 // by the sign-extension of the lower 32 bits. 4415 // TODO: We could also catch sign extensions of a 32-bit value. 4416 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 4417 const auto *CVal = cast<ConstantSDNode>(Val); 4418 if (isInt<32>(CVal->getSExtValue())) { 4419 IsLegalInsert = true; 4420 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4421 } 4422 } 4423 4424 SDValue Mask, VL; 4425 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4426 4427 SDValue ValInVec; 4428 4429 if (IsLegalInsert) { 4430 unsigned Opc = 4431 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 4432 if (isNullConstant(Idx)) { 4433 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 4434 if (!VecVT.isFixedLengthVector()) 4435 return Vec; 4436 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 4437 } 4438 ValInVec = 4439 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 4440 } else { 4441 // On RV32, i64-element vectors must be specially handled to place the 4442 // value at element 0, by using two vslide1up instructions in sequence on 4443 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 4444 // this. 4445 SDValue One = DAG.getConstant(1, DL, XLenVT); 4446 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 4447 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 4448 MVT I32ContainerVT = 4449 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 4450 SDValue I32Mask = 4451 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 4452 // Limit the active VL to two. 4453 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 4454 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 4455 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 4456 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, 4457 DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL); 4458 // First slide in the hi value, then the lo in underneath it. 4459 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, 4460 DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi, 4461 I32Mask, InsertI64VL); 4462 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, 4463 DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo, 4464 I32Mask, InsertI64VL); 4465 // Bitcast back to the right container type. 4466 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 4467 } 4468 4469 // Now that the value is in a vector, slide it into position. 4470 SDValue InsertVL = 4471 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 4472 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4473 ValInVec, Idx, Mask, InsertVL); 4474 if (!VecVT.isFixedLengthVector()) 4475 return Slideup; 4476 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4477 } 4478 4479 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 4480 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 4481 // types this is done using VMV_X_S to allow us to glean information about the 4482 // sign bits of the result. 4483 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4484 SelectionDAG &DAG) const { 4485 SDLoc DL(Op); 4486 SDValue Idx = Op.getOperand(1); 4487 SDValue Vec = Op.getOperand(0); 4488 EVT EltVT = Op.getValueType(); 4489 MVT VecVT = Vec.getSimpleValueType(); 4490 MVT XLenVT = Subtarget.getXLenVT(); 4491 4492 if (VecVT.getVectorElementType() == MVT::i1) { 4493 if (VecVT.isFixedLengthVector()) { 4494 unsigned NumElts = VecVT.getVectorNumElements(); 4495 if (NumElts >= 8) { 4496 MVT WideEltVT; 4497 unsigned WidenVecLen; 4498 SDValue ExtractElementIdx; 4499 SDValue ExtractBitIdx; 4500 unsigned MaxEEW = Subtarget.getMaxELENForFixedLengthVectors(); 4501 MVT LargestEltVT = MVT::getIntegerVT( 4502 std::min(MaxEEW, unsigned(XLenVT.getSizeInBits()))); 4503 if (NumElts <= LargestEltVT.getSizeInBits()) { 4504 assert(isPowerOf2_32(NumElts) && 4505 "the number of elements should be power of 2"); 4506 WideEltVT = MVT::getIntegerVT(NumElts); 4507 WidenVecLen = 1; 4508 ExtractElementIdx = DAG.getConstant(0, DL, XLenVT); 4509 ExtractBitIdx = Idx; 4510 } else { 4511 WideEltVT = LargestEltVT; 4512 WidenVecLen = NumElts / WideEltVT.getSizeInBits(); 4513 // extract element index = index / element width 4514 ExtractElementIdx = DAG.getNode( 4515 ISD::SRL, DL, XLenVT, Idx, 4516 DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT)); 4517 // mask bit index = index % element width 4518 ExtractBitIdx = DAG.getNode( 4519 ISD::AND, DL, XLenVT, Idx, 4520 DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT)); 4521 } 4522 MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen); 4523 Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec); 4524 SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT, 4525 Vec, ExtractElementIdx); 4526 // Extract the bit from GPR. 4527 SDValue ShiftRight = 4528 DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx); 4529 return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight, 4530 DAG.getConstant(1, DL, XLenVT)); 4531 } 4532 } 4533 // Otherwise, promote to an i8 vector and extract from that. 4534 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4535 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4536 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 4537 } 4538 4539 // If this is a fixed vector, we need to convert it to a scalable vector. 4540 MVT ContainerVT = VecVT; 4541 if (VecVT.isFixedLengthVector()) { 4542 ContainerVT = getContainerForFixedLengthVector(VecVT); 4543 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4544 } 4545 4546 // If the index is 0, the vector is already in the right position. 4547 if (!isNullConstant(Idx)) { 4548 // Use a VL of 1 to avoid processing more elements than we need. 4549 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4550 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4551 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4552 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4553 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4554 } 4555 4556 if (!EltVT.isInteger()) { 4557 // Floating-point extracts are handled in TableGen. 4558 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 4559 DAG.getConstant(0, DL, XLenVT)); 4560 } 4561 4562 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4563 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 4564 } 4565 4566 // Some RVV intrinsics may claim that they want an integer operand to be 4567 // promoted or expanded. 4568 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG, 4569 const RISCVSubtarget &Subtarget) { 4570 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 4571 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 4572 "Unexpected opcode"); 4573 4574 if (!Subtarget.hasVInstructions()) 4575 return SDValue(); 4576 4577 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 4578 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 4579 SDLoc DL(Op); 4580 4581 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4582 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4583 if (!II || !II->hasScalarOperand()) 4584 return SDValue(); 4585 4586 unsigned SplatOp = II->ScalarOperand + 1 + HasChain; 4587 assert(SplatOp < Op.getNumOperands()); 4588 4589 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4590 SDValue &ScalarOp = Operands[SplatOp]; 4591 MVT OpVT = ScalarOp.getSimpleValueType(); 4592 MVT XLenVT = Subtarget.getXLenVT(); 4593 4594 // If this isn't a scalar, or its type is XLenVT we're done. 4595 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4596 return SDValue(); 4597 4598 // Simplest case is that the operand needs to be promoted to XLenVT. 4599 if (OpVT.bitsLT(XLenVT)) { 4600 // If the operand is a constant, sign extend to increase our chances 4601 // of being able to use a .vi instruction. ANY_EXTEND would become a 4602 // a zero extend and the simm5 check in isel would fail. 4603 // FIXME: Should we ignore the upper bits in isel instead? 4604 unsigned ExtOpc = 4605 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4606 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4607 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4608 } 4609 4610 // Use the previous operand to get the vXi64 VT. The result might be a mask 4611 // VT for compares. Using the previous operand assumes that the previous 4612 // operand will never have a smaller element size than a scalar operand and 4613 // that a widening operation never uses SEW=64. 4614 // NOTE: If this fails the below assert, we can probably just find the 4615 // element count from any operand or result and use it to construct the VT. 4616 assert(II->ScalarOperand > 0 && "Unexpected splat operand!"); 4617 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4618 4619 // The more complex case is when the scalar is larger than XLenVT. 4620 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4621 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4622 4623 // If this is a sign-extended 32-bit value, we can truncate it and rely on the 4624 // instruction to sign-extend since SEW>XLEN. 4625 if (DAG.ComputeNumSignBits(ScalarOp) > 32) { 4626 ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp); 4627 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4628 } 4629 4630 switch (IntNo) { 4631 case Intrinsic::riscv_vslide1up: 4632 case Intrinsic::riscv_vslide1down: 4633 case Intrinsic::riscv_vslide1up_mask: 4634 case Intrinsic::riscv_vslide1down_mask: { 4635 // We need to special case these when the scalar is larger than XLen. 4636 unsigned NumOps = Op.getNumOperands(); 4637 bool IsMasked = NumOps == 7; 4638 4639 // Convert the vector source to the equivalent nxvXi32 vector. 4640 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4641 SDValue Vec = DAG.getBitcast(I32VT, Operands[2]); 4642 4643 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp, 4644 DAG.getConstant(0, DL, XLenVT)); 4645 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp, 4646 DAG.getConstant(1, DL, XLenVT)); 4647 4648 // Double the VL since we halved SEW. 4649 SDValue AVL = getVLOperand(Op); 4650 SDValue I32VL; 4651 4652 // Optimize for constant AVL 4653 if (isa<ConstantSDNode>(AVL)) { 4654 unsigned EltSize = VT.getScalarSizeInBits(); 4655 unsigned MinSize = VT.getSizeInBits().getKnownMinValue(); 4656 4657 unsigned VectorBitsMax = Subtarget.getRealMaxVLen(); 4658 unsigned MaxVLMAX = 4659 RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); 4660 4661 unsigned VectorBitsMin = Subtarget.getRealMinVLen(); 4662 unsigned MinVLMAX = 4663 RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize); 4664 4665 uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue(); 4666 if (AVLInt <= MinVLMAX) { 4667 I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT); 4668 } else if (AVLInt >= 2 * MaxVLMAX) { 4669 // Just set vl to VLMAX in this situation 4670 RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT); 4671 SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); 4672 unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits()); 4673 SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); 4674 SDValue SETVLMAX = DAG.getTargetConstant( 4675 Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32); 4676 I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW, 4677 LMUL); 4678 } else { 4679 // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl 4680 // is related to the hardware implementation. 4681 // So let the following code handle 4682 } 4683 } 4684 if (!I32VL) { 4685 RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT); 4686 SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); 4687 unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits()); 4688 SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); 4689 SDValue SETVL = 4690 DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32); 4691 // Using vsetvli instruction to get actually used length which related to 4692 // the hardware implementation 4693 SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL, 4694 SEW, LMUL); 4695 I32VL = 4696 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4697 } 4698 4699 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 4700 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, I32VL); 4701 4702 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4703 // instructions. 4704 SDValue Passthru; 4705 if (IsMasked) 4706 Passthru = DAG.getUNDEF(I32VT); 4707 else 4708 Passthru = DAG.getBitcast(I32VT, Operands[1]); 4709 4710 if (IntNo == Intrinsic::riscv_vslide1up || 4711 IntNo == Intrinsic::riscv_vslide1up_mask) { 4712 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, 4713 ScalarHi, I32Mask, I32VL); 4714 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, 4715 ScalarLo, I32Mask, I32VL); 4716 } else { 4717 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, 4718 ScalarLo, I32Mask, I32VL); 4719 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, 4720 ScalarHi, I32Mask, I32VL); 4721 } 4722 4723 // Convert back to nxvXi64. 4724 Vec = DAG.getBitcast(VT, Vec); 4725 4726 if (!IsMasked) 4727 return Vec; 4728 // Apply mask after the operation. 4729 SDValue Mask = Operands[NumOps - 3]; 4730 SDValue MaskedOff = Operands[1]; 4731 // Assume Policy operand is the last operand. 4732 uint64_t Policy = 4733 cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue(); 4734 // We don't need to select maskedoff if it's undef. 4735 if (MaskedOff.isUndef()) 4736 return Vec; 4737 // TAMU 4738 if (Policy == RISCVII::TAIL_AGNOSTIC) 4739 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, 4740 AVL); 4741 // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma. 4742 // It's fine because vmerge does not care mask policy. 4743 return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff, 4744 AVL); 4745 } 4746 } 4747 4748 // We need to convert the scalar to a splat vector. 4749 SDValue VL = getVLOperand(Op); 4750 assert(VL.getValueType() == XLenVT); 4751 ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG); 4752 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4753 } 4754 4755 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4756 SelectionDAG &DAG) const { 4757 unsigned IntNo = Op.getConstantOperandVal(0); 4758 SDLoc DL(Op); 4759 MVT XLenVT = Subtarget.getXLenVT(); 4760 4761 switch (IntNo) { 4762 default: 4763 break; // Don't custom lower most intrinsics. 4764 case Intrinsic::thread_pointer: { 4765 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4766 return DAG.getRegister(RISCV::X4, PtrVT); 4767 } 4768 case Intrinsic::riscv_orc_b: 4769 case Intrinsic::riscv_brev8: { 4770 // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8. 4771 unsigned Opc = 4772 IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC; 4773 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4774 DAG.getConstant(7, DL, XLenVT)); 4775 } 4776 case Intrinsic::riscv_grev: 4777 case Intrinsic::riscv_gorc: { 4778 unsigned Opc = 4779 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4780 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4781 } 4782 case Intrinsic::riscv_zip: 4783 case Intrinsic::riscv_unzip: { 4784 // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip. 4785 // For i32 the immediate is 15. For i64 the immediate is 31. 4786 unsigned Opc = 4787 IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4788 unsigned BitWidth = Op.getValueSizeInBits(); 4789 assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width"); 4790 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4791 DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT)); 4792 } 4793 case Intrinsic::riscv_shfl: 4794 case Intrinsic::riscv_unshfl: { 4795 unsigned Opc = 4796 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4797 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4798 } 4799 case Intrinsic::riscv_bcompress: 4800 case Intrinsic::riscv_bdecompress: { 4801 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4802 : RISCVISD::BDECOMPRESS; 4803 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4804 } 4805 case Intrinsic::riscv_bfp: 4806 return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1), 4807 Op.getOperand(2)); 4808 case Intrinsic::riscv_fsl: 4809 return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1), 4810 Op.getOperand(2), Op.getOperand(3)); 4811 case Intrinsic::riscv_fsr: 4812 return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1), 4813 Op.getOperand(2), Op.getOperand(3)); 4814 case Intrinsic::riscv_vmv_x_s: 4815 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4816 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4817 Op.getOperand(1)); 4818 case Intrinsic::riscv_vmv_v_x: 4819 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4820 Op.getOperand(3), Op.getSimpleValueType(), DL, DAG, 4821 Subtarget); 4822 case Intrinsic::riscv_vfmv_v_f: 4823 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4824 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4825 case Intrinsic::riscv_vmv_s_x: { 4826 SDValue Scalar = Op.getOperand(2); 4827 4828 if (Scalar.getValueType().bitsLE(XLenVT)) { 4829 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4830 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4831 Op.getOperand(1), Scalar, Op.getOperand(3)); 4832 } 4833 4834 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4835 4836 // This is an i64 value that lives in two scalar registers. We have to 4837 // insert this in a convoluted way. First we build vXi64 splat containing 4838 // the two values that we assemble using some bit math. Next we'll use 4839 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4840 // to merge element 0 from our splat into the source vector. 4841 // FIXME: This is probably not the best way to do this, but it is 4842 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4843 // point. 4844 // sw lo, (a0) 4845 // sw hi, 4(a0) 4846 // vlse vX, (a0) 4847 // 4848 // vid.v vVid 4849 // vmseq.vx mMask, vVid, 0 4850 // vmerge.vvm vDest, vSrc, vVal, mMask 4851 MVT VT = Op.getSimpleValueType(); 4852 SDValue Vec = Op.getOperand(1); 4853 SDValue VL = getVLOperand(Op); 4854 4855 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG); 4856 if (Op.getOperand(1).isUndef()) 4857 return SplattedVal; 4858 SDValue SplattedIdx = 4859 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 4860 DAG.getConstant(0, DL, MVT::i32), VL); 4861 4862 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 4863 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4864 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4865 SDValue SelectCond = 4866 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4867 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4868 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4869 Vec, VL); 4870 } 4871 } 4872 4873 return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); 4874 } 4875 4876 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4877 SelectionDAG &DAG) const { 4878 unsigned IntNo = Op.getConstantOperandVal(1); 4879 switch (IntNo) { 4880 default: 4881 break; 4882 case Intrinsic::riscv_masked_strided_load: { 4883 SDLoc DL(Op); 4884 MVT XLenVT = Subtarget.getXLenVT(); 4885 4886 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4887 // the selection of the masked intrinsics doesn't do this for us. 4888 SDValue Mask = Op.getOperand(5); 4889 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4890 4891 MVT VT = Op->getSimpleValueType(0); 4892 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4893 4894 SDValue PassThru = Op.getOperand(2); 4895 if (!IsUnmasked) { 4896 MVT MaskVT = 4897 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4898 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4899 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4900 } 4901 4902 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4903 4904 SDValue IntID = DAG.getTargetConstant( 4905 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4906 XLenVT); 4907 4908 auto *Load = cast<MemIntrinsicSDNode>(Op); 4909 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4910 if (IsUnmasked) 4911 Ops.push_back(DAG.getUNDEF(ContainerVT)); 4912 else 4913 Ops.push_back(PassThru); 4914 Ops.push_back(Op.getOperand(3)); // Ptr 4915 Ops.push_back(Op.getOperand(4)); // Stride 4916 if (!IsUnmasked) 4917 Ops.push_back(Mask); 4918 Ops.push_back(VL); 4919 if (!IsUnmasked) { 4920 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4921 Ops.push_back(Policy); 4922 } 4923 4924 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4925 SDValue Result = 4926 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4927 Load->getMemoryVT(), Load->getMemOperand()); 4928 SDValue Chain = Result.getValue(1); 4929 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4930 return DAG.getMergeValues({Result, Chain}, DL); 4931 } 4932 case Intrinsic::riscv_seg2_load: 4933 case Intrinsic::riscv_seg3_load: 4934 case Intrinsic::riscv_seg4_load: 4935 case Intrinsic::riscv_seg5_load: 4936 case Intrinsic::riscv_seg6_load: 4937 case Intrinsic::riscv_seg7_load: 4938 case Intrinsic::riscv_seg8_load: { 4939 SDLoc DL(Op); 4940 static const Intrinsic::ID VlsegInts[7] = { 4941 Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3, 4942 Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5, 4943 Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7, 4944 Intrinsic::riscv_vlseg8}; 4945 unsigned NF = Op->getNumValues() - 1; 4946 assert(NF >= 2 && NF <= 8 && "Unexpected seg number"); 4947 MVT XLenVT = Subtarget.getXLenVT(); 4948 MVT VT = Op->getSimpleValueType(0); 4949 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4950 4951 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4952 SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT); 4953 auto *Load = cast<MemIntrinsicSDNode>(Op); 4954 SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT); 4955 ContainerVTs.push_back(MVT::Other); 4956 SDVTList VTs = DAG.getVTList(ContainerVTs); 4957 SDValue Result = 4958 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, 4959 {Load->getChain(), IntID, Op.getOperand(2), VL}, 4960 Load->getMemoryVT(), Load->getMemOperand()); 4961 SmallVector<SDValue, 9> Results; 4962 for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++) 4963 Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx), 4964 DAG, Subtarget)); 4965 Results.push_back(Result.getValue(NF)); 4966 return DAG.getMergeValues(Results, DL); 4967 } 4968 } 4969 4970 return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); 4971 } 4972 4973 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4974 SelectionDAG &DAG) const { 4975 unsigned IntNo = Op.getConstantOperandVal(1); 4976 switch (IntNo) { 4977 default: 4978 break; 4979 case Intrinsic::riscv_masked_strided_store: { 4980 SDLoc DL(Op); 4981 MVT XLenVT = Subtarget.getXLenVT(); 4982 4983 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4984 // the selection of the masked intrinsics doesn't do this for us. 4985 SDValue Mask = Op.getOperand(5); 4986 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4987 4988 SDValue Val = Op.getOperand(2); 4989 MVT VT = Val.getSimpleValueType(); 4990 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4991 4992 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4993 if (!IsUnmasked) { 4994 MVT MaskVT = 4995 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4996 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4997 } 4998 4999 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5000 5001 SDValue IntID = DAG.getTargetConstant( 5002 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 5003 XLenVT); 5004 5005 auto *Store = cast<MemIntrinsicSDNode>(Op); 5006 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 5007 Ops.push_back(Val); 5008 Ops.push_back(Op.getOperand(3)); // Ptr 5009 Ops.push_back(Op.getOperand(4)); // Stride 5010 if (!IsUnmasked) 5011 Ops.push_back(Mask); 5012 Ops.push_back(VL); 5013 5014 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 5015 Ops, Store->getMemoryVT(), 5016 Store->getMemOperand()); 5017 } 5018 } 5019 5020 return SDValue(); 5021 } 5022 5023 static MVT getLMUL1VT(MVT VT) { 5024 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 5025 "Unexpected vector MVT"); 5026 return MVT::getScalableVectorVT( 5027 VT.getVectorElementType(), 5028 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 5029 } 5030 5031 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 5032 switch (ISDOpcode) { 5033 default: 5034 llvm_unreachable("Unhandled reduction"); 5035 case ISD::VECREDUCE_ADD: 5036 return RISCVISD::VECREDUCE_ADD_VL; 5037 case ISD::VECREDUCE_UMAX: 5038 return RISCVISD::VECREDUCE_UMAX_VL; 5039 case ISD::VECREDUCE_SMAX: 5040 return RISCVISD::VECREDUCE_SMAX_VL; 5041 case ISD::VECREDUCE_UMIN: 5042 return RISCVISD::VECREDUCE_UMIN_VL; 5043 case ISD::VECREDUCE_SMIN: 5044 return RISCVISD::VECREDUCE_SMIN_VL; 5045 case ISD::VECREDUCE_AND: 5046 return RISCVISD::VECREDUCE_AND_VL; 5047 case ISD::VECREDUCE_OR: 5048 return RISCVISD::VECREDUCE_OR_VL; 5049 case ISD::VECREDUCE_XOR: 5050 return RISCVISD::VECREDUCE_XOR_VL; 5051 } 5052 } 5053 5054 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 5055 SelectionDAG &DAG, 5056 bool IsVP) const { 5057 SDLoc DL(Op); 5058 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 5059 MVT VecVT = Vec.getSimpleValueType(); 5060 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 5061 Op.getOpcode() == ISD::VECREDUCE_OR || 5062 Op.getOpcode() == ISD::VECREDUCE_XOR || 5063 Op.getOpcode() == ISD::VP_REDUCE_AND || 5064 Op.getOpcode() == ISD::VP_REDUCE_OR || 5065 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 5066 "Unexpected reduction lowering"); 5067 5068 MVT XLenVT = Subtarget.getXLenVT(); 5069 assert(Op.getValueType() == XLenVT && 5070 "Expected reduction output to be legalized to XLenVT"); 5071 5072 MVT ContainerVT = VecVT; 5073 if (VecVT.isFixedLengthVector()) { 5074 ContainerVT = getContainerForFixedLengthVector(VecVT); 5075 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5076 } 5077 5078 SDValue Mask, VL; 5079 if (IsVP) { 5080 Mask = Op.getOperand(2); 5081 VL = Op.getOperand(3); 5082 } else { 5083 std::tie(Mask, VL) = 5084 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5085 } 5086 5087 unsigned BaseOpc; 5088 ISD::CondCode CC; 5089 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 5090 5091 switch (Op.getOpcode()) { 5092 default: 5093 llvm_unreachable("Unhandled reduction"); 5094 case ISD::VECREDUCE_AND: 5095 case ISD::VP_REDUCE_AND: { 5096 // vcpop ~x == 0 5097 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 5098 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 5099 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5100 CC = ISD::SETEQ; 5101 BaseOpc = ISD::AND; 5102 break; 5103 } 5104 case ISD::VECREDUCE_OR: 5105 case ISD::VP_REDUCE_OR: 5106 // vcpop x != 0 5107 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5108 CC = ISD::SETNE; 5109 BaseOpc = ISD::OR; 5110 break; 5111 case ISD::VECREDUCE_XOR: 5112 case ISD::VP_REDUCE_XOR: { 5113 // ((vcpop x) & 1) != 0 5114 SDValue One = DAG.getConstant(1, DL, XLenVT); 5115 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5116 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 5117 CC = ISD::SETNE; 5118 BaseOpc = ISD::XOR; 5119 break; 5120 } 5121 } 5122 5123 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 5124 5125 if (!IsVP) 5126 return SetCC; 5127 5128 // Now include the start value in the operation. 5129 // Note that we must return the start value when no elements are operated 5130 // upon. The vcpop instructions we've emitted in each case above will return 5131 // 0 for an inactive vector, and so we've already received the neutral value: 5132 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 5133 // can simply include the start value. 5134 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 5135 } 5136 5137 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 5138 SelectionDAG &DAG) const { 5139 SDLoc DL(Op); 5140 SDValue Vec = Op.getOperand(0); 5141 EVT VecEVT = Vec.getValueType(); 5142 5143 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 5144 5145 // Due to ordering in legalize types we may have a vector type that needs to 5146 // be split. Do that manually so we can get down to a legal type. 5147 while (getTypeAction(*DAG.getContext(), VecEVT) == 5148 TargetLowering::TypeSplitVector) { 5149 SDValue Lo, Hi; 5150 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 5151 VecEVT = Lo.getValueType(); 5152 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 5153 } 5154 5155 // TODO: The type may need to be widened rather than split. Or widened before 5156 // it can be split. 5157 if (!isTypeLegal(VecEVT)) 5158 return SDValue(); 5159 5160 MVT VecVT = VecEVT.getSimpleVT(); 5161 MVT VecEltVT = VecVT.getVectorElementType(); 5162 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 5163 5164 MVT ContainerVT = VecVT; 5165 if (VecVT.isFixedLengthVector()) { 5166 ContainerVT = getContainerForFixedLengthVector(VecVT); 5167 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5168 } 5169 5170 MVT M1VT = getLMUL1VT(ContainerVT); 5171 MVT XLenVT = Subtarget.getXLenVT(); 5172 5173 SDValue Mask, VL; 5174 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5175 5176 SDValue NeutralElem = 5177 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 5178 SDValue IdentitySplat = 5179 lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT), 5180 M1VT, DL, DAG, Subtarget); 5181 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 5182 IdentitySplat, Mask, VL); 5183 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5184 DAG.getConstant(0, DL, XLenVT)); 5185 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5186 } 5187 5188 // Given a reduction op, this function returns the matching reduction opcode, 5189 // the vector SDValue and the scalar SDValue required to lower this to a 5190 // RISCVISD node. 5191 static std::tuple<unsigned, SDValue, SDValue> 5192 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 5193 SDLoc DL(Op); 5194 auto Flags = Op->getFlags(); 5195 unsigned Opcode = Op.getOpcode(); 5196 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 5197 switch (Opcode) { 5198 default: 5199 llvm_unreachable("Unhandled reduction"); 5200 case ISD::VECREDUCE_FADD: { 5201 // Use positive zero if we can. It is cheaper to materialize. 5202 SDValue Zero = 5203 DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); 5204 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); 5205 } 5206 case ISD::VECREDUCE_SEQ_FADD: 5207 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 5208 Op.getOperand(0)); 5209 case ISD::VECREDUCE_FMIN: 5210 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 5211 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5212 case ISD::VECREDUCE_FMAX: 5213 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 5214 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5215 } 5216 } 5217 5218 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 5219 SelectionDAG &DAG) const { 5220 SDLoc DL(Op); 5221 MVT VecEltVT = Op.getSimpleValueType(); 5222 5223 unsigned RVVOpcode; 5224 SDValue VectorVal, ScalarVal; 5225 std::tie(RVVOpcode, VectorVal, ScalarVal) = 5226 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 5227 MVT VecVT = VectorVal.getSimpleValueType(); 5228 5229 MVT ContainerVT = VecVT; 5230 if (VecVT.isFixedLengthVector()) { 5231 ContainerVT = getContainerForFixedLengthVector(VecVT); 5232 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 5233 } 5234 5235 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 5236 MVT XLenVT = Subtarget.getXLenVT(); 5237 5238 SDValue Mask, VL; 5239 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5240 5241 SDValue ScalarSplat = 5242 lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT), 5243 M1VT, DL, DAG, Subtarget); 5244 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 5245 VectorVal, ScalarSplat, Mask, VL); 5246 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5247 DAG.getConstant(0, DL, XLenVT)); 5248 } 5249 5250 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 5251 switch (ISDOpcode) { 5252 default: 5253 llvm_unreachable("Unhandled reduction"); 5254 case ISD::VP_REDUCE_ADD: 5255 return RISCVISD::VECREDUCE_ADD_VL; 5256 case ISD::VP_REDUCE_UMAX: 5257 return RISCVISD::VECREDUCE_UMAX_VL; 5258 case ISD::VP_REDUCE_SMAX: 5259 return RISCVISD::VECREDUCE_SMAX_VL; 5260 case ISD::VP_REDUCE_UMIN: 5261 return RISCVISD::VECREDUCE_UMIN_VL; 5262 case ISD::VP_REDUCE_SMIN: 5263 return RISCVISD::VECREDUCE_SMIN_VL; 5264 case ISD::VP_REDUCE_AND: 5265 return RISCVISD::VECREDUCE_AND_VL; 5266 case ISD::VP_REDUCE_OR: 5267 return RISCVISD::VECREDUCE_OR_VL; 5268 case ISD::VP_REDUCE_XOR: 5269 return RISCVISD::VECREDUCE_XOR_VL; 5270 case ISD::VP_REDUCE_FADD: 5271 return RISCVISD::VECREDUCE_FADD_VL; 5272 case ISD::VP_REDUCE_SEQ_FADD: 5273 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 5274 case ISD::VP_REDUCE_FMAX: 5275 return RISCVISD::VECREDUCE_FMAX_VL; 5276 case ISD::VP_REDUCE_FMIN: 5277 return RISCVISD::VECREDUCE_FMIN_VL; 5278 } 5279 } 5280 5281 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 5282 SelectionDAG &DAG) const { 5283 SDLoc DL(Op); 5284 SDValue Vec = Op.getOperand(1); 5285 EVT VecEVT = Vec.getValueType(); 5286 5287 // TODO: The type may need to be widened rather than split. Or widened before 5288 // it can be split. 