1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicsRISCV.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "riscv-lower"
45 
46 STATISTIC(NumTailCalls, "Number of tail calls");
47 
48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
49                                          const RISCVSubtarget &STI)
50     : TargetLowering(TM), Subtarget(STI) {
51 
52   if (Subtarget.isRV32E())
53     report_fatal_error("Codegen not yet implemented for RV32E");
54 
55   RISCVABI::ABI ABI = Subtarget.getTargetABI();
56   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
57 
58   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
59       !Subtarget.hasStdExtF()) {
60     errs() << "Hard-float 'f' ABI can't be used for a target that "
61                 "doesn't support the F instruction set extension (ignoring "
62                           "target-abi)\n";
63     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
64   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
65              !Subtarget.hasStdExtD()) {
66     errs() << "Hard-float 'd' ABI can't be used for a target that "
67               "doesn't support the D instruction set extension (ignoring "
68               "target-abi)\n";
69     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
70   }
71 
72   switch (ABI) {
73   default:
74     report_fatal_error("Don't know how to lower this ABI");
75   case RISCVABI::ABI_ILP32:
76   case RISCVABI::ABI_ILP32F:
77   case RISCVABI::ABI_ILP32D:
78   case RISCVABI::ABI_LP64:
79   case RISCVABI::ABI_LP64F:
80   case RISCVABI::ABI_LP64D:
81     break;
82   }
83 
84   MVT XLenVT = Subtarget.getXLenVT();
85 
86   // Set up the register classes.
87   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
88 
89   if (Subtarget.hasStdExtZfh())
90     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
91   if (Subtarget.hasStdExtF())
92     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
93   if (Subtarget.hasStdExtD())
94     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
95 
96   static const MVT::SimpleValueType BoolVecVTs[] = {
97       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
98       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
99   static const MVT::SimpleValueType IntVecVTs[] = {
100       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
101       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
102       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
103       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
104       MVT::nxv4i64, MVT::nxv8i64};
105   static const MVT::SimpleValueType F16VecVTs[] = {
106       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
107       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
108   static const MVT::SimpleValueType F32VecVTs[] = {
109       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
110   static const MVT::SimpleValueType F64VecVTs[] = {
111       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
112 
113   if (Subtarget.hasVInstructions()) {
114     auto addRegClassForRVV = [this](MVT VT) {
115       unsigned Size = VT.getSizeInBits().getKnownMinValue();
116       assert(Size <= 512 && isPowerOf2_32(Size));
117       const TargetRegisterClass *RC;
118       if (Size <= 64)
119         RC = &RISCV::VRRegClass;
120       else if (Size == 128)
121         RC = &RISCV::VRM2RegClass;
122       else if (Size == 256)
123         RC = &RISCV::VRM4RegClass;
124       else
125         RC = &RISCV::VRM8RegClass;
126 
127       addRegisterClass(VT, RC);
128     };
129 
130     for (MVT VT : BoolVecVTs)
131       addRegClassForRVV(VT);
132     for (MVT VT : IntVecVTs) {
133       if (VT.getVectorElementType() == MVT::i64 &&
134           !Subtarget.hasVInstructionsI64())
135         continue;
136       addRegClassForRVV(VT);
137     }
138 
139     if (Subtarget.hasVInstructionsF16())
140       for (MVT VT : F16VecVTs)
141         addRegClassForRVV(VT);
142 
143     if (Subtarget.hasVInstructionsF32())
144       for (MVT VT : F32VecVTs)
145         addRegClassForRVV(VT);
146 
147     if (Subtarget.hasVInstructionsF64())
148       for (MVT VT : F64VecVTs)
149         addRegClassForRVV(VT);
150 
151     if (Subtarget.useRVVForFixedLengthVectors()) {
152       auto addRegClassForFixedVectors = [this](MVT VT) {
153         MVT ContainerVT = getContainerForFixedLengthVector(VT);
154         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
155         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
156         addRegisterClass(VT, TRI.getRegClass(RCID));
157       };
158       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
159         if (useRVVForFixedLengthVectorVT(VT))
160           addRegClassForFixedVectors(VT);
161 
162       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
163         if (useRVVForFixedLengthVectorVT(VT))
164           addRegClassForFixedVectors(VT);
165     }
166   }
167 
168   // Compute derived properties from the register classes.
169   computeRegisterProperties(STI.getRegisterInfo());
170 
171   setStackPointerRegisterToSaveRestore(RISCV::X2);
172 
173   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
174     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
175 
176   // TODO: add all necessary setOperationAction calls.
177   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
178 
179   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
180   setOperationAction(ISD::BR_CC, XLenVT, Expand);
181   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
182   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
183 
184   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
185   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
186 
187   setOperationAction(ISD::VASTART, MVT::Other, Custom);
188   setOperationAction(ISD::VAARG, MVT::Other, Expand);
189   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
190   setOperationAction(ISD::VAEND, MVT::Other, Expand);
191 
192   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
193   if (!Subtarget.hasStdExtZbb()) {
194     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
195     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
196   }
197 
198   if (Subtarget.is64Bit()) {
199     setOperationAction(ISD::ADD, MVT::i32, Custom);
200     setOperationAction(ISD::SUB, MVT::i32, Custom);
201     setOperationAction(ISD::SHL, MVT::i32, Custom);
202     setOperationAction(ISD::SRA, MVT::i32, Custom);
203     setOperationAction(ISD::SRL, MVT::i32, Custom);
204 
205     setOperationAction(ISD::UADDO, MVT::i32, Custom);
206     setOperationAction(ISD::USUBO, MVT::i32, Custom);
207     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
208     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
209   } else {
210     setLibcallName(RTLIB::SHL_I128, nullptr);
211     setLibcallName(RTLIB::SRL_I128, nullptr);
212     setLibcallName(RTLIB::SRA_I128, nullptr);
213     setLibcallName(RTLIB::MUL_I128, nullptr);
214     setLibcallName(RTLIB::MULO_I64, nullptr);
215   }
216 
217   if (!Subtarget.hasStdExtM()) {
218     setOperationAction(ISD::MUL, XLenVT, Expand);
219     setOperationAction(ISD::MULHS, XLenVT, Expand);
220     setOperationAction(ISD::MULHU, XLenVT, Expand);
221     setOperationAction(ISD::SDIV, XLenVT, Expand);
222     setOperationAction(ISD::UDIV, XLenVT, Expand);
223     setOperationAction(ISD::SREM, XLenVT, Expand);
224     setOperationAction(ISD::UREM, XLenVT, Expand);
225   } else {
226     if (Subtarget.is64Bit()) {
227       setOperationAction(ISD::MUL, MVT::i32, Custom);
228       setOperationAction(ISD::MUL, MVT::i128, Custom);
229 
230       setOperationAction(ISD::SDIV, MVT::i8, Custom);
231       setOperationAction(ISD::UDIV, MVT::i8, Custom);
232       setOperationAction(ISD::UREM, MVT::i8, Custom);
233       setOperationAction(ISD::SDIV, MVT::i16, Custom);
234       setOperationAction(ISD::UDIV, MVT::i16, Custom);
235       setOperationAction(ISD::UREM, MVT::i16, Custom);
236       setOperationAction(ISD::SDIV, MVT::i32, Custom);
237       setOperationAction(ISD::UDIV, MVT::i32, Custom);
238       setOperationAction(ISD::UREM, MVT::i32, Custom);
239     } else {
240       setOperationAction(ISD::MUL, MVT::i64, Custom);
241     }
242   }
243 
244   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
245   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
246   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
247   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
248 
249   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
250   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
251   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
252 
253   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
254       Subtarget.hasStdExtZbkb()) {
255     if (Subtarget.is64Bit()) {
256       setOperationAction(ISD::ROTL, MVT::i32, Custom);
257       setOperationAction(ISD::ROTR, MVT::i32, Custom);
258     }
259   } else {
260     setOperationAction(ISD::ROTL, XLenVT, Expand);
261     setOperationAction(ISD::ROTR, XLenVT, Expand);
262   }
263 
264   if (Subtarget.hasStdExtZbp()) {
265     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
266     // more combining.
267     setOperationAction(ISD::BITREVERSE, XLenVT,   Custom);
268     setOperationAction(ISD::BSWAP,      XLenVT,   Custom);
269     setOperationAction(ISD::BITREVERSE, MVT::i8,  Custom);
270     // BSWAP i8 doesn't exist.
271     setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
272     setOperationAction(ISD::BSWAP,      MVT::i16, Custom);
273 
274     if (Subtarget.is64Bit()) {
275       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
276       setOperationAction(ISD::BSWAP,      MVT::i32, Custom);
277     }
278   } else {
279     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
280     // pattern match it directly in isel.
281     setOperationAction(ISD::BSWAP, XLenVT,
282                        (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())
283                            ? Legal
284                            : Expand);
285     // Zbkb can use rev8+brev8 to implement bitreverse.
286     setOperationAction(ISD::BITREVERSE, XLenVT,
287                        Subtarget.hasStdExtZbkb() ? Custom : Expand);
288   }
289 
290   if (Subtarget.hasStdExtZbb()) {
291     setOperationAction(ISD::SMIN, XLenVT, Legal);
292     setOperationAction(ISD::SMAX, XLenVT, Legal);
293     setOperationAction(ISD::UMIN, XLenVT, Legal);
294     setOperationAction(ISD::UMAX, XLenVT, Legal);
295 
296     if (Subtarget.is64Bit()) {
297       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
298       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
299       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
300       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
301     }
302   } else {
303     setOperationAction(ISD::CTTZ, XLenVT, Expand);
304     setOperationAction(ISD::CTLZ, XLenVT, Expand);
305     setOperationAction(ISD::CTPOP, XLenVT, Expand);
306 
307     if (Subtarget.is64Bit())
308       setOperationAction(ISD::ABS, MVT::i32, Custom);
309   }
310 
311   if (Subtarget.hasStdExtZbt()) {
312     setOperationAction(ISD::FSHL, XLenVT, Custom);
313     setOperationAction(ISD::FSHR, XLenVT, Custom);
314     setOperationAction(ISD::SELECT, XLenVT, Legal);
315 
316     if (Subtarget.is64Bit()) {
317       setOperationAction(ISD::FSHL, MVT::i32, Custom);
318       setOperationAction(ISD::FSHR, MVT::i32, Custom);
319     }
320   } else {
321     setOperationAction(ISD::SELECT, XLenVT, Custom);
322   }
323 
324   static constexpr ISD::NodeType FPLegalNodeTypes[] = {
325       ISD::FMINNUM,        ISD::FMAXNUM,       ISD::LRINT,
326       ISD::LLRINT,         ISD::LROUND,        ISD::LLROUND,
327       ISD::STRICT_LRINT,   ISD::STRICT_LLRINT, ISD::STRICT_LROUND,
328       ISD::STRICT_LLROUND, ISD::STRICT_FMA,    ISD::STRICT_FADD,
329       ISD::STRICT_FSUB,    ISD::STRICT_FMUL,   ISD::STRICT_FDIV,
330       ISD::STRICT_FSQRT,   ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS};
331 
332   static const ISD::CondCode FPCCToExpand[] = {
333       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
334       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
335       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
336 
337   static const ISD::NodeType FPOpToExpand[] = {
338       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
339       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
340 
341   if (Subtarget.hasStdExtZfh())
342     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
343 
344   if (Subtarget.hasStdExtZfh()) {
345     for (auto NT : FPLegalNodeTypes)
346       setOperationAction(NT, MVT::f16, Legal);
347     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
348     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
349     for (auto CC : FPCCToExpand)
350       setCondCodeAction(CC, MVT::f16, Expand);
351     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
352     setOperationAction(ISD::SELECT, MVT::f16, Custom);
353     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
354 
355     setOperationAction(ISD::FREM,       MVT::f16, Promote);
356     setOperationAction(ISD::FCEIL,      MVT::f16, Promote);
357     setOperationAction(ISD::FFLOOR,     MVT::f16, Promote);
358     setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
359     setOperationAction(ISD::FRINT,      MVT::f16, Promote);
360     setOperationAction(ISD::FROUND,     MVT::f16, Promote);
361     setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote);
362     setOperationAction(ISD::FTRUNC,     MVT::f16, Promote);
363     setOperationAction(ISD::FPOW,       MVT::f16, Promote);
364     setOperationAction(ISD::FPOWI,      MVT::f16, Promote);
365     setOperationAction(ISD::FCOS,       MVT::f16, Promote);
366     setOperationAction(ISD::FSIN,       MVT::f16, Promote);
367     setOperationAction(ISD::FSINCOS,    MVT::f16, Promote);
368     setOperationAction(ISD::FEXP,       MVT::f16, Promote);
369     setOperationAction(ISD::FEXP2,      MVT::f16, Promote);
370     setOperationAction(ISD::FLOG,       MVT::f16, Promote);
371     setOperationAction(ISD::FLOG2,      MVT::f16, Promote);
372     setOperationAction(ISD::FLOG10,     MVT::f16, Promote);
373 
374     // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
375     // complete support for all operations in LegalizeDAG.
376 
377     // We need to custom promote this.
378     if (Subtarget.is64Bit())
379       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
380   }
381 
382   if (Subtarget.hasStdExtF()) {
383     for (auto NT : FPLegalNodeTypes)
384       setOperationAction(NT, MVT::f32, Legal);
385     for (auto CC : FPCCToExpand)
386       setCondCodeAction(CC, MVT::f32, Expand);
387     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
388     setOperationAction(ISD::SELECT, MVT::f32, Custom);
389     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
390     for (auto Op : FPOpToExpand)
391       setOperationAction(Op, MVT::f32, Expand);
392     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
393     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
394   }
395 
396   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
397     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
398 
399   if (Subtarget.hasStdExtD()) {
400     for (auto NT : FPLegalNodeTypes)
401       setOperationAction(NT, MVT::f64, Legal);
402     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
403     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
404     for (auto CC : FPCCToExpand)
405       setCondCodeAction(CC, MVT::f64, Expand);
406     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
407     setOperationAction(ISD::SELECT, MVT::f64, Custom);
408     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
409     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
410     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
411     for (auto Op : FPOpToExpand)
412       setOperationAction(Op, MVT::f64, Expand);
413     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
414     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
415   }
416 
417   if (Subtarget.is64Bit()) {
418     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
419     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
420     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
421     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
422   }
423 
424   if (Subtarget.hasStdExtF()) {
425     setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom);
426     setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom);
427 
428     setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal);
429     setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal);
430     setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal);
431     setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal);
432 
433     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
434     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
435   }
436 
437   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
438   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
439   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
440   setOperationAction(ISD::JumpTable, XLenVT, Custom);
441 
442   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
443 
444   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
445   // Unfortunately this can't be determined just from the ISA naming string.
446   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
447                      Subtarget.is64Bit() ? Legal : Custom);
448 
449   setOperationAction(ISD::TRAP, MVT::Other, Legal);
450   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
451   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
452   if (Subtarget.is64Bit())
453     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
454 
455   if (Subtarget.hasStdExtA()) {
456     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
457     setMinCmpXchgSizeInBits(32);
458   } else {
459     setMaxAtomicSizeInBitsSupported(0);
460   }
461 
462   setBooleanContents(ZeroOrOneBooleanContent);
463 
464   if (Subtarget.hasVInstructions()) {
465     setBooleanVectorContents(ZeroOrOneBooleanContent);
466 
467     setOperationAction(ISD::VSCALE, XLenVT, Custom);
468 
469     // RVV intrinsics may have illegal operands.
470     // We also need to custom legalize vmv.x.s.
471     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
472     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
473     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
474     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
475     if (Subtarget.is64Bit()) {
476       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
477     } else {
478       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
479       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
480     }
481 
482     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
483     setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
484 
485     static const unsigned IntegerVPOps[] = {
486         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
487         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
488         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
489         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
490         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
491         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
492         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
493         ISD::VP_MERGE,       ISD::VP_SELECT};
494 
495     static const unsigned FloatingPointVPOps[] = {
496         ISD::VP_FADD,        ISD::VP_FSUB,        ISD::VP_FMUL,
497         ISD::VP_FDIV,        ISD::VP_FNEG,        ISD::VP_FMA,
498         ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, ISD::VP_REDUCE_FMIN,
499         ISD::VP_REDUCE_FMAX, ISD::VP_MERGE,       ISD::VP_SELECT};
500 
501     if (!Subtarget.is64Bit()) {
502       // We must custom-lower certain vXi64 operations on RV32 due to the vector
503       // element type being illegal.
504       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
505       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
506 
507       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
508       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
509       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
510       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
511       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
512       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
513       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
514       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
515 
516       setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom);
517       setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom);
518       setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom);
519       setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom);
520       setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom);
521       setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom);
522       setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom);
523       setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom);
524     }
525 
526     for (MVT VT : BoolVecVTs) {
527       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
528 
529       // Mask VTs are custom-expanded into a series of standard nodes
530       setOperationAction(ISD::TRUNCATE, VT, Custom);
531       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
532       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
533       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
534 
535       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
536       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
537 
538       setOperationAction(ISD::SELECT, VT, Custom);
539       setOperationAction(ISD::SELECT_CC, VT, Expand);
540       setOperationAction(ISD::VSELECT, VT, Expand);
541       setOperationAction(ISD::VP_MERGE, VT, Expand);
542       setOperationAction(ISD::VP_SELECT, VT, Expand);
543 
544       setOperationAction(ISD::VP_AND, VT, Custom);
545       setOperationAction(ISD::VP_OR, VT, Custom);
546       setOperationAction(ISD::VP_XOR, VT, Custom);
547 
548       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
549       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
550       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
551 
552       setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
553       setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
554       setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
555 
556       // RVV has native int->float & float->int conversions where the
557       // element type sizes are within one power-of-two of each other. Any
558       // wider distances between type sizes have to be lowered as sequences
559       // which progressively narrow the gap in stages.
560       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
561       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
562       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
563       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
564 
565       // Expand all extending loads to types larger than this, and truncating
566       // stores from types larger than this.
567       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
568         setTruncStoreAction(OtherVT, VT, Expand);
569         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
570         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
571         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
572       }
573     }
574 
575     for (MVT VT : IntVecVTs) {
576       if (VT.getVectorElementType() == MVT::i64 &&
577           !Subtarget.hasVInstructionsI64())
578         continue;
579 
580       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
581       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
582 
583       // Vectors implement MULHS/MULHU.
584       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
585       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
586 
587       // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
588       if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) {
589         setOperationAction(ISD::MULHU, VT, Expand);
590         setOperationAction(ISD::MULHS, VT, Expand);
591       }
592 
593       setOperationAction(ISD::SMIN, VT, Legal);
594       setOperationAction(ISD::SMAX, VT, Legal);
595       setOperationAction(ISD::UMIN, VT, Legal);
596       setOperationAction(ISD::UMAX, VT, Legal);
597 
598       setOperationAction(ISD::ROTL, VT, Expand);
599       setOperationAction(ISD::ROTR, VT, Expand);
600 
601       setOperationAction(ISD::CTTZ, VT, Expand);
602       setOperationAction(ISD::CTLZ, VT, Expand);
603       setOperationAction(ISD::CTPOP, VT, Expand);
604 
605       setOperationAction(ISD::BSWAP, VT, Expand);
606 
607       // Custom-lower extensions and truncations from/to mask types.
608       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
609       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
610       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
611 
612       // RVV has native int->float & float->int conversions where the
613       // element type sizes are within one power-of-two of each other. Any
614       // wider distances between type sizes have to be lowered as sequences
615       // which progressively narrow the gap in stages.
616       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
617       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
618       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
619       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
620 
621       setOperationAction(ISD::SADDSAT, VT, Legal);
622       setOperationAction(ISD::UADDSAT, VT, Legal);
623       setOperationAction(ISD::SSUBSAT, VT, Legal);
624       setOperationAction(ISD::USUBSAT, VT, Legal);
625 
626       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
627       // nodes which truncate by one power of two at a time.
628       setOperationAction(ISD::TRUNCATE, VT, Custom);
629 
630       // Custom-lower insert/extract operations to simplify patterns.
631       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
632       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
633 
634       // Custom-lower reduction operations to set up the corresponding custom
635       // nodes' operands.
636       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
637       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
638       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
639       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
640       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
641       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
642       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
643       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
644 
645       for (unsigned VPOpc : IntegerVPOps)
646         setOperationAction(VPOpc, VT, Custom);
647 
648       setOperationAction(ISD::LOAD, VT, Custom);
649       setOperationAction(ISD::STORE, VT, Custom);
650 
651       setOperationAction(ISD::MLOAD, VT, Custom);
652       setOperationAction(ISD::MSTORE, VT, Custom);
653       setOperationAction(ISD::MGATHER, VT, Custom);
654       setOperationAction(ISD::MSCATTER, VT, Custom);
655 
656       setOperationAction(ISD::VP_LOAD, VT, Custom);
657       setOperationAction(ISD::VP_STORE, VT, Custom);
658       setOperationAction(ISD::VP_GATHER, VT, Custom);
659       setOperationAction(ISD::VP_SCATTER, VT, Custom);
660 
661       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
662       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
663       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
664 
665       setOperationAction(ISD::SELECT, VT, Custom);
666       setOperationAction(ISD::SELECT_CC, VT, Expand);
667 
668       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
669       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
670 
671       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
672         setTruncStoreAction(VT, OtherVT, Expand);
673         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
674         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
675         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
676       }
677 
678       // Splice
679       setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
680 
681       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
682       // type that can represent the value exactly.
683       if (VT.getVectorElementType() != MVT::i64) {
684         MVT FloatEltVT =
685             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
686         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
687         if (isTypeLegal(FloatVT)) {
688           setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
689           setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
690         }
691       }
692     }
693 
694     // Expand various CCs to best match the RVV ISA, which natively supports UNE
695     // but no other unordered comparisons, and supports all ordered comparisons
696     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
697     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
698     // and we pattern-match those back to the "original", swapping operands once
699     // more. This way we catch both operations and both "vf" and "fv" forms with
700     // fewer patterns.
701     static const ISD::CondCode VFPCCToExpand[] = {
702         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
703         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
704         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
705     };
706 
707     // Sets common operation actions on RVV floating-point vector types.
708     const auto SetCommonVFPActions = [&](MVT VT) {
709       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
710       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
711       // sizes are within one power-of-two of each other. Therefore conversions
712       // between vXf16 and vXf64 must be lowered as sequences which convert via
713       // vXf32.
714       setOperationAction(ISD::FP_ROUND, VT, Custom);
715       setOperationAction(ISD::FP_EXTEND, VT, Custom);
716       // Custom-lower insert/extract operations to simplify patterns.
717       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
718       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
719       // Expand various condition codes (explained above).
720       for (auto CC : VFPCCToExpand)
721         setCondCodeAction(CC, VT, Expand);
722 
723       setOperationAction(ISD::FMINNUM, VT, Legal);
724       setOperationAction(ISD::FMAXNUM, VT, Legal);
725 
726       setOperationAction(ISD::FTRUNC, VT, Custom);
727       setOperationAction(ISD::FCEIL, VT, Custom);
728       setOperationAction(ISD::FFLOOR, VT, Custom);
729       setOperationAction(ISD::FROUND, VT, Custom);
730 
731       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
732       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
733       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
734       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
735 
736       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
737 
738       setOperationAction(ISD::LOAD, VT, Custom);
739       setOperationAction(ISD::STORE, VT, Custom);
740 
741       setOperationAction(ISD::MLOAD, VT, Custom);
742       setOperationAction(ISD::MSTORE, VT, Custom);
743       setOperationAction(ISD::MGATHER, VT, Custom);
744       setOperationAction(ISD::MSCATTER, VT, Custom);
745 
746       setOperationAction(ISD::VP_LOAD, VT, Custom);
747       setOperationAction(ISD::VP_STORE, VT, Custom);
748       setOperationAction(ISD::VP_GATHER, VT, Custom);
749       setOperationAction(ISD::VP_SCATTER, VT, Custom);
750 
751       setOperationAction(ISD::SELECT, VT, Custom);
752       setOperationAction(ISD::SELECT_CC, VT, Expand);
753 
754       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
755       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
756       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
757 
758       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
759       setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
760 
761       for (unsigned VPOpc : FloatingPointVPOps)
762         setOperationAction(VPOpc, VT, Custom);
763     };
764 
765     // Sets common extload/truncstore actions on RVV floating-point vector
766     // types.
767     const auto SetCommonVFPExtLoadTruncStoreActions =
768         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
769           for (auto SmallVT : SmallerVTs) {
770             setTruncStoreAction(VT, SmallVT, Expand);
771             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
772           }
773         };
774 
775     if (Subtarget.hasVInstructionsF16())
776       for (MVT VT : F16VecVTs)
777         SetCommonVFPActions(VT);
778 
779     for (MVT VT : F32VecVTs) {
780       if (Subtarget.hasVInstructionsF32())
781         SetCommonVFPActions(VT);
782       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
783     }
784 
785     for (MVT VT : F64VecVTs) {
786       if (Subtarget.hasVInstructionsF64())
787         SetCommonVFPActions(VT);
788       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
789       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
790     }
791 
792     if (Subtarget.useRVVForFixedLengthVectors()) {
793       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
794         if (!useRVVForFixedLengthVectorVT(VT))
795           continue;
796 
797         // By default everything must be expanded.
798         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
799           setOperationAction(Op, VT, Expand);
800         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
801           setTruncStoreAction(VT, OtherVT, Expand);
802           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
803           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
804           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
805         }
806 
807         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
808         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
809         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
810 
811         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
812         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
813 
814         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
815         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
816 
817         setOperationAction(ISD::LOAD, VT, Custom);
818         setOperationAction(ISD::STORE, VT, Custom);
819 
820         setOperationAction(ISD::SETCC, VT, Custom);
821 
822         setOperationAction(ISD::SELECT, VT, Custom);
823 
824         setOperationAction(ISD::TRUNCATE, VT, Custom);
825 
826         setOperationAction(ISD::BITCAST, VT, Custom);
827 
828         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
829         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
830         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
831 
832         setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
833         setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
834         setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
835 
836         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
837         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
838         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
839         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
840 
841         // Operations below are different for between masks and other vectors.
842         if (VT.getVectorElementType() == MVT::i1) {
843           setOperationAction(ISD::VP_AND, VT, Custom);
844           setOperationAction(ISD::VP_OR, VT, Custom);
845           setOperationAction(ISD::VP_XOR, VT, Custom);
846           setOperationAction(ISD::AND, VT, Custom);
847           setOperationAction(ISD::OR, VT, Custom);
848           setOperationAction(ISD::XOR, VT, Custom);
849           continue;
850         }
851 
852         // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to
853         // it before type legalization for i64 vectors on RV32. It will then be
854         // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle.
855         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
856         // improvements first.
857         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
858           setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
859           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
860         }
861 
862         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
863         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
864 
865         setOperationAction(ISD::MLOAD, VT, Custom);
866         setOperationAction(ISD::MSTORE, VT, Custom);
867         setOperationAction(ISD::MGATHER, VT, Custom);
868         setOperationAction(ISD::MSCATTER, VT, Custom);
869 
870         setOperationAction(ISD::VP_LOAD, VT, Custom);
871         setOperationAction(ISD::VP_STORE, VT, Custom);
872         setOperationAction(ISD::VP_GATHER, VT, Custom);
873         setOperationAction(ISD::VP_SCATTER, VT, Custom);
874 
875         setOperationAction(ISD::ADD, VT, Custom);
876         setOperationAction(ISD::MUL, VT, Custom);
877         setOperationAction(ISD::SUB, VT, Custom);
878         setOperationAction(ISD::AND, VT, Custom);
879         setOperationAction(ISD::OR, VT, Custom);
880         setOperationAction(ISD::XOR, VT, Custom);
881         setOperationAction(ISD::SDIV, VT, Custom);
882         setOperationAction(ISD::SREM, VT, Custom);
883         setOperationAction(ISD::UDIV, VT, Custom);
884         setOperationAction(ISD::UREM, VT, Custom);
885         setOperationAction(ISD::SHL, VT, Custom);
886         setOperationAction(ISD::SRA, VT, Custom);
887         setOperationAction(ISD::SRL, VT, Custom);
888 
889         setOperationAction(ISD::SMIN, VT, Custom);
890         setOperationAction(ISD::SMAX, VT, Custom);
891         setOperationAction(ISD::UMIN, VT, Custom);
892         setOperationAction(ISD::UMAX, VT, Custom);
893         setOperationAction(ISD::ABS,  VT, Custom);
894 
895         // vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
896         if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) {
897           setOperationAction(ISD::MULHS, VT, Custom);
898           setOperationAction(ISD::MULHU, VT, Custom);
899         }
900 
901         setOperationAction(ISD::SADDSAT, VT, Custom);
902         setOperationAction(ISD::UADDSAT, VT, Custom);
903         setOperationAction(ISD::SSUBSAT, VT, Custom);
904         setOperationAction(ISD::USUBSAT, VT, Custom);
905 
906         setOperationAction(ISD::VSELECT, VT, Custom);
907         setOperationAction(ISD::SELECT_CC, VT, Expand);
908 
909         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
910         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
911         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
912 
913         // Custom-lower reduction operations to set up the corresponding custom
914         // nodes' operands.
915         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
916         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
917         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
918         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
919         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
920 
921         for (unsigned VPOpc : IntegerVPOps)
922           setOperationAction(VPOpc, VT, Custom);
923 
924         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
925         // type that can represent the value exactly.
926         if (VT.getVectorElementType() != MVT::i64) {
927           MVT FloatEltVT =
928               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
929           EVT FloatVT =
930               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
931           if (isTypeLegal(FloatVT)) {
932             setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
933             setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
934           }
935         }
936       }
937 
938       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
939         if (!useRVVForFixedLengthVectorVT(VT))
940           continue;
941 
942         // By default everything must be expanded.
943         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
944           setOperationAction(Op, VT, Expand);
945         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
946           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
947           setTruncStoreAction(VT, OtherVT, Expand);
948         }
949 
950         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
951         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
952         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
953 
954         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
955         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
956         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
957         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
958         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
959 
960         setOperationAction(ISD::LOAD, VT, Custom);
961         setOperationAction(ISD::STORE, VT, Custom);
962         setOperationAction(ISD::MLOAD, VT, Custom);
963         setOperationAction(ISD::MSTORE, VT, Custom);
964         setOperationAction(ISD::MGATHER, VT, Custom);
965         setOperationAction(ISD::MSCATTER, VT, Custom);
966 
967         setOperationAction(ISD::VP_LOAD, VT, Custom);
968         setOperationAction(ISD::VP_STORE, VT, Custom);
969         setOperationAction(ISD::VP_GATHER, VT, Custom);
970         setOperationAction(ISD::VP_SCATTER, VT, Custom);
971 
972         setOperationAction(ISD::FADD, VT, Custom);
973         setOperationAction(ISD::FSUB, VT, Custom);
974         setOperationAction(ISD::FMUL, VT, Custom);
975         setOperationAction(ISD::FDIV, VT, Custom);
976         setOperationAction(ISD::FNEG, VT, Custom);
977         setOperationAction(ISD::FABS, VT, Custom);
978         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
979         setOperationAction(ISD::FSQRT, VT, Custom);
980         setOperationAction(ISD::FMA, VT, Custom);
981         setOperationAction(ISD::FMINNUM, VT, Custom);
982         setOperationAction(ISD::FMAXNUM, VT, Custom);
983 
984         setOperationAction(ISD::FP_ROUND, VT, Custom);
985         setOperationAction(ISD::FP_EXTEND, VT, Custom);
986 
987         setOperationAction(ISD::FTRUNC, VT, Custom);
988         setOperationAction(ISD::FCEIL, VT, Custom);
989         setOperationAction(ISD::FFLOOR, VT, Custom);
990         setOperationAction(ISD::FROUND, VT, Custom);
991 
992         for (auto CC : VFPCCToExpand)
993           setCondCodeAction(CC, VT, Expand);
994 
995         setOperationAction(ISD::VSELECT, VT, Custom);
996         setOperationAction(ISD::SELECT, VT, Custom);
997         setOperationAction(ISD::SELECT_CC, VT, Expand);
998 
999         setOperationAction(ISD::BITCAST, VT, Custom);
1000 
1001         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
1002         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
1003         setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
1004         setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
1005 
1006         for (unsigned VPOpc : FloatingPointVPOps)
1007           setOperationAction(VPOpc, VT, Custom);
1008       }
1009 
1010       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
1011       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
1012       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
1013       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
1014       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1015       if (Subtarget.hasStdExtZfh())
1016         setOperationAction(ISD::BITCAST, MVT::f16, Custom);
1017       if (Subtarget.hasStdExtF())
1018         setOperationAction(ISD::BITCAST, MVT::f32, Custom);
1019       if (Subtarget.hasStdExtD())
1020         setOperationAction(ISD::BITCAST, MVT::f64, Custom);
1021     }
1022   }
1023 
1024   // Function alignments.
1025   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
1026   setMinFunctionAlignment(FunctionAlignment);
1027   setPrefFunctionAlignment(FunctionAlignment);
1028 
1029   setMinimumJumpTableEntries(5);
1030 
1031   // Jumps are expensive, compared to logic
1032   setJumpIsExpensive();
1033 
1034   setTargetDAGCombine(ISD::ADD);
1035   setTargetDAGCombine(ISD::SUB);
1036   setTargetDAGCombine(ISD::AND);
1037   setTargetDAGCombine(ISD::OR);
1038   setTargetDAGCombine(ISD::XOR);
1039   if (Subtarget.hasStdExtZbp()) {
1040     setTargetDAGCombine(ISD::ROTL);
1041     setTargetDAGCombine(ISD::ROTR);
1042   }
1043   if (Subtarget.hasStdExtZbkb())
1044     setTargetDAGCombine(ISD::BITREVERSE);
1045   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1046   if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb())
1047     setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1048   if (Subtarget.hasStdExtF()) {
1049     setTargetDAGCombine(ISD::ZERO_EXTEND);
1050     setTargetDAGCombine(ISD::FP_TO_SINT);
1051     setTargetDAGCombine(ISD::FP_TO_UINT);
1052     setTargetDAGCombine(ISD::FP_TO_SINT_SAT);
1053     setTargetDAGCombine(ISD::FP_TO_UINT_SAT);
1054   }
1055   if (Subtarget.hasVInstructions()) {
1056     setTargetDAGCombine(ISD::FCOPYSIGN);
1057     setTargetDAGCombine(ISD::MGATHER);
1058     setTargetDAGCombine(ISD::MSCATTER);
1059     setTargetDAGCombine(ISD::VP_GATHER);
1060     setTargetDAGCombine(ISD::VP_SCATTER);
1061     setTargetDAGCombine(ISD::SRA);
1062     setTargetDAGCombine(ISD::SRL);
1063     setTargetDAGCombine(ISD::SHL);
1064     setTargetDAGCombine(ISD::STORE);
1065     setTargetDAGCombine(ISD::SPLAT_VECTOR);
1066   }
1067 
1068   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
1069   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
1070 }
1071 
1072 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
1073                                             LLVMContext &Context,
1074                                             EVT VT) const {
1075   if (!VT.isVector())
1076     return getPointerTy(DL);
1077   if (Subtarget.hasVInstructions() &&
1078       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
1079     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
1080   return VT.changeVectorElementTypeToInteger();
1081 }
1082 
1083 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
1084   return Subtarget.getXLenVT();
1085 }
1086 
1087 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1088                                              const CallInst &I,
1089                                              MachineFunction &MF,
1090                                              unsigned Intrinsic) const {
1091   auto &DL = I.getModule()->getDataLayout();
1092   switch (Intrinsic) {
1093   default:
1094     return false;
1095   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
1096   case Intrinsic::riscv_masked_atomicrmw_add_i32:
1097   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
1098   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
1099   case Intrinsic::riscv_masked_atomicrmw_max_i32:
1100   case Intrinsic::riscv_masked_atomicrmw_min_i32:
1101   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
1102   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
1103   case Intrinsic::riscv_masked_cmpxchg_i32:
1104     Info.opc = ISD::INTRINSIC_W_CHAIN;
1105     Info.memVT = MVT::i32;
1106     Info.ptrVal = I.getArgOperand(0);
1107     Info.offset = 0;
1108     Info.align = Align(4);
1109     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1110                  MachineMemOperand::MOVolatile;
1111     return true;
1112   case Intrinsic::riscv_masked_strided_load:
1113     Info.opc = ISD::INTRINSIC_W_CHAIN;
1114     Info.ptrVal = I.getArgOperand(1);
1115     Info.memVT = getValueType(DL, I.getType()->getScalarType());
1116     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
1117     Info.size = MemoryLocation::UnknownSize;
1118     Info.flags |= MachineMemOperand::MOLoad;
1119     return true;
1120   case Intrinsic::riscv_masked_strided_store:
1121     Info.opc = ISD::INTRINSIC_VOID;
1122     Info.ptrVal = I.getArgOperand(1);
1123     Info.memVT =
1124         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
1125     Info.align = Align(
1126         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
1127         8);
1128     Info.size = MemoryLocation::UnknownSize;
1129     Info.flags |= MachineMemOperand::MOStore;
1130     return true;
1131   case Intrinsic::riscv_seg2_load:
1132   case Intrinsic::riscv_seg3_load:
1133   case Intrinsic::riscv_seg4_load:
1134   case Intrinsic::riscv_seg5_load:
1135   case Intrinsic::riscv_seg6_load:
1136   case Intrinsic::riscv_seg7_load:
1137   case Intrinsic::riscv_seg8_load:
1138     Info.opc = ISD::INTRINSIC_W_CHAIN;
1139     Info.ptrVal = I.getArgOperand(0);
1140     Info.memVT =
1141         getValueType(DL, I.getType()->getStructElementType(0)->getScalarType());
1142     Info.align =
1143         Align(DL.getTypeSizeInBits(
1144                   I.getType()->getStructElementType(0)->getScalarType()) /
1145               8);
1146     Info.size = MemoryLocation::UnknownSize;
1147     Info.flags |= MachineMemOperand::MOLoad;
1148     return true;
1149   }
1150 }
1151 
1152 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1153                                                 const AddrMode &AM, Type *Ty,
1154                                                 unsigned AS,
1155                                                 Instruction *I) const {
1156   // No global is ever allowed as a base.
1157   if (AM.BaseGV)
1158     return false;
1159 
1160   // Require a 12-bit signed offset.
1161   if (!isInt<12>(AM.BaseOffs))
1162     return false;
1163 
1164   switch (AM.Scale) {
1165   case 0: // "r+i" or just "i", depending on HasBaseReg.
1166     break;
1167   case 1:
1168     if (!AM.HasBaseReg) // allow "r+i".
1169       break;
1170     return false; // disallow "r+r" or "r+r+i".
1171   default:
1172     return false;
1173   }
1174 
1175   return true;
1176 }
1177 
1178 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1179   return isInt<12>(Imm);
1180 }
1181 
1182 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1183   return isInt<12>(Imm);
1184 }
1185 
1186 // On RV32, 64-bit integers are split into their high and low parts and held
1187 // in two different registers, so the trunc is free since the low register can
1188 // just be used.
1189 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1190   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1191     return false;
1192   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1193   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1194   return (SrcBits == 64 && DestBits == 32);
1195 }
1196 
1197 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1198   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1199       !SrcVT.isInteger() || !DstVT.isInteger())
1200     return false;
1201   unsigned SrcBits = SrcVT.getSizeInBits();
1202   unsigned DestBits = DstVT.getSizeInBits();
1203   return (SrcBits == 64 && DestBits == 32);
1204 }
1205 
1206 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1207   // Zexts are free if they can be combined with a load.
1208   // Don't advertise i32->i64 zextload as being free for RV64. It interacts
1209   // poorly with type legalization of compares preferring sext.
1210   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1211     EVT MemVT = LD->getMemoryVT();
1212     if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1213         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1214          LD->getExtensionType() == ISD::ZEXTLOAD))
1215       return true;
1216   }
1217 
1218   return TargetLowering::isZExtFree(Val, VT2);
1219 }
1220 
1221 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1222   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1223 }
1224 
1225 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1226   return Subtarget.hasStdExtZbb();
1227 }
1228 
1229 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1230   return Subtarget.hasStdExtZbb();
1231 }
1232 
1233 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1234   EVT VT = Y.getValueType();
1235 
1236   // FIXME: Support vectors once we have tests.
1237   if (VT.isVector())
1238     return false;
1239 
1240   return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
1241           Subtarget.hasStdExtZbkb()) &&
1242          !isa<ConstantSDNode>(Y);
1243 }
1244 
1245 /// Check if sinking \p I's operands to I's basic block is profitable, because
1246 /// the operands can be folded into a target instruction, e.g.
1247 /// splats of scalars can fold into vector instructions.
1248 bool RISCVTargetLowering::shouldSinkOperands(
1249     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1250   using namespace llvm::PatternMatch;
1251 
1252   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1253     return false;
1254 
1255   auto IsSinker = [&](Instruction *I, int Operand) {
1256     switch (I->getOpcode()) {
1257     case Instruction::Add:
1258     case Instruction::Sub:
1259     case Instruction::Mul:
1260     case Instruction::And:
1261     case Instruction::Or:
1262     case Instruction::Xor:
1263     case Instruction::FAdd:
1264     case Instruction::FSub:
1265     case Instruction::FMul:
1266     case Instruction::FDiv:
1267     case Instruction::ICmp:
1268     case Instruction::FCmp:
1269       return true;
1270     case Instruction::Shl:
1271     case Instruction::LShr:
1272     case Instruction::AShr:
1273     case Instruction::UDiv:
1274     case Instruction::SDiv:
1275     case Instruction::URem:
1276     case Instruction::SRem:
1277       return Operand == 1;
1278     case Instruction::Call:
1279       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1280         switch (II->getIntrinsicID()) {
1281         case Intrinsic::fma:
1282         case Intrinsic::vp_fma:
1283           return Operand == 0 || Operand == 1;
1284         // FIXME: Our patterns can only match vx/vf instructions when the splat
1285         // it on the RHS, because TableGen doesn't recognize our VP operations
1286         // as commutative.
1287         case Intrinsic::vp_add:
1288         case Intrinsic::vp_mul:
1289         case Intrinsic::vp_and:
1290         case Intrinsic::vp_or:
1291         case Intrinsic::vp_xor:
1292         case Intrinsic::vp_fadd:
1293         case Intrinsic::vp_fmul:
1294         case Intrinsic::vp_shl:
1295         case Intrinsic::vp_lshr:
1296         case Intrinsic::vp_ashr:
1297         case Intrinsic::vp_udiv:
1298         case Intrinsic::vp_sdiv:
1299         case Intrinsic::vp_urem:
1300         case Intrinsic::vp_srem:
1301           return Operand == 1;
1302         // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have
1303         // explicit patterns for both LHS and RHS (as 'vr' versions).
1304         case Intrinsic::vp_sub:
1305         case Intrinsic::vp_fsub:
1306         case Intrinsic::vp_fdiv:
1307           return Operand == 0 || Operand == 1;
1308         default:
1309           return false;
1310         }
1311       }
1312       return false;
1313     default:
1314       return false;
1315     }
1316   };
1317 
1318   for (auto OpIdx : enumerate(I->operands())) {
1319     if (!IsSinker(I, OpIdx.index()))
1320       continue;
1321 
1322     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1323     // Make sure we are not already sinking this operand
1324     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1325       continue;
1326 
1327     // We are looking for a splat that can be sunk.
1328     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1329                              m_Undef(), m_ZeroMask())))
1330       continue;
1331 
1332     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1333     // and vector registers
1334     for (Use &U : Op->uses()) {
1335       Instruction *Insn = cast<Instruction>(U.getUser());
1336       if (!IsSinker(Insn, U.getOperandNo()))
1337         return false;
1338     }
1339 
1340     Ops.push_back(&Op->getOperandUse(0));
1341     Ops.push_back(&OpIdx.value());
1342   }
1343   return true;
1344 }
1345 
1346 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1347                                        bool ForCodeSize) const {
1348   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1349   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1350     return false;
1351   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1352     return false;
1353   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1354     return false;
1355   return Imm.isZero();
1356 }
1357 
1358 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1359   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1360          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1361          (VT == MVT::f64 && Subtarget.hasStdExtD());
1362 }
1363 
1364 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1365                                                       CallingConv::ID CC,
1366                                                       EVT VT) const {
1367   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1368   // We might still end up using a GPR but that will be decided based on ABI.
1369   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1370   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1371     return MVT::f32;
1372 
1373   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1374 }
1375 
1376 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1377                                                            CallingConv::ID CC,
1378                                                            EVT VT) const {
1379   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1380   // We might still end up using a GPR but that will be decided based on ABI.
1381   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1382   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1383     return 1;
1384 
1385   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1386 }
1387 
1388 // Changes the condition code and swaps operands if necessary, so the SetCC
1389 // operation matches one of the comparisons supported directly by branches
1390 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1391 // with 1/-1.
1392 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1393                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1394   // Convert X > -1 to X >= 0.
1395   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1396     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1397     CC = ISD::SETGE;
1398     return;
1399   }
1400   // Convert X < 1 to 0 >= X.
1401   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1402     RHS = LHS;
1403     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1404     CC = ISD::SETGE;
1405     return;
1406   }
1407 
1408   switch (CC) {
1409   default:
1410     break;
1411   case ISD::SETGT:
1412   case ISD::SETLE:
1413   case ISD::SETUGT:
1414   case ISD::SETULE:
1415     CC = ISD::getSetCCSwappedOperands(CC);
1416     std::swap(LHS, RHS);
1417     break;
1418   }
1419 }
1420 
1421 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1422   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1423   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1424   if (VT.getVectorElementType() == MVT::i1)
1425     KnownSize *= 8;
1426 
1427   switch (KnownSize) {
1428   default:
1429     llvm_unreachable("Invalid LMUL.");
1430   case 8:
1431     return RISCVII::VLMUL::LMUL_F8;
1432   case 16:
1433     return RISCVII::VLMUL::LMUL_F4;
1434   case 32:
1435     return RISCVII::VLMUL::LMUL_F2;
1436   case 64:
1437     return RISCVII::VLMUL::LMUL_1;
1438   case 128:
1439     return RISCVII::VLMUL::LMUL_2;
1440   case 256:
1441     return RISCVII::VLMUL::LMUL_4;
1442   case 512:
1443     return RISCVII::VLMUL::LMUL_8;
1444   }
1445 }
1446 
1447 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1448   switch (LMul) {
1449   default:
1450     llvm_unreachable("Invalid LMUL.");
1451   case RISCVII::VLMUL::LMUL_F8:
1452   case RISCVII::VLMUL::LMUL_F4:
1453   case RISCVII::VLMUL::LMUL_F2:
1454   case RISCVII::VLMUL::LMUL_1:
1455     return RISCV::VRRegClassID;
1456   case RISCVII::VLMUL::LMUL_2:
1457     return RISCV::VRM2RegClassID;
1458   case RISCVII::VLMUL::LMUL_4:
1459     return RISCV::VRM4RegClassID;
1460   case RISCVII::VLMUL::LMUL_8:
1461     return RISCV::VRM8RegClassID;
1462   }
1463 }
1464 
1465 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1466   RISCVII::VLMUL LMUL = getLMUL(VT);
1467   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1468       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1469       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1470       LMUL == RISCVII::VLMUL::LMUL_1) {
1471     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1472                   "Unexpected subreg numbering");
1473     return RISCV::sub_vrm1_0 + Index;
1474   }
1475   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1476     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1477                   "Unexpected subreg numbering");
1478     return RISCV::sub_vrm2_0 + Index;
1479   }
1480   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1481     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1482                   "Unexpected subreg numbering");
1483     return RISCV::sub_vrm4_0 + Index;
1484   }
1485   llvm_unreachable("Invalid vector type.");
1486 }
1487 
1488 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1489   if (VT.getVectorElementType() == MVT::i1)
1490     return RISCV::VRRegClassID;
1491   return getRegClassIDForLMUL(getLMUL(VT));
1492 }
1493 
1494 // Attempt to decompose a subvector insert/extract between VecVT and
1495 // SubVecVT via subregister indices. Returns the subregister index that
1496 // can perform the subvector insert/extract with the given element index, as
1497 // well as the index corresponding to any leftover subvectors that must be
1498 // further inserted/extracted within the register class for SubVecVT.
