1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/IntrinsicsRISCV.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/KnownBits.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "riscv-lower" 45 46 STATISTIC(NumTailCalls, "Number of tail calls"); 47 48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 49 const RISCVSubtarget &STI) 50 : TargetLowering(TM), Subtarget(STI) { 51 52 if (Subtarget.isRV32E()) 53 report_fatal_error("Codegen not yet implemented for RV32E"); 54 55 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 56 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 57 58 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 59 !Subtarget.hasStdExtF()) { 60 errs() << "Hard-float 'f' ABI can't be used for a target that " 61 "doesn't support the F instruction set extension (ignoring " 62 "target-abi)\n"; 63 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 64 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 65 !Subtarget.hasStdExtD()) { 66 errs() << "Hard-float 'd' ABI can't be used for a target that " 67 "doesn't support the D instruction set extension (ignoring " 68 "target-abi)\n"; 69 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 70 } 71 72 switch (ABI) { 73 default: 74 report_fatal_error("Don't know how to lower this ABI"); 75 case RISCVABI::ABI_ILP32: 76 case RISCVABI::ABI_ILP32F: 77 case RISCVABI::ABI_ILP32D: 78 case RISCVABI::ABI_LP64: 79 case RISCVABI::ABI_LP64F: 80 case RISCVABI::ABI_LP64D: 81 break; 82 } 83 84 MVT XLenVT = Subtarget.getXLenVT(); 85 86 // Set up the register classes. 87 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 88 89 if (Subtarget.hasStdExtZfh()) 90 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 91 if (Subtarget.hasStdExtF()) 92 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 93 if (Subtarget.hasStdExtD()) 94 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 95 96 static const MVT::SimpleValueType BoolVecVTs[] = { 97 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 98 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 99 static const MVT::SimpleValueType IntVecVTs[] = { 100 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 101 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 102 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 103 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 104 MVT::nxv4i64, MVT::nxv8i64}; 105 static const MVT::SimpleValueType F16VecVTs[] = { 106 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 107 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 108 static const MVT::SimpleValueType F32VecVTs[] = { 109 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 110 static const MVT::SimpleValueType F64VecVTs[] = { 111 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 112 113 if (Subtarget.hasVInstructions()) { 114 auto addRegClassForRVV = [this](MVT VT) { 115 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 116 assert(Size <= 512 && isPowerOf2_32(Size)); 117 const TargetRegisterClass *RC; 118 if (Size <= 64) 119 RC = &RISCV::VRRegClass; 120 else if (Size == 128) 121 RC = &RISCV::VRM2RegClass; 122 else if (Size == 256) 123 RC = &RISCV::VRM4RegClass; 124 else 125 RC = &RISCV::VRM8RegClass; 126 127 addRegisterClass(VT, RC); 128 }; 129 130 for (MVT VT : BoolVecVTs) 131 addRegClassForRVV(VT); 132 for (MVT VT : IntVecVTs) { 133 if (VT.getVectorElementType() == MVT::i64 && 134 !Subtarget.hasVInstructionsI64()) 135 continue; 136 addRegClassForRVV(VT); 137 } 138 139 if (Subtarget.hasVInstructionsF16()) 140 for (MVT VT : F16VecVTs) 141 addRegClassForRVV(VT); 142 143 if (Subtarget.hasVInstructionsF32()) 144 for (MVT VT : F32VecVTs) 145 addRegClassForRVV(VT); 146 147 if (Subtarget.hasVInstructionsF64()) 148 for (MVT VT : F64VecVTs) 149 addRegClassForRVV(VT); 150 151 if (Subtarget.useRVVForFixedLengthVectors()) { 152 auto addRegClassForFixedVectors = [this](MVT VT) { 153 MVT ContainerVT = getContainerForFixedLengthVector(VT); 154 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 155 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 156 addRegisterClass(VT, TRI.getRegClass(RCID)); 157 }; 158 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 159 if (useRVVForFixedLengthVectorVT(VT)) 160 addRegClassForFixedVectors(VT); 161 162 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 163 if (useRVVForFixedLengthVectorVT(VT)) 164 addRegClassForFixedVectors(VT); 165 } 166 } 167 168 // Compute derived properties from the register classes. 