5289 if (!isTypeLegal(VecEVT)) 5290 return SDValue(); 5291 5292 MVT VecVT = VecEVT.getSimpleVT(); 5293 MVT VecEltVT = VecVT.getVectorElementType(); 5294 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 5295 5296 MVT ContainerVT = VecVT; 5297 if (VecVT.isFixedLengthVector()) { 5298 ContainerVT = getContainerForFixedLengthVector(VecVT); 5299 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5300 } 5301 5302 SDValue VL = Op.getOperand(3); 5303 SDValue Mask = Op.getOperand(2); 5304 5305 MVT M1VT = getLMUL1VT(ContainerVT); 5306 MVT XLenVT = Subtarget.getXLenVT(); 5307 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 5308 5309 SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0), 5310 DAG.getConstant(1, DL, XLenVT), M1VT, 5311 DL, DAG, Subtarget); 5312 SDValue Reduction = 5313 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 5314 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 5315 DAG.getConstant(0, DL, XLenVT)); 5316 if (!VecVT.isInteger()) 5317 return Elt0; 5318 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5319 } 5320 5321 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 5322 SelectionDAG &DAG) const { 5323 SDValue Vec = Op.getOperand(0); 5324 SDValue SubVec = Op.getOperand(1); 5325 MVT VecVT = Vec.getSimpleValueType(); 5326 MVT SubVecVT = SubVec.getSimpleValueType(); 5327 5328 SDLoc DL(Op); 5329 MVT XLenVT = Subtarget.getXLenVT(); 5330 unsigned OrigIdx = Op.getConstantOperandVal(2); 5331 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5332 5333 // We don't have the ability to slide mask vectors up indexed by their i1 5334 // elements; the smallest we can do is i8. Often we are able to bitcast to 5335 // equivalent i8 vectors. Note that when inserting a fixed-length vector 5336 // into a scalable one, we might not necessarily have enough scalable 5337 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 5338 if (SubVecVT.getVectorElementType() == MVT::i1 && 5339 (OrigIdx != 0 || !Vec.isUndef())) { 5340 if (VecVT.getVectorMinNumElements() >= 8 && 5341 SubVecVT.getVectorMinNumElements() >= 8) { 5342 assert(OrigIdx % 8 == 0 && "Invalid index"); 5343 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5344 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5345 "Unexpected mask vector lowering"); 5346 OrigIdx /= 8; 5347 SubVecVT = 5348 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5349 SubVecVT.isScalableVector()); 5350 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5351 VecVT.isScalableVector()); 5352 Vec = DAG.getBitcast(VecVT, Vec); 5353 SubVec = DAG.getBitcast(SubVecVT, SubVec); 5354 } else { 5355 // We can't slide this mask vector up indexed by its i1 elements. 5356 // This poses a problem when we wish to insert a scalable vector which 5357 // can't be re-expressed as a larger type. Just choose the slow path and 5358 // extend to a larger type, then truncate back down. 5359 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5360 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5361 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5362 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 5363 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 5364 Op.getOperand(2)); 5365 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 5366 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 5367 } 5368 } 5369 5370 // If the subvector vector is a fixed-length type, we cannot use subregister 5371 // manipulation to simplify the codegen; we don't know which register of a 5372 // LMUL group contains the specific subvector as we only know the minimum 5373 // register size. Therefore we must slide the vector group up the full 5374 // amount. 5375 if (SubVecVT.isFixedLengthVector()) { 5376 if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector()) 5377 return Op; 5378 MVT ContainerVT = VecVT; 5379 if (VecVT.isFixedLengthVector()) { 5380 ContainerVT = getContainerForFixedLengthVector(VecVT); 5381 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5382 } 5383 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 5384 DAG.getUNDEF(ContainerVT), SubVec, 5385 DAG.getConstant(0, DL, XLenVT)); 5386 if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) { 5387 SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget); 5388 return DAG.getBitcast(Op.getValueType(), SubVec); 5389 } 5390 SDValue Mask = 5391 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5392 // Set the vector length to only the number of elements we care about. Note 5393 // that for slideup this includes the offset. 5394 SDValue VL = 5395 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 5396 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5397 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 5398 SubVec, SlideupAmt, Mask, VL); 5399 if (VecVT.isFixedLengthVector()) 5400 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 5401 return DAG.getBitcast(Op.getValueType(), Slideup); 5402 } 5403 5404 unsigned SubRegIdx, RemIdx; 5405 std::tie(SubRegIdx, RemIdx) = 5406 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5407 VecVT, SubVecVT, OrigIdx, TRI); 5408 5409 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 5410 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 5411 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 5412 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 5413 5414 // 1. If the Idx has been completely eliminated and this subvector's size is 5415 // a vector register or a multiple thereof, or the surrounding elements are 5416 // undef, then this is a subvector insert which naturally aligns to a vector 5417 // register. These can easily be handled using subregister manipulation. 5418 // 2. If the subvector is smaller than a vector register, then the insertion 5419 // must preserve the undisturbed elements of the register. We do this by 5420 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 5421 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 5422 // subvector within the vector register, and an INSERT_SUBVECTOR of that 5423 // LMUL=1 type back into the larger vector (resolving to another subregister 5424 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 5425 // to avoid allocating a large register group to hold our subvector. 5426 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 5427 return Op; 5428 5429 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 5430 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 5431 // (in our case undisturbed). This means we can set up a subvector insertion 5432 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 5433 // size of the subvector. 5434 MVT InterSubVT = VecVT; 5435 SDValue AlignedExtract = Vec; 5436 unsigned AlignedIdx = OrigIdx - RemIdx; 5437 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5438 InterSubVT = getLMUL1VT(VecVT); 5439 // Extract a subvector equal to the nearest full vector register type. This 5440 // should resolve to a EXTRACT_SUBREG instruction. 5441 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5442 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5443 } 5444 5445 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5446 // For scalable vectors this must be further multiplied by vscale. 5447 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 5448 5449 SDValue Mask, VL; 5450 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5451 5452 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 5453 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 5454 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 5455 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 5456 5457 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 5458 DAG.getUNDEF(InterSubVT), SubVec, 5459 DAG.getConstant(0, DL, XLenVT)); 5460 5461 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 5462 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 5463 5464 // If required, insert this subvector back into the correct vector register. 5465 // This should resolve to an INSERT_SUBREG instruction. 5466 if (VecVT.bitsGT(InterSubVT)) 5467 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 5468 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5469 5470 // We might have bitcast from a mask type: cast back to the original type if 5471 // required. 5472 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 5473 } 5474 5475 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 5476 SelectionDAG &DAG) const { 5477 SDValue Vec = Op.getOperand(0); 5478 MVT SubVecVT = Op.getSimpleValueType(); 5479 MVT VecVT = Vec.getSimpleValueType(); 5480 5481 SDLoc DL(Op); 5482 MVT XLenVT = Subtarget.getXLenVT(); 5483 unsigned OrigIdx = Op.getConstantOperandVal(1); 5484 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5485 5486 // We don't have the ability to slide mask vectors down indexed by their i1 5487 // elements; the smallest we can do is i8. Often we are able to bitcast to 5488 // equivalent i8 vectors. Note that when extracting a fixed-length vector 5489 // from a scalable one, we might not necessarily have enough scalable 5490 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 5491 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 5492 if (VecVT.getVectorMinNumElements() >= 8 && 5493 SubVecVT.getVectorMinNumElements() >= 8) { 5494 assert(OrigIdx % 8 == 0 && "Invalid index"); 5495 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5496 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5497 "Unexpected mask vector lowering"); 5498 OrigIdx /= 8; 5499 SubVecVT = 5500 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5501 SubVecVT.isScalableVector()); 5502 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5503 VecVT.isScalableVector()); 5504 Vec = DAG.getBitcast(VecVT, Vec); 5505 } else { 5506 // We can't slide this mask vector down, indexed by its i1 elements. 5507 // This poses a problem when we wish to extract a scalable vector which 5508 // can't be re-expressed as a larger type. Just choose the slow path and 5509 // extend to a larger type, then truncate back down. 5510 // TODO: We could probably improve this when extracting certain fixed 5511 // from fixed, where we can extract as i8 and shift the correct element 5512 // right to reach the desired subvector? 5513 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5514 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5515 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5516 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 5517 Op.getOperand(1)); 5518 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 5519 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 5520 } 5521 } 5522 5523 // If the subvector vector is a fixed-length type, we cannot use subregister 5524 // manipulation to simplify the codegen; we don't know which register of a 5525 // LMUL group contains the specific subvector as we only know the minimum 5526 // register size. Therefore we must slide the vector group down the full 5527 // amount. 5528 if (SubVecVT.isFixedLengthVector()) { 5529 // With an index of 0 this is a cast-like subvector, which can be performed 5530 // with subregister operations. 5531 if (OrigIdx == 0) 5532 return Op; 5533 MVT ContainerVT = VecVT; 5534 if (VecVT.isFixedLengthVector()) { 5535 ContainerVT = getContainerForFixedLengthVector(VecVT); 5536 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5537 } 5538 SDValue Mask = 5539 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5540 // Set the vector length to only the number of elements we care about. This 5541 // avoids sliding down elements we're going to discard straight away. 5542 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 5543 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5544 SDValue Slidedown = 5545 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5546 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 5547 // Now we can use a cast-like subvector extract to get the result. 5548 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5549 DAG.getConstant(0, DL, XLenVT)); 5550 return DAG.getBitcast(Op.getValueType(), Slidedown); 5551 } 5552 5553 unsigned SubRegIdx, RemIdx; 5554 std::tie(SubRegIdx, RemIdx) = 5555 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5556 VecVT, SubVecVT, OrigIdx, TRI); 5557 5558 // If the Idx has been completely eliminated then this is a subvector extract 5559 // which naturally aligns to a vector register. These can easily be handled 5560 // using subregister manipulation. 5561 if (RemIdx == 0) 5562 return Op; 5563 5564 // Else we must shift our vector register directly to extract the subvector. 5565 // Do this using VSLIDEDOWN. 5566 5567 // If the vector type is an LMUL-group type, extract a subvector equal to the 5568 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 5569 // instruction. 5570 MVT InterSubVT = VecVT; 5571 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5572 InterSubVT = getLMUL1VT(VecVT); 5573 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5574 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 5575 } 5576 5577 // Slide this vector register down by the desired number of elements in order 5578 // to place the desired subvector starting at element 0. 5579 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5580 // For scalable vectors this must be further multiplied by vscale. 5581 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 5582 5583 SDValue Mask, VL; 5584 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 5585 SDValue Slidedown = 5586 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 5587 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 5588 5589 // Now the vector is in the right position, extract our final subvector. This 5590 // should resolve to a COPY. 5591 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5592 DAG.getConstant(0, DL, XLenVT)); 5593 5594 // We might have bitcast from a mask type: cast back to the original type if 5595 // required. 5596 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 5597 } 5598 5599 // Lower step_vector to the vid instruction. Any non-identity step value must 5600 // be accounted for my manual expansion. 5601 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 5602 SelectionDAG &DAG) const { 5603 SDLoc DL(Op); 5604 MVT VT = Op.getSimpleValueType(); 5605 MVT XLenVT = Subtarget.getXLenVT(); 5606 SDValue Mask, VL; 5607 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 5608 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 5609 uint64_t StepValImm = Op.getConstantOperandVal(0); 5610 if (StepValImm != 1) { 5611 if (isPowerOf2_64(StepValImm)) { 5612 SDValue StepVal = 5613 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 5614 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 5615 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 5616 } else { 5617 SDValue StepVal = lowerScalarSplat( 5618 SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), 5619 VL, VT, DL, DAG, Subtarget); 5620 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 5621 } 5622 } 5623 return StepVec; 5624 } 5625 5626 // Implement vector_reverse using vrgather.vv with indices determined by 5627 // subtracting the id of each element from (VLMAX-1). This will convert 5628 // the indices like so: 5629 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 5630 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 5631 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 5632 SelectionDAG &DAG) const { 5633 SDLoc DL(Op); 5634 MVT VecVT = Op.getSimpleValueType(); 5635 unsigned EltSize = VecVT.getScalarSizeInBits(); 5636 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 5637 5638 unsigned MaxVLMAX = 0; 5639 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 5640 if (VectorBitsMax != 0) 5641 MaxVLMAX = 5642 RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); 5643 5644 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 5645 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 5646 5647 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 5648 // to use vrgatherei16.vv. 5649 // TODO: It's also possible to use vrgatherei16.vv for other types to 5650 // decrease register width for the index calculation. 5651 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 5652 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 5653 // Reverse each half, then reassemble them in reverse order. 5654 // NOTE: It's also possible that after splitting that VLMAX no longer 5655 // requires vrgatherei16.vv. 5656 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 5657 SDValue Lo, Hi; 5658 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 5659 EVT LoVT, HiVT; 5660 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5661 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 5662 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 5663 // Reassemble the low and high pieces reversed. 5664 // FIXME: This is a CONCAT_VECTORS. 5665 SDValue Res = 5666 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 5667 DAG.getIntPtrConstant(0, DL)); 5668 return DAG.getNode( 5669 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 5670 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 5671 } 5672 5673 // Just promote the int type to i16 which will double the LMUL. 5674 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 5675 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 5676 } 5677 5678 MVT XLenVT = Subtarget.getXLenVT(); 5679 SDValue Mask, VL; 5680 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5681 5682 // Calculate VLMAX-1 for the desired SEW. 5683 unsigned MinElts = VecVT.getVectorMinNumElements(); 5684 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5685 DAG.getConstant(MinElts, DL, XLenVT)); 5686 SDValue VLMinus1 = 5687 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 5688 5689 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 5690 bool IsRV32E64 = 5691 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 5692 SDValue SplatVL; 5693 if (!IsRV32E64) 5694 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 5695 else 5696 SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT), 5697 VLMinus1, DAG.getRegister(RISCV::X0, XLenVT)); 5698 5699 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 5700 SDValue Indices = 5701 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 5702 5703 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 5704 } 5705 5706 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op, 5707 SelectionDAG &DAG) const { 5708 SDLoc DL(Op); 5709 SDValue V1 = Op.getOperand(0); 5710 SDValue V2 = Op.getOperand(1); 5711 MVT XLenVT = Subtarget.getXLenVT(); 5712 MVT VecVT = Op.getSimpleValueType(); 5713 5714 unsigned MinElts = VecVT.getVectorMinNumElements(); 5715 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5716 DAG.getConstant(MinElts, DL, XLenVT)); 5717 5718 int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue(); 5719 SDValue DownOffset, UpOffset; 5720 if (ImmValue >= 0) { 5721 // The operand is a TargetConstant, we need to rebuild it as a regular 5722 // constant. 5723 DownOffset = DAG.getConstant(ImmValue, DL, XLenVT); 5724 UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset); 5725 } else { 5726 // The operand is a TargetConstant, we need to rebuild it as a regular 5727 // constant rather than negating the original operand. 5728 UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT); 5729 DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset); 5730 } 5731 5732 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5733 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VLMax); 5734 5735 SDValue SlideDown = 5736 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1, 5737 DownOffset, TrueMask, UpOffset); 5738 return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset, 5739 TrueMask, 5740 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT)); 5741 } 5742 5743 SDValue 5744 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5745 SelectionDAG &DAG) const { 5746 SDLoc DL(Op); 5747 auto *Load = cast<LoadSDNode>(Op); 5748 5749 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5750 Load->getMemoryVT(), 5751 *Load->getMemOperand()) && 5752 "Expecting a correctly-aligned load"); 5753 5754 MVT VT = Op.getSimpleValueType(); 5755 MVT XLenVT = Subtarget.getXLenVT(); 5756 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5757 5758 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5759 5760 bool IsMaskOp = VT.getVectorElementType() == MVT::i1; 5761 SDValue IntID = DAG.getTargetConstant( 5762 IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT); 5763 SmallVector<SDValue, 4> Ops{Load->getChain(), IntID}; 5764 if (!IsMaskOp) 5765 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5766 Ops.push_back(Load->getBasePtr()); 5767 Ops.push_back(VL); 5768 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5769 SDValue NewLoad = 5770 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 5771 Load->getMemoryVT(), Load->getMemOperand()); 5772 5773 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5774 return DAG.getMergeValues({Result, Load->getChain()}, DL); 5775 } 5776 5777 SDValue 5778 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5779 SelectionDAG &DAG) const { 5780 SDLoc DL(Op); 5781 auto *Store = cast<StoreSDNode>(Op); 5782 5783 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5784 Store->getMemoryVT(), 5785 *Store->getMemOperand()) && 5786 "Expecting a correctly-aligned store"); 5787 5788 SDValue StoreVal = Store->getValue(); 5789 MVT VT = StoreVal.getSimpleValueType(); 5790 MVT XLenVT = Subtarget.getXLenVT(); 5791 5792 // If the size less than a byte, we need to pad with zeros to make a byte. 5793 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5794 VT = MVT::v8i1; 5795 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5796 DAG.getConstant(0, DL, VT), StoreVal, 5797 DAG.getIntPtrConstant(0, DL)); 5798 } 5799 5800 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5801 5802 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5803 5804 SDValue NewValue = 5805 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5806 5807 bool IsMaskOp = VT.getVectorElementType() == MVT::i1; 5808 SDValue IntID = DAG.getTargetConstant( 5809 IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT); 5810 return DAG.getMemIntrinsicNode( 5811 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), 5812 {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL}, 5813 Store->getMemoryVT(), Store->getMemOperand()); 5814 } 5815 5816 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5817 SelectionDAG &DAG) const { 5818 SDLoc DL(Op); 5819 MVT VT = Op.getSimpleValueType(); 5820 5821 const auto *MemSD = cast<MemSDNode>(Op); 5822 EVT MemVT = MemSD->getMemoryVT(); 5823 MachineMemOperand *MMO = MemSD->getMemOperand(); 5824 SDValue Chain = MemSD->getChain(); 5825 SDValue BasePtr = MemSD->getBasePtr(); 5826 5827 SDValue Mask, PassThru, VL; 5828 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5829 Mask = VPLoad->getMask(); 5830 PassThru = DAG.getUNDEF(VT); 5831 VL = VPLoad->getVectorLength(); 5832 } else { 5833 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5834 Mask = MLoad->getMask(); 5835 PassThru = MLoad->getPassThru(); 5836 } 5837 5838 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5839 5840 MVT XLenVT = Subtarget.getXLenVT(); 5841 5842 MVT ContainerVT = VT; 5843 if (VT.isFixedLengthVector()) { 5844 ContainerVT = getContainerForFixedLengthVector(VT); 5845 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5846 if (!IsUnmasked) { 5847 MVT MaskVT = 5848 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5849 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5850 } 5851 } 5852 5853 if (!VL) 5854 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5855 5856 unsigned IntID = 5857 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5858 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5859 if (IsUnmasked) 5860 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5861 else 5862 Ops.push_back(PassThru); 5863 Ops.push_back(BasePtr); 5864 if (!IsUnmasked) 5865 Ops.push_back(Mask); 5866 Ops.push_back(VL); 5867 if (!IsUnmasked) 5868 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5869 5870 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5871 5872 SDValue Result = 5873 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5874 Chain = Result.getValue(1); 5875 5876 if (VT.isFixedLengthVector()) 5877 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5878 5879 return DAG.getMergeValues({Result, Chain}, DL); 5880 } 5881 5882 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5883 SelectionDAG &DAG) const { 5884 SDLoc DL(Op); 5885 5886 const auto *MemSD = cast<MemSDNode>(Op); 5887 EVT MemVT = MemSD->getMemoryVT(); 5888 MachineMemOperand *MMO = MemSD->getMemOperand(); 5889 SDValue Chain = MemSD->getChain(); 5890 SDValue BasePtr = MemSD->getBasePtr(); 5891 SDValue Val, Mask, VL; 5892 5893 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5894 Val = VPStore->getValue(); 5895 Mask = VPStore->getMask(); 5896 VL = VPStore->getVectorLength(); 5897 } else { 5898 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5899 Val = MStore->getValue(); 5900 Mask = MStore->getMask(); 5901 } 5902 5903 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5904 5905 MVT VT = Val.getSimpleValueType(); 5906 MVT XLenVT = Subtarget.getXLenVT(); 5907 5908 MVT ContainerVT = VT; 5909 if (VT.isFixedLengthVector()) { 5910 ContainerVT = getContainerForFixedLengthVector(VT); 5911 5912 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5913 if (!IsUnmasked) { 5914 MVT MaskVT = 5915 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5916 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5917 } 5918 } 5919 5920 if (!VL) 5921 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5922 5923 unsigned IntID = 5924 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 5925 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5926 Ops.push_back(Val); 5927 Ops.push_back(BasePtr); 5928 if (!IsUnmasked) 5929 Ops.push_back(Mask); 5930 Ops.push_back(VL); 5931 5932 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5933 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5934 } 5935 5936 SDValue 5937 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 5938 SelectionDAG &DAG) const { 5939 MVT InVT = Op.getOperand(0).getSimpleValueType(); 5940 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 5941 5942 MVT VT = Op.getSimpleValueType(); 5943 5944 SDValue Op1 = 5945 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 5946 SDValue Op2 = 5947 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5948 5949 SDLoc DL(Op); 5950 SDValue VL = 5951 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5952 5953 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5954 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5955 5956 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 5957 Op.getOperand(2), Mask, VL); 5958 5959 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 5960 } 5961 5962 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5963 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5964 MVT VT = Op.getSimpleValueType(); 5965 5966 if (VT.getVectorElementType() == MVT::i1) 5967 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5968 5969 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5970 } 5971 5972 SDValue 5973 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5974 SelectionDAG &DAG) const { 5975 unsigned Opc; 5976 switch (Op.getOpcode()) { 5977 default: llvm_unreachable("Unexpected opcode!"); 5978 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5979 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5980 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5981 } 5982 5983 return lowerToScalableOp(Op, DAG, Opc); 5984 } 5985 5986 // Lower vector ABS to smax(X, sub(0, X)). 5987 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5988 SDLoc DL(Op); 5989 MVT VT = Op.getSimpleValueType(); 5990 SDValue X = Op.getOperand(0); 5991 5992 assert(VT.isFixedLengthVector() && "Unexpected type"); 5993 5994 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5995 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5996 5997 SDValue Mask, VL; 5998 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5999 6000 SDValue SplatZero = DAG.getNode( 6001 RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), 6002 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 6003 SDValue NegX = 6004 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 6005 SDValue Max = 6006 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 6007 6008 return convertFromScalableVector(VT, Max, DAG, Subtarget); 6009 } 6010 6011 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 6012 SDValue Op, SelectionDAG &DAG) const { 6013 SDLoc DL(Op); 6014 MVT VT = Op.getSimpleValueType(); 6015 SDValue Mag = Op.getOperand(0); 6016 SDValue Sign = Op.getOperand(1); 6017 assert(Mag.getValueType() == Sign.getValueType() && 6018 "Can only handle COPYSIGN with matching types."); 6019 6020 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6021 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 6022 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 6023 6024 SDValue Mask, VL; 6025 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6026 6027 SDValue CopySign = 6028 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 6029 6030 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 6031 } 6032 6033 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 6034 SDValue Op, SelectionDAG &DAG) const { 6035 MVT VT = Op.getSimpleValueType(); 6036 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6037 6038 MVT I1ContainerVT = 6039 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6040 6041 SDValue CC = 6042 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 6043 SDValue Op1 = 6044 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 6045 SDValue Op2 = 6046 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 6047 6048 SDLoc DL(Op); 6049 SDValue Mask, VL; 6050 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6051 6052 SDValue Select = 6053 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 6054 6055 return convertFromScalableVector(VT, Select, DAG, Subtarget); 6056 } 6057 6058 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 6059 unsigned NewOpc, 6060 bool HasMask) const { 6061 MVT VT = Op.getSimpleValueType(); 6062 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6063 6064 // Create list of operands by converting existing ones to scalable types. 6065 SmallVector<SDValue, 6> Ops; 6066 for (const SDValue &V : Op->op_values()) { 6067 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 6068 6069 // Pass through non-vector operands. 6070 if (!V.getValueType().isVector()) { 6071 Ops.push_back(V); 6072 continue; 6073 } 6074 6075 // "cast" fixed length vector to a scalable vector. 6076 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 6077 "Only fixed length vectors are supported!"); 6078 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 6079 } 6080 6081 SDLoc DL(Op); 6082 SDValue Mask, VL; 6083 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6084 if (HasMask) 6085 Ops.push_back(Mask); 6086 Ops.push_back(VL); 6087 6088 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 6089 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 6090 } 6091 6092 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 6093 // * Operands of each node are assumed to be in the same order. 6094 // * The EVL operand is promoted from i32 to i64 on RV64. 6095 // * Fixed-length vectors are converted to their scalable-vector container 6096 // types. 6097 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 6098 unsigned RISCVISDOpc) const { 6099 SDLoc DL(Op); 6100 MVT VT = Op.getSimpleValueType(); 6101 SmallVector<SDValue, 4> Ops; 6102 6103 for (const auto &OpIdx : enumerate(Op->ops())) { 6104 SDValue V = OpIdx.value(); 6105 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 6106 // Pass through operands which aren't fixed-length vectors. 6107 if (!V.getValueType().isFixedLengthVector()) { 6108 Ops.push_back(V); 6109 continue; 6110 } 6111 // "cast" fixed length vector to a scalable vector. 6112 MVT OpVT = V.getSimpleValueType(); 6113 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 6114 assert(useRVVForFixedLengthVectorVT(OpVT) && 6115 "Only fixed length vectors are supported!"); 6116 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 6117 } 6118 6119 if (!VT.isFixedLengthVector()) 6120 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 6121 6122 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6123 6124 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 6125 6126 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 6127 } 6128 6129 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG, 6130 unsigned MaskOpc, 6131 unsigned VecOpc) const { 6132 MVT VT = Op.getSimpleValueType(); 6133 if (VT.getVectorElementType() != MVT::i1) 6134 return lowerVPOp(Op, DAG, VecOpc); 6135 6136 // It is safe to drop mask parameter as masked-off elements are undef. 6137 SDValue Op1 = Op->getOperand(0); 6138 SDValue Op2 = Op->getOperand(1); 6139 SDValue VL = Op->getOperand(3); 6140 6141 MVT ContainerVT = VT; 6142 const bool IsFixed = VT.isFixedLengthVector(); 6143 if (IsFixed) { 6144 ContainerVT = getContainerForFixedLengthVector(VT); 6145 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 6146 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 6147 } 6148 6149 SDLoc DL(Op); 6150 SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL); 6151 if (!IsFixed) 6152 return Val; 6153 return convertFromScalableVector(VT, Val, DAG, Subtarget); 6154 } 6155 6156 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 6157 // matched to a RVV indexed load. The RVV indexed load instructions only 6158 // support the "unsigned unscaled" addressing mode; indices are implicitly 6159 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 6160 // signed or scaled indexing is extended to the XLEN value type and scaled 6161 // accordingly. 6162 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 6163 SelectionDAG &DAG) const { 6164 SDLoc DL(Op); 6165 MVT VT = Op.getSimpleValueType(); 6166 6167 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 6168 EVT MemVT = MemSD->getMemoryVT(); 6169 MachineMemOperand *MMO = MemSD->getMemOperand(); 6170 SDValue Chain = MemSD->getChain(); 6171 SDValue BasePtr = MemSD->getBasePtr(); 6172 6173 ISD::LoadExtType LoadExtType; 6174 SDValue Index, Mask, PassThru, VL; 6175 6176 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 6177 Index = VPGN->getIndex(); 6178 Mask = VPGN->getMask(); 6179 PassThru = DAG.getUNDEF(VT); 6180 VL = VPGN->getVectorLength(); 6181 // VP doesn't support extending loads. 6182 LoadExtType = ISD::NON_EXTLOAD; 6183 } else { 6184 // Else it must be a MGATHER. 6185 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 6186 Index = MGN->getIndex(); 6187 Mask = MGN->getMask(); 6188 PassThru = MGN->getPassThru(); 6189 LoadExtType = MGN->getExtensionType(); 6190 } 6191 6192 MVT IndexVT = Index.getSimpleValueType(); 6193 MVT XLenVT = Subtarget.getXLenVT(); 6194 6195 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 6196 "Unexpected VTs!"); 6197 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 6198 // Targets have to explicitly opt-in for extending vector loads. 