1499 std::pair<unsigned, unsigned>
1500 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1501     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1502     const RISCVRegisterInfo *TRI) {
1503   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1504                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1505                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1506                 "Register classes not ordered");
1507   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1508   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1509   // Try to compose a subregister index that takes us from the incoming
1510   // LMUL>1 register class down to the outgoing one. At each step we half
1511   // the LMUL:
1512   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1513   // Note that this is not guaranteed to find a subregister index, such as
1514   // when we are extracting from one VR type to another.
1515   unsigned SubRegIdx = RISCV::NoSubRegister;
1516   for (const unsigned RCID :
1517        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1518     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1519       VecVT = VecVT.getHalfNumVectorElementsVT();
1520       bool IsHi =
1521           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1522       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1523                                             getSubregIndexByMVT(VecVT, IsHi));
1524       if (IsHi)
1525         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1526     }
1527   return {SubRegIdx, InsertExtractIdx};
1528 }
1529 
1530 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1531 // stores for those types.
1532 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1533   return !Subtarget.useRVVForFixedLengthVectors() ||
1534          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1535 }
1536 
1537 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1538   if (ScalarTy->isPointerTy())
1539     return true;
1540 
1541   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1542       ScalarTy->isIntegerTy(32))
1543     return true;
1544 
1545   if (ScalarTy->isIntegerTy(64))
1546     return Subtarget.hasVInstructionsI64();
1547 
1548   if (ScalarTy->isHalfTy())
1549     return Subtarget.hasVInstructionsF16();
1550   if (ScalarTy->isFloatTy())
1551     return Subtarget.hasVInstructionsF32();
1552   if (ScalarTy->isDoubleTy())
1553     return Subtarget.hasVInstructionsF64();
1554 
1555   return false;
1556 }
1557 
1558 static SDValue getVLOperand(SDValue Op) {
1559   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1560           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
1561          "Unexpected opcode");
1562   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
1563   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
1564   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
1565       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
1566   if (!II)
1567     return SDValue();
1568   return Op.getOperand(II->VLOperand + 1 + HasChain);
1569 }
1570 
1571 static bool useRVVForFixedLengthVectorVT(MVT VT,
1572                                          const RISCVSubtarget &Subtarget) {
1573   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1574   if (!Subtarget.useRVVForFixedLengthVectors())
1575     return false;
1576 
1577   // We only support a set of vector types with a consistent maximum fixed size
1578   // across all supported vector element types to avoid legalization issues.
1579   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1580   // fixed-length vector type we support is 1024 bytes.
1581   if (VT.getFixedSizeInBits() > 1024 * 8)
1582     return false;
1583 
1584   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1585 
1586   MVT EltVT = VT.getVectorElementType();
1587 
1588   // Don't use RVV for vectors we cannot scalarize if required.
1589   switch (EltVT.SimpleTy) {
1590   // i1 is supported but has different rules.
1591   default:
1592     return false;
1593   case MVT::i1:
1594     // Masks can only use a single register.
1595     if (VT.getVectorNumElements() > MinVLen)
1596       return false;
1597     MinVLen /= 8;
1598     break;
1599   case MVT::i8:
1600   case MVT::i16:
1601   case MVT::i32:
1602     break;
1603   case MVT::i64:
1604     if (!Subtarget.hasVInstructionsI64())
1605       return false;
1606     break;
1607   case MVT::f16:
1608     if (!Subtarget.hasVInstructionsF16())
1609       return false;
1610     break;
1611   case MVT::f32:
1612     if (!Subtarget.hasVInstructionsF32())
1613       return false;
1614     break;
1615   case MVT::f64:
1616     if (!Subtarget.hasVInstructionsF64())
1617       return false;
1618     break;
1619   }
1620 
1621   // Reject elements larger than ELEN.
1622   if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors())
1623     return false;
1624 
1625   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1626   // Don't use RVV for types that don't fit.
1627   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1628     return false;
1629 
1630   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1631   // the base fixed length RVV support in place.
1632   if (!VT.isPow2VectorType())
1633     return false;
1634 
1635   return true;
1636 }
1637 
1638 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1639   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1640 }
1641 
1642 // Return the largest legal scalable vector type that matches VT's element type.
1643 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1644                                             const RISCVSubtarget &Subtarget) {
1645   // This may be called before legal types are setup.
1646   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1647           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1648          "Expected legal fixed length vector!");
1649 
1650   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1651   unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors();
1652 
1653   MVT EltVT = VT.getVectorElementType();
1654   switch (EltVT.SimpleTy) {
1655   default:
1656     llvm_unreachable("unexpected element type for RVV container");
1657   case MVT::i1:
1658   case MVT::i8:
1659   case MVT::i16:
1660   case MVT::i32:
1661   case MVT::i64:
1662   case MVT::f16:
1663   case MVT::f32:
1664   case MVT::f64: {
1665     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1666     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1667     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1668     unsigned NumElts =
1669         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1670     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1671     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1672     return MVT::getScalableVectorVT(EltVT, NumElts);
1673   }
1674   }
1675 }
1676 
1677 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1678                                             const RISCVSubtarget &Subtarget) {
1679   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1680                                           Subtarget);
1681 }
1682 
1683 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1684   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1685 }
1686 
1687 // Grow V to consume an entire RVV register.
1688 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1689                                        const RISCVSubtarget &Subtarget) {
1690   assert(VT.isScalableVector() &&
1691          "Expected to convert into a scalable vector!");
1692   assert(V.getValueType().isFixedLengthVector() &&
1693          "Expected a fixed length vector operand!");
1694   SDLoc DL(V);
1695   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1696   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1697 }
1698 
1699 // Shrink V so it's just big enough to maintain a VT's worth of data.
1700 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1701                                          const RISCVSubtarget &Subtarget) {
1702   assert(VT.isFixedLengthVector() &&
1703          "Expected to convert into a fixed length vector!");
1704   assert(V.getValueType().isScalableVector() &&
1705          "Expected a scalable vector operand!");
1706   SDLoc DL(V);
1707   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1708   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1709 }
1710 
1711 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1712 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1713 // the vector type that it is contained in.
1714 static std::pair<SDValue, SDValue>
1715 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1716                 const RISCVSubtarget &Subtarget) {
1717   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1718   MVT XLenVT = Subtarget.getXLenVT();
1719   SDValue VL = VecVT.isFixedLengthVector()
1720                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1721                    : DAG.getRegister(RISCV::X0, XLenVT);
1722   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1723   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1724   return {Mask, VL};
1725 }
1726 
1727 // As above but assuming the given type is a scalable vector type.
1728 static std::pair<SDValue, SDValue>
1729 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1730                         const RISCVSubtarget &Subtarget) {
1731   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1732   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1733 }
1734 
1735 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1736 // of either is (currently) supported. This can get us into an infinite loop
1737 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1738 // as a ..., etc.
1739 // Until either (or both) of these can reliably lower any node, reporting that
1740 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1741 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1742 // which is not desirable.
1743 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1744     EVT VT, unsigned DefinedValues) const {
1745   return false;
1746 }
1747 
1748 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
1749                                   const RISCVSubtarget &Subtarget) {
1750   // RISCV FP-to-int conversions saturate to the destination register size, but
1751   // don't produce 0 for nan. We can use a conversion instruction and fix the
1752   // nan case with a compare and a select.
1753   SDValue Src = Op.getOperand(0);
1754 
1755   EVT DstVT = Op.getValueType();
1756   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1757 
1758   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1759   unsigned Opc;
1760   if (SatVT == DstVT)
1761     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
1762   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1763     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
1764   else
1765     return SDValue();
1766   // FIXME: Support other SatVTs by clamping before or after the conversion.
1767 
1768   SDLoc DL(Op);
1769   SDValue FpToInt = DAG.getNode(
1770       Opc, DL, DstVT, Src,
1771       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
1772 
1773   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1774   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1775 }
1776 
1777 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1778 // and back. Taking care to avoid converting values that are nan or already
1779 // correct.
1780 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1781 // have FRM dependencies modeled yet.
1782 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1783   MVT VT = Op.getSimpleValueType();
1784   assert(VT.isVector() && "Unexpected type");
1785 
1786   SDLoc DL(Op);
1787 
1788   // Freeze the source since we are increasing the number of uses.
1789   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1790 
1791   // Truncate to integer and convert back to FP.
1792   MVT IntVT = VT.changeVectorElementTypeToInteger();
1793   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1794   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1795 
1796   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1797 
1798   if (Op.getOpcode() == ISD::FCEIL) {
1799     // If the truncated value is the greater than or equal to the original
1800     // value, we've computed the ceil. Otherwise, we went the wrong way and
1801     // need to increase by 1.
1802     // FIXME: This should use a masked operation. Handle here or in isel?
1803     SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1804                                  DAG.getConstantFP(1.0, DL, VT));
1805     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1806     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1807   } else if (Op.getOpcode() == ISD::FFLOOR) {
1808     // If the truncated value is the less than or equal to the original value,
1809     // we've computed the floor. Otherwise, we went the wrong way and need to
1810     // decrease by 1.
1811     // FIXME: This should use a masked operation. Handle here or in isel?
1812     SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1813                                  DAG.getConstantFP(1.0, DL, VT));
1814     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1815     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1816   }
1817 
1818   // Restore the original sign so that -0.0 is preserved.
1819   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1820 
1821   // Determine the largest integer that can be represented exactly. This and
1822   // values larger than it don't have any fractional bits so don't need to
1823   // be converted.
1824   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1825   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1826   APFloat MaxVal = APFloat(FltSem);
1827   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1828                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1829   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1830 
1831   // If abs(Src) was larger than MaxVal or nan, keep it.
1832   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1833   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1834   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1835 }
1836 
1837 // ISD::FROUND is defined to round to nearest with ties rounding away from 0.
1838 // This mode isn't supported in vector hardware on RISCV. But as long as we
1839 // aren't compiling with trapping math, we can emulate this with
1840 // floor(X + copysign(nextafter(0.5, 0.0), X)).
1841 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM
1842 // dependencies modeled yet.
1843 // FIXME: Use masked operations to avoid final merge.
1844 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) {
1845   MVT VT = Op.getSimpleValueType();
1846   assert(VT.isVector() && "Unexpected type");
1847 
1848   SDLoc DL(Op);
1849 
1850   // Freeze the source since we are increasing the number of uses.
1851   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1852 
1853   // We do the conversion on the absolute value and fix the sign at the end.
1854   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1855 
1856   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1857   bool Ignored;
1858   APFloat Point5Pred = APFloat(0.5f);
1859   Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored);
1860   Point5Pred.next(/*nextDown*/ true);
1861 
1862   // Add the adjustment.
1863   SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs,
1864                                DAG.getConstantFP(Point5Pred, DL, VT));
1865 
1866   // Truncate to integer and convert back to fp.
1867   MVT IntVT = VT.changeVectorElementTypeToInteger();
1868   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust);
1869   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1870 
1871   // Restore the original sign.
1872   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1873 
1874   // Determine the largest integer that can be represented exactly. This and
1875   // values larger than it don't have any fractional bits so don't need to
1876   // be converted.
1877   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1878   APFloat MaxVal = APFloat(FltSem);
1879   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1880                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1881   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1882 
1883   // If abs(Src) was larger than MaxVal or nan, keep it.
1884   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1885   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1886   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1887 }
1888 
1889 struct VIDSequence {
1890   int64_t StepNumerator;
1891   unsigned StepDenominator;
1892   int64_t Addend;
1893 };
1894 
1895 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1896 // to the (non-zero) step S and start value X. This can be then lowered as the
1897 // RVV sequence (VID * S) + X, for example.
1898 // The step S is represented as an integer numerator divided by a positive
1899 // denominator. Note that the implementation currently only identifies
1900 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1901 // cannot detect 2/3, for example.
1902 // Note that this method will also match potentially unappealing index
1903 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1904 // determine whether this is worth generating code for.
1905 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1906   unsigned NumElts = Op.getNumOperands();
1907   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1908   if (!Op.getValueType().isInteger())
1909     return None;
1910 
1911   Optional<unsigned> SeqStepDenom;
1912   Optional<int64_t> SeqStepNum, SeqAddend;
1913   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1914   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1915   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1916     // Assume undef elements match the sequence; we just have to be careful
1917     // when interpolating across them.
1918     if (Op.getOperand(Idx).isUndef())
1919       continue;
1920     // The BUILD_VECTOR must be all constants.
1921     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1922       return None;
1923 
1924     uint64_t Val = Op.getConstantOperandVal(Idx) &
1925                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1926 
1927     if (PrevElt) {
1928       // Calculate the step since the last non-undef element, and ensure
1929       // it's consistent across the entire sequence.
1930       unsigned IdxDiff = Idx - PrevElt->second;
1931       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1932 
1933       // A zero-value value difference means that we're somewhere in the middle
1934       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1935       // step change before evaluating the sequence.
1936       if (ValDiff != 0) {
1937         int64_t Remainder = ValDiff % IdxDiff;
1938         // Normalize the step if it's greater than 1.
1939         if (Remainder != ValDiff) {
1940           // The difference must cleanly divide the element span.
1941           if (Remainder != 0)
1942             return None;
1943           ValDiff /= IdxDiff;
1944           IdxDiff = 1;
1945         }
1946 
1947         if (!SeqStepNum)
1948           SeqStepNum = ValDiff;
1949         else if (ValDiff != SeqStepNum)
1950           return None;
1951 
1952         if (!SeqStepDenom)
1953           SeqStepDenom = IdxDiff;
1954         else if (IdxDiff != *SeqStepDenom)
1955           return None;
1956       }
1957     }
1958 
1959     // Record and/or check any addend.
1960     if (SeqStepNum && SeqStepDenom) {
1961       uint64_t ExpectedVal =
1962           (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1963       int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1964       if (!SeqAddend)
1965         SeqAddend = Addend;
1966       else if (SeqAddend != Addend)
1967         return None;
1968     }
1969 
1970     // Record this non-undef element for later.
1971     if (!PrevElt || PrevElt->first != Val)
1972       PrevElt = std::make_pair(Val, Idx);
1973   }
1974   // We need to have logged both a step and an addend for this to count as
1975   // a legal index sequence.
1976   if (!SeqStepNum || !SeqStepDenom || !SeqAddend)
1977     return None;
1978 
1979   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1980 }
1981 
1982 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT
1983 // and lower it as a VRGATHER_VX_VL from the source vector.
1984 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL,
1985                                   SelectionDAG &DAG,
1986                                   const RISCVSubtarget &Subtarget) {
1987   if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1988     return SDValue();
1989   SDValue Vec = SplatVal.getOperand(0);
1990   // Only perform this optimization on vectors of the same size for simplicity.
1991   if (Vec.getValueType() != VT)
1992     return SDValue();
1993   SDValue Idx = SplatVal.getOperand(1);
1994   // The index must be a legal type.
1995   if (Idx.getValueType() != Subtarget.getXLenVT())
1996     return SDValue();
1997 
1998   MVT ContainerVT = VT;
1999   if (VT.isFixedLengthVector()) {
2000     ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2001     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2002   }
2003 
2004   SDValue Mask, VL;
2005   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2006 
2007   SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec,
2008                                Idx, Mask, VL);
2009 
2010   if (!VT.isFixedLengthVector())
2011     return Gather;
2012 
2013   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2014 }
2015 
2016 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
2017                                  const RISCVSubtarget &Subtarget) {
2018   MVT VT = Op.getSimpleValueType();
2019   assert(VT.isFixedLengthVector() && "Unexpected vector!");
2020 
2021   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2022 
2023   SDLoc DL(Op);
2024   SDValue Mask, VL;
2025   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2026 
2027   MVT XLenVT = Subtarget.getXLenVT();
2028   unsigned NumElts = Op.getNumOperands();
2029 
2030   if (VT.getVectorElementType() == MVT::i1) {
2031     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
2032       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
2033       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
2034     }
2035 
2036     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
2037       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
2038       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
2039     }
2040 
2041     // Lower constant mask BUILD_VECTORs via an integer vector type, in
2042     // scalar integer chunks whose bit-width depends on the number of mask
2043     // bits and XLEN.
2044     // First, determine the most appropriate scalar integer type to use. This
2045     // is at most XLenVT, but may be shrunk to a smaller vector element type
2046     // according to the size of the final vector - use i8 chunks rather than
2047     // XLenVT if we're producing a v8i1. This results in more consistent
2048     // codegen across RV32 and RV64.
2049     unsigned NumViaIntegerBits =
2050         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
2051     NumViaIntegerBits = std::min(NumViaIntegerBits,
2052                                  Subtarget.getMaxELENForFixedLengthVectors());
2053     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
2054       // If we have to use more than one INSERT_VECTOR_ELT then this
2055       // optimization is likely to increase code size; avoid peforming it in
2056       // such a case. We can use a load from a constant pool in this case.
2057       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
2058         return SDValue();
2059       // Now we can create our integer vector type. Note that it may be larger
2060       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
2061       MVT IntegerViaVecVT =
2062           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
2063                            divideCeil(NumElts, NumViaIntegerBits));
2064 
2065       uint64_t Bits = 0;
2066       unsigned BitPos = 0, IntegerEltIdx = 0;
2067       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
2068 
2069       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
2070         // Once we accumulate enough bits to fill our scalar type, insert into
2071         // our vector and clear our accumulated data.
2072         if (I != 0 && I % NumViaIntegerBits == 0) {
2073           if (NumViaIntegerBits <= 32)
2074             Bits = SignExtend64(Bits, 32);
2075           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2076           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
2077                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2078           Bits = 0;
2079           BitPos = 0;
2080           IntegerEltIdx++;
2081         }
2082         SDValue V = Op.getOperand(I);
2083         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
2084         Bits |= ((uint64_t)BitValue << BitPos);
2085       }
2086 
2087       // Insert the (remaining) scalar value into position in our integer
2088       // vector type.
2089       if (NumViaIntegerBits <= 32)
2090         Bits = SignExtend64(Bits, 32);
2091       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2092       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
2093                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2094 
2095       if (NumElts < NumViaIntegerBits) {
2096         // If we're producing a smaller vector than our minimum legal integer
2097         // type, bitcast to the equivalent (known-legal) mask type, and extract
2098         // our final mask.
2099         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
2100         Vec = DAG.getBitcast(MVT::v8i1, Vec);
2101         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
2102                           DAG.getConstant(0, DL, XLenVT));
2103       } else {
2104         // Else we must have produced an integer type with the same size as the
2105         // mask type; bitcast for the final result.
2106         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
2107         Vec = DAG.getBitcast(VT, Vec);
2108       }
2109 
2110       return Vec;
2111     }
2112 
2113     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
2114     // vector type, we have a legal equivalently-sized i8 type, so we can use
2115     // that.
2116     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
2117     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
2118 
2119     SDValue WideVec;
2120     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2121       // For a splat, perform a scalar truncate before creating the wider
2122       // vector.
2123       assert(Splat.getValueType() == XLenVT &&
2124              "Unexpected type for i1 splat value");
2125       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
2126                           DAG.getConstant(1, DL, XLenVT));
2127       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
2128     } else {
2129       SmallVector<SDValue, 8> Ops(Op->op_values());
2130       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
2131       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
2132       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
2133     }
2134 
2135     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
2136   }
2137 
2138   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2139     if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget))
2140       return Gather;
2141     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2142                                         : RISCVISD::VMV_V_X_VL;
2143     Splat =
2144         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL);
2145     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2146   }
2147 
2148   // Try and match index sequences, which we can lower to the vid instruction
2149   // with optional modifications. An all-undef vector is matched by
2150   // getSplatValue, above.
2151   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2152     int64_t StepNumerator = SimpleVID->StepNumerator;
2153     unsigned StepDenominator = SimpleVID->StepDenominator;
2154     int64_t Addend = SimpleVID->Addend;
2155 
2156     assert(StepNumerator != 0 && "Invalid step");
2157     bool Negate = false;
2158     int64_t SplatStepVal = StepNumerator;
2159     unsigned StepOpcode = ISD::MUL;
2160     if (StepNumerator != 1) {
2161       if (isPowerOf2_64(std::abs(StepNumerator))) {
2162         Negate = StepNumerator < 0;
2163         StepOpcode = ISD::SHL;
2164         SplatStepVal = Log2_64(std::abs(StepNumerator));
2165       }
2166     }
2167 
2168     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2169     // threshold since it's the immediate value many RVV instructions accept.
2170     // There is no vmul.vi instruction so ensure multiply constant can fit in
2171     // a single addi instruction.
2172     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2173          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2174         isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) {
2175       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2176       // Convert right out of the scalable type so we can use standard ISD
2177       // nodes for the rest of the computation. If we used scalable types with
2178       // these, we'd lose the fixed-length vector info and generate worse
2179       // vsetvli code.
2180       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2181       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2182           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2183         SDValue SplatStep = DAG.getSplatVector(
2184             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2185         VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2186       }
2187       if (StepDenominator != 1) {
2188         SDValue SplatStep = DAG.getSplatVector(
2189             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2190         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2191       }
2192       if (Addend != 0 || Negate) {
2193         SDValue SplatAddend =
2194             DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2195         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2196       }
2197       return VID;
2198     }
2199   }
2200 
2201   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2202   // when re-interpreted as a vector with a larger element type. For example,
2203   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2204   // could be instead splat as
2205   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2206   // TODO: This optimization could also work on non-constant splats, but it
2207   // would require bit-manipulation instructions to construct the splat value.
2208   SmallVector<SDValue> Sequence;
2209   unsigned EltBitSize = VT.getScalarSizeInBits();
2210   const auto *BV = cast<BuildVectorSDNode>(Op);
2211   if (VT.isInteger() && EltBitSize < 64 &&
2212       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2213       BV->getRepeatedSequence(Sequence) &&
2214       (Sequence.size() * EltBitSize) <= 64) {
2215     unsigned SeqLen = Sequence.size();
2216     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2217     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2218     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2219             ViaIntVT == MVT::i64) &&
2220            "Unexpected sequence type");
2221 
2222     unsigned EltIdx = 0;
2223     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2224     uint64_t SplatValue = 0;
2225     // Construct the amalgamated value which can be splatted as this larger
2226     // vector type.
2227     for (const auto &SeqV : Sequence) {
2228       if (!SeqV.isUndef())
2229         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2230                        << (EltIdx * EltBitSize));
2231       EltIdx++;
2232     }
2233 
2234     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2235     // achieve better constant materializion.
2236     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2237       SplatValue = SignExtend64(SplatValue, 32);
2238 
2239     // Since we can't introduce illegal i64 types at this stage, we can only
2240     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2241     // way we can use RVV instructions to splat.
2242     assert((ViaIntVT.bitsLE(XLenVT) ||
2243             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2244            "Unexpected bitcast sequence");
2245     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2246       SDValue ViaVL =
2247           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2248       MVT ViaContainerVT =
2249           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2250       SDValue Splat =
2251           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2252                       DAG.getUNDEF(ViaContainerVT),
2253                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2254       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2255       return DAG.getBitcast(VT, Splat);
2256     }
2257   }
2258 
2259   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2260   // which constitute a large proportion of the elements. In such cases we can
2261   // splat a vector with the dominant element and make up the shortfall with
2262   // INSERT_VECTOR_ELTs.
2263   // Note that this includes vectors of 2 elements by association. The
2264   // upper-most element is the "dominant" one, allowing us to use a splat to
2265   // "insert" the upper element, and an insert of the lower element at position
2266   // 0, which improves codegen.
2267   SDValue DominantValue;
2268   unsigned MostCommonCount = 0;
2269   DenseMap<SDValue, unsigned> ValueCounts;
2270   unsigned NumUndefElts =
2271       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2272 
2273   // Track the number of scalar loads we know we'd be inserting, estimated as
2274   // any non-zero floating-point constant. Other kinds of element are either
2275   // already in registers or are materialized on demand. The threshold at which
2276   // a vector load is more desirable than several scalar materializion and
2277   // vector-insertion instructions is not known.
2278   unsigned NumScalarLoads = 0;
2279 
2280   for (SDValue V : Op->op_values()) {
2281     if (V.isUndef())
2282       continue;
2283 
2284     ValueCounts.insert(std::make_pair(V, 0));
2285     unsigned &Count = ValueCounts[V];
2286 
2287     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2288       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2289 
2290     // Is this value dominant? In case of a tie, prefer the highest element as
2291     // it's cheaper to insert near the beginning of a vector than it is at the
2292     // end.
2293     if (++Count >= MostCommonCount) {
2294       DominantValue = V;
2295       MostCommonCount = Count;
2296     }
2297   }
2298 
2299   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2300   unsigned NumDefElts = NumElts - NumUndefElts;
2301   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2302 
2303   // Don't perform this optimization when optimizing for size, since
2304   // materializing elements and inserting them tends to cause code bloat.
2305   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2306       ((MostCommonCount > DominantValueCountThreshold) ||
2307        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2308     // Start by splatting the most common element.
2309     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2310 
2311     DenseSet<SDValue> Processed{DominantValue};
2312     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2313     for (const auto &OpIdx : enumerate(Op->ops())) {
2314       const SDValue &V = OpIdx.value();
2315       if (V.isUndef() || !Processed.insert(V).second)
2316         continue;
2317       if (ValueCounts[V] == 1) {
2318         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2319                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2320       } else {
2321         // Blend in all instances of this value using a VSELECT, using a
2322         // mask where each bit signals whether that element is the one
2323         // we're after.
2324         SmallVector<SDValue> Ops;
2325         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2326           return DAG.getConstant(V == V1, DL, XLenVT);
2327         });
2328         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2329                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2330                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2331       }
2332     }
2333 
2334     return Vec;
2335   }
2336 
2337   return SDValue();
2338 }
2339 
2340 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2341                                    SDValue Lo, SDValue Hi, SDValue VL,
2342                                    SelectionDAG &DAG) {
2343   if (!Passthru)
2344     Passthru = DAG.getUNDEF(VT);
2345   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2346     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2347     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2348     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2349     // node in order to try and match RVV vector/scalar instructions.
2350     if ((LoC >> 31) == HiC)
2351       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
2352 
2353     // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use
2354     // vmv.v.x whose EEW = 32 to lower it.
2355     auto *Const = dyn_cast<ConstantSDNode>(VL);
2356     if (LoC == HiC && Const && Const->isAllOnesValue()) {
2357       MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
2358       // TODO: if vl <= min(VLMAX), we can also do this. But we could not
2359       // access the subtarget here now.
2360       auto InterVec = DAG.getNode(
2361           RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo,
2362                                   DAG.getRegister(RISCV::X0, MVT::i32));
2363       return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
2364     }
2365   }
2366 
2367   // Fall back to a stack store and stride x0 vector load.
2368   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo,
2369                      Hi, VL);
2370 }
2371 
2372 // Called by type legalization to handle splat of i64 on RV32.
2373 // FIXME: We can optimize this when the type has sign or zero bits in one
2374 // of the halves.
2375 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2376                                    SDValue Scalar, SDValue VL,
2377                                    SelectionDAG &DAG) {
2378   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2379   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2380                            DAG.getConstant(0, DL, MVT::i32));
2381   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2382                            DAG.getConstant(1, DL, MVT::i32));
2383   return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG);
2384 }
2385 
2386 // This function lowers a splat of a scalar operand Splat with the vector
2387 // length VL. It ensures the final sequence is type legal, which is useful when
2388 // lowering a splat after type legalization.
2389 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL,
2390                                 MVT VT, SDLoc DL, SelectionDAG &DAG,
2391                                 const RISCVSubtarget &Subtarget) {
2392   bool HasPassthru = Passthru && !Passthru.isUndef();
2393   if (!HasPassthru && !Passthru)
2394     Passthru = DAG.getUNDEF(VT);
2395   if (VT.isFloatingPoint()) {
2396     // If VL is 1, we could use vfmv.s.f.
2397     if (isOneConstant(VL))
2398       return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL);
2399     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL);
2400   }
2401 
2402   MVT XLenVT = Subtarget.getXLenVT();
2403 
2404   // Simplest case is that the operand needs to be promoted to XLenVT.
2405   if (Scalar.getValueType().bitsLE(XLenVT)) {
2406     // If the operand is a constant, sign extend to increase our chances
2407     // of being able to use a .vi instruction. ANY_EXTEND would become a
2408     // a zero extend and the simm5 check in isel would fail.
2409     // FIXME: Should we ignore the upper bits in isel instead?
2410     unsigned ExtOpc =
2411         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2412     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2413     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
2414     // If VL is 1 and the scalar value won't benefit from immediate, we could
2415     // use vmv.s.x.
2416     if (isOneConstant(VL) &&
2417         (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
2418       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL);
2419     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
2420   }
2421 
2422   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2423          "Unexpected scalar for splat lowering!");
2424 
2425   if (isOneConstant(VL) && isNullConstant(Scalar))
2426     return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru,
2427                        DAG.getConstant(0, DL, XLenVT), VL);
2428 
2429   // Otherwise use the more complicated splatting algorithm.
2430   return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG);
2431 }
2432 
2433 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources,
2434                                 const RISCVSubtarget &Subtarget) {
2435   // We need to be able to widen elements to the next larger integer type.
2436   if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors())
2437     return false;
2438 
2439   int Size = Mask.size();
2440   assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
2441 
2442   int Srcs[] = {-1, -1};
2443   for (int i = 0; i != Size; ++i) {
2444     // Ignore undef elements.
2445     if (Mask[i] < 0)
2446       continue;
2447 
2448     // Is this an even or odd element.
2449     int Pol = i % 2;
2450 
2451     // Ensure we consistently use the same source for this element polarity.
2452     int Src = Mask[i] / Size;
2453     if (Srcs[Pol] < 0)
2454       Srcs[Pol] = Src;
2455     if (Srcs[Pol] != Src)
2456       return false;
2457 
2458     // Make sure the element within the source is appropriate for this element
2459     // in the destination.
2460     int Elt = Mask[i] % Size;
2461     if (Elt != i / 2)
2462       return false;
2463   }
2464 
2465   // We need to find a source for each polarity and they can't be the same.
2466   if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1])
2467     return false;
2468 
2469   // Swap the sources if the second source was in the even polarity.
2470   SwapSources = Srcs[0] > Srcs[1];
2471 
2472   return true;
2473 }
2474 
2475 /// Match shuffles that concatenate two vectors, rotate the concatenation,
2476 /// and then extract the original number of elements from the rotated result.
2477 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The
2478 /// returned rotation amount is for a rotate right, where elements move from
2479 /// higher elements to lower elements. \p LoSrc indicates the first source
2480 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector
2481 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be
2482 /// 0 or 1 if a rotation is found.
2483 ///
2484 /// NOTE: We talk about rotate to the right which matches how bit shift and
2485 /// rotate instructions are described where LSBs are on the right, but LLVM IR
2486 /// and the table below write vectors with the lowest elements on the left.
2487 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) {
2488   int Size = Mask.size();
2489 
2490   // We need to detect various ways of spelling a rotation:
2491   //   [11, 12, 13, 14, 15,  0,  1,  2]
2492   //   [-1, 12, 13, 14, -1, -1,  1, -1]
2493   //   [-1, -1, -1, -1, -1, -1,  1,  2]
2494   //   [ 3,  4,  5,  6,  7,  8,  9, 10]
2495   //   [-1,  4,  5,  6, -1, -1,  9, -1]
2496   //   [-1,  4,  5,  6, -1, -1, -1, -1]
2497   int Rotation = 0;
2498   LoSrc = -1;
2499   HiSrc = -1;
2500   for (int i = 0; i != Size; ++i) {
2501     int M = Mask[i];
2502     if (M < 0)
2503       continue;
2504 
2505     // Determine where a rotate vector would have started.
2506     int StartIdx = i - (M % Size);
2507     // The identity rotation isn't interesting, stop.
2508     if (StartIdx == 0)
2509       return -1;
2510 
2511     // If we found the tail of a vector the rotation must be the missing
2512     // front. If we found the head of a vector, it must be how much of the
2513     // head.
2514     int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
2515 
2516     if (Rotation == 0)
2517       Rotation = CandidateRotation;
2518     else if (Rotation != CandidateRotation)
2519       // The rotations don't match, so we can't match this mask.
2520       return -1;
2521 
2522     // Compute which value this mask is pointing at.
2523     int MaskSrc = M < Size ? 0 : 1;
2524 
2525     // Compute which of the two target values this index should be assigned to.
2526     // This reflects whether the high elements are remaining or the low elemnts
2527     // are remaining.
2528     int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc;
2529 
2530     // Either set up this value if we've not encountered it before, or check
2531     // that it remains consistent.
2532     if (TargetSrc < 0)
2533       TargetSrc = MaskSrc;
2534     else if (TargetSrc != MaskSrc)
2535       // This may be a rotation, but it pulls from the inputs in some
2536       // unsupported interleaving.
2537       return -1;
2538   }
2539 
2540   // Check that we successfully analyzed the mask, and normalize the results.
2541   assert(Rotation != 0 && "Failed to locate a viable rotation!");
2542   assert((LoSrc >= 0 || HiSrc >= 0) &&
2543          "Failed to find a rotated input vector!");
2544 
2545   return Rotation;
2546 }
2547 
2548 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2549                                    const RISCVSubtarget &Subtarget) {
2550   SDValue V1 = Op.getOperand(0);
2551   SDValue V2 = Op.getOperand(1);
2552   SDLoc DL(Op);
2553   MVT XLenVT = Subtarget.getXLenVT();
2554   MVT VT = Op.getSimpleValueType();
2555   unsigned NumElts = VT.getVectorNumElements();
2556   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2557 
2558   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2559 
2560   SDValue TrueMask, VL;
2561   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2562 
2563   if (SVN->isSplat()) {
2564     const int Lane = SVN->getSplatIndex();
2565     if (Lane >= 0) {
2566       MVT SVT = VT.getVectorElementType();
2567 
2568       // Turn splatted vector load into a strided load with an X0 stride.
2569       SDValue V = V1;
2570       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2571       // with undef.
2572       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2573       int Offset = Lane;
2574       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2575         int OpElements =
2576             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2577         V = V.getOperand(Offset / OpElements);
2578         Offset %= OpElements;
2579       }
2580 
2581       // We need to ensure the load isn't atomic or volatile.
2582       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2583         auto *Ld = cast<LoadSDNode>(V);
2584         Offset *= SVT.getStoreSize();
2585         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2586                                                    TypeSize::Fixed(Offset), DL);
2587 
2588         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2589         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2590           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2591           SDValue IntID =
2592               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2593           SDValue Ops[] = {Ld->getChain(),
2594                            IntID,
2595                            DAG.getUNDEF(ContainerVT),
2596                            NewAddr,
2597                            DAG.getRegister(RISCV::X0, XLenVT),
2598                            VL};
2599           SDValue NewLoad = DAG.getMemIntrinsicNode(
2600               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2601               DAG.getMachineFunction().getMachineMemOperand(
2602                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2603           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2604           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2605         }
2606 
2607         // Otherwise use a scalar load and splat. This will give the best
2608         // opportunity to fold a splat into the operation. ISel can turn it into
2609         // the x0 strided load if we aren't able to fold away the select.
2610         if (SVT.isFloatingPoint())
2611           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2612                           Ld->getPointerInfo().getWithOffset(Offset),
2613                           Ld->getOriginalAlign(),
2614                           Ld->getMemOperand()->getFlags());
2615         else
2616           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2617                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2618                              Ld->getOriginalAlign(),
2619                              Ld->getMemOperand()->getFlags());
2620         DAG.makeEquivalentMemoryOrdering(Ld, V);
2621 
2622         unsigned Opc =
2623             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2624         SDValue Splat =
2625             DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL);
2626         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2627       }
2628 
2629       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2630       assert(Lane < (int)NumElts && "Unexpected lane!");
2631       SDValue Gather =
2632           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
2633                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
2634       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2635     }
2636   }
2637 
2638   ArrayRef<int> Mask = SVN->getMask();
2639 
2640   // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may
2641   // be undef which can be handled with a single SLIDEDOWN/UP.
2642   int LoSrc, HiSrc;
2643   int Rotation = isElementRotate(LoSrc, HiSrc, Mask);
2644   if (Rotation > 0) {
2645     SDValue LoV, HiV;
2646     if (LoSrc >= 0) {
2647       LoV = LoSrc == 0 ? V1 : V2;
2648       LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget);
2649     }
2650     if (HiSrc >= 0) {
2651       HiV = HiSrc == 0 ? V1 : V2;
2652       HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget);
2653     }
2654 
2655     // We found a rotation. We need to slide HiV down by Rotation. Then we need
2656     // to slide LoV up by (NumElts - Rotation).
2657     unsigned InvRotate = NumElts - Rotation;
2658 
2659     SDValue Res = DAG.getUNDEF(ContainerVT);
2660     if (HiV) {
2661       // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN.
2662       // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it
2663       // causes multiple vsetvlis in some test cases such as lowering
2664       // reduce.mul
2665       SDValue DownVL = VL;
2666       if (LoV)
2667         DownVL = DAG.getConstant(InvRotate, DL, XLenVT);
2668       Res =
2669           DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV,
2670                       DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL);
2671     }
2672     if (LoV)
2673       Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV,
2674                         DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL);
2675 
2676     return convertFromScalableVector(VT, Res, DAG, Subtarget);
2677   }
2678 
2679   // Detect an interleave shuffle and lower to
2680   // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
2681   bool SwapSources;
2682   if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) {
2683     // Swap sources if needed.
2684     if (SwapSources)
2685       std::swap(V1, V2);
2686 
2687     // Extract the lower half of the vectors.
2688     MVT HalfVT = VT.getHalfNumVectorElementsVT();
2689     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
2690                      DAG.getConstant(0, DL, XLenVT));
2691     V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2,
2692                      DAG.getConstant(0, DL, XLenVT));
2693 
2694     // Double the element width and halve the number of elements in an int type.
2695     unsigned EltBits = VT.getScalarSizeInBits();
2696     MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
2697     MVT WideIntVT =
2698         MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2);
2699     // Convert this to a scalable vector. We need to base this on the
2700     // destination size to ensure there's always a type with a smaller LMUL.
2701     MVT WideIntContainerVT =
2702         getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget);
2703 
2704     // Convert sources to scalable vectors with the same element count as the
2705     // larger type.
2706     MVT HalfContainerVT = MVT::getVectorVT(
2707         VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount());
2708     V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget);
2709     V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget);
2710 
2711     // Cast sources to integer.
2712     MVT IntEltVT = MVT::getIntegerVT(EltBits);
2713     MVT IntHalfVT =
2714         MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount());
2715     V1 = DAG.getBitcast(IntHalfVT, V1);
2716     V2 = DAG.getBitcast(IntHalfVT, V2);
2717 
2718     // Freeze V2 since we use it twice and we need to be sure that the add and
2719     // multiply see the same value.
2720     V2 = DAG.getFreeze(V2);
2721 
2722     // Recreate TrueMask using the widened type's element count.
2723     MVT MaskVT =
2724         MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount());
2725     TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
2726 
2727     // Widen V1 and V2 with 0s and add one copy of V2 to V1.
2728     SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1,
2729                               V2, TrueMask, VL);
2730     // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer.
2731     SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT,
2732                                      DAG.getUNDEF(IntHalfVT),
2733                                      DAG.getAllOnesConstant(DL, XLenVT));
2734     SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT,
2735                                    V2, Multiplier, TrueMask, VL);
2736     // Add the new copies to our previous addition giving us 2^eltbits copies of
2737     // V2. This is equivalent to shifting V2 left by eltbits. This should
2738     // combine with the vwmulu.vv above to form vwmaccu.vv.
2739     Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul,
2740                       TrueMask, VL);
2741     // Cast back to ContainerVT. We need to re-create a new ContainerVT in case
2742     // WideIntContainerVT is a larger fractional LMUL than implied by the fixed
2743     // vector VT.
2744     ContainerVT =
2745         MVT::getVectorVT(VT.getVectorElementType(),
2746                          WideIntContainerVT.getVectorElementCount() * 2);
2747     Add = DAG.getBitcast(ContainerVT, Add);
2748     return convertFromScalableVector(VT, Add, DAG, Subtarget);
2749   }
2750 
2751   // Detect shuffles which can be re-expressed as vector selects; these are
2752   // shuffles in which each element in the destination is taken from an element
2753   // at the corresponding index in either source vectors.
2754   bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) {
2755     int MaskIndex = MaskIdx.value();
2756     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2757   });
2758 
2759   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2760 
2761   SmallVector<SDValue> MaskVals;
2762   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2763   // merged with a second vrgather.
2764   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2765 
2766   // By default we preserve the original operand order, and use a mask to
2767   // select LHS as true and RHS as false. However, since RVV vector selects may
2768   // feature splats but only on the LHS, we may choose to invert our mask and
2769   // instead select between RHS and LHS.
2770   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2771   bool InvertMask = IsSelect == SwapOps;
2772 
2773   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2774   // half.
2775   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2776 
2777   // Now construct the mask that will be used by the vselect or blended
2778   // vrgather operation. For vrgathers, construct the appropriate indices into
2779   // each vector.
2780   for (int MaskIndex : Mask) {
2781     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2782     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2783     if (!IsSelect) {
2784       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2785       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2786                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2787                                      : DAG.getUNDEF(XLenVT));
2788       GatherIndicesRHS.push_back(
2789           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2790                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2791       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2792         ++LHSIndexCounts[MaskIndex];
2793       if (!IsLHSOrUndefIndex)
2794         ++RHSIndexCounts[MaskIndex - NumElts];
2795     }
2796   }
2797 
2798   if (SwapOps) {
2799     std::swap(V1, V2);
2800     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2801   }
2802 
2803   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2804   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2805   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2806 
2807   if (IsSelect)
2808     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2809 
2810   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2811     // On such a large vector we're unable to use i8 as the index type.
2812     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2813     // may involve vector splitting if we're already at LMUL=8, or our
2814     // user-supplied maximum fixed-length LMUL.
2815     return SDValue();
2816   }
2817 
2818   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2819   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2820   MVT IndexVT = VT.changeTypeToInteger();
2821   // Since we can't introduce illegal index types at this stage, use i16 and
2822   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2823   // than XLenVT.
2824   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2825     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2826     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2827   }
2828 
2829   MVT IndexContainerVT =
2830       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2831 
2832   SDValue Gather;
2833   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2834   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2835   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2836     Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG,
2837                               Subtarget);
2838   } else {
2839     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2840     // If only one index is used, we can use a "splat" vrgather.
2841     // TODO: We can splat the most-common index and fix-up any stragglers, if
2842     // that's beneficial.
2843     if (LHSIndexCounts.size() == 1) {
2844       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2845       Gather =
2846           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2847                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2848     } else {
2849       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2850       LHSIndices =
2851           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2852 
2853       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2854                            TrueMask, VL);
2855     }
2856   }
2857 
2858   // If a second vector operand is used by this shuffle, blend it in with an
2859   // additional vrgather.
2860   if (!V2.isUndef()) {
2861     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2862     // If only one index is used, we can use a "splat" vrgather.
2863     // TODO: We can splat the most-common index and fix-up any stragglers, if
2864     // that's beneficial.
2865     if (RHSIndexCounts.size() == 1) {
2866       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2867       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2868                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2869     } else {
2870       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2871       RHSIndices =
2872           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2873       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2874                        VL);
2875     }
2876 
2877     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2878     SelectMask =
2879         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2880 
2881     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2882                          Gather, VL);
2883   }
2884 
2885   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2886 }
2887 
2888 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
2889   // Support splats for any type. These should type legalize well.
2890   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
2891     return true;
2892 
2893   // Only support legal VTs for other shuffles for now.
2894   if (!isTypeLegal(VT))
2895     return false;
2896 
2897   MVT SVT = VT.getSimpleVT();
2898 
2899   bool SwapSources;
2900   int LoSrc, HiSrc;
2901   return (isElementRotate(LoSrc, HiSrc, M) > 0) ||
2902          isInterleaveShuffle(M, SVT, SwapSources, Subtarget);
2903 }
2904 
2905 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
2906                                      SDLoc DL, SelectionDAG &DAG,
2907                                      const RISCVSubtarget &Subtarget) {
2908   if (VT.isScalableVector())
2909     return DAG.getFPExtendOrRound(Op, DL, VT);
2910   assert(VT.isFixedLengthVector() &&
2911          "Unexpected value type for RVV FP extend/round lowering");
2912   SDValue Mask, VL;
2913   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2914   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
2915                         ? RISCVISD::FP_EXTEND_VL
2916                         : RISCVISD::FP_ROUND_VL;
2917   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
2918 }
2919 
2920 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2921 // the exponent.
2922 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2923   MVT VT = Op.getSimpleValueType();
2924   unsigned EltSize = VT.getScalarSizeInBits();
2925   SDValue Src = Op.getOperand(0);
2926   SDLoc DL(Op);
2927 
2928   // We need a FP type that can represent the value.
2929   // TODO: Use f16 for i8 when possible?
2930   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2931   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2932 
2933   // Legal types should have been checked in the RISCVTargetLowering
2934   // constructor.
2935   // TODO: Splitting may make sense in some cases.
2936   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2937          "Expected legal float type!");
2938 
2939   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2940   // The trailing zero count is equal to log2 of this single bit value.
2941   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2942     SDValue Neg =
2943         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2944     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2945   }
2946 
2947   // We have a legal FP type, convert to it.
2948   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2949   // Bitcast to integer and shift the exponent to the LSB.
2950   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2951   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2952   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2953   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2954                               DAG.getConstant(ShiftAmt, DL, IntVT));
2955   // Truncate back to original type to allow vnsrl.
2956   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2957   // The exponent contains log2 of the value in biased form.
2958   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2959 
2960   // For trailing zeros, we just need to subtract the bias.
2961   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2962     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2963                        DAG.getConstant(ExponentBias, DL, VT));
2964 
2965   // For leading zeros, we need to remove the bias and convert from log2 to
2966   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2967   unsigned Adjust = ExponentBias + (EltSize - 1);
2968   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2969 }
2970 
2971 // While RVV has alignment restrictions, we should always be able to load as a
2972 // legal equivalently-sized byte-typed vector instead. This method is
2973 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2974 // the load is already correctly-aligned, it returns SDValue().