169 computeRegisterProperties(STI.getRegisterInfo()); 170 171 setStackPointerRegisterToSaveRestore(RISCV::X2); 172 173 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, XLenVT, 174 MVT::i1, Promote); 175 176 // TODO: add all necessary setOperationAction calls. 177 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 178 179 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 180 setOperationAction(ISD::BR_CC, XLenVT, Expand); 181 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 182 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 183 184 setOperationAction({ISD::STACKSAVE, ISD::STACKRESTORE}, MVT::Other, Expand); 185 186 setOperationAction(ISD::VASTART, MVT::Other, Custom); 187 setOperationAction({ISD::VAARG, ISD::VACOPY, ISD::VAEND}, MVT::Other, Expand); 188 189 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 190 191 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 192 193 if (!Subtarget.hasStdExtZbb()) 194 setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::i8, MVT::i16}, Expand); 195 196 if (Subtarget.is64Bit()) { 197 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 198 199 setOperationAction({ISD::ADD, ISD::SUB, ISD::SHL, ISD::SRA, ISD::SRL}, 200 MVT::i32, Custom); 201 202 setOperationAction({ISD::UADDO, ISD::USUBO, ISD::UADDSAT, ISD::USUBSAT}, 203 MVT::i32, Custom); 204 } else { 205 setLibcallName( 206 {RTLIB::SHL_I128, RTLIB::SRL_I128, RTLIB::SRA_I128, RTLIB::MUL_I128}, 207 nullptr); 208 setLibcallName(RTLIB::MULO_I64, nullptr); 209 } 210 211 if (!Subtarget.hasStdExtM()) { 212 setOperationAction({ISD::MUL, ISD::MULHS, ISD::MULHU, ISD::SDIV, ISD::UDIV, 213 ISD::SREM, ISD::UREM}, 214 XLenVT, Expand); 215 } else { 216 if (Subtarget.is64Bit()) { 217 setOperationAction(ISD::MUL, {MVT::i32, MVT::i128}, Custom); 218 219 setOperationAction({ISD::SDIV, ISD::UDIV, ISD::UREM}, 220 {MVT::i8, MVT::i16, MVT::i32}, Custom); 221 } else { 222 setOperationAction(ISD::MUL, MVT::i64, Custom); 223 } 224 } 225 226 setOperationAction( 227 {ISD::SDIVREM, ISD::UDIVREM, ISD::SMUL_LOHI, ISD::UMUL_LOHI}, XLenVT, 228 Expand); 229 230 setOperationAction({ISD::SHL_PARTS, ISD::SRL_PARTS, ISD::SRA_PARTS}, XLenVT, 231 Custom); 232 233 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 234 Subtarget.hasStdExtZbkb()) { 235 if (Subtarget.is64Bit()) 236 setOperationAction({ISD::ROTL, ISD::ROTR}, MVT::i32, Custom); 237 } else { 238 setOperationAction({ISD::ROTL, ISD::ROTR}, XLenVT, Expand); 239 } 240 241 if (Subtarget.hasStdExtZbp()) { 242 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 243 // more combining. 244 setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, XLenVT, Custom); 245 246 // BSWAP i8 doesn't exist. 247 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 248 249 setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i16, Custom); 250 251 if (Subtarget.is64Bit()) 252 setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i32, Custom); 253 } else { 254 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 255 // pattern match it directly in isel. 256 setOperationAction(ISD::BSWAP, XLenVT, 257 (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) 258 ? Legal 259 : Expand); 260 // Zbkb can use rev8+brev8 to implement bitreverse. 261 setOperationAction(ISD::BITREVERSE, XLenVT, 262 Subtarget.hasStdExtZbkb() ? Custom : Expand); 263 } 264 265 if (Subtarget.hasStdExtZbb()) { 266 setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, XLenVT, 267 Legal); 268 269 if (Subtarget.is64Bit()) 270 setOperationAction( 271 {ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, 272 MVT::i32, Custom); 273 } else { 274 setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP}, XLenVT, Expand); 275 276 if (Subtarget.is64Bit()) 277 setOperationAction(ISD::ABS, MVT::i32, Custom); 278 } 279 280 if (Subtarget.hasStdExtZbt()) { 281 setOperationAction({ISD::FSHL, ISD::FSHR}, XLenVT, Custom); 282 setOperationAction(ISD::SELECT, XLenVT, Legal); 283 284 if (Subtarget.is64Bit()) 285 setOperationAction({ISD::FSHL, ISD::FSHR}, MVT::i32, Custom); 286 } else { 287 setOperationAction(ISD::SELECT, XLenVT, Custom); 288 } 289 290 static