6199 assert(LoadExtType == ISD::NON_EXTLOAD && 6200 "Unexpected extending MGATHER/VP_GATHER"); 6201 (void)LoadExtType; 6202 6203 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 6204 // the selection of the masked intrinsics doesn't do this for us. 6205 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 6206 6207 MVT ContainerVT = VT; 6208 if (VT.isFixedLengthVector()) { 6209 // We need to use the larger of the result and index type to determine the 6210 // scalable type to use so we don't increase LMUL for any operand/result. 6211 if (VT.bitsGE(IndexVT)) { 6212 ContainerVT = getContainerForFixedLengthVector(VT); 6213 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6214 ContainerVT.getVectorElementCount()); 6215 } else { 6216 IndexVT = getContainerForFixedLengthVector(IndexVT); 6217 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 6218 IndexVT.getVectorElementCount()); 6219 } 6220 6221 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6222 6223 if (!IsUnmasked) { 6224 MVT MaskVT = 6225 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6226 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6227 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 6228 } 6229 } 6230 6231 if (!VL) 6232 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6233 6234 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6235 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6236 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6237 VL); 6238 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6239 TrueMask, VL); 6240 } 6241 6242 unsigned IntID = 6243 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 6244 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6245 if (IsUnmasked) 6246 Ops.push_back(DAG.getUNDEF(ContainerVT)); 6247 else 6248 Ops.push_back(PassThru); 6249 Ops.push_back(BasePtr); 6250 Ops.push_back(Index); 6251 if (!IsUnmasked) 6252 Ops.push_back(Mask); 6253 Ops.push_back(VL); 6254 if (!IsUnmasked) 6255 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 6256 6257 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 6258 SDValue Result = 6259 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 6260 Chain = Result.getValue(1); 6261 6262 if (VT.isFixedLengthVector()) 6263 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 6264 6265 return DAG.getMergeValues({Result, Chain}, DL); 6266 } 6267 6268 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 6269 // matched to a RVV indexed store. The RVV indexed store instructions only 6270 // support the "unsigned unscaled" addressing mode; indices are implicitly 6271 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 6272 // signed or scaled indexing is extended to the XLEN value type and scaled 6273 // accordingly. 6274 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 6275 SelectionDAG &DAG) const { 6276 SDLoc DL(Op); 6277 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 6278 EVT MemVT = MemSD->getMemoryVT(); 6279 MachineMemOperand *MMO = MemSD->getMemOperand(); 6280 SDValue Chain = MemSD->getChain(); 6281 SDValue BasePtr = MemSD->getBasePtr(); 6282 6283 bool IsTruncatingStore = false; 6284 SDValue Index, Mask, Val, VL; 6285 6286 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 6287 Index = VPSN->getIndex(); 6288 Mask = VPSN->getMask(); 6289 Val = VPSN->getValue(); 6290 VL = VPSN->getVectorLength(); 6291 // VP doesn't support truncating stores. 6292 IsTruncatingStore = false; 6293 } else { 6294 // Else it must be a MSCATTER. 6295 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 6296 Index = MSN->getIndex(); 6297 Mask = MSN->getMask(); 6298 Val = MSN->getValue(); 6299 IsTruncatingStore = MSN->isTruncatingStore(); 6300 } 6301 6302 MVT VT = Val.getSimpleValueType(); 6303 MVT IndexVT = Index.getSimpleValueType(); 6304 MVT XLenVT = Subtarget.getXLenVT(); 6305 6306 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 6307 "Unexpected VTs!"); 6308 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 6309 // Targets have to explicitly opt-in for extending vector loads and 6310 // truncating vector stores. 6311 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 6312 (void)IsTruncatingStore; 6313 6314 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 6315 // the selection of the masked intrinsics doesn't do this for us. 6316 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 6317 6318 MVT ContainerVT = VT; 6319 if (VT.isFixedLengthVector()) { 6320 // We need to use the larger of the value and index type to determine the 6321 // scalable type to use so we don't increase LMUL for any operand/result. 6322 if (VT.bitsGE(IndexVT)) { 6323 ContainerVT = getContainerForFixedLengthVector(VT); 6324 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6325 ContainerVT.getVectorElementCount()); 6326 } else { 6327 IndexVT = getContainerForFixedLengthVector(IndexVT); 6328 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 6329 IndexVT.getVectorElementCount()); 6330 } 6331 6332 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6333 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 6334 6335 if (!IsUnmasked) { 6336 MVT MaskVT = 6337 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6338 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6339 } 6340 } 6341 6342 if (!VL) 6343 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6344 6345 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6346 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6347 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6348 VL); 6349 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6350 TrueMask, VL); 6351 } 6352 6353 unsigned IntID = 6354 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 6355 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6356 Ops.push_back(Val); 6357 Ops.push_back(BasePtr); 6358 Ops.push_back(Index); 6359 if (!IsUnmasked) 6360 Ops.push_back(Mask); 6361 Ops.push_back(VL); 6362 6363 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 6364 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 6365 } 6366 6367 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 6368 SelectionDAG &DAG) const { 6369 const MVT XLenVT = Subtarget.getXLenVT(); 6370 SDLoc DL(Op); 6371 SDValue Chain = Op->getOperand(0); 6372 SDValue SysRegNo = DAG.getTargetConstant( 6373 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6374 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 6375 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 6376 6377 // Encoding used for rounding mode in RISCV differs from that used in 6378 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 6379 // table, which consists of a sequence of 4-bit fields, each representing 6380 // corresponding FLT_ROUNDS mode. 6381 static const int Table = 6382 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 6383 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 6384 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 6385 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 6386 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 6387 6388 SDValue Shift = 6389 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 6390 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6391 DAG.getConstant(Table, DL, XLenVT), Shift); 6392 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6393 DAG.getConstant(7, DL, XLenVT)); 6394 6395 return DAG.getMergeValues({Masked, Chain}, DL); 6396 } 6397 6398 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 6399 SelectionDAG &DAG) const { 6400 const MVT XLenVT = Subtarget.getXLenVT(); 6401 SDLoc DL(Op); 6402 SDValue Chain = Op->getOperand(0); 6403 SDValue RMValue = Op->getOperand(1); 6404 SDValue SysRegNo = DAG.getTargetConstant( 6405 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6406 6407 // Encoding used for rounding mode in RISCV differs from that used in 6408 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 6409 // a table, which consists of a sequence of 4-bit fields, each representing 6410 // corresponding RISCV mode. 6411 static const unsigned Table = 6412 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 6413 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 6414 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 6415 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 6416 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 6417 6418 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 6419 DAG.getConstant(2, DL, XLenVT)); 6420 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6421 DAG.getConstant(Table, DL, XLenVT), Shift); 6422 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6423 DAG.getConstant(0x7, DL, XLenVT)); 6424 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 6425 RMValue); 6426 } 6427 6428 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) { 6429 switch (IntNo) { 6430 default: 6431 llvm_unreachable("Unexpected Intrinsic"); 6432 case Intrinsic::riscv_bcompress: 6433 return RISCVISD::BCOMPRESSW; 6434 case Intrinsic::riscv_bdecompress: 6435 return RISCVISD::BDECOMPRESSW; 6436 case Intrinsic::riscv_bfp: 6437 return RISCVISD::BFPW; 6438 case Intrinsic::riscv_fsl: 6439 return RISCVISD::FSLW; 6440 case Intrinsic::riscv_fsr: 6441 return RISCVISD::FSRW; 6442 } 6443 } 6444 6445 // Converts the given intrinsic to a i64 operation with any extension. 6446 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG, 6447 unsigned IntNo) { 6448 SDLoc DL(N); 6449 RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo); 6450 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6451 SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6452 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2); 6453 // ReplaceNodeResults requires we maintain the same type for the return value. 6454 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6455 } 6456 6457 // Returns the opcode of the target-specific SDNode that implements the 32-bit 6458 // form of the given Opcode. 6459 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 6460 switch (Opcode) { 6461 default: 6462 llvm_unreachable("Unexpected opcode"); 6463 case ISD::SHL: 6464 return RISCVISD::SLLW; 6465 case ISD::SRA: 6466 return RISCVISD::SRAW; 6467 case ISD::SRL: 6468 return RISCVISD::SRLW; 6469 case ISD::SDIV: 6470 return RISCVISD::DIVW; 6471 case ISD::UDIV: 6472 return RISCVISD::DIVUW; 6473 case ISD::UREM: 6474 return RISCVISD::REMUW; 6475 case ISD::ROTL: 6476 return RISCVISD::ROLW; 6477 case ISD::ROTR: 6478 return RISCVISD::RORW; 6479 } 6480 } 6481 6482 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 6483 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 6484 // otherwise be promoted to i64, making it difficult to select the 6485 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 6486 // type i8/i16/i32 is lost. 6487 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 6488 unsigned ExtOpc = ISD::ANY_EXTEND) { 6489 SDLoc DL(N); 6490 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6491 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 6492 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 6493 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6494 // ReplaceNodeResults requires we maintain the same type for the return value. 6495 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6496 } 6497 6498 // Converts the given 32-bit operation to a i64 operation with signed extension 6499 // semantic to reduce the signed extension instructions. 6500 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 6501 SDLoc DL(N); 6502 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6503 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6504 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 6505 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6506 DAG.getValueType(MVT::i32)); 6507 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 6508 } 6509 6510 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 6511 SmallVectorImpl<SDValue> &Results, 6512 SelectionDAG &DAG) const { 6513 SDLoc DL(N); 6514 switch (N->getOpcode()) { 6515 default: 6516 llvm_unreachable("Don't know how to custom type legalize this operation!"); 6517 case ISD::STRICT_FP_TO_SINT: 6518 case ISD::STRICT_FP_TO_UINT: 6519 case ISD::FP_TO_SINT: 6520 case ISD::FP_TO_UINT: { 6521 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6522 "Unexpected custom legalisation"); 6523 bool IsStrict = N->isStrictFPOpcode(); 6524 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 6525 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 6526 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 6527 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 6528 TargetLowering::TypeSoftenFloat) { 6529 if (!isTypeLegal(Op0.getValueType())) 6530 return; 6531 if (IsStrict) { 6532 unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64 6533 : RISCVISD::STRICT_FCVT_WU_RV64; 6534 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 6535 SDValue Res = DAG.getNode( 6536 Opc, DL, VTs, N->getOperand(0), Op0, 6537 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6538 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6539 Results.push_back(Res.getValue(1)); 6540 return; 6541 } 6542 unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 6543 SDValue Res = 6544 DAG.getNode(Opc, DL, MVT::i64, Op0, 6545 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6546 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6547 return; 6548 } 6549 // If the FP type needs to be softened, emit a library call using the 'si' 6550 // version. If we left it to default legalization we'd end up with 'di'. If 6551 // the FP type doesn't need to be softened just let generic type 6552 // legalization promote the result type. 6553 RTLIB::Libcall LC; 6554 if (IsSigned) 6555 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 6556 else 6557 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 6558 MakeLibCallOptions CallOptions; 6559 EVT OpVT = Op0.getValueType(); 6560 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 6561 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 6562 SDValue Result; 6563 std::tie(Result, Chain) = 6564 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 6565 Results.push_back(Result); 6566 if (IsStrict) 6567 Results.push_back(Chain); 6568 break; 6569 } 6570 case ISD::READCYCLECOUNTER: { 6571 assert(!Subtarget.is64Bit() && 6572 "READCYCLECOUNTER only has custom type legalization on riscv32"); 6573 6574 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 6575 SDValue RCW = 6576 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 6577 6578 Results.push_back( 6579 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 6580 Results.push_back(RCW.getValue(2)); 6581 break; 6582 } 6583 case ISD::MUL: { 6584 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 6585 unsigned XLen = Subtarget.getXLen(); 6586 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 6587 if (Size > XLen) { 6588 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 6589 SDValue LHS = N->getOperand(0); 6590 SDValue RHS = N->getOperand(1); 6591 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 6592 6593 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 6594 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 6595 // We need exactly one side to be unsigned. 6596 if (LHSIsU == RHSIsU) 6597 return; 6598 6599 auto MakeMULPair = [&](SDValue S, SDValue U) { 6600 MVT XLenVT = Subtarget.getXLenVT(); 6601 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 6602 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 6603 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 6604 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 6605 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 6606 }; 6607 6608 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 6609 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 6610 6611 // The other operand should be signed, but still prefer MULH when 6612 // possible. 6613 if (RHSIsU && LHSIsS && !RHSIsS) 6614 Results.push_back(MakeMULPair(LHS, RHS)); 6615 else if (LHSIsU && RHSIsS && !LHSIsS) 6616 Results.push_back(MakeMULPair(RHS, LHS)); 6617 6618 return; 6619 } 6620 LLVM_FALLTHROUGH; 6621 } 6622 case ISD::ADD: 6623 case ISD::SUB: 6624 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6625 "Unexpected custom legalisation"); 6626 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 6627 break; 6628 case ISD::SHL: 6629 case ISD::SRA: 6630 case ISD::SRL: 6631 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6632 "Unexpected custom legalisation"); 6633 if (N->getOperand(1).getOpcode() != ISD::Constant) { 6634 Results.push_back(customLegalizeToWOp(N, DAG)); 6635 break; 6636 } 6637 6638 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 6639 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 6640 // shift amount. 6641 if (N->getOpcode() == ISD::SHL) { 6642 SDLoc DL(N); 6643 SDValue NewOp0 = 6644 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6645 SDValue NewOp1 = 6646 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 6647 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 6648 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6649 DAG.getValueType(MVT::i32)); 6650 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6651 } 6652 6653 break; 6654 case ISD::ROTL: 6655 case ISD::ROTR: 6656 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6657 "Unexpected custom legalisation"); 6658 Results.push_back(customLegalizeToWOp(N, DAG)); 6659 break; 6660 case ISD::CTTZ: 6661 case ISD::CTTZ_ZERO_UNDEF: 6662 case ISD::CTLZ: 6663 case ISD::CTLZ_ZERO_UNDEF: { 6664 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6665 "Unexpected custom legalisation"); 6666 6667 SDValue NewOp0 = 6668 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6669 bool IsCTZ = 6670 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 6671 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 6672 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 6673 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6674 return; 6675 } 6676 case ISD::SDIV: 6677 case ISD::UDIV: 6678 case ISD::UREM: { 6679 MVT VT = N->getSimpleValueType(0); 6680 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 6681 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 6682 "Unexpected custom legalisation"); 6683 // Don't promote division/remainder by constant since we should expand those 6684 // to multiply by magic constant. 6685 // FIXME: What if the expansion is disabled for minsize. 6686 if (N->getOperand(1).getOpcode() == ISD::Constant) 6687 return; 6688 6689 // If the input is i32, use ANY_EXTEND since the W instructions don't read 6690 // the upper 32 bits. For other types we need to sign or zero extend 6691 // based on the opcode. 6692 unsigned ExtOpc = ISD::ANY_EXTEND; 6693 if (VT != MVT::i32) 6694 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 6695 : ISD::ZERO_EXTEND; 6696 6697 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 6698 break; 6699 } 6700 case ISD::UADDO: 6701 case ISD::USUBO: { 6702 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6703 "Unexpected custom legalisation"); 6704 bool IsAdd = N->getOpcode() == ISD::UADDO; 6705 // Create an ADDW or SUBW. 6706 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6707 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6708 SDValue Res = 6709 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 6710 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 6711 DAG.getValueType(MVT::i32)); 6712 6713 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 6714 // Since the inputs are sign extended from i32, this is equivalent to 6715 // comparing the lower 32 bits. 6716 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6717 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 6718 IsAdd ? ISD::SETULT : ISD::SETUGT); 6719 6720 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6721 Results.push_back(Overflow); 6722 return; 6723 } 6724 case ISD::UADDSAT: 6725 case ISD::USUBSAT: { 6726 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6727 "Unexpected custom legalisation"); 6728 if (Subtarget.hasStdExtZbb()) { 6729 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 6730 // sign extend allows overflow of the lower 32 bits to be detected on 6731 // the promoted size. 6732 SDValue LHS = 6733 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6734 SDValue RHS = 6735 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 6736 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 6737 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6738 return; 6739 } 6740 6741 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 6742 // promotion for UADDO/USUBO. 6743 Results.push_back(expandAddSubSat(N, DAG)); 6744 return; 6745 } 6746 case ISD::ABS: { 6747 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6748 "Unexpected custom legalisation"); 6749 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6750 6751 // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y) 6752 6753 SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6754 6755 // Freeze the source so we can increase it's use count. 6756 Src = DAG.getFreeze(Src); 6757 6758 // Copy sign bit to all bits using the sraiw pattern. 6759 SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src, 6760 DAG.getValueType(MVT::i32)); 6761 SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill, 6762 DAG.getConstant(31, DL, MVT::i64)); 6763 6764 SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill); 6765 NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill); 6766 6767 // NOTE: The result is only required to be anyextended, but sext is 6768 // consistent with type legalization of sub. 6769 NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes, 6770 DAG.getValueType(MVT::i32)); 6771 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6772 return; 6773 } 6774 case ISD::BITCAST: { 6775 EVT VT = N->getValueType(0); 6776 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 6777 SDValue Op0 = N->getOperand(0); 6778 EVT Op0VT = Op0.getValueType(); 6779 MVT XLenVT = Subtarget.getXLenVT(); 6780 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 6781 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 6782 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 6783 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 6784 Subtarget.hasStdExtF()) { 6785 SDValue FPConv = 6786 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 6787 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 6788 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 6789 isTypeLegal(Op0VT)) { 6790 // Custom-legalize bitcasts from fixed-length vector types to illegal 6791 // scalar types in order to improve codegen. Bitcast the vector to a 6792 // one-element vector type whose element type is the same as the result 6793 // type, and extract the first element. 6794 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 6795 if (isTypeLegal(BVT)) { 6796 SDValue BVec = DAG.getBitcast(BVT, Op0); 6797 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 6798 DAG.getConstant(0, DL, XLenVT))); 6799 } 6800 } 6801 break; 6802 } 6803 case RISCVISD::GREV: 6804 case RISCVISD::GORC: 6805 case RISCVISD::SHFL: { 6806 MVT VT = N->getSimpleValueType(0); 6807 MVT XLenVT = Subtarget.getXLenVT(); 6808 assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) && 6809 "Unexpected custom legalisation"); 6810 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6811 assert((Subtarget.hasStdExtZbp() || 6812 (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV && 6813 N->getConstantOperandVal(1) == 7)) && 6814 "Unexpected extension"); 6815 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 6816 SDValue NewOp1 = 6817 DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1)); 6818 SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1); 6819 // ReplaceNodeResults requires we maintain the same type for the return 6820 // value. 6821 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes)); 6822 break; 6823 } 6824 case ISD::BSWAP: 6825 case ISD::BITREVERSE: { 6826 MVT VT = N->getSimpleValueType(0); 6827 MVT XLenVT = Subtarget.getXLenVT(); 6828 assert((VT == MVT::i8 || VT == MVT::i16 || 6829 (VT == MVT::i32 && Subtarget.is64Bit())) && 6830 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 6831 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 6832 unsigned Imm = VT.getSizeInBits() - 1; 6833 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 6834 if (N->getOpcode() == ISD::BSWAP) 6835 Imm &= ~0x7U; 6836 SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0, 6837 DAG.getConstant(Imm, DL, XLenVT)); 6838 // ReplaceNodeResults requires we maintain the same type for the return 6839 // value. 6840 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 6841 break; 6842 } 6843 case ISD::FSHL: 6844 case ISD::FSHR: { 6845 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6846 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 6847 SDValue NewOp0 = 6848 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6849 SDValue NewOp1 = 6850 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6851 SDValue NewShAmt = 6852 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6853 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 6854 // Mask the shift amount to 5 bits to prevent accidentally setting bit 5. 6855 NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt, 6856 DAG.getConstant(0x1f, DL, MVT::i64)); 6857 // fshl and fshr concatenate their operands in the same order. fsrw and fslw 6858 // instruction use different orders. fshl will return its first operand for 6859 // shift of zero, fshr will return its second operand. fsl and fsr both 6860 // return rs1 so the ISD nodes need to have different operand orders. 6861 // Shift amount is in rs2. 6862 unsigned Opc = RISCVISD::FSLW; 6863 if (N->getOpcode() == ISD::FSHR) { 6864 std::swap(NewOp0, NewOp1); 6865 Opc = RISCVISD::FSRW; 6866 } 6867 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt); 6868 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 6869 break; 6870 } 6871 case ISD::EXTRACT_VECTOR_ELT: { 6872 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 6873 // type is illegal (currently only vXi64 RV32). 6874 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 6875 // transferred to the destination register. We issue two of these from the 6876 // upper- and lower- halves of the SEW-bit vector element, slid down to the 6877 // first element. 6878 SDValue Vec = N->getOperand(0); 6879 SDValue Idx = N->getOperand(1); 6880 6881 // The vector type hasn't been legalized yet so we can't issue target 6882 // specific nodes if it needs legalization. 6883 // FIXME: We would manually legalize if it's important. 6884 if (!isTypeLegal(Vec.getValueType())) 6885 return; 6886 6887 MVT VecVT = Vec.getSimpleValueType(); 6888 6889 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 6890 VecVT.getVectorElementType() == MVT::i64 && 6891 "Unexpected EXTRACT_VECTOR_ELT legalization"); 6892 6893 // If this is a fixed vector, we need to convert it to a scalable vector. 6894 MVT ContainerVT = VecVT; 6895 if (VecVT.isFixedLengthVector()) { 6896 ContainerVT = getContainerForFixedLengthVector(VecVT); 6897 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 6898 } 6899 6900 MVT XLenVT = Subtarget.getXLenVT(); 6901 6902 // Use a VL of 1 to avoid processing more elements than we need. 6903 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6904 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6905 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6906 6907 // Unless the index is known to be 0, we must slide the vector down to get 6908 // the desired element into index 0. 6909 if (!isNullConstant(Idx)) { 6910 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 6911 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 6912 } 6913 6914 // Extract the lower XLEN bits of the correct vector element. 6915 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6916 6917 // To extract the upper XLEN bits of the vector element, shift the first 6918 // element right by 32 bits and re-extract the lower XLEN bits. 6919 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6920 DAG.getUNDEF(ContainerVT), 6921 DAG.getConstant(32, DL, XLenVT), VL); 6922 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 6923 ThirtyTwoV, Mask, VL); 6924 6925 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6926 6927 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6928 break; 6929 } 6930 case ISD::INTRINSIC_WO_CHAIN: { 6931 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 6932 switch (IntNo) { 6933 default: 6934 llvm_unreachable( 6935 "Don't know how to custom type legalize this intrinsic!"); 6936 case Intrinsic::riscv_grev: 6937 case Intrinsic::riscv_gorc: { 6938 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6939 "Unexpected custom legalisation"); 6940 SDValue NewOp1 = 6941 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6942 SDValue NewOp2 = 6943 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6944 unsigned Opc = 6945 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 6946 // If the control is a constant, promote the node by clearing any extra 6947 // bits bits in the control. isel will form greviw/gorciw if the result is 6948 // sign extended. 6949 if (isa<ConstantSDNode>(NewOp2)) { 6950 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 6951 DAG.getConstant(0x1f, DL, MVT::i64)); 6952 Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 6953 } 6954 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6955 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6956 break; 6957 } 6958 case Intrinsic::riscv_bcompress: 6959 case Intrinsic::riscv_bdecompress: 6960 case Intrinsic::riscv_bfp: { 6961 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6962 "Unexpected custom legalisation"); 6963 Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo)); 6964 break; 6965 } 6966 case Intrinsic::riscv_fsl: 6967 case Intrinsic::riscv_fsr: { 6968 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6969 "Unexpected custom legalisation"); 6970 SDValue NewOp1 = 6971 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6972 SDValue NewOp2 = 6973 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6974 SDValue NewOp3 = 6975 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3)); 6976 unsigned Opc = getRISCVWOpcodeByIntr(IntNo); 6977 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3); 6978 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6979 break; 6980 } 6981 case Intrinsic::riscv_orc_b: { 6982 // Lower to the GORCI encoding for orc.b with the operand extended. 6983 SDValue NewOp = 6984 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6985 SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp, 6986 DAG.getConstant(7, DL, MVT::i64)); 6987 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6988 return; 6989 } 6990 case Intrinsic::riscv_shfl: 6991 case Intrinsic::riscv_unshfl: { 6992 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6993 "Unexpected custom legalisation"); 6994 SDValue NewOp1 = 6995 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6996 SDValue NewOp2 = 6997 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6998 unsigned Opc = 6999 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 7000 // There is no (UN)SHFLIW. If the control word is a constant, we can use 7001 // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half 7002 // will be shuffled the same way as the lower 32 bit half, but the two 7003 // halves won't cross. 7004 if (isa<ConstantSDNode>(NewOp2)) { 7005 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 7006 DAG.getConstant(0xf, DL, MVT::i64)); 7007 Opc = 7008 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 7009 } 7010 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 7011 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7012 break; 7013 } 7014 case Intrinsic::riscv_vmv_x_s: { 7015 EVT VT = N->getValueType(0); 7016 MVT XLenVT = Subtarget.getXLenVT(); 7017 if (VT.bitsLT(XLenVT)) { 7018 // Simple case just extract using vmv.x.s and truncate. 7019 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 7020 Subtarget.getXLenVT(), N->getOperand(1)); 7021 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 7022 return; 7023 } 7024 7025 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 7026 "Unexpected custom legalization"); 7027 7028 // We need to do the move in two steps. 7029 SDValue Vec = N->getOperand(1); 7030 MVT VecVT = Vec.getSimpleValueType(); 7031 7032 // First extract the lower XLEN bits of the element. 7033 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 7034 7035 // To extract the upper XLEN bits of the vector element, shift the first 7036 // element right by 32 bits and re-extract the lower XLEN bits. 7037 SDValue VL = DAG.getConstant(1, DL, XLenVT); 7038 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 7039 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 7040 SDValue ThirtyTwoV = 7041 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 7042 DAG.getConstant(32, DL, XLenVT), VL); 7043 SDValue LShr32 = 7044 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 7045 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 7046 7047 Results.push_back( 7048 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 7049 break; 7050 } 7051 } 7052 break; 7053 } 7054 case ISD::VECREDUCE_ADD: 7055 case ISD::VECREDUCE_AND: 7056 case ISD::VECREDUCE_OR: 7057 case ISD::VECREDUCE_XOR: 7058 case ISD::VECREDUCE_SMAX: 7059 case ISD::VECREDUCE_UMAX: 7060 case ISD::VECREDUCE_SMIN: 7061 case ISD::VECREDUCE_UMIN: 7062 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 7063 Results.push_back(V); 7064 break; 7065 case ISD::VP_REDUCE_ADD: 7066 case ISD::VP_REDUCE_AND: 7067 case ISD::VP_REDUCE_OR: 7068 case ISD::VP_REDUCE_XOR: 7069 case ISD::VP_REDUCE_SMAX: 7070 case ISD::VP_REDUCE_UMAX: 7071 case ISD::VP_REDUCE_SMIN: 7072 case ISD::VP_REDUCE_UMIN: 7073 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 7074 Results.push_back(V); 7075 break; 7076 case ISD::FLT_ROUNDS_: { 7077 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 7078 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 7079 Results.push_back(Res.getValue(0)); 7080 Results.push_back(Res.getValue(1)); 7081 break; 7082 } 7083 } 7084 } 7085 7086 // A structure to hold one of the bit-manipulation patterns below. Together, a 7087 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 7088 // (or (and (shl x, 1), 0xAAAAAAAA), 7089 // (and (srl x, 1), 0x55555555)) 7090 struct RISCVBitmanipPat { 7091 SDValue Op; 7092 unsigned ShAmt; 7093 bool IsSHL; 7094 7095 bool formsPairWith(const RISCVBitmanipPat &Other) const { 7096 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 7097 } 7098 }; 7099 7100 // Matches patterns of the form 7101 // (and (shl x, C2), (C1 << C2)) 7102 // (and (srl x, C2), C1) 7103 // (shl (and x, C1), C2) 7104 // (srl (and x, (C1 << C2)), C2) 7105 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 7106 // The expected masks for each shift amount are specified in BitmanipMasks where 7107 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 7108 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 7109 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 7110 // XLen is 64. 