2975 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2976                                                     SelectionDAG &DAG) const {
2977   auto *Load = cast<LoadSDNode>(Op);
2978   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2979 
2980   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2981                                      Load->getMemoryVT(),
2982                                      *Load->getMemOperand()))
2983     return SDValue();
2984 
2985   SDLoc DL(Op);
2986   MVT VT = Op.getSimpleValueType();
2987   unsigned EltSizeBits = VT.getScalarSizeInBits();
2988   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2989          "Unexpected unaligned RVV load type");
2990   MVT NewVT =
2991       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2992   assert(NewVT.isValid() &&
2993          "Expecting equally-sized RVV vector types to be legal");
2994   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2995                           Load->getPointerInfo(), Load->getOriginalAlign(),
2996                           Load->getMemOperand()->getFlags());
2997   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2998 }
2999 
3000 // While RVV has alignment restrictions, we should always be able to store as a
3001 // legal equivalently-sized byte-typed vector instead. This method is
3002 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
3003 // returns SDValue() if the store is already correctly aligned.
3004 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
3005                                                      SelectionDAG &DAG) const {
3006   auto *Store = cast<StoreSDNode>(Op);
3007   assert(Store && Store->getValue().getValueType().isVector() &&
3008          "Expected vector store");
3009 
3010   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
3011                                      Store->getMemoryVT(),
3012                                      *Store->getMemOperand()))
3013     return SDValue();
3014 
3015   SDLoc DL(Op);
3016   SDValue StoredVal = Store->getValue();
3017   MVT VT = StoredVal.getSimpleValueType();
3018   unsigned EltSizeBits = VT.getScalarSizeInBits();
3019   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
3020          "Unexpected unaligned RVV store type");
3021   MVT NewVT =
3022       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
3023   assert(NewVT.isValid() &&
3024          "Expecting equally-sized RVV vector types to be legal");
3025   StoredVal = DAG.getBitcast(NewVT, StoredVal);
3026   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
3027                       Store->getPointerInfo(), Store->getOriginalAlign(),
3028                       Store->getMemOperand()->getFlags());
3029 }
3030 
3031 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
3032                                             SelectionDAG &DAG) const {
3033   switch (Op.getOpcode()) {
3034   default:
3035     report_fatal_error("unimplemented operand");
3036   case ISD::GlobalAddress:
3037     return lowerGlobalAddress(Op, DAG);
3038   case ISD::BlockAddress:
3039     return lowerBlockAddress(Op, DAG);
3040   case ISD::ConstantPool:
3041     return lowerConstantPool(Op, DAG);
3042   case ISD::JumpTable:
3043     return lowerJumpTable(Op, DAG);
3044   case ISD::GlobalTLSAddress:
3045     return lowerGlobalTLSAddress(Op, DAG);
3046   case ISD::SELECT:
3047     return lowerSELECT(Op, DAG);
3048   case ISD::BRCOND:
3049     return lowerBRCOND(Op, DAG);
3050   case ISD::VASTART:
3051     return lowerVASTART(Op, DAG);
3052   case ISD::FRAMEADDR:
3053     return lowerFRAMEADDR(Op, DAG);
3054   case ISD::RETURNADDR:
3055     return lowerRETURNADDR(Op, DAG);
3056   case ISD::SHL_PARTS:
3057     return lowerShiftLeftParts(Op, DAG);
3058   case ISD::SRA_PARTS:
3059     return lowerShiftRightParts(Op, DAG, true);
3060   case ISD::SRL_PARTS:
3061     return lowerShiftRightParts(Op, DAG, false);
3062   case ISD::BITCAST: {
3063     SDLoc DL(Op);
3064     EVT VT = Op.getValueType();
3065     SDValue Op0 = Op.getOperand(0);
3066     EVT Op0VT = Op0.getValueType();
3067     MVT XLenVT = Subtarget.getXLenVT();
3068     if (VT.isFixedLengthVector()) {
3069       // We can handle fixed length vector bitcasts with a simple replacement
3070       // in isel.
3071       if (Op0VT.isFixedLengthVector())
3072         return Op;
3073       // When bitcasting from scalar to fixed-length vector, insert the scalar
3074       // into a one-element vector of the result type, and perform a vector
3075       // bitcast.
3076       if (!Op0VT.isVector()) {
3077         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
3078         if (!isTypeLegal(BVT))
3079           return SDValue();
3080         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
3081                                               DAG.getUNDEF(BVT), Op0,
3082                                               DAG.getConstant(0, DL, XLenVT)));
3083       }
3084       return SDValue();
3085     }
3086     // Custom-legalize bitcasts from fixed-length vector types to scalar types
3087     // thus: bitcast the vector to a one-element vector type whose element type
3088     // is the same as the result type, and extract the first element.
3089     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
3090       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
3091       if (!isTypeLegal(BVT))
3092         return SDValue();
3093       SDValue BVec = DAG.getBitcast(BVT, Op0);
3094       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
3095                          DAG.getConstant(0, DL, XLenVT));
3096     }
3097     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
3098       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
3099       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
3100       return FPConv;
3101     }
3102     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
3103         Subtarget.hasStdExtF()) {
3104       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
3105       SDValue FPConv =
3106           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
3107       return FPConv;
3108     }
3109     return SDValue();
3110   }
3111   case ISD::INTRINSIC_WO_CHAIN:
3112     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3113   case ISD::INTRINSIC_W_CHAIN:
3114     return LowerINTRINSIC_W_CHAIN(Op, DAG);
3115   case ISD::INTRINSIC_VOID:
3116     return LowerINTRINSIC_VOID(Op, DAG);
3117   case ISD::BSWAP:
3118   case ISD::BITREVERSE: {
3119     MVT VT = Op.getSimpleValueType();
3120     SDLoc DL(Op);
3121     if (Subtarget.hasStdExtZbp()) {
3122       // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
3123       // Start with the maximum immediate value which is the bitwidth - 1.
3124       unsigned Imm = VT.getSizeInBits() - 1;
3125       // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
3126       if (Op.getOpcode() == ISD::BSWAP)
3127         Imm &= ~0x7U;
3128       return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
3129                          DAG.getConstant(Imm, DL, VT));
3130     }
3131     assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
3132     assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
3133     // Expand bitreverse to a bswap(rev8) followed by brev8.
3134     SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
3135     // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized
3136     // as brev8 by an isel pattern.
3137     return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap,
3138                        DAG.getConstant(7, DL, VT));
3139   }
3140   case ISD::FSHL:
3141   case ISD::FSHR: {
3142     MVT VT = Op.getSimpleValueType();
3143     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
3144     SDLoc DL(Op);
3145     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
3146     // use log(XLen) bits. Mask the shift amount accordingly to prevent
3147     // accidentally setting the extra bit.
3148     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
3149     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
3150                                 DAG.getConstant(ShAmtWidth, DL, VT));
3151     // fshl and fshr concatenate their operands in the same order. fsr and fsl
3152     // instruction use different orders. fshl will return its first operand for
3153     // shift of zero, fshr will return its second operand. fsl and fsr both
3154     // return rs1 so the ISD nodes need to have different operand orders.
3155     // Shift amount is in rs2.
3156     SDValue Op0 = Op.getOperand(0);
3157     SDValue Op1 = Op.getOperand(1);
3158     unsigned Opc = RISCVISD::FSL;
3159     if (Op.getOpcode() == ISD::FSHR) {
3160       std::swap(Op0, Op1);
3161       Opc = RISCVISD::FSR;
3162     }
3163     return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt);
3164   }
3165   case ISD::TRUNCATE: {
3166     SDLoc DL(Op);
3167     MVT VT = Op.getSimpleValueType();
3168     // Only custom-lower vector truncates
3169     if (!VT.isVector())
3170       return Op;
3171 
3172     // Truncates to mask types are handled differently
3173     if (VT.getVectorElementType() == MVT::i1)
3174       return lowerVectorMaskTrunc(Op, DAG);
3175 
3176     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
3177     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
3178     // truncate by one power of two at a time.
3179     MVT DstEltVT = VT.getVectorElementType();
3180 
3181     SDValue Src = Op.getOperand(0);
3182     MVT SrcVT = Src.getSimpleValueType();
3183     MVT SrcEltVT = SrcVT.getVectorElementType();
3184 
3185     assert(DstEltVT.bitsLT(SrcEltVT) &&
3186            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
3187            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
3188            "Unexpected vector truncate lowering");
3189 
3190     MVT ContainerVT = SrcVT;
3191     if (SrcVT.isFixedLengthVector()) {
3192       ContainerVT = getContainerForFixedLengthVector(SrcVT);
3193       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3194     }
3195 
3196     SDValue Result = Src;
3197     SDValue Mask, VL;
3198     std::tie(Mask, VL) =
3199         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
3200     LLVMContext &Context = *DAG.getContext();
3201     const ElementCount Count = ContainerVT.getVectorElementCount();
3202     do {
3203       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
3204       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
3205       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
3206                            Mask, VL);
3207     } while (SrcEltVT != DstEltVT);
3208 
3209     if (SrcVT.isFixedLengthVector())
3210       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
3211 
3212     return Result;
3213   }
3214   case ISD::ANY_EXTEND:
3215   case ISD::ZERO_EXTEND:
3216     if (Op.getOperand(0).getValueType().isVector() &&
3217         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3218       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
3219     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
3220   case ISD::SIGN_EXTEND:
3221     if (Op.getOperand(0).getValueType().isVector() &&
3222         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3223       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
3224     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
3225   case ISD::SPLAT_VECTOR_PARTS:
3226     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
3227   case ISD::INSERT_VECTOR_ELT:
3228     return lowerINSERT_VECTOR_ELT(Op, DAG);
3229   case ISD::EXTRACT_VECTOR_ELT:
3230     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3231   case ISD::VSCALE: {
3232     MVT VT = Op.getSimpleValueType();
3233     SDLoc DL(Op);
3234     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
3235     // We define our scalable vector types for lmul=1 to use a 64 bit known
3236     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
3237     // vscale as VLENB / 8.
3238     static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
3239     if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock)
3240       report_fatal_error("Support for VLEN==32 is incomplete.");
3241     if (isa<ConstantSDNode>(Op.getOperand(0))) {
3242       // We assume VLENB is a multiple of 8. We manually choose the best shift
3243       // here because SimplifyDemandedBits isn't always able to simplify it.
3244       uint64_t Val = Op.getConstantOperandVal(0);
3245       if (isPowerOf2_64(Val)) {
3246         uint64_t Log2 = Log2_64(Val);
3247         if (Log2 < 3)
3248           return DAG.getNode(ISD::SRL, DL, VT, VLENB,
3249                              DAG.getConstant(3 - Log2, DL, VT));
3250         if (Log2 > 3)
3251           return DAG.getNode(ISD::SHL, DL, VT, VLENB,
3252                              DAG.getConstant(Log2 - 3, DL, VT));
3253         return VLENB;
3254       }
3255       // If the multiplier is a multiple of 8, scale it down to avoid needing
3256       // to shift the VLENB value.
3257       if ((Val % 8) == 0)
3258         return DAG.getNode(ISD::MUL, DL, VT, VLENB,
3259                            DAG.getConstant(Val / 8, DL, VT));
3260     }
3261 
3262     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
3263                                  DAG.getConstant(3, DL, VT));
3264     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
3265   }
3266   case ISD::FPOWI: {
3267     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
3268     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
3269     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
3270         Op.getOperand(1).getValueType() == MVT::i32) {
3271       SDLoc DL(Op);
3272       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
3273       SDValue Powi =
3274           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
3275       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
3276                          DAG.getIntPtrConstant(0, DL));
3277     }
3278     return SDValue();
3279   }
3280   case ISD::FP_EXTEND: {
3281     // RVV can only do fp_extend to types double the size as the source. We
3282     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
3283     // via f32.
3284     SDLoc DL(Op);
3285     MVT VT = Op.getSimpleValueType();
3286     SDValue Src = Op.getOperand(0);
3287     MVT SrcVT = Src.getSimpleValueType();
3288 
3289     // Prepare any fixed-length vector operands.
3290     MVT ContainerVT = VT;
3291     if (SrcVT.isFixedLengthVector()) {
3292       ContainerVT = getContainerForFixedLengthVector(VT);
3293       MVT SrcContainerVT =
3294           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
3295       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3296     }
3297 
3298     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
3299         SrcVT.getVectorElementType() != MVT::f16) {
3300       // For scalable vectors, we only need to close the gap between
3301       // vXf16->vXf64.
3302       if (!VT.isFixedLengthVector())
3303         return Op;
3304       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
3305       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
3306       return convertFromScalableVector(VT, Src, DAG, Subtarget);
3307     }
3308 
3309     MVT InterVT = VT.changeVectorElementType(MVT::f32);
3310     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
3311     SDValue IntermediateExtend = getRVVFPExtendOrRound(
3312         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
3313 
3314     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
3315                                            DL, DAG, Subtarget);
3316     if (VT.isFixedLengthVector())
3317       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
3318     return Extend;
3319   }
3320   case ISD::FP_ROUND: {
3321     // RVV can only do fp_round to types half the size as the source. We
3322     // custom-lower f64->f16 rounds via RVV's round-to-odd float
3323     // conversion instruction.
3324     SDLoc DL(Op);
3325     MVT VT = Op.getSimpleValueType();
3326     SDValue Src = Op.getOperand(0);
3327     MVT SrcVT = Src.getSimpleValueType();
3328 
3329     // Prepare any fixed-length vector operands.
3330     MVT ContainerVT = VT;
3331     if (VT.isFixedLengthVector()) {
3332       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3333       ContainerVT =
3334           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3335       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3336     }
3337 
3338     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
3339         SrcVT.getVectorElementType() != MVT::f64) {
3340       // For scalable vectors, we only need to close the gap between
3341       // vXf64<->vXf16.
3342       if (!VT.isFixedLengthVector())
3343         return Op;
3344       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
3345       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
3346       return convertFromScalableVector(VT, Src, DAG, Subtarget);
3347     }
3348 
3349     SDValue Mask, VL;
3350     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3351 
3352     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
3353     SDValue IntermediateRound =
3354         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
3355     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
3356                                           DL, DAG, Subtarget);
3357 
3358     if (VT.isFixedLengthVector())
3359       return convertFromScalableVector(VT, Round, DAG, Subtarget);
3360     return Round;
3361   }
3362   case ISD::FP_TO_SINT:
3363   case ISD::FP_TO_UINT:
3364   case ISD::SINT_TO_FP:
3365   case ISD::UINT_TO_FP: {
3366     // RVV can only do fp<->int conversions to types half/double the size as
3367     // the source. We custom-lower any conversions that do two hops into
3368     // sequences.
3369     MVT VT = Op.getSimpleValueType();
3370     if (!VT.isVector())
3371       return Op;
3372     SDLoc DL(Op);
3373     SDValue Src = Op.getOperand(0);
3374     MVT EltVT = VT.getVectorElementType();
3375     MVT SrcVT = Src.getSimpleValueType();
3376     MVT SrcEltVT = SrcVT.getVectorElementType();
3377     unsigned EltSize = EltVT.getSizeInBits();
3378     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
3379     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
3380            "Unexpected vector element types");
3381 
3382     bool IsInt2FP = SrcEltVT.isInteger();
3383     // Widening conversions
3384     if (EltSize > (2 * SrcEltSize)) {
3385       if (IsInt2FP) {
3386         // Do a regular integer sign/zero extension then convert to float.
3387         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize),
3388                                       VT.getVectorElementCount());
3389         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
3390                                  ? ISD::ZERO_EXTEND
3391                                  : ISD::SIGN_EXTEND;
3392         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
3393         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
3394       }
3395       // FP2Int
3396       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
3397       // Do one doubling fp_extend then complete the operation by converting
3398       // to int.
3399       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3400       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
3401       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
3402     }
3403 
3404     // Narrowing conversions
3405     if (SrcEltSize > (2 * EltSize)) {
3406       if (IsInt2FP) {
3407         // One narrowing int_to_fp, then an fp_round.
3408         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
3409         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3410         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
3411         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
3412       }
3413       // FP2Int
3414       // One narrowing fp_to_int, then truncate the integer. If the float isn't
3415       // representable by the integer, the result is poison.
3416       MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
3417                                     VT.getVectorElementCount());
3418       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
3419       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
3420     }
3421 
3422     // Scalable vectors can exit here. Patterns will handle equally-sized
3423     // conversions halving/doubling ones.
3424     if (!VT.isFixedLengthVector())
3425       return Op;
3426 
3427     // For fixed-length vectors we lower to a custom "VL" node.
3428     unsigned RVVOpc = 0;
3429     switch (Op.getOpcode()) {
3430     default:
3431       llvm_unreachable("Impossible opcode");
3432     case ISD::FP_TO_SINT:
3433       RVVOpc = RISCVISD::FP_TO_SINT_VL;
3434       break;
3435     case ISD::FP_TO_UINT:
3436       RVVOpc = RISCVISD::FP_TO_UINT_VL;
3437       break;
3438     case ISD::SINT_TO_FP:
3439       RVVOpc = RISCVISD::SINT_TO_FP_VL;
3440       break;
3441     case ISD::UINT_TO_FP:
3442       RVVOpc = RISCVISD::UINT_TO_FP_VL;
3443       break;
3444     }
3445 
3446     MVT ContainerVT, SrcContainerVT;
3447     // Derive the reference container type from the larger vector type.
3448     if (SrcEltSize > EltSize) {
3449       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3450       ContainerVT =
3451           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3452     } else {
3453       ContainerVT = getContainerForFixedLengthVector(VT);
3454       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
3455     }
3456 
3457     SDValue Mask, VL;
3458     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3459 
3460     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3461     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3462     return convertFromScalableVector(VT, Src, DAG, Subtarget);
3463   }
3464   case ISD::FP_TO_SINT_SAT:
3465   case ISD::FP_TO_UINT_SAT:
3466     return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
3467   case ISD::FTRUNC:
3468   case ISD::FCEIL:
3469   case ISD::FFLOOR:
3470     return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3471   case ISD::FROUND:
3472     return lowerFROUND(Op, DAG);
3473   case ISD::VECREDUCE_ADD:
3474   case ISD::VECREDUCE_UMAX:
3475   case ISD::VECREDUCE_SMAX:
3476   case ISD::VECREDUCE_UMIN:
3477   case ISD::VECREDUCE_SMIN:
3478     return lowerVECREDUCE(Op, DAG);
3479   case ISD::VECREDUCE_AND:
3480   case ISD::VECREDUCE_OR:
3481   case ISD::VECREDUCE_XOR:
3482     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3483       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3484     return lowerVECREDUCE(Op, DAG);
3485   case ISD::VECREDUCE_FADD:
3486   case ISD::VECREDUCE_SEQ_FADD:
3487   case ISD::VECREDUCE_FMIN:
3488   case ISD::VECREDUCE_FMAX:
3489     return lowerFPVECREDUCE(Op, DAG);
3490   case ISD::VP_REDUCE_ADD:
3491   case ISD::VP_REDUCE_UMAX:
3492   case ISD::VP_REDUCE_SMAX:
3493   case ISD::VP_REDUCE_UMIN:
3494   case ISD::VP_REDUCE_SMIN:
3495   case ISD::VP_REDUCE_FADD:
3496   case ISD::VP_REDUCE_SEQ_FADD:
3497   case ISD::VP_REDUCE_FMIN:
3498   case ISD::VP_REDUCE_FMAX:
3499     return lowerVPREDUCE(Op, DAG);
3500   case ISD::VP_REDUCE_AND:
3501   case ISD::VP_REDUCE_OR:
3502   case ISD::VP_REDUCE_XOR:
3503     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3504       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3505     return lowerVPREDUCE(Op, DAG);
3506   case ISD::INSERT_SUBVECTOR:
3507     return lowerINSERT_SUBVECTOR(Op, DAG);
3508   case ISD::EXTRACT_SUBVECTOR:
3509     return lowerEXTRACT_SUBVECTOR(Op, DAG);
3510   case ISD::STEP_VECTOR:
3511     return lowerSTEP_VECTOR(Op, DAG);
3512   case ISD::VECTOR_REVERSE:
3513     return lowerVECTOR_REVERSE(Op, DAG);
3514   case ISD::VECTOR_SPLICE:
3515     return lowerVECTOR_SPLICE(Op, DAG);
3516   case ISD::BUILD_VECTOR:
3517     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3518   case ISD::SPLAT_VECTOR:
3519     if (Op.getValueType().getVectorElementType() == MVT::i1)
3520       return lowerVectorMaskSplat(Op, DAG);
3521     return SDValue();
3522   case ISD::VECTOR_SHUFFLE:
3523     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3524   case ISD::CONCAT_VECTORS: {
3525     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3526     // better than going through the stack, as the default expansion does.
3527     SDLoc DL(Op);
3528     MVT VT = Op.getSimpleValueType();
3529     unsigned NumOpElts =
3530         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3531     SDValue Vec = DAG.getUNDEF(VT);
3532     for (const auto &OpIdx : enumerate(Op->ops())) {
3533       SDValue SubVec = OpIdx.value();
3534       // Don't insert undef subvectors.
3535       if (SubVec.isUndef())
3536         continue;
3537       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
3538                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3539     }
3540     return Vec;
3541   }
3542   case ISD::LOAD:
3543     if (auto V = expandUnalignedRVVLoad(Op, DAG))
3544       return V;
3545     if (Op.getValueType().isFixedLengthVector())
3546       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3547     return Op;
3548   case ISD::STORE:
3549     if (auto V = expandUnalignedRVVStore(Op, DAG))
3550       return V;
3551     if (Op.getOperand(1).getValueType().isFixedLengthVector())
3552       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3553     return Op;
3554   case ISD::MLOAD:
3555   case ISD::VP_LOAD:
3556     return lowerMaskedLoad(Op, DAG);
3557   case ISD::MSTORE:
3558   case ISD::VP_STORE:
3559     return lowerMaskedStore(Op, DAG);
3560   case ISD::SETCC:
3561     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3562   case ISD::ADD:
3563     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3564   case ISD::SUB:
3565     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3566   case ISD::MUL:
3567     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3568   case ISD::MULHS:
3569     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3570   case ISD::MULHU:
3571     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3572   case ISD::AND:
3573     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3574                                               RISCVISD::AND_VL);
3575   case ISD::OR:
3576     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3577                                               RISCVISD::OR_VL);
3578   case ISD::XOR:
3579     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3580                                               RISCVISD::XOR_VL);
3581   case ISD::SDIV:
3582     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3583   case ISD::SREM:
3584     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3585   case ISD::UDIV:
3586     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3587   case ISD::UREM:
3588     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3589   case ISD::SHL:
3590   case ISD::SRA:
3591   case ISD::SRL:
3592     if (Op.getSimpleValueType().isFixedLengthVector())
3593       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3594     // This can be called for an i32 shift amount that needs to be promoted.
3595     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3596            "Unexpected custom legalisation");
3597     return SDValue();
3598   case ISD::SADDSAT:
3599     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3600   case ISD::UADDSAT:
3601     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3602   case ISD::SSUBSAT:
3603     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3604   case ISD::USUBSAT:
3605     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3606   case ISD::FADD:
3607     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3608   case ISD::FSUB:
3609     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3610   case ISD::FMUL:
3611     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3612   case ISD::FDIV:
3613     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3614   case ISD::FNEG:
3615     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3616   case ISD::FABS:
3617     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3618   case ISD::FSQRT:
3619     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3620   case ISD::FMA:
3621     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
3622   case ISD::SMIN:
3623     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3624   case ISD::SMAX:
3625     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3626   case ISD::UMIN:
3627     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3628   case ISD::UMAX:
3629     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3630   case ISD::FMINNUM:
3631     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3632   case ISD::FMAXNUM:
3633     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3634   case ISD::ABS:
3635     return lowerABS(Op, DAG);
3636   case ISD::CTLZ_ZERO_UNDEF:
3637   case ISD::CTTZ_ZERO_UNDEF:
3638     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3639   case ISD::VSELECT:
3640     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3641   case ISD::FCOPYSIGN:
3642     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3643   case ISD::MGATHER:
3644   case ISD::VP_GATHER:
3645     return lowerMaskedGather(Op, DAG);
3646   case ISD::MSCATTER:
3647   case ISD::VP_SCATTER:
3648     return lowerMaskedScatter(Op, DAG);
3649   case ISD::FLT_ROUNDS_:
3650     return lowerGET_ROUNDING(Op, DAG);
3651   case ISD::SET_ROUNDING:
3652     return lowerSET_ROUNDING(Op, DAG);
3653   case ISD::VP_SELECT:
3654     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3655   case ISD::VP_MERGE:
3656     return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL);
3657   case ISD::VP_ADD:
3658     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3659   case ISD::VP_SUB:
3660     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3661   case ISD::VP_MUL:
3662     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3663   case ISD::VP_SDIV:
3664     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3665   case ISD::VP_UDIV:
3666     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3667   case ISD::VP_SREM:
3668     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3669   case ISD::VP_UREM:
3670     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3671   case ISD::VP_AND:
3672     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3673   case ISD::VP_OR:
3674     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3675   case ISD::VP_XOR:
3676     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3677   case ISD::VP_ASHR:
3678     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3679   case ISD::VP_LSHR:
3680     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3681   case ISD::VP_SHL:
3682     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3683   case ISD::VP_FADD:
3684     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3685   case ISD::VP_FSUB:
3686     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3687   case ISD::VP_FMUL:
3688     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3689   case ISD::VP_FDIV:
3690     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3691   case ISD::VP_FNEG:
3692     return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL);
3693   case ISD::VP_FMA:
3694     return lowerVPOp(Op, DAG, RISCVISD::FMA_VL);
3695   }
3696 }
3697 
3698 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3699                              SelectionDAG &DAG, unsigned Flags) {
3700   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3701 }
3702 
3703 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3704                              SelectionDAG &DAG, unsigned Flags) {
3705   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3706                                    Flags);
3707 }
3708 
3709 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3710                              SelectionDAG &DAG, unsigned Flags) {
3711   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3712                                    N->getOffset(), Flags);
3713 }
3714 
3715 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3716                              SelectionDAG &DAG, unsigned Flags) {
3717   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3718 }
3719 
3720 template <class NodeTy>
3721 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3722                                      bool IsLocal) const {
3723   SDLoc DL(N);
3724   EVT Ty = getPointerTy(DAG.getDataLayout());
3725 
3726   if (isPositionIndependent()) {
3727     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3728     if (IsLocal)
3729       // Use PC-relative addressing to access the symbol. This generates the
3730       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3731       // %pcrel_lo(auipc)).
3732       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3733 
3734     // Use PC-relative addressing to access the GOT for this symbol, then load
3735     // the address from the GOT. This generates the pattern (PseudoLA sym),
3736     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3737     SDValue Load =
3738         SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
3739     MachineFunction &MF = DAG.getMachineFunction();
3740     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3741         MachinePointerInfo::getGOT(MF),
3742         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3743             MachineMemOperand::MOInvariant,
3744         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3745     DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
3746     return Load;
3747   }
3748 
3749   switch (getTargetMachine().getCodeModel()) {
3750   default:
3751     report_fatal_error("Unsupported code model for lowering");
3752   case CodeModel::Small: {
3753     // Generate a sequence for accessing addresses within the first 2 GiB of
3754     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3755     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3756     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3757     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3758     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
3759   }
3760   case CodeModel::Medium: {
3761     // Generate a sequence for accessing addresses within any 2GiB range within
3762     // the address space. This generates the pattern (PseudoLLA sym), which
3763     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3764     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3765     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3766   }
3767   }
3768 }
3769 
3770 template SDValue RISCVTargetLowering::getAddr<GlobalAddressSDNode>(
3771     GlobalAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3772 template SDValue RISCVTargetLowering::getAddr<BlockAddressSDNode>(
3773     BlockAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3774 template SDValue RISCVTargetLowering::getAddr<ConstantPoolSDNode>(
3775     ConstantPoolSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3776 template SDValue RISCVTargetLowering::getAddr<JumpTableSDNode>(
3777     JumpTableSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3778 
3779 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3780                                                 SelectionDAG &DAG) const {
3781   SDLoc DL(Op);
3782   EVT Ty = Op.getValueType();
3783   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3784   int64_t Offset = N->getOffset();
3785   MVT XLenVT = Subtarget.getXLenVT();
3786 
3787   const GlobalValue *GV = N->getGlobal();
3788   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3789   SDValue Addr = getAddr(N, DAG, IsLocal);
3790 
3791   // In order to maximise the opportunity for common subexpression elimination,
3792   // emit a separate ADD node for the global address offset instead of folding
3793   // it in the global address node. Later peephole optimisations may choose to
3794   // fold it back in when profitable.
3795   if (Offset != 0)
3796     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3797                        DAG.getConstant(Offset, DL, XLenVT));
3798   return Addr;
3799 }
3800 
3801 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3802                                                SelectionDAG &DAG) const {
3803   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3804 
3805   return getAddr(N, DAG);
3806 }
3807 
3808 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3809                                                SelectionDAG &DAG) const {
3810   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3811 
3812   return getAddr(N, DAG);
3813 }
3814 
3815 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3816                                             SelectionDAG &DAG) const {
3817   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3818 
3819   return getAddr(N, DAG);
3820 }
3821 
3822 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3823                                               SelectionDAG &DAG,
3824                                               bool UseGOT) const {
3825   SDLoc DL(N);
3826   EVT Ty = getPointerTy(DAG.getDataLayout());
3827   const GlobalValue *GV = N->getGlobal();
3828   MVT XLenVT = Subtarget.getXLenVT();
3829 
3830   if (UseGOT) {
3831     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3832     // load the address from the GOT and add the thread pointer. This generates
3833     // the pattern (PseudoLA_TLS_IE sym), which expands to
3834     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3835     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3836     SDValue Load =
3837         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
3838     MachineFunction &MF = DAG.getMachineFunction();
3839     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3840         MachinePointerInfo::getGOT(MF),
3841         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3842             MachineMemOperand::MOInvariant,
3843         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3844     DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
3845 
3846     // Add the thread pointer.
3847     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3848     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3849   }
3850 
3851   // Generate a sequence for accessing the address relative to the thread
3852   // pointer, with the appropriate adjustment for the thread pointer offset.
3853   // This generates the pattern
3854   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3855   SDValue AddrHi =
3856       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3857   SDValue AddrAdd =
3858       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3859   SDValue AddrLo =
3860       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3861 
3862   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3863   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3864   SDValue MNAdd = SDValue(
3865       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
3866       0);
3867   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
3868 }
3869 
3870 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3871                                                SelectionDAG &DAG) const {
3872   SDLoc DL(N);
3873   EVT Ty = getPointerTy(DAG.getDataLayout());
3874   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3875   const GlobalValue *GV = N->getGlobal();
3876 
3877   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3878   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3879   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3880   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3881   SDValue Load =
3882       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
3883 
3884   // Prepare argument list to generate call.
3885   ArgListTy Args;
3886   ArgListEntry Entry;
3887   Entry.Node = Load;
3888   Entry.Ty = CallTy;
3889   Args.push_back(Entry);
3890 
3891   // Setup call to __tls_get_addr.
3892   TargetLowering::CallLoweringInfo CLI(DAG);
3893   CLI.setDebugLoc(DL)
3894       .setChain(DAG.getEntryNode())
3895       .setLibCallee(CallingConv::C, CallTy,
3896                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3897                     std::move(Args));
3898 
3899   return LowerCallTo(CLI).first;
3900 }
3901 
3902 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3903                                                    SelectionDAG &DAG) const {
3904   SDLoc DL(Op);
3905   EVT Ty = Op.getValueType();
3906   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3907   int64_t Offset = N->getOffset();
3908   MVT XLenVT = Subtarget.getXLenVT();
3909 
3910   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3911 
3912   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3913       CallingConv::GHC)
3914     report_fatal_error("In GHC calling convention TLS is not supported");
3915 
3916   SDValue Addr;
3917   switch (Model) {
3918   case TLSModel::LocalExec:
3919     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3920     break;
3921   case TLSModel::InitialExec:
3922     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3923     break;
3924   case TLSModel::LocalDynamic:
3925   case TLSModel::GeneralDynamic:
3926     Addr = getDynamicTLSAddr(N, DAG);
3927     break;
3928   }
3929 
3930   // In order to maximise the opportunity for common subexpression elimination,
3931   // emit a separate ADD node for the global address offset instead of folding
3932   // it in the global address node. Later peephole optimisations may choose to
3933   // fold it back in when profitable.
3934   if (Offset != 0)
3935     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3936                        DAG.getConstant(Offset, DL, XLenVT));
3937   return Addr;
3938 }
3939 
3940 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3941   SDValue CondV = Op.getOperand(0);
3942   SDValue TrueV = Op.getOperand(1);
3943   SDValue FalseV = Op.getOperand(2);
3944   SDLoc DL(Op);
3945   MVT VT = Op.getSimpleValueType();
3946   MVT XLenVT = Subtarget.getXLenVT();
3947 
3948   // Lower vector SELECTs to VSELECTs by splatting the condition.
3949   if (VT.isVector()) {
3950     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3951     SDValue CondSplat = VT.isScalableVector()
3952                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3953                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3954     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3955   }
3956 
3957   // If the result type is XLenVT and CondV is the output of a SETCC node
3958   // which also operated on XLenVT inputs, then merge the SETCC node into the
3959   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3960   // compare+branch instructions. i.e.:
3961   // (select (setcc lhs, rhs, cc), truev, falsev)
3962   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3963   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3964       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3965     SDValue LHS = CondV.getOperand(0);
3966     SDValue RHS = CondV.getOperand(1);
3967     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3968     ISD::CondCode CCVal = CC->get();
3969 
3970     // Special case for a select of 2 constants that have a diffence of 1.
3971     // Normally this is done by DAGCombine, but if the select is introduced by
3972     // type legalization or op legalization, we miss it. Restricting to SETLT
3973     // case for now because that is what signed saturating add/sub need.
3974     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3975     // but we would probably want to swap the true/false values if the condition
3976     // is SETGE/SETLE to avoid an XORI.
3977     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3978         CCVal == ISD::SETLT) {
3979       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3980       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3981       if (TrueVal - 1 == FalseVal)
3982         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3983       if (TrueVal + 1 == FalseVal)
3984         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3985     }
3986 
3987     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3988 
3989     SDValue TargetCC = DAG.getCondCode(CCVal);
3990     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3991     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3992   }
3993 
3994   // Otherwise:
3995   // (select condv, truev, falsev)
3996   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3997   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3998   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3999 
4000   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
4001 
4002   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
4003 }
4004 
4005 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
4006   SDValue CondV = Op.getOperand(1);
4007   SDLoc DL(Op);
4008   MVT XLenVT = Subtarget.getXLenVT();
4009 
4010   if (CondV.getOpcode() == ISD::SETCC &&
4011       CondV.getOperand(0).getValueType() == XLenVT) {
4012     SDValue LHS = CondV.getOperand(0);
4013     SDValue RHS = CondV.getOperand(1);
4014     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
4015 
4016     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
4017 
4018     SDValue TargetCC = DAG.getCondCode(CCVal);
4019     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
4020                        LHS, RHS, TargetCC, Op.getOperand(2));
4021   }
4022 
4023   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
4024                      CondV, DAG.getConstant(0, DL, XLenVT),
4025                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
4026 }
4027 
4028 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
4029   MachineFunction &MF = DAG.getMachineFunction();
4030   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
4031 
4032   SDLoc DL(Op);
4033   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
4034                                  getPointerTy(MF.getDataLayout()));
4035 
4036   // vastart just stores the address of the VarArgsFrameIndex slot into the
4037   // memory location argument.
4038   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4039   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
4040                       MachinePointerInfo(SV));
4041 }
4042 
4043 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
4044                                             SelectionDAG &DAG) const {
4045   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
4046   MachineFunction &MF = DAG.getMachineFunction();
4047   MachineFrameInfo &MFI = MF.getFrameInfo();
4048   MFI.setFrameAddressIsTaken(true);
4049   Register FrameReg = RI.getFrameRegister(MF);
4050   int XLenInBytes = Subtarget.getXLen() / 8;
4051 
4052   EVT VT = Op.getValueType();
4053   SDLoc DL(Op);
4054   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
4055   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4056   while (Depth--) {
4057     int Offset = -(XLenInBytes * 2);
4058     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
4059                               DAG.getIntPtrConstant(Offset, DL));
4060     FrameAddr =
4061         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
4062   }
4063   return FrameAddr;
4064 }
4065 
4066 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
4067                                              SelectionDAG &DAG) const {
4068   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
4069   MachineFunction &MF = DAG.getMachineFunction();
4070   MachineFrameInfo &MFI = MF.getFrameInfo();
4071   MFI.setReturnAddressIsTaken(true);
4072   MVT XLenVT = Subtarget.getXLenVT();
4073   int XLenInBytes = Subtarget.getXLen() / 8;
4074 
4075   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
4076     return SDValue();
4077 
4078   EVT VT = Op.getValueType();
4079   SDLoc DL(Op);
4080   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4081   if (Depth) {
4082     int Off = -XLenInBytes;
4083     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
4084     SDValue Offset = DAG.getConstant(Off, DL, VT);
4085     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4086                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4087                        MachinePointerInfo());
4088   }
4089 
4090   // Return the value of the return address register, marking it an implicit
4091   // live-in.
4092   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
4093   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
4094 }
4095 
4096 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
4097                                                  SelectionDAG &DAG) const {
4098   SDLoc DL(Op);
4099   SDValue Lo = Op.getOperand(0);
4100   SDValue Hi = Op.getOperand(1);
4101   SDValue Shamt = Op.getOperand(2);
4102   EVT VT = Lo.getValueType();
4103 
4104   // if Shamt-XLEN < 0: // Shamt < XLEN
4105   //   Lo = Lo << Shamt
4106   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt))
4107   // else:
4108   //   Lo = 0
4109   //   Hi = Lo << (Shamt-XLEN)
4110 
4111   SDValue Zero = DAG.getConstant(0, DL, VT);
4112   SDValue One = DAG.getConstant(1, DL, VT);
4113   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4114   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4115   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4116   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4117 
4118   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
4119   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
4120   SDValue ShiftRightLo =
4121       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
4122   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
4123   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
4124   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
4125 
4126   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4127 
4128   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
4129   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4130 
4131   SDValue Parts[2] = {Lo, Hi};
4132   return DAG.getMergeValues(Parts, DL);
4133 }
4134 
4135 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
4136                                                   bool IsSRA) const {
4137   SDLoc DL(Op);
4138   SDValue Lo = Op.getOperand(0);
4139   SDValue Hi = Op.getOperand(1);
4140   SDValue Shamt = Op.getOperand(2);
4141   EVT VT = Lo.getValueType();
4142 
4143   // SRA expansion:
4144   //   if Shamt-XLEN < 0: // Shamt < XLEN
4145   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4146   //     Hi = Hi >>s Shamt
4147   //   else:
4148   //     Lo = Hi >>s (Shamt-XLEN);
4149   //     Hi = Hi >>s (XLEN-1)
4150   //
4151   // SRL expansion:
4152   //   if Shamt-XLEN < 0: // Shamt < XLEN
4153   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4154   //     Hi = Hi >>u Shamt
4155   //   else:
4156   //     Lo = Hi >>u (Shamt-XLEN);
4157   //     Hi = 0;
4158 
4159   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
4160 
4161   SDValue Zero = DAG.getConstant(0, DL, VT);
4162   SDValue One = DAG.getConstant(1, DL, VT);
4163   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4164   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4165   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4166   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4167 
4168   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
4169   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
4170   SDValue ShiftLeftHi =
4171       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
4172   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
4173   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
4174   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
4175   SDValue HiFalse =
4176       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
4177 
4178   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4179 
4180   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
4181   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4182 
4183   SDValue Parts[2] = {Lo, Hi};
4184   return DAG.getMergeValues(Parts, DL);
4185 }
4186 
4187 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
4188 // legal equivalently-sized i8 type, so we can use that as a go-between.
4189 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
4190                                                   SelectionDAG &DAG) const {
4191   SDLoc DL(Op);
4192   MVT VT = Op.getSimpleValueType();
4193   SDValue SplatVal = Op.getOperand(0);
4194   // All-zeros or all-ones splats are handled specially.
4195   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
4196     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4197     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
4198   }
4199   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
4200     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4201     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
4202   }
4203   MVT XLenVT = Subtarget.getXLenVT();
4204   assert(SplatVal.getValueType() == XLenVT &&
4205          "Unexpected type for i1 splat value");
4206   MVT InterVT = VT.changeVectorElementType(MVT::i8);
4207   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
4208                          DAG.getConstant(1, DL, XLenVT));
4209   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
4210   SDValue Zero = DAG.getConstant(0, DL, InterVT);
4211   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
4212 }
4213 
4214 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
4215 // illegal (currently only vXi64 RV32).
4216 // FIXME: We could also catch non-constant sign-extended i32 values and lower
4217 // them to VMV_V_X_VL.
4218 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
4219                                                      SelectionDAG &DAG) const {
4220   SDLoc DL(Op);
4221   MVT VecVT = Op.getSimpleValueType();
4222   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
4223          "Unexpected SPLAT_VECTOR_PARTS lowering");
4224 
4225   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
4226   SDValue Lo = Op.getOperand(0);
4227   SDValue Hi = Op.getOperand(1);
4228 
4229   if (VecVT.isFixedLengthVector()) {
4230     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4231     SDLoc DL(Op);
4232     SDValue Mask, VL;
4233     std::tie(Mask, VL) =
4234         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4235 
4236     SDValue Res =
4237         splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG);
4238     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
4239   }
4240 
4241   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
4242     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
4243     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
4244     // If Hi constant is all the same sign bit as Lo, lower this as a custom
4245     // node in order to try and match RVV vector/scalar instructions.
4246     if ((LoC >> 31) == HiC)
4247       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4248                          Lo, DAG.getRegister(RISCV::X0, MVT::i32));
4249   }
4250 
4251   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
4252   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
4253       isa<ConstantSDNode>(Hi.getOperand(1)) &&
4254       Hi.getConstantOperandVal(1) == 31)
4255     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo,
4256                        DAG.getRegister(RISCV::X0, MVT::i32));
4257 
4258   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
4259   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT,
4260                      DAG.getUNDEF(VecVT), Lo, Hi,
4261                      DAG.getRegister(RISCV::X0, MVT::i32));
4262 }
4263 
4264 // Custom-lower extensions from mask vectors by using a vselect either with 1
4265 // for zero/any-extension or -1 for sign-extension:
4266 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
4267 // Note that any-extension is lowered identically to zero-extension.
4268 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
4269                                                 int64_t ExtTrueVal) const {
4270   SDLoc DL(Op);
4271   MVT VecVT = Op.getSimpleValueType();
4272   SDValue Src = Op.getOperand(0);
4273   // Only custom-lower extensions from mask types
4274   assert(Src.getValueType().isVector() &&
4275          Src.getValueType().getVectorElementType() == MVT::i1);
4276 
4277   if (VecVT.isScalableVector()) {
4278     SDValue SplatZero = DAG.getConstant(0, DL, VecVT);
4279     SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT);
4280     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
4281   }
4282 
4283   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4284   MVT I1ContainerVT =
4285       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4286 
4287   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
4288 
4289   SDValue Mask, VL;
4290   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4291 
4292   MVT XLenVT = Subtarget.getXLenVT();
4293   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
4294   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
4295 
4296   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4297                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4298   SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4299                              DAG.getUNDEF(ContainerVT), SplatTrueVal, VL);
4300   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
4301                                SplatTrueVal, SplatZero, VL);
4302 
4303   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
4304 }
4305 
4306 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
4307     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
4308   MVT ExtVT = Op.getSimpleValueType();
4309   // Only custom-lower extensions from fixed-length vector types.
4310   if (!ExtVT.isFixedLengthVector())
4311     return Op;
4312   MVT VT = Op.getOperand(0).getSimpleValueType();
4313   // Grab the canonical container type for the extended type. Infer the smaller
4314   // type from that to ensure the same number of vector elements, as we know
4315   // the LMUL will be sufficient to hold the smaller type.
4316   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
4317   // Get the extended container type manually to ensure the same number of
4318   // vector elements between source and dest.
4319   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4320                                      ContainerExtVT.getVectorElementCount());
4321 
4322   SDValue Op1 =
4323       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4324 
4325   SDLoc DL(Op);
4326   SDValue Mask, VL;
4327   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4328 
4329   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
4330 
4331   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
4332 }
4333 
4334 // Custom-lower truncations from vectors to mask vectors by using a mask and a
4335 // setcc operation:
4336 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
4337 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
4338                                                   SelectionDAG &DAG) const {
4339   SDLoc DL(Op);
4340   EVT MaskVT = Op.getValueType();
4341   // Only expect to custom-lower truncations to mask types
4342   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
4343          "Unexpected type for vector mask lowering");
4344   SDValue Src = Op.getOperand(0);
4345   MVT VecVT = Src.getSimpleValueType();
4346 
4347   // If this is a fixed vector, we need to convert it to a scalable vector.
4348   MVT ContainerVT = VecVT;
4349   if (VecVT.isFixedLengthVector()) {
4350     ContainerVT = getContainerForFixedLengthVector(VecVT);
4351     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4352   }
4353 
4354   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
4355   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
4356 
4357   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4358                          DAG.getUNDEF(ContainerVT), SplatOne);
4359   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4360                           DAG.getUNDEF(ContainerVT), SplatZero);
4361 
4362   if (VecVT.isScalableVector()) {
4363     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
4364     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
4365   }
4366 
4367   SDValue Mask, VL;
4368   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4369 
4370   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
4371   SDValue Trunc =
4372       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
4373   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
4374                       DAG.getCondCode(ISD::SETNE), Mask, VL);
4375   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
4376 }
4377 
4378 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
4379 // first position of a vector, and that vector is slid up to the insert index.
4380 // By limiting the active vector length to index+1 and merging with the
4381 // original vector (with an undisturbed tail policy for elements >= VL), we
4382 // achieve the desired result of leaving all elements untouched except the one
4383 // at VL-1, which is replaced with the desired value.
4384 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4385                                                     SelectionDAG &DAG) const {
4386   SDLoc DL(Op);
4387   MVT VecVT = Op.getSimpleValueType();
4388   SDValue Vec = Op.getOperand(0);
4389   SDValue Val = Op.getOperand(1);
4390   SDValue Idx = Op.getOperand(2);
4391 
4392   if (VecVT.getVectorElementType() == MVT::i1) {
4393     // FIXME: For now we just promote to an i8 vector and insert into that,
4394     // but this is probably not optimal.
4395     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4396     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4397     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
4398     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
4399   }
4400 
4401   MVT ContainerVT = VecVT;
4402   // If the operand is a fixed-length vector, convert to a scalable one.
4403   if (VecVT.isFixedLengthVector()) {
4404     ContainerVT = getContainerForFixedLengthVector(VecVT);
4405     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4406   }
4407 
4408   MVT XLenVT = Subtarget.getXLenVT();
4409 
4410   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4411   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
4412   // Even i64-element vectors on RV32 can be lowered without scalar
4413   // legalization if the most-significant 32 bits of the value are not affected
4414   // by the sign-extension of the lower 32 bits.
4415   // TODO: We could also catch sign extensions of a 32-bit value.