constexpr ISD::NodeType FPLegalNodeTypes[] = { 291 ISD::FMINNUM, ISD::FMAXNUM, ISD::LRINT, 292 ISD::LLRINT, ISD::LROUND, ISD::LLROUND, 293 ISD::STRICT_LRINT, ISD::STRICT_LLRINT, ISD::STRICT_LROUND, 294 ISD::STRICT_LLROUND, ISD::STRICT_FMA, ISD::STRICT_FADD, 295 ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV, 296 ISD::STRICT_FSQRT, ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS}; 297 298 static const ISD::CondCode FPCCToExpand[] = { 299 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 300 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 301 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 302 303 static const ISD::NodeType FPOpToExpand[] = { 304 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 305 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 306 307 if (Subtarget.hasStdExtZfh()) 308 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 309 310 if (Subtarget.hasStdExtZfh()) { 311 for (auto NT : FPLegalNodeTypes) 312 setOperationAction(NT, MVT::f16, Legal); 313 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); 314 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 315 setCondCodeAction(FPCCToExpand, MVT::f16, Expand); 316 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 317 setOperationAction(ISD::SELECT, MVT::f16, Custom); 318 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 319 320 setOperationAction({ISD::FREM, ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, 321 ISD::FRINT, ISD::FROUND, ISD::FROUNDEVEN, ISD::FTRUNC, 322 ISD::FPOW, ISD::FPOWI, ISD::FCOS, ISD::FSIN, 323 ISD::FSINCOS, ISD::FEXP, ISD::FEXP2, ISD::FLOG, 324 ISD::FLOG2, ISD::FLOG10}, 325 MVT::f16, Promote); 326 327 // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have 328 // complete support for all operations in LegalizeDAG. 329 330 // We need to custom promote this. 331 if (Subtarget.is64Bit()) 332 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 333 } 334 335 if (Subtarget.hasStdExtF()) { 336 for (auto NT : FPLegalNodeTypes) 337 setOperationAction(NT, MVT::f32, Legal); 338 setCondCodeAction(FPCCToExpand, MVT::f32, Expand); 339 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 340 setOperationAction(ISD::SELECT, MVT::f32, Custom); 341 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 342 for (auto Op : FPOpToExpand) 343 setOperationAction(Op, MVT::f32, Expand); 344 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 345 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 346 } 347 348 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 349 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 350 351 if (Subtarget.hasStdExtD()) { 352 for (auto NT : FPLegalNodeTypes) 353 setOperationAction(NT, MVT::f64, Legal); 354 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 355 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 356 setCondCodeAction(FPCCToExpand, MVT::f64, Expand); 357 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 358 setOperationAction(ISD::SELECT, MVT::f64, Custom); 359 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 360 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 361 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 362 for (auto Op : FPOpToExpand) 363 setOperationAction(Op, MVT::f64, Expand); 364 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 365 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 366 } 367 368 if (Subtarget.is64Bit()) 369 setOperationAction({ISD::FP_TO_UINT, ISD::FP_TO_SINT, 370 ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT}, 371 MVT::i32, Custom); 372 373 if (Subtarget.hasStdExtF()) { 374 setOperationAction({ISD::FP_TO_UINT_SAT, ISD::FP_TO_SINT_SAT}, XLenVT, 375 Custom); 376 377 setOperationAction({ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT, 378 ISD::STRICT_UINT_TO_FP, ISD::STRICT_SINT_TO_FP}, 379 XLenVT, Legal); 380 381 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 382 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 383 } 384 385 setOperationAction({ISD::GlobalAddress, ISD::BlockAddress, ISD::ConstantPool, 386 ISD::JumpTable}, 387 XLenVT, Custom); 388 389 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 390 391 if (Subtarget.is64Bit()) 392 setOperationAction(ISD::Constant, MVT::i64, Custom); 393 394 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 395 // Unfortunately this can't be determined just from the ISA naming string. 