7111 static Optional<RISCVBitmanipPat> 7112 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 7113 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 7114 "Unexpected number of masks"); 7115 Optional<uint64_t> Mask; 7116 // Optionally consume a mask around the shift operation. 7117 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 7118 Mask = Op.getConstantOperandVal(1); 7119 Op = Op.getOperand(0); 7120 } 7121 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 7122 return None; 7123 bool IsSHL = Op.getOpcode() == ISD::SHL; 7124 7125 if (!isa<ConstantSDNode>(Op.getOperand(1))) 7126 return None; 7127 uint64_t ShAmt = Op.getConstantOperandVal(1); 7128 7129 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7130 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 7131 return None; 7132 // If we don't have enough masks for 64 bit, then we must be trying to 7133 // match SHFL so we're only allowed to shift 1/4 of the width. 7134 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 7135 return None; 7136 7137 SDValue Src = Op.getOperand(0); 7138 7139 // The expected mask is shifted left when the AND is found around SHL 7140 // patterns. 7141 // ((x >> 1) & 0x55555555) 7142 // ((x << 1) & 0xAAAAAAAA) 7143 bool SHLExpMask = IsSHL; 7144 7145 if (!Mask) { 7146 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 7147 // the mask is all ones: consume that now. 7148 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 7149 Mask = Src.getConstantOperandVal(1); 7150 Src = Src.getOperand(0); 7151 // The expected mask is now in fact shifted left for SRL, so reverse the 7152 // decision. 7153 // ((x & 0xAAAAAAAA) >> 1) 7154 // ((x & 0x55555555) << 1) 7155 SHLExpMask = !SHLExpMask; 7156 } else { 7157 // Use a default shifted mask of all-ones if there's no AND, truncated 7158 // down to the expected width. This simplifies the logic later on. 7159 Mask = maskTrailingOnes<uint64_t>(Width); 7160 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 7161 } 7162 } 7163 7164 unsigned MaskIdx = Log2_32(ShAmt); 7165 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7166 7167 if (SHLExpMask) 7168 ExpMask <<= ShAmt; 7169 7170 if (Mask != ExpMask) 7171 return None; 7172 7173 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 7174 } 7175 7176 // Matches any of the following bit-manipulation patterns: 7177 // (and (shl x, 1), (0x55555555 << 1)) 7178 // (and (srl x, 1), 0x55555555) 7179 // (shl (and x, 0x55555555), 1) 7180 // (srl (and x, (0x55555555 << 1)), 1) 7181 // where the shift amount and mask may vary thus: 7182 // [1] = 0x55555555 / 0xAAAAAAAA 7183 // [2] = 0x33333333 / 0xCCCCCCCC 7184 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 7185 // [8] = 0x00FF00FF / 0xFF00FF00 7186 // [16] = 0x0000FFFF / 0xFFFFFFFF 7187 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 7188 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 7189 // These are the unshifted masks which we use to match bit-manipulation 7190 // patterns. They may be shifted left in certain circumstances. 7191 static const uint64_t BitmanipMasks[] = { 7192 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 7193 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 7194 7195 return matchRISCVBitmanipPat(Op, BitmanipMasks); 7196 } 7197 7198 // Match the following pattern as a GREVI(W) operation 7199 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 7200 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 7201 const RISCVSubtarget &Subtarget) { 7202 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7203 EVT VT = Op.getValueType(); 7204 7205 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 7206 auto LHS = matchGREVIPat(Op.getOperand(0)); 7207 auto RHS = matchGREVIPat(Op.getOperand(1)); 7208 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 7209 SDLoc DL(Op); 7210 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 7211 DAG.getConstant(LHS->ShAmt, DL, VT)); 7212 } 7213 } 7214 return SDValue(); 7215 } 7216 7217 // Matches any the following pattern as a GORCI(W) operation 7218 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 7219 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 7220 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 7221 // Note that with the variant of 3., 7222 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 7223 // the inner pattern will first be matched as GREVI and then the outer 7224 // pattern will be matched to GORC via the first rule above. 7225 // 4. (or (rotl/rotr x, bitwidth/2), x) 7226 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 7227 const RISCVSubtarget &Subtarget) { 7228 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7229 EVT VT = Op.getValueType(); 7230 7231 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 7232 SDLoc DL(Op); 7233 SDValue Op0 = Op.getOperand(0); 7234 SDValue Op1 = Op.getOperand(1); 7235 7236 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 7237 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 7238 isa<ConstantSDNode>(Reverse.getOperand(1)) && 7239 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 7240 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 7241 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 7242 if ((Reverse.getOpcode() == ISD::ROTL || 7243 Reverse.getOpcode() == ISD::ROTR) && 7244 Reverse.getOperand(0) == X && 7245 isa<ConstantSDNode>(Reverse.getOperand(1))) { 7246 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 7247 if (RotAmt == (VT.getSizeInBits() / 2)) 7248 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 7249 DAG.getConstant(RotAmt, DL, VT)); 7250 } 7251 return SDValue(); 7252 }; 7253 7254 // Check for either commutable permutation of (or (GREVI x, shamt), x) 7255 if (SDValue V = MatchOROfReverse(Op0, Op1)) 7256 return V; 7257 if (SDValue V = MatchOROfReverse(Op1, Op0)) 7258 return V; 7259 7260 // OR is commutable so canonicalize its OR operand to the left 7261 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 7262 std::swap(Op0, Op1); 7263 if (Op0.getOpcode() != ISD::OR) 7264 return SDValue(); 7265 SDValue OrOp0 = Op0.getOperand(0); 7266 SDValue OrOp1 = Op0.getOperand(1); 7267 auto LHS = matchGREVIPat(OrOp0); 7268 // OR is commutable so swap the operands and try again: x might have been 7269 // on the left 7270 if (!LHS) { 7271 std::swap(OrOp0, OrOp1); 7272 LHS = matchGREVIPat(OrOp0); 7273 } 7274 auto RHS = matchGREVIPat(Op1); 7275 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 7276 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 7277 DAG.getConstant(LHS->ShAmt, DL, VT)); 7278 } 7279 } 7280 return SDValue(); 7281 } 7282 7283 // Matches any of the following bit-manipulation patterns: 7284 // (and (shl x, 1), (0x22222222 << 1)) 7285 // (and (srl x, 1), 0x22222222) 7286 // (shl (and x, 0x22222222), 1) 7287 // (srl (and x, (0x22222222 << 1)), 1) 7288 // where the shift amount and mask may vary thus: 7289 // [1] = 0x22222222 / 0x44444444 7290 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 7291 // [4] = 0x00F000F0 / 0x0F000F00 7292 // [8] = 0x0000FF00 / 0x00FF0000 7293 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 7294 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 7295 // These are the unshifted masks which we use to match bit-manipulation 7296 // patterns. They may be shifted left in certain circumstances. 7297 static const uint64_t BitmanipMasks[] = { 7298 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 7299 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 7300 7301 return matchRISCVBitmanipPat(Op, BitmanipMasks); 7302 } 7303 7304 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 7305 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 7306 const RISCVSubtarget &Subtarget) { 7307 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7308 EVT VT = Op.getValueType(); 7309 7310 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 7311 return SDValue(); 7312 7313 SDValue Op0 = Op.getOperand(0); 7314 SDValue Op1 = Op.getOperand(1); 7315 7316 // Or is commutable so canonicalize the second OR to the LHS. 7317 if (Op0.getOpcode() != ISD::OR) 7318 std::swap(Op0, Op1); 7319 if (Op0.getOpcode() != ISD::OR) 7320 return SDValue(); 7321 7322 // We found an inner OR, so our operands are the operands of the inner OR 7323 // and the other operand of the outer OR. 7324 SDValue A = Op0.getOperand(0); 7325 SDValue B = Op0.getOperand(1); 7326 SDValue C = Op1; 7327 7328 auto Match1 = matchSHFLPat(A); 7329 auto Match2 = matchSHFLPat(B); 7330 7331 // If neither matched, we failed. 7332 if (!Match1 && !Match2) 7333 return SDValue(); 7334 7335 // We had at least one match. if one failed, try the remaining C operand. 7336 if (!Match1) { 7337 std::swap(A, C); 7338 Match1 = matchSHFLPat(A); 7339 if (!Match1) 7340 return SDValue(); 7341 } else if (!Match2) { 7342 std::swap(B, C); 7343 Match2 = matchSHFLPat(B); 7344 if (!Match2) 7345 return SDValue(); 7346 } 7347 assert(Match1 && Match2); 7348 7349 // Make sure our matches pair up. 7350 if (!Match1->formsPairWith(*Match2)) 7351 return SDValue(); 7352 7353 // All the remains is to make sure C is an AND with the same input, that masks 7354 // out the bits that are being shuffled. 7355 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 7356 C.getOperand(0) != Match1->Op) 7357 return SDValue(); 7358 7359 uint64_t Mask = C.getConstantOperandVal(1); 7360 7361 static const uint64_t BitmanipMasks[] = { 7362 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 7363 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 7364 }; 7365 7366 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7367 unsigned MaskIdx = Log2_32(Match1->ShAmt); 7368 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7369 7370 if (Mask != ExpMask) 7371 return SDValue(); 7372 7373 SDLoc DL(Op); 7374 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 7375 DAG.getConstant(Match1->ShAmt, DL, VT)); 7376 } 7377 7378 // Optimize (add (shl x, c0), (shl y, c1)) -> 7379 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 7380 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 7381 const RISCVSubtarget &Subtarget) { 7382 // Perform this optimization only in the zba extension. 7383 if (!Subtarget.hasStdExtZba()) 7384 return SDValue(); 7385 7386 // Skip for vector types and larger types. 7387 EVT VT = N->getValueType(0); 7388 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7389 return SDValue(); 7390 7391 // The two operand nodes must be SHL and have no other use. 7392 SDValue N0 = N->getOperand(0); 7393 SDValue N1 = N->getOperand(1); 7394 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 7395 !N0->hasOneUse() || !N1->hasOneUse()) 7396 return SDValue(); 7397 7398 // Check c0 and c1. 7399 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7400 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 7401 if (!N0C || !N1C) 7402 return SDValue(); 7403 int64_t C0 = N0C->getSExtValue(); 7404 int64_t C1 = N1C->getSExtValue(); 7405 if (C0 <= 0 || C1 <= 0) 7406 return SDValue(); 7407 7408 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 7409 int64_t Bits = std::min(C0, C1); 7410 int64_t Diff = std::abs(C0 - C1); 7411 if (Diff != 1 && Diff != 2 && Diff != 3) 7412 return SDValue(); 7413 7414 // Build nodes. 7415 SDLoc DL(N); 7416 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 7417 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 7418 SDValue NA0 = 7419 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 7420 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 7421 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 7422 } 7423 7424 // Combine 7425 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32 7426 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32 7427 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64 7428 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64 7429 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64 7430 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64 7431 // The grev patterns represents BSWAP. 7432 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB 7433 // off the grev. 7434 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG, 7435 const RISCVSubtarget &Subtarget) { 7436 bool IsWInstruction = 7437 N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW; 7438 assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL || 7439 IsWInstruction) && 7440 "Unexpected opcode!"); 7441 SDValue Src = N->getOperand(0); 7442 EVT VT = N->getValueType(0); 7443 SDLoc DL(N); 7444 7445 if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV) 7446 return SDValue(); 7447 7448 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7449 !isa<ConstantSDNode>(Src.getOperand(1))) 7450 return SDValue(); 7451 7452 unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits(); 7453 assert(isPowerOf2_32(BitWidth) && "Expected a power of 2"); 7454 7455 // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for 7456 // RORW/ROLW. And the grev should be the encoding for bswap for this width. 7457 unsigned ShAmt1 = N->getConstantOperandVal(1); 7458 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7459 if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8)) 7460 return SDValue(); 7461 7462 Src = Src.getOperand(0); 7463 7464 // Toggle bit the MSB of the shift. 7465 unsigned CombinedShAmt = ShAmt1 ^ ShAmt2; 7466 if (CombinedShAmt == 0) 7467 return Src; 7468 7469 SDValue Res = DAG.getNode( 7470 RISCVISD::GREV, DL, VT, Src, 7471 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7472 if (!IsWInstruction) 7473 return Res; 7474 7475 // Sign extend the result to match the behavior of the rotate. This will be 7476 // selected to GREVIW in isel. 7477 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res, 7478 DAG.getValueType(MVT::i32)); 7479 } 7480 7481 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 7482 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 7483 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 7484 // not undo itself, but they are redundant. 7485 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 7486 bool IsGORC = N->getOpcode() == RISCVISD::GORC; 7487 assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode"); 7488 SDValue Src = N->getOperand(0); 7489 7490 if (Src.getOpcode() != N->getOpcode()) 7491 return SDValue(); 7492 7493 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7494 !isa<ConstantSDNode>(Src.getOperand(1))) 7495 return SDValue(); 7496 7497 unsigned ShAmt1 = N->getConstantOperandVal(1); 7498 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7499 Src = Src.getOperand(0); 7500 7501 unsigned CombinedShAmt; 7502 if (IsGORC) 7503 CombinedShAmt = ShAmt1 | ShAmt2; 7504 else 7505 CombinedShAmt = ShAmt1 ^ ShAmt2; 7506 7507 if (CombinedShAmt == 0) 7508 return Src; 7509 7510 SDLoc DL(N); 7511 return DAG.getNode( 7512 N->getOpcode(), DL, N->getValueType(0), Src, 7513 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7514 } 7515 7516 // Combine a constant select operand into its use: 7517 // 7518 // (and (select cond, -1, c), x) 7519 // -> (select cond, x, (and x, c)) [AllOnes=1] 7520 // (or (select cond, 0, c), x) 7521 // -> (select cond, x, (or x, c)) [AllOnes=0] 7522 // (xor (select cond, 0, c), x) 7523 // -> (select cond, x, (xor x, c)) [AllOnes=0] 7524 // (add (select cond, 0, c), x) 7525 // -> (select cond, x, (add x, c)) [AllOnes=0] 7526 // (sub x, (select cond, 0, c)) 7527 // -> (select cond, x, (sub x, c)) [AllOnes=0] 7528 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 7529 SelectionDAG &DAG, bool AllOnes) { 7530 EVT VT = N->getValueType(0); 7531 7532 // Skip vectors. 7533 if (VT.isVector()) 7534 return SDValue(); 7535 7536 if ((Slct.getOpcode() != ISD::SELECT && 7537 Slct.getOpcode() != RISCVISD::SELECT_CC) || 7538 !Slct.hasOneUse()) 7539 return SDValue(); 7540 7541 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 7542 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 7543 }; 7544 7545 bool SwapSelectOps; 7546 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 7547 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 7548 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 7549 SDValue NonConstantVal; 7550 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 7551 SwapSelectOps = false; 7552 NonConstantVal = FalseVal; 7553 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 7554 SwapSelectOps = true; 7555 NonConstantVal = TrueVal; 7556 } else 7557 return SDValue(); 7558 7559 // Slct is now know to be the desired identity constant when CC is true. 7560 TrueVal = OtherOp; 7561 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 7562 // Unless SwapSelectOps says the condition should be false. 7563 if (SwapSelectOps) 7564 std::swap(TrueVal, FalseVal); 7565 7566 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 7567 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 7568 {Slct.getOperand(0), Slct.getOperand(1), 7569 Slct.getOperand(2), TrueVal, FalseVal}); 7570 7571 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 7572 {Slct.getOperand(0), TrueVal, FalseVal}); 7573 } 7574 7575 // Attempt combineSelectAndUse on each operand of a commutative operator N. 7576 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 7577 bool AllOnes) { 7578 SDValue N0 = N->getOperand(0); 7579 SDValue N1 = N->getOperand(1); 7580 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 7581 return Result; 7582 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 7583 return Result; 7584 return SDValue(); 7585 } 7586 7587 // Transform (add (mul x, c0), c1) -> 7588 // (add (mul (add x, c1/c0), c0), c1%c0). 7589 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 7590 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 7591 // to an infinite loop in DAGCombine if transformed. 7592 // Or transform (add (mul x, c0), c1) -> 7593 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 7594 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 7595 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 7596 // lead to an infinite loop in DAGCombine if transformed. 7597 // Or transform (add (mul x, c0), c1) -> 7598 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 7599 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 7600 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 7601 // lead to an infinite loop in DAGCombine if transformed. 7602 // Or transform (add (mul x, c0), c1) -> 7603 // (mul (add x, c1/c0), c0). 7604 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 7605 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 7606 const RISCVSubtarget &Subtarget) { 7607 // Skip for vector types and larger types. 7608 EVT VT = N->getValueType(0); 7609 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7610 return SDValue(); 7611 // The first operand node must be a MUL and has no other use. 7612 SDValue N0 = N->getOperand(0); 7613 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 7614 return SDValue(); 7615 // Check if c0 and c1 match above conditions. 7616 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7617 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7618 if (!N0C || !N1C) 7619 return SDValue(); 7620 // If N0C has multiple uses it's possible one of the cases in 7621 // DAGCombiner::isMulAddWithConstProfitable will be true, which would result 7622 // in an infinite loop. 7623 if (!N0C->hasOneUse()) 7624 return SDValue(); 7625 int64_t C0 = N0C->getSExtValue(); 7626 int64_t C1 = N1C->getSExtValue(); 7627 int64_t CA, CB; 7628 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 7629 return SDValue(); 7630 // Search for proper CA (non-zero) and CB that both are simm12. 7631 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 7632 !isInt<12>(C0 * (C1 / C0))) { 7633 CA = C1 / C0; 7634 CB = C1 % C0; 7635 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 7636 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 7637 CA = C1 / C0 + 1; 7638 CB = C1 % C0 - C0; 7639 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 7640 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 7641 CA = C1 / C0 - 1; 7642 CB = C1 % C0 + C0; 7643 } else 7644 return SDValue(); 7645 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 7646 SDLoc DL(N); 7647 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 7648 DAG.getConstant(CA, DL, VT)); 7649 SDValue New1 = 7650 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 7651 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 7652 } 7653 7654 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 7655 const RISCVSubtarget &Subtarget) { 7656 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 7657 return V; 7658 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 7659 return V; 7660 // fold (add (select lhs, rhs, cc, 0, y), x) -> 7661 // (select lhs, rhs, cc, x, (add x, y)) 7662 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7663 } 7664 7665 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 7666 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 7667 // (select lhs, rhs, cc, x, (sub x, y)) 7668 SDValue N0 = N->getOperand(0); 7669 SDValue N1 = N->getOperand(1); 7670 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 7671 } 7672 7673 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 7674 // fold (and (select lhs, rhs, cc, -1, y), x) -> 7675 // (select lhs, rhs, cc, x, (and x, y)) 7676 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 7677 } 7678 7679 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 7680 const RISCVSubtarget &Subtarget) { 7681 if (Subtarget.hasStdExtZbp()) { 7682 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 7683 return GREV; 7684 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 7685 return GORC; 7686 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 7687 return SHFL; 7688 } 7689 7690 // fold (or (select cond, 0, y), x) -> 7691 // (select cond, x, (or x, y)) 7692 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7693 } 7694 7695 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 7696 // fold (xor (select cond, 0, y), x) -> 7697 // (select cond, x, (xor x, y)) 7698 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7699 } 7700 7701 static SDValue 7702 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG, 7703 const RISCVSubtarget &Subtarget) { 7704 SDValue Src = N->getOperand(0); 7705 EVT VT = N->getValueType(0); 7706 7707 // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X) 7708 if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH && 7709 cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16)) 7710 return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT, 7711 Src.getOperand(0)); 7712 7713 // Fold (i64 (sext_inreg (abs X), i32)) -> 7714 // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits. 7715 // The (sext_inreg (neg X), i32) will be selected to negw by isel. This 7716 // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user 7717 // of the (i32 (abs X)) is a sext or setcc or something else that causes type 7718 // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have 7719 // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg 7720 // may get combined into an earlier operation so we need to use 7721 // ComputeNumSignBits. 7722 // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for 7723 // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so 7724 // we can't assume that X has 33 sign bits. We must check. 7725 if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() && 7726 Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 && 7727 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 && 7728 DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) { 7729 SDLoc DL(N); 7730 SDValue Freeze = DAG.getFreeze(Src.getOperand(0)); 7731 SDValue Neg = 7732 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze); 7733 Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg, 7734 DAG.getValueType(MVT::i32)); 7735 return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg); 7736 } 7737 7738 return SDValue(); 7739 } 7740 7741 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to 7742 // vwadd(u).vv/vx or vwsub(u).vv/vx. 7743 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG, 7744 bool Commute = false) { 7745 assert((N->getOpcode() == RISCVISD::ADD_VL || 7746 N->getOpcode() == RISCVISD::SUB_VL) && 7747 "Unexpected opcode"); 7748 bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL; 7749 SDValue Op0 = N->getOperand(0); 7750 SDValue Op1 = N->getOperand(1); 7751 if (Commute) 7752 std::swap(Op0, Op1); 7753 7754 MVT VT = N->getSimpleValueType(0); 7755 7756 // Determine the narrow size for a widening add/sub. 7757 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 7758 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 7759 VT.getVectorElementCount()); 7760 7761 SDValue Mask = N->getOperand(2); 7762 SDValue VL = N->getOperand(3); 7763 7764 SDLoc DL(N); 7765 7766 // If the RHS is a sext or zext, we can form a widening op. 7767 if ((Op1.getOpcode() == RISCVISD::VZEXT_VL || 7768 Op1.getOpcode() == RISCVISD::VSEXT_VL) && 7769 Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) { 7770 unsigned ExtOpc = Op1.getOpcode(); 7771 Op1 = Op1.getOperand(0); 7772 // Re-introduce narrower extends if needed. 7773 if (Op1.getValueType() != NarrowVT) 7774 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 7775 7776 unsigned WOpc; 7777 if (ExtOpc == RISCVISD::VSEXT_VL) 7778 WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL; 7779 else 7780 WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL; 7781 7782 return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL); 7783 } 7784 7785 // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar 7786 // sext/zext? 7787 7788 return SDValue(); 7789 } 7790 7791 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or 7792 // vwsub(u).vv/vx. 7793 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) { 7794 SDValue Op0 = N->getOperand(0); 7795 SDValue Op1 = N->getOperand(1); 7796 SDValue Mask = N->getOperand(2); 7797 SDValue VL = N->getOperand(3); 7798 7799 MVT VT = N->getSimpleValueType(0); 7800 MVT NarrowVT = Op1.getSimpleValueType(); 7801 unsigned NarrowSize = NarrowVT.getScalarSizeInBits(); 7802 7803 unsigned VOpc; 7804 switch (N->getOpcode()) { 7805 default: llvm_unreachable("Unexpected opcode"); 7806 case RISCVISD::VWADD_W_VL: VOpc = RISCVISD::VWADD_VL; break; 7807 case RISCVISD::VWSUB_W_VL: VOpc = RISCVISD::VWSUB_VL; break; 7808 case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break; 7809 case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break; 7810 } 7811 7812 bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL || 7813 N->getOpcode() == RISCVISD::VWSUB_W_VL; 7814 7815 SDLoc DL(N); 7816 7817 // If the LHS is a sext or zext, we can narrow this op to the same size as 7818 // the RHS. 7819 if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) || 7820 (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) && 7821 Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) { 7822 unsigned ExtOpc = Op0.getOpcode(); 7823 Op0 = Op0.getOperand(0); 7824 // Re-introduce narrower extends if needed. 7825 if (Op0.getValueType() != NarrowVT) 7826 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 7827 return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL); 7828 } 7829 7830 bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL || 7831 N->getOpcode() == RISCVISD::VWADDU_W_VL; 7832 7833 // Look for splats on the left hand side of a vwadd(u).wv. We might be able 7834 // to commute and use a vwadd(u).vx instead. 7835 if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL && 7836 Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) { 7837 Op0 = Op0.getOperand(1); 7838 7839 // See if have enough sign bits or zero bits in the scalar to use a 7840 // widening add/sub by splatting to smaller element size. 7841 unsigned EltBits = VT.getScalarSizeInBits(); 7842 unsigned ScalarBits = Op0.getValueSizeInBits(); 7843 // Make sure we're getting all element bits from the scalar register. 7844 // FIXME: Support implicit sign extension of vmv.v.x? 7845 if (ScalarBits < EltBits) 7846 return SDValue(); 7847 7848 if (IsSigned) { 7849 if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize)) 7850 return SDValue(); 7851 } else { 7852 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 7853 if (!DAG.MaskedValueIsZero(Op0, Mask)) 7854 return SDValue(); 7855 } 7856 7857 Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, 7858 DAG.getUNDEF(NarrowVT), Op0, VL); 7859 return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL); 7860 } 7861 7862 return SDValue(); 7863 } 7864 7865 // Try to form VWMUL, VWMULU or VWMULSU. 7866 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op. 7867 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG, 7868 bool Commute) { 7869 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 7870 SDValue Op0 = N->getOperand(0); 7871 SDValue Op1 = N->getOperand(1); 7872 if (Commute) 7873 std::swap(Op0, Op1); 7874 7875 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 7876 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 7877 bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL; 7878 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 7879 return SDValue(); 7880 7881 SDValue Mask = N->getOperand(2); 7882 SDValue VL = N->getOperand(3); 7883 7884 // Make sure the mask and VL match. 7885 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 7886 return SDValue(); 7887 7888 MVT VT = N->getSimpleValueType(0); 7889 7890 // Determine the narrow size for a widening multiply. 7891 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 7892 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 7893 VT.getVectorElementCount()); 7894 7895 SDLoc DL(N); 7896 7897 // See if the other operand is the same opcode. 7898 if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) { 7899 if (!Op1.hasOneUse()) 7900 return SDValue(); 7901 7902 // Make sure the mask and VL match. 7903 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 7904 return SDValue(); 7905 7906 Op1 = Op1.getOperand(0); 7907 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 7908 // The operand is a splat of a scalar. 7909 7910 // The pasthru must be undef for tail agnostic 7911 if (!Op1.getOperand(0).isUndef()) 7912 return SDValue(); 7913 // The VL must be the same. 7914 if (Op1.getOperand(2) != VL) 7915 return SDValue(); 7916 7917 // Get the scalar value. 7918 Op1 = Op1.getOperand(1); 7919 7920 // See if have enough sign bits or zero bits in the scalar to use a 7921 // widening multiply by splatting to smaller element size. 7922 unsigned EltBits = VT.getScalarSizeInBits(); 7923 unsigned ScalarBits = Op1.getValueSizeInBits(); 7924 // Make sure we're getting all element bits from the scalar register. 7925 // FIXME: Support implicit sign extension of vmv.v.x? 7926 if (ScalarBits < EltBits) 7927 return SDValue(); 7928 7929 // If the LHS is a sign extend, try to use vwmul. 7930 if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) { 7931 // Can use vwmul. 7932 } else { 7933 // Otherwise try to use vwmulu or vwmulsu. 7934 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 7935 if (DAG.MaskedValueIsZero(Op1, Mask)) 7936 IsVWMULSU = IsSignExt; 7937 else 7938 return SDValue(); 7939 } 7940 7941 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, 7942 DAG.getUNDEF(NarrowVT), Op1, VL); 7943 } else 7944 return SDValue(); 7945 7946 Op0 = Op0.getOperand(0); 7947 7948 // Re-introduce narrower extends if needed. 7949 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 7950 if (Op0.getValueType() != NarrowVT) 7951 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 7952 // vwmulsu requires second operand to be zero extended. 7953 ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc; 7954 if (Op1.getValueType() != NarrowVT) 7955 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 7956 7957 unsigned WMulOpc = RISCVISD::VWMULSU_VL; 7958 if (!IsVWMULSU) 7959 WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 7960 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 7961 } 7962 7963 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) { 7964 switch (Op.getOpcode()) { 7965 case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE; 7966 case ISD::FTRUNC: return RISCVFPRndMode::RTZ; 7967 case ISD::FFLOOR: return RISCVFPRndMode::RDN; 7968 case ISD::FCEIL: return RISCVFPRndMode::RUP; 7969 case ISD::FROUND: return RISCVFPRndMode::RMM; 7970 } 7971 7972 return RISCVFPRndMode::Invalid; 7973 } 7974 7975 // Fold 7976 // (fp_to_int (froundeven X)) -> fcvt X, rne 7977 // (fp_to_int (ftrunc X)) -> fcvt X, rtz 7978 // (fp_to_int (ffloor X)) -> fcvt X, rdn 7979 // (fp_to_int (fceil X)) -> fcvt X, rup 7980 // (fp_to_int (fround X)) -> fcvt X, rmm 7981 static SDValue performFP_TO_INTCombine(SDNode *N, 7982 TargetLowering::DAGCombinerInfo &DCI, 7983 const RISCVSubtarget &Subtarget) { 7984 SelectionDAG &DAG = DCI.DAG; 7985 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7986 MVT XLenVT = Subtarget.getXLenVT(); 7987 7988 // Only handle XLen or i32 types. Other types narrower than XLen will 7989 // eventually be legalized to XLenVT. 7990 EVT VT = N->getValueType(0); 7991 if (VT != MVT::i32 && VT != XLenVT) 7992 return SDValue(); 7993 7994 SDValue Src = N->getOperand(0); 7995 7996 // Ensure the FP type is also legal. 