4416   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
4417     const auto *CVal = cast<ConstantSDNode>(Val);
4418     if (isInt<32>(CVal->getSExtValue())) {
4419       IsLegalInsert = true;
4420       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4421     }
4422   }
4423 
4424   SDValue Mask, VL;
4425   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4426 
4427   SDValue ValInVec;
4428 
4429   if (IsLegalInsert) {
4430     unsigned Opc =
4431         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
4432     if (isNullConstant(Idx)) {
4433       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
4434       if (!VecVT.isFixedLengthVector())
4435         return Vec;
4436       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
4437     }
4438     ValInVec =
4439         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
4440   } else {
4441     // On RV32, i64-element vectors must be specially handled to place the
4442     // value at element 0, by using two vslide1up instructions in sequence on
4443     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
4444     // this.
4445     SDValue One = DAG.getConstant(1, DL, XLenVT);
4446     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
4447     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
4448     MVT I32ContainerVT =
4449         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
4450     SDValue I32Mask =
4451         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
4452     // Limit the active VL to two.
4453     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
4454     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
4455     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
4456     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT,
4457                            DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL);
4458     // First slide in the hi value, then the lo in underneath it.
4459     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4460                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi,
4461                            I32Mask, InsertI64VL);
4462     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4463                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo,
4464                            I32Mask, InsertI64VL);
4465     // Bitcast back to the right container type.
4466     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
4467   }
4468 
4469   // Now that the value is in a vector, slide it into position.
4470   SDValue InsertVL =
4471       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
4472   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4473                                 ValInVec, Idx, Mask, InsertVL);
4474   if (!VecVT.isFixedLengthVector())
4475     return Slideup;
4476   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4477 }
4478 
4479 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
4480 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
4481 // types this is done using VMV_X_S to allow us to glean information about the
4482 // sign bits of the result.
4483 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4484                                                      SelectionDAG &DAG) const {
4485   SDLoc DL(Op);
4486   SDValue Idx = Op.getOperand(1);
4487   SDValue Vec = Op.getOperand(0);
4488   EVT EltVT = Op.getValueType();
4489   MVT VecVT = Vec.getSimpleValueType();
4490   MVT XLenVT = Subtarget.getXLenVT();
4491 
4492   if (VecVT.getVectorElementType() == MVT::i1) {
4493     if (VecVT.isFixedLengthVector()) {
4494       unsigned NumElts = VecVT.getVectorNumElements();
4495       if (NumElts >= 8) {
4496         MVT WideEltVT;
4497         unsigned WidenVecLen;
4498         SDValue ExtractElementIdx;
4499         SDValue ExtractBitIdx;
4500         unsigned MaxEEW = Subtarget.getMaxELENForFixedLengthVectors();
4501         MVT LargestEltVT = MVT::getIntegerVT(
4502             std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
4503         if (NumElts <= LargestEltVT.getSizeInBits()) {
4504           assert(isPowerOf2_32(NumElts) &&
4505                  "the number of elements should be power of 2");
4506           WideEltVT = MVT::getIntegerVT(NumElts);
4507           WidenVecLen = 1;
4508           ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
4509           ExtractBitIdx = Idx;
4510         } else {
4511           WideEltVT = LargestEltVT;
4512           WidenVecLen = NumElts / WideEltVT.getSizeInBits();
4513           // extract element index = index / element width
4514           ExtractElementIdx = DAG.getNode(
4515               ISD::SRL, DL, XLenVT, Idx,
4516               DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
4517           // mask bit index = index % element width
4518           ExtractBitIdx = DAG.getNode(
4519               ISD::AND, DL, XLenVT, Idx,
4520               DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
4521         }
4522         MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
4523         Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
4524         SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
4525                                          Vec, ExtractElementIdx);
4526         // Extract the bit from GPR.
4527         SDValue ShiftRight =
4528             DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
4529         return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
4530                            DAG.getConstant(1, DL, XLenVT));
4531       }
4532     }
4533     // Otherwise, promote to an i8 vector and extract from that.
4534     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4535     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4536     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4537   }
4538 
4539   // If this is a fixed vector, we need to convert it to a scalable vector.
4540   MVT ContainerVT = VecVT;
4541   if (VecVT.isFixedLengthVector()) {
4542     ContainerVT = getContainerForFixedLengthVector(VecVT);
4543     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4544   }
4545 
4546   // If the index is 0, the vector is already in the right position.
4547   if (!isNullConstant(Idx)) {
4548     // Use a VL of 1 to avoid processing more elements than we need.
4549     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4550     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4551     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4552     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4553                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4554   }
4555 
4556   if (!EltVT.isInteger()) {
4557     // Floating-point extracts are handled in TableGen.
4558     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4559                        DAG.getConstant(0, DL, XLenVT));
4560   }
4561 
4562   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4563   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4564 }
4565 
4566 // Some RVV intrinsics may claim that they want an integer operand to be
4567 // promoted or expanded.
4568 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG,
4569                                            const RISCVSubtarget &Subtarget) {
4570   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4571           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4572          "Unexpected opcode");
4573 
4574   if (!Subtarget.hasVInstructions())
4575     return SDValue();
4576 
4577   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4578   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4579   SDLoc DL(Op);
4580 
4581   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4582       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4583   if (!II || !II->hasScalarOperand())
4584     return SDValue();
4585 
4586   unsigned SplatOp = II->ScalarOperand + 1 + HasChain;
4587   assert(SplatOp < Op.getNumOperands());
4588 
4589   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4590   SDValue &ScalarOp = Operands[SplatOp];
4591   MVT OpVT = ScalarOp.getSimpleValueType();
4592   MVT XLenVT = Subtarget.getXLenVT();
4593 
4594   // If this isn't a scalar, or its type is XLenVT we're done.
4595   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4596     return SDValue();
4597 
4598   // Simplest case is that the operand needs to be promoted to XLenVT.
4599   if (OpVT.bitsLT(XLenVT)) {
4600     // If the operand is a constant, sign extend to increase our chances
4601     // of being able to use a .vi instruction. ANY_EXTEND would become a
4602     // a zero extend and the simm5 check in isel would fail.
4603     // FIXME: Should we ignore the upper bits in isel instead?
4604     unsigned ExtOpc =
4605         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4606     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4607     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4608   }
4609 
4610   // Use the previous operand to get the vXi64 VT. The result might be a mask
4611   // VT for compares. Using the previous operand assumes that the previous
4612   // operand will never have a smaller element size than a scalar operand and
4613   // that a widening operation never uses SEW=64.
4614   // NOTE: If this fails the below assert, we can probably just find the
4615   // element count from any operand or result and use it to construct the VT.
4616   assert(II->ScalarOperand > 0 && "Unexpected splat operand!");
4617   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4618 
4619   // The more complex case is when the scalar is larger than XLenVT.
4620   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4621          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4622 
4623   // If this is a sign-extended 32-bit value, we can truncate it and rely on the
4624   // instruction to sign-extend since SEW>XLEN.
4625   if (DAG.ComputeNumSignBits(ScalarOp) > 32) {
4626     ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp);
4627     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4628   }
4629 
4630   switch (IntNo) {
4631   case Intrinsic::riscv_vslide1up:
4632   case Intrinsic::riscv_vslide1down:
4633   case Intrinsic::riscv_vslide1up_mask:
4634   case Intrinsic::riscv_vslide1down_mask: {
4635     // We need to special case these when the scalar is larger than XLen.
4636     unsigned NumOps = Op.getNumOperands();
4637     bool IsMasked = NumOps == 7;
4638 
4639     // Convert the vector source to the equivalent nxvXi32 vector.
4640     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4641     SDValue Vec = DAG.getBitcast(I32VT, Operands[2]);
4642 
4643     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4644                                    DAG.getConstant(0, DL, XLenVT));
4645     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4646                                    DAG.getConstant(1, DL, XLenVT));
4647 
4648     // Double the VL since we halved SEW.
4649     SDValue AVL = getVLOperand(Op);
4650     SDValue I32VL;
4651 
4652     // Optimize for constant AVL
4653     if (isa<ConstantSDNode>(AVL)) {
4654       unsigned EltSize = VT.getScalarSizeInBits();
4655       unsigned MinSize = VT.getSizeInBits().getKnownMinValue();
4656 
4657       unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
4658       unsigned MaxVLMAX =
4659           RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
4660 
4661       unsigned VectorBitsMin = Subtarget.getRealMinVLen();
4662       unsigned MinVLMAX =
4663           RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize);
4664 
4665       uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue();
4666       if (AVLInt <= MinVLMAX) {
4667         I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT);
4668       } else if (AVLInt >= 2 * MaxVLMAX) {
4669         // Just set vl to VLMAX in this situation
4670         RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT);
4671         SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4672         unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits());
4673         SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4674         SDValue SETVLMAX = DAG.getTargetConstant(
4675             Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32);
4676         I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW,
4677                             LMUL);
4678       } else {
4679         // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl
4680         // is related to the hardware implementation.
4681         // So let the following code handle
4682       }
4683     }
4684     if (!I32VL) {
4685       RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT);
4686       SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4687       unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits());
4688       SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4689       SDValue SETVL =
4690           DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32);
4691       // Using vsetvli instruction to get actually used length which related to
4692       // the hardware implementation
4693       SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL,
4694                                SEW, LMUL);
4695       I32VL =
4696           DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4697     }
4698 
4699     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
4700     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, I32VL);
4701 
4702     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4703     // instructions.
4704     SDValue Passthru;
4705     if (IsMasked)
4706       Passthru = DAG.getUNDEF(I32VT);
4707     else
4708       Passthru = DAG.getBitcast(I32VT, Operands[1]);
4709 
4710     if (IntNo == Intrinsic::riscv_vslide1up ||
4711         IntNo == Intrinsic::riscv_vslide1up_mask) {
4712       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4713                         ScalarHi, I32Mask, I32VL);
4714       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4715                         ScalarLo, I32Mask, I32VL);
4716     } else {
4717       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4718                         ScalarLo, I32Mask, I32VL);
4719       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4720                         ScalarHi, I32Mask, I32VL);
4721     }
4722 
4723     // Convert back to nxvXi64.
4724     Vec = DAG.getBitcast(VT, Vec);
4725 
4726     if (!IsMasked)
4727       return Vec;
4728     // Apply mask after the operation.
4729     SDValue Mask = Operands[NumOps - 3];
4730     SDValue MaskedOff = Operands[1];
4731     // Assume Policy operand is the last operand.
4732     uint64_t Policy =
4733         cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue();
4734     // We don't need to select maskedoff if it's undef.
4735     if (MaskedOff.isUndef())
4736       return Vec;
4737     // TAMU
4738     if (Policy == RISCVII::TAIL_AGNOSTIC)
4739       return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff,
4740                          AVL);
4741     // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma.
4742     // It's fine because vmerge does not care mask policy.
4743     return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff,
4744                        AVL);
4745   }
4746   }
4747 
4748   // We need to convert the scalar to a splat vector.
4749   SDValue VL = getVLOperand(Op);
4750   assert(VL.getValueType() == XLenVT);
4751   ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG);
4752   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4753 }
4754 
4755 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4756                                                      SelectionDAG &DAG) const {
4757   unsigned IntNo = Op.getConstantOperandVal(0);
4758   SDLoc DL(Op);
4759   MVT XLenVT = Subtarget.getXLenVT();
4760 
4761   switch (IntNo) {
4762   default:
4763     break; // Don't custom lower most intrinsics.
4764   case Intrinsic::thread_pointer: {
4765     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4766     return DAG.getRegister(RISCV::X4, PtrVT);
4767   }
4768   case Intrinsic::riscv_orc_b:
4769   case Intrinsic::riscv_brev8: {
4770     // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8.
4771     unsigned Opc =
4772         IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC;
4773     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4774                        DAG.getConstant(7, DL, XLenVT));
4775   }
4776   case Intrinsic::riscv_grev:
4777   case Intrinsic::riscv_gorc: {
4778     unsigned Opc =
4779         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4780     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4781   }
4782   case Intrinsic::riscv_zip:
4783   case Intrinsic::riscv_unzip: {
4784     // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip.
4785     // For i32 the immediate is 15. For i64 the immediate is 31.
4786     unsigned Opc =
4787         IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4788     unsigned BitWidth = Op.getValueSizeInBits();
4789     assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width");
4790     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4791                        DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT));
4792   }
4793   case Intrinsic::riscv_shfl:
4794   case Intrinsic::riscv_unshfl: {
4795     unsigned Opc =
4796         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4797     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4798   }
4799   case Intrinsic::riscv_bcompress:
4800   case Intrinsic::riscv_bdecompress: {
4801     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4802                                                        : RISCVISD::BDECOMPRESS;
4803     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4804   }
4805   case Intrinsic::riscv_bfp:
4806     return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1),
4807                        Op.getOperand(2));
4808   case Intrinsic::riscv_fsl:
4809     return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1),
4810                        Op.getOperand(2), Op.getOperand(3));
4811   case Intrinsic::riscv_fsr:
4812     return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1),
4813                        Op.getOperand(2), Op.getOperand(3));
4814   case Intrinsic::riscv_vmv_x_s:
4815     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4816     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4817                        Op.getOperand(1));
4818   case Intrinsic::riscv_vmv_v_x:
4819     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4820                             Op.getOperand(3), Op.getSimpleValueType(), DL, DAG,
4821                             Subtarget);
4822   case Intrinsic::riscv_vfmv_v_f:
4823     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4824                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4825   case Intrinsic::riscv_vmv_s_x: {
4826     SDValue Scalar = Op.getOperand(2);
4827 
4828     if (Scalar.getValueType().bitsLE(XLenVT)) {
4829       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4830       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4831                          Op.getOperand(1), Scalar, Op.getOperand(3));
4832     }
4833 
4834     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4835 
4836     // This is an i64 value that lives in two scalar registers. We have to
4837     // insert this in a convoluted way. First we build vXi64 splat containing
4838     // the two values that we assemble using some bit math. Next we'll use
4839     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4840     // to merge element 0 from our splat into the source vector.
4841     // FIXME: This is probably not the best way to do this, but it is
4842     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4843     // point.
4844     //   sw lo, (a0)
4845     //   sw hi, 4(a0)
4846     //   vlse vX, (a0)
4847     //
4848     //   vid.v      vVid
4849     //   vmseq.vx   mMask, vVid, 0
4850     //   vmerge.vvm vDest, vSrc, vVal, mMask
4851     MVT VT = Op.getSimpleValueType();
4852     SDValue Vec = Op.getOperand(1);
4853     SDValue VL = getVLOperand(Op);
4854 
4855     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG);
4856     if (Op.getOperand(1).isUndef())
4857       return SplattedVal;
4858     SDValue SplattedIdx =
4859         DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
4860                     DAG.getConstant(0, DL, MVT::i32), VL);
4861 
4862     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
4863     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4864     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4865     SDValue SelectCond =
4866         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4867                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4868     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4869                        Vec, VL);
4870   }
4871   }
4872 
4873   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4874 }
4875 
4876 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4877                                                     SelectionDAG &DAG) const {
4878   unsigned IntNo = Op.getConstantOperandVal(1);
4879   switch (IntNo) {
4880   default:
4881     break;
4882   case Intrinsic::riscv_masked_strided_load: {
4883     SDLoc DL(Op);
4884     MVT XLenVT = Subtarget.getXLenVT();
4885 
4886     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4887     // the selection of the masked intrinsics doesn't do this for us.
4888     SDValue Mask = Op.getOperand(5);
4889     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4890 
4891     MVT VT = Op->getSimpleValueType(0);
4892     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4893 
4894     SDValue PassThru = Op.getOperand(2);
4895     if (!IsUnmasked) {
4896       MVT MaskVT =
4897           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4898       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4899       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4900     }
4901 
4902     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4903 
4904     SDValue IntID = DAG.getTargetConstant(
4905         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4906         XLenVT);
4907 
4908     auto *Load = cast<MemIntrinsicSDNode>(Op);
4909     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4910     if (IsUnmasked)
4911       Ops.push_back(DAG.getUNDEF(ContainerVT));
4912     else
4913       Ops.push_back(PassThru);
4914     Ops.push_back(Op.getOperand(3)); // Ptr
4915     Ops.push_back(Op.getOperand(4)); // Stride
4916     if (!IsUnmasked)
4917       Ops.push_back(Mask);
4918     Ops.push_back(VL);
4919     if (!IsUnmasked) {
4920       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4921       Ops.push_back(Policy);
4922     }
4923 
4924     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4925     SDValue Result =
4926         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4927                                 Load->getMemoryVT(), Load->getMemOperand());
4928     SDValue Chain = Result.getValue(1);
4929     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4930     return DAG.getMergeValues({Result, Chain}, DL);
4931   }
4932   case Intrinsic::riscv_seg2_load:
4933   case Intrinsic::riscv_seg3_load:
4934   case Intrinsic::riscv_seg4_load:
4935   case Intrinsic::riscv_seg5_load:
4936   case Intrinsic::riscv_seg6_load:
4937   case Intrinsic::riscv_seg7_load:
4938   case Intrinsic::riscv_seg8_load: {
4939     SDLoc DL(Op);
4940     static const Intrinsic::ID VlsegInts[7] = {
4941         Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3,
4942         Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5,
4943         Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7,
4944         Intrinsic::riscv_vlseg8};
4945     unsigned NF = Op->getNumValues() - 1;
4946     assert(NF >= 2 && NF <= 8 && "Unexpected seg number");
4947     MVT XLenVT = Subtarget.getXLenVT();
4948     MVT VT = Op->getSimpleValueType(0);
4949     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4950 
4951     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4952     SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT);
4953     auto *Load = cast<MemIntrinsicSDNode>(Op);
4954     SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT);
4955     ContainerVTs.push_back(MVT::Other);
4956     SDVTList VTs = DAG.getVTList(ContainerVTs);
4957     SDValue Result =
4958         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs,
4959                                 {Load->getChain(), IntID, Op.getOperand(2), VL},
4960                                 Load->getMemoryVT(), Load->getMemOperand());
4961     SmallVector<SDValue, 9> Results;
4962     for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++)
4963       Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx),
4964                                                   DAG, Subtarget));
4965     Results.push_back(Result.getValue(NF));
4966     return DAG.getMergeValues(Results, DL);
4967   }
4968   }
4969 
4970   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4971 }
4972 
4973 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4974                                                  SelectionDAG &DAG) const {
4975   unsigned IntNo = Op.getConstantOperandVal(1);
4976   switch (IntNo) {
4977   default:
4978     break;
4979   case Intrinsic::riscv_masked_strided_store: {
4980     SDLoc DL(Op);
4981     MVT XLenVT = Subtarget.getXLenVT();
4982 
4983     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4984     // the selection of the masked intrinsics doesn't do this for us.
4985     SDValue Mask = Op.getOperand(5);
4986     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4987 
4988     SDValue Val = Op.getOperand(2);
4989     MVT VT = Val.getSimpleValueType();
4990     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4991 
4992     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4993     if (!IsUnmasked) {
4994       MVT MaskVT =
4995           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4996       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4997     }
4998 
4999     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5000 
5001     SDValue IntID = DAG.getTargetConstant(
5002         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
5003         XLenVT);
5004 
5005     auto *Store = cast<MemIntrinsicSDNode>(Op);
5006     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
5007     Ops.push_back(Val);
5008     Ops.push_back(Op.getOperand(3)); // Ptr
5009     Ops.push_back(Op.getOperand(4)); // Stride
5010     if (!IsUnmasked)
5011       Ops.push_back(Mask);
5012     Ops.push_back(VL);
5013 
5014     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
5015                                    Ops, Store->getMemoryVT(),
5016                                    Store->getMemOperand());
5017   }
5018   }
5019 
5020   return SDValue();
5021 }
5022 
5023 static MVT getLMUL1VT(MVT VT) {
5024   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
5025          "Unexpected vector MVT");
5026   return MVT::getScalableVectorVT(
5027       VT.getVectorElementType(),
5028       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
5029 }
5030 
5031 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
5032   switch (ISDOpcode) {
5033   default:
5034     llvm_unreachable("Unhandled reduction");
5035   case ISD::VECREDUCE_ADD:
5036     return RISCVISD::VECREDUCE_ADD_VL;
5037   case ISD::VECREDUCE_UMAX:
5038     return RISCVISD::VECREDUCE_UMAX_VL;
5039   case ISD::VECREDUCE_SMAX:
5040     return RISCVISD::VECREDUCE_SMAX_VL;
5041   case ISD::VECREDUCE_UMIN:
5042     return RISCVISD::VECREDUCE_UMIN_VL;
5043   case ISD::VECREDUCE_SMIN:
5044     return RISCVISD::VECREDUCE_SMIN_VL;
5045   case ISD::VECREDUCE_AND:
5046     return RISCVISD::VECREDUCE_AND_VL;
5047   case ISD::VECREDUCE_OR:
5048     return RISCVISD::VECREDUCE_OR_VL;
5049   case ISD::VECREDUCE_XOR:
5050     return RISCVISD::VECREDUCE_XOR_VL;
5051   }
5052 }
5053 
5054 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
5055                                                          SelectionDAG &DAG,
5056                                                          bool IsVP) const {
5057   SDLoc DL(Op);
5058   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
5059   MVT VecVT = Vec.getSimpleValueType();
5060   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
5061           Op.getOpcode() == ISD::VECREDUCE_OR ||
5062           Op.getOpcode() == ISD::VECREDUCE_XOR ||
5063           Op.getOpcode() == ISD::VP_REDUCE_AND ||
5064           Op.getOpcode() == ISD::VP_REDUCE_OR ||
5065           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
5066          "Unexpected reduction lowering");
5067 
5068   MVT XLenVT = Subtarget.getXLenVT();
5069   assert(Op.getValueType() == XLenVT &&
5070          "Expected reduction output to be legalized to XLenVT");
5071 
5072   MVT ContainerVT = VecVT;
5073   if (VecVT.isFixedLengthVector()) {
5074     ContainerVT = getContainerForFixedLengthVector(VecVT);
5075     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5076   }
5077 
5078   SDValue Mask, VL;
5079   if (IsVP) {
5080     Mask = Op.getOperand(2);
5081     VL = Op.getOperand(3);
5082   } else {
5083     std::tie(Mask, VL) =
5084         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5085   }
5086 
5087   unsigned BaseOpc;
5088   ISD::CondCode CC;
5089   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
5090 
5091   switch (Op.getOpcode()) {
5092   default:
5093     llvm_unreachable("Unhandled reduction");
5094   case ISD::VECREDUCE_AND:
5095   case ISD::VP_REDUCE_AND: {
5096     // vcpop ~x == 0
5097     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
5098     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
5099     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5100     CC = ISD::SETEQ;
5101     BaseOpc = ISD::AND;
5102     break;
5103   }
5104   case ISD::VECREDUCE_OR:
5105   case ISD::VP_REDUCE_OR:
5106     // vcpop x != 0
5107     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5108     CC = ISD::SETNE;
5109     BaseOpc = ISD::OR;
5110     break;
5111   case ISD::VECREDUCE_XOR:
5112   case ISD::VP_REDUCE_XOR: {
5113     // ((vcpop x) & 1) != 0
5114     SDValue One = DAG.getConstant(1, DL, XLenVT);
5115     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5116     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
5117     CC = ISD::SETNE;
5118     BaseOpc = ISD::XOR;
5119     break;
5120   }
5121   }
5122 
5123   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
5124 
5125   if (!IsVP)
5126     return SetCC;
5127 
5128   // Now include the start value in the operation.
5129   // Note that we must return the start value when no elements are operated
5130   // upon. The vcpop instructions we've emitted in each case above will return
5131   // 0 for an inactive vector, and so we've already received the neutral value:
5132   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
5133   // can simply include the start value.
5134   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
5135 }
5136 
5137 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
5138                                             SelectionDAG &DAG) const {
5139   SDLoc DL(Op);
5140   SDValue Vec = Op.getOperand(0);
5141   EVT VecEVT = Vec.getValueType();
5142 
5143   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
5144 
5145   // Due to ordering in legalize types we may have a vector type that needs to
5146   // be split. Do that manually so we can get down to a legal type.
5147   while (getTypeAction(*DAG.getContext(), VecEVT) ==
5148          TargetLowering::TypeSplitVector) {
5149     SDValue Lo, Hi;
5150     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
5151     VecEVT = Lo.getValueType();
5152     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
5153   }
5154 
5155   // TODO: The type may need to be widened rather than split. Or widened before
5156   // it can be split.
5157   if (!isTypeLegal(VecEVT))
5158     return SDValue();
5159 
5160   MVT VecVT = VecEVT.getSimpleVT();
5161   MVT VecEltVT = VecVT.getVectorElementType();
5162   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
5163 
5164   MVT ContainerVT = VecVT;
5165   if (VecVT.isFixedLengthVector()) {
5166     ContainerVT = getContainerForFixedLengthVector(VecVT);
5167     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5168   }
5169 
5170   MVT M1VT = getLMUL1VT(ContainerVT);
5171   MVT XLenVT = Subtarget.getXLenVT();
5172 
5173   SDValue Mask, VL;
5174   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5175 
5176   SDValue NeutralElem =
5177       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
5178   SDValue IdentitySplat =
5179       lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT),
5180                        M1VT, DL, DAG, Subtarget);
5181   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
5182                                   IdentitySplat, Mask, VL);
5183   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5184                              DAG.getConstant(0, DL, XLenVT));
5185   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5186 }
5187 
5188 // Given a reduction op, this function returns the matching reduction opcode,
5189 // the vector SDValue and the scalar SDValue required to lower this to a
5190 // RISCVISD node.
5191 static std::tuple<unsigned, SDValue, SDValue>
5192 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
5193   SDLoc DL(Op);
5194   auto Flags = Op->getFlags();
5195   unsigned Opcode = Op.getOpcode();
5196   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
5197   switch (Opcode) {
5198   default:
5199     llvm_unreachable("Unhandled reduction");
5200   case ISD::VECREDUCE_FADD: {
5201     // Use positive zero if we can. It is cheaper to materialize.
5202     SDValue Zero =
5203         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
5204     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
5205   }
5206   case ISD::VECREDUCE_SEQ_FADD:
5207     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
5208                            Op.getOperand(0));
5209   case ISD::VECREDUCE_FMIN:
5210     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
5211                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5212   case ISD::VECREDUCE_FMAX:
5213     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
5214                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5215   }
5216 }
5217 
5218 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
5219                                               SelectionDAG &DAG) const {
5220   SDLoc DL(Op);
5221   MVT VecEltVT = Op.getSimpleValueType();
5222 
5223   unsigned RVVOpcode;
5224   SDValue VectorVal, ScalarVal;
5225   std::tie(RVVOpcode, VectorVal, ScalarVal) =
5226       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
5227   MVT VecVT = VectorVal.getSimpleValueType();
5228 
5229   MVT ContainerVT = VecVT;
5230   if (VecVT.isFixedLengthVector()) {
5231     ContainerVT = getContainerForFixedLengthVector(VecVT);
5232     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
5233   }
5234 
5235   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
5236   MVT XLenVT = Subtarget.getXLenVT();
5237 
5238   SDValue Mask, VL;
5239   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5240 
5241   SDValue ScalarSplat =
5242       lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT),
5243                        M1VT, DL, DAG, Subtarget);
5244   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
5245                                   VectorVal, ScalarSplat, Mask, VL);
5246   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5247                      DAG.getConstant(0, DL, XLenVT));
5248 }
5249 
5250 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
5251   switch (ISDOpcode) {
5252   default:
5253     llvm_unreachable("Unhandled reduction");
5254   case ISD::VP_REDUCE_ADD:
5255     return RISCVISD::VECREDUCE_ADD_VL;
5256   case ISD::VP_REDUCE_UMAX:
5257     return RISCVISD::VECREDUCE_UMAX_VL;
5258   case ISD::VP_REDUCE_SMAX:
5259     return RISCVISD::VECREDUCE_SMAX_VL;
5260   case ISD::VP_REDUCE_UMIN:
5261     return RISCVISD::VECREDUCE_UMIN_VL;
5262   case ISD::VP_REDUCE_SMIN:
5263     return RISCVISD::VECREDUCE_SMIN_VL;
5264   case ISD::VP_REDUCE_AND:
5265     return RISCVISD::VECREDUCE_AND_VL;
5266   case ISD::VP_REDUCE_OR:
5267     return RISCVISD::VECREDUCE_OR_VL;
5268   case ISD::VP_REDUCE_XOR:
5269     return RISCVISD::VECREDUCE_XOR_VL;
5270   case ISD::VP_REDUCE_FADD:
5271     return RISCVISD::VECREDUCE_FADD_VL;
5272   case ISD::VP_REDUCE_SEQ_FADD:
5273     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
5274   case ISD::VP_REDUCE_FMAX:
5275     return RISCVISD::VECREDUCE_FMAX_VL;
5276   case ISD::VP_REDUCE_FMIN:
5277     return RISCVISD::VECREDUCE_FMIN_VL;
5278   }
5279 }
5280 
5281 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
5282                                            SelectionDAG &DAG) const {
5283   SDLoc DL(Op);
5284   SDValue Vec = Op.getOperand(1);
5285   EVT VecEVT = Vec.getValueType();
5286 
5287   // TODO: The type may need to be widened rather than split. Or widened before
5288   // it can be split.
5289   if (!isTypeLegal(VecEVT))
5290     return SDValue();
5291 
5292   MVT VecVT = VecEVT.getSimpleVT();
5293   MVT VecEltVT = VecVT.getVectorElementType();
5294   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
5295 
5296   MVT ContainerVT = VecVT;
5297   if (VecVT.isFixedLengthVector()) {
5298     ContainerVT = getContainerForFixedLengthVector(VecVT);
5299     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5300   }
5301 
5302   SDValue VL = Op.getOperand(3);
5303   SDValue Mask = Op.getOperand(2);
5304 
5305   MVT M1VT = getLMUL1VT(ContainerVT);
5306   MVT XLenVT = Subtarget.getXLenVT();
5307   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
5308 
5309   SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0),
5310                                         DAG.getConstant(1, DL, XLenVT), M1VT,
5311                                         DL, DAG, Subtarget);
5312   SDValue Reduction =
5313       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
5314   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
5315                              DAG.getConstant(0, DL, XLenVT));
5316   if (!VecVT.isInteger())
5317     return Elt0;
5318   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5319 }
5320 
5321 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5322                                                    SelectionDAG &DAG) const {
5323   SDValue Vec = Op.getOperand(0);
5324   SDValue SubVec = Op.getOperand(1);
5325   MVT VecVT = Vec.getSimpleValueType();
5326   MVT SubVecVT = SubVec.getSimpleValueType();
5327 
5328   SDLoc DL(Op);
5329   MVT XLenVT = Subtarget.getXLenVT();
5330   unsigned OrigIdx = Op.getConstantOperandVal(2);
5331   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5332 
5333   // We don't have the ability to slide mask vectors up indexed by their i1
5334   // elements; the smallest we can do is i8. Often we are able to bitcast to
5335   // equivalent i8 vectors. Note that when inserting a fixed-length vector
5336   // into a scalable one, we might not necessarily have enough scalable
5337   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
5338   if (SubVecVT.getVectorElementType() == MVT::i1 &&
5339       (OrigIdx != 0 || !Vec.isUndef())) {
5340     if (VecVT.getVectorMinNumElements() >= 8 &&
5341         SubVecVT.getVectorMinNumElements() >= 8) {
5342       assert(OrigIdx % 8 == 0 && "Invalid index");
5343       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5344              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5345              "Unexpected mask vector lowering");
5346       OrigIdx /= 8;
5347       SubVecVT =
5348           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5349                            SubVecVT.isScalableVector());
5350       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5351                                VecVT.isScalableVector());
5352       Vec = DAG.getBitcast(VecVT, Vec);
5353       SubVec = DAG.getBitcast(SubVecVT, SubVec);
5354     } else {
5355       // We can't slide this mask vector up indexed by its i1 elements.
5356       // This poses a problem when we wish to insert a scalable vector which
5357       // can't be re-expressed as a larger type. Just choose the slow path and
5358       // extend to a larger type, then truncate back down.
5359       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5360       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5361       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5362       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
5363       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
5364                         Op.getOperand(2));
5365       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
5366       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
5367     }
5368   }
5369 
5370   // If the subvector vector is a fixed-length type, we cannot use subregister
5371   // manipulation to simplify the codegen; we don't know which register of a
5372   // LMUL group contains the specific subvector as we only know the minimum
5373   // register size. Therefore we must slide the vector group up the full
5374   // amount.
5375   if (SubVecVT.isFixedLengthVector()) {
5376     if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
5377       return Op;
5378     MVT ContainerVT = VecVT;
5379     if (VecVT.isFixedLengthVector()) {
5380       ContainerVT = getContainerForFixedLengthVector(VecVT);
5381       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5382     }
5383     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
5384                          DAG.getUNDEF(ContainerVT), SubVec,
5385                          DAG.getConstant(0, DL, XLenVT));
5386     if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
5387       SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
5388       return DAG.getBitcast(Op.getValueType(), SubVec);
5389     }
5390     SDValue Mask =
5391         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5392     // Set the vector length to only the number of elements we care about. Note
5393     // that for slideup this includes the offset.
5394     SDValue VL =
5395         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
5396     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5397     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
5398                                   SubVec, SlideupAmt, Mask, VL);
5399     if (VecVT.isFixedLengthVector())
5400       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
5401     return DAG.getBitcast(Op.getValueType(), Slideup);
5402   }
5403 
5404   unsigned SubRegIdx, RemIdx;
5405   std::tie(SubRegIdx, RemIdx) =
5406       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5407           VecVT, SubVecVT, OrigIdx, TRI);
5408 
5409   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
5410   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
5411                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
5412                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
5413 
5414   // 1. If the Idx has been completely eliminated and this subvector's size is
5415   // a vector register or a multiple thereof, or the surrounding elements are
5416   // undef, then this is a subvector insert which naturally aligns to a vector
5417   // register. These can easily be handled using subregister manipulation.
5418   // 2. If the subvector is smaller than a vector register, then the insertion
5419   // must preserve the undisturbed elements of the register. We do this by
5420   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
5421   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
5422   // subvector within the vector register, and an INSERT_SUBVECTOR of that
5423   // LMUL=1 type back into the larger vector (resolving to another subregister
5424   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
5425   // to avoid allocating a large register group to hold our subvector.
5426   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
5427     return Op;
5428 
5429   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
5430   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
5431   // (in our case undisturbed). This means we can set up a subvector insertion
5432   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
5433   // size of the subvector.
5434   MVT InterSubVT = VecVT;
5435   SDValue AlignedExtract = Vec;
5436   unsigned AlignedIdx = OrigIdx - RemIdx;
5437   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5438     InterSubVT = getLMUL1VT(VecVT);
5439     // Extract a subvector equal to the nearest full vector register type. This
5440     // should resolve to a EXTRACT_SUBREG instruction.
5441     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5442                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
5443   }
5444 
5445   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5446   // For scalable vectors this must be further multiplied by vscale.
5447   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
5448 
5449   SDValue Mask, VL;
5450   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5451 
5452   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
5453   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
5454   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
5455   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
5456 
5457   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
5458                        DAG.getUNDEF(InterSubVT), SubVec,
5459                        DAG.getConstant(0, DL, XLenVT));
5460 
5461   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
5462                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
5463 
5464   // If required, insert this subvector back into the correct vector register.
5465   // This should resolve to an INSERT_SUBREG instruction.
5466   if (VecVT.bitsGT(InterSubVT))
5467     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
5468                           DAG.getConstant(AlignedIdx, DL, XLenVT));
5469 
5470   // We might have bitcast from a mask type: cast back to the original type if
5471   // required.
5472   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
5473 }
5474 
5475 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
5476                                                     SelectionDAG &DAG) const {
5477   SDValue Vec = Op.getOperand(0);
5478   MVT SubVecVT = Op.getSimpleValueType();
5479   MVT VecVT = Vec.getSimpleValueType();
5480 
5481   SDLoc DL(Op);
5482   MVT XLenVT = Subtarget.getXLenVT();
5483   unsigned OrigIdx = Op.getConstantOperandVal(1);
5484   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5485 
5486   // We don't have the ability to slide mask vectors down indexed by their i1
5487   // elements; the smallest we can do is i8. Often we are able to bitcast to
5488   // equivalent i8 vectors. Note that when extracting a fixed-length vector
5489   // from a scalable one, we might not necessarily have enough scalable
5490   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
5491   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
5492     if (VecVT.getVectorMinNumElements() >= 8 &&
5493         SubVecVT.getVectorMinNumElements() >= 8) {
5494       assert(OrigIdx % 8 == 0 && "Invalid index");
5495       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5496              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5497              "Unexpected mask vector lowering");
5498       OrigIdx /= 8;
5499       SubVecVT =
5500           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5501                            SubVecVT.isScalableVector());
5502       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5503                                VecVT.isScalableVector());
5504       Vec = DAG.getBitcast(VecVT, Vec);
5505     } else {
5506       // We can't slide this mask vector down, indexed by its i1 elements.
5507       // This poses a problem when we wish to extract a scalable vector which
5508       // can't be re-expressed as a larger type. Just choose the slow path and
5509       // extend to a larger type, then truncate back down.
5510       // TODO: We could probably improve this when extracting certain fixed
5511       // from fixed, where we can extract as i8 and shift the correct element
5512       // right to reach the desired subvector?
5513       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5514       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5515       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5516       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
5517                         Op.getOperand(1));
5518       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
5519       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
5520     }
5521   }
5522 
5523   // If the subvector vector is a fixed-length type, we cannot use subregister
5524   // manipulation to simplify the codegen; we don't know which register of a
5525   // LMUL group contains the specific subvector as we only know the minimum
5526   // register size. Therefore we must slide the vector group down the full
5527   // amount.
5528   if (SubVecVT.isFixedLengthVector()) {
5529     // With an index of 0 this is a cast-like subvector, which can be performed
5530     // with subregister operations.
5531     if (OrigIdx == 0)
5532       return Op;
5533     MVT ContainerVT = VecVT;
5534     if (VecVT.isFixedLengthVector()) {
5535       ContainerVT = getContainerForFixedLengthVector(VecVT);
5536       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5537     }
5538     SDValue Mask =
5539         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5540     // Set the vector length to only the number of elements we care about. This
5541     // avoids sliding down elements we're going to discard straight away.
5542     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
5543     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5544     SDValue Slidedown =
5545         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5546                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
5547     // Now we can use a cast-like subvector extract to get the result.
5548     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5549                             DAG.getConstant(0, DL, XLenVT));
5550     return DAG.getBitcast(Op.getValueType(), Slidedown);
5551   }
5552 
5553   unsigned SubRegIdx, RemIdx;
5554   std::tie(SubRegIdx, RemIdx) =
5555       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5556           VecVT, SubVecVT, OrigIdx, TRI);
5557 
5558   // If the Idx has been completely eliminated then this is a subvector extract
5559   // which naturally aligns to a vector register. These can easily be handled
5560   // using subregister manipulation.
5561   if (RemIdx == 0)
5562     return Op;
5563 
5564   // Else we must shift our vector register directly to extract the subvector.
5565   // Do this using VSLIDEDOWN.
5566 
5567   // If the vector type is an LMUL-group type, extract a subvector equal to the
5568   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
5569   // instruction.
5570   MVT InterSubVT = VecVT;
5571   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5572     InterSubVT = getLMUL1VT(VecVT);
5573     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5574                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
5575   }
5576 
5577   // Slide this vector register down by the desired number of elements in order
5578   // to place the desired subvector starting at element 0.
5579   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5580   // For scalable vectors this must be further multiplied by vscale.
5581   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
5582 
5583   SDValue Mask, VL;
5584   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
5585   SDValue Slidedown =
5586       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
5587                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
5588 
5589   // Now the vector is in the right position, extract our final subvector. This
5590   // should resolve to a COPY.
5591   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5592                           DAG.getConstant(0, DL, XLenVT));
5593 
5594   // We might have bitcast from a mask type: cast back to the original type if
5595   // required.
5596   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
5597 }
5598 
5599 // Lower step_vector to the vid instruction. Any non-identity step value must
5600 // be accounted for my manual expansion.
5601 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
5602                                               SelectionDAG &DAG) const {
5603   SDLoc DL(Op);
5604   MVT VT = Op.getSimpleValueType();
5605   MVT XLenVT = Subtarget.getXLenVT();
5606   SDValue Mask, VL;
5607   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
5608   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
5609   uint64_t StepValImm = Op.getConstantOperandVal(0);
5610   if (StepValImm != 1) {
5611     if (isPowerOf2_64(StepValImm)) {
5612       SDValue StepVal =
5613           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
5614                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
5615       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
5616     } else {
5617       SDValue StepVal = lowerScalarSplat(
5618           SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()),
5619           VL, VT, DL, DAG, Subtarget);
5620       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
5621     }
5622   }
5623   return StepVec;
5624 }
5625 
5626 // Implement vector_reverse using vrgather.vv with indices determined by
5627 // subtracting the id of each element from (VLMAX-1). This will convert
5628 // the indices like so:
5629 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
5630 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
5631 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
5632                                                  SelectionDAG &DAG) const {
5633   SDLoc DL(Op);
5634   MVT VecVT = Op.getSimpleValueType();
5635   unsigned EltSize = VecVT.getScalarSizeInBits();
5636   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
5637 
5638   unsigned MaxVLMAX = 0;
5639   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
5640   if (VectorBitsMax != 0)
5641     MaxVLMAX =
5642         RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
5643 
5644   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
5645   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
5646 
5647   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
5648   // to use vrgatherei16.vv.
5649   // TODO: It's also possible to use vrgatherei16.vv for other types to
5650   // decrease register width for the index calculation.
5651   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
5652     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
5653     // Reverse each half, then reassemble them in reverse order.
5654     // NOTE: It's also possible that after splitting that VLMAX no longer
5655     // requires vrgatherei16.vv.
5656     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
5657       SDValue Lo, Hi;
5658       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5659       EVT LoVT, HiVT;
5660       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5661       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5662       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5663       // Reassemble the low and high pieces reversed.
5664       // FIXME: This is a CONCAT_VECTORS.
5665       SDValue Res =
5666           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5667                       DAG.getIntPtrConstant(0, DL));
5668       return DAG.getNode(
5669           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5670           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5671     }
5672 
5673     // Just promote the int type to i16 which will double the LMUL.
5674     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5675     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5676   }
5677 
5678   MVT XLenVT = Subtarget.getXLenVT();
5679   SDValue Mask, VL;
5680   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5681 
5682   // Calculate VLMAX-1 for the desired SEW.
5683   unsigned MinElts = VecVT.getVectorMinNumElements();
5684   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5685                               DAG.getConstant(MinElts, DL, XLenVT));
5686   SDValue VLMinus1 =
5687       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5688 
5689   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5690   bool IsRV32E64 =
5691       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5692   SDValue SplatVL;
5693   if (!IsRV32E64)
5694     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5695   else
5696     SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT),
5697                           VLMinus1, DAG.getRegister(RISCV::X0, XLenVT));
5698 
5699   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5700   SDValue Indices =
5701       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5702 
5703   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
5704 }
5705 
5706 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op,
5707                                                 SelectionDAG &DAG) const {
5708   SDLoc DL(Op);
5709   SDValue V1 = Op.getOperand(0);
5710   SDValue V2 = Op.getOperand(1);
5711   MVT XLenVT = Subtarget.getXLenVT();
5712   MVT VecVT = Op.getSimpleValueType();
5713 
5714   unsigned MinElts = VecVT.getVectorMinNumElements();
5715   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5716                               DAG.getConstant(MinElts, DL, XLenVT));
5717 
5718   int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue();
5719   SDValue DownOffset, UpOffset;
5720   if (ImmValue >= 0) {
5721     // The operand is a TargetConstant, we need to rebuild it as a regular
5722     // constant.
5723     DownOffset = DAG.getConstant(ImmValue, DL, XLenVT);
5724     UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset);
5725   } else {
5726     // The operand is a TargetConstant, we need to rebuild it as a regular
5727     // constant rather than negating the original operand.
5728     UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT);
5729     DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset);
5730   }
5731 
5732   MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
5733   SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VLMax);
5734 
5735   SDValue SlideDown =
5736       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1,
5737                   DownOffset, TrueMask, UpOffset);
5738   return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset,
5739                      TrueMask,
5740                      DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT));
5741 }
5742 
5743 SDValue
5744 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5745                                                      SelectionDAG &DAG) const {
5746   SDLoc DL(Op);
5747   auto *Load = cast<LoadSDNode>(Op);
5748 
5749   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5750                                         Load->getMemoryVT(),
5751                                         *Load->getMemOperand()) &&
5752          "Expecting a correctly-aligned load");
5753 
5754   MVT VT = Op.getSimpleValueType();
5755   MVT XLenVT = Subtarget.getXLenVT();
5756   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5757 
5758   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5759 
5760   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5761   SDValue IntID = DAG.getTargetConstant(
5762       IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT);
5763   SmallVector<SDValue, 4> Ops{Load->getChain(), IntID};
5764   if (!IsMaskOp)
5765     Ops.push_back(DAG.getUNDEF(ContainerVT));
5766   Ops.push_back(Load->getBasePtr());
5767   Ops.push_back(VL);
5768   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5769   SDValue NewLoad =
5770       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
5771                               Load->getMemoryVT(), Load->getMemOperand());
5772 
5773   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5774   return DAG.getMergeValues({Result, Load->getChain()}, DL);
5775 }
5776 
5777 SDValue
5778 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5779                                                       SelectionDAG &DAG) const {
5780   SDLoc DL(Op);
5781   auto *Store = cast<StoreSDNode>(Op);
5782 
5783   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5784                                         Store->getMemoryVT(),
5785                                         *Store->getMemOperand()) &&
5786          "Expecting a correctly-aligned store");
5787 
5788   SDValue StoreVal = Store->getValue();
5789   MVT VT = StoreVal.getSimpleValueType();
5790   MVT XLenVT = Subtarget.getXLenVT();
5791 
5792   // If the size less than a byte, we need to pad with zeros to make a byte.