396 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 397 Subtarget.is64Bit() ? Legal : Custom); 398 399 setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Legal); 400 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 401 if (Subtarget.is64Bit()) 402 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 403 404 if (Subtarget.hasStdExtA()) { 405 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 406 setMinCmpXchgSizeInBits(32); 407 } else { 408 setMaxAtomicSizeInBitsSupported(0); 409 } 410 411 setBooleanContents(ZeroOrOneBooleanContent); 412 413 if (Subtarget.hasVInstructions()) { 414 setBooleanVectorContents(ZeroOrOneBooleanContent); 415 416 setOperationAction(ISD::VSCALE, XLenVT, Custom); 417 418 // RVV intrinsics may have illegal operands. 419 // We also need to custom legalize vmv.x.s. 420 setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN}, 421 {MVT::i8, MVT::i16}, Custom); 422 if (Subtarget.is64Bit()) 423 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 424 else 425 setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN}, 426 MVT::i64, Custom); 427 428 setOperationAction({ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID}, 429 MVT::Other, Custom); 430 431 static const unsigned IntegerVPOps[] = { 432 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 433 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 434 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 435 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 436 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 437 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 438 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 439 ISD::VP_MERGE, ISD::VP_SELECT, ISD::VP_FPTOSI, 440 ISD::VP_FPTOUI, ISD::VP_SETCC, ISD::VP_SIGN_EXTEND, 441 ISD::VP_ZERO_EXTEND, ISD::VP_TRUNCATE}; 442 443 static const unsigned FloatingPointVPOps[] = { 444 ISD::VP_FADD, ISD::VP_FSUB, 445 ISD::VP_FMUL, ISD::VP_FDIV, 446 ISD::VP_FNEG, ISD::VP_FMA, 447 ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 448 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, 449 ISD::VP_MERGE, ISD::VP_SELECT, 450 ISD::VP_SITOFP, ISD::VP_UITOFP, 451 ISD::VP_SETCC, ISD::VP_FP_ROUND, 452 ISD::VP_FP_EXTEND}; 453 454 if (!Subtarget.is64Bit()) { 455 // We must custom-lower certain vXi64 operations on RV32 due to the vector 456 // element type being illegal. 457 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, 458 MVT::i64, Custom); 459 460 setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND, 461 ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR, 462 ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN, 463 ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN}, 464 MVT::i64, Custom); 465 466 setOperationAction({ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 467 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, 468 ISD::VP_REDUCE_SMAX, ISD::VP_REDUCE_SMIN, 469 ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN}, 470 MVT::i64, Custom); 471 } 472 473 for (MVT VT : BoolVecVTs) { 474 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 475 476 // Mask VTs are custom-expanded into a series of standard nodes 477 setOperationAction({ISD::TRUNCATE, ISD::CONCAT_VECTORS, 478 ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, 479 VT, Custom); 480 481 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT, 482 Custom); 483 484 setOperationAction(ISD::SELECT, VT, Custom); 485 setOperationAction( 486 {ISD::SELECT_CC, ISD::VSELECT, ISD::VP_MERGE, ISD::VP_SELECT}, VT, 487 Expand); 488 489 setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR}, VT, Custom); 490 491 setOperationAction( 492 {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT, 493 Custom); 494 495 setOperationAction( 496 {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT, 497 Custom); 498 499 // RVV has native int->float & float->int conversions where the 500 // element type sizes are within one power-of-two of each other. Any 501 // wider distances between type sizes have to be lowered as sequences 502 // which progressively narrow the gap in stages. 