7997 if (!TLI.isTypeLegal(Src.getValueType())) 7998 return SDValue(); 7999 8000 // Don't do this for f16 with Zfhmin and not Zfh. 8001 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 8002 return SDValue(); 8003 8004 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 8005 if (FRM == RISCVFPRndMode::Invalid) 8006 return SDValue(); 8007 8008 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; 8009 8010 unsigned Opc; 8011 if (VT == XLenVT) 8012 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 8013 else 8014 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 8015 8016 SDLoc DL(N); 8017 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0), 8018 DAG.getTargetConstant(FRM, DL, XLenVT)); 8019 return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt); 8020 } 8021 8022 // Fold 8023 // (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne)) 8024 // (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz)) 8025 // (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn)) 8026 // (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup)) 8027 // (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm)) 8028 static SDValue performFP_TO_INT_SATCombine(SDNode *N, 8029 TargetLowering::DAGCombinerInfo &DCI, 8030 const RISCVSubtarget &Subtarget) { 8031 SelectionDAG &DAG = DCI.DAG; 8032 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8033 MVT XLenVT = Subtarget.getXLenVT(); 8034 8035 // Only handle XLen types. Other types narrower than XLen will eventually be 8036 // legalized to XLenVT. 8037 EVT DstVT = N->getValueType(0); 8038 if (DstVT != XLenVT) 8039 return SDValue(); 8040 8041 SDValue Src = N->getOperand(0); 8042 8043 // Ensure the FP type is also legal. 8044 if (!TLI.isTypeLegal(Src.getValueType())) 8045 return SDValue(); 8046 8047 // Don't do this for f16 with Zfhmin and not Zfh. 8048 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 8049 return SDValue(); 8050 8051 EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 8052 8053 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 8054 if (FRM == RISCVFPRndMode::Invalid) 8055 return SDValue(); 8056 8057 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT; 8058 8059 unsigned Opc; 8060 if (SatVT == DstVT) 8061 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 8062 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 8063 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 8064 else 8065 return SDValue(); 8066 // FIXME: Support other SatVTs by clamping before or after the conversion. 8067 8068 Src = Src.getOperand(0); 8069 8070 SDLoc DL(N); 8071 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src, 8072 DAG.getTargetConstant(FRM, DL, XLenVT)); 8073 8074 // RISCV FP-to-int conversions saturate to the destination register size, but 8075 // don't produce 0 for nan. 8076 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 8077 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 8078 } 8079 8080 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is 8081 // smaller than XLenVT. 8082 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG, 8083 const RISCVSubtarget &Subtarget) { 8084 assert(Subtarget.hasStdExtZbkb() && "Unexpected extension"); 8085 8086 SDValue Src = N->getOperand(0); 8087 if (Src.getOpcode() != ISD::BSWAP) 8088 return SDValue(); 8089 8090 EVT VT = N->getValueType(0); 8091 if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() || 8092 !isPowerOf2_32(VT.getSizeInBits())) 8093 return SDValue(); 8094 8095 SDLoc DL(N); 8096 return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0), 8097 DAG.getConstant(7, DL, VT)); 8098 } 8099 8100 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 8101 DAGCombinerInfo &DCI) const { 8102 SelectionDAG &DAG = DCI.DAG; 8103 8104 // Helper to call SimplifyDemandedBits on an operand of N where only some low 8105 // bits are demanded. N will be added to the Worklist if it was not deleted. 8106 // Caller should return SDValue(N, 0) if this returns true. 8107 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 8108 SDValue Op = N->getOperand(OpNo); 8109 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 8110 if (!SimplifyDemandedBits(Op, Mask, DCI)) 8111 return false; 8112 8113 if (N->getOpcode() != ISD::DELETED_NODE) 8114 DCI.AddToWorklist(N); 8115 return true; 8116 }; 8117 8118 switch (N->getOpcode()) { 8119 default: 8120 break; 8121 case RISCVISD::SplitF64: { 8122 SDValue Op0 = N->getOperand(0); 8123 // If the input to SplitF64 is just BuildPairF64 then the operation is 8124 // redundant. Instead, use BuildPairF64's operands directly. 8125 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 8126 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 8127 8128 if (Op0->isUndef()) { 8129 SDValue Lo = DAG.getUNDEF(MVT::i32); 8130 SDValue Hi = DAG.getUNDEF(MVT::i32); 8131 return DCI.CombineTo(N, Lo, Hi); 8132 } 8133 8134 SDLoc DL(N); 8135 8136 // It's cheaper to materialise two 32-bit integers than to load a double 8137 // from the constant pool and transfer it to integer registers through the 8138 // stack. 8139 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 8140 APInt V = C->getValueAPF().bitcastToAPInt(); 8141 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 8142 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 8143 return DCI.CombineTo(N, Lo, Hi); 8144 } 8145 8146 // This is a target-specific version of a DAGCombine performed in 8147 // DAGCombiner::visitBITCAST. It performs the equivalent of: 8148 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 8149 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 8150 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 8151 !Op0.getNode()->hasOneUse()) 8152 break; 8153 SDValue NewSplitF64 = 8154 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 8155 Op0.getOperand(0)); 8156 SDValue Lo = NewSplitF64.getValue(0); 8157 SDValue Hi = NewSplitF64.getValue(1); 8158 APInt SignBit = APInt::getSignMask(32); 8159 if (Op0.getOpcode() == ISD::FNEG) { 8160 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 8161 DAG.getConstant(SignBit, DL, MVT::i32)); 8162 return DCI.CombineTo(N, Lo, NewHi); 8163 } 8164 assert(Op0.getOpcode() == ISD::FABS); 8165 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 8166 DAG.getConstant(~SignBit, DL, MVT::i32)); 8167 return DCI.CombineTo(N, Lo, NewHi); 8168 } 8169 case RISCVISD::SLLW: 8170 case RISCVISD::SRAW: 8171 case RISCVISD::SRLW: { 8172 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8173 if (SimplifyDemandedLowBitsHelper(0, 32) || 8174 SimplifyDemandedLowBitsHelper(1, 5)) 8175 return SDValue(N, 0); 8176 8177 break; 8178 } 8179 case ISD::ROTR: 8180 case ISD::ROTL: 8181 case RISCVISD::RORW: 8182 case RISCVISD::ROLW: { 8183 if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) { 8184 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8185 if (SimplifyDemandedLowBitsHelper(0, 32) || 8186 SimplifyDemandedLowBitsHelper(1, 5)) 8187 return SDValue(N, 0); 8188 } 8189 8190 return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget); 8191 } 8192 case RISCVISD::CLZW: 8193 case RISCVISD::CTZW: { 8194 // Only the lower 32 bits of the first operand are read 8195 if (SimplifyDemandedLowBitsHelper(0, 32)) 8196 return SDValue(N, 0); 8197 break; 8198 } 8199 case RISCVISD::GREV: 8200 case RISCVISD::GORC: { 8201 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 8202 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 8203 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8204 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 8205 return SDValue(N, 0); 8206 8207 return combineGREVI_GORCI(N, DAG); 8208 } 8209 case RISCVISD::GREVW: 8210 case RISCVISD::GORCW: { 8211 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8212 if (SimplifyDemandedLowBitsHelper(0, 32) || 8213 SimplifyDemandedLowBitsHelper(1, 5)) 8214 return SDValue(N, 0); 8215 8216 break; 8217 } 8218 case RISCVISD::SHFL: 8219 case RISCVISD::UNSHFL: { 8220 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 8221 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 8222 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8223 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 8224 return SDValue(N, 0); 8225 8226 break; 8227 } 8228 case RISCVISD::SHFLW: 8229 case RISCVISD::UNSHFLW: { 8230 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 8231 if (SimplifyDemandedLowBitsHelper(0, 32) || 8232 SimplifyDemandedLowBitsHelper(1, 4)) 8233 return SDValue(N, 0); 8234 8235 break; 8236 } 8237 case RISCVISD::BCOMPRESSW: 8238 case RISCVISD::BDECOMPRESSW: { 8239 // Only the lower 32 bits of LHS and RHS are read. 8240 if (SimplifyDemandedLowBitsHelper(0, 32) || 8241 SimplifyDemandedLowBitsHelper(1, 32)) 8242 return SDValue(N, 0); 8243 8244 break; 8245 } 8246 case RISCVISD::FSR: 8247 case RISCVISD::FSL: 8248 case RISCVISD::FSRW: 8249 case RISCVISD::FSLW: { 8250 bool IsWInstruction = 8251 N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW; 8252 unsigned BitWidth = 8253 IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits(); 8254 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8255 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 8256 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1)) 8257 return SDValue(N, 0); 8258 8259 break; 8260 } 8261 case RISCVISD::FMV_X_ANYEXTH: 8262 case RISCVISD::FMV_X_ANYEXTW_RV64: { 8263 SDLoc DL(N); 8264 SDValue Op0 = N->getOperand(0); 8265 MVT VT = N->getSimpleValueType(0); 8266 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 8267 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 8268 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 8269 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 8270 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 8271 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 8272 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 8273 assert(Op0.getOperand(0).getValueType() == VT && 8274 "Unexpected value type!"); 8275 return Op0.getOperand(0); 8276 } 8277 8278 // This is a target-specific version of a DAGCombine performed in 8279 // DAGCombiner::visitBITCAST. It performs the equivalent of: 8280 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 8281 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 8282 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 8283 !Op0.getNode()->hasOneUse()) 8284 break; 8285 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 8286 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 8287 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 8288 if (Op0.getOpcode() == ISD::FNEG) 8289 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 8290 DAG.getConstant(SignBit, DL, VT)); 8291 8292 assert(Op0.getOpcode() == ISD::FABS); 8293 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 8294 DAG.getConstant(~SignBit, DL, VT)); 8295 } 8296 case ISD::ADD: 8297 return performADDCombine(N, DAG, Subtarget); 8298 case ISD::SUB: 8299 return performSUBCombine(N, DAG); 8300 case ISD::AND: 8301 return performANDCombine(N, DAG); 8302 case ISD::OR: 8303 return performORCombine(N, DAG, Subtarget); 8304 case ISD::XOR: 8305 return performXORCombine(N, DAG); 8306 case ISD::SIGN_EXTEND_INREG: 8307 return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget); 8308 case ISD::ZERO_EXTEND: 8309 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 8310 // type legalization. This is safe because fp_to_uint produces poison if 8311 // it overflows. 8312 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { 8313 SDValue Src = N->getOperand(0); 8314 if (Src.getOpcode() == ISD::FP_TO_UINT && 8315 isTypeLegal(Src.getOperand(0).getValueType())) 8316 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 8317 Src.getOperand(0)); 8318 if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && 8319 isTypeLegal(Src.getOperand(1).getValueType())) { 8320 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 8321 SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, 8322 Src.getOperand(0), Src.getOperand(1)); 8323 DCI.CombineTo(N, Res); 8324 DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); 8325 DCI.recursivelyDeleteUnusedNodes(Src.getNode()); 8326 return SDValue(N, 0); // Return N so it doesn't get rechecked. 8327 } 8328 } 8329 return SDValue(); 8330 case RISCVISD::SELECT_CC: { 8331 // Transform 8332 SDValue LHS = N->getOperand(0); 8333 SDValue RHS = N->getOperand(1); 8334 SDValue TrueV = N->getOperand(3); 8335 SDValue FalseV = N->getOperand(4); 8336 8337 // If the True and False values are the same, we don't need a select_cc. 8338 if (TrueV == FalseV) 8339 return TrueV; 8340 8341 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 8342 if (!ISD::isIntEqualitySetCC(CCVal)) 8343 break; 8344 8345 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 8346 // (select_cc X, Y, lt, trueV, falseV) 8347 // Sometimes the setcc is introduced after select_cc has been formed. 8348 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 8349 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 8350 // If we're looking for eq 0 instead of ne 0, we need to invert the 8351 // condition. 8352 bool Invert = CCVal == ISD::SETEQ; 8353 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8354 if (Invert) 8355 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8356 8357 SDLoc DL(N); 8358 RHS = LHS.getOperand(1); 8359 LHS = LHS.getOperand(0); 8360 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 8361 8362 SDValue TargetCC = DAG.getCondCode(CCVal); 8363 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 8364 {LHS, RHS, TargetCC, TrueV, FalseV}); 8365 } 8366 8367 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 8368 // (select_cc X, Y, eq/ne, trueV, falseV) 8369 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 8370 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 8371 {LHS.getOperand(0), LHS.getOperand(1), 8372 N->getOperand(2), TrueV, FalseV}); 8373 // (select_cc X, 1, setne, trueV, falseV) -> 8374 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 8375 // This can occur when legalizing some floating point comparisons. 8376 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 8377 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 8378 SDLoc DL(N); 8379 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8380 SDValue TargetCC = DAG.getCondCode(CCVal); 8381 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 8382 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 8383 {LHS, RHS, TargetCC, TrueV, FalseV}); 8384 } 8385 8386 break; 8387 } 8388 case RISCVISD::BR_CC: { 8389 SDValue LHS = N->getOperand(1); 8390 SDValue RHS = N->getOperand(2); 8391 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 8392 if (!ISD::isIntEqualitySetCC(CCVal)) 8393 break; 8394 8395 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 8396 // (br_cc X, Y, lt, dest) 8397 // Sometimes the setcc is introduced after br_cc has been formed. 8398 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 8399 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 8400 // If we're looking for eq 0 instead of ne 0, we need to invert the 8401 // condition. 8402 bool Invert = CCVal == ISD::SETEQ; 8403 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8404 if (Invert) 8405 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8406 8407 SDLoc DL(N); 8408 RHS = LHS.getOperand(1); 8409 LHS = LHS.getOperand(0); 8410 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 8411 8412 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 8413 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 8414 N->getOperand(4)); 8415 } 8416 8417 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 8418 // (br_cc X, Y, eq/ne, trueV, falseV) 8419 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 8420 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 8421 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 8422 N->getOperand(3), N->getOperand(4)); 8423 8424 // (br_cc X, 1, setne, br_cc) -> 8425 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 8426 // This can occur when legalizing some floating point comparisons. 8427 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 8428 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 8429 SDLoc DL(N); 8430 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8431 SDValue TargetCC = DAG.getCondCode(CCVal); 8432 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 8433 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 8434 N->getOperand(0), LHS, RHS, TargetCC, 8435 N->getOperand(4)); 8436 } 8437 break; 8438 } 8439 case ISD::BITREVERSE: 8440 return performBITREVERSECombine(N, DAG, Subtarget); 8441 case ISD::FP_TO_SINT: 8442 case ISD::FP_TO_UINT: 8443 return performFP_TO_INTCombine(N, DCI, Subtarget); 8444 case ISD::FP_TO_SINT_SAT: 8445 case ISD::FP_TO_UINT_SAT: 8446 return performFP_TO_INT_SATCombine(N, DCI, Subtarget); 8447 case ISD::FCOPYSIGN: { 8448 EVT VT = N->getValueType(0); 8449 if (!VT.isVector()) 8450 break; 8451 // There is a form of VFSGNJ which injects the negated sign of its second 8452 // operand. Try and bubble any FNEG up after the extend/round to produce 8453 // this optimized pattern. Avoid modifying cases where FP_ROUND and 8454 // TRUNC=1. 8455 SDValue In2 = N->getOperand(1); 8456 // Avoid cases where the extend/round has multiple uses, as duplicating 8457 // those is typically more expensive than removing a fneg. 8458 if (!In2.hasOneUse()) 8459 break; 8460 if (In2.getOpcode() != ISD::FP_EXTEND && 8461 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 8462 break; 8463 In2 = In2.getOperand(0); 8464 if (In2.getOpcode() != ISD::FNEG) 8465 break; 8466 SDLoc DL(N); 8467 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 8468 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 8469 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 8470 } 8471 case ISD::MGATHER: 8472 case ISD::MSCATTER: 8473 case ISD::VP_GATHER: 8474 case ISD::VP_SCATTER: { 8475 if (!DCI.isBeforeLegalize()) 8476 break; 8477 SDValue Index, ScaleOp; 8478 bool IsIndexScaled = false; 8479 bool IsIndexSigned = false; 8480 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 8481 Index = VPGSN->getIndex(); 8482 ScaleOp = VPGSN->getScale(); 8483 IsIndexScaled = VPGSN->isIndexScaled(); 8484 IsIndexSigned = VPGSN->isIndexSigned(); 8485 } else { 8486 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 8487 Index = MGSN->getIndex(); 8488 ScaleOp = MGSN->getScale(); 8489 IsIndexScaled = MGSN->isIndexScaled(); 8490 IsIndexSigned = MGSN->isIndexSigned(); 8491 } 8492 EVT IndexVT = Index.getValueType(); 8493 MVT XLenVT = Subtarget.getXLenVT(); 8494 // RISCV indexed loads only support the "unsigned unscaled" addressing 8495 // mode, so anything else must be manually legalized. 8496 bool NeedsIdxLegalization = 8497 IsIndexScaled || 8498 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 8499 if (!NeedsIdxLegalization) 8500 break; 8501 8502 SDLoc DL(N); 8503 8504 // Any index legalization should first promote to XLenVT, so we don't lose 8505 // bits when scaling. This may create an illegal index type so we let 8506 // LLVM's legalization take care of the splitting. 8507 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 8508 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 8509 IndexVT = IndexVT.changeVectorElementType(XLenVT); 8510 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 8511 DL, IndexVT, Index); 8512 } 8513 8514 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 8515 if (IsIndexScaled && Scale != 1) { 8516 // Manually scale the indices by the element size. 8517 // TODO: Sanitize the scale operand here? 8518 // TODO: For VP nodes, should we use VP_SHL here? 8519 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 8520 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 8521 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 8522 } 8523 8524 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 8525 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 8526 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 8527 {VPGN->getChain(), VPGN->getBasePtr(), Index, 8528 VPGN->getScale(), VPGN->getMask(), 8529 VPGN->getVectorLength()}, 8530 VPGN->getMemOperand(), NewIndexTy); 8531 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 8532 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 8533 {VPSN->getChain(), VPSN->getValue(), 8534 VPSN->getBasePtr(), Index, VPSN->getScale(), 8535 VPSN->getMask(), VPSN->getVectorLength()}, 8536 VPSN->getMemOperand(), NewIndexTy); 8537 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 8538 return DAG.getMaskedGather( 8539 N->getVTList(), MGN->getMemoryVT(), DL, 8540 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 8541 MGN->getBasePtr(), Index, MGN->getScale()}, 8542 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 8543 const auto *MSN = cast<MaskedScatterSDNode>(N); 8544 return DAG.getMaskedScatter( 8545 N->getVTList(), MSN->getMemoryVT(), DL, 8546 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 8547 Index, MSN->getScale()}, 8548 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 8549 } 8550 case RISCVISD::SRA_VL: 8551 case RISCVISD::SRL_VL: 8552 case RISCVISD::SHL_VL: { 8553 SDValue ShAmt = N->getOperand(1); 8554 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8555 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8556 SDLoc DL(N); 8557 SDValue VL = N->getOperand(3); 8558 EVT VT = N->getValueType(0); 8559 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 8560 ShAmt.getOperand(1), VL); 8561 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 8562 N->getOperand(2), N->getOperand(3)); 8563 } 8564 break; 8565 } 8566 case ISD::SRA: 8567 case ISD::SRL: 8568 case ISD::SHL: { 8569 SDValue ShAmt = N->getOperand(1); 8570 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8571 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8572 SDLoc DL(N); 8573 EVT VT = N->getValueType(0); 8574 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 8575 ShAmt.getOperand(1), 8576 DAG.getRegister(RISCV::X0, Subtarget.getXLenVT())); 8577 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 8578 } 8579 break; 8580 } 8581 case RISCVISD::ADD_VL: 8582 if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false)) 8583 return V; 8584 return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true); 8585 case RISCVISD::SUB_VL: 8586 return combineADDSUB_VLToVWADDSUB_VL(N, DAG); 8587 case RISCVISD::VWADD_W_VL: 8588 case RISCVISD::VWADDU_W_VL: 8589 case RISCVISD::VWSUB_W_VL: 8590 case RISCVISD::VWSUBU_W_VL: 8591 return combineVWADD_W_VL_VWSUB_W_VL(N, DAG); 8592 case RISCVISD::MUL_VL: 8593 if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false)) 8594 return V; 8595 // Mul is commutative. 8596 return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true); 8597 case ISD::STORE: { 8598 auto *Store = cast<StoreSDNode>(N); 8599 SDValue Val = Store->getValue(); 8600 // Combine store of vmv.x.s to vse with VL of 1. 8601 // FIXME: Support FP. 8602 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 8603 SDValue Src = Val.getOperand(0); 8604 EVT VecVT = Src.getValueType(); 8605 EVT MemVT = Store->getMemoryVT(); 8606 // The memory VT and the element type must match. 8607 if (VecVT.getVectorElementType() == MemVT) { 8608 SDLoc DL(N); 8609 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 8610 return DAG.getStoreVP( 8611 Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(), 8612 DAG.getConstant(1, DL, MaskVT), 8613 DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT, 8614 Store->getMemOperand(), Store->getAddressingMode(), 8615 Store->isTruncatingStore(), /*IsCompress*/ false); 8616 } 8617 } 8618 8619 break; 8620 } 8621 case ISD::SPLAT_VECTOR: { 8622 EVT VT = N->getValueType(0); 8623 // Only perform this combine on legal MVT types. 8624 if (!isTypeLegal(VT)) 8625 break; 8626 if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N, 8627 DAG, Subtarget)) 8628 return Gather; 8629 break; 8630 } 8631 case RISCVISD::VMV_V_X_VL: { 8632 // Tail agnostic VMV.V.X only demands the vector element bitwidth from the 8633 // scalar input. 8634 unsigned ScalarSize = N->getOperand(1).getValueSizeInBits(); 8635 unsigned EltWidth = N->getValueType(0).getScalarSizeInBits(); 8636 if (ScalarSize > EltWidth && N->getOperand(0).isUndef()) 8637 if (SimplifyDemandedLowBitsHelper(1, EltWidth)) 8638 return SDValue(N, 0); 8639 8640 break; 8641 } 8642 case ISD::INTRINSIC_WO_CHAIN: { 8643 unsigned IntNo = N->getConstantOperandVal(0); 8644 switch (IntNo) { 8645 // By default we do not combine any intrinsic. 8646 default: 8647 return SDValue(); 8648 case Intrinsic::riscv_vcpop: 8649 case Intrinsic::riscv_vcpop_mask: 8650 case Intrinsic::riscv_vfirst: 8651 case Intrinsic::riscv_vfirst_mask: { 8652 SDValue VL = N->getOperand(2); 8653 if (IntNo == Intrinsic::riscv_vcpop_mask || 8654 IntNo == Intrinsic::riscv_vfirst_mask) 8655 VL = N->getOperand(3); 8656 if (!isNullConstant(VL)) 8657 return SDValue(); 8658 // If VL is 0, vcpop -> li 0, vfirst -> li -1. 8659 SDLoc DL(N); 8660 EVT VT = N->getValueType(0); 8661 if (IntNo == Intrinsic::riscv_vfirst || 8662 IntNo == Intrinsic::riscv_vfirst_mask) 8663 return DAG.getConstant(-1, DL, VT); 8664 return DAG.getConstant(0, DL, VT); 8665 } 8666 } 8667 } 8668 } 8669 8670 return SDValue(); 8671 } 8672 8673 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 8674 const SDNode *N, CombineLevel Level) const { 8675 // The following folds are only desirable if `(OP _, c1 << c2)` can be 8676 // materialised in fewer instructions than `(OP _, c1)`: 8677 // 8678 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 8679 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 8680 SDValue N0 = N->getOperand(0); 8681 EVT Ty = N0.getValueType(); 8682 if (Ty.isScalarInteger() && 8683 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 8684 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 8685 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 8686 if (C1 && C2) { 8687 const APInt &C1Int = C1->getAPIntValue(); 8688 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 8689 8690 // We can materialise `c1 << c2` into an add immediate, so it's "free", 8691 // and the combine should happen, to potentially allow further combines 8692 // later. 8693 if (ShiftedC1Int.getMinSignedBits() <= 64 && 8694 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 8695 return true; 8696 8697 // We can materialise `c1` in an add immediate, so it's "free", and the 8698 // combine should be prevented. 8699 if (C1Int.getMinSignedBits() <= 64 && 8700 isLegalAddImmediate(C1Int.getSExtValue())) 8701 return false; 8702 8703 // Neither constant will fit into an immediate, so find materialisation 8704 // costs. 8705 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 8706 Subtarget.getFeatureBits(), 8707 /*CompressionCost*/true); 8708 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 8709 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 8710 /*CompressionCost*/true); 8711 8712 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 8713 // combine should be prevented. 8714 if (C1Cost < ShiftedC1Cost) 8715 return false; 8716 } 8717 } 8718 return true; 8719 } 8720 8721 bool RISCVTargetLowering::targetShrinkDemandedConstant( 8722 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 8723 TargetLoweringOpt &TLO) const { 8724 // Delay this optimization as late as possible. 8725 if (!TLO.LegalOps) 8726 return false; 8727 8728 EVT VT = Op.getValueType(); 8729 if (VT.isVector()) 8730 return false; 8731 8732 // Only handle AND for now. 8733 if (Op.getOpcode() != ISD::AND) 8734 return false; 8735 8736 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 8737 if (!C) 8738 return false; 8739 8740 const APInt &Mask = C->getAPIntValue(); 8741 8742 // Clear all non-demanded bits initially. 8743 APInt ShrunkMask = Mask & DemandedBits; 8744 8745 // Try to make a smaller immediate by setting undemanded bits. 8746 8747 APInt ExpandedMask = Mask | ~DemandedBits; 8748 8749 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 8750 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 8751 }; 8752 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 8753 if (NewMask == Mask) 8754 return true; 8755 SDLoc DL(Op); 8756 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 8757 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 8758 return TLO.CombineTo(Op, NewOp); 8759 }; 8760 8761 // If the shrunk mask fits in sign extended 12 bits, let the target 8762 // independent code apply it. 8763 if (ShrunkMask.isSignedIntN(12)) 8764 return false; 8765 8766 // Preserve (and X, 0xffff) when zext.h is supported. 8767 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 8768 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 8769 if (IsLegalMask(NewMask)) 8770 return UseMask(NewMask); 8771 } 8772 8773 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 8774 if (VT == MVT::i64) { 8775 APInt NewMask = APInt(64, 0xffffffff); 8776 if (IsLegalMask(NewMask)) 8777 return UseMask(NewMask); 8778 } 8779 8780 // For the remaining optimizations, we need to be able to make a negative 8781 // number through a combination of mask and undemanded bits. 8782 if (!ExpandedMask.isNegative()) 8783 return false; 8784 8785 // What is the fewest number of bits we need to represent the negative number. 8786 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 8787 8788 // Try to make a 12 bit negative immediate. If that fails try to make a 32 8789 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 8790 APInt NewMask = ShrunkMask; 8791 if (MinSignedBits <= 12) 8792 NewMask.setBitsFrom(11); 8793 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 8794 NewMask.setBitsFrom(31); 8795 else 8796 return false; 8797 8798 // Check that our new mask is a subset of the demanded mask. 8799 assert(IsLegalMask(NewMask)); 8800 return UseMask(NewMask); 8801 } 8802 8803 static void computeGREV(APInt &Src, unsigned ShAmt) { 8804 ShAmt &= Src.getBitWidth() - 1; 8805 uint64_t x = Src.getZExtValue(); 8806 if (ShAmt & 1) 8807 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 8808 if (ShAmt & 2) 8809 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 8810 if (ShAmt & 4) 8811 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 8812 if (ShAmt & 8) 8813 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 8814 if (ShAmt & 16) 8815 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 8816 if (ShAmt & 32) 8817 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 8818 Src = x; 8819 } 8820 8821 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 8822 KnownBits &Known, 8823 const APInt &DemandedElts, 8824 const SelectionDAG &DAG, 8825 unsigned Depth) const { 8826 unsigned BitWidth = Known.getBitWidth(); 8827 unsigned Opc = Op.getOpcode(); 8828 assert((Opc >= ISD::BUILTIN_OP_END || 8829 Opc == ISD::INTRINSIC_WO_CHAIN || 8830 Opc == ISD::INTRINSIC_W_CHAIN || 8831 Opc == ISD::INTRINSIC_VOID) && 8832 "Should use MaskedValueIsZero if you don't know whether Op" 8833 " is a target node!"); 8834 8835 Known.resetAll(); 8836 switch (Opc) { 8837 default: break; 8838 case RISCVISD::SELECT_CC: { 8839 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 8840 // If we don't know any bits, early out. 8841 if (Known.isUnknown()) 8842 break; 8843 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 8844 8845 // Only known if known in both the LHS and RHS. 8846 Known = KnownBits::commonBits(Known, Known2); 8847 break; 8848 } 8849 case RISCVISD::REMUW: { 8850 KnownBits Known2; 8851 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 8852 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 8853 // We only care about the lower 32 bits. 8854 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 8855 // Restore the original width by sign extending. 8856 Known = Known.sext(BitWidth); 8857 break; 8858 } 8859 case RISCVISD::DIVUW: { 8860 KnownBits Known2; 8861 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 8862 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 8863 // We only care about the lower 32 bits. 8864 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 8865 // Restore the original width by sign extending. 8866 Known = Known.sext(BitWidth); 8867 break; 8868 } 8869 case RISCVISD::CTZW: { 8870 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8871 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 8872 unsigned LowBits = Log2_32(PossibleTZ) + 1; 8873 Known.Zero.setBitsFrom(LowBits); 8874 break; 8875 } 8876 case RISCVISD::CLZW: { 8877 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8878 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 8879 unsigned LowBits = Log2_32(PossibleLZ) + 1; 8880 Known.Zero.setBitsFrom(LowBits); 8881 break; 8882 } 8883 case RISCVISD::GREV: { 8884 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8885 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8886 unsigned ShAmt = C->getZExtValue(); 8887 computeGREV(Known.Zero, ShAmt); 8888 computeGREV(Known.One, ShAmt); 8889 } 8890 break; 8891 } 8892 case RISCVISD::READ_VLENB: { 8893 // If we know the minimum VLen from Zvl extensions, we can use that to 8894 // determine the trailing zeros of VLENB. 8895 // FIXME: Limit to 128 bit vectors until we have more testing. 8896 unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8; 8897 if (MinVLenB > 0) 8898 Known.Zero.setLowBits(Log2_32(MinVLenB)); 8899 // We assume VLENB is no more than 65536 / 8 bytes. 8900 Known.Zero.setBitsFrom(14); 8901 break; 8902 } 8903 case ISD::INTRINSIC_W_CHAIN: 8904 case ISD::INTRINSIC_WO_CHAIN: { 8905 unsigned IntNo = 8906 Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1); 8907 switch (IntNo) { 8908 default: 8909 // We can't do anything for most intrinsics. 8910 break; 8911 case Intrinsic::riscv_vsetvli: 8912 case Intrinsic::riscv_vsetvlimax: 8913 case Intrinsic::riscv_vsetvli_opt: 8914 case Intrinsic::riscv_vsetvlimax_opt: 8915 // Assume that VL output is positive and would fit in an int32_t. 8916 // TODO: VLEN might be capped at 16 bits in a future V spec update. 8917 if (BitWidth >= 32) 8918 Known.Zero.setBitsFrom(31); 8919 break; 8920 } 8921 break; 8922 } 8923 } 8924 } 8925 8926 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 8927 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 8928 unsigned Depth) const { 8929 switch (Op.getOpcode()) { 8930 default: 8931 break; 8932 case RISCVISD::SELECT_CC: { 8933 unsigned Tmp = 8934 DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 8935 if (Tmp == 1) return 1; // Early out. 8936 unsigned Tmp2 = 8937 DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 8938 return std::min(Tmp, Tmp2); 8939 } 8940 case RISCVISD::SLLW: 8941 case RISCVISD::SRAW: 8942 case RISCVISD::SRLW: 8943 case RISCVISD::DIVW: 8944 case RISCVISD::DIVUW: 8945 case RISCVISD::REMUW: 8946 case RISCVISD::ROLW: 8947 case RISCVISD::RORW: 8948 case RISCVISD::GREVW: 8949 case RISCVISD::GORCW: 8950 case RISCVISD::FSLW: 8951 case RISCVISD::FSRW: 8952 case RISCVISD::SHFLW: 8953 case RISCVISD::UNSHFLW: 8954 case RISCVISD::BCOMPRESSW: 8955 case RISCVISD::BDECOMPRESSW: 8956 case RISCVISD::BFPW: 8957 case RISCVISD::FCVT_W_RV64: 8958 case RISCVISD::FCVT_WU_RV64: 8959 case RISCVISD::STRICT_FCVT_W_RV64: 8960 case RISCVISD::STRICT_FCVT_WU_RV64: 8961 // TODO: As the result is sign-extended, this is conservatively correct. A 8962 // more precise answer could be calculated for SRAW depending on known 8963 // bits in the shift amount. 