5793   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5794     VT = MVT::v8i1;
5795     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5796                            DAG.getConstant(0, DL, VT), StoreVal,
5797                            DAG.getIntPtrConstant(0, DL));
5798   }
5799 
5800   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5801 
5802   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5803 
5804   SDValue NewValue =
5805       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5806 
5807   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5808   SDValue IntID = DAG.getTargetConstant(
5809       IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT);
5810   return DAG.getMemIntrinsicNode(
5811       ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
5812       {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL},
5813       Store->getMemoryVT(), Store->getMemOperand());
5814 }
5815 
5816 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5817                                              SelectionDAG &DAG) const {
5818   SDLoc DL(Op);
5819   MVT VT = Op.getSimpleValueType();
5820 
5821   const auto *MemSD = cast<MemSDNode>(Op);
5822   EVT MemVT = MemSD->getMemoryVT();
5823   MachineMemOperand *MMO = MemSD->getMemOperand();
5824   SDValue Chain = MemSD->getChain();
5825   SDValue BasePtr = MemSD->getBasePtr();
5826 
5827   SDValue Mask, PassThru, VL;
5828   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5829     Mask = VPLoad->getMask();
5830     PassThru = DAG.getUNDEF(VT);
5831     VL = VPLoad->getVectorLength();
5832   } else {
5833     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5834     Mask = MLoad->getMask();
5835     PassThru = MLoad->getPassThru();
5836   }
5837 
5838   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5839 
5840   MVT XLenVT = Subtarget.getXLenVT();
5841 
5842   MVT ContainerVT = VT;
5843   if (VT.isFixedLengthVector()) {
5844     ContainerVT = getContainerForFixedLengthVector(VT);
5845     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5846     if (!IsUnmasked) {
5847       MVT MaskVT =
5848           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5849       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5850     }
5851   }
5852 
5853   if (!VL)
5854     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5855 
5856   unsigned IntID =
5857       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5858   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5859   if (IsUnmasked)
5860     Ops.push_back(DAG.getUNDEF(ContainerVT));
5861   else
5862     Ops.push_back(PassThru);
5863   Ops.push_back(BasePtr);
5864   if (!IsUnmasked)
5865     Ops.push_back(Mask);
5866   Ops.push_back(VL);
5867   if (!IsUnmasked)
5868     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5869 
5870   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5871 
5872   SDValue Result =
5873       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5874   Chain = Result.getValue(1);
5875 
5876   if (VT.isFixedLengthVector())
5877     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5878 
5879   return DAG.getMergeValues({Result, Chain}, DL);
5880 }
5881 
5882 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5883                                               SelectionDAG &DAG) const {
5884   SDLoc DL(Op);
5885 
5886   const auto *MemSD = cast<MemSDNode>(Op);
5887   EVT MemVT = MemSD->getMemoryVT();
5888   MachineMemOperand *MMO = MemSD->getMemOperand();
5889   SDValue Chain = MemSD->getChain();
5890   SDValue BasePtr = MemSD->getBasePtr();
5891   SDValue Val, Mask, VL;
5892 
5893   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5894     Val = VPStore->getValue();
5895     Mask = VPStore->getMask();
5896     VL = VPStore->getVectorLength();
5897   } else {
5898     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5899     Val = MStore->getValue();
5900     Mask = MStore->getMask();
5901   }
5902 
5903   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5904 
5905   MVT VT = Val.getSimpleValueType();
5906   MVT XLenVT = Subtarget.getXLenVT();
5907 
5908   MVT ContainerVT = VT;
5909   if (VT.isFixedLengthVector()) {
5910     ContainerVT = getContainerForFixedLengthVector(VT);
5911 
5912     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5913     if (!IsUnmasked) {
5914       MVT MaskVT =
5915           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5916       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5917     }
5918   }
5919 
5920   if (!VL)
5921     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5922 
5923   unsigned IntID =
5924       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5925   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5926   Ops.push_back(Val);
5927   Ops.push_back(BasePtr);
5928   if (!IsUnmasked)
5929     Ops.push_back(Mask);
5930   Ops.push_back(VL);
5931 
5932   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5933                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5934 }
5935 
5936 SDValue
5937 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
5938                                                       SelectionDAG &DAG) const {
5939   MVT InVT = Op.getOperand(0).getSimpleValueType();
5940   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
5941 
5942   MVT VT = Op.getSimpleValueType();
5943 
5944   SDValue Op1 =
5945       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
5946   SDValue Op2 =
5947       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5948 
5949   SDLoc DL(Op);
5950   SDValue VL =
5951       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5952 
5953   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5954   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5955 
5956   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
5957                             Op.getOperand(2), Mask, VL);
5958 
5959   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
5960 }
5961 
5962 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
5963     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
5964   MVT VT = Op.getSimpleValueType();
5965 
5966   if (VT.getVectorElementType() == MVT::i1)
5967     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
5968 
5969   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
5970 }
5971 
5972 SDValue
5973 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
5974                                                       SelectionDAG &DAG) const {
5975   unsigned Opc;
5976   switch (Op.getOpcode()) {
5977   default: llvm_unreachable("Unexpected opcode!");
5978   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
5979   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
5980   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
5981   }
5982 
5983   return lowerToScalableOp(Op, DAG, Opc);
5984 }
5985 
5986 // Lower vector ABS to smax(X, sub(0, X)).
5987 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
5988   SDLoc DL(Op);
5989   MVT VT = Op.getSimpleValueType();
5990   SDValue X = Op.getOperand(0);
5991 
5992   assert(VT.isFixedLengthVector() && "Unexpected type");
5993 
5994   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5995   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
5996 
5997   SDValue Mask, VL;
5998   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5999 
6000   SDValue SplatZero = DAG.getNode(
6001       RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
6002       DAG.getConstant(0, DL, Subtarget.getXLenVT()));
6003   SDValue NegX =
6004       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
6005   SDValue Max =
6006       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
6007 
6008   return convertFromScalableVector(VT, Max, DAG, Subtarget);
6009 }
6010 
6011 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
6012     SDValue Op, SelectionDAG &DAG) const {
6013   SDLoc DL(Op);
6014   MVT VT = Op.getSimpleValueType();
6015   SDValue Mag = Op.getOperand(0);
6016   SDValue Sign = Op.getOperand(1);
6017   assert(Mag.getValueType() == Sign.getValueType() &&
6018          "Can only handle COPYSIGN with matching types.");
6019 
6020   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6021   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
6022   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
6023 
6024   SDValue Mask, VL;
6025   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6026 
6027   SDValue CopySign =
6028       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
6029 
6030   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
6031 }
6032 
6033 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
6034     SDValue Op, SelectionDAG &DAG) const {
6035   MVT VT = Op.getSimpleValueType();
6036   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6037 
6038   MVT I1ContainerVT =
6039       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6040 
6041   SDValue CC =
6042       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
6043   SDValue Op1 =
6044       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
6045   SDValue Op2 =
6046       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
6047 
6048   SDLoc DL(Op);
6049   SDValue Mask, VL;
6050   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6051 
6052   SDValue Select =
6053       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
6054 
6055   return convertFromScalableVector(VT, Select, DAG, Subtarget);
6056 }
6057 
6058 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
6059                                                unsigned NewOpc,
6060                                                bool HasMask) const {
6061   MVT VT = Op.getSimpleValueType();
6062   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6063 
6064   // Create list of operands by converting existing ones to scalable types.
6065   SmallVector<SDValue, 6> Ops;
6066   for (const SDValue &V : Op->op_values()) {
6067     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6068 
6069     // Pass through non-vector operands.
6070     if (!V.getValueType().isVector()) {
6071       Ops.push_back(V);
6072       continue;
6073     }
6074 
6075     // "cast" fixed length vector to a scalable vector.
6076     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
6077            "Only fixed length vectors are supported!");
6078     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6079   }
6080 
6081   SDLoc DL(Op);
6082   SDValue Mask, VL;
6083   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6084   if (HasMask)
6085     Ops.push_back(Mask);
6086   Ops.push_back(VL);
6087 
6088   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
6089   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
6090 }
6091 
6092 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
6093 // * Operands of each node are assumed to be in the same order.
6094 // * The EVL operand is promoted from i32 to i64 on RV64.
6095 // * Fixed-length vectors are converted to their scalable-vector container
6096 //   types.
6097 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
6098                                        unsigned RISCVISDOpc) const {
6099   SDLoc DL(Op);
6100   MVT VT = Op.getSimpleValueType();
6101   SmallVector<SDValue, 4> Ops;
6102 
6103   for (const auto &OpIdx : enumerate(Op->ops())) {
6104     SDValue V = OpIdx.value();
6105     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6106     // Pass through operands which aren't fixed-length vectors.
6107     if (!V.getValueType().isFixedLengthVector()) {
6108       Ops.push_back(V);
6109       continue;
6110     }
6111     // "cast" fixed length vector to a scalable vector.
6112     MVT OpVT = V.getSimpleValueType();
6113     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
6114     assert(useRVVForFixedLengthVectorVT(OpVT) &&
6115            "Only fixed length vectors are supported!");
6116     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6117   }
6118 
6119   if (!VT.isFixedLengthVector())
6120     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
6121 
6122   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6123 
6124   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
6125 
6126   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
6127 }
6128 
6129 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
6130                                             unsigned MaskOpc,
6131                                             unsigned VecOpc) const {
6132   MVT VT = Op.getSimpleValueType();
6133   if (VT.getVectorElementType() != MVT::i1)
6134     return lowerVPOp(Op, DAG, VecOpc);
6135 
6136   // It is safe to drop mask parameter as masked-off elements are undef.
6137   SDValue Op1 = Op->getOperand(0);
6138   SDValue Op2 = Op->getOperand(1);
6139   SDValue VL = Op->getOperand(3);
6140 
6141   MVT ContainerVT = VT;
6142   const bool IsFixed = VT.isFixedLengthVector();
6143   if (IsFixed) {
6144     ContainerVT = getContainerForFixedLengthVector(VT);
6145     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6146     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6147   }
6148 
6149   SDLoc DL(Op);
6150   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
6151   if (!IsFixed)
6152     return Val;
6153   return convertFromScalableVector(VT, Val, DAG, Subtarget);
6154 }
6155 
6156 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
6157 // matched to a RVV indexed load. The RVV indexed load instructions only
6158 // support the "unsigned unscaled" addressing mode; indices are implicitly
6159 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6160 // signed or scaled indexing is extended to the XLEN value type and scaled
6161 // accordingly.
6162 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
6163                                                SelectionDAG &DAG) const {
6164   SDLoc DL(Op);
6165   MVT VT = Op.getSimpleValueType();
6166 
6167   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6168   EVT MemVT = MemSD->getMemoryVT();
6169   MachineMemOperand *MMO = MemSD->getMemOperand();
6170   SDValue Chain = MemSD->getChain();
6171   SDValue BasePtr = MemSD->getBasePtr();
6172 
6173   ISD::LoadExtType LoadExtType;
6174   SDValue Index, Mask, PassThru, VL;
6175 
6176   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
6177     Index = VPGN->getIndex();
6178     Mask = VPGN->getMask();
6179     PassThru = DAG.getUNDEF(VT);
6180     VL = VPGN->getVectorLength();
6181     // VP doesn't support extending loads.
6182     LoadExtType = ISD::NON_EXTLOAD;
6183   } else {
6184     // Else it must be a MGATHER.
6185     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
6186     Index = MGN->getIndex();
6187     Mask = MGN->getMask();
6188     PassThru = MGN->getPassThru();
6189     LoadExtType = MGN->getExtensionType();
6190   }
6191 
6192   MVT IndexVT = Index.getSimpleValueType();
6193   MVT XLenVT = Subtarget.getXLenVT();
6194 
6195   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6196          "Unexpected VTs!");
6197   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6198   // Targets have to explicitly opt-in for extending vector loads.
6199   assert(LoadExtType == ISD::NON_EXTLOAD &&
6200          "Unexpected extending MGATHER/VP_GATHER");
6201   (void)LoadExtType;
6202 
6203   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6204   // the selection of the masked intrinsics doesn't do this for us.
6205   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6206 
6207   MVT ContainerVT = VT;
6208   if (VT.isFixedLengthVector()) {
6209     // We need to use the larger of the result and index type to determine the
6210     // scalable type to use so we don't increase LMUL for any operand/result.
6211     if (VT.bitsGE(IndexVT)) {
6212       ContainerVT = getContainerForFixedLengthVector(VT);
6213       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6214                                  ContainerVT.getVectorElementCount());
6215     } else {
6216       IndexVT = getContainerForFixedLengthVector(IndexVT);
6217       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
6218                                      IndexVT.getVectorElementCount());
6219     }
6220 
6221     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6222 
6223     if (!IsUnmasked) {
6224       MVT MaskVT =
6225           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6226       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6227       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
6228     }
6229   }
6230 
6231   if (!VL)
6232     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6233 
6234   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6235     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6236     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6237                                    VL);
6238     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6239                         TrueMask, VL);
6240   }
6241 
6242   unsigned IntID =
6243       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
6244   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6245   if (IsUnmasked)
6246     Ops.push_back(DAG.getUNDEF(ContainerVT));
6247   else
6248     Ops.push_back(PassThru);
6249   Ops.push_back(BasePtr);
6250   Ops.push_back(Index);
6251   if (!IsUnmasked)
6252     Ops.push_back(Mask);
6253   Ops.push_back(VL);
6254   if (!IsUnmasked)
6255     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
6256 
6257   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
6258   SDValue Result =
6259       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
6260   Chain = Result.getValue(1);
6261 
6262   if (VT.isFixedLengthVector())
6263     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
6264 
6265   return DAG.getMergeValues({Result, Chain}, DL);
6266 }
6267 
6268 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
6269 // matched to a RVV indexed store. The RVV indexed store instructions only
6270 // support the "unsigned unscaled" addressing mode; indices are implicitly
6271 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6272 // signed or scaled indexing is extended to the XLEN value type and scaled
6273 // accordingly.
6274 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
6275                                                 SelectionDAG &DAG) const {
6276   SDLoc DL(Op);
6277   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6278   EVT MemVT = MemSD->getMemoryVT();
6279   MachineMemOperand *MMO = MemSD->getMemOperand();
6280   SDValue Chain = MemSD->getChain();
6281   SDValue BasePtr = MemSD->getBasePtr();
6282 
6283   bool IsTruncatingStore = false;
6284   SDValue Index, Mask, Val, VL;
6285 
6286   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
6287     Index = VPSN->getIndex();
6288     Mask = VPSN->getMask();
6289     Val = VPSN->getValue();
6290     VL = VPSN->getVectorLength();
6291     // VP doesn't support truncating stores.
6292     IsTruncatingStore = false;
6293   } else {
6294     // Else it must be a MSCATTER.
6295     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
6296     Index = MSN->getIndex();
6297     Mask = MSN->getMask();
6298     Val = MSN->getValue();
6299     IsTruncatingStore = MSN->isTruncatingStore();
6300   }
6301 
6302   MVT VT = Val.getSimpleValueType();
6303   MVT IndexVT = Index.getSimpleValueType();
6304   MVT XLenVT = Subtarget.getXLenVT();
6305 
6306   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6307          "Unexpected VTs!");
6308   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6309   // Targets have to explicitly opt-in for extending vector loads and
6310   // truncating vector stores.
6311   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
6312   (void)IsTruncatingStore;
6313 
6314   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6315   // the selection of the masked intrinsics doesn't do this for us.
6316   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6317 
6318   MVT ContainerVT = VT;
6319   if (VT.isFixedLengthVector()) {
6320     // We need to use the larger of the value and index type to determine the
6321     // scalable type to use so we don't increase LMUL for any operand/result.
6322     if (VT.bitsGE(IndexVT)) {
6323       ContainerVT = getContainerForFixedLengthVector(VT);
6324       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6325                                  ContainerVT.getVectorElementCount());
6326     } else {
6327       IndexVT = getContainerForFixedLengthVector(IndexVT);
6328       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
6329                                      IndexVT.getVectorElementCount());
6330     }
6331 
6332     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6333     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
6334 
6335     if (!IsUnmasked) {
6336       MVT MaskVT =
6337           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6338       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6339     }
6340   }
6341 
6342   if (!VL)
6343     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6344 
6345   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6346     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6347     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6348                                    VL);
6349     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6350                         TrueMask, VL);
6351   }
6352 
6353   unsigned IntID =
6354       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
6355   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6356   Ops.push_back(Val);
6357   Ops.push_back(BasePtr);
6358   Ops.push_back(Index);
6359   if (!IsUnmasked)
6360     Ops.push_back(Mask);
6361   Ops.push_back(VL);
6362 
6363   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
6364                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
6365 }
6366 
6367 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
6368                                                SelectionDAG &DAG) const {
6369   const MVT XLenVT = Subtarget.getXLenVT();
6370   SDLoc DL(Op);
6371   SDValue Chain = Op->getOperand(0);
6372   SDValue SysRegNo = DAG.getTargetConstant(
6373       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6374   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
6375   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
6376 
6377   // Encoding used for rounding mode in RISCV differs from that used in
6378   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
6379   // table, which consists of a sequence of 4-bit fields, each representing
6380   // corresponding FLT_ROUNDS mode.
6381   static const int Table =
6382       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
6383       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
6384       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
6385       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
6386       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
6387 
6388   SDValue Shift =
6389       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
6390   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6391                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6392   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6393                                DAG.getConstant(7, DL, XLenVT));
6394 
6395   return DAG.getMergeValues({Masked, Chain}, DL);
6396 }
6397 
6398 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
6399                                                SelectionDAG &DAG) const {
6400   const MVT XLenVT = Subtarget.getXLenVT();
6401   SDLoc DL(Op);
6402   SDValue Chain = Op->getOperand(0);
6403   SDValue RMValue = Op->getOperand(1);
6404   SDValue SysRegNo = DAG.getTargetConstant(
6405       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6406 
6407   // Encoding used for rounding mode in RISCV differs from that used in
6408   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
6409   // a table, which consists of a sequence of 4-bit fields, each representing
6410   // corresponding RISCV mode.
6411   static const unsigned Table =
6412       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
6413       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
6414       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
6415       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
6416       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
6417 
6418   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
6419                               DAG.getConstant(2, DL, XLenVT));
6420   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6421                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6422   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6423                         DAG.getConstant(0x7, DL, XLenVT));
6424   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
6425                      RMValue);
6426 }
6427 
6428 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) {
6429   switch (IntNo) {
6430   default:
6431     llvm_unreachable("Unexpected Intrinsic");
6432   case Intrinsic::riscv_bcompress:
6433     return RISCVISD::BCOMPRESSW;
6434   case Intrinsic::riscv_bdecompress:
6435     return RISCVISD::BDECOMPRESSW;
6436   case Intrinsic::riscv_bfp:
6437     return RISCVISD::BFPW;
6438   case Intrinsic::riscv_fsl:
6439     return RISCVISD::FSLW;
6440   case Intrinsic::riscv_fsr:
6441     return RISCVISD::FSRW;
6442   }
6443 }
6444 
6445 // Converts the given intrinsic to a i64 operation with any extension.
6446 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG,
6447                                          unsigned IntNo) {
6448   SDLoc DL(N);
6449   RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo);
6450   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6451   SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6452   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2);
6453   // ReplaceNodeResults requires we maintain the same type for the return value.
6454   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6455 }
6456 
6457 // Returns the opcode of the target-specific SDNode that implements the 32-bit
6458 // form of the given Opcode.
6459 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
6460   switch (Opcode) {
6461   default:
6462     llvm_unreachable("Unexpected opcode");
6463   case ISD::SHL:
6464     return RISCVISD::SLLW;
6465   case ISD::SRA:
6466     return RISCVISD::SRAW;
6467   case ISD::SRL:
6468     return RISCVISD::SRLW;
6469   case ISD::SDIV:
6470     return RISCVISD::DIVW;
6471   case ISD::UDIV:
6472     return RISCVISD::DIVUW;
6473   case ISD::UREM:
6474     return RISCVISD::REMUW;
6475   case ISD::ROTL:
6476     return RISCVISD::ROLW;
6477   case ISD::ROTR:
6478     return RISCVISD::RORW;
6479   }
6480 }
6481 
6482 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
6483 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
6484 // otherwise be promoted to i64, making it difficult to select the
6485 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
6486 // type i8/i16/i32 is lost.
6487 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
6488                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
6489   SDLoc DL(N);
6490   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6491   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
6492   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
6493   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6494   // ReplaceNodeResults requires we maintain the same type for the return value.
6495   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6496 }
6497 
6498 // Converts the given 32-bit operation to a i64 operation with signed extension
6499 // semantic to reduce the signed extension instructions.
6500 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
6501   SDLoc DL(N);
6502   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6503   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6504   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
6505   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6506                                DAG.getValueType(MVT::i32));
6507   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
6508 }
6509 
6510 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
6511                                              SmallVectorImpl<SDValue> &Results,
6512                                              SelectionDAG &DAG) const {
6513   SDLoc DL(N);
6514   switch (N->getOpcode()) {
6515   default:
6516     llvm_unreachable("Don't know how to custom type legalize this operation!");
6517   case ISD::STRICT_FP_TO_SINT:
6518   case ISD::STRICT_FP_TO_UINT:
6519   case ISD::FP_TO_SINT:
6520   case ISD::FP_TO_UINT: {
6521     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6522            "Unexpected custom legalisation");
6523     bool IsStrict = N->isStrictFPOpcode();
6524     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
6525                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
6526     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
6527     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
6528         TargetLowering::TypeSoftenFloat) {
6529       if (!isTypeLegal(Op0.getValueType()))
6530         return;
6531       if (IsStrict) {
6532         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
6533                                 : RISCVISD::STRICT_FCVT_WU_RV64;
6534         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
6535         SDValue Res = DAG.getNode(
6536             Opc, DL, VTs, N->getOperand(0), Op0,
6537             DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6538         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6539         Results.push_back(Res.getValue(1));
6540         return;
6541       }
6542       unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
6543       SDValue Res =
6544           DAG.getNode(Opc, DL, MVT::i64, Op0,
6545                       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6546       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6547       return;
6548     }
6549     // If the FP type needs to be softened, emit a library call using the 'si'
6550     // version. If we left it to default legalization we'd end up with 'di'. If
6551     // the FP type doesn't need to be softened just let generic type
6552     // legalization promote the result type.
6553     RTLIB::Libcall LC;
6554     if (IsSigned)
6555       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
6556     else
6557       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
6558     MakeLibCallOptions CallOptions;
6559     EVT OpVT = Op0.getValueType();
6560     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
6561     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
6562     SDValue Result;
6563     std::tie(Result, Chain) =
6564         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
6565     Results.push_back(Result);
6566     if (IsStrict)
6567       Results.push_back(Chain);
6568     break;
6569   }
6570   case ISD::READCYCLECOUNTER: {
6571     assert(!Subtarget.is64Bit() &&
6572            "READCYCLECOUNTER only has custom type legalization on riscv32");
6573 
6574     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6575     SDValue RCW =
6576         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
6577 
6578     Results.push_back(
6579         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
6580     Results.push_back(RCW.getValue(2));
6581     break;
6582   }
6583   case ISD::MUL: {
6584     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
6585     unsigned XLen = Subtarget.getXLen();
6586     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
6587     if (Size > XLen) {
6588       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
6589       SDValue LHS = N->getOperand(0);
6590       SDValue RHS = N->getOperand(1);
6591       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
6592 
6593       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
6594       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
6595       // We need exactly one side to be unsigned.
6596       if (LHSIsU == RHSIsU)
6597         return;
6598 
6599       auto MakeMULPair = [&](SDValue S, SDValue U) {
6600         MVT XLenVT = Subtarget.getXLenVT();
6601         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
6602         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
6603         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
6604         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
6605         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
6606       };
6607 
6608       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
6609       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
6610 
6611       // The other operand should be signed, but still prefer MULH when
6612       // possible.
6613       if (RHSIsU && LHSIsS && !RHSIsS)
6614         Results.push_back(MakeMULPair(LHS, RHS));
6615       else if (LHSIsU && RHSIsS && !LHSIsS)
6616         Results.push_back(MakeMULPair(RHS, LHS));
6617 
6618       return;
6619     }
6620     LLVM_FALLTHROUGH;
6621   }
6622   case ISD::ADD:
6623   case ISD::SUB:
6624     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6625            "Unexpected custom legalisation");
6626     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
6627     break;
6628   case ISD::SHL:
6629   case ISD::SRA:
6630   case ISD::SRL:
6631     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6632            "Unexpected custom legalisation");
6633     if (N->getOperand(1).getOpcode() != ISD::Constant) {
6634       Results.push_back(customLegalizeToWOp(N, DAG));
6635       break;
6636     }
6637 
6638     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
6639     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
6640     // shift amount.
6641     if (N->getOpcode() == ISD::SHL) {
6642       SDLoc DL(N);
6643       SDValue NewOp0 =
6644           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6645       SDValue NewOp1 =
6646           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
6647       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
6648       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6649                                    DAG.getValueType(MVT::i32));
6650       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6651     }
6652 
6653     break;
6654   case ISD::ROTL:
6655   case ISD::ROTR:
6656     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6657            "Unexpected custom legalisation");
6658     Results.push_back(customLegalizeToWOp(N, DAG));
6659     break;
6660   case ISD::CTTZ:
6661   case ISD::CTTZ_ZERO_UNDEF:
6662   case ISD::CTLZ:
6663   case ISD::CTLZ_ZERO_UNDEF: {
6664     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6665            "Unexpected custom legalisation");
6666 
6667     SDValue NewOp0 =
6668         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6669     bool IsCTZ =
6670         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
6671     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
6672     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
6673     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6674     return;
6675   }
6676   case ISD::SDIV:
6677   case ISD::UDIV:
6678   case ISD::UREM: {
6679     MVT VT = N->getSimpleValueType(0);
6680     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
6681            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
6682            "Unexpected custom legalisation");
6683     // Don't promote division/remainder by constant since we should expand those
6684     // to multiply by magic constant.
6685     // FIXME: What if the expansion is disabled for minsize.
6686     if (N->getOperand(1).getOpcode() == ISD::Constant)
6687       return;
6688 
6689     // If the input is i32, use ANY_EXTEND since the W instructions don't read
6690     // the upper 32 bits. For other types we need to sign or zero extend
6691     // based on the opcode.
6692     unsigned ExtOpc = ISD::ANY_EXTEND;
6693     if (VT != MVT::i32)
6694       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
6695                                            : ISD::ZERO_EXTEND;
6696 
6697     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
6698     break;
6699   }
6700   case ISD::UADDO:
6701   case ISD::USUBO: {
6702     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6703            "Unexpected custom legalisation");
6704     bool IsAdd = N->getOpcode() == ISD::UADDO;
6705     // Create an ADDW or SUBW.
6706     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6707     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6708     SDValue Res =
6709         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
6710     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
6711                       DAG.getValueType(MVT::i32));
6712 
6713     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
6714     // Since the inputs are sign extended from i32, this is equivalent to
6715     // comparing the lower 32 bits.
6716     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6717     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
6718                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
6719 
6720     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6721     Results.push_back(Overflow);
6722     return;
6723   }
6724   case ISD::UADDSAT:
6725   case ISD::USUBSAT: {
6726     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6727            "Unexpected custom legalisation");
6728     if (Subtarget.hasStdExtZbb()) {
6729       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
6730       // sign extend allows overflow of the lower 32 bits to be detected on
6731       // the promoted size.
6732       SDValue LHS =
6733           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6734       SDValue RHS =
6735           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
6736       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
6737       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6738       return;
6739     }
6740 
6741     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
6742     // promotion for UADDO/USUBO.
6743     Results.push_back(expandAddSubSat(N, DAG));
6744     return;
6745   }
6746   case ISD::ABS: {
6747     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6748            "Unexpected custom legalisation");
6749           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6750 
6751     // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y)
6752 
6753     SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6754 
6755     // Freeze the source so we can increase it's use count.
6756     Src = DAG.getFreeze(Src);
6757 
6758     // Copy sign bit to all bits using the sraiw pattern.
6759     SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src,
6760                                    DAG.getValueType(MVT::i32));
6761     SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill,
6762                            DAG.getConstant(31, DL, MVT::i64));
6763 
6764     SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill);
6765     NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill);
6766 
6767     // NOTE: The result is only required to be anyextended, but sext is
6768     // consistent with type legalization of sub.
6769     NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes,
6770                          DAG.getValueType(MVT::i32));
6771     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6772     return;
6773   }
6774   case ISD::BITCAST: {
6775     EVT VT = N->getValueType(0);
6776     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
6777     SDValue Op0 = N->getOperand(0);
6778     EVT Op0VT = Op0.getValueType();
6779     MVT XLenVT = Subtarget.getXLenVT();
6780     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
6781       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
6782       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
6783     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
6784                Subtarget.hasStdExtF()) {
6785       SDValue FPConv =
6786           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
6787       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
6788     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
6789                isTypeLegal(Op0VT)) {
6790       // Custom-legalize bitcasts from fixed-length vector types to illegal
6791       // scalar types in order to improve codegen. Bitcast the vector to a
6792       // one-element vector type whose element type is the same as the result
6793       // type, and extract the first element.
6794       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
6795       if (isTypeLegal(BVT)) {
6796         SDValue BVec = DAG.getBitcast(BVT, Op0);
6797         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
6798                                       DAG.getConstant(0, DL, XLenVT)));
6799       }
6800     }
6801     break;
6802   }
6803   case RISCVISD::GREV:
6804   case RISCVISD::GORC:
6805   case RISCVISD::SHFL: {
6806     MVT VT = N->getSimpleValueType(0);
6807     MVT XLenVT = Subtarget.getXLenVT();
6808     assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
6809            "Unexpected custom legalisation");
6810     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6811     assert((Subtarget.hasStdExtZbp() ||
6812             (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV &&
6813              N->getConstantOperandVal(1) == 7)) &&
6814            "Unexpected extension");
6815     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
6816     SDValue NewOp1 =
6817         DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1));
6818     SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1);
6819     // ReplaceNodeResults requires we maintain the same type for the return
6820     // value.
6821     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes));
6822     break;
6823   }
6824   case ISD::BSWAP:
6825   case ISD::BITREVERSE: {
6826     MVT VT = N->getSimpleValueType(0);
6827     MVT XLenVT = Subtarget.getXLenVT();
6828     assert((VT == MVT::i8 || VT == MVT::i16 ||
6829             (VT == MVT::i32 && Subtarget.is64Bit())) &&
6830            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
6831     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
6832     unsigned Imm = VT.getSizeInBits() - 1;
6833     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
6834     if (N->getOpcode() == ISD::BSWAP)
6835       Imm &= ~0x7U;
6836     SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0,
6837                                 DAG.getConstant(Imm, DL, XLenVT));
6838     // ReplaceNodeResults requires we maintain the same type for the return
6839     // value.
6840     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
6841     break;
6842   }
6843   case ISD::FSHL:
6844   case ISD::FSHR: {
6845     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6846            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
6847     SDValue NewOp0 =
6848         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6849     SDValue NewOp1 =
6850         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6851     SDValue NewShAmt =
6852         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6853     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
6854     // Mask the shift amount to 5 bits to prevent accidentally setting bit 5.
6855     NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt,
6856                            DAG.getConstant(0x1f, DL, MVT::i64));
6857     // fshl and fshr concatenate their operands in the same order. fsrw and fslw
6858     // instruction use different orders. fshl will return its first operand for
6859     // shift of zero, fshr will return its second operand. fsl and fsr both
6860     // return rs1 so the ISD nodes need to have different operand orders.
6861     // Shift amount is in rs2.
6862     unsigned Opc = RISCVISD::FSLW;
6863     if (N->getOpcode() == ISD::FSHR) {
6864       std::swap(NewOp0, NewOp1);
6865       Opc = RISCVISD::FSRW;
6866     }
6867     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt);
6868     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
6869     break;
6870   }
6871   case ISD::EXTRACT_VECTOR_ELT: {
6872     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
6873     // type is illegal (currently only vXi64 RV32).
6874     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
6875     // transferred to the destination register. We issue two of these from the
6876     // upper- and lower- halves of the SEW-bit vector element, slid down to the
6877     // first element.
6878     SDValue Vec = N->getOperand(0);
6879     SDValue Idx = N->getOperand(1);
6880 
6881     // The vector type hasn't been legalized yet so we can't issue target
6882     // specific nodes if it needs legalization.
6883     // FIXME: We would manually legalize if it's important.
6884     if (!isTypeLegal(Vec.getValueType()))
6885       return;
6886 
6887     MVT VecVT = Vec.getSimpleValueType();
6888 
6889     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
6890            VecVT.getVectorElementType() == MVT::i64 &&
6891            "Unexpected EXTRACT_VECTOR_ELT legalization");
6892 
6893     // If this is a fixed vector, we need to convert it to a scalable vector.
6894     MVT ContainerVT = VecVT;
6895     if (VecVT.isFixedLengthVector()) {
6896       ContainerVT = getContainerForFixedLengthVector(VecVT);
6897       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
6898     }
6899 
6900     MVT XLenVT = Subtarget.getXLenVT();
6901 
6902     // Use a VL of 1 to avoid processing more elements than we need.
6903     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6904     SDValue VL = DAG.getConstant(1, DL, XLenVT);
6905     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6906 
6907     // Unless the index is known to be 0, we must slide the vector down to get
6908     // the desired element into index 0.
6909     if (!isNullConstant(Idx)) {
6910       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
6911                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
6912     }
6913 
6914     // Extract the lower XLEN bits of the correct vector element.
6915     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
6916 
6917     // To extract the upper XLEN bits of the vector element, shift the first
6918     // element right by 32 bits and re-extract the lower XLEN bits.
6919     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6920                                      DAG.getUNDEF(ContainerVT),
6921                                      DAG.getConstant(32, DL, XLenVT), VL);
6922     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
6923                                  ThirtyTwoV, Mask, VL);
6924 
6925     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
6926 
6927     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
6928     break;
6929   }
6930   case ISD::INTRINSIC_WO_CHAIN: {
6931     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
6932     switch (IntNo) {
6933     default:
6934       llvm_unreachable(
6935           "Don't know how to custom type legalize this intrinsic!");
6936     case Intrinsic::riscv_grev:
6937     case Intrinsic::riscv_gorc: {
6938       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6939              "Unexpected custom legalisation");
6940       SDValue NewOp1 =
6941           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6942       SDValue NewOp2 =
6943           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6944       unsigned Opc =
6945           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
6946       // If the control is a constant, promote the node by clearing any extra
6947       // bits bits in the control. isel will form greviw/gorciw if the result is
6948       // sign extended.
6949       if (isa<ConstantSDNode>(NewOp2)) {
6950         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
6951                              DAG.getConstant(0x1f, DL, MVT::i64));
6952         Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
6953       }
6954       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
6955       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6956       break;
6957     }
6958     case Intrinsic::riscv_bcompress:
6959     case Intrinsic::riscv_bdecompress:
6960     case Intrinsic::riscv_bfp: {
6961       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6962              "Unexpected custom legalisation");
6963       Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo));
6964       break;
6965     }
6966     case Intrinsic::riscv_fsl:
6967     case Intrinsic::riscv_fsr: {
6968       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6969              "Unexpected custom legalisation");
6970       SDValue NewOp1 =
6971           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6972       SDValue NewOp2 =
6973           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6974       SDValue NewOp3 =
6975           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3));
6976       unsigned Opc = getRISCVWOpcodeByIntr(IntNo);
6977       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3);
6978       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6979       break;
6980     }
6981     case Intrinsic::riscv_orc_b: {
6982       // Lower to the GORCI encoding for orc.b with the operand extended.
6983       SDValue NewOp =
6984           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6985       SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp,
6986                                 DAG.getConstant(7, DL, MVT::i64));
6987       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6988       return;
6989     }
6990     case Intrinsic::riscv_shfl:
6991     case Intrinsic::riscv_unshfl: {
6992       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6993              "Unexpected custom legalisation");
6994       SDValue NewOp1 =
6995           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6996       SDValue NewOp2 =
6997           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6998       unsigned Opc =
6999           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
7000       // There is no (UN)SHFLIW. If the control word is a constant, we can use
7001       // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half
7002       // will be shuffled the same way as the lower 32 bit half, but the two
7003       // halves won't cross.
7004       if (isa<ConstantSDNode>(NewOp2)) {
7005         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7006                              DAG.getConstant(0xf, DL, MVT::i64));
7007         Opc =
7008             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
7009       }
7010       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7011       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7012       break;
7013     }
7014     case Intrinsic::riscv_vmv_x_s: {
7015       EVT VT = N->getValueType(0);
7016       MVT XLenVT = Subtarget.getXLenVT();
7017       if (VT.bitsLT(XLenVT)) {
7018         // Simple case just extract using vmv.x.s and truncate.
7019         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
7020                                       Subtarget.getXLenVT(), N->getOperand(1));
7021         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
7022         return;
7023       }
7024 
7025       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
7026              "Unexpected custom legalization");
7027 
7028       // We need to do the move in two steps.
7029       SDValue Vec = N->getOperand(1);
7030       MVT VecVT = Vec.getSimpleValueType();
7031 
7032       // First extract the lower XLEN bits of the element.
7033       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7034 
7035       // To extract the upper XLEN bits of the vector element, shift the first
7036       // element right by 32 bits and re-extract the lower XLEN bits.
7037       SDValue VL = DAG.getConstant(1, DL, XLenVT);
7038       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
7039       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
7040       SDValue ThirtyTwoV =
7041           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
7042                       DAG.getConstant(32, DL, XLenVT), VL);
7043       SDValue LShr32 =
7044           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
7045       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7046 
7047       Results.push_back(
7048           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7049       break;
7050     }
7051     }
7052     break;
7053   }
7054   case ISD::VECREDUCE_ADD:
7055   case ISD::VECREDUCE_AND:
7056   case ISD::VECREDUCE_OR:
7057   case ISD::VECREDUCE_XOR:
7058   case ISD::VECREDUCE_SMAX:
7059   case ISD::VECREDUCE_UMAX:
7060   case ISD::VECREDUCE_SMIN:
7061   case ISD::VECREDUCE_UMIN:
7062     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
7063       Results.push_back(V);
7064     break;
7065   case ISD::VP_REDUCE_ADD:
7066   case ISD::VP_REDUCE_AND:
7067   case ISD::VP_REDUCE_OR:
7068   case ISD::VP_REDUCE_XOR:
7069   case ISD::VP_REDUCE_SMAX:
7070   case ISD::VP_REDUCE_UMAX:
7071   case ISD::VP_REDUCE_SMIN:
7072   case ISD::VP_REDUCE_UMIN:
7073     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
7074       Results.push_back(V);
7075     break;
7076   case ISD::FLT_ROUNDS_: {
7077     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
7078     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
7079     Results.push_back(Res.getValue(0));
7080     Results.push_back(Res.getValue(1));
7081     break;
7082   }
7083   }
7084 }
7085 
7086 // A structure to hold one of the bit-manipulation patterns below. Together, a
7087 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
7088 //   (or (and (shl x, 1), 0xAAAAAAAA),
7089 //       (and (srl x, 1), 0x55555555))
7090 struct RISCVBitmanipPat {
7091   SDValue Op;
7092   unsigned ShAmt;
7093   bool IsSHL;
7094 
7095   bool formsPairWith(const RISCVBitmanipPat &Other) const {
7096     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
7097   }
7098 };
7099 
7100 // Matches patterns of the form
7101 //   (and (shl x, C2), (C1 << C2))
7102 //   (and (srl x, C2), C1)
7103 //   (shl (and x, C1), C2)
7104 //   (srl (and x, (C1 << C2)), C2)
7105 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
7106 // The expected masks for each shift amount are specified in BitmanipMasks where
7107 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
7108 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
7109 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
7110 // XLen is 64.
7111 static Optional<RISCVBitmanipPat>
7112 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
7113   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
7114          "Unexpected number of masks");
7115   Optional<uint64_t> Mask;
7116   // Optionally consume a mask around the shift operation.
7117   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
7118     Mask = Op.getConstantOperandVal(1);
7119     Op = Op.getOperand(0);
7120   }
7121   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
7122     return None;
7123   bool IsSHL = Op.getOpcode() == ISD::SHL;
7124 
7125   if (!isa<ConstantSDNode>(Op.getOperand(1)))
7126     return None;
7127   uint64_t ShAmt = Op.getConstantOperandVal(1);
7128 
7129   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7130   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
7131     return None;
7132   // If we don't have enough masks for 64 bit, then we must be trying to
7133   // match SHFL so we're only allowed to shift 1/4 of the width.
7134   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
7135     return None;
7136 
7137   SDValue Src = Op.getOperand(0);
7138 
7139   // The expected mask is shifted left when the AND is found around SHL
7140   // patterns.
7141   //   ((x >> 1) & 0x55555555)
7142   //   ((x << 1) & 0xAAAAAAAA)
7143   bool SHLExpMask = IsSHL;
7144 
7145   if (!Mask) {
7146     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
7147     // the mask is all ones: consume that now.
7148     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
7149       Mask = Src.getConstantOperandVal(1);
7150       Src = Src.getOperand(0);
7151       // The expected mask is now in fact shifted left for SRL, so reverse the
7152       // decision.
7153       //   ((x & 0xAAAAAAAA) >> 1)
7154       //   ((x & 0x55555555) << 1)
7155       SHLExpMask = !SHLExpMask;
7156     } else {
7157       // Use a default shifted mask of all-ones if there's no AND, truncated
7158       // down to the expected width. This simplifies the logic later on.
7159       Mask = maskTrailingOnes<uint64_t>(Width);
7160       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
7161     }
7162   }
7163 
7164   unsigned MaskIdx = Log2_32(ShAmt);
7165   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7166 
7167   if (SHLExpMask)
7168     ExpMask <<= ShAmt;
7169 
7170   if (Mask != ExpMask)
7171     return None;
7172 
7173   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
7174 }
7175 
7176 // Matches any of the following bit-manipulation patterns:
7177 //   (and (shl x, 1), (0x55555555 << 1))
7178 //   (and (srl x, 1), 0x55555555)
7179 //   (shl (and x, 0x55555555), 1)
7180 //   (srl (and x, (0x55555555 << 1)), 1)
7181 // where the shift amount and mask may vary thus:
7182 //   [1]  = 0x55555555 / 0xAAAAAAAA
7183 //   [2]  = 0x33333333 / 0xCCCCCCCC
7184 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
7185 //   [8]  = 0x00FF00FF / 0xFF00FF00
7186 //   [16] = 0x0000FFFF / 0xFFFFFFFF
7187 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
7188 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
7189   // These are the unshifted masks which we use to match bit-manipulation
7190   // patterns. They may be shifted left in certain circumstances.
7191   static const uint64_t BitmanipMasks[] = {
7192       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
7193       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
7194 
7195   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7196 }
7197 
7198 // Match the following pattern as a GREVI(W) operation
7199 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
7200 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
7201                                const RISCVSubtarget &Subtarget) {
7202   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7203   EVT VT = Op.getValueType();
7204 
7205   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7206     auto LHS = matchGREVIPat(Op.getOperand(0));
7207     auto RHS = matchGREVIPat(Op.getOperand(1));
7208     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
7209       SDLoc DL(Op);
7210       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
7211                          DAG.getConstant(LHS->ShAmt, DL, VT));
7212     }
7213   }
7214   return SDValue();
7215 }
7216 
7217 // Matches any the following pattern as a GORCI(W) operation
7218 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
7219 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
7220 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
7221 // Note that with the variant of 3.,
7222 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
7223 // the inner pattern will first be matched as GREVI and then the outer
7224 // pattern will be matched to GORC via the first rule above.
7225 // 4.  (or (rotl/rotr x, bitwidth/2), x)
7226 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
7227                                const RISCVSubtarget &Subtarget) {
7228   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7229   EVT VT = Op.getValueType();
7230 
7231   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7232     SDLoc DL(Op);
7233     SDValue Op0 = Op.getOperand(0);
7234     SDValue Op1 = Op.getOperand(1);
7235 
7236     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
7237       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
7238           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
7239           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
7240         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
7241       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
7242       if ((Reverse.getOpcode() == ISD::ROTL ||
7243            Reverse.getOpcode() == ISD::ROTR) &&
7244           Reverse.getOperand(0) == X &&
7245           isa<ConstantSDNode>(Reverse.getOperand(1))) {
7246         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
7247         if (RotAmt == (VT.getSizeInBits() / 2))
7248           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
7249                              DAG.getConstant(RotAmt, DL, VT));
7250       }
7251       return SDValue();
7252     };
7253 
7254     // Check for either commutable permutation of (or (GREVI x, shamt), x)
7255     if (SDValue V = MatchOROfReverse(Op0, Op1))
7256       return V;
7257     if (SDValue V = MatchOROfReverse(Op1, Op0))
7258       return V;
7259 
7260     // OR is commutable so canonicalize its OR operand to the left
7261     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
7262       std::swap(Op0, Op1);
7263     if (Op0.getOpcode() != ISD::OR)
7264       return SDValue();
7265     SDValue OrOp0 = Op0.getOperand(0);
7266     SDValue OrOp1 = Op0.getOperand(1);
7267     auto LHS = matchGREVIPat(OrOp0);
7268     // OR is commutable so swap the operands and try again: x might have been
7269     // on the left
7270     if (!LHS) {
7271       std::swap(OrOp0, OrOp1);
7272       LHS = matchGREVIPat(OrOp0);
7273     }
7274     auto RHS = matchGREVIPat(Op1);
7275     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
7276       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
7277                          DAG.getConstant(LHS->ShAmt, DL, VT));
7278     }
7279   }
7280   return SDValue();
7281 }
7282 
7283 // Matches any of the following bit-manipulation patterns:
7284 //   (and (shl x, 1), (0x22222222 << 1))
7285 //   (and (srl x, 1), 0x22222222)
7286 //   (shl (and x, 0x22222222), 1)
7287 //   (srl (and x, (0x22222222 << 1)), 1)
7288 // where the shift amount and mask may vary thus:
7289 //   [1]  = 0x22222222 / 0x44444444
7290 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
7291 //   [4]  = 0x00F000F0 / 0x0F000F00
7292 //   [8]  = 0x0000FF00 / 0x00FF0000
7293 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
7294 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
7295   // These are the unshifted masks which we use to match bit-manipulation
7296   // patterns. They may be shifted left in certain circumstances.
7297   static const uint64_t BitmanipMasks[] = {
7298       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
7299       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
7300 
7301   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7302 }
7303 
7304 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
7305 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
7306                                const RISCVSubtarget &Subtarget) {
7307   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7308   EVT VT = Op.getValueType();
7309 
7310   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
7311     return SDValue();
7312 
7313   SDValue Op0 = Op.getOperand(0);
7314   SDValue Op1 = Op.getOperand(1);
7315 
7316   // Or is commutable so canonicalize the second OR to the LHS.
7317   if (Op0.getOpcode() != ISD::OR)
7318     std::swap(Op0, Op1);
7319   if (Op0.getOpcode() != ISD::OR)
7320     return SDValue();
7321 
7322   // We found an inner OR, so our operands are the operands of the inner OR
7323   // and the other operand of the outer OR.
7324   SDValue A = Op0.getOperand(0);
7325   SDValue B = Op0.getOperand(1);
7326   SDValue C = Op1;
7327 
7328   auto Match1 = matchSHFLPat(A);
7329   auto Match2 = matchSHFLPat(B);
7330 
7331   // If neither matched, we failed.
7332   if (!Match1 && !Match2)
7333     return SDValue();
7334 
7335   // We had at least one match. if one failed, try the remaining C operand.
7336   if (!Match1) {
7337     std::swap(A, C);
7338     Match1 = matchSHFLPat(A);
7339     if (!Match1)
7340       return SDValue();
7341   } else if (!Match2) {
7342     std::swap(B, C);
7343     Match2 = matchSHFLPat(B);
7344     if (!Match2)
7345       return SDValue();
7346   }
7347   assert(Match1 && Match2);
7348 
7349   // Make sure our matches pair up.
7350   if (!Match1->formsPairWith(*Match2))
7351     return SDValue();
7352 
7353   // All the remains is to make sure C is an AND with the same input, that masks
7354   // out the bits that are being shuffled.
7355   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
7356       C.getOperand(0) != Match1->Op)
7357     return SDValue();
7358 
7359   uint64_t Mask = C.getConstantOperandVal(1);
7360 
7361   static const uint64_t BitmanipMasks[] = {
7362       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
7363       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
7364   };
7365 
7366   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7367   unsigned MaskIdx = Log2_32(Match1->ShAmt);
7368   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7369 
7370   if (Mask != ExpMask)
7371     return SDValue();
7372 
7373   SDLoc DL(Op);
7374   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
7375                      DAG.getConstant(Match1->ShAmt, DL, VT));
7376 }
7377 
7378 // Optimize (add (shl x, c0), (shl y, c1)) ->
7379 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
7380 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
7381                                   const RISCVSubtarget &Subtarget) {
7382   // Perform this optimization only in the zba extension.