8964 return 33; 8965 case RISCVISD::SHFL: 8966 case RISCVISD::UNSHFL: { 8967 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 8968 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 8969 // will stay within the upper 32 bits. If there were more than 32 sign bits 8970 // before there will be at least 33 sign bits after. 8971 if (Op.getValueType() == MVT::i64 && 8972 isa<ConstantSDNode>(Op.getOperand(1)) && 8973 (Op.getConstantOperandVal(1) & 0x10) == 0) { 8974 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 8975 if (Tmp > 32) 8976 return 33; 8977 } 8978 break; 8979 } 8980 case RISCVISD::VMV_X_S: { 8981 // The number of sign bits of the scalar result is computed by obtaining the 8982 // element type of the input vector operand, subtracting its width from the 8983 // XLEN, and then adding one (sign bit within the element type). If the 8984 // element type is wider than XLen, the least-significant XLEN bits are 8985 // taken. 8986 unsigned XLen = Subtarget.getXLen(); 8987 unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits(); 8988 if (EltBits <= XLen) 8989 return XLen - EltBits + 1; 8990 break; 8991 } 8992 } 8993 8994 return 1; 8995 } 8996 8997 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 8998 MachineBasicBlock *BB) { 8999 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 9000 9001 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 9002 // Should the count have wrapped while it was being read, we need to try 9003 // again. 9004 // ... 9005 // read: 9006 // rdcycleh x3 # load high word of cycle 9007 // rdcycle x2 # load low word of cycle 9008 // rdcycleh x4 # load high word of cycle 9009 // bne x3, x4, read # check if high word reads match, otherwise try again 9010 // ... 9011 9012 MachineFunction &MF = *BB->getParent(); 9013 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9014 MachineFunction::iterator It = ++BB->getIterator(); 9015 9016 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 9017 MF.insert(It, LoopMBB); 9018 9019 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 9020 MF.insert(It, DoneMBB); 9021 9022 // Transfer the remainder of BB and its successor edges to DoneMBB. 9023 DoneMBB->splice(DoneMBB->begin(), BB, 9024 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9025 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 9026 9027 BB->addSuccessor(LoopMBB); 9028 9029 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9030 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9031 Register LoReg = MI.getOperand(0).getReg(); 9032 Register HiReg = MI.getOperand(1).getReg(); 9033 DebugLoc DL = MI.getDebugLoc(); 9034 9035 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 9036 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 9037 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 9038 .addReg(RISCV::X0); 9039 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 9040 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 9041 .addReg(RISCV::X0); 9042 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 9043 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 9044 .addReg(RISCV::X0); 9045 9046 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 9047 .addReg(HiReg) 9048 .addReg(ReadAgainReg) 9049 .addMBB(LoopMBB); 9050 9051 LoopMBB->addSuccessor(LoopMBB); 9052 LoopMBB->addSuccessor(DoneMBB); 9053 9054 MI.eraseFromParent(); 9055 9056 return DoneMBB; 9057 } 9058 9059 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 9060 MachineBasicBlock *BB) { 9061 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 9062 9063 MachineFunction &MF = *BB->getParent(); 9064 DebugLoc DL = MI.getDebugLoc(); 9065 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 9066 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 9067 Register LoReg = MI.getOperand(0).getReg(); 9068 Register HiReg = MI.getOperand(1).getReg(); 9069 Register SrcReg = MI.getOperand(2).getReg(); 9070 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 9071 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 9072 9073 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 9074 RI); 9075 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 9076 MachineMemOperand *MMOLo = 9077 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 9078 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 9079 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 9080 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 9081 .addFrameIndex(FI) 9082 .addImm(0) 9083 .addMemOperand(MMOLo); 9084 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 9085 .addFrameIndex(FI) 9086 .addImm(4) 9087 .addMemOperand(MMOHi); 9088 MI.eraseFromParent(); // The pseudo instruction is gone now. 9089 return BB; 9090 } 9091 9092 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 9093 MachineBasicBlock *BB) { 9094 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 9095 "Unexpected instruction"); 9096 9097 MachineFunction &MF = *BB->getParent(); 9098 DebugLoc DL = MI.getDebugLoc(); 9099 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 9100 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 9101 Register DstReg = MI.getOperand(0).getReg(); 9102 Register LoReg = MI.getOperand(1).getReg(); 9103 Register HiReg = MI.getOperand(2).getReg(); 9104 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 9105 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 9106 9107 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 9108 MachineMemOperand *MMOLo = 9109 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 9110 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 9111 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 9112 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 9113 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 9114 .addFrameIndex(FI) 9115 .addImm(0) 9116 .addMemOperand(MMOLo); 9117 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 9118 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 9119 .addFrameIndex(FI) 9120 .addImm(4) 9121 .addMemOperand(MMOHi); 9122 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 9123 MI.eraseFromParent(); // The pseudo instruction is gone now. 9124 return BB; 9125 } 9126 9127 static bool isSelectPseudo(MachineInstr &MI) { 9128 switch (MI.getOpcode()) { 9129 default: 9130 return false; 9131 case RISCV::Select_GPR_Using_CC_GPR: 9132 case RISCV::Select_FPR16_Using_CC_GPR: 9133 case RISCV::Select_FPR32_Using_CC_GPR: 9134 case RISCV::Select_FPR64_Using_CC_GPR: 9135 return true; 9136 } 9137 } 9138 9139 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB, 9140 unsigned RelOpcode, unsigned EqOpcode, 9141 const RISCVSubtarget &Subtarget) { 9142 DebugLoc DL = MI.getDebugLoc(); 9143 Register DstReg = MI.getOperand(0).getReg(); 9144 Register Src1Reg = MI.getOperand(1).getReg(); 9145 Register Src2Reg = MI.getOperand(2).getReg(); 9146 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 9147 Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass); 9148 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 9149 9150 // Save the current FFLAGS. 9151 BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags); 9152 9153 auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg) 9154 .addReg(Src1Reg) 9155 .addReg(Src2Reg); 9156 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 9157 MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); 9158 9159 // Restore the FFLAGS. 9160 BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) 9161 .addReg(SavedFFlags, RegState::Kill); 9162 9163 // Issue a dummy FEQ opcode to raise exception for signaling NaNs. 9164 auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0) 9165 .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill())) 9166 .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill())); 9167 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 9168 MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept); 9169 9170 // Erase the pseudoinstruction. 9171 MI.eraseFromParent(); 9172 return BB; 9173 } 9174 9175 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 9176 MachineBasicBlock *BB, 9177 const RISCVSubtarget &Subtarget) { 9178 // To "insert" Select_* instructions, we actually have to insert the triangle 9179 // control-flow pattern. The incoming instructions know the destination vreg 9180 // to set, the condition code register to branch on, the true/false values to 9181 // select between, and the condcode to use to select the appropriate branch. 9182 // 9183 // We produce the following control flow: 9184 // HeadMBB 9185 // | \ 9186 // | IfFalseMBB 9187 // | / 9188 // TailMBB 9189 // 9190 // When we find a sequence of selects we attempt to optimize their emission 9191 // by sharing the control flow. Currently we only handle cases where we have 9192 // multiple selects with the exact same condition (same LHS, RHS and CC). 9193 // The selects may be interleaved with other instructions if the other 9194 // instructions meet some requirements we deem safe: 9195 // - They are debug instructions. Otherwise, 9196 // - They do not have side-effects, do not access memory and their inputs do 9197 // not depend on the results of the select pseudo-instructions. 9198 // The TrueV/FalseV operands of the selects cannot depend on the result of 9199 // previous selects in the sequence. 9200 // These conditions could be further relaxed. See the X86 target for a 9201 // related approach and more information. 9202 Register LHS = MI.getOperand(1).getReg(); 9203 Register RHS = MI.getOperand(2).getReg(); 9204 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 9205 9206 SmallVector<MachineInstr *, 4> SelectDebugValues; 9207 SmallSet<Register, 4> SelectDests; 9208 SelectDests.insert(MI.getOperand(0).getReg()); 9209 9210 MachineInstr *LastSelectPseudo = &MI; 9211 9212 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 9213 SequenceMBBI != E; ++SequenceMBBI) { 9214 if (SequenceMBBI->isDebugInstr()) 9215 continue; 9216 else if (isSelectPseudo(*SequenceMBBI)) { 9217 if (SequenceMBBI->getOperand(1).getReg() != LHS || 9218 SequenceMBBI->getOperand(2).getReg() != RHS || 9219 SequenceMBBI->getOperand(3).getImm() != CC || 9220 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 9221 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 9222 break; 9223 LastSelectPseudo = &*SequenceMBBI; 9224 SequenceMBBI->collectDebugValues(SelectDebugValues); 9225 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 9226 } else { 9227 if (SequenceMBBI->hasUnmodeledSideEffects() || 9228 SequenceMBBI->mayLoadOrStore()) 9229 break; 9230 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 9231 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 9232 })) 9233 break; 9234 } 9235 } 9236 9237 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 9238 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9239 DebugLoc DL = MI.getDebugLoc(); 9240 MachineFunction::iterator I = ++BB->getIterator(); 9241 9242 MachineBasicBlock *HeadMBB = BB; 9243 MachineFunction *F = BB->getParent(); 9244 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 9245 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 9246 9247 F->insert(I, IfFalseMBB); 9248 F->insert(I, TailMBB); 9249 9250 // Transfer debug instructions associated with the selects to TailMBB. 9251 for (MachineInstr *DebugInstr : SelectDebugValues) { 9252 TailMBB->push_back(DebugInstr->removeFromParent()); 9253 } 9254 9255 // Move all instructions after the sequence to TailMBB. 9256 TailMBB->splice(TailMBB->end(), HeadMBB, 9257 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 9258 // Update machine-CFG edges by transferring all successors of the current 9259 // block to the new block which will contain the Phi nodes for the selects. 9260 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 9261 // Set the successors for HeadMBB. 9262 HeadMBB->addSuccessor(IfFalseMBB); 9263 HeadMBB->addSuccessor(TailMBB); 9264 9265 // Insert appropriate branch. 9266 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 9267 .addReg(LHS) 9268 .addReg(RHS) 9269 .addMBB(TailMBB); 9270 9271 // IfFalseMBB just falls through to TailMBB. 9272 IfFalseMBB->addSuccessor(TailMBB); 9273 9274 // Create PHIs for all of the select pseudo-instructions. 9275 auto SelectMBBI = MI.getIterator(); 9276 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 9277 auto InsertionPoint = TailMBB->begin(); 9278 while (SelectMBBI != SelectEnd) { 9279 auto Next = std::next(SelectMBBI); 9280 if (isSelectPseudo(*SelectMBBI)) { 9281 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 9282 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 9283 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 9284 .addReg(SelectMBBI->getOperand(4).getReg()) 9285 .addMBB(HeadMBB) 9286 .addReg(SelectMBBI->getOperand(5).getReg()) 9287 .addMBB(IfFalseMBB); 9288 SelectMBBI->eraseFromParent(); 9289 } 9290 SelectMBBI = Next; 9291 } 9292 9293 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 9294 return TailMBB; 9295 } 9296 9297 MachineBasicBlock * 9298 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 9299 MachineBasicBlock *BB) const { 9300 switch (MI.getOpcode()) { 9301 default: 9302 llvm_unreachable("Unexpected instr type to insert"); 9303 case RISCV::ReadCycleWide: 9304 assert(!Subtarget.is64Bit() && 9305 "ReadCycleWrite is only to be used on riscv32"); 9306 return emitReadCycleWidePseudo(MI, BB); 9307 case RISCV::Select_GPR_Using_CC_GPR: 9308 case RISCV::Select_FPR16_Using_CC_GPR: 9309 case RISCV::Select_FPR32_Using_CC_GPR: 9310 case RISCV::Select_FPR64_Using_CC_GPR: 9311 return emitSelectPseudo(MI, BB, Subtarget); 9312 case RISCV::BuildPairF64Pseudo: 9313 return emitBuildPairF64Pseudo(MI, BB); 9314 case RISCV::SplitF64Pseudo: 9315 return emitSplitF64Pseudo(MI, BB); 9316 case RISCV::PseudoQuietFLE_H: 9317 return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget); 9318 case RISCV::PseudoQuietFLT_H: 9319 return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget); 9320 case RISCV::PseudoQuietFLE_S: 9321 return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget); 9322 case RISCV::PseudoQuietFLT_S: 9323 return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget); 9324 case RISCV::PseudoQuietFLE_D: 9325 return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget); 9326 case RISCV::PseudoQuietFLT_D: 9327 return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget); 9328 } 9329 } 9330 9331 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 9332 SDNode *Node) const { 9333 // Add FRM dependency to any instructions with dynamic rounding mode. 9334 unsigned Opc = MI.getOpcode(); 9335 auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); 9336 if (Idx < 0) 9337 return; 9338 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) 9339 return; 9340 // If the instruction already reads FRM, don't add another read. 9341 if (MI.readsRegister(RISCV::FRM)) 9342 return; 9343 MI.addOperand( 9344 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); 9345 } 9346 9347 // Calling Convention Implementation. 9348 // The expectations for frontend ABI lowering vary from target to target. 9349 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 9350 // details, but this is a longer term goal. For now, we simply try to keep the 9351 // role of the frontend as simple and well-defined as possible. The rules can 9352 // be summarised as: 9353 // * Never split up large scalar arguments. We handle them here. 9354 // * If a hardfloat calling convention is being used, and the struct may be 9355 // passed in a pair of registers (fp+fp, int+fp), and both registers are 9356 // available, then pass as two separate arguments. If either the GPRs or FPRs 9357 // are exhausted, then pass according to the rule below. 9358 // * If a struct could never be passed in registers or directly in a stack 9359 // slot (as it is larger than 2*XLEN and the floating point rules don't 9360 // apply), then pass it using a pointer with the byval attribute. 9361 // * If a struct is less than 2*XLEN, then coerce to either a two-element 9362 // word-sized array or a 2*XLEN scalar (depending on alignment). 9363 // * The frontend can determine whether a struct is returned by reference or 9364 // not based on its size and fields. If it will be returned by reference, the 9365 // frontend must modify the prototype so a pointer with the sret annotation is 9366 // passed as the first argument. This is not necessary for large scalar 9367 // returns. 9368 // * Struct return values and varargs should be coerced to structs containing 9369 // register-size fields in the same situations they would be for fixed 9370 // arguments. 9371 9372 static const MCPhysReg ArgGPRs[] = { 9373 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 9374 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 9375 }; 9376 static const MCPhysReg ArgFPR16s[] = { 9377 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 9378 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 9379 }; 9380 static const MCPhysReg ArgFPR32s[] = { 9381 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 9382 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 9383 }; 9384 static const MCPhysReg ArgFPR64s[] = { 9385 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 9386 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 9387 }; 9388 // This is an interim calling convention and it may be changed in the future. 9389 static const MCPhysReg ArgVRs[] = { 9390 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 9391 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 9392 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 9393 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 9394 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 9395 RISCV::V20M2, RISCV::V22M2}; 9396 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 9397 RISCV::V20M4}; 9398 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 9399 9400 // Pass a 2*XLEN argument that has been split into two XLEN values through 9401 // registers or the stack as necessary. 9402 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 9403 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 9404 MVT ValVT2, MVT LocVT2, 9405 ISD::ArgFlagsTy ArgFlags2) { 9406 unsigned XLenInBytes = XLen / 8; 9407 if (Register Reg = State.AllocateReg(ArgGPRs)) { 9408 // At least one half can be passed via register. 9409 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 9410 VA1.getLocVT(), CCValAssign::Full)); 9411 } else { 9412 // Both halves must be passed on the stack, with proper alignment. 9413 Align StackAlign = 9414 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 9415 State.addLoc( 9416 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 9417 State.AllocateStack(XLenInBytes, StackAlign), 9418 VA1.getLocVT(), CCValAssign::Full)); 9419 State.addLoc(CCValAssign::getMem( 9420 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 9421 LocVT2, CCValAssign::Full)); 9422 return false; 9423 } 9424 9425 if (Register Reg = State.AllocateReg(ArgGPRs)) { 9426 // The second half can also be passed via register. 9427 State.addLoc( 9428 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 9429 } else { 9430 // The second half is passed via the stack, without additional alignment. 9431 State.addLoc(CCValAssign::getMem( 9432 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 9433 LocVT2, CCValAssign::Full)); 9434 } 9435 9436 return false; 9437 } 9438 9439 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 9440 Optional<unsigned> FirstMaskArgument, 9441 CCState &State, const RISCVTargetLowering &TLI) { 9442 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 9443 if (RC == &RISCV::VRRegClass) { 9444 // Assign the first mask argument to V0. 9445 // This is an interim calling convention and it may be changed in the 9446 // future. 9447 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 9448 return State.AllocateReg(RISCV::V0); 9449 return State.AllocateReg(ArgVRs); 9450 } 9451 if (RC == &RISCV::VRM2RegClass) 9452 return State.AllocateReg(ArgVRM2s); 9453 if (RC == &RISCV::VRM4RegClass) 9454 return State.AllocateReg(ArgVRM4s); 9455 if (RC == &RISCV::VRM8RegClass) 9456 return State.AllocateReg(ArgVRM8s); 9457 llvm_unreachable("Unhandled register class for ValueType"); 9458 } 9459 9460 // Implements the RISC-V calling convention. Returns true upon failure. 9461 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 9462 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 9463 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 9464 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 9465 Optional<unsigned> FirstMaskArgument) { 9466 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 9467 assert(XLen == 32 || XLen == 64); 9468 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 9469 9470 // Any return value split in to more than two values can't be returned 9471 // directly. Vectors are returned via the available vector registers. 9472 if (!LocVT.isVector() && IsRet && ValNo > 1) 9473 return true; 9474 9475 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 9476 // variadic argument, or if no F16/F32 argument registers are available. 9477 bool UseGPRForF16_F32 = true; 9478 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 9479 // variadic argument, or if no F64 argument registers are available. 9480 bool UseGPRForF64 = true; 9481 9482 switch (ABI) { 9483 default: 9484 llvm_unreachable("Unexpected ABI"); 9485 case RISCVABI::ABI_ILP32: 9486 case RISCVABI::ABI_LP64: 9487 break; 9488 case RISCVABI::ABI_ILP32F: 9489 case RISCVABI::ABI_LP64F: 9490 UseGPRForF16_F32 = !IsFixed; 9491 break; 9492 case RISCVABI::ABI_ILP32D: 9493 case RISCVABI::ABI_LP64D: 9494 UseGPRForF16_F32 = !IsFixed; 9495 UseGPRForF64 = !IsFixed; 9496 break; 9497 } 9498 9499 // FPR16, FPR32, and FPR64 alias each other. 9500 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 9501 UseGPRForF16_F32 = true; 9502 UseGPRForF64 = true; 9503 } 9504 9505 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 9506 // similar local variables rather than directly checking against the target 9507 // ABI. 9508 9509 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 9510 LocVT = XLenVT; 9511 LocInfo = CCValAssign::BCvt; 9512 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 9513 LocVT = MVT::i64; 9514 LocInfo = CCValAssign::BCvt; 9515 } 9516 9517 // If this is a variadic argument, the RISC-V calling convention requires 9518 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 9519 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 9520 // be used regardless of whether the original argument was split during 9521 // legalisation or not. The argument will not be passed by registers if the 9522 // original type is larger than 2*XLEN, so the register alignment rule does 9523 // not apply. 9524 unsigned TwoXLenInBytes = (2 * XLen) / 8; 9525 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 9526 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 9527 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 9528 // Skip 'odd' register if necessary. 9529 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 9530 State.AllocateReg(ArgGPRs); 9531 } 9532 9533 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 9534 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 9535 State.getPendingArgFlags(); 9536 9537 assert(PendingLocs.size() == PendingArgFlags.size() && 9538 "PendingLocs and PendingArgFlags out of sync"); 9539 9540 // Handle passing f64 on RV32D with a soft float ABI or when floating point 9541 // registers are exhausted. 9542 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 9543 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 9544 "Can't lower f64 if it is split"); 9545 // Depending on available argument GPRS, f64 may be passed in a pair of 9546 // GPRs, split between a GPR and the stack, or passed completely on the 9547 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 9548 // cases. 9549 Register Reg = State.AllocateReg(ArgGPRs); 9550 LocVT = MVT::i32; 9551 if (!Reg) { 9552 unsigned StackOffset = State.AllocateStack(8, Align(8)); 9553 State.addLoc( 9554 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9555 return false; 9556 } 9557 if (!State.AllocateReg(ArgGPRs)) 9558 State.AllocateStack(4, Align(4)); 9559 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9560 return false; 9561 } 9562 9563 // Fixed-length vectors are located in the corresponding scalable-vector 9564 // container types. 9565 if (ValVT.isFixedLengthVector()) 9566 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 9567 9568 // Split arguments might be passed indirectly, so keep track of the pending 9569 // values. Split vectors are passed via a mix of registers and indirectly, so 9570 // treat them as we would any other argument. 9571 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 9572 LocVT = XLenVT; 9573 LocInfo = CCValAssign::Indirect; 9574 PendingLocs.push_back( 9575 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 9576 PendingArgFlags.push_back(ArgFlags); 9577 if (!ArgFlags.isSplitEnd()) { 9578 return false; 9579 } 9580 } 9581 9582 // If the split argument only had two elements, it should be passed directly 9583 // in registers or on the stack. 9584 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 9585 PendingLocs.size() <= 2) { 9586 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 9587 // Apply the normal calling convention rules to the first half of the 9588 // split argument. 9589 CCValAssign VA = PendingLocs[0]; 9590 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 9591 PendingLocs.clear(); 9592 PendingArgFlags.clear(); 9593 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 9594 ArgFlags); 9595 } 9596 9597 // Allocate to a register if possible, or else a stack slot. 9598 Register Reg; 9599 unsigned StoreSizeBytes = XLen / 8; 9600 Align StackAlign = Align(XLen / 8); 9601 9602 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 9603 Reg = State.AllocateReg(ArgFPR16s); 9604 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 9605 Reg = State.AllocateReg(ArgFPR32s); 9606 else if (ValVT == MVT::f64 && !UseGPRForF64) 9607 Reg = State.AllocateReg(ArgFPR64s); 9608 else if (ValVT.isVector()) { 9609 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 9610 if (!Reg) { 9611 // For return values, the vector must be passed fully via registers or 9612 // via the stack. 9613 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 9614 // but we're using all of them. 9615 if (IsRet) 9616 return true; 9617 // Try using a GPR to pass the address 9618 if ((Reg = State.AllocateReg(ArgGPRs))) { 9619 LocVT = XLenVT; 9620 LocInfo = CCValAssign::Indirect; 9621 } else if (ValVT.isScalableVector()) { 9622 LocVT = XLenVT; 9623 LocInfo = CCValAssign::Indirect; 9624 } else { 9625 // Pass fixed-length vectors on the stack. 9626 LocVT = ValVT; 9627 StoreSizeBytes = ValVT.getStoreSize(); 9628 // Align vectors to their element sizes, being careful for vXi1 9629 // vectors. 9630 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 9631 } 9632 } 9633 } else { 9634 Reg = State.AllocateReg(ArgGPRs); 9635 } 9636 9637 unsigned StackOffset = 9638 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 9639 9640 // If we reach this point and PendingLocs is non-empty, we must be at the 9641 // end of a split argument that must be passed indirectly. 9642 if (!PendingLocs.empty()) { 9643 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 9644 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 9645 9646 for (auto &It : PendingLocs) { 9647 if (Reg) 9648 It.convertToReg(Reg); 9649 else 9650 It.convertToMem(StackOffset); 9651 State.addLoc(It); 9652 } 9653 PendingLocs.clear(); 9654 PendingArgFlags.clear(); 9655 return false; 9656 } 9657 9658 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 9659 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 9660 "Expected an XLenVT or vector types at this stage"); 9661 9662 if (Reg) { 9663 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9664 return false; 9665 } 9666 9667 // When a floating-point value is passed on the stack, no bit-conversion is 9668 // needed. 9669 if (ValVT.isFloatingPoint()) { 9670 LocVT = ValVT; 9671 LocInfo = CCValAssign::Full; 9672 } 9673 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9674 return false; 9675 } 9676 9677 template <typename ArgTy> 9678 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 9679 for (const auto &ArgIdx : enumerate(Args)) { 9680 MVT ArgVT = ArgIdx.value().VT; 9681 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 9682 return ArgIdx.index(); 9683 } 9684 return None; 9685 } 9686 9687 void RISCVTargetLowering::analyzeInputArgs( 9688 MachineFunction &MF, CCState &CCInfo, 9689 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 9690 RISCVCCAssignFn Fn) const { 9691 unsigned NumArgs = Ins.size(); 9692 FunctionType *FType = MF.getFunction().getFunctionType(); 9693 9694 Optional<unsigned> FirstMaskArgument; 9695 if (Subtarget.hasVInstructions()) 9696 FirstMaskArgument = preAssignMask(Ins); 9697 9698 for (unsigned i = 0; i != NumArgs; ++i) { 9699 MVT ArgVT = Ins[i].VT; 9700 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 9701 9702 Type *ArgTy = nullptr; 9703 if (IsRet) 9704 ArgTy = FType->getReturnType(); 9705 else if (Ins[i].isOrigArg()) 9706 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 9707 9708 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9709 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 9710 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 9711 FirstMaskArgument)) { 9712 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 9713 << EVT(ArgVT).getEVTString() << '\n'); 9714 llvm_unreachable(nullptr); 9715 } 9716 } 9717 } 9718 9719 void RISCVTargetLowering::analyzeOutputArgs( 9720 MachineFunction &MF, CCState &CCInfo, 9721 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 9722 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 9723 unsigned NumArgs = Outs.size(); 9724 9725 Optional<unsigned> FirstMaskArgument; 9726 if (Subtarget.hasVInstructions()) 9727 FirstMaskArgument = preAssignMask(Outs); 9728 9729 for (unsigned i = 0; i != NumArgs; i++) { 9730 MVT ArgVT = Outs[i].VT; 9731 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9732 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 9733 9734 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9735 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 9736 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 9737 FirstMaskArgument)) { 9738 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 9739 << EVT(ArgVT).getEVTString() << "\n"); 9740 llvm_unreachable(nullptr); 9741 } 9742 } 9743 } 9744 9745 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 9746 // values. 9747 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 9748 const CCValAssign &VA, const SDLoc &DL, 9749 const RISCVSubtarget &Subtarget) { 9750 switch (VA.getLocInfo()) { 9751 default: 9752 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9753 case CCValAssign::Full: 9754 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 9755 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 9756 break; 9757 case CCValAssign::BCvt: 9758 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9759 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 9760 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9761 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 9762 else 9763 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 9764 break; 9765 } 9766 return Val; 9767 } 9768 9769 // The caller is responsible for loading the full value if the argument is 9770 // passed with CCValAssign::Indirect. 9771 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 9772 const CCValAssign &VA, const SDLoc &DL, 9773 const RISCVTargetLowering &TLI) { 9774 MachineFunction &MF = DAG.getMachineFunction(); 9775 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9776 EVT LocVT = VA.getLocVT(); 9777 SDValue Val; 9778 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 9779 Register VReg = RegInfo.createVirtualRegister(RC); 9780 RegInfo.addLiveIn(VA.getLocReg(), VReg); 9781 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 9782 9783 if (VA.getLocInfo() == CCValAssign::Indirect) 9784 return Val; 9785 9786 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 9787 } 9788 9789 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 9790 const CCValAssign &VA, const SDLoc &DL, 9791 const RISCVSubtarget &Subtarget) { 9792 EVT LocVT = VA.getLocVT(); 9793 9794 switch (VA.getLocInfo()) { 9795 default: 9796 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9797 case CCValAssign::Full: 9798 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 9799 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 9800 break; 9801 case CCValAssign::BCvt: 9802 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9803 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 9804 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9805 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 9806 else 9807 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 9808 break; 9809 } 9810 return Val; 9811 } 9812 9813 // The caller is responsible for loading the full value if the argument is 9814 // passed with CCValAssign::Indirect. 9815 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 9816 const CCValAssign &VA, const SDLoc &DL) { 9817 MachineFunction &MF = DAG.getMachineFunction(); 9818 MachineFrameInfo &MFI = MF.getFrameInfo(); 9819 EVT LocVT = VA.getLocVT(); 9820 EVT ValVT = VA.getValVT(); 9821 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 9822 if (ValVT.isScalableVector()) { 9823 // When the value is a scalable vector, we save the pointer which points to 9824 // the scalable vector value in the stack. The ValVT will be the pointer 9825 // type, instead of the scalable vector type. 9826 ValVT = LocVT; 9827 } 9828 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 9829 /*IsImmutable=*/true); 9830 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 9831 SDValue Val; 9832 9833 ISD::LoadExtType ExtType; 9834 switch (VA.getLocInfo()) { 9835 default: 9836 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9837 case CCValAssign::Full: 9838 case CCValAssign::Indirect: 9839 case CCValAssign::BCvt: 9840 ExtType = ISD::NON_EXTLOAD; 9841 break; 9842 } 9843 Val = DAG.getExtLoad( 9844 ExtType, DL, LocVT, Chain, FIN, 9845 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 9846 return Val; 9847 } 9848 9849 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 9850 const CCValAssign &VA, const SDLoc &DL) { 9851 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 9852 "Unexpected VA"); 9853 MachineFunction &MF = DAG.getMachineFunction(); 9854 MachineFrameInfo &MFI = MF.getFrameInfo(); 9855 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9856 9857 if (VA.isMemLoc()) { 9858 // f64 is passed on the stack. 9859 int FI = 9860 MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true); 9861 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 9862 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 9863 MachinePointerInfo::getFixedStack(MF, FI)); 9864 } 9865 9866 assert(VA.isRegLoc() && "Expected register VA assignment"); 9867 9868 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9869 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 9870 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 9871 SDValue Hi; 9872 if (VA.getLocReg() == RISCV::X17) { 9873 // Second half of f64 is passed on the stack. 9874 int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true); 9875 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 9876 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 9877 MachinePointerInfo::getFixedStack(MF, FI)); 9878 } else { 9879 // Second half of f64 is passed in another GPR. 9880 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9881 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 9882 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 9883 } 9884 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 9885 } 9886 9887 // FastCC has less than 1% performance improvement for some particular 9888 // benchmark. But theoretically, it may has benenfit for some cases. 9889 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 9890 unsigned ValNo, MVT ValVT, MVT LocVT, 9891 CCValAssign::LocInfo LocInfo, 9892 ISD::ArgFlagsTy ArgFlags, CCState &State, 9893 bool IsFixed, bool IsRet, Type *OrigTy, 9894 const RISCVTargetLowering &TLI, 9895 Optional<unsigned> FirstMaskArgument) { 9896 9897 // X5 and X6 might be used for save-restore libcall. 9898 static const MCPhysReg GPRList[] = { 9899 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 9900 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 9901 RISCV::X29, RISCV::X30, RISCV::X31}; 9902 9903 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 9904 if (unsigned Reg = State.AllocateReg(GPRList)) { 9905 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9906 return false; 9907 } 9908 } 9909 9910 if (LocVT == MVT::f16) { 9911 static const MCPhysReg FPR16List[] = { 9912 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 9913 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 9914 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 9915 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 9916 if (unsigned Reg = State.AllocateReg(FPR16List)) { 9917 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9918 return false; 9919 } 9920 } 9921 9922 if (LocVT == MVT::f32) { 9923 static const MCPhysReg FPR32List[] = { 9924 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 9925 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 9926 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 9927 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 9928 if (unsigned Reg = State.AllocateReg(FPR32List)) { 9929 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9930 return false; 9931 } 9932 } 9933 9934 if (LocVT == MVT::f64) { 9935 static const MCPhysReg FPR64List[] = { 9936 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 9937 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 9938 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 9939 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 9940 if (unsigned Reg = State.AllocateReg(FPR64List)) { 9941 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9942 return false; 9943 } 9944 } 9945 9946 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 9947 unsigned Offset4 = State.AllocateStack(4, Align(4)); 9948 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 9949 return false; 9950 } 9951 9952 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 9953 unsigned Offset5 = State.AllocateStack(8, Align(8)); 9954 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 9955 return false; 9956 } 9957 9958 if (LocVT.isVector()) { 9959 if (unsigned Reg = 9960 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 9961 // Fixed-length vectors are located in the corresponding scalable-vector 9962 // container types. 9963 if (ValVT.isFixedLengthVector()) 9964 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 9965 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9966 } else { 9967 // Try and pass the address via a "fast" GPR. 9968 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 9969 LocInfo = CCValAssign::Indirect; 9970 LocVT = TLI.getSubtarget().getXLenVT(); 9971 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 9972 } else if (ValVT.isFixedLengthVector()) { 9973 auto StackAlign = 9974 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 9975 unsigned StackOffset = 9976 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 9977 State.addLoc( 9978 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9979 } else { 9980 // Can't pass scalable vectors on the stack. 9981 return true; 9982 } 9983 } 9984 9985 return false; 9986 } 9987 9988 return true; // CC didn't match. 9989 } 9990 9991 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 9992 CCValAssign::LocInfo LocInfo, 9993 ISD::ArgFlagsTy ArgFlags, CCState &State) { 9994 9995 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 9996 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 9997 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 9998 static const MCPhysReg GPRList[] = { 9999 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 10000 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 10001 if (unsigned Reg = State.AllocateReg(GPRList)) { 10002 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10003 return false; 10004 } 10005 } 10006 10007 if (LocVT == MVT::f32) { 10008 // Pass in STG registers: F1, ..., F6 10009 // fs0 ... fs5 10010 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 10011 RISCV::F18_F, RISCV::F19_F, 10012 RISCV::F20_F, RISCV::F21_F}; 10013 if (unsigned Reg = State.AllocateReg(FPR32List)) { 10014 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10015 return false; 10016 } 10017 } 10018 10019 if (LocVT == MVT::f64) { 10020 // Pass in STG registers: D1, ..., D6 10021 // fs6 ... fs11 10022 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 10023 RISCV::F24_D, RISCV::F25_D, 10024 RISCV::F26_D, RISCV::F27_D}; 10025 if (unsigned Reg = State.AllocateReg(FPR64List)) { 10026 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10027 return false; 10028 } 10029 } 10030 10031 report_fatal_error("No registers left in GHC calling convention"); 10032 return true; 10033 } 10034 10035 // Transform physical registers into virtual registers. 10036 SDValue RISCVTargetLowering::LowerFormalArguments( 10037 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 10038 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 10039 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 10040 10041 MachineFunction &MF = DAG.getMachineFunction(); 10042 10043 switch (CallConv) { 10044 default: 10045 report_fatal_error("Unsupported calling convention"); 10046 case CallingConv::C: 10047 case CallingConv::Fast: 10048 break; 10049 case CallingConv::GHC: 10050 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 10051 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 10052 report_fatal_error( 10053 "GHC calling convention requires the F and D instruction set extensions"); 10054 } 10055 10056 const Function &Func = MF.getFunction(); 10057 if (Func.hasFnAttribute("interrupt")) { 10058 if (!Func.arg_empty()) 10059 report_fatal_error( 10060 "Functions with the interrupt attribute cannot have arguments!"); 10061 10062 StringRef Kind = 10063 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 10064 10065 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 10066 report_fatal_error( 10067 "Function interrupt attribute argument not supported!"); 10068 } 10069 10070 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10071 MVT XLenVT = Subtarget.getXLenVT(); 10072 unsigned XLenInBytes = Subtarget.getXLen() / 8; 10073 // Used with vargs to acumulate store chains. 10074 std::vector<SDValue> OutChains; 10075 10076 // Assign locations to all of the incoming arguments. 10077 SmallVector<CCValAssign, 16> ArgLocs; 10078 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 10079 10080 if (CallConv == CallingConv::GHC) 10081 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 10082 else 10083 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 10084 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 10085 : CC_RISCV); 10086 10087 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 10088 CCValAssign &VA = ArgLocs[i]; 10089 SDValue ArgValue; 10090 // Passing f64 on RV32D with a soft float ABI must be handled as a special 10091 // case. 10092 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 10093 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 10094 else if (VA.isRegLoc()) 10095 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 10096 else 10097 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 10098 10099 if (VA.getLocInfo() == CCValAssign::Indirect) { 10100 // If the original argument was split and passed by reference (e.g. i128 10101 // on RV32), we need to load all parts of it here (using the same 10102 // address). Vectors may be partly split to registers and partly to the 10103 // stack, in which case the base address is partly offset and subsequent 10104 // stores are relative to that. 10105 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 10106 MachinePointerInfo())); 10107 unsigned ArgIndex = Ins[i].OrigArgIndex; 10108 unsigned ArgPartOffset = Ins[i].PartOffset; 10109 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 10110 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 10111 CCValAssign &PartVA = ArgLocs[i + 1]; 10112 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 10113 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 10114 if (PartVA.getValVT().isScalableVector()) 10115 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 10116 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 10117 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 10118 MachinePointerInfo())); 10119 ++i; 10120 } 10121 continue; 10122 } 10123 InVals.push_back(ArgValue); 10124 } 10125 10126 if (IsVarArg) { 10127 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 10128 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 10129 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 10130 MachineFrameInfo &MFI = MF.getFrameInfo(); 10131 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 10132 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 10133 10134 // Offset of the first variable argument from stack pointer, and size of 10135 // the vararg save area. For now, the varargs save area is either zero or 10136 // large enough to hold a0-a7. 10137 int VaArgOffset, VarArgsSaveSize; 10138 10139 // If all registers are allocated, then all varargs must be passed on the 10140 // stack and we don't need to save any argregs. 10141 if (ArgRegs.size() == Idx) { 10142 VaArgOffset = CCInfo.getNextStackOffset(); 10143 VarArgsSaveSize = 0; 10144 } else { 10145 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 10146 VaArgOffset = -VarArgsSaveSize; 10147 } 10148 10149 // Record the frame index of the first variable argument 10150 // which is a value necessary to VASTART. 10151 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 10152 RVFI->setVarArgsFrameIndex(FI); 10153 10154 // If saving an odd number of registers then create an extra stack slot to 10155 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 10156 // offsets to even-numbered registered remain 2*XLEN-aligned. 10157 if (Idx % 2) { 10158 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 10159 VarArgsSaveSize += XLenInBytes; 10160 } 10161 10162 // Copy the integer registers that may have been used for passing varargs 10163 // to the vararg save area. 10164 for (unsigned I = Idx; I < ArgRegs.size(); 10165 ++I, VaArgOffset += XLenInBytes) { 10166 const Register Reg = RegInfo.createVirtualRegister(RC); 10167 RegInfo.addLiveIn(ArgRegs[I], Reg); 10168 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 10169 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 10170 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 10171 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 10172 MachinePointerInfo::getFixedStack(MF, FI)); 10173 cast<StoreSDNode>(Store.getNode()) 10174 ->getMemOperand() 10175 ->setValue((Value *)nullptr); 10176 OutChains.push_back(Store); 10177 } 10178 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 10179 } 10180 10181 // All stores are grouped in one node to allow the matching between 10182 // the size of Ins and InVals. This only happens for vararg functions. 10183 if (!OutChains.empty()) { 10184 OutChains.push_back(Chain); 10185 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 10186 } 10187 10188 return Chain; 10189 } 10190 10191 /// isEligibleForTailCallOptimization - Check whether the call is eligible 10192 /// for tail call optimization. 10193 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 10194 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 10195 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 10196 const SmallVector<CCValAssign, 16> &ArgLocs) const { 10197 10198 auto &Callee = CLI.Callee; 10199 auto CalleeCC = CLI.CallConv; 10200 auto &Outs = CLI.Outs; 10201 auto &Caller = MF.getFunction(); 10202 auto CallerCC = Caller.getCallingConv(); 10203 10204 // Exception-handling functions need a special set of instructions to 10205 // indicate a return to the hardware. Tail-calling another function would 10206 // probably break this. 10207 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 10208 // should be expanded as new function attributes are introduced. 10209 if (Caller.hasFnAttribute("interrupt")) 10210 return false; 10211 10212 // Do not tail call opt if the stack is used to pass parameters. 10213 if (CCInfo.getNextStackOffset() != 0) 10214 return false; 10215 10216 // Do not tail call opt if any parameters need to be passed indirectly. 10217 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 10218 // passed indirectly. So the address of the value will be passed in a 10219 // register, or if not available, then the address is put on the stack. In 10220 // order to pass indirectly, space on the stack often needs to be allocated 10221 // in order to store the value. In this case the CCInfo.getNextStackOffset() 10222 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 10223 // are passed CCValAssign::Indirect. 10224 for (auto &VA : ArgLocs) 10225 if (VA.getLocInfo() == CCValAssign::Indirect) 10226 return false; 10227 10228 // Do not tail call opt if either caller or callee uses struct return 10229 // semantics. 10230 auto IsCallerStructRet = Caller.hasStructRetAttr(); 10231 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 10232 if (IsCallerStructRet || IsCalleeStructRet) 10233 return false; 10234 10235 // Externally-defined functions with weak linkage should not be 10236 // tail-called. The behaviour of branch instructions in this situation (as 10237 // used for tail calls) is implementation-defined, so we cannot rely on the 10238 // linker replacing the tail call with a return. 10239 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 10240 const GlobalValue *GV = G->getGlobal(); 10241 if (GV->hasExternalWeakLinkage()) 10242 return false; 10243 } 10244 10245 // The callee has to preserve all registers the caller needs to preserve. 10246 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10247 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 10248 if (CalleeCC != CallerCC) { 10249 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 10250 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 10251 return false; 10252 } 10253 10254 // Byval parameters hand the function a pointer directly into the stack area 10255 // we want to reuse during a tail call. Working around this *is* possible 10256 // but less efficient and uglier in LowerCall. 10257 for (auto &Arg : Outs) 10258 if (Arg.Flags.isByVal()) 10259 return false; 10260 10261 return true; 10262 } 10263 10264 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 10265 return DAG.getDataLayout().getPrefTypeAlign( 10266 VT.getTypeForEVT(*DAG.getContext())); 10267 } 10268 10269 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 10270 // and output parameter nodes. 10271 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 10272 SmallVectorImpl<SDValue> &InVals) const { 10273 SelectionDAG &DAG = CLI.DAG; 10274 SDLoc &DL = CLI.DL; 10275 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 10276 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 10277 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 10278 SDValue Chain = CLI.Chain; 10279 SDValue Callee = CLI.Callee; 10280 bool &IsTailCall = CLI.IsTailCall; 10281 CallingConv::ID CallConv = CLI.CallConv; 10282 bool IsVarArg = CLI.IsVarArg; 10283 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10284 MVT XLenVT = Subtarget.getXLenVT(); 10285 10286 MachineFunction &MF = DAG.getMachineFunction(); 10287 10288 // Analyze the operands of the call, assigning locations to each operand. 10289 SmallVector<CCValAssign, 16> ArgLocs; 10290 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 10291 10292 if (CallConv == CallingConv::GHC) 10293 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 10294 else 10295 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 10296 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 10297 : CC_RISCV); 10298 10299 // Check if it's really possible to do a tail call. 10300 if (IsTailCall) 10301 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 10302 10303 if (IsTailCall) 10304 ++NumTailCalls; 10305 else if (CLI.CB && CLI.CB->isMustTailCall()) 10306 report_fatal_error("failed to perform tail call elimination on a call " 10307 "site marked musttail"); 10308 10309 // Get a count of how many bytes are to be pushed on the stack. 10310 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 10311 10312 // Create local copies for byval args 10313 SmallVector<SDValue, 8> ByValArgs; 10314 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 10315 ISD::ArgFlagsTy Flags = Outs[i].Flags; 10316 if (!Flags.isByVal()) 10317 continue; 10318 10319 SDValue Arg = OutVals[i]; 10320 unsigned Size = Flags.getByValSize(); 10321 Align Alignment = Flags.getNonZeroByValAlign(); 10322 10323 int FI = 10324 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 10325 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 10326 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 10327 10328 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 10329 /*IsVolatile=*/false, 10330 /*AlwaysInline=*/false, IsTailCall, 10331 MachinePointerInfo(), MachinePointerInfo()); 10332 ByValArgs.push_back(FIPtr); 10333 } 10334 10335 if (!IsTailCall) 10336 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 10337 10338 // Copy argument values to their designated locations. 10339 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 10340 SmallVector<SDValue, 8> MemOpChains; 10341 SDValue StackPtr; 10342 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 10343 CCValAssign &VA = ArgLocs[i]; 10344 SDValue ArgValue = OutVals[i]; 10345 ISD::ArgFlagsTy Flags = Outs[i].Flags; 10346 10347 // Handle passing f64 on RV32D with a soft float ABI as a special case. 10348 bool IsF64OnRV32DSoftABI = 10349 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 10350 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 10351 SDValue SplitF64 = DAG.getNode( 10352 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 10353 SDValue Lo = SplitF64.getValue(0); 10354 SDValue Hi = SplitF64.getValue(1); 10355 10356 Register RegLo = VA.getLocReg(); 10357 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 10358 10359 if (RegLo == RISCV::X17) { 10360 // Second half of f64 is passed on the stack. 10361 // Work out the address of the stack slot. 10362 if (!StackPtr.getNode()) 10363 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 10364 // Emit the store. 10365 MemOpChains.push_back( 10366 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 10367 } else { 10368 // Second half of f64 is passed in another GPR. 10369 assert(RegLo < RISCV::X31 && "Invalid register pair"); 10370 Register RegHigh = RegLo + 1; 10371 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 10372 } 10373 continue; 10374 } 10375 10376 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 10377 // as any other MemLoc. 10378 10379 // Promote the value if needed. 10380 // For now, only handle fully promoted and indirect arguments. 10381 if (VA.getLocInfo() == CCValAssign::Indirect) { 10382 // Store the argument in a stack slot and pass its address. 10383 Align StackAlign = 10384 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 10385 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 10386 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 10387 // If the original argument was split (e.g. i128), we need 10388 // to store the required parts of it here (and pass just one address). 10389 // Vectors may be partly split to registers and partly to the stack, in 10390 // which case the base address is partly offset and subsequent stores are 10391 // relative to that. 10392 unsigned ArgIndex = Outs[i].OrigArgIndex; 10393 unsigned ArgPartOffset = Outs[i].PartOffset; 10394 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 10395 // Calculate the total size to store. We don't have access to what we're 10396 // actually storing other than performing the loop and collecting the 10397 // info. 10398 SmallVector<std::pair<SDValue, SDValue>> Parts; 10399 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 10400 SDValue PartValue = OutVals[i + 1]; 10401 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 10402 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 10403 EVT PartVT = PartValue.getValueType(); 10404 if (PartVT.isScalableVector()) 10405 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 10406 StoredSize += PartVT.getStoreSize(); 10407 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 10408 Parts.push_back(std::make_pair(PartValue, Offset)); 10409 ++i; 10410 } 10411 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 10412 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 10413 MemOpChains.push_back( 10414 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 10415 MachinePointerInfo::getFixedStack(MF, FI))); 10416 for (const auto &Part : Parts) { 10417 SDValue PartValue = Part.first; 10418 SDValue PartOffset = Part.second; 10419 SDValue Address = 10420 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 10421 MemOpChains.push_back( 10422 DAG.getStore(Chain, DL, PartValue, Address, 10423 MachinePointerInfo::getFixedStack(MF, FI))); 10424 } 10425 ArgValue = SpillSlot; 10426 } else { 10427 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 10428 } 10429 10430 // Use local copy if it is a byval arg. 10431 if (Flags.isByVal()) 10432 ArgValue = ByValArgs[j++]; 10433 10434 if (VA.isRegLoc()) { 10435 // Queue up the argument copies and emit them at the end. 10436 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 10437 } else { 10438 assert(VA.isMemLoc() && "Argument not register or memory"); 10439 assert(!IsTailCall && "Tail call not allowed if stack is used " 10440 "for passing parameters"); 10441 10442 // Work out the address of the stack slot. 10443 if (!StackPtr.getNode()) 10444 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 10445 SDValue Address = 10446 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 10447 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 10448 10449 // Emit the store. 10450 MemOpChains.push_back( 10451 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 10452 } 10453 } 10454 10455 // Join the stores, which are independent of one another. 10456 if (!MemOpChains.empty()) 10457 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 10458 10459 SDValue Glue; 10460 10461 // Build a sequence of copy-to-reg nodes, chained and glued together. 10462 for (auto &Reg : RegsToPass) { 10463 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 10464 Glue = Chain.getValue(1); 10465 } 10466 10467 // Validate that none of the argument registers have been marked as 10468 // reserved, if so report an error. Do the same for the return address if this 10469 // is not a tailcall. 10470 validateCCReservedRegs(RegsToPass, MF); 10471 if (!IsTailCall && 10472 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 10473 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10474 MF.getFunction(), 10475 "Return address register required, but has been reserved."}); 10476 10477 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 10478 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 10479 // split it and then direct call can be matched by PseudoCALL. 10480 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 10481 const GlobalValue *GV = S->getGlobal(); 10482 10483 unsigned OpFlags = RISCVII::MO_CALL; 10484 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 10485 OpFlags = RISCVII::MO_PLT; 10486 10487 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 10488 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 10489 unsigned OpFlags = RISCVII::MO_CALL; 10490 10491 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 10492 nullptr)) 10493 OpFlags = RISCVII::MO_PLT; 10494 10495 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 10496 } 10497 10498 // The first call operand is the chain and the second is the target address. 10499 SmallVector<SDValue, 8> Ops; 10500 Ops.push_back(Chain); 10501 Ops.push_back(Callee); 10502 10503 // Add argument registers to the end of the list so that they are 10504 // known live into the call. 10505 for (auto &Reg : RegsToPass) 10506 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 10507 10508 if (!IsTailCall) { 10509 // Add a register mask operand representing the call-preserved registers. 10510 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10511 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 10512 assert(Mask && "Missing call preserved mask for calling convention"); 10513 Ops.push_back(DAG.getRegisterMask(Mask)); 10514 } 10515 10516 // Glue the call to the argument copies, if any. 10517 if (Glue.getNode()) 10518 Ops.push_back(Glue); 10519 10520 // Emit the call. 10521 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10522 10523 if (IsTailCall) { 10524 MF.getFrameInfo().setHasTailCall(); 10525 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 10526 } 10527 10528 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 10529 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 10530 Glue = Chain.getValue(1); 10531 10532 // Mark the end of the call, which is glued to the call itself. 10533 Chain = DAG.getCALLSEQ_END(Chain, 10534 DAG.getConstant(NumBytes, DL, PtrVT, true), 10535 DAG.getConstant(0, DL, PtrVT, true), 10536 Glue, DL); 10537 Glue = Chain.getValue(1); 10538 10539 // Assign locations to each value returned by this call. 10540 SmallVector<CCValAssign, 16> RVLocs; 10541 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 10542 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 10543 10544 // Copy all of the result registers out of their specified physreg. 10545 for (auto &VA : RVLocs) { 10546 // Copy the value out 10547 SDValue RetValue = 10548 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 10549 // Glue the RetValue to the end of the call sequence 10550 Chain = RetValue.getValue(1); 10551 Glue = RetValue.getValue(2); 10552 10553 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 10554 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 10555 SDValue RetValue2 = 10556 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 10557 Chain = RetValue2.getValue(1); 10558 Glue = RetValue2.getValue(2); 10559 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 10560 RetValue2); 10561 } 10562 10563 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 10564 10565 InVals.push_back(RetValue); 10566 } 10567 10568 return Chain; 10569 } 10570 10571 bool RISCVTargetLowering::CanLowerReturn( 10572 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 10573 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 10574 SmallVector<CCValAssign, 16> RVLocs; 10575 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 10576 10577 Optional<unsigned> FirstMaskArgument; 10578 if (Subtarget.hasVInstructions()) 10579 FirstMaskArgument = preAssignMask(Outs); 10580 10581 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 10582 MVT VT = Outs[i].VT; 10583 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 10584 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 10585 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 10586 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 10587 *this, FirstMaskArgument)) 10588 return false; 10589 } 10590 return true; 10591 } 10592 10593 SDValue 10594 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 10595 bool IsVarArg, 10596 const SmallVectorImpl<ISD::OutputArg> &Outs, 10597 const SmallVectorImpl<SDValue> &OutVals, 10598 const SDLoc &DL, SelectionDAG &DAG) const { 10599 const MachineFunction &MF = DAG.getMachineFunction(); 10600 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 10601 10602 // Stores the assignment of the return value to a location. 10603 SmallVector<CCValAssign, 16> RVLocs; 10604 10605 // Info about the registers and stack slot. 10606 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 10607 *DAG.getContext()); 10608 10609 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 10610 nullptr, CC_RISCV); 10611 10612 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 10613 report_fatal_error("GHC functions return void only"); 10614 10615 SDValue Glue; 10616 SmallVector<SDValue, 4> RetOps(1, Chain); 10617 10618 // Copy the result values into the output registers. 10619 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 10620 SDValue Val = OutVals[i]; 10621 CCValAssign &VA = RVLocs[i]; 10622 assert(VA.isRegLoc() && "Can only return in registers!"); 10623 10624 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 10625 // Handle returning f64 on RV32D with a soft float ABI. 10626 assert(VA.isRegLoc() && "Expected return via registers"); 10627 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 10628 DAG.getVTList(MVT::i32, MVT::i32), Val); 10629 SDValue Lo = SplitF64.getValue(0); 10630 SDValue Hi = SplitF64.getValue(1); 10631 Register RegLo = VA.getLocReg(); 10632 assert(RegLo < RISCV::X31 && "Invalid register pair"); 10633 Register RegHi = RegLo + 1; 10634 10635 if (STI.isRegisterReservedByUser(RegLo) || 10636 STI.isRegisterReservedByUser(RegHi)) 10637 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10638 MF.getFunction(), 10639 "Return value register required, but has been reserved."}); 10640 10641 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 10642 Glue = Chain.getValue(1); 10643 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 10644 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 10645 Glue = Chain.getValue(1); 10646 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 10647 } else { 10648 // Handle a 'normal' return. 10649 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 10650 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 10651 10652 if (STI.isRegisterReservedByUser(VA.getLocReg())) 10653 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10654 MF.getFunction(), 10655 "Return value register required, but has been reserved."}); 10656 10657 // Guarantee that all emitted copies are stuck together. 10658 Glue = Chain.getValue(1); 10659 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 10660 } 10661 } 10662 10663 RetOps[0] = Chain; // Update chain. 10664 10665 // Add the glue node if we have it. 10666 if (Glue.getNode()) { 10667 RetOps.push_back(Glue); 10668 } 10669 10670 unsigned RetOpc = RISCVISD::RET_FLAG; 10671 // Interrupt service routines use different return instructions. 10672 const Function &Func = DAG.getMachineFunction().getFunction(); 10673 if (Func.hasFnAttribute("interrupt")) { 10674 if (!Func.getReturnType()->isVoidTy()) 10675 report_fatal_error( 10676 "Functions with the interrupt attribute must have void return type!"); 10677 10678 MachineFunction &MF = DAG.getMachineFunction(); 10679 StringRef Kind = 10680 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 10681 10682 if (Kind == "user") 10683 RetOpc = RISCVISD::URET_FLAG; 10684 else if (Kind == "supervisor") 10685 RetOpc = RISCVISD::SRET_FLAG; 10686 else 10687 RetOpc = RISCVISD::MRET_FLAG; 10688 } 10689 10690 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 10691 } 10692 10693 void RISCVTargetLowering::validateCCReservedRegs( 10694 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 10695 MachineFunction &MF) const { 10696 const Function &F = MF.getFunction(); 10697 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 10698 10699 if (llvm::any_of(Regs, [&STI](auto Reg) { 10700 return STI.isRegisterReservedByUser(Reg.first); 10701 })) 10702 F.getContext().diagnose(DiagnosticInfoUnsupported{ 10703 F, "Argument register required, but has been reserved."