7383   if (!Subtarget.hasStdExtZba())
7384     return SDValue();
7385 
7386   // Skip for vector types and larger types.
7387   EVT VT = N->getValueType(0);
7388   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7389     return SDValue();
7390 
7391   // The two operand nodes must be SHL and have no other use.
7392   SDValue N0 = N->getOperand(0);
7393   SDValue N1 = N->getOperand(1);
7394   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
7395       !N0->hasOneUse() || !N1->hasOneUse())
7396     return SDValue();
7397 
7398   // Check c0 and c1.
7399   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7400   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
7401   if (!N0C || !N1C)
7402     return SDValue();
7403   int64_t C0 = N0C->getSExtValue();
7404   int64_t C1 = N1C->getSExtValue();
7405   if (C0 <= 0 || C1 <= 0)
7406     return SDValue();
7407 
7408   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
7409   int64_t Bits = std::min(C0, C1);
7410   int64_t Diff = std::abs(C0 - C1);
7411   if (Diff != 1 && Diff != 2 && Diff != 3)
7412     return SDValue();
7413 
7414   // Build nodes.
7415   SDLoc DL(N);
7416   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
7417   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
7418   SDValue NA0 =
7419       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
7420   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
7421   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
7422 }
7423 
7424 // Combine
7425 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7426 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7427 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7428 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7429 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7430 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7431 // The grev patterns represents BSWAP.
7432 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB
7433 // off the grev.
7434 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG,
7435                                           const RISCVSubtarget &Subtarget) {
7436   bool IsWInstruction =
7437       N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW;
7438   assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL ||
7439           IsWInstruction) &&
7440          "Unexpected opcode!");
7441   SDValue Src = N->getOperand(0);
7442   EVT VT = N->getValueType(0);
7443   SDLoc DL(N);
7444 
7445   if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV)
7446     return SDValue();
7447 
7448   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7449       !isa<ConstantSDNode>(Src.getOperand(1)))
7450     return SDValue();
7451 
7452   unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits();
7453   assert(isPowerOf2_32(BitWidth) && "Expected a power of 2");
7454 
7455   // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for
7456   // RORW/ROLW. And the grev should be the encoding for bswap for this width.
7457   unsigned ShAmt1 = N->getConstantOperandVal(1);
7458   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7459   if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8))
7460     return SDValue();
7461 
7462   Src = Src.getOperand(0);
7463 
7464   // Toggle bit the MSB of the shift.
7465   unsigned CombinedShAmt = ShAmt1 ^ ShAmt2;
7466   if (CombinedShAmt == 0)
7467     return Src;
7468 
7469   SDValue Res = DAG.getNode(
7470       RISCVISD::GREV, DL, VT, Src,
7471       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7472   if (!IsWInstruction)
7473     return Res;
7474 
7475   // Sign extend the result to match the behavior of the rotate. This will be
7476   // selected to GREVIW in isel.
7477   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res,
7478                      DAG.getValueType(MVT::i32));
7479 }
7480 
7481 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
7482 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
7483 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
7484 // not undo itself, but they are redundant.
7485 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
7486   bool IsGORC = N->getOpcode() == RISCVISD::GORC;
7487   assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode");
7488   SDValue Src = N->getOperand(0);
7489 
7490   if (Src.getOpcode() != N->getOpcode())
7491     return SDValue();
7492 
7493   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7494       !isa<ConstantSDNode>(Src.getOperand(1)))
7495     return SDValue();
7496 
7497   unsigned ShAmt1 = N->getConstantOperandVal(1);
7498   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7499   Src = Src.getOperand(0);
7500 
7501   unsigned CombinedShAmt;
7502   if (IsGORC)
7503     CombinedShAmt = ShAmt1 | ShAmt2;
7504   else
7505     CombinedShAmt = ShAmt1 ^ ShAmt2;
7506 
7507   if (CombinedShAmt == 0)
7508     return Src;
7509 
7510   SDLoc DL(N);
7511   return DAG.getNode(
7512       N->getOpcode(), DL, N->getValueType(0), Src,
7513       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7514 }
7515 
7516 // Combine a constant select operand into its use:
7517 //
7518 // (and (select cond, -1, c), x)
7519 //   -> (select cond, x, (and x, c))  [AllOnes=1]
7520 // (or  (select cond, 0, c), x)
7521 //   -> (select cond, x, (or x, c))  [AllOnes=0]
7522 // (xor (select cond, 0, c), x)
7523 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
7524 // (add (select cond, 0, c), x)
7525 //   -> (select cond, x, (add x, c))  [AllOnes=0]
7526 // (sub x, (select cond, 0, c))
7527 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
7528 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7529                                    SelectionDAG &DAG, bool AllOnes) {
7530   EVT VT = N->getValueType(0);
7531 
7532   // Skip vectors.
7533   if (VT.isVector())
7534     return SDValue();
7535 
7536   if ((Slct.getOpcode() != ISD::SELECT &&
7537        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
7538       !Slct.hasOneUse())
7539     return SDValue();
7540 
7541   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
7542     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
7543   };
7544 
7545   bool SwapSelectOps;
7546   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
7547   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
7548   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
7549   SDValue NonConstantVal;
7550   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
7551     SwapSelectOps = false;
7552     NonConstantVal = FalseVal;
7553   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
7554     SwapSelectOps = true;
7555     NonConstantVal = TrueVal;
7556   } else
7557     return SDValue();
7558 
7559   // Slct is now know to be the desired identity constant when CC is true.
7560   TrueVal = OtherOp;
7561   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
7562   // Unless SwapSelectOps says the condition should be false.
7563   if (SwapSelectOps)
7564     std::swap(TrueVal, FalseVal);
7565 
7566   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
7567     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
7568                        {Slct.getOperand(0), Slct.getOperand(1),
7569                         Slct.getOperand(2), TrueVal, FalseVal});
7570 
7571   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
7572                      {Slct.getOperand(0), TrueVal, FalseVal});
7573 }
7574 
7575 // Attempt combineSelectAndUse on each operand of a commutative operator N.
7576 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
7577                                               bool AllOnes) {
7578   SDValue N0 = N->getOperand(0);
7579   SDValue N1 = N->getOperand(1);
7580   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
7581     return Result;
7582   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
7583     return Result;
7584   return SDValue();
7585 }
7586 
7587 // Transform (add (mul x, c0), c1) ->
7588 //           (add (mul (add x, c1/c0), c0), c1%c0).
7589 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
7590 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
7591 // to an infinite loop in DAGCombine if transformed.
7592 // Or transform (add (mul x, c0), c1) ->
7593 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
7594 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
7595 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
7596 // lead to an infinite loop in DAGCombine if transformed.
7597 // Or transform (add (mul x, c0), c1) ->
7598 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
7599 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
7600 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
7601 // lead to an infinite loop in DAGCombine if transformed.
7602 // Or transform (add (mul x, c0), c1) ->
7603 //              (mul (add x, c1/c0), c0).
7604 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
7605 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
7606                                      const RISCVSubtarget &Subtarget) {
7607   // Skip for vector types and larger types.
7608   EVT VT = N->getValueType(0);
7609   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7610     return SDValue();
7611   // The first operand node must be a MUL and has no other use.
7612   SDValue N0 = N->getOperand(0);
7613   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
7614     return SDValue();
7615   // Check if c0 and c1 match above conditions.
7616   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7617   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
7618   if (!N0C || !N1C)
7619     return SDValue();
7620   // If N0C has multiple uses it's possible one of the cases in
7621   // DAGCombiner::isMulAddWithConstProfitable will be true, which would result
7622   // in an infinite loop.
7623   if (!N0C->hasOneUse())
7624     return SDValue();
7625   int64_t C0 = N0C->getSExtValue();
7626   int64_t C1 = N1C->getSExtValue();
7627   int64_t CA, CB;
7628   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
7629     return SDValue();
7630   // Search for proper CA (non-zero) and CB that both are simm12.
7631   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
7632       !isInt<12>(C0 * (C1 / C0))) {
7633     CA = C1 / C0;
7634     CB = C1 % C0;
7635   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
7636              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
7637     CA = C1 / C0 + 1;
7638     CB = C1 % C0 - C0;
7639   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
7640              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
7641     CA = C1 / C0 - 1;
7642     CB = C1 % C0 + C0;
7643   } else
7644     return SDValue();
7645   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
7646   SDLoc DL(N);
7647   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
7648                              DAG.getConstant(CA, DL, VT));
7649   SDValue New1 =
7650       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
7651   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
7652 }
7653 
7654 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
7655                                  const RISCVSubtarget &Subtarget) {
7656   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
7657     return V;
7658   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
7659     return V;
7660   // fold (add (select lhs, rhs, cc, 0, y), x) ->
7661   //      (select lhs, rhs, cc, x, (add x, y))
7662   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7663 }
7664 
7665 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
7666   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
7667   //      (select lhs, rhs, cc, x, (sub x, y))
7668   SDValue N0 = N->getOperand(0);
7669   SDValue N1 = N->getOperand(1);
7670   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
7671 }
7672 
7673 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) {
7674   // fold (and (select lhs, rhs, cc, -1, y), x) ->
7675   //      (select lhs, rhs, cc, x, (and x, y))
7676   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
7677 }
7678 
7679 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
7680                                 const RISCVSubtarget &Subtarget) {
7681   if (Subtarget.hasStdExtZbp()) {
7682     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
7683       return GREV;
7684     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
7685       return GORC;
7686     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
7687       return SHFL;
7688   }
7689 
7690   // fold (or (select cond, 0, y), x) ->
7691   //      (select cond, x, (or x, y))
7692   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7693 }
7694 
7695 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
7696   // fold (xor (select cond, 0, y), x) ->
7697   //      (select cond, x, (xor x, y))
7698   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7699 }
7700 
7701 static SDValue
7702 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
7703                                 const RISCVSubtarget &Subtarget) {
7704   SDValue Src = N->getOperand(0);
7705   EVT VT = N->getValueType(0);
7706 
7707   // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X)
7708   if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
7709       cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16))
7710     return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT,
7711                        Src.getOperand(0));
7712 
7713   // Fold (i64 (sext_inreg (abs X), i32)) ->
7714   // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits.
7715   // The (sext_inreg (neg X), i32) will be selected to negw by isel. This
7716   // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user
7717   // of the (i32 (abs X)) is a sext or setcc or something else that causes type
7718   // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have
7719   // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg
7720   // may get combined into an earlier operation so we need to use
7721   // ComputeNumSignBits.
7722   // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for
7723   // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so
7724   // we can't assume that X has 33 sign bits. We must check.
7725   if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() &&
7726       Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 &&
7727       cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 &&
7728       DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) {
7729     SDLoc DL(N);
7730     SDValue Freeze = DAG.getFreeze(Src.getOperand(0));
7731     SDValue Neg =
7732         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze);
7733     Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg,
7734                       DAG.getValueType(MVT::i32));
7735     return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg);
7736   }
7737 
7738   return SDValue();
7739 }
7740 
7741 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to
7742 // vwadd(u).vv/vx or vwsub(u).vv/vx.
7743 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG,
7744                                              bool Commute = false) {
7745   assert((N->getOpcode() == RISCVISD::ADD_VL ||
7746           N->getOpcode() == RISCVISD::SUB_VL) &&
7747          "Unexpected opcode");
7748   bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL;
7749   SDValue Op0 = N->getOperand(0);
7750   SDValue Op1 = N->getOperand(1);
7751   if (Commute)
7752     std::swap(Op0, Op1);
7753 
7754   MVT VT = N->getSimpleValueType(0);
7755 
7756   // Determine the narrow size for a widening add/sub.
7757   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
7758   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
7759                                   VT.getVectorElementCount());
7760 
7761   SDValue Mask = N->getOperand(2);
7762   SDValue VL = N->getOperand(3);
7763 
7764   SDLoc DL(N);
7765 
7766   // If the RHS is a sext or zext, we can form a widening op.
7767   if ((Op1.getOpcode() == RISCVISD::VZEXT_VL ||
7768        Op1.getOpcode() == RISCVISD::VSEXT_VL) &&
7769       Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) {
7770     unsigned ExtOpc = Op1.getOpcode();
7771     Op1 = Op1.getOperand(0);
7772     // Re-introduce narrower extends if needed.
7773     if (Op1.getValueType() != NarrowVT)
7774       Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
7775 
7776     unsigned WOpc;
7777     if (ExtOpc == RISCVISD::VSEXT_VL)
7778       WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL;
7779     else
7780       WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL;
7781 
7782     return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL);
7783   }
7784 
7785   // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar
7786   // sext/zext?
7787 
7788   return SDValue();
7789 }
7790 
7791 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or
7792 // vwsub(u).vv/vx.
7793 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) {
7794   SDValue Op0 = N->getOperand(0);
7795   SDValue Op1 = N->getOperand(1);
7796   SDValue Mask = N->getOperand(2);
7797   SDValue VL = N->getOperand(3);
7798 
7799   MVT VT = N->getSimpleValueType(0);
7800   MVT NarrowVT = Op1.getSimpleValueType();
7801   unsigned NarrowSize = NarrowVT.getScalarSizeInBits();
7802 
7803   unsigned VOpc;
7804   switch (N->getOpcode()) {
7805   default: llvm_unreachable("Unexpected opcode");
7806   case RISCVISD::VWADD_W_VL:  VOpc = RISCVISD::VWADD_VL;  break;
7807   case RISCVISD::VWSUB_W_VL:  VOpc = RISCVISD::VWSUB_VL;  break;
7808   case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break;
7809   case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break;
7810   }
7811 
7812   bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL ||
7813                   N->getOpcode() == RISCVISD::VWSUB_W_VL;
7814 
7815   SDLoc DL(N);
7816 
7817   // If the LHS is a sext or zext, we can narrow this op to the same size as
7818   // the RHS.
7819   if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) ||
7820        (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) &&
7821       Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) {
7822     unsigned ExtOpc = Op0.getOpcode();
7823     Op0 = Op0.getOperand(0);
7824     // Re-introduce narrower extends if needed.
7825     if (Op0.getValueType() != NarrowVT)
7826       Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
7827     return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL);
7828   }
7829 
7830   bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL ||
7831                N->getOpcode() == RISCVISD::VWADDU_W_VL;
7832 
7833   // Look for splats on the left hand side of a vwadd(u).wv. We might be able
7834   // to commute and use a vwadd(u).vx instead.
7835   if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL &&
7836       Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) {
7837     Op0 = Op0.getOperand(1);
7838 
7839     // See if have enough sign bits or zero bits in the scalar to use a
7840     // widening add/sub by splatting to smaller element size.
7841     unsigned EltBits = VT.getScalarSizeInBits();
7842     unsigned ScalarBits = Op0.getValueSizeInBits();
7843     // Make sure we're getting all element bits from the scalar register.
7844     // FIXME: Support implicit sign extension of vmv.v.x?
7845     if (ScalarBits < EltBits)
7846       return SDValue();
7847 
7848     if (IsSigned) {
7849       if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize))
7850         return SDValue();
7851     } else {
7852       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
7853       if (!DAG.MaskedValueIsZero(Op0, Mask))
7854         return SDValue();
7855     }
7856 
7857     Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
7858                       DAG.getUNDEF(NarrowVT), Op0, VL);
7859     return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL);
7860   }
7861 
7862   return SDValue();
7863 }
7864 
7865 // Try to form VWMUL, VWMULU or VWMULSU.
7866 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op.
7867 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG,
7868                                        bool Commute) {
7869   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
7870   SDValue Op0 = N->getOperand(0);
7871   SDValue Op1 = N->getOperand(1);
7872   if (Commute)
7873     std::swap(Op0, Op1);
7874 
7875   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
7876   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
7877   bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL;
7878   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
7879     return SDValue();
7880 
7881   SDValue Mask = N->getOperand(2);
7882   SDValue VL = N->getOperand(3);
7883 
7884   // Make sure the mask and VL match.
7885   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
7886     return SDValue();
7887 
7888   MVT VT = N->getSimpleValueType(0);
7889 
7890   // Determine the narrow size for a widening multiply.
7891   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
7892   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
7893                                   VT.getVectorElementCount());
7894 
7895   SDLoc DL(N);
7896 
7897   // See if the other operand is the same opcode.
7898   if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) {
7899     if (!Op1.hasOneUse())
7900       return SDValue();
7901 
7902     // Make sure the mask and VL match.
7903     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
7904       return SDValue();
7905 
7906     Op1 = Op1.getOperand(0);
7907   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
7908     // The operand is a splat of a scalar.
7909 
7910     // The pasthru must be undef for tail agnostic
7911     if (!Op1.getOperand(0).isUndef())
7912       return SDValue();
7913     // The VL must be the same.
7914     if (Op1.getOperand(2) != VL)
7915       return SDValue();
7916 
7917     // Get the scalar value.
7918     Op1 = Op1.getOperand(1);
7919 
7920     // See if have enough sign bits or zero bits in the scalar to use a
7921     // widening multiply by splatting to smaller element size.
7922     unsigned EltBits = VT.getScalarSizeInBits();
7923     unsigned ScalarBits = Op1.getValueSizeInBits();
7924     // Make sure we're getting all element bits from the scalar register.
7925     // FIXME: Support implicit sign extension of vmv.v.x?
7926     if (ScalarBits < EltBits)
7927       return SDValue();
7928 
7929     // If the LHS is a sign extend, try to use vwmul.
7930     if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) {
7931       // Can use vwmul.
7932     } else {
7933       // Otherwise try to use vwmulu or vwmulsu.
7934       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
7935       if (DAG.MaskedValueIsZero(Op1, Mask))
7936         IsVWMULSU = IsSignExt;
7937       else
7938         return SDValue();
7939     }
7940 
7941     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
7942                       DAG.getUNDEF(NarrowVT), Op1, VL);
7943   } else
7944     return SDValue();
7945 
7946   Op0 = Op0.getOperand(0);
7947 
7948   // Re-introduce narrower extends if needed.
7949   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
7950   if (Op0.getValueType() != NarrowVT)
7951     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
7952   // vwmulsu requires second operand to be zero extended.
7953   ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc;
7954   if (Op1.getValueType() != NarrowVT)
7955     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
7956 
7957   unsigned WMulOpc = RISCVISD::VWMULSU_VL;
7958   if (!IsVWMULSU)
7959     WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
7960   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
7961 }
7962 
7963 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) {
7964   switch (Op.getOpcode()) {
7965   case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE;
7966   case ISD::FTRUNC:     return RISCVFPRndMode::RTZ;
7967   case ISD::FFLOOR:     return RISCVFPRndMode::RDN;
7968   case ISD::FCEIL:      return RISCVFPRndMode::RUP;
7969   case ISD::FROUND:     return RISCVFPRndMode::RMM;
7970   }
7971 
7972   return RISCVFPRndMode::Invalid;
7973 }
7974 
7975 // Fold
7976 //   (fp_to_int (froundeven X)) -> fcvt X, rne
7977 //   (fp_to_int (ftrunc X))     -> fcvt X, rtz
7978 //   (fp_to_int (ffloor X))     -> fcvt X, rdn
7979 //   (fp_to_int (fceil X))      -> fcvt X, rup
7980 //   (fp_to_int (fround X))     -> fcvt X, rmm
7981 static SDValue performFP_TO_INTCombine(SDNode *N,
7982                                        TargetLowering::DAGCombinerInfo &DCI,
7983                                        const RISCVSubtarget &Subtarget) {
7984   SelectionDAG &DAG = DCI.DAG;
7985   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7986   MVT XLenVT = Subtarget.getXLenVT();
7987 
7988   // Only handle XLen or i32 types. Other types narrower than XLen will
7989   // eventually be legalized to XLenVT.
7990   EVT VT = N->getValueType(0);
7991   if (VT != MVT::i32 && VT != XLenVT)
7992     return SDValue();
7993 
7994   SDValue Src = N->getOperand(0);
7995 
7996   // Ensure the FP type is also legal.
7997   if (!TLI.isTypeLegal(Src.getValueType()))
7998     return SDValue();
7999 
8000   // Don't do this for f16 with Zfhmin and not Zfh.
8001   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8002     return SDValue();
8003 
8004   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8005   if (FRM == RISCVFPRndMode::Invalid)
8006     return SDValue();
8007 
8008   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
8009 
8010   unsigned Opc;
8011   if (VT == XLenVT)
8012     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8013   else
8014     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8015 
8016   SDLoc DL(N);
8017   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
8018                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8019   return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
8020 }
8021 
8022 // Fold
8023 //   (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
8024 //   (fp_to_int_sat (ftrunc X))     -> (select X == nan, 0, (fcvt X, rtz))
8025 //   (fp_to_int_sat (ffloor X))     -> (select X == nan, 0, (fcvt X, rdn))
8026 //   (fp_to_int_sat (fceil X))      -> (select X == nan, 0, (fcvt X, rup))
8027 //   (fp_to_int_sat (fround X))     -> (select X == nan, 0, (fcvt X, rmm))
8028 static SDValue performFP_TO_INT_SATCombine(SDNode *N,
8029                                        TargetLowering::DAGCombinerInfo &DCI,
8030                                        const RISCVSubtarget &Subtarget) {
8031   SelectionDAG &DAG = DCI.DAG;
8032   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8033   MVT XLenVT = Subtarget.getXLenVT();
8034 
8035   // Only handle XLen types. Other types narrower than XLen will eventually be
8036   // legalized to XLenVT.
8037   EVT DstVT = N->getValueType(0);
8038   if (DstVT != XLenVT)
8039     return SDValue();
8040 
8041   SDValue Src = N->getOperand(0);
8042 
8043   // Ensure the FP type is also legal.
8044   if (!TLI.isTypeLegal(Src.getValueType()))
8045     return SDValue();
8046 
8047   // Don't do this for f16 with Zfhmin and not Zfh.
8048   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8049     return SDValue();
8050 
8051   EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
8052 
8053   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8054   if (FRM == RISCVFPRndMode::Invalid)
8055     return SDValue();
8056 
8057   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
8058 
8059   unsigned Opc;
8060   if (SatVT == DstVT)
8061     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8062   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
8063     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8064   else
8065     return SDValue();
8066   // FIXME: Support other SatVTs by clamping before or after the conversion.
8067 
8068   Src = Src.getOperand(0);
8069 
8070   SDLoc DL(N);
8071   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
8072                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8073 
8074   // RISCV FP-to-int conversions saturate to the destination register size, but
8075   // don't produce 0 for nan.
8076   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
8077   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
8078 }
8079 
8080 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is
8081 // smaller than XLenVT.
8082 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG,
8083                                         const RISCVSubtarget &Subtarget) {
8084   assert(Subtarget.hasStdExtZbkb() && "Unexpected extension");
8085 
8086   SDValue Src = N->getOperand(0);
8087   if (Src.getOpcode() != ISD::BSWAP)
8088     return SDValue();
8089 
8090   EVT VT = N->getValueType(0);
8091   if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() ||
8092       !isPowerOf2_32(VT.getSizeInBits()))
8093     return SDValue();
8094 
8095   SDLoc DL(N);
8096   return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0),
8097                      DAG.getConstant(7, DL, VT));
8098 }
8099 
8100 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
8101                                                DAGCombinerInfo &DCI) const {
8102   SelectionDAG &DAG = DCI.DAG;
8103 
8104   // Helper to call SimplifyDemandedBits on an operand of N where only some low
8105   // bits are demanded. N will be added to the Worklist if it was not deleted.
8106   // Caller should return SDValue(N, 0) if this returns true.
8107   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
8108     SDValue Op = N->getOperand(OpNo);
8109     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
8110     if (!SimplifyDemandedBits(Op, Mask, DCI))
8111       return false;
8112 
8113     if (N->getOpcode() != ISD::DELETED_NODE)
8114       DCI.AddToWorklist(N);
8115     return true;
8116   };
8117 
8118   switch (N->getOpcode()) {
8119   default:
8120     break;
8121   case RISCVISD::SplitF64: {
8122     SDValue Op0 = N->getOperand(0);
8123     // If the input to SplitF64 is just BuildPairF64 then the operation is
8124     // redundant. Instead, use BuildPairF64's operands directly.
8125     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
8126       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
8127 
8128     if (Op0->isUndef()) {
8129       SDValue Lo = DAG.getUNDEF(MVT::i32);
8130       SDValue Hi = DAG.getUNDEF(MVT::i32);
8131       return DCI.CombineTo(N, Lo, Hi);
8132     }
8133 
8134     SDLoc DL(N);
8135 
8136     // It's cheaper to materialise two 32-bit integers than to load a double
8137     // from the constant pool and transfer it to integer registers through the
8138     // stack.
8139     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
8140       APInt V = C->getValueAPF().bitcastToAPInt();
8141       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
8142       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
8143       return DCI.CombineTo(N, Lo, Hi);
8144     }
8145 
8146     // This is a target-specific version of a DAGCombine performed in
8147     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8148     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8149     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8150     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8151         !Op0.getNode()->hasOneUse())
8152       break;
8153     SDValue NewSplitF64 =
8154         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
8155                     Op0.getOperand(0));
8156     SDValue Lo = NewSplitF64.getValue(0);
8157     SDValue Hi = NewSplitF64.getValue(1);
8158     APInt SignBit = APInt::getSignMask(32);
8159     if (Op0.getOpcode() == ISD::FNEG) {
8160       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
8161                                   DAG.getConstant(SignBit, DL, MVT::i32));
8162       return DCI.CombineTo(N, Lo, NewHi);
8163     }
8164     assert(Op0.getOpcode() == ISD::FABS);
8165     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
8166                                 DAG.getConstant(~SignBit, DL, MVT::i32));
8167     return DCI.CombineTo(N, Lo, NewHi);
8168   }
8169   case RISCVISD::SLLW:
8170   case RISCVISD::SRAW:
8171   case RISCVISD::SRLW: {
8172     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8173     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8174         SimplifyDemandedLowBitsHelper(1, 5))
8175       return SDValue(N, 0);
8176 
8177     break;
8178   }
8179   case ISD::ROTR:
8180   case ISD::ROTL:
8181   case RISCVISD::RORW:
8182   case RISCVISD::ROLW: {
8183     if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) {
8184       // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8185       if (SimplifyDemandedLowBitsHelper(0, 32) ||
8186           SimplifyDemandedLowBitsHelper(1, 5))
8187         return SDValue(N, 0);
8188     }
8189 
8190     return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget);
8191   }
8192   case RISCVISD::CLZW:
8193   case RISCVISD::CTZW: {
8194     // Only the lower 32 bits of the first operand are read
8195     if (SimplifyDemandedLowBitsHelper(0, 32))
8196       return SDValue(N, 0);
8197     break;
8198   }
8199   case RISCVISD::GREV:
8200   case RISCVISD::GORC: {
8201     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
8202     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8203     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8204     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
8205       return SDValue(N, 0);
8206 
8207     return combineGREVI_GORCI(N, DAG);
8208   }
8209   case RISCVISD::GREVW:
8210   case RISCVISD::GORCW: {
8211     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8212     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8213         SimplifyDemandedLowBitsHelper(1, 5))
8214       return SDValue(N, 0);
8215 
8216     break;
8217   }
8218   case RISCVISD::SHFL:
8219   case RISCVISD::UNSHFL: {
8220     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
8221     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8222     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8223     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
8224       return SDValue(N, 0);
8225 
8226     break;
8227   }
8228   case RISCVISD::SHFLW:
8229   case RISCVISD::UNSHFLW: {
8230     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
8231     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8232         SimplifyDemandedLowBitsHelper(1, 4))
8233       return SDValue(N, 0);
8234 
8235     break;
8236   }
8237   case RISCVISD::BCOMPRESSW:
8238   case RISCVISD::BDECOMPRESSW: {
8239     // Only the lower 32 bits of LHS and RHS are read.
8240     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8241         SimplifyDemandedLowBitsHelper(1, 32))
8242       return SDValue(N, 0);
8243 
8244     break;
8245   }
8246   case RISCVISD::FSR:
8247   case RISCVISD::FSL:
8248   case RISCVISD::FSRW:
8249   case RISCVISD::FSLW: {
8250     bool IsWInstruction =
8251         N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW;
8252     unsigned BitWidth =
8253         IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits();
8254     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8255     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
8256     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1))
8257       return SDValue(N, 0);
8258 
8259     break;
8260   }
8261   case RISCVISD::FMV_X_ANYEXTH:
8262   case RISCVISD::FMV_X_ANYEXTW_RV64: {
8263     SDLoc DL(N);
8264     SDValue Op0 = N->getOperand(0);
8265     MVT VT = N->getSimpleValueType(0);
8266     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
8267     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
8268     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
8269     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
8270          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
8271         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8272          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
8273       assert(Op0.getOperand(0).getValueType() == VT &&
8274              "Unexpected value type!");
8275       return Op0.getOperand(0);
8276     }
8277 
8278     // This is a target-specific version of a DAGCombine performed in
8279     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8280     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8281     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8282     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8283         !Op0.getNode()->hasOneUse())
8284       break;
8285     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
8286     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
8287     APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits());
8288     if (Op0.getOpcode() == ISD::FNEG)
8289       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
8290                          DAG.getConstant(SignBit, DL, VT));
8291 
8292     assert(Op0.getOpcode() == ISD::FABS);
8293     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
8294                        DAG.getConstant(~SignBit, DL, VT));
8295   }
8296   case ISD::ADD:
8297     return performADDCombine(N, DAG, Subtarget);
8298   case ISD::SUB:
8299     return performSUBCombine(N, DAG);
8300   case ISD::AND:
8301     return performANDCombine(N, DAG);
8302   case ISD::OR:
8303     return performORCombine(N, DAG, Subtarget);
8304   case ISD::XOR:
8305     return performXORCombine(N, DAG);
8306   case ISD::SIGN_EXTEND_INREG:
8307     return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
8308   case ISD::ZERO_EXTEND:
8309     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
8310     // type legalization. This is safe because fp_to_uint produces poison if
8311     // it overflows.
8312     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
8313       SDValue Src = N->getOperand(0);
8314       if (Src.getOpcode() == ISD::FP_TO_UINT &&
8315           isTypeLegal(Src.getOperand(0).getValueType()))
8316         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
8317                            Src.getOperand(0));
8318       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
8319           isTypeLegal(Src.getOperand(1).getValueType())) {
8320         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
8321         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
8322                                   Src.getOperand(0), Src.getOperand(1));
8323         DCI.CombineTo(N, Res);
8324         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
8325         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
8326         return SDValue(N, 0); // Return N so it doesn't get rechecked.
8327       }
8328     }
8329     return SDValue();
8330   case RISCVISD::SELECT_CC: {
8331     // Transform
8332     SDValue LHS = N->getOperand(0);
8333     SDValue RHS = N->getOperand(1);
8334     SDValue TrueV = N->getOperand(3);
8335     SDValue FalseV = N->getOperand(4);
8336 
8337     // If the True and False values are the same, we don't need a select_cc.
8338     if (TrueV == FalseV)
8339       return TrueV;
8340 
8341     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
8342     if (!ISD::isIntEqualitySetCC(CCVal))
8343       break;
8344 
8345     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
8346     //      (select_cc X, Y, lt, trueV, falseV)
8347     // Sometimes the setcc is introduced after select_cc has been formed.
8348     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8349         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8350       // If we're looking for eq 0 instead of ne 0, we need to invert the
8351       // condition.
8352       bool Invert = CCVal == ISD::SETEQ;
8353       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8354       if (Invert)
8355         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8356 
8357       SDLoc DL(N);
8358       RHS = LHS.getOperand(1);
8359       LHS = LHS.getOperand(0);
8360       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8361 
8362       SDValue TargetCC = DAG.getCondCode(CCVal);
8363       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8364                          {LHS, RHS, TargetCC, TrueV, FalseV});
8365     }
8366 
8367     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
8368     //      (select_cc X, Y, eq/ne, trueV, falseV)
8369     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8370       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
8371                          {LHS.getOperand(0), LHS.getOperand(1),
8372                           N->getOperand(2), TrueV, FalseV});
8373     // (select_cc X, 1, setne, trueV, falseV) ->
8374     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
8375     // This can occur when legalizing some floating point comparisons.
8376     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8377     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8378       SDLoc DL(N);
8379       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8380       SDValue TargetCC = DAG.getCondCode(CCVal);
8381       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8382       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8383                          {LHS, RHS, TargetCC, TrueV, FalseV});
8384     }
8385 
8386     break;
8387   }
8388   case RISCVISD::BR_CC: {
8389     SDValue LHS = N->getOperand(1);
8390     SDValue RHS = N->getOperand(2);
8391     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
8392     if (!ISD::isIntEqualitySetCC(CCVal))
8393       break;
8394 
8395     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
8396     //      (br_cc X, Y, lt, dest)
8397     // Sometimes the setcc is introduced after br_cc has been formed.
8398     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8399         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8400       // If we're looking for eq 0 instead of ne 0, we need to invert the
8401       // condition.
8402       bool Invert = CCVal == ISD::SETEQ;
8403       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8404       if (Invert)
8405         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8406 
8407       SDLoc DL(N);
8408       RHS = LHS.getOperand(1);
8409       LHS = LHS.getOperand(0);
8410       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8411 
8412       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8413                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
8414                          N->getOperand(4));
8415     }
8416 
8417     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
8418     //      (br_cc X, Y, eq/ne, trueV, falseV)
8419     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8420       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
8421                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
8422                          N->getOperand(3), N->getOperand(4));
8423 
8424     // (br_cc X, 1, setne, br_cc) ->
8425     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
8426     // This can occur when legalizing some floating point comparisons.
8427     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8428     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8429       SDLoc DL(N);
8430       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8431       SDValue TargetCC = DAG.getCondCode(CCVal);
8432       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8433       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8434                          N->getOperand(0), LHS, RHS, TargetCC,
8435                          N->getOperand(4));
8436     }
8437     break;
8438   }
8439   case ISD::BITREVERSE:
8440     return performBITREVERSECombine(N, DAG, Subtarget);
8441   case ISD::FP_TO_SINT:
8442   case ISD::FP_TO_UINT:
8443     return performFP_TO_INTCombine(N, DCI, Subtarget);
8444   case ISD::FP_TO_SINT_SAT:
8445   case ISD::FP_TO_UINT_SAT:
8446     return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
8447   case ISD::FCOPYSIGN: {
8448     EVT VT = N->getValueType(0);
8449     if (!VT.isVector())
8450       break;
8451     // There is a form of VFSGNJ which injects the negated sign of its second
8452     // operand. Try and bubble any FNEG up after the extend/round to produce
8453     // this optimized pattern. Avoid modifying cases where FP_ROUND and
8454     // TRUNC=1.
8455     SDValue In2 = N->getOperand(1);
8456     // Avoid cases where the extend/round has multiple uses, as duplicating
8457     // those is typically more expensive than removing a fneg.
8458     if (!In2.hasOneUse())
8459       break;
8460     if (In2.getOpcode() != ISD::FP_EXTEND &&
8461         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
8462       break;
8463     In2 = In2.getOperand(0);
8464     if (In2.getOpcode() != ISD::FNEG)
8465       break;
8466     SDLoc DL(N);
8467     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
8468     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
8469                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
8470   }
8471   case ISD::MGATHER:
8472   case ISD::MSCATTER:
8473   case ISD::VP_GATHER:
8474   case ISD::VP_SCATTER: {
8475     if (!DCI.isBeforeLegalize())
8476       break;
8477     SDValue Index, ScaleOp;
8478     bool IsIndexScaled = false;
8479     bool IsIndexSigned = false;
8480     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
8481       Index = VPGSN->getIndex();
8482       ScaleOp = VPGSN->getScale();
8483       IsIndexScaled = VPGSN->isIndexScaled();
8484       IsIndexSigned = VPGSN->isIndexSigned();
8485     } else {
8486       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
8487       Index = MGSN->getIndex();
8488       ScaleOp = MGSN->getScale();
8489       IsIndexScaled = MGSN->isIndexScaled();
8490       IsIndexSigned = MGSN->isIndexSigned();
8491     }
8492     EVT IndexVT = Index.getValueType();
8493     MVT XLenVT = Subtarget.getXLenVT();
8494     // RISCV indexed loads only support the "unsigned unscaled" addressing
8495     // mode, so anything else must be manually legalized.
8496     bool NeedsIdxLegalization =
8497         IsIndexScaled ||
8498         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
8499     if (!NeedsIdxLegalization)
8500       break;
8501 
8502     SDLoc DL(N);
8503 
8504     // Any index legalization should first promote to XLenVT, so we don't lose
8505     // bits when scaling. This may create an illegal index type so we let
8506     // LLVM's legalization take care of the splitting.
8507     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
8508     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
8509       IndexVT = IndexVT.changeVectorElementType(XLenVT);
8510       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
8511                           DL, IndexVT, Index);
8512     }
8513 
8514     unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
8515     if (IsIndexScaled && Scale != 1) {
8516       // Manually scale the indices by the element size.
8517       // TODO: Sanitize the scale operand here?
8518       // TODO: For VP nodes, should we use VP_SHL here?
8519       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
8520       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
8521       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
8522     }
8523 
8524     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
8525     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
8526       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
8527                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
8528                               VPGN->getScale(), VPGN->getMask(),
8529                               VPGN->getVectorLength()},
8530                              VPGN->getMemOperand(), NewIndexTy);
8531     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
8532       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
8533                               {VPSN->getChain(), VPSN->getValue(),
8534                                VPSN->getBasePtr(), Index, VPSN->getScale(),
8535                                VPSN->getMask(), VPSN->getVectorLength()},
8536                               VPSN->getMemOperand(), NewIndexTy);
8537     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
8538       return DAG.getMaskedGather(
8539           N->getVTList(), MGN->getMemoryVT(), DL,
8540           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
8541            MGN->getBasePtr(), Index, MGN->getScale()},
8542           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
8543     const auto *MSN = cast<MaskedScatterSDNode>(N);
8544     return DAG.getMaskedScatter(
8545         N->getVTList(), MSN->getMemoryVT(), DL,
8546         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
8547          Index, MSN->getScale()},
8548         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
8549   }
8550   case RISCVISD::SRA_VL:
8551   case RISCVISD::SRL_VL:
8552   case RISCVISD::SHL_VL: {
8553     SDValue ShAmt = N->getOperand(1);
8554     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8555       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8556       SDLoc DL(N);
8557       SDValue VL = N->getOperand(3);
8558       EVT VT = N->getValueType(0);
8559       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8560                           ShAmt.getOperand(1), VL);
8561       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
8562                          N->getOperand(2), N->getOperand(3));
8563     }
8564     break;
8565   }
8566   case ISD::SRA:
8567   case ISD::SRL:
8568   case ISD::SHL: {
8569     SDValue ShAmt = N->getOperand(1);
8570     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8571       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8572       SDLoc DL(N);
8573       EVT VT = N->getValueType(0);
8574       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8575                           ShAmt.getOperand(1),
8576                           DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()));
8577       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
8578     }
8579     break;
8580   }
8581   case RISCVISD::ADD_VL:
8582     if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false))
8583       return V;
8584     return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true);
8585   case RISCVISD::SUB_VL:
8586     return combineADDSUB_VLToVWADDSUB_VL(N, DAG);
8587   case RISCVISD::VWADD_W_VL:
8588   case RISCVISD::VWADDU_W_VL:
8589   case RISCVISD::VWSUB_W_VL:
8590   case RISCVISD::VWSUBU_W_VL:
8591     return combineVWADD_W_VL_VWSUB_W_VL(N, DAG);
8592   case RISCVISD::MUL_VL:
8593     if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false))
8594       return V;
8595     // Mul is commutative.
8596     return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true);
8597   case ISD::STORE: {
8598     auto *Store = cast<StoreSDNode>(N);
8599     SDValue Val = Store->getValue();
8600     // Combine store of vmv.x.s to vse with VL of 1.
8601     // FIXME: Support FP.
8602     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
8603       SDValue Src = Val.getOperand(0);
8604       EVT VecVT = Src.getValueType();
8605       EVT MemVT = Store->getMemoryVT();
8606       // The memory VT and the element type must match.
8607       if (VecVT.getVectorElementType() == MemVT) {
8608         SDLoc DL(N);
8609         MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
8610         return DAG.getStoreVP(
8611             Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
8612             DAG.getConstant(1, DL, MaskVT),
8613             DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
8614             Store->getMemOperand(), Store->getAddressingMode(),
8615             Store->isTruncatingStore(), /*IsCompress*/ false);
8616       }
8617     }
8618 
8619     break;
8620   }
8621   case ISD::SPLAT_VECTOR: {
8622     EVT VT = N->getValueType(0);
8623     // Only perform this combine on legal MVT types.
8624     if (!isTypeLegal(VT))
8625       break;
8626     if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N,
8627                                          DAG, Subtarget))
8628       return Gather;
8629     break;
8630   }
8631   case RISCVISD::VMV_V_X_VL: {
8632     // Tail agnostic VMV.V.X only demands the vector element bitwidth from the
8633     // scalar input.
8634     unsigned ScalarSize = N->getOperand(1).getValueSizeInBits();
8635     unsigned EltWidth = N->getValueType(0).getScalarSizeInBits();
8636     if (ScalarSize > EltWidth && N->getOperand(0).isUndef())
8637       if (SimplifyDemandedLowBitsHelper(1, EltWidth))
8638         return SDValue(N, 0);
8639 
8640     break;
8641   }
8642   case ISD::INTRINSIC_WO_CHAIN: {
8643     unsigned IntNo = N->getConstantOperandVal(0);
8644     switch (IntNo) {
8645       // By default we do not combine any intrinsic.
8646     default:
8647       return SDValue();
8648     case Intrinsic::riscv_vcpop:
8649     case Intrinsic::riscv_vcpop_mask:
8650     case Intrinsic::riscv_vfirst:
8651     case Intrinsic::riscv_vfirst_mask: {
8652       SDValue VL = N->getOperand(2);
8653       if (IntNo == Intrinsic::riscv_vcpop_mask ||
8654           IntNo == Intrinsic::riscv_vfirst_mask)
8655         VL = N->getOperand(3);
8656       if (!isNullConstant(VL))
8657         return SDValue();
8658       // If VL is 0, vcpop -> li 0, vfirst -> li -1.
8659       SDLoc DL(N);
8660       EVT VT = N->getValueType(0);
8661       if (IntNo == Intrinsic::riscv_vfirst ||
8662           IntNo == Intrinsic::riscv_vfirst_mask)
8663         return DAG.getConstant(-1, DL, VT);
8664       return DAG.getConstant(0, DL, VT);
8665     }
8666     }
8667   }
8668   }
8669 
8670   return SDValue();
8671 }
8672 
8673 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
8674     const SDNode *N, CombineLevel Level) const {
8675   // The following folds are only desirable if `(OP _, c1 << c2)` can be
8676   // materialised in fewer instructions than `(OP _, c1)`:
8677   //
8678   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
8679   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
8680   SDValue N0 = N->getOperand(0);
8681   EVT Ty = N0.getValueType();
8682   if (Ty.isScalarInteger() &&
8683       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
8684     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
8685     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
8686     if (C1 && C2) {
8687       const APInt &C1Int = C1->getAPIntValue();
8688       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
8689 
8690       // We can materialise `c1 << c2` into an add immediate, so it's "free",
8691       // and the combine should happen, to potentially allow further combines
8692       // later.
8693       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
8694           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
8695         return true;
8696 
8697       // We can materialise `c1` in an add immediate, so it's "free", and the
8698       // combine should be prevented.
8699       if (C1Int.getMinSignedBits() <= 64 &&
8700           isLegalAddImmediate(C1Int.getSExtValue()))
8701         return false;
8702 
8703       // Neither constant will fit into an immediate, so find materialisation
8704       // costs.
8705       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
8706                                               Subtarget.getFeatureBits(),
8707                                               /*CompressionCost*/true);
8708       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
8709           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
8710           /*CompressionCost*/true);
8711 
8712       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
8713       // combine should be prevented.
8714       if (C1Cost < ShiftedC1Cost)
8715         return false;
8716     }
8717   }
8718   return true;
8719 }
8720 
8721 bool RISCVTargetLowering::targetShrinkDemandedConstant(
8722     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
8723     TargetLoweringOpt &TLO) const {
8724   // Delay this optimization as late as possible.
8725   if (!TLO.LegalOps)
8726     return false;
8727 
8728   EVT VT = Op.getValueType();
8729   if (VT.isVector())
8730     return false;
8731 
8732   // Only handle AND for now.
8733   if (Op.getOpcode() != ISD::AND)
8734     return false;
8735 
8736   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8737   if (!C)
8738     return false;
8739 
8740   const APInt &Mask = C->getAPIntValue();
8741 
8742   // Clear all non-demanded bits initially.
8743   APInt ShrunkMask = Mask & DemandedBits;
8744 
8745   // Try to make a smaller immediate by setting undemanded bits.
8746 
8747   APInt ExpandedMask = Mask | ~DemandedBits;
8748 
8749   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
8750     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
8751   };
8752   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
8753     if (NewMask == Mask)
8754       return true;
8755     SDLoc DL(Op);
8756     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
8757     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
8758     return TLO.CombineTo(Op, NewOp);
8759   };
8760 
8761   // If the shrunk mask fits in sign extended 12 bits, let the target
8762   // independent code apply it.
8763   if (ShrunkMask.isSignedIntN(12))
8764     return false;
8765 
8766   // Preserve (and X, 0xffff) when zext.h is supported.
8767   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
8768     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
8769     if (IsLegalMask(NewMask))
8770       return UseMask(NewMask);
8771   }
8772 
8773   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
8774   if (VT == MVT::i64) {
8775     APInt NewMask = APInt(64, 0xffffffff);
8776     if (IsLegalMask(NewMask))
8777       return UseMask(NewMask);
8778   }
8779 
8780   // For the remaining optimizations, we need to be able to make a negative
8781   // number through a combination of mask and undemanded bits.
8782   if (!ExpandedMask.isNegative())
8783     return false;
8784 
8785   // What is the fewest number of bits we need to represent the negative number.
8786   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
8787 
8788   // Try to make a 12 bit negative immediate. If that fails try to make a 32
8789   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
8790   APInt NewMask = ShrunkMask;
8791   if (MinSignedBits <= 12)
8792     NewMask.setBitsFrom(11);
8793   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
8794     NewMask.setBitsFrom(31);
8795   else
8796     return false;
8797 
8798   // Check that our new mask is a subset of the demanded mask.