}); 10704 } 10705 10706 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 10707 return CI->isTailCall(); 10708 } 10709 10710 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 10711 #define NODE_NAME_CASE(NODE) \ 10712 case RISCVISD::NODE: \ 10713 return "RISCVISD::" #NODE; 10714 // clang-format off 10715 switch ((RISCVISD::NodeType)Opcode) { 10716 case RISCVISD::FIRST_NUMBER: 10717 break; 10718 NODE_NAME_CASE(RET_FLAG) 10719 NODE_NAME_CASE(URET_FLAG) 10720 NODE_NAME_CASE(SRET_FLAG) 10721 NODE_NAME_CASE(MRET_FLAG) 10722 NODE_NAME_CASE(CALL) 10723 NODE_NAME_CASE(SELECT_CC) 10724 NODE_NAME_CASE(BR_CC) 10725 NODE_NAME_CASE(BuildPairF64) 10726 NODE_NAME_CASE(SplitF64) 10727 NODE_NAME_CASE(TAIL) 10728 NODE_NAME_CASE(MULHSU) 10729 NODE_NAME_CASE(SLLW) 10730 NODE_NAME_CASE(SRAW) 10731 NODE_NAME_CASE(SRLW) 10732 NODE_NAME_CASE(DIVW) 10733 NODE_NAME_CASE(DIVUW) 10734 NODE_NAME_CASE(REMUW) 10735 NODE_NAME_CASE(ROLW) 10736 NODE_NAME_CASE(RORW) 10737 NODE_NAME_CASE(CLZW) 10738 NODE_NAME_CASE(CTZW) 10739 NODE_NAME_CASE(FSLW) 10740 NODE_NAME_CASE(FSRW) 10741 NODE_NAME_CASE(FSL) 10742 NODE_NAME_CASE(FSR) 10743 NODE_NAME_CASE(FMV_H_X) 10744 NODE_NAME_CASE(FMV_X_ANYEXTH) 10745 NODE_NAME_CASE(FMV_X_SIGNEXTH) 10746 NODE_NAME_CASE(FMV_W_X_RV64) 10747 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 10748 NODE_NAME_CASE(FCVT_X) 10749 NODE_NAME_CASE(FCVT_XU) 10750 NODE_NAME_CASE(FCVT_W_RV64) 10751 NODE_NAME_CASE(FCVT_WU_RV64) 10752 NODE_NAME_CASE(STRICT_FCVT_W_RV64) 10753 NODE_NAME_CASE(STRICT_FCVT_WU_RV64) 10754 NODE_NAME_CASE(READ_CYCLE_WIDE) 10755 NODE_NAME_CASE(GREV) 10756 NODE_NAME_CASE(GREVW) 10757 NODE_NAME_CASE(GORC) 10758 NODE_NAME_CASE(GORCW) 10759 NODE_NAME_CASE(SHFL) 10760 NODE_NAME_CASE(SHFLW) 10761 NODE_NAME_CASE(UNSHFL) 10762 NODE_NAME_CASE(UNSHFLW) 10763 NODE_NAME_CASE(BFP) 10764 NODE_NAME_CASE(BFPW) 10765 NODE_NAME_CASE(BCOMPRESS) 10766 NODE_NAME_CASE(BCOMPRESSW) 10767 NODE_NAME_CASE(BDECOMPRESS) 10768 NODE_NAME_CASE(BDECOMPRESSW) 10769 NODE_NAME_CASE(VMV_V_X_VL) 10770 NODE_NAME_CASE(VFMV_V_F_VL) 10771 NODE_NAME_CASE(VMV_X_S) 10772 NODE_NAME_CASE(VMV_S_X_VL) 10773 NODE_NAME_CASE(VFMV_S_F_VL) 10774 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 10775 NODE_NAME_CASE(READ_VLENB) 10776 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 10777 NODE_NAME_CASE(VSLIDEUP_VL) 10778 NODE_NAME_CASE(VSLIDE1UP_VL) 10779 NODE_NAME_CASE(VSLIDEDOWN_VL) 10780 NODE_NAME_CASE(VSLIDE1DOWN_VL) 10781 NODE_NAME_CASE(VID_VL) 10782 NODE_NAME_CASE(VFNCVT_ROD_VL) 10783 NODE_NAME_CASE(VECREDUCE_ADD_VL) 10784 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 10785 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 10786 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 10787 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 10788 NODE_NAME_CASE(VECREDUCE_AND_VL) 10789 NODE_NAME_CASE(VECREDUCE_OR_VL) 10790 NODE_NAME_CASE(VECREDUCE_XOR_VL) 10791 NODE_NAME_CASE(VECREDUCE_FADD_VL) 10792 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 10793 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 10794 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 10795 NODE_NAME_CASE(ADD_VL) 10796 NODE_NAME_CASE(AND_VL) 10797 NODE_NAME_CASE(MUL_VL) 10798 NODE_NAME_CASE(OR_VL) 10799 NODE_NAME_CASE(SDIV_VL) 10800 NODE_NAME_CASE(SHL_VL) 10801 NODE_NAME_CASE(SREM_VL) 10802 NODE_NAME_CASE(SRA_VL) 10803 NODE_NAME_CASE(SRL_VL) 10804 NODE_NAME_CASE(SUB_VL) 10805 NODE_NAME_CASE(UDIV_VL) 10806 NODE_NAME_CASE(UREM_VL) 10807 NODE_NAME_CASE(XOR_VL) 10808 NODE_NAME_CASE(SADDSAT_VL) 10809 NODE_NAME_CASE(UADDSAT_VL) 10810 NODE_NAME_CASE(SSUBSAT_VL) 10811 NODE_NAME_CASE(USUBSAT_VL) 10812 NODE_NAME_CASE(FADD_VL) 10813 NODE_NAME_CASE(FSUB_VL) 10814 NODE_NAME_CASE(FMUL_VL) 10815 NODE_NAME_CASE(FDIV_VL) 10816 NODE_NAME_CASE(FNEG_VL) 10817 NODE_NAME_CASE(FABS_VL) 10818 NODE_NAME_CASE(FSQRT_VL) 10819 NODE_NAME_CASE(FMA_VL) 10820 NODE_NAME_CASE(FCOPYSIGN_VL) 10821 NODE_NAME_CASE(SMIN_VL) 10822 NODE_NAME_CASE(SMAX_VL) 10823 NODE_NAME_CASE(UMIN_VL) 10824 NODE_NAME_CASE(UMAX_VL) 10825 NODE_NAME_CASE(FMINNUM_VL) 10826 NODE_NAME_CASE(FMAXNUM_VL) 10827 NODE_NAME_CASE(MULHS_VL) 10828 NODE_NAME_CASE(MULHU_VL) 10829 NODE_NAME_CASE(FP_TO_SINT_VL) 10830 NODE_NAME_CASE(FP_TO_UINT_VL) 10831 NODE_NAME_CASE(SINT_TO_FP_VL) 10832 NODE_NAME_CASE(UINT_TO_FP_VL) 10833 NODE_NAME_CASE(FP_EXTEND_VL) 10834 NODE_NAME_CASE(FP_ROUND_VL) 10835 NODE_NAME_CASE(VWMUL_VL) 10836 NODE_NAME_CASE(VWMULU_VL) 10837 NODE_NAME_CASE(VWMULSU_VL) 10838 NODE_NAME_CASE(VWADD_VL) 10839 NODE_NAME_CASE(VWADDU_VL) 10840 NODE_NAME_CASE(VWSUB_VL) 10841 NODE_NAME_CASE(VWSUBU_VL) 10842 NODE_NAME_CASE(VWADD_W_VL) 10843 NODE_NAME_CASE(VWADDU_W_VL) 10844 NODE_NAME_CASE(VWSUB_W_VL) 10845 NODE_NAME_CASE(VWSUBU_W_VL) 10846 NODE_NAME_CASE(SETCC_VL) 10847 NODE_NAME_CASE(VSELECT_VL) 10848 NODE_NAME_CASE(VP_MERGE_VL) 10849 NODE_NAME_CASE(VMAND_VL) 10850 NODE_NAME_CASE(VMOR_VL) 10851 NODE_NAME_CASE(VMXOR_VL) 10852 NODE_NAME_CASE(VMCLR_VL) 10853 NODE_NAME_CASE(VMSET_VL) 10854 NODE_NAME_CASE(VRGATHER_VX_VL) 10855 NODE_NAME_CASE(VRGATHER_VV_VL) 10856 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 10857 NODE_NAME_CASE(VSEXT_VL) 10858 NODE_NAME_CASE(VZEXT_VL) 10859 NODE_NAME_CASE(VCPOP_VL) 10860 NODE_NAME_CASE(READ_CSR) 10861 NODE_NAME_CASE(WRITE_CSR) 10862 NODE_NAME_CASE(SWAP_CSR) 10863 } 10864 // clang-format on 10865 return nullptr; 10866 #undef NODE_NAME_CASE 10867 } 10868 10869 /// getConstraintType - Given a constraint letter, return the type of 10870 /// constraint it is for this target. 10871 RISCVTargetLowering::ConstraintType 10872 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 10873 if (Constraint.size() == 1) { 10874 switch (Constraint[0]) { 10875 default: 10876 break; 10877 case 'f': 10878 return C_RegisterClass; 10879 case 'I': 10880 case 'J': 10881 case 'K': 10882 return C_Immediate; 10883 case 'A': 10884 return C_Memory; 10885 case 'S': // A symbolic address 10886 return C_Other; 10887 } 10888 } else { 10889 if (Constraint == "vr" || Constraint == "vm") 10890 return C_RegisterClass; 10891 } 10892 return TargetLowering::getConstraintType(Constraint); 10893 } 10894 10895 std::pair<unsigned, const TargetRegisterClass *> 10896 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 10897 StringRef Constraint, 10898 MVT VT) const { 10899 // First, see if this is a constraint that directly corresponds to a 10900 // RISCV register class. 10901 if (Constraint.size() == 1) { 10902 switch (Constraint[0]) { 10903 case 'r': 10904 // TODO: Support fixed vectors up to XLen for P extension? 10905 if (VT.isVector()) 10906 break; 10907 return std::make_pair(0U, &RISCV::GPRRegClass); 10908 case 'f': 10909 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 10910 return std::make_pair(0U, &RISCV::FPR16RegClass); 10911 if (Subtarget.hasStdExtF() && VT == MVT::f32) 10912 return std::make_pair(0U, &RISCV::FPR32RegClass); 10913 if (Subtarget.hasStdExtD() && VT == MVT::f64) 10914 return std::make_pair(0U, &RISCV::FPR64RegClass); 10915 break; 10916 default: 10917 break; 10918 } 10919 } else if (Constraint == "vr") { 10920 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 10921 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 10922 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 10923 return std::make_pair(0U, RC); 10924 } 10925 } else if (Constraint == "vm") { 10926 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 10927 return std::make_pair(0U, &RISCV::VMV0RegClass); 10928 } 10929 10930 // Clang will correctly decode the usage of register name aliases into their 10931 // official names. However, other frontends like `rustc` do not. This allows 10932 // users of these frontends to use the ABI names for registers in LLVM-style 10933 // register constraints. 10934 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 10935 .Case("{zero}", RISCV::X0) 10936 .Case("{ra}", RISCV::X1) 10937 .Case("{sp}", RISCV::X2) 10938 .Case("{gp}", RISCV::X3) 10939 .Case("{tp}", RISCV::X4) 10940 .Case("{t0}", RISCV::X5) 10941 .Case("{t1}", RISCV::X6) 10942 .Case("{t2}", RISCV::X7) 10943 .Cases("{s0}", "{fp}", RISCV::X8) 10944 .Case("{s1}", RISCV::X9) 10945 .Case("{a0}", RISCV::X10) 10946 .Case("{a1}", RISCV::X11) 10947 .Case("{a2}", RISCV::X12) 10948 .Case("{a3}", RISCV::X13) 10949 .Case("{a4}", RISCV::X14) 10950 .Case("{a5}", RISCV::X15) 10951 .Case("{a6}", RISCV::X16) 10952 .Case("{a7}", RISCV::X17) 10953 .Case("{s2}", RISCV::X18) 10954 .Case("{s3}", RISCV::X19) 10955 .Case("{s4}", RISCV::X20) 10956 .Case("{s5}", RISCV::X21) 10957 .Case("{s6}", RISCV::X22) 10958 .Case("{s7}", RISCV::X23) 10959 .Case("{s8}", RISCV::X24) 10960 .Case("{s9}", RISCV::X25) 10961 .Case("{s10}", RISCV::X26) 10962 .Case("{s11}", RISCV::X27) 10963 .Case("{t3}", RISCV::X28) 10964 .Case("{t4}", RISCV::X29) 10965 .Case("{t5}", RISCV::X30) 10966 .Case("{t6}", RISCV::X31) 10967 .Default(RISCV::NoRegister); 10968 if (XRegFromAlias != RISCV::NoRegister) 10969 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 10970 10971 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 10972 // TableGen record rather than the AsmName to choose registers for InlineAsm 10973 // constraints, plus we want to match those names to the widest floating point 10974 // register type available, manually select floating point registers here. 10975 // 10976 // The second case is the ABI name of the register, so that frontends can also 10977 // use the ABI names in register constraint lists. 10978 if (Subtarget.hasStdExtF()) { 10979 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 10980 .Cases("{f0}", "{ft0}", RISCV::F0_F) 10981 .Cases("{f1}", "{ft1}", RISCV::F1_F) 10982 .Cases("{f2}", "{ft2}", RISCV::F2_F) 10983 .Cases("{f3}", "{ft3}", RISCV::F3_F) 10984 .Cases("{f4}", "{ft4}", RISCV::F4_F) 10985 .Cases("{f5}", "{ft5}", RISCV::F5_F) 10986 .Cases("{f6}", "{ft6}", RISCV::F6_F) 10987 .Cases("{f7}", "{ft7}", RISCV::F7_F) 10988 .Cases("{f8}", "{fs0}", RISCV::F8_F) 10989 .Cases("{f9}", "{fs1}", RISCV::F9_F) 10990 .Cases("{f10}", "{fa0}", RISCV::F10_F) 10991 .Cases("{f11}", "{fa1}", RISCV::F11_F) 10992 .Cases("{f12}", "{fa2}", RISCV::F12_F) 10993 .Cases("{f13}", "{fa3}", RISCV::F13_F) 10994 .Cases("{f14}", "{fa4}", RISCV::F14_F) 10995 .Cases("{f15}", "{fa5}", RISCV::F15_F) 10996 .Cases("{f16}", "{fa6}", RISCV::F16_F) 10997 .Cases("{f17}", "{fa7}", RISCV::F17_F) 10998 .Cases("{f18}", "{fs2}", RISCV::F18_F) 10999 .Cases("{f19}", "{fs3}", RISCV::F19_F) 11000 .Cases("{f20}", "{fs4}", RISCV::F20_F) 11001 .Cases("{f21}", "{fs5}", RISCV::F21_F) 11002 .Cases("{f22}", "{fs6}", RISCV::F22_F) 11003 .Cases("{f23}", "{fs7}", RISCV::F23_F) 11004 .Cases("{f24}", "{fs8}", RISCV::F24_F) 11005 .Cases("{f25}", "{fs9}", RISCV::F25_F) 11006 .Cases("{f26}", "{fs10}", RISCV::F26_F) 11007 .Cases("{f27}", "{fs11}", RISCV::F27_F) 11008 .Cases("{f28}", "{ft8}", RISCV::F28_F) 11009 .Cases("{f29}", "{ft9}", RISCV::F29_F) 11010 .Cases("{f30}", "{ft10}", RISCV::F30_F) 11011 .Cases("{f31}", "{ft11}", RISCV::F31_F) 11012 .Default(RISCV::NoRegister); 11013 if (FReg != RISCV::NoRegister) { 11014 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 11015 if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) { 11016 unsigned RegNo = FReg - RISCV::F0_F; 11017 unsigned DReg = RISCV::F0_D + RegNo; 11018 return std::make_pair(DReg, &RISCV::FPR64RegClass); 11019 } 11020 if (VT == MVT::f32 || VT == MVT::Other) 11021 return std::make_pair(FReg, &RISCV::FPR32RegClass); 11022 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) { 11023 unsigned RegNo = FReg - RISCV::F0_F; 11024 unsigned HReg = RISCV::F0_H + RegNo; 11025 return std::make_pair(HReg, &RISCV::FPR16RegClass); 11026 } 11027 } 11028 } 11029 11030 if (Subtarget.hasVInstructions()) { 11031 Register VReg = StringSwitch<Register>(Constraint.lower()) 11032 .Case("{v0}", RISCV::V0) 11033 .Case("{v1}", RISCV::V1) 11034 .Case("{v2}", RISCV::V2) 11035 .Case("{v3}", RISCV::V3) 11036 .Case("{v4}", RISCV::V4) 11037 .Case("{v5}", RISCV::V5) 11038 .Case("{v6}", RISCV::V6) 11039 .Case("{v7}", RISCV::V7) 11040 .Case("{v8}", RISCV::V8) 11041 .Case("{v9}", RISCV::V9) 11042 .Case("{v10}", RISCV::V10) 11043 .Case("{v11}", RISCV::V11) 11044 .Case("{v12}", RISCV::V12) 11045 .Case("{v13}", RISCV::V13) 11046 .Case("{v14}", RISCV::V14) 11047 .Case("{v15}", RISCV::V15) 11048 .Case("{v16}", RISCV::V16) 11049 .Case("{v17}", RISCV::V17) 11050 .Case("{v18}", RISCV::V18) 11051 .Case("{v19}", RISCV::V19) 11052 .Case("{v20}", RISCV::V20) 11053 .Case("{v21}", RISCV::V21) 11054 .Case("{v22}", RISCV::V22) 11055 .Case("{v23}", RISCV::V23) 11056 .Case("{v24}", RISCV::V24) 11057 .Case("{v25}", RISCV::V25) 11058 .Case("{v26}", RISCV::V26) 11059 .Case("{v27}", RISCV::V27) 11060 .Case("{v28}", RISCV::V28) 11061 .Case("{v29}", RISCV::V29) 11062 .Case("{v30}", RISCV::V30) 11063 .Case("{v31}", RISCV::V31) 11064 .Default(RISCV::NoRegister); 11065 if (VReg != RISCV::NoRegister) { 11066 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 11067 return std::make_pair(VReg, &RISCV::VMRegClass); 11068 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 11069 return std::make_pair(VReg, &RISCV::VRRegClass); 11070 for (const auto *RC : 11071 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 11072 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 11073 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 11074 return std::make_pair(VReg, RC); 11075 } 11076 } 11077 } 11078 } 11079 11080 std::pair<Register, const TargetRegisterClass *> Res = 11081 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 11082 11083 // If we picked one of the Zfinx register classes, remap it to the GPR class. 11084 // FIXME: When Zfinx is supported in CodeGen this will need to take the 11085 // Subtarget into account. 11086 if (Res.second == &RISCV::GPRF16RegClass || 11087 Res.second == &RISCV::GPRF32RegClass || 11088 Res.second == &RISCV::GPRF64RegClass) 11089 return std::make_pair(Res.first, &RISCV::GPRRegClass); 11090 11091 return Res; 11092 } 11093 11094 unsigned 11095 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 11096 // Currently only support length 1 constraints. 11097 if (ConstraintCode.size() == 1) { 11098 switch (ConstraintCode[0]) { 11099 case 'A': 11100 return InlineAsm::Constraint_A; 11101 default: 11102 break; 11103 } 11104 } 11105 11106 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 11107 } 11108 11109 void RISCVTargetLowering::LowerAsmOperandForConstraint( 11110 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 11111 SelectionDAG &DAG) const { 11112 // Currently only support length 1 constraints. 11113 if (Constraint.length() == 1) { 11114 switch (Constraint[0]) { 11115 case 'I': 11116 // Validate & create a 12-bit signed immediate operand. 11117 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 11118 uint64_t CVal = C->getSExtValue(); 11119 if (isInt<12>(CVal)) 11120 Ops.push_back( 11121 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 11122 } 11123 return; 11124 case 'J': 11125 // Validate & create an integer zero operand. 11126 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 11127 if (C->getZExtValue() == 0) 11128 Ops.push_back( 11129 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 11130 return; 11131 case 'K': 11132 // Validate & create a 5-bit unsigned immediate operand. 11133 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 11134 uint64_t CVal = C->getZExtValue(); 11135 if (isUInt<5>(CVal)) 11136 Ops.push_back( 11137 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 11138 } 11139 return; 11140 case 'S': 11141 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 11142 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 11143 GA->getValueType(0))); 11144 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 11145 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 11146 BA->getValueType(0))); 11147 } 11148 return; 11149 default: 11150 break; 11151 } 11152 } 11153 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 11154 } 11155 11156 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 11157 Instruction *Inst, 11158 AtomicOrdering Ord) const { 11159 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 11160 return Builder.CreateFence(Ord); 11161 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 11162 return Builder.CreateFence(AtomicOrdering::Release); 11163 return nullptr; 11164 } 11165 11166 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 11167 Instruction *Inst, 11168 AtomicOrdering Ord) const { 11169 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 11170 return Builder.CreateFence(AtomicOrdering::Acquire); 11171 return nullptr; 11172 } 11173 11174 TargetLowering::AtomicExpansionKind 11175 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 11176 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 11177 // point operations can't be used in an lr/sc sequence without breaking the 11178 // forward-progress guarantee. 11179 if (AI->isFloatingPointOperation()) 11180 return AtomicExpansionKind::CmpXChg; 11181 11182 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 11183 if (Size == 8 || Size == 16) 11184 return AtomicExpansionKind::MaskedIntrinsic; 11185 return AtomicExpansionKind::None; 11186 } 11187 11188 static Intrinsic::ID 11189 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 11190 if (XLen == 32) { 11191 switch (BinOp) { 11192 default: 11193 llvm_unreachable("Unexpected AtomicRMW BinOp"); 11194 case AtomicRMWInst::Xchg: 11195 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 11196 case AtomicRMWInst::Add: 11197 return Intrinsic::riscv_masked_atomicrmw_add_i32; 11198 case AtomicRMWInst::Sub: 11199 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 11200 case AtomicRMWInst::Nand: 11201 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 11202 case AtomicRMWInst::Max: 11203 return Intrinsic::riscv_masked_atomicrmw_max_i32; 11204 case AtomicRMWInst::Min: 11205 return Intrinsic::riscv_masked_atomicrmw_min_i32; 11206 case AtomicRMWInst::UMax: 11207 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 11208 case AtomicRMWInst::UMin: 11209 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 11210 } 11211 } 11212 11213 if (XLen == 64) { 11214 switch (BinOp) { 11215 default: 11216 llvm_unreachable("Unexpected AtomicRMW BinOp"); 11217 case AtomicRMWInst::Xchg: 11218 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 11219 case AtomicRMWInst::Add: 11220 return Intrinsic::riscv_masked_atomicrmw_add_i64; 11221 case AtomicRMWInst::Sub: 11222 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 11223 case AtomicRMWInst::Nand: 11224 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 11225 case AtomicRMWInst::Max: 11226 return Intrinsic::riscv_masked_atomicrmw_max_i64; 11227 case AtomicRMWInst::Min: 11228 return Intrinsic::riscv_masked_atomicrmw_min_i64; 11229 case AtomicRMWInst::UMax: 11230 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 11231 case AtomicRMWInst::UMin: 11232 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 11233 } 11234 } 11235 11236 llvm_unreachable("Unexpected XLen\n"); 11237 } 11238 11239 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 11240 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 11241 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 11242 unsigned XLen = Subtarget.getXLen(); 11243 Value *Ordering = 11244 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 11245 Type *Tys[] = {AlignedAddr->getType()}; 11246 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 11247 AI->getModule(), 11248 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 11249 11250 if (XLen == 64) { 11251 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 11252 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 11253 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 11254 } 11255 11256 Value *Result; 11257 11258 // Must pass the shift amount needed to sign extend the loaded value prior 11259 // to performing a signed comparison for min/max. ShiftAmt is the number of 11260 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 11261 // is the number of bits to left+right shift the value in order to 11262 // sign-extend. 11263 if (AI->getOperation() == AtomicRMWInst::Min || 11264 AI->getOperation() == AtomicRMWInst::Max) { 11265 const DataLayout &DL = AI->getModule()->getDataLayout(); 11266 unsigned ValWidth = 11267 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 11268 Value *SextShamt = 11269 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 11270 Result = Builder.CreateCall(LrwOpScwLoop, 11271 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 11272 } else { 11273 Result = 11274 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 11275 } 11276 11277 if (XLen == 64) 11278 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 11279 return Result; 11280 } 11281 11282 TargetLowering::AtomicExpansionKind 11283 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 11284 AtomicCmpXchgInst *CI) const { 11285 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 11286 if (Size == 8 || Size == 16) 11287 return AtomicExpansionKind::MaskedIntrinsic; 11288 return AtomicExpansionKind::None; 11289 } 11290 11291 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 11292 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 11293 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 11294 unsigned XLen = Subtarget.getXLen(); 11295 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 11296 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 11297 if (XLen == 64) { 11298 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 11299 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 11300 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 11301 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 11302 } 11303 Type *Tys[] = {AlignedAddr->getType()}; 11304 Function *MaskedCmpXchg = 11305 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 11306 Value *Result = Builder.CreateCall( 11307 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 11308 if (XLen == 64) 11309 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 11310 return Result; 11311 } 11312 11313 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 11314 return false; 11315 } 11316 11317 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 11318 EVT VT) const { 11319 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 11320 return false; 11321 11322 switch (FPVT.getSimpleVT().SimpleTy) { 11323 case MVT::f16: 11324 return Subtarget.hasStdExtZfh(); 11325 case MVT::f32: 11326 return Subtarget.hasStdExtF(); 11327 case MVT::f64: 11328 return Subtarget.hasStdExtD(); 11329 default: 11330 return false; 11331 } 11332 } 11333 11334 unsigned RISCVTargetLowering::getJumpTableEncoding() const { 11335 // If we are using the small code model, we can reduce size of jump table 11336 // entry to 4 bytes. 11337 if (Subtarget.is64Bit() && !isPositionIndependent() && 11338 getTargetMachine().getCodeModel() == CodeModel::Small) { 11339 return MachineJumpTableInfo::EK_Custom32; 11340 } 11341 return TargetLowering::getJumpTableEncoding(); 11342 } 11343 11344 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry( 11345 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 11346 unsigned uid, MCContext &Ctx) const { 11347 assert(Subtarget.is64Bit() && !isPositionIndependent() && 11348 getTargetMachine().getCodeModel() == CodeModel::Small); 11349 return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 11350 } 11351 11352 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 11353 EVT VT) const { 11354 VT = VT.getScalarType(); 11355 11356 if (!VT.isSimple()) 11357 return false; 11358 11359 switch (VT.getSimpleVT().SimpleTy) { 11360 case MVT::f16: 11361 return Subtarget.hasStdExtZfh(); 11362 case MVT::f32: 11363 return Subtarget.hasStdExtF(); 11364 case MVT::f64: 11365 return Subtarget.hasStdExtD(); 11366 default: 11367 break; 11368 } 11369 11370 return false; 11371 } 11372 11373 Register RISCVTargetLowering::getExceptionPointerRegister( 11374 const Constant *PersonalityFn) const { 11375 return RISCV::X10; 11376 } 11377 11378 Register RISCVTargetLowering::getExceptionSelectorRegister( 11379 const Constant *PersonalityFn) const { 11380 return RISCV::X11; 11381 } 11382 11383 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 11384 // Return false to suppress the unnecessary extensions if the LibCall 11385 // arguments or return value is f32 type for LP64 ABI. 11386 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 11387 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 11388 return false; 11389 11390 return true; 11391 } 11392 11393 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 11394 if (Subtarget.is64Bit() && Type == MVT::i32) 11395 return true; 11396 11397 return IsSigned; 11398 } 11399 11400 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 11401 SDValue C) const { 11402 // Check integral scalar types. 11403 if (VT.isScalarInteger()) { 11404 // Omit the optimization if the sub target has the M extension and the data 11405 // size exceeds XLen. 11406 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 11407 return false; 11408 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 11409 // Break the MUL to a SLLI and an ADD/SUB. 11410 const APInt &Imm = ConstNode->getAPIntValue(); 11411 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 11412 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 11413 return true; 11414 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 11415 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 11416 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 11417 (Imm - 8).isPowerOf2())) 11418 return true; 11419 // Omit the following optimization if the sub target has the M extension 11420 // and the data size >= XLen. 11421 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 11422 return false; 11423 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 11424 // a pair of LUI/ADDI. 11425 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 11426 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 11427 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 11428 (1 - ImmS).isPowerOf2()) 11429 return true; 11430 } 11431 } 11432 } 11433 11434 return false; 11435 } 11436 11437 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode, 11438 SDValue ConstNode) const { 11439 // Let the DAGCombiner decide for vectors. 11440 EVT VT = AddNode.getValueType(); 11441 if (VT.isVector()) 11442 return true; 11443 11444 // Let the DAGCombiner decide for larger types. 11445 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 11446 return true; 11447 11448 // It is worse if c1 is simm12 while c1*c2 is not. 11449 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 11450 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 11451 const APInt &C1 = C1Node->getAPIntValue(); 11452 const APInt &C2 = C2Node->getAPIntValue(); 11453 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 11454 return false; 11455 11456 // Default to true and let the DAGCombiner decide. 11457 return true; 11458 } 11459 11460 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 11461 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 11462 bool *Fast) const { 11463 if (!VT.isVector()) 11464 return false; 11465 11466 EVT ElemVT = VT.getVectorElementType(); 11467 if (Alignment >= ElemVT.getStoreSize()) { 11468 if (Fast) 11469 *Fast = true; 11470 return true; 11471 } 11472 11473 return false; 11474 } 11475 11476 bool RISCVTargetLowering::splitValueIntoRegisterParts( 11477 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 11478 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 11479 bool IsABIRegCopy = CC.hasValue(); 11480 EVT ValueVT = Val.getValueType(); 11481 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 11482 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 11483 // and cast to f32. 11484 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 11485 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 11486 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 11487 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 11488 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 11489 Parts[0] = Val; 11490 return true; 11491 } 11492 11493 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 11494 LLVMContext &Context = *DAG.getContext(); 11495 EVT ValueEltVT = ValueVT.getVectorElementType(); 11496 EVT PartEltVT = PartVT.getVectorElementType(); 11497 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 11498 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 11499 if (PartVTBitSize % ValueVTBitSize == 0) { 11500 assert(PartVTBitSize >= ValueVTBitSize); 11501 // If the element types are different, bitcast to the same element type of 11502 // PartVT first. 11503 // Give an example here, we want copy a <vscale x 1 x i8> value to 11504 // <vscale x 4 x i16>. 11505 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 11506 // subvector, then we can bitcast to <vscale x 4 x i16>. 11507 if (ValueEltVT != PartEltVT) { 11508 if (PartVTBitSize > ValueVTBitSize) { 11509 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 11510 assert(Count != 0 && "The number of element should not be zero."); 11511 EVT SameEltTypeVT = 11512 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 11513 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 11514 DAG.getUNDEF(SameEltTypeVT), Val, 11515 DAG.getVectorIdxConstant(0, DL)); 11516 } 11517 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 11518 } else { 11519 Val = 11520 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 11521 Val, DAG.getVectorIdxConstant(0, DL)); 11522 } 11523 Parts[0] = Val; 11524 return true; 11525 } 11526 } 11527 return false; 11528 } 11529 11530 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 11531 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 11532 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 11533 bool IsABIRegCopy = CC.hasValue(); 11534 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 11535 SDValue Val = Parts[0]; 11536 11537 // Cast the f32 to i32, truncate to i16, and cast back to f16. 11538 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 11539 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 11540 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 11541 return Val; 11542 } 11543 11544 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 11545 LLVMContext &Context = *DAG.getContext(); 11546 SDValue Val = Parts[0]; 11547 EVT ValueEltVT = ValueVT.getVectorElementType(); 11548 EVT PartEltVT = PartVT.getVectorElementType(); 11549 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 11550 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 11551 if (PartVTBitSize % ValueVTBitSize == 0) { 11552 assert(PartVTBitSize >= ValueVTBitSize); 11553 EVT SameEltTypeVT = ValueVT; 11554 // If the element types are different, convert it to the same element type 11555 // of PartVT. 11556 // Give an example here, we want copy a <vscale x 1 x i8> value from 11557 // <vscale x 4 x i16>. 11558 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 11559 // then we can extract <vscale x 1 x i8>. 11560 if (ValueEltVT != PartEltVT) { 11561 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 11562 assert(Count != 0 && "The number of element should not be zero."); 11563 SameEltTypeVT = 11564 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 11565 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 11566 } 11567 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 11568 DAG.getVectorIdxConstant(0, DL)); 11569 return Val; 11570 } 11571 } 11572 return SDValue(); 11573 } 11574 11575 SDValue 11576 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 11577 SelectionDAG &DAG, 11578 SmallVectorImpl<SDNode *> &Created) const { 11579 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 11580 if (isIntDivCheap(N->getValueType(0), Attr)) 11581 return SDValue(N, 0); // Lower SDIV as SDIV 11582 11583 assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) && 11584 "Unexpected divisor!"); 11585 11586 // Conditional move is needed, so do the transformation iff Zbt is enabled. 11587 if (!Subtarget.hasStdExtZbt()) 11588 return SDValue(); 11589 11590 // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation. 11591 // Besides, more critical path instructions will be generated when dividing 11592 // by 2. So we keep using the original DAGs for these cases. 11593 unsigned Lg2 = Divisor.countTrailingZeros(); 11594 if (Lg2 == 1 || Lg2 >= 12) 11595 return SDValue(); 11596 11597 // fold (sdiv X, pow2) 11598 EVT VT = N->getValueType(0); 11599 if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64)) 11600 return SDValue(); 11601 11602 SDLoc DL(N); 11603 SDValue N0 = N->getOperand(0); 11604 SDValue Zero = DAG.getConstant(0, DL, VT); 11605 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); 11606 11607 // Add (N0 < 0) ? Pow2 - 1 : 0; 11608 SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT); 11609 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 11610 SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 11611 11612 Created.push_back(Cmp.getNode()); 11613 Created.push_back(Add.getNode()); 11614 Created.push_back(Sel.getNode()); 11615 11616 // Divide by pow2. 11617 SDValue SRA = 11618 DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT)); 11619 11620 // If we're dividing by a positive value, we're done. Otherwise, we must 11621 // negate the result. 11622 if (Divisor.isNonNegative()) 11623 return SRA; 11624 11625 Created.push_back(SRA.getNode()); 11626 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 11627 } 11628 11629 #define GET_REGISTER_MATCHER 11630 #include "RISCVGenAsmMatcher.inc" 11631 11632 Register 11633 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 11634 const MachineFunction &MF) const { 11635 Register Reg = MatchRegisterAltName(RegName); 11636 if (Reg == RISCV::NoRegister) 11637 Reg = MatchRegisterName(RegName); 11638 if (Reg == RISCV::NoRegister) 11639 report_fatal_error( 11640 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 11641 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 11642 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 11643 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 11644 StringRef(RegName) + "\".")); 11645 return Reg; 11646 } 11647 11648 namespace llvm { 11649 namespace RISCVVIntrinsicsTable { 11650 11651 #define GET_RISCVVIntrinsicsTable_IMPL 11652 #include "RISCVGenSearchableTables.inc" 11653 11654 } // namespace RISCVVIntrinsicsTable 11655 11656 } // namespace llvm 11657