8799   assert(IsLegalMask(NewMask));
8800   return UseMask(NewMask);
8801 }
8802 
8803 static void computeGREV(APInt &Src, unsigned ShAmt) {
8804   ShAmt &= Src.getBitWidth() - 1;
8805   uint64_t x = Src.getZExtValue();
8806   if (ShAmt & 1)
8807     x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
8808   if (ShAmt & 2)
8809     x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
8810   if (ShAmt & 4)
8811     x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
8812   if (ShAmt & 8)
8813     x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8);
8814   if (ShAmt & 16)
8815     x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16);
8816   if (ShAmt & 32)
8817     x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32);
8818   Src = x;
8819 }
8820 
8821 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
8822                                                         KnownBits &Known,
8823                                                         const APInt &DemandedElts,
8824                                                         const SelectionDAG &DAG,
8825                                                         unsigned Depth) const {
8826   unsigned BitWidth = Known.getBitWidth();
8827   unsigned Opc = Op.getOpcode();
8828   assert((Opc >= ISD::BUILTIN_OP_END ||
8829           Opc == ISD::INTRINSIC_WO_CHAIN ||
8830           Opc == ISD::INTRINSIC_W_CHAIN ||
8831           Opc == ISD::INTRINSIC_VOID) &&
8832          "Should use MaskedValueIsZero if you don't know whether Op"
8833          " is a target node!");
8834 
8835   Known.resetAll();
8836   switch (Opc) {
8837   default: break;
8838   case RISCVISD::SELECT_CC: {
8839     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
8840     // If we don't know any bits, early out.
8841     if (Known.isUnknown())
8842       break;
8843     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
8844 
8845     // Only known if known in both the LHS and RHS.
8846     Known = KnownBits::commonBits(Known, Known2);
8847     break;
8848   }
8849   case RISCVISD::REMUW: {
8850     KnownBits Known2;
8851     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
8852     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
8853     // We only care about the lower 32 bits.
8854     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
8855     // Restore the original width by sign extending.
8856     Known = Known.sext(BitWidth);
8857     break;
8858   }
8859   case RISCVISD::DIVUW: {
8860     KnownBits Known2;
8861     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
8862     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
8863     // We only care about the lower 32 bits.
8864     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
8865     // Restore the original width by sign extending.
8866     Known = Known.sext(BitWidth);
8867     break;
8868   }
8869   case RISCVISD::CTZW: {
8870     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8871     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
8872     unsigned LowBits = Log2_32(PossibleTZ) + 1;
8873     Known.Zero.setBitsFrom(LowBits);
8874     break;
8875   }
8876   case RISCVISD::CLZW: {
8877     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8878     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
8879     unsigned LowBits = Log2_32(PossibleLZ) + 1;
8880     Known.Zero.setBitsFrom(LowBits);
8881     break;
8882   }
8883   case RISCVISD::GREV: {
8884     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8885       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8886       unsigned ShAmt = C->getZExtValue();
8887       computeGREV(Known.Zero, ShAmt);
8888       computeGREV(Known.One, ShAmt);
8889     }
8890     break;
8891   }
8892   case RISCVISD::READ_VLENB: {
8893     // If we know the minimum VLen from Zvl extensions, we can use that to
8894     // determine the trailing zeros of VLENB.
8895     // FIXME: Limit to 128 bit vectors until we have more testing.
8896     unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8;
8897     if (MinVLenB > 0)
8898       Known.Zero.setLowBits(Log2_32(MinVLenB));
8899     // We assume VLENB is no more than 65536 / 8 bytes.
8900     Known.Zero.setBitsFrom(14);
8901     break;
8902   }
8903   case ISD::INTRINSIC_W_CHAIN:
8904   case ISD::INTRINSIC_WO_CHAIN: {
8905     unsigned IntNo =
8906         Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
8907     switch (IntNo) {
8908     default:
8909       // We can't do anything for most intrinsics.
8910       break;
8911     case Intrinsic::riscv_vsetvli:
8912     case Intrinsic::riscv_vsetvlimax:
8913     case Intrinsic::riscv_vsetvli_opt:
8914     case Intrinsic::riscv_vsetvlimax_opt:
8915       // Assume that VL output is positive and would fit in an int32_t.
8916       // TODO: VLEN might be capped at 16 bits in a future V spec update.
8917       if (BitWidth >= 32)
8918         Known.Zero.setBitsFrom(31);
8919       break;
8920     }
8921     break;
8922   }
8923   }
8924 }
8925 
8926 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
8927     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
8928     unsigned Depth) const {
8929   switch (Op.getOpcode()) {
8930   default:
8931     break;
8932   case RISCVISD::SELECT_CC: {
8933     unsigned Tmp =
8934         DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
8935     if (Tmp == 1) return 1;  // Early out.
8936     unsigned Tmp2 =
8937         DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
8938     return std::min(Tmp, Tmp2);
8939   }
8940   case RISCVISD::SLLW:
8941   case RISCVISD::SRAW:
8942   case RISCVISD::SRLW:
8943   case RISCVISD::DIVW:
8944   case RISCVISD::DIVUW:
8945   case RISCVISD::REMUW:
8946   case RISCVISD::ROLW:
8947   case RISCVISD::RORW:
8948   case RISCVISD::GREVW:
8949   case RISCVISD::GORCW:
8950   case RISCVISD::FSLW:
8951   case RISCVISD::FSRW:
8952   case RISCVISD::SHFLW:
8953   case RISCVISD::UNSHFLW:
8954   case RISCVISD::BCOMPRESSW:
8955   case RISCVISD::BDECOMPRESSW:
8956   case RISCVISD::BFPW:
8957   case RISCVISD::FCVT_W_RV64:
8958   case RISCVISD::FCVT_WU_RV64:
8959   case RISCVISD::STRICT_FCVT_W_RV64:
8960   case RISCVISD::STRICT_FCVT_WU_RV64:
8961     // TODO: As the result is sign-extended, this is conservatively correct. A
8962     // more precise answer could be calculated for SRAW depending on known
8963     // bits in the shift amount.
8964     return 33;
8965   case RISCVISD::SHFL:
8966   case RISCVISD::UNSHFL: {
8967     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
8968     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
8969     // will stay within the upper 32 bits. If there were more than 32 sign bits
8970     // before there will be at least 33 sign bits after.
8971     if (Op.getValueType() == MVT::i64 &&
8972         isa<ConstantSDNode>(Op.getOperand(1)) &&
8973         (Op.getConstantOperandVal(1) & 0x10) == 0) {
8974       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
8975       if (Tmp > 32)
8976         return 33;
8977     }
8978     break;
8979   }
8980   case RISCVISD::VMV_X_S: {
8981     // The number of sign bits of the scalar result is computed by obtaining the
8982     // element type of the input vector operand, subtracting its width from the
8983     // XLEN, and then adding one (sign bit within the element type). If the
8984     // element type is wider than XLen, the least-significant XLEN bits are
8985     // taken.
8986     unsigned XLen = Subtarget.getXLen();
8987     unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits();
8988     if (EltBits <= XLen)
8989       return XLen - EltBits + 1;
8990     break;
8991   }
8992   }
8993 
8994   return 1;
8995 }
8996 
8997 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
8998                                                   MachineBasicBlock *BB) {
8999   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
9000 
9001   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
9002   // Should the count have wrapped while it was being read, we need to try
9003   // again.
9004   // ...
9005   // read:
9006   // rdcycleh x3 # load high word of cycle
9007   // rdcycle  x2 # load low word of cycle
9008   // rdcycleh x4 # load high word of cycle
9009   // bne x3, x4, read # check if high word reads match, otherwise try again
9010   // ...
9011 
9012   MachineFunction &MF = *BB->getParent();
9013   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9014   MachineFunction::iterator It = ++BB->getIterator();
9015 
9016   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9017   MF.insert(It, LoopMBB);
9018 
9019   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9020   MF.insert(It, DoneMBB);
9021 
9022   // Transfer the remainder of BB and its successor edges to DoneMBB.
9023   DoneMBB->splice(DoneMBB->begin(), BB,
9024                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9025   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
9026 
9027   BB->addSuccessor(LoopMBB);
9028 
9029   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9030   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9031   Register LoReg = MI.getOperand(0).getReg();
9032   Register HiReg = MI.getOperand(1).getReg();
9033   DebugLoc DL = MI.getDebugLoc();
9034 
9035   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
9036   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
9037       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9038       .addReg(RISCV::X0);
9039   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
9040       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
9041       .addReg(RISCV::X0);
9042   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
9043       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9044       .addReg(RISCV::X0);
9045 
9046   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
9047       .addReg(HiReg)
9048       .addReg(ReadAgainReg)
9049       .addMBB(LoopMBB);
9050 
9051   LoopMBB->addSuccessor(LoopMBB);
9052   LoopMBB->addSuccessor(DoneMBB);
9053 
9054   MI.eraseFromParent();
9055 
9056   return DoneMBB;
9057 }
9058 
9059 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
9060                                              MachineBasicBlock *BB) {
9061   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
9062 
9063   MachineFunction &MF = *BB->getParent();
9064   DebugLoc DL = MI.getDebugLoc();
9065   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9066   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9067   Register LoReg = MI.getOperand(0).getReg();
9068   Register HiReg = MI.getOperand(1).getReg();
9069   Register SrcReg = MI.getOperand(2).getReg();
9070   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
9071   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9072 
9073   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
9074                           RI);
9075   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9076   MachineMemOperand *MMOLo =
9077       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
9078   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9079       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
9080   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
9081       .addFrameIndex(FI)
9082       .addImm(0)
9083       .addMemOperand(MMOLo);
9084   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
9085       .addFrameIndex(FI)
9086       .addImm(4)
9087       .addMemOperand(MMOHi);
9088   MI.eraseFromParent(); // The pseudo instruction is gone now.
9089   return BB;
9090 }
9091 
9092 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
9093                                                  MachineBasicBlock *BB) {
9094   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
9095          "Unexpected instruction");
9096 
9097   MachineFunction &MF = *BB->getParent();
9098   DebugLoc DL = MI.getDebugLoc();
9099   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9100   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9101   Register DstReg = MI.getOperand(0).getReg();
9102   Register LoReg = MI.getOperand(1).getReg();
9103   Register HiReg = MI.getOperand(2).getReg();
9104   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
9105   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9106 
9107   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9108   MachineMemOperand *MMOLo =
9109       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
9110   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9111       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
9112   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9113       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
9114       .addFrameIndex(FI)
9115       .addImm(0)
9116       .addMemOperand(MMOLo);
9117   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9118       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
9119       .addFrameIndex(FI)
9120       .addImm(4)
9121       .addMemOperand(MMOHi);
9122   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
9123   MI.eraseFromParent(); // The pseudo instruction is gone now.
9124   return BB;
9125 }
9126 
9127 static bool isSelectPseudo(MachineInstr &MI) {
9128   switch (MI.getOpcode()) {
9129   default:
9130     return false;
9131   case RISCV::Select_GPR_Using_CC_GPR:
9132   case RISCV::Select_FPR16_Using_CC_GPR:
9133   case RISCV::Select_FPR32_Using_CC_GPR:
9134   case RISCV::Select_FPR64_Using_CC_GPR:
9135     return true;
9136   }
9137 }
9138 
9139 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
9140                                         unsigned RelOpcode, unsigned EqOpcode,
9141                                         const RISCVSubtarget &Subtarget) {
9142   DebugLoc DL = MI.getDebugLoc();
9143   Register DstReg = MI.getOperand(0).getReg();
9144   Register Src1Reg = MI.getOperand(1).getReg();
9145   Register Src2Reg = MI.getOperand(2).getReg();
9146   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
9147   Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
9148   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
9149 
9150   // Save the current FFLAGS.
9151   BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
9152 
9153   auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
9154                  .addReg(Src1Reg)
9155                  .addReg(Src2Reg);
9156   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9157     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
9158 
9159   // Restore the FFLAGS.
9160   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
9161       .addReg(SavedFFlags, RegState::Kill);
9162 
9163   // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
9164   auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
9165                   .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
9166                   .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
9167   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9168     MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
9169 
9170   // Erase the pseudoinstruction.
9171   MI.eraseFromParent();
9172   return BB;
9173 }
9174 
9175 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
9176                                            MachineBasicBlock *BB,
9177                                            const RISCVSubtarget &Subtarget) {
9178   // To "insert" Select_* instructions, we actually have to insert the triangle
9179   // control-flow pattern.  The incoming instructions know the destination vreg
9180   // to set, the condition code register to branch on, the true/false values to
9181   // select between, and the condcode to use to select the appropriate branch.
9182   //
9183   // We produce the following control flow:
9184   //     HeadMBB
9185   //     |  \
9186   //     |  IfFalseMBB
9187   //     | /
9188   //    TailMBB
9189   //
9190   // When we find a sequence of selects we attempt to optimize their emission
9191   // by sharing the control flow. Currently we only handle cases where we have
9192   // multiple selects with the exact same condition (same LHS, RHS and CC).
9193   // The selects may be interleaved with other instructions if the other
9194   // instructions meet some requirements we deem safe:
9195   // - They are debug instructions. Otherwise,
9196   // - They do not have side-effects, do not access memory and their inputs do
9197   //   not depend on the results of the select pseudo-instructions.
9198   // The TrueV/FalseV operands of the selects cannot depend on the result of
9199   // previous selects in the sequence.
9200   // These conditions could be further relaxed. See the X86 target for a
9201   // related approach and more information.
9202   Register LHS = MI.getOperand(1).getReg();
9203   Register RHS = MI.getOperand(2).getReg();
9204   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
9205 
9206   SmallVector<MachineInstr *, 4> SelectDebugValues;
9207   SmallSet<Register, 4> SelectDests;
9208   SelectDests.insert(MI.getOperand(0).getReg());
9209 
9210   MachineInstr *LastSelectPseudo = &MI;
9211 
9212   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
9213        SequenceMBBI != E; ++SequenceMBBI) {
9214     if (SequenceMBBI->isDebugInstr())
9215       continue;
9216     else if (isSelectPseudo(*SequenceMBBI)) {
9217       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
9218           SequenceMBBI->getOperand(2).getReg() != RHS ||
9219           SequenceMBBI->getOperand(3).getImm() != CC ||
9220           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
9221           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
9222         break;
9223       LastSelectPseudo = &*SequenceMBBI;
9224       SequenceMBBI->collectDebugValues(SelectDebugValues);
9225       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
9226     } else {
9227       if (SequenceMBBI->hasUnmodeledSideEffects() ||
9228           SequenceMBBI->mayLoadOrStore())
9229         break;
9230       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
9231             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
9232           }))
9233         break;
9234     }
9235   }
9236 
9237   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
9238   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9239   DebugLoc DL = MI.getDebugLoc();
9240   MachineFunction::iterator I = ++BB->getIterator();
9241 
9242   MachineBasicBlock *HeadMBB = BB;
9243   MachineFunction *F = BB->getParent();
9244   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
9245   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
9246 
9247   F->insert(I, IfFalseMBB);
9248   F->insert(I, TailMBB);
9249 
9250   // Transfer debug instructions associated with the selects to TailMBB.
9251   for (MachineInstr *DebugInstr : SelectDebugValues) {
9252     TailMBB->push_back(DebugInstr->removeFromParent());
9253   }
9254 
9255   // Move all instructions after the sequence to TailMBB.
9256   TailMBB->splice(TailMBB->end(), HeadMBB,
9257                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
9258   // Update machine-CFG edges by transferring all successors of the current
9259   // block to the new block which will contain the Phi nodes for the selects.
9260   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
9261   // Set the successors for HeadMBB.
9262   HeadMBB->addSuccessor(IfFalseMBB);
9263   HeadMBB->addSuccessor(TailMBB);
9264 
9265   // Insert appropriate branch.
9266   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
9267     .addReg(LHS)
9268     .addReg(RHS)
9269     .addMBB(TailMBB);
9270 
9271   // IfFalseMBB just falls through to TailMBB.
9272   IfFalseMBB->addSuccessor(TailMBB);
9273 
9274   // Create PHIs for all of the select pseudo-instructions.
9275   auto SelectMBBI = MI.getIterator();
9276   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
9277   auto InsertionPoint = TailMBB->begin();
9278   while (SelectMBBI != SelectEnd) {
9279     auto Next = std::next(SelectMBBI);
9280     if (isSelectPseudo(*SelectMBBI)) {
9281       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
9282       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
9283               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
9284           .addReg(SelectMBBI->getOperand(4).getReg())
9285           .addMBB(HeadMBB)
9286           .addReg(SelectMBBI->getOperand(5).getReg())
9287           .addMBB(IfFalseMBB);
9288       SelectMBBI->eraseFromParent();
9289     }
9290     SelectMBBI = Next;
9291   }
9292 
9293   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
9294   return TailMBB;
9295 }
9296 
9297 MachineBasicBlock *
9298 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9299                                                  MachineBasicBlock *BB) const {
9300   switch (MI.getOpcode()) {
9301   default:
9302     llvm_unreachable("Unexpected instr type to insert");
9303   case RISCV::ReadCycleWide:
9304     assert(!Subtarget.is64Bit() &&
9305            "ReadCycleWrite is only to be used on riscv32");
9306     return emitReadCycleWidePseudo(MI, BB);
9307   case RISCV::Select_GPR_Using_CC_GPR:
9308   case RISCV::Select_FPR16_Using_CC_GPR:
9309   case RISCV::Select_FPR32_Using_CC_GPR:
9310   case RISCV::Select_FPR64_Using_CC_GPR:
9311     return emitSelectPseudo(MI, BB, Subtarget);
9312   case RISCV::BuildPairF64Pseudo:
9313     return emitBuildPairF64Pseudo(MI, BB);
9314   case RISCV::SplitF64Pseudo:
9315     return emitSplitF64Pseudo(MI, BB);
9316   case RISCV::PseudoQuietFLE_H:
9317     return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
9318   case RISCV::PseudoQuietFLT_H:
9319     return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
9320   case RISCV::PseudoQuietFLE_S:
9321     return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
9322   case RISCV::PseudoQuietFLT_S:
9323     return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
9324   case RISCV::PseudoQuietFLE_D:
9325     return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
9326   case RISCV::PseudoQuietFLT_D:
9327     return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
9328   }
9329 }
9330 
9331 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
9332                                                         SDNode *Node) const {
9333   // Add FRM dependency to any instructions with dynamic rounding mode.
9334   unsigned Opc = MI.getOpcode();
9335   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
9336   if (Idx < 0)
9337     return;
9338   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
9339     return;
9340   // If the instruction already reads FRM, don't add another read.
9341   if (MI.readsRegister(RISCV::FRM))
9342     return;
9343   MI.addOperand(
9344       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
9345 }
9346 
9347 // Calling Convention Implementation.
9348 // The expectations for frontend ABI lowering vary from target to target.
9349 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
9350 // details, but this is a longer term goal. For now, we simply try to keep the
9351 // role of the frontend as simple and well-defined as possible. The rules can
9352 // be summarised as:
9353 // * Never split up large scalar arguments. We handle them here.
9354 // * If a hardfloat calling convention is being used, and the struct may be
9355 // passed in a pair of registers (fp+fp, int+fp), and both registers are
9356 // available, then pass as two separate arguments. If either the GPRs or FPRs
9357 // are exhausted, then pass according to the rule below.
9358 // * If a struct could never be passed in registers or directly in a stack
9359 // slot (as it is larger than 2*XLEN and the floating point rules don't
9360 // apply), then pass it using a pointer with the byval attribute.
9361 // * If a struct is less than 2*XLEN, then coerce to either a two-element
9362 // word-sized array or a 2*XLEN scalar (depending on alignment).
9363 // * The frontend can determine whether a struct is returned by reference or
9364 // not based on its size and fields. If it will be returned by reference, the
9365 // frontend must modify the prototype so a pointer with the sret annotation is
9366 // passed as the first argument. This is not necessary for large scalar
9367 // returns.
9368 // * Struct return values and varargs should be coerced to structs containing
9369 // register-size fields in the same situations they would be for fixed
9370 // arguments.
9371 
9372 static const MCPhysReg ArgGPRs[] = {
9373   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
9374   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
9375 };
9376 static const MCPhysReg ArgFPR16s[] = {
9377   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
9378   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
9379 };
9380 static const MCPhysReg ArgFPR32s[] = {
9381   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
9382   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
9383 };
9384 static const MCPhysReg ArgFPR64s[] = {
9385   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
9386   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
9387 };
9388 // This is an interim calling convention and it may be changed in the future.
9389 static const MCPhysReg ArgVRs[] = {
9390     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
9391     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
9392     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
9393 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
9394                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
9395                                      RISCV::V20M2, RISCV::V22M2};
9396 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
9397                                      RISCV::V20M4};
9398 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
9399 
9400 // Pass a 2*XLEN argument that has been split into two XLEN values through
9401 // registers or the stack as necessary.
9402 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
9403                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
9404                                 MVT ValVT2, MVT LocVT2,
9405                                 ISD::ArgFlagsTy ArgFlags2) {
9406   unsigned XLenInBytes = XLen / 8;
9407   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9408     // At least one half can be passed via register.
9409     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
9410                                      VA1.getLocVT(), CCValAssign::Full));
9411   } else {
9412     // Both halves must be passed on the stack, with proper alignment.
9413     Align StackAlign =
9414         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
9415     State.addLoc(
9416         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
9417                             State.AllocateStack(XLenInBytes, StackAlign),
9418                             VA1.getLocVT(), CCValAssign::Full));
9419     State.addLoc(CCValAssign::getMem(
9420         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9421         LocVT2, CCValAssign::Full));
9422     return false;
9423   }
9424 
9425   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9426     // The second half can also be passed via register.
9427     State.addLoc(
9428         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
9429   } else {
9430     // The second half is passed via the stack, without additional alignment.
9431     State.addLoc(CCValAssign::getMem(
9432         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9433         LocVT2, CCValAssign::Full));
9434   }
9435 
9436   return false;
9437 }
9438 
9439 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
9440                                Optional<unsigned> FirstMaskArgument,
9441                                CCState &State, const RISCVTargetLowering &TLI) {
9442   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
9443   if (RC == &RISCV::VRRegClass) {
9444     // Assign the first mask argument to V0.
9445     // This is an interim calling convention and it may be changed in the
9446     // future.
9447     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
9448       return State.AllocateReg(RISCV::V0);
9449     return State.AllocateReg(ArgVRs);
9450   }
9451   if (RC == &RISCV::VRM2RegClass)
9452     return State.AllocateReg(ArgVRM2s);
9453   if (RC == &RISCV::VRM4RegClass)
9454     return State.AllocateReg(ArgVRM4s);
9455   if (RC == &RISCV::VRM8RegClass)
9456     return State.AllocateReg(ArgVRM8s);
9457   llvm_unreachable("Unhandled register class for ValueType");
9458 }
9459 
9460 // Implements the RISC-V calling convention. Returns true upon failure.
9461 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
9462                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
9463                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
9464                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
9465                      Optional<unsigned> FirstMaskArgument) {
9466   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
9467   assert(XLen == 32 || XLen == 64);
9468   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
9469 
9470   // Any return value split in to more than two values can't be returned
9471   // directly. Vectors are returned via the available vector registers.
9472   if (!LocVT.isVector() && IsRet && ValNo > 1)
9473     return true;
9474 
9475   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
9476   // variadic argument, or if no F16/F32 argument registers are available.
9477   bool UseGPRForF16_F32 = true;
9478   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
9479   // variadic argument, or if no F64 argument registers are available.
9480   bool UseGPRForF64 = true;
9481 
9482   switch (ABI) {
9483   default:
9484     llvm_unreachable("Unexpected ABI");
9485   case RISCVABI::ABI_ILP32:
9486   case RISCVABI::ABI_LP64:
9487     break;
9488   case RISCVABI::ABI_ILP32F:
9489   case RISCVABI::ABI_LP64F:
9490     UseGPRForF16_F32 = !IsFixed;
9491     break;
9492   case RISCVABI::ABI_ILP32D:
9493   case RISCVABI::ABI_LP64D:
9494     UseGPRForF16_F32 = !IsFixed;
9495     UseGPRForF64 = !IsFixed;
9496     break;
9497   }
9498 
9499   // FPR16, FPR32, and FPR64 alias each other.
9500   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
9501     UseGPRForF16_F32 = true;
9502     UseGPRForF64 = true;
9503   }
9504 
9505   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
9506   // similar local variables rather than directly checking against the target
9507   // ABI.
9508 
9509   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
9510     LocVT = XLenVT;
9511     LocInfo = CCValAssign::BCvt;
9512   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
9513     LocVT = MVT::i64;
9514     LocInfo = CCValAssign::BCvt;
9515   }
9516 
9517   // If this is a variadic argument, the RISC-V calling convention requires
9518   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
9519   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
9520   // be used regardless of whether the original argument was split during
9521   // legalisation or not. The argument will not be passed by registers if the
9522   // original type is larger than 2*XLEN, so the register alignment rule does
9523   // not apply.
9524   unsigned TwoXLenInBytes = (2 * XLen) / 8;
9525   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
9526       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
9527     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
9528     // Skip 'odd' register if necessary.
9529     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
9530       State.AllocateReg(ArgGPRs);
9531   }
9532 
9533   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
9534   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
9535       State.getPendingArgFlags();
9536 
9537   assert(PendingLocs.size() == PendingArgFlags.size() &&
9538          "PendingLocs and PendingArgFlags out of sync");
9539 
9540   // Handle passing f64 on RV32D with a soft float ABI or when floating point
9541   // registers are exhausted.
9542   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
9543     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
9544            "Can't lower f64 if it is split");
9545     // Depending on available argument GPRS, f64 may be passed in a pair of
9546     // GPRs, split between a GPR and the stack, or passed completely on the
9547     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
9548     // cases.
9549     Register Reg = State.AllocateReg(ArgGPRs);
9550     LocVT = MVT::i32;
9551     if (!Reg) {
9552       unsigned StackOffset = State.AllocateStack(8, Align(8));
9553       State.addLoc(
9554           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9555       return false;
9556     }
9557     if (!State.AllocateReg(ArgGPRs))
9558       State.AllocateStack(4, Align(4));
9559     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9560     return false;
9561   }
9562 
9563   // Fixed-length vectors are located in the corresponding scalable-vector
9564   // container types.
9565   if (ValVT.isFixedLengthVector())
9566     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9567 
9568   // Split arguments might be passed indirectly, so keep track of the pending
9569   // values. Split vectors are passed via a mix of registers and indirectly, so
9570   // treat them as we would any other argument.
9571   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
9572     LocVT = XLenVT;
9573     LocInfo = CCValAssign::Indirect;
9574     PendingLocs.push_back(
9575         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
9576     PendingArgFlags.push_back(ArgFlags);
9577     if (!ArgFlags.isSplitEnd()) {
9578       return false;
9579     }
9580   }
9581 
9582   // If the split argument only had two elements, it should be passed directly
9583   // in registers or on the stack.
9584   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
9585       PendingLocs.size() <= 2) {
9586     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
9587     // Apply the normal calling convention rules to the first half of the
9588     // split argument.
9589     CCValAssign VA = PendingLocs[0];
9590     ISD::ArgFlagsTy AF = PendingArgFlags[0];
9591     PendingLocs.clear();
9592     PendingArgFlags.clear();
9593     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
9594                                ArgFlags);
9595   }
9596 
9597   // Allocate to a register if possible, or else a stack slot.
9598   Register Reg;
9599   unsigned StoreSizeBytes = XLen / 8;
9600   Align StackAlign = Align(XLen / 8);
9601 
9602   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
9603     Reg = State.AllocateReg(ArgFPR16s);
9604   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
9605     Reg = State.AllocateReg(ArgFPR32s);
9606   else if (ValVT == MVT::f64 && !UseGPRForF64)
9607     Reg = State.AllocateReg(ArgFPR64s);
9608   else if (ValVT.isVector()) {
9609     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
9610     if (!Reg) {
9611       // For return values, the vector must be passed fully via registers or
9612       // via the stack.
9613       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
9614       // but we're using all of them.
9615       if (IsRet)
9616         return true;
9617       // Try using a GPR to pass the address
9618       if ((Reg = State.AllocateReg(ArgGPRs))) {
9619         LocVT = XLenVT;
9620         LocInfo = CCValAssign::Indirect;
9621       } else if (ValVT.isScalableVector()) {
9622         LocVT = XLenVT;
9623         LocInfo = CCValAssign::Indirect;
9624       } else {
9625         // Pass fixed-length vectors on the stack.
9626         LocVT = ValVT;
9627         StoreSizeBytes = ValVT.getStoreSize();
9628         // Align vectors to their element sizes, being careful for vXi1
9629         // vectors.
9630         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9631       }
9632     }
9633   } else {
9634     Reg = State.AllocateReg(ArgGPRs);
9635   }
9636 
9637   unsigned StackOffset =
9638       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
9639 
9640   // If we reach this point and PendingLocs is non-empty, we must be at the
9641   // end of a split argument that must be passed indirectly.
9642   if (!PendingLocs.empty()) {
9643     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
9644     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
9645 
9646     for (auto &It : PendingLocs) {
9647       if (Reg)
9648         It.convertToReg(Reg);
9649       else
9650         It.convertToMem(StackOffset);
9651       State.addLoc(It);
9652     }
9653     PendingLocs.clear();
9654     PendingArgFlags.clear();
9655     return false;
9656   }
9657 
9658   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
9659           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
9660          "Expected an XLenVT or vector types at this stage");
9661 
9662   if (Reg) {
9663     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9664     return false;
9665   }
9666 
9667   // When a floating-point value is passed on the stack, no bit-conversion is
9668   // needed.
9669   if (ValVT.isFloatingPoint()) {
9670     LocVT = ValVT;
9671     LocInfo = CCValAssign::Full;
9672   }
9673   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9674   return false;
9675 }
9676 
9677 template <typename ArgTy>
9678 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
9679   for (const auto &ArgIdx : enumerate(Args)) {
9680     MVT ArgVT = ArgIdx.value().VT;
9681     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
9682       return ArgIdx.index();
9683   }
9684   return None;
9685 }
9686 
9687 void RISCVTargetLowering::analyzeInputArgs(
9688     MachineFunction &MF, CCState &CCInfo,
9689     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
9690     RISCVCCAssignFn Fn) const {
9691   unsigned NumArgs = Ins.size();
9692   FunctionType *FType = MF.getFunction().getFunctionType();
9693 
9694   Optional<unsigned> FirstMaskArgument;
9695   if (Subtarget.hasVInstructions())
9696     FirstMaskArgument = preAssignMask(Ins);
9697 
9698   for (unsigned i = 0; i != NumArgs; ++i) {
9699     MVT ArgVT = Ins[i].VT;
9700     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
9701 
9702     Type *ArgTy = nullptr;
9703     if (IsRet)
9704       ArgTy = FType->getReturnType();
9705     else if (Ins[i].isOrigArg())
9706       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
9707 
9708     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9709     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
9710            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
9711            FirstMaskArgument)) {
9712       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
9713                         << EVT(ArgVT).getEVTString() << '\n');
9714       llvm_unreachable(nullptr);
9715     }
9716   }
9717 }
9718 
9719 void RISCVTargetLowering::analyzeOutputArgs(
9720     MachineFunction &MF, CCState &CCInfo,
9721     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
9722     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
9723   unsigned NumArgs = Outs.size();
9724 
9725   Optional<unsigned> FirstMaskArgument;
9726   if (Subtarget.hasVInstructions())
9727     FirstMaskArgument = preAssignMask(Outs);
9728 
9729   for (unsigned i = 0; i != NumArgs; i++) {
9730     MVT ArgVT = Outs[i].VT;
9731     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
9732     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
9733 
9734     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9735     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
9736            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
9737            FirstMaskArgument)) {
9738       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
9739                         << EVT(ArgVT).getEVTString() << "\n");
9740       llvm_unreachable(nullptr);
9741     }
9742   }
9743 }
9744 
9745 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
9746 // values.
9747 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
9748                                    const CCValAssign &VA, const SDLoc &DL,
9749                                    const RISCVSubtarget &Subtarget) {
9750   switch (VA.getLocInfo()) {
9751   default:
9752     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9753   case CCValAssign::Full:
9754     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
9755       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
9756     break;
9757   case CCValAssign::BCvt:
9758     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
9759       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
9760     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
9761       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
9762     else
9763       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
9764     break;
9765   }
9766   return Val;
9767 }
9768 
9769 // The caller is responsible for loading the full value if the argument is
9770 // passed with CCValAssign::Indirect.
9771 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
9772                                 const CCValAssign &VA, const SDLoc &DL,
9773                                 const RISCVTargetLowering &TLI) {
9774   MachineFunction &MF = DAG.getMachineFunction();
9775   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9776   EVT LocVT = VA.getLocVT();
9777   SDValue Val;
9778   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
9779   Register VReg = RegInfo.createVirtualRegister(RC);
9780   RegInfo.addLiveIn(VA.getLocReg(), VReg);
9781   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
9782 
9783   if (VA.getLocInfo() == CCValAssign::Indirect)
9784     return Val;
9785 
9786   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
9787 }
9788 
9789 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
9790                                    const CCValAssign &VA, const SDLoc &DL,
9791                                    const RISCVSubtarget &Subtarget) {
9792   EVT LocVT = VA.getLocVT();
9793 
9794   switch (VA.getLocInfo()) {
9795   default:
9796     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9797   case CCValAssign::Full:
9798     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
9799       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
9800     break;
9801   case CCValAssign::BCvt:
9802     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
9803       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
9804     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
9805       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
9806     else
9807       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
9808     break;
9809   }
9810   return Val;
9811 }
9812 
9813 // The caller is responsible for loading the full value if the argument is
9814 // passed with CCValAssign::Indirect.
9815 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
9816                                 const CCValAssign &VA, const SDLoc &DL) {
9817   MachineFunction &MF = DAG.getMachineFunction();
9818   MachineFrameInfo &MFI = MF.getFrameInfo();
9819   EVT LocVT = VA.getLocVT();
9820   EVT ValVT = VA.getValVT();
9821   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
9822   if (ValVT.isScalableVector()) {
9823     // When the value is a scalable vector, we save the pointer which points to
9824     // the scalable vector value in the stack. The ValVT will be the pointer
9825     // type, instead of the scalable vector type.
9826     ValVT = LocVT;
9827   }
9828   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
9829                                  /*IsImmutable=*/true);
9830   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
9831   SDValue Val;
9832 
9833   ISD::LoadExtType ExtType;
9834   switch (VA.getLocInfo()) {
9835   default:
9836     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9837   case CCValAssign::Full:
9838   case CCValAssign::Indirect:
9839   case CCValAssign::BCvt:
9840     ExtType = ISD::NON_EXTLOAD;
9841     break;
9842   }
9843   Val = DAG.getExtLoad(
9844       ExtType, DL, LocVT, Chain, FIN,
9845       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
9846   return Val;
9847 }
9848 
9849 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
9850                                        const CCValAssign &VA, const SDLoc &DL) {
9851   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
9852          "Unexpected VA");
9853   MachineFunction &MF = DAG.getMachineFunction();
9854   MachineFrameInfo &MFI = MF.getFrameInfo();
9855   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9856 
9857   if (VA.isMemLoc()) {
9858     // f64 is passed on the stack.
9859     int FI =
9860         MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
9861     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
9862     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
9863                        MachinePointerInfo::getFixedStack(MF, FI));
9864   }
9865 
9866   assert(VA.isRegLoc() && "Expected register VA assignment");
9867 
9868   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9869   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
9870   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
9871   SDValue Hi;
9872   if (VA.getLocReg() == RISCV::X17) {
9873     // Second half of f64 is passed on the stack.
9874     int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
9875     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
9876     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
9877                      MachinePointerInfo::getFixedStack(MF, FI));
9878   } else {
9879     // Second half of f64 is passed in another GPR.
9880     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9881     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
9882     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
9883   }
9884   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
9885 }
9886 
9887 // FastCC has less than 1% performance improvement for some particular
9888 // benchmark. But theoretically, it may has benenfit for some cases.
9889 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
9890                             unsigned ValNo, MVT ValVT, MVT LocVT,
9891                             CCValAssign::LocInfo LocInfo,
9892                             ISD::ArgFlagsTy ArgFlags, CCState &State,
9893                             bool IsFixed, bool IsRet, Type *OrigTy,
9894                             const RISCVTargetLowering &TLI,
9895                             Optional<unsigned> FirstMaskArgument) {
9896 
9897   // X5 and X6 might be used for save-restore libcall.
9898   static const MCPhysReg GPRList[] = {
9899       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
9900       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
9901       RISCV::X29, RISCV::X30, RISCV::X31};
9902 
9903   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
9904     if (unsigned Reg = State.AllocateReg(GPRList)) {
9905       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9906       return false;
9907     }
9908   }
9909 
9910   if (LocVT == MVT::f16) {
9911     static const MCPhysReg FPR16List[] = {
9912         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
9913         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
9914         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
9915         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
9916     if (unsigned Reg = State.AllocateReg(FPR16List)) {
9917       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9918       return false;
9919     }
9920   }
9921 
9922   if (LocVT == MVT::f32) {
9923     static const MCPhysReg FPR32List[] = {
9924         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
9925         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
9926         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
9927         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
9928     if (unsigned Reg = State.AllocateReg(FPR32List)) {
9929       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9930       return false;
9931     }
9932   }
9933 
9934   if (LocVT == MVT::f64) {
9935     static const MCPhysReg FPR64List[] = {
9936         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
9937         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
9938         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
9939         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
9940     if (unsigned Reg = State.AllocateReg(FPR64List)) {
9941       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9942       return false;
9943     }
9944   }
9945 
9946   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
9947     unsigned Offset4 = State.AllocateStack(4, Align(4));
9948     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
9949     return false;
9950   }
9951 
9952   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
9953     unsigned Offset5 = State.AllocateStack(8, Align(8));
9954     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
9955     return false;
9956   }
9957 
9958   if (LocVT.isVector()) {
9959     if (unsigned Reg =
9960             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
9961       // Fixed-length vectors are located in the corresponding scalable-vector
9962       // container types.
9963       if (ValVT.isFixedLengthVector())
9964         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9965       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9966     } else {
9967       // Try and pass the address via a "fast" GPR.
9968       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
9969         LocInfo = CCValAssign::Indirect;
9970         LocVT = TLI.getSubtarget().getXLenVT();
9971         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
9972       } else if (ValVT.isFixedLengthVector()) {
9973         auto StackAlign =
9974             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9975         unsigned StackOffset =
9976             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
9977         State.addLoc(
9978             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9979       } else {
9980         // Can't pass scalable vectors on the stack.
9981         return true;
9982       }
9983     }
9984 
9985     return false;
9986   }
9987 
9988   return true; // CC didn't match.
9989 }
9990 
9991 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
9992                          CCValAssign::LocInfo LocInfo,
9993                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
9994 
9995   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
9996     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
9997     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
9998     static const MCPhysReg GPRList[] = {
9999         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
10000         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
10001     if (unsigned Reg = State.AllocateReg(GPRList)) {
10002       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10003       return false;
10004     }
10005   }
10006 
10007   if (LocVT == MVT::f32) {
10008     // Pass in STG registers: F1, ..., F6
10009     //                        fs0 ... fs5
10010     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
10011                                           RISCV::F18_F, RISCV::F19_F,
10012                                           RISCV::F20_F, RISCV::F21_F};
10013     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10014       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10015       return false;
10016     }
10017   }
10018 
10019   if (LocVT == MVT::f64) {
10020     // Pass in STG registers: D1, ..., D6
10021     //                        fs6 ... fs11
10022     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
10023                                           RISCV::F24_D, RISCV::F25_D,
10024                                           RISCV::F26_D, RISCV::F27_D};
10025     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10026       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10027       return false;
10028     }
10029   }
10030 
10031   report_fatal_error("No registers left in GHC calling convention");
10032   return true;
10033 }
10034 
10035 // Transform physical registers into virtual registers.
10036 SDValue RISCVTargetLowering::LowerFormalArguments(
10037     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
10038     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
10039     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
10040 
10041   MachineFunction &MF = DAG.getMachineFunction();
10042 
10043   switch (CallConv) {
10044   default:
10045     report_fatal_error("Unsupported calling convention");
10046   case CallingConv::C:
10047   case CallingConv::Fast:
10048     break;
10049   case CallingConv::GHC:
10050     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
10051         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
10052       report_fatal_error(
10053         "GHC calling convention requires the F and D instruction set extensions");
10054   }
10055 
10056   const Function &Func = MF.getFunction();
10057   if (Func.hasFnAttribute("interrupt")) {
10058     if (!Func.arg_empty())
10059       report_fatal_error(
10060         "Functions with the interrupt attribute cannot have arguments!");
10061 
10062     StringRef Kind =
10063       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10064 
10065     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
10066       report_fatal_error(
10067         "Function interrupt attribute argument not supported!");
10068   }
10069 
10070   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10071   MVT XLenVT = Subtarget.getXLenVT();
10072   unsigned XLenInBytes = Subtarget.getXLen() / 8;
10073   // Used with vargs to acumulate store chains.
10074   std::vector<SDValue> OutChains;
10075 
10076   // Assign locations to all of the incoming arguments.
10077   SmallVector<CCValAssign, 16> ArgLocs;
10078   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10079 
10080   if (CallConv == CallingConv::GHC)
10081     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
10082   else
10083     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
10084                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10085                                                    : CC_RISCV);
10086 
10087   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
10088     CCValAssign &VA = ArgLocs[i];
10089     SDValue ArgValue;
10090     // Passing f64 on RV32D with a soft float ABI must be handled as a special
10091     // case.
10092     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
10093       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
10094     else if (VA.isRegLoc())
10095       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
10096     else
10097       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
10098 
10099     if (VA.getLocInfo() == CCValAssign::Indirect) {
10100       // If the original argument was split and passed by reference (e.g. i128
10101       // on RV32), we need to load all parts of it here (using the same
10102       // address). Vectors may be partly split to registers and partly to the
10103       // stack, in which case the base address is partly offset and subsequent
10104       // stores are relative to that.
10105       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
10106                                    MachinePointerInfo()));
10107       unsigned ArgIndex = Ins[i].OrigArgIndex;
10108       unsigned ArgPartOffset = Ins[i].PartOffset;
10109       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10110       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
10111         CCValAssign &PartVA = ArgLocs[i + 1];
10112         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
10113         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10114         if (PartVA.getValVT().isScalableVector())
10115           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10116         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
10117         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
10118                                      MachinePointerInfo()));
10119         ++i;
10120       }
10121       continue;
10122     }
10123     InVals.push_back(ArgValue);
10124   }
10125 
10126   if (IsVarArg) {
10127     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
10128     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
10129     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
10130     MachineFrameInfo &MFI = MF.getFrameInfo();
10131     MachineRegisterInfo &RegInfo = MF.getRegInfo();
10132     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
10133 
10134     // Offset of the first variable argument from stack pointer, and size of
10135     // the vararg save area. For now, the varargs save area is either zero or
10136     // large enough to hold a0-a7.
10137     int VaArgOffset, VarArgsSaveSize;
10138 
10139     // If all registers are allocated, then all varargs must be passed on the
10140     // stack and we don't need to save any argregs.
10141     if (ArgRegs.size() == Idx) {
10142       VaArgOffset = CCInfo.getNextStackOffset();
10143       VarArgsSaveSize = 0;
10144     } else {
10145       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
10146       VaArgOffset = -VarArgsSaveSize;
10147     }
10148 
10149     // Record the frame index of the first variable argument
10150     // which is a value necessary to VASTART.
10151     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10152     RVFI->setVarArgsFrameIndex(FI);
10153 
10154     // If saving an odd number of registers then create an extra stack slot to
10155     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
10156     // offsets to even-numbered registered remain 2*XLEN-aligned.
10157     if (Idx % 2) {
10158       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
10159       VarArgsSaveSize += XLenInBytes;
10160     }
10161 
10162     // Copy the integer registers that may have been used for passing varargs
10163     // to the vararg save area.
10164     for (unsigned I = Idx; I < ArgRegs.size();
10165          ++I, VaArgOffset += XLenInBytes) {
10166       const Register Reg = RegInfo.createVirtualRegister(RC);
10167       RegInfo.addLiveIn(ArgRegs[I], Reg);
10168       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
10169       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10170       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10171       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
10172                                    MachinePointerInfo::getFixedStack(MF, FI));
10173       cast<StoreSDNode>(Store.getNode())
10174           ->getMemOperand()
10175           ->setValue((Value *)nullptr);
10176       OutChains.push_back(Store);
10177     }
10178     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
10179   }
10180 
10181   // All stores are grouped in one node to allow the matching between
10182   // the size of Ins and InVals. This only happens for vararg functions.
10183   if (!OutChains.empty()) {
10184     OutChains.push_back(Chain);
10185     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
10186   }
10187 
10188   return Chain;
10189 }
10190 
10191 /// isEligibleForTailCallOptimization - Check whether the call is eligible
10192 /// for tail call optimization.
10193 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
10194 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
10195     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
10196     const SmallVector<CCValAssign, 16> &ArgLocs) const {
10197 
10198   auto &Callee = CLI.Callee;
10199   auto CalleeCC = CLI.CallConv;
10200   auto &Outs = CLI.Outs;
10201   auto &Caller = MF.getFunction();
10202   auto CallerCC = Caller.getCallingConv();
10203 
10204   // Exception-handling functions need a special set of instructions to
10205   // indicate a return to the hardware. Tail-calling another function would
10206   // probably break this.
10207   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
10208   // should be expanded as new function attributes are introduced.
10209   if (Caller.hasFnAttribute("interrupt"))
10210     return false;
10211 
10212   // Do not tail call opt if the stack is used to pass parameters.
10213   if (CCInfo.getNextStackOffset() != 0)
10214     return false;
10215 
10216   // Do not tail call opt if any parameters need to be passed indirectly.
10217   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
10218   // passed indirectly. So the address of the value will be passed in a
10219   // register, or if not available, then the address is put on the stack. In
10220   // order to pass indirectly, space on the stack often needs to be allocated
10221   // in order to store the value. In this case the CCInfo.getNextStackOffset()
10222   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
10223   // are passed CCValAssign::Indirect.
10224   for (auto &VA : ArgLocs)
10225     if (VA.getLocInfo() == CCValAssign::Indirect)
10226       return false;
10227 
10228   // Do not tail call opt if either caller or callee uses struct return
10229   // semantics.
10230   auto IsCallerStructRet = Caller.hasStructRetAttr();
10231   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
10232   if (IsCallerStructRet || IsCalleeStructRet)
10233     return false;
10234 
10235   // Externally-defined functions with weak linkage should not be
10236   // tail-called. The behaviour of branch instructions in this situation (as
10237   // used for tail calls) is implementation-defined, so we cannot rely on the
10238   // linker replacing the tail call with a return.
10239   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
10240     const GlobalValue *GV = G->getGlobal();
10241     if (GV->hasExternalWeakLinkage())
10242       return false;
10243   }
10244 
10245   // The callee has to preserve all registers the caller needs to preserve.
10246   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
10247   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
10248   if (CalleeCC != CallerCC) {
10249     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
10250     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
10251       return false;
10252   }
10253 
10254   // Byval parameters hand the function a pointer directly into the stack area
10255   // we want to reuse during a tail call. Working around this *is* possible
10256   // but less efficient and uglier in LowerCall.
10257   for (auto &Arg : Outs)
10258     if (Arg.Flags.isByVal())
10259       return false;
10260 
10261   return true;
10262 }
10263 
10264 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
10265   return DAG.getDataLayout().getPrefTypeAlign(
10266       VT.getTypeForEVT(*DAG.getContext()));
10267 }
10268 
10269 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
10270 // and output parameter nodes.
10271 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
10272                                        SmallVectorImpl<SDValue> &InVals) const {
10273   SelectionDAG &DAG = CLI.DAG;
10274   SDLoc &DL = CLI.DL;
10275   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
10276   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
10277   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
10278   SDValue Chain = CLI.Chain;
10279   SDValue Callee = CLI.Callee;
10280   bool &IsTailCall = CLI.IsTailCall;
10281   CallingConv::ID CallConv = CLI.CallConv;
10282   bool IsVarArg = CLI.IsVarArg;
10283   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10284   MVT XLenVT = Subtarget.getXLenVT();
10285 
10286   MachineFunction &MF = DAG.getMachineFunction();
10287 
10288   // Analyze the operands of the call, assigning locations to each operand.
10289   SmallVector<CCValAssign, 16> ArgLocs;
10290   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10291 
10292   if (CallConv == CallingConv::GHC)
10293     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
10294   else
10295     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
10296                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10297                                                     : CC_RISCV);
10298 
10299   // Check if it's really possible to do a tail call.
10300   if (IsTailCall)
10301     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
10302 
10303   if (IsTailCall)
10304     ++NumTailCalls;
10305   else if (CLI.CB && CLI.CB->isMustTailCall())
10306     report_fatal_error("failed to perform tail call elimination on a call "
10307                        "site marked musttail");
10308 
10309   // Get a count of how many bytes are to be pushed on the stack.
10310   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
10311 
10312   // Create local copies for byval args
10313   SmallVector<SDValue, 8> ByValArgs;
10314   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10315     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10316     if (!Flags.isByVal())
10317       continue;
10318 
10319     SDValue Arg = OutVals[i];
10320     unsigned Size = Flags.getByValSize();
10321     Align Alignment = Flags.getNonZeroByValAlign();
10322 
10323     int FI =
10324         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
10325     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10326     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
10327 
10328     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
10329                           /*IsVolatile=*/false,
10330                           /*AlwaysInline=*/false, IsTailCall,
10331                           MachinePointerInfo(), MachinePointerInfo());
10332     ByValArgs.push_back(FIPtr);
10333   }
10334 
10335   if (!IsTailCall)
10336     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
10337 
10338   // Copy argument values to their designated locations.
10339   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
10340   SmallVector<SDValue, 8> MemOpChains;
10341   SDValue StackPtr;
10342   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
10343     CCValAssign &VA = ArgLocs[i];
10344     SDValue ArgValue = OutVals[i];
10345     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10346 
10347     // Handle passing f64 on RV32D with a soft float ABI as a special case.
10348     bool IsF64OnRV32DSoftABI =
10349         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
10350     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
10351       SDValue SplitF64 = DAG.getNode(
10352           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
10353       SDValue Lo = SplitF64.getValue(0);
10354       SDValue Hi = SplitF64.getValue(1);
10355 
10356       Register RegLo = VA.getLocReg();
10357       RegsToPass.push_back(std::make_pair(RegLo, Lo));
10358 
10359       if (RegLo == RISCV::X17) {
10360         // Second half of f64 is passed on the stack.
10361         // Work out the address of the stack slot.
10362         if (!StackPtr.getNode())
10363           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10364         // Emit the store.
10365         MemOpChains.push_back(
10366             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
10367       } else {
10368         // Second half of f64 is passed in another GPR.
10369         assert(RegLo < RISCV::X31 && "Invalid register pair");
10370         Register RegHigh = RegLo + 1;
10371         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
10372       }
10373       continue;
10374     }
10375 
10376     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
10377     // as any other MemLoc.
10378 
10379     // Promote the value if needed.
10380     // For now, only handle fully promoted and indirect arguments.
10381     if (VA.getLocInfo() == CCValAssign::Indirect) {
10382       // Store the argument in a stack slot and pass its address.
10383       Align StackAlign =
10384           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
10385                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
10386       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
10387       // If the original argument was split (e.g. i128), we need
10388       // to store the required parts of it here (and pass just one address).
10389       // Vectors may be partly split to registers and partly to the stack, in
10390       // which case the base address is partly offset and subsequent stores are
10391       // relative to that.
10392       unsigned ArgIndex = Outs[i].OrigArgIndex;
10393       unsigned ArgPartOffset = Outs[i].PartOffset;
10394       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10395       // Calculate the total size to store. We don't have access to what we're
10396       // actually storing other than performing the loop and collecting the
10397       // info.
10398       SmallVector<std::pair<SDValue, SDValue>> Parts;
10399       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
10400         SDValue PartValue = OutVals[i + 1];
10401         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
10402         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10403         EVT PartVT = PartValue.getValueType();
10404         if (PartVT.isScalableVector())
10405           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10406         StoredSize += PartVT.getStoreSize();
10407         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
10408         Parts.push_back(std::make_pair(PartValue, Offset));
10409         ++i;
10410       }
10411       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
10412       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
10413       MemOpChains.push_back(
10414           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
10415                        MachinePointerInfo::getFixedStack(MF, FI)));
10416       for (const auto &Part : Parts) {
10417         SDValue PartValue = Part.first;
10418         SDValue PartOffset = Part.second;
10419         SDValue Address =
10420             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
10421         MemOpChains.push_back(
10422             DAG.getStore(Chain, DL, PartValue, Address,
10423                          MachinePointerInfo::getFixedStack(MF, FI)));
10424       }
10425       ArgValue = SpillSlot;
10426     } else {
10427       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
10428     }
10429 
10430     // Use local copy if it is a byval arg.
10431     if (Flags.isByVal())
10432       ArgValue = ByValArgs[j++];
10433 
10434     if (VA.isRegLoc()) {
10435       // Queue up the argument copies and emit them at the end.
10436       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
10437     } else {
10438       assert(VA.isMemLoc() && "Argument not register or memory");
10439       assert(!IsTailCall && "Tail call not allowed if stack is used "
10440                             "for passing parameters");
10441 
10442       // Work out the address of the stack slot.
10443       if (!StackPtr.getNode())
10444         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10445       SDValue Address =
10446           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
10447                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
10448 
10449       // Emit the store.
10450       MemOpChains.push_back(
10451           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
10452     }
10453   }
10454 
10455   // Join the stores, which are independent of one another.
10456   if (!MemOpChains.empty())
10457     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
10458 
10459   SDValue Glue;
10460 
10461   // Build a sequence of copy-to-reg nodes, chained and glued together.
10462   for (auto &Reg : RegsToPass) {
10463     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
10464     Glue = Chain.getValue(1);
10465   }
10466 
10467   // Validate that none of the argument registers have been marked as
10468   // reserved, if so report an error. Do the same for the return address if this
10469   // is not a tailcall.
10470   validateCCReservedRegs(RegsToPass, MF);
10471   if (!IsTailCall &&
10472       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
10473     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10474         MF.getFunction(),
10475         "Return address register required, but has been reserved."});
10476 
10477   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
10478   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
10479   // split it and then direct call can be matched by PseudoCALL.
10480   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
10481     const GlobalValue *GV = S->getGlobal();
10482 
10483     unsigned OpFlags = RISCVII::MO_CALL;
10484     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
10485       OpFlags = RISCVII::MO_PLT;
10486 
10487     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
10488   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
10489     unsigned OpFlags = RISCVII::MO_CALL;
10490 
10491     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
10492                                                  nullptr))
10493       OpFlags = RISCVII::MO_PLT;
10494 
10495     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
10496   }
10497 
10498   // The first call operand is the chain and the second is the target address.
10499   SmallVector<SDValue, 8> Ops;
10500   Ops.push_back(Chain);
10501   Ops.push_back(Callee);
10502 
10503   // Add argument registers to the end of the list so that they are
10504   // known live into the call.
10505   for (auto &Reg : RegsToPass)
10506     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
10507 
10508   if (!IsTailCall) {
10509     // Add a register mask operand representing the call-preserved registers.
10510     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
10511     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
10512     assert(Mask && "Missing call preserved mask for calling convention");
10513     Ops.push_back(DAG.getRegisterMask(Mask));
10514   }
10515 
10516   // Glue the call to the argument copies, if any.
10517   if (Glue.getNode())
10518     Ops.push_back(Glue);
10519 
10520   // Emit the call.
10521   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10522 
10523   if (IsTailCall) {
10524     MF.getFrameInfo().setHasTailCall();
10525     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
10526   }
10527 
10528   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
10529   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
10530   Glue = Chain.getValue(1);
10531 
10532   // Mark the end of the call, which is glued to the call itself.
10533   Chain = DAG.getCALLSEQ_END(Chain,
10534                              DAG.getConstant(NumBytes, DL, PtrVT, true),
10535                              DAG.getConstant(0, DL, PtrVT, true),
10536                              Glue, DL);
10537   Glue = Chain.getValue(1);
10538 
10539   // Assign locations to each value returned by this call.
10540   SmallVector<CCValAssign, 16> RVLocs;
10541   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
10542   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
10543 
10544   // Copy all of the result registers out of their specified physreg.
10545   for (auto &VA : RVLocs) {
10546     // Copy the value out
10547     SDValue RetValue =
10548         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
10549     // Glue the RetValue to the end of the call sequence
10550     Chain = RetValue.getValue(1);
10551     Glue = RetValue.getValue(2);
10552 
10553     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10554       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
10555       SDValue RetValue2 =
10556           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
10557       Chain = RetValue2.getValue(1);
10558       Glue = RetValue2.getValue(2);
10559       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
10560                              RetValue2);
10561     }
10562 
10563     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
10564 
10565     InVals.push_back(RetValue);
10566   }
10567 
10568   return Chain;
10569 }
10570 
10571 bool RISCVTargetLowering::CanLowerReturn(
10572     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
10573     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
10574   SmallVector<CCValAssign, 16> RVLocs;
10575   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
10576 
10577   Optional<unsigned> FirstMaskArgument;
10578   if (Subtarget.hasVInstructions())
10579     FirstMaskArgument = preAssignMask(Outs);
10580 
10581   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10582     MVT VT = Outs[i].VT;
10583     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10584     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10585     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
10586                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
10587                  *this, FirstMaskArgument))
10588       return false;
10589   }
10590   return true;
10591 }
10592 
10593 SDValue
10594 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
10595                                  bool IsVarArg,
10596                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
10597                                  const SmallVectorImpl<SDValue> &OutVals,
10598                                  const SDLoc &DL, SelectionDAG &DAG) const {
10599   const MachineFunction &MF = DAG.getMachineFunction();
10600   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10601 
10602   // Stores the assignment of the return value to a location.
10603   SmallVector<CCValAssign, 16> RVLocs;
10604 
10605   // Info about the registers and stack slot.
10606   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
10607                  *DAG.getContext());
10608 
10609   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
10610                     nullptr, CC_RISCV);
10611 
10612   if (CallConv == CallingConv::GHC && !RVLocs.empty())
10613     report_fatal_error("GHC functions return void only");
10614 
10615   SDValue Glue;
10616   SmallVector<SDValue, 4> RetOps(1, Chain);
10617 
10618   // Copy the result values into the output registers.
10619   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
10620     SDValue Val = OutVals[i];
10621     CCValAssign &VA = RVLocs[i];
10622     assert(VA.isRegLoc() && "Can only return in registers!");
10623 
10624     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10625       // Handle returning f64 on RV32D with a soft float ABI.
10626       assert(VA.isRegLoc() && "Expected return via registers");
10627       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
10628                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
10629       SDValue Lo = SplitF64.getValue(0);
10630       SDValue Hi = SplitF64.getValue(1);
10631       Register RegLo = VA.getLocReg();
10632       assert(RegLo < RISCV::X31 && "Invalid register pair");
10633       Register RegHi = RegLo + 1;
10634 
10635       if (STI.isRegisterReservedByUser(RegLo) ||
10636           STI.isRegisterReservedByUser(RegHi))
10637         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10638             MF.getFunction(),
10639             "Return value register required, but has been reserved."});
10640 
10641       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
10642       Glue = Chain.getValue(1);
10643       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
10644       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
10645       Glue = Chain.getValue(1);
10646       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
10647     } else {
10648       // Handle a 'normal' return.
10649       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
10650       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
10651 
10652       if (STI.isRegisterReservedByUser(VA.getLocReg()))
10653         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10654             MF.getFunction(),
10655             "Return value register required, but has been reserved."});
10656 
10657       // Guarantee that all emitted copies are stuck together.
10658       Glue = Chain.getValue(1);
10659       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
10660     }
10661   }
10662 
10663   RetOps[0] = Chain; // Update chain.
10664 
10665   // Add the glue node if we have it.
10666   if (Glue.getNode()) {
10667     RetOps.push_back(Glue);
10668   }
10669 
10670   unsigned RetOpc = RISCVISD::RET_FLAG;
10671   // Interrupt service routines use different return instructions.
10672   const Function &Func = DAG.getMachineFunction().getFunction();
10673   if (Func.hasFnAttribute("interrupt")) {
10674     if (!Func.getReturnType()->isVoidTy())
10675       report_fatal_error(
10676           "Functions with the interrupt attribute must have void return type!");
10677 
10678     MachineFunction &MF = DAG.getMachineFunction();
10679     StringRef Kind =
10680       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10681 
10682     if (Kind == "user")
10683       RetOpc = RISCVISD::URET_FLAG;
10684     else if (Kind == "supervisor")
10685       RetOpc = RISCVISD::SRET_FLAG;
10686     else
10687       RetOpc = RISCVISD::MRET_FLAG;
10688   }
10689 
10690   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
10691 }
10692 
10693 void RISCVTargetLowering::validateCCReservedRegs(
10694     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
10695     MachineFunction &MF) const {
10696   const Function &F = MF.getFunction();
10697   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10698 
10699   if (llvm::any_of(Regs, [&STI](auto Reg) {
10700         return STI.isRegisterReservedByUser(Reg.first);
10701       }))
10702     F.getContext().diagnose(DiagnosticInfoUnsupported{
10703         F, "Argument register required, but has been reserved."});
10704 }
10705 
10706 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
10707   return CI->isTailCall();
10708 }
10709 
10710 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
10711 #define NODE_NAME_CASE(NODE)                                                   \
10712   case RISCVISD::NODE:                                                         \
10713     return "RISCVISD::" #NODE;
10714   // clang-format off
10715   switch ((RISCVISD::NodeType)Opcode) {
10716   case RISCVISD::FIRST_NUMBER:
10717     break;
10718   NODE_NAME_CASE(RET_FLAG)
10719   NODE_NAME_CASE(URET_FLAG)
10720   NODE_NAME_CASE(SRET_FLAG)
10721   NODE_NAME_CASE(MRET_FLAG)
10722   NODE_NAME_CASE(CALL)
10723   NODE_NAME_CASE(SELECT_CC)
10724   NODE_NAME_CASE(BR_CC)
10725   NODE_NAME_CASE(BuildPairF64)
10726   NODE_NAME_CASE(SplitF64)
10727   NODE_NAME_CASE(TAIL)
10728   NODE_NAME_CASE(MULHSU)
10729   NODE_NAME_CASE(SLLW)
10730   NODE_NAME_CASE(SRAW)
10731   NODE_NAME_CASE(SRLW)
10732   NODE_NAME_CASE(DIVW)
10733   NODE_NAME_CASE(DIVUW)
10734   NODE_NAME_CASE(REMUW)
10735   NODE_NAME_CASE(ROLW)
10736   NODE_NAME_CASE(RORW)
10737   NODE_NAME_CASE(CLZW)
10738   NODE_NAME_CASE(CTZW)
10739   NODE_NAME_CASE(FSLW)
10740   NODE_NAME_CASE(FSRW)
10741   NODE_NAME_CASE(FSL)
10742   NODE_NAME_CASE(FSR)
10743   NODE_NAME_CASE(FMV_H_X)
10744   NODE_NAME_CASE(FMV_X_ANYEXTH)
10745   NODE_NAME_CASE(FMV_X_SIGNEXTH)
10746   NODE_NAME_CASE(FMV_W_X_RV64)
10747   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
10748   NODE_NAME_CASE(FCVT_X)
10749   NODE_NAME_CASE(FCVT_XU)
10750   NODE_NAME_CASE(FCVT_W_RV64)
10751   NODE_NAME_CASE(FCVT_WU_RV64)
10752   NODE_NAME_CASE(STRICT_FCVT_W_RV64)
10753   NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
10754   NODE_NAME_CASE(READ_CYCLE_WIDE)
10755   NODE_NAME_CASE(GREV)
10756   NODE_NAME_CASE(GREVW)
10757   NODE_NAME_CASE(GORC)
10758   NODE_NAME_CASE(GORCW)
10759   NODE_NAME_CASE(SHFL)
10760   NODE_NAME_CASE(SHFLW)
10761   NODE_NAME_CASE(UNSHFL)
10762   NODE_NAME_CASE(UNSHFLW)
10763   NODE_NAME_CASE(BFP)
10764   NODE_NAME_CASE(BFPW)
10765   NODE_NAME_CASE(BCOMPRESS)
10766   NODE_NAME_CASE(BCOMPRESSW)
10767   NODE_NAME_CASE(BDECOMPRESS)
10768   NODE_NAME_CASE(BDECOMPRESSW)
10769   NODE_NAME_CASE(VMV_V_X_VL)
10770   NODE_NAME_CASE(VFMV_V_F_VL)
10771   NODE_NAME_CASE(VMV_X_S)
10772   NODE_NAME_CASE(VMV_S_X_VL)
10773   NODE_NAME_CASE(VFMV_S_F_VL)
10774   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
10775   NODE_NAME_CASE(READ_VLENB)
10776   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
10777   NODE_NAME_CASE(VSLIDEUP_VL)
10778   NODE_NAME_CASE(VSLIDE1UP_VL)
10779   NODE_NAME_CASE(VSLIDEDOWN_VL)
10780   NODE_NAME_CASE(VSLIDE1DOWN_VL)
10781   NODE_NAME_CASE(VID_VL)
10782   NODE_NAME_CASE(VFNCVT_ROD_VL)
10783   NODE_NAME_CASE(VECREDUCE_ADD_VL)
10784   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
10785   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
10786   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
10787   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
10788   NODE_NAME_CASE(VECREDUCE_AND_VL)
10789   NODE_NAME_CASE(VECREDUCE_OR_VL)
10790   NODE_NAME_CASE(VECREDUCE_XOR_VL)
10791   NODE_NAME_CASE(VECREDUCE_FADD_VL)
10792   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
10793   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
10794   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
10795   NODE_NAME_CASE(ADD_VL)
10796   NODE_NAME_CASE(AND_VL)
10797   NODE_NAME_CASE(MUL_VL)
10798   NODE_NAME_CASE(OR_VL)
10799   NODE_NAME_CASE(SDIV_VL)
10800   NODE_NAME_CASE(SHL_VL)
10801   NODE_NAME_CASE(SREM_VL)
10802   NODE_NAME_CASE(SRA_VL)
10803   NODE_NAME_CASE(SRL_VL)
10804   NODE_NAME_CASE(SUB_VL)
10805   NODE_NAME_CASE(UDIV_VL)
10806   NODE_NAME_CASE(UREM_VL)
10807   NODE_NAME_CASE(XOR_VL)
10808   NODE_NAME_CASE(SADDSAT_VL)
10809   NODE_NAME_CASE(UADDSAT_VL)
10810   NODE_NAME_CASE(SSUBSAT_VL)
10811   NODE_NAME_CASE(USUBSAT_VL)
10812   NODE_NAME_CASE(FADD_VL)
10813   NODE_NAME_CASE(FSUB_VL)
10814   NODE_NAME_CASE(FMUL_VL)
10815   NODE_NAME_CASE(FDIV_VL)
10816   NODE_NAME_CASE(FNEG_VL)
10817   NODE_NAME_CASE(FABS_VL)
10818   NODE_NAME_CASE(FSQRT_VL)
10819   NODE_NAME_CASE(FMA_VL)
10820   NODE_NAME_CASE(FCOPYSIGN_VL)
10821   NODE_NAME_CASE(SMIN_VL)
10822   NODE_NAME_CASE(SMAX_VL)
10823   NODE_NAME_CASE(UMIN_VL)
10824   NODE_NAME_CASE(UMAX_VL)
10825   NODE_NAME_CASE(FMINNUM_VL)
10826   NODE_NAME_CASE(FMAXNUM_VL)
10827   NODE_NAME_CASE(MULHS_VL)
10828   NODE_NAME_CASE(MULHU_VL)
10829   NODE_NAME_CASE(FP_TO_SINT_VL)
10830   NODE_NAME_CASE(FP_TO_UINT_VL)
10831   NODE_NAME_CASE(SINT_TO_FP_VL)
10832   NODE_NAME_CASE(UINT_TO_FP_VL)
10833   NODE_NAME_CASE(FP_EXTEND_VL)
10834   NODE_NAME_CASE(FP_ROUND_VL)
10835   NODE_NAME_CASE(VWMUL_VL)
10836   NODE_NAME_CASE(VWMULU_VL)
10837   NODE_NAME_CASE(VWMULSU_VL)
10838   NODE_NAME_CASE(VWADD_VL)
10839   NODE_NAME_CASE(VWADDU_VL)
10840   NODE_NAME_CASE(VWSUB_VL)
10841   NODE_NAME_CASE(VWSUBU_VL)
10842   NODE_NAME_CASE(VWADD_W_VL)
10843   NODE_NAME_CASE(VWADDU_W_VL)
10844   NODE_NAME_CASE(VWSUB_W_VL)
10845   NODE_NAME_CASE(VWSUBU_W_VL)
10846   NODE_NAME_CASE(SETCC_VL)
10847   NODE_NAME_CASE(VSELECT_VL)
10848   NODE_NAME_CASE(VP_MERGE_VL)
10849   NODE_NAME_CASE(VMAND_VL)
10850   NODE_NAME_CASE(VMOR_VL)
10851   NODE_NAME_CASE(VMXOR_VL)
10852   NODE_NAME_CASE(VMCLR_VL)
10853   NODE_NAME_CASE(VMSET_VL)
10854   NODE_NAME_CASE(VRGATHER_VX_VL)
10855   NODE_NAME_CASE(VRGATHER_VV_VL)
10856   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
10857   NODE_NAME_CASE(VSEXT_VL)
10858   NODE_NAME_CASE(VZEXT_VL)
10859   NODE_NAME_CASE(VCPOP_VL)
10860   NODE_NAME_CASE(READ_CSR)
10861   NODE_NAME_CASE(WRITE_CSR)
10862   NODE_NAME_CASE(SWAP_CSR)
10863   }
10864   // clang-format on
10865   return nullptr;
10866 #undef NODE_NAME_CASE
10867 }
10868 
10869 /// getConstraintType - Given a constraint letter, return the type of
10870 /// constraint it is for this target.
10871 RISCVTargetLowering::ConstraintType
10872 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
10873   if (Constraint.size() == 1) {
10874     switch (Constraint[0]) {
10875     default:
10876       break;
10877     case 'f':
10878       return C_RegisterClass;
10879     case 'I':
10880     case 'J':
10881     case 'K':
10882       return C_Immediate;
10883     case 'A':
10884       return C_Memory;
10885     case 'S': // A symbolic address
10886       return C_Other;
10887     }
10888   } else {
10889     if (Constraint == "vr" || Constraint == "vm")
10890       return C_RegisterClass;
10891   }
10892   return TargetLowering::getConstraintType(Constraint);
10893 }
10894 
10895 std::pair<unsigned, const TargetRegisterClass *>
10896 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
10897                                                   StringRef Constraint,
10898                                                   MVT VT) const {
10899   // First, see if this is a constraint that directly corresponds to a
10900   // RISCV register class.
10901   if (Constraint.size() == 1) {
10902     switch (Constraint[0]) {
10903     case 'r':
10904       // TODO: Support fixed vectors up to XLen for P extension?
10905       if (VT.isVector())
10906         break;
10907       return std::make_pair(0U, &RISCV::GPRRegClass);
10908     case 'f':
10909       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
10910         return std::make_pair(0U, &RISCV::FPR16RegClass);
10911       if (Subtarget.hasStdExtF() && VT == MVT::f32)
10912         return std::make_pair(0U, &RISCV::FPR32RegClass);
10913       if (Subtarget.hasStdExtD() && VT == MVT::f64)
10914         return std::make_pair(0U, &RISCV::FPR64RegClass);
10915       break;
10916     default:
10917       break;
10918     }
10919   } else if (Constraint == "vr") {
10920     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
10921                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
10922       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
10923         return std::make_pair(0U, RC);
10924     }
10925   } else if (Constraint == "vm") {
10926     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
10927       return std::make_pair(0U, &RISCV::VMV0RegClass);
10928   }
10929 
10930   // Clang will correctly decode the usage of register name aliases into their
10931   // official names. However, other frontends like `rustc` do not. This allows
10932   // users of these frontends to use the ABI names for registers in LLVM-style
10933   // register constraints.
10934   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
10935                                .Case("{zero}", RISCV::X0)
10936                                .Case("{ra}", RISCV::X1)
10937                                .Case("{sp}", RISCV::X2)
10938                                .Case("{gp}", RISCV::X3)
10939                                .Case("{tp}", RISCV::X4)
10940                                .Case("{t0}", RISCV::X5)
10941                                .Case("{t1}", RISCV::X6)
10942                                .Case("{t2}", RISCV::X7)
10943                                .Cases("{s0}", "{fp}", RISCV::X8)
10944                                .Case("{s1}", RISCV::X9)
10945                                .Case("{a0}", RISCV::X10)
10946                                .Case("{a1}", RISCV::X11)
10947                                .Case("{a2}", RISCV::X12)
10948                                .Case("{a3}", RISCV::X13)
10949                                .Case("{a4}", RISCV::X14)
10950                                .Case("{a5}", RISCV::X15)
10951                                .Case("{a6}", RISCV::X16)
10952                                .Case("{a7}", RISCV::X17)
10953                                .Case("{s2}", RISCV::X18)
10954                                .Case("{s3}", RISCV::X19)
10955                                .Case("{s4}", RISCV::X20)
10956                                .Case("{s5}", RISCV::X21)
10957                                .Case("{s6}", RISCV::X22)
10958                                .Case("{s7}", RISCV::X23)
10959                                .Case("{s8}", RISCV::X24)
10960                                .Case("{s9}", RISCV::X25)
10961                                .Case("{s10}", RISCV::X26)
10962                                .Case("{s11}", RISCV::X27)
10963                                .Case("{t3}", RISCV::X28)
10964                                .Case("{t4}", RISCV::X29)
10965                                .Case("{t5}", RISCV::X30)
10966                                .Case("{t6}", RISCV::X31)
10967                                .Default(RISCV::NoRegister);
10968   if (XRegFromAlias != RISCV::NoRegister)
10969     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
10970 
10971   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
10972   // TableGen record rather than the AsmName to choose registers for InlineAsm
10973   // constraints, plus we want to match those names to the widest floating point
10974   // register type available, manually select floating point registers here.
10975   //
10976   // The second case is the ABI name of the register, so that frontends can also
10977   // use the ABI names in register constraint lists.
10978   if (Subtarget.hasStdExtF()) {
10979     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
10980                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
10981                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
10982                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
10983                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
10984                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
10985                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
10986                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
10987                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
10988                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
10989                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
10990                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
10991                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
10992                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
10993                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
10994                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
10995                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
10996                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
10997                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
10998                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
10999                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
11000                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
11001                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
11002                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
11003                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
11004                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
11005                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
11006                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
11007                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
11008                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
11009                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
11010                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
11011                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
11012                         .Default(RISCV::NoRegister);
11013     if (FReg != RISCV::NoRegister) {
11014       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
11015       if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
11016         unsigned RegNo = FReg - RISCV::F0_F;
11017         unsigned DReg = RISCV::F0_D + RegNo;
11018         return std::make_pair(DReg, &RISCV::FPR64RegClass);
11019       }
11020       if (VT == MVT::f32 || VT == MVT::Other)
11021         return std::make_pair(FReg, &RISCV::FPR32RegClass);
11022       if (Subtarget.hasStdExtZfh() && VT == MVT::f16) {
11023         unsigned RegNo = FReg - RISCV::F0_F;
11024         unsigned HReg = RISCV::F0_H + RegNo;
11025         return std::make_pair(HReg, &RISCV::FPR16RegClass);
11026       }
11027     }
11028   }
11029 
11030   if (Subtarget.hasVInstructions()) {
11031     Register VReg = StringSwitch<Register>(Constraint.lower())
11032                         .Case("{v0}", RISCV::V0)
11033                         .Case("{v1}", RISCV::V1)
11034                         .Case("{v2}", RISCV::V2)
11035                         .Case("{v3}", RISCV::V3)
11036                         .Case("{v4}", RISCV::V4)
11037                         .Case("{v5}", RISCV::V5)
11038                         .Case("{v6}", RISCV::V6)
11039                         .Case("{v7}", RISCV::V7)
11040                         .Case("{v8}", RISCV::V8)
11041                         .Case("{v9}", RISCV::V9)
11042                         .Case("{v10}", RISCV::V10)
11043                         .Case("{v11}", RISCV::V11)
11044                         .Case("{v12}", RISCV::V12)
11045                         .Case("{v13}", RISCV::V13)
11046                         .Case("{v14}", RISCV::V14)
11047                         .Case("{v15}", RISCV::V15)
11048                         .Case("{v16}", RISCV::V16)
11049                         .Case("{v17}", RISCV::V17)
11050                         .Case("{v18}", RISCV::V18)
11051                         .Case("{v19}", RISCV::V19)
11052                         .Case("{v20}", RISCV::V20)
11053                         .Case("{v21}", RISCV::V21)
11054                         .Case("{v22}", RISCV::V22)
11055                         .Case("{v23}", RISCV::V23)
11056                         .Case("{v24}", RISCV::V24)
11057                         .Case("{v25}", RISCV::V25)
11058                         .Case("{v26}", RISCV::V26)
11059                         .Case("{v27}", RISCV::V27)
11060                         .Case("{v28}", RISCV::V28)
11061                         .Case("{v29}", RISCV::V29)
11062                         .Case("{v30}", RISCV::V30)
11063                         .Case("{v31}", RISCV::V31)
11064                         .Default(RISCV::NoRegister);
11065     if (VReg != RISCV::NoRegister) {
11066       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
11067         return std::make_pair(VReg, &RISCV::VMRegClass);
11068       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
11069         return std::make_pair(VReg, &RISCV::VRRegClass);
11070       for (const auto *RC :
11071            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11072         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
11073           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
11074           return std::make_pair(VReg, RC);
11075         }
11076       }
11077     }
11078   }
11079 
11080   std::pair<Register, const TargetRegisterClass *> Res =
11081       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11082 
11083   // If we picked one of the Zfinx register classes, remap it to the GPR class.
11084   // FIXME: When Zfinx is supported in CodeGen this will need to take the
11085   // Subtarget into account.
11086   if (Res.second == &RISCV::GPRF16RegClass ||
11087       Res.second == &RISCV::GPRF32RegClass ||
11088       Res.second == &RISCV::GPRF64RegClass)
11089     return std::make_pair(Res.first, &RISCV::GPRRegClass);
11090 
11091   return Res;
11092 }
11093 
11094 unsigned
11095 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
11096   // Currently only support length 1 constraints.
11097   if (ConstraintCode.size() == 1) {
11098     switch (ConstraintCode[0]) {
11099     case 'A':
11100       return InlineAsm::Constraint_A;
11101     default:
11102       break;
11103     }
11104   }
11105 
11106   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
11107 }
11108 
11109 void RISCVTargetLowering::LowerAsmOperandForConstraint(
11110     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
11111     SelectionDAG &DAG) const {
11112   // Currently only support length 1 constraints.
11113   if (Constraint.length() == 1) {
11114     switch (Constraint[0]) {
11115     case 'I':
11116       // Validate & create a 12-bit signed immediate operand.
11117       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11118         uint64_t CVal = C->getSExtValue();
11119         if (isInt<12>(CVal))
11120           Ops.push_back(
11121               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11122       }
11123       return;
11124     case 'J':
11125       // Validate & create an integer zero operand.
11126       if (auto *C = dyn_cast<ConstantSDNode>(Op))
11127         if (C->getZExtValue() == 0)
11128           Ops.push_back(
11129               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
11130       return;
11131     case 'K':
11132       // Validate & create a 5-bit unsigned immediate operand.
11133       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11134         uint64_t CVal = C->getZExtValue();
11135         if (isUInt<5>(CVal))
11136           Ops.push_back(
11137               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11138       }
11139       return;
11140     case 'S':
11141       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
11142         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
11143                                                  GA->getValueType(0)));
11144       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
11145         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
11146                                                 BA->getValueType(0)));
11147       }
11148       return;
11149     default:
11150       break;
11151     }
11152   }
11153   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11154 }
11155 
11156 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
11157                                                    Instruction *Inst,
11158                                                    AtomicOrdering Ord) const {
11159   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
11160     return Builder.CreateFence(Ord);
11161   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
11162     return Builder.CreateFence(AtomicOrdering::Release);
11163   return nullptr;
11164 }
11165 
11166 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
11167                                                     Instruction *Inst,
11168                                                     AtomicOrdering Ord) const {
11169   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
11170     return Builder.CreateFence(AtomicOrdering::Acquire);
11171   return nullptr;
11172 }
11173 
11174 TargetLowering::AtomicExpansionKind
11175 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
11176   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
11177   // point operations can't be used in an lr/sc sequence without breaking the
11178   // forward-progress guarantee.
11179   if (AI->isFloatingPointOperation())
11180     return AtomicExpansionKind::CmpXChg;
11181 
11182   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
11183   if (Size == 8 || Size == 16)
11184     return AtomicExpansionKind::MaskedIntrinsic;
11185   return AtomicExpansionKind::None;
11186 }
11187 
11188 static Intrinsic::ID
11189 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
11190   if (XLen == 32) {
11191     switch (BinOp) {
11192     default:
11193       llvm_unreachable("Unexpected AtomicRMW BinOp");
11194     case AtomicRMWInst::Xchg:
11195       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
11196     case AtomicRMWInst::Add:
11197       return Intrinsic::riscv_masked_atomicrmw_add_i32;
11198     case AtomicRMWInst::Sub:
11199       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
11200     case AtomicRMWInst::Nand:
11201       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
11202     case AtomicRMWInst::Max:
11203       return Intrinsic::riscv_masked_atomicrmw_max_i32;
11204     case AtomicRMWInst::Min:
11205       return Intrinsic::riscv_masked_atomicrmw_min_i32;
11206     case AtomicRMWInst::UMax:
11207       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
11208     case AtomicRMWInst::UMin:
11209       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
11210     }
11211   }
11212 
11213   if (XLen == 64) {
11214     switch (BinOp) {
11215     default:
11216       llvm_unreachable("Unexpected AtomicRMW BinOp");
11217     case AtomicRMWInst::Xchg:
11218       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
11219     case AtomicRMWInst::Add:
11220       return Intrinsic::riscv_masked_atomicrmw_add_i64;
11221     case AtomicRMWInst::Sub:
11222       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
11223     case AtomicRMWInst::Nand:
11224       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
11225     case AtomicRMWInst::Max:
11226       return Intrinsic::riscv_masked_atomicrmw_max_i64;
11227     case AtomicRMWInst::Min:
11228       return Intrinsic::riscv_masked_atomicrmw_min_i64;
11229     case AtomicRMWInst::UMax:
11230       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
11231     case AtomicRMWInst::UMin:
11232       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
11233     }
11234   }
11235 
11236   llvm_unreachable("Unexpected XLen\n");
11237 }
11238 
11239 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
11240     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
11241     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
11242   unsigned XLen = Subtarget.getXLen();
11243   Value *Ordering =
11244       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
11245   Type *Tys[] = {AlignedAddr->getType()};
11246   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
11247       AI->getModule(),
11248       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
11249 
11250   if (XLen == 64) {
11251     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
11252     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11253     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
11254   }
11255 
11256   Value *Result;
11257 
11258   // Must pass the shift amount needed to sign extend the loaded value prior
11259   // to performing a signed comparison for min/max. ShiftAmt is the number of
11260   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
11261   // is the number of bits to left+right shift the value in order to
11262   // sign-extend.
11263   if (AI->getOperation() == AtomicRMWInst::Min ||
11264       AI->getOperation() == AtomicRMWInst::Max) {
11265     const DataLayout &DL = AI->getModule()->getDataLayout();
11266     unsigned ValWidth =
11267         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
11268     Value *SextShamt =
11269         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
11270     Result = Builder.CreateCall(LrwOpScwLoop,
11271                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
11272   } else {
11273     Result =
11274         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
11275   }
11276 
11277   if (XLen == 64)
11278     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11279   return Result;
11280 }
11281 
11282 TargetLowering::AtomicExpansionKind
11283 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
11284     AtomicCmpXchgInst *CI) const {
11285   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
11286   if (Size == 8 || Size == 16)
11287     return AtomicExpansionKind::MaskedIntrinsic;
11288   return AtomicExpansionKind::None;
11289 }
11290 
11291 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
11292     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
11293     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
11294   unsigned XLen = Subtarget.getXLen();
11295   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
11296   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
11297   if (XLen == 64) {
11298     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
11299     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
11300     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11301     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
11302   }
11303   Type *Tys[] = {AlignedAddr->getType()};
11304   Function *MaskedCmpXchg =
11305       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
11306   Value *Result = Builder.CreateCall(
11307       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
11308   if (XLen == 64)
11309     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11310   return Result;
11311 }
11312 
11313 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
11314   return false;
11315 }
11316 
11317 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
11318                                                EVT VT) const {
11319   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
11320     return false;
11321 
11322   switch (FPVT.getSimpleVT().SimpleTy) {
11323   case MVT::f16:
11324     return Subtarget.hasStdExtZfh();
11325   case MVT::f32:
11326     return Subtarget.hasStdExtF();
11327   case MVT::f64:
11328     return Subtarget.hasStdExtD();
11329   default:
11330     return false;
11331   }
11332 }
11333 
11334 unsigned RISCVTargetLowering::getJumpTableEncoding() const {
11335   // If we are using the small code model, we can reduce size of jump table
11336   // entry to 4 bytes.
11337   if (Subtarget.is64Bit() && !isPositionIndependent() &&
11338       getTargetMachine().getCodeModel() == CodeModel::Small) {
11339     return MachineJumpTableInfo::EK_Custom32;
11340   }
11341   return TargetLowering::getJumpTableEncoding();
11342 }
11343 
11344 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
11345     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
11346     unsigned uid, MCContext &Ctx) const {
11347   assert(Subtarget.is64Bit() && !isPositionIndependent() &&
11348          getTargetMachine().getCodeModel() == CodeModel::Small);
11349   return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
11350 }
11351 
11352 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
11353                                                      EVT VT) const {
11354   VT = VT.getScalarType();
11355 
11356   if (!VT.isSimple())
11357     return false;
11358 
11359   switch (VT.getSimpleVT().SimpleTy) {
11360   case MVT::f16:
11361     return Subtarget.hasStdExtZfh();
11362   case MVT::f32:
11363     return Subtarget.hasStdExtF();
11364   case MVT::f64:
11365     return Subtarget.hasStdExtD();
11366   default:
11367     break;
11368   }
11369 
11370   return false;
11371 }
11372 
11373 Register RISCVTargetLowering::getExceptionPointerRegister(
11374     const Constant *PersonalityFn) const {
11375   return RISCV::X10;
11376 }
11377 
11378 Register RISCVTargetLowering::getExceptionSelectorRegister(
11379     const Constant *PersonalityFn) const {
11380   return RISCV::X11;
11381 }
11382 
11383 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
11384   // Return false to suppress the unnecessary extensions if the LibCall
11385   // arguments or return value is f32 type for LP64 ABI.
11386   RISCVABI::ABI ABI = Subtarget.getTargetABI();
11387   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
11388     return false;
11389 
11390   return true;
11391 }
11392 
11393 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
11394   if (Subtarget.is64Bit() && Type == MVT::i32)
11395     return true;
11396 
11397   return IsSigned;
11398 }
11399 
11400 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
11401                                                  SDValue C) const {
11402   // Check integral scalar types.
11403   if (VT.isScalarInteger()) {
11404     // Omit the optimization if the sub target has the M extension and the data
11405     // size exceeds XLen.
11406     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
11407       return false;
11408     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
11409       // Break the MUL to a SLLI and an ADD/SUB.
11410       const APInt &Imm = ConstNode->getAPIntValue();
11411       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
11412           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
11413         return true;
11414       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
11415       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
11416           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
11417            (Imm - 8).isPowerOf2()))
11418         return true;
11419       // Omit the following optimization if the sub target has the M extension
11420       // and the data size >= XLen.
11421       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
11422         return false;
11423       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
11424       // a pair of LUI/ADDI.
11425       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
11426         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
11427         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
11428             (1 - ImmS).isPowerOf2())
11429         return true;
11430       }
11431     }
11432   }
11433 
11434   return false;
11435 }
11436 
11437 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
11438                                                       SDValue ConstNode) const {
11439   // Let the DAGCombiner decide for vectors.
11440   EVT VT = AddNode.getValueType();
11441   if (VT.isVector())
11442     return true;
11443 
11444   // Let the DAGCombiner decide for larger types.
11445   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
11446     return true;
11447 
11448   // It is worse if c1 is simm12 while c1*c2 is not.
11449   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
11450   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
11451   const APInt &C1 = C1Node->getAPIntValue();
11452   const APInt &C2 = C2Node->getAPIntValue();
11453   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
11454     return false;
11455 
11456   // Default to true and let the DAGCombiner decide.
11457   return true;
11458 }
11459 
11460 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
11461     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
11462     bool *Fast) const {
11463   if (!VT.isVector())
11464     return false;
11465 
11466   EVT ElemVT = VT.getVectorElementType();
11467   if (Alignment >= ElemVT.getStoreSize()) {
11468     if (Fast)
11469       *Fast = true;
11470     return true;
11471   }
11472 
11473   return false;
11474 }
11475 
11476 bool RISCVTargetLowering::splitValueIntoRegisterParts(
11477     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
11478     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
11479   bool IsABIRegCopy = CC.hasValue();
11480   EVT ValueVT = Val.getValueType();
11481   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11482     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
11483     // and cast to f32.
11484     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
11485     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
11486     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
11487                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
11488     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
11489     Parts[0] = Val;
11490     return true;
11491   }
11492 
11493   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11494     LLVMContext &Context = *DAG.getContext();
11495     EVT ValueEltVT = ValueVT.getVectorElementType();
11496     EVT PartEltVT = PartVT.getVectorElementType();
11497     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11498     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11499     if (PartVTBitSize % ValueVTBitSize == 0) {
11500       assert(PartVTBitSize >= ValueVTBitSize);
11501       // If the element types are different, bitcast to the same element type of
11502       // PartVT first.
11503       // Give an example here, we want copy a <vscale x 1 x i8> value to
11504       // <vscale x 4 x i16>.
11505       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
11506       // subvector, then we can bitcast to <vscale x 4 x i16>.
11507       if (ValueEltVT != PartEltVT) {
11508         if (PartVTBitSize > ValueVTBitSize) {
11509           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11510           assert(Count != 0 && "The number of element should not be zero.");
11511           EVT SameEltTypeVT =
11512               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11513           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
11514                             DAG.getUNDEF(SameEltTypeVT), Val,
11515                             DAG.getVectorIdxConstant(0, DL));
11516         }
11517         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
11518       } else {
11519         Val =
11520             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
11521                         Val, DAG.getVectorIdxConstant(0, DL));
11522       }
11523       Parts[0] = Val;
11524       return true;
11525     }
11526   }
11527   return false;
11528 }
11529 
11530 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
11531     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
11532     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
11533   bool IsABIRegCopy = CC.hasValue();
11534   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11535     SDValue Val = Parts[0];
11536 
11537     // Cast the f32 to i32, truncate to i16, and cast back to f16.
11538     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
11539     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
11540     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
11541     return Val;
11542   }
11543 
11544   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11545     LLVMContext &Context = *DAG.getContext();
11546     SDValue Val = Parts[0];
11547     EVT ValueEltVT = ValueVT.getVectorElementType();
11548     EVT PartEltVT = PartVT.getVectorElementType();
11549     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11550     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11551     if (PartVTBitSize % ValueVTBitSize == 0) {
11552       assert(PartVTBitSize >= ValueVTBitSize);
11553       EVT SameEltTypeVT = ValueVT;
11554       // If the element types are different, convert it to the same element type
11555       // of PartVT.
11556       // Give an example here, we want copy a <vscale x 1 x i8> value from
11557       // <vscale x 4 x i16>.
11558       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
11559       // then we can extract <vscale x 1 x i8>.
11560       if (ValueEltVT != PartEltVT) {
11561         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11562         assert(Count != 0 && "The number of element should not be zero.");
11563         SameEltTypeVT =
11564             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11565         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
11566       }
11567       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
11568                         DAG.getVectorIdxConstant(0, DL));
11569       return Val;
11570     }
11571   }
11572   return SDValue();
11573 }
11574 
11575 SDValue
11576 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
11577                                    SelectionDAG &DAG,
11578                                    SmallVectorImpl<SDNode *> &Created) const {
11579   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
11580   if (isIntDivCheap(N->getValueType(0), Attr))
11581     return SDValue(N, 0); // Lower SDIV as SDIV
11582 
11583   assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) &&
11584          "Unexpected divisor!");
11585 
11586   // Conditional move is needed, so do the transformation iff Zbt is enabled.
11587   if (!Subtarget.hasStdExtZbt())
11588     return SDValue();
11589 
11590   // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation.
11591   // Besides, more critical path instructions will be generated when dividing
11592   // by 2. So we keep using the original DAGs for these cases.
11593   unsigned Lg2 = Divisor.countTrailingZeros();
11594   if (Lg2 == 1 || Lg2 >= 12)
11595     return SDValue();
11596 
11597   // fold (sdiv X, pow2)
11598   EVT VT = N->getValueType(0);
11599   if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64))
11600     return SDValue();
11601 
11602   SDLoc DL(N);
11603   SDValue N0 = N->getOperand(0);
11604   SDValue Zero = DAG.getConstant(0, DL, VT);
11605   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
11606 
11607   // Add (N0 < 0) ? Pow2 - 1 : 0;
11608   SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT);
11609   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
11610   SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
11611 
11612   Created.push_back(Cmp.getNode());
11613   Created.push_back(Add.getNode());
11614   Created.push_back(Sel.getNode());
11615 
11616   // Divide by pow2.
11617   SDValue SRA =
11618       DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT));
11619 
11620   // If we're dividing by a positive value, we're done.  Otherwise, we must
11621   // negate the result.
11622   if (Divisor.isNonNegative())
11623     return SRA;
11624 
11625   Created.push_back(SRA.getNode());
11626   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
11627 }
11628 
11629 #define GET_REGISTER_MATCHER
11630 #include "RISCVGenAsmMatcher.inc"
11631 
11632 Register
11633 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
11634                                        const MachineFunction &MF) const {
11635   Register Reg = MatchRegisterAltName(RegName);
11636   if (Reg == RISCV::NoRegister)
11637     Reg = MatchRegisterName(RegName);
11638   if (Reg == RISCV::NoRegister)
11639     report_fatal_error(
11640         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
11641   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
11642   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
11643     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
11644                              StringRef(RegName) + "\"."));
11645   return Reg;
11646 }
11647 
11648 namespace llvm {
11649 namespace RISCVVIntrinsicsTable {
11650 
11651 #define GET_RISCVVIntrinsicsTable_IMPL
11652 #include "RISCVGenSearchableTables.inc"
11653 
11654 } // namespace RISCVVIntrinsicsTable
11655 
11656 } // namespace llvm
11657