503 setOperationAction( 504 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}, 505 VT, Custom); 506 507 // Expand all extending loads to types larger than this, and truncating 508 // stores from types larger than this. 509 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 510 setTruncStoreAction(OtherVT, VT, Expand); 511 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT, 512 VT, Expand); 513 } 514 515 setOperationAction( 516 {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_TRUNCATE, ISD::VP_SETCC}, VT, 517 Custom); 518 } 519 520 for (MVT VT : IntVecVTs) { 521 if (VT.getVectorElementType() == MVT::i64 && 522 !Subtarget.hasVInstructionsI64()) 523 continue; 524 525 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 526 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 527 528 // Vectors implement MULHS/MULHU. 529 setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, VT, Expand); 530 531 // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*. 532 if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) 533 setOperationAction({ISD::MULHU, ISD::MULHS}, VT, Expand); 534 535 setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, VT, 536 Legal); 537 538 setOperationAction({ISD::ROTL, ISD::ROTR}, VT, Expand); 539 540 setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP, ISD::BSWAP}, VT, 541 Expand); 542 543 setOperationAction(ISD::BSWAP, VT, Expand); 544 545 // Custom-lower extensions and truncations from/to mask types. 546 setOperationAction({ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, 547 VT, Custom); 548 549 // RVV has native int->float & float->int conversions where the 550 // element type sizes are within one power-of-two of each other. Any 551 // wider distances between type sizes have to be lowered as sequences 552 // which progressively narrow the gap in stages. 553 setOperationAction( 554 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}, 555 VT, Custom); 556 557 setOperationAction( 558 {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT, Legal); 559 560 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 561 // nodes which truncate by one power of two at a time. 562 setOperationAction(ISD::TRUNCATE, VT, Custom); 563 564 // Custom-lower insert/extract operations to simplify patterns. 565 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT, 566 Custom); 567 568 // Custom-lower reduction operations to set up the corresponding custom 569 // nodes' operands. 570 setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND, 571 ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR, 572 ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN, 573 ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN}, 574 VT, Custom); 575 576 setOperationAction(IntegerVPOps, VT, Custom); 577 578 setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom); 579 580 setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, 581 VT, Custom); 582 583 setOperationAction( 584 {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT, 585 Custom); 586 587 setOperationAction( 588 {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, 589 VT, Custom); 590 591 setOperationAction(ISD::SELECT, VT, Custom); 592 setOperationAction(ISD::SELECT_CC, VT, Expand); 593 594 setOperationAction({ISD::STEP_VECTOR, ISD::VECTOR_REVERSE}, VT, Custom); 595 596 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 597 setTruncStoreAction(VT, OtherVT, Expand); 598 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT, 599 VT, Expand); 600 } 601 602 // Splice 603 setOperationAction(ISD::VECTOR_SPLICE, VT, Custom); 604 605 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 606 // type that can represent the value exactly. 607 if (VT.getVectorElementType() != MVT::i64) { 608 MVT FloatEltVT = 609 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 610 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 611 if (isTypeLegal(FloatVT)) { 612 setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT, 613 Custom); 614 } 615 } 616 } 617 618 // Expand various CCs to best match the RVV ISA, which natively supports UNE 619 // but no other unordered comparisons, and supports all ordered comparisons 620 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 621 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 622 // and we pattern-match those back to the "original", swapping operands once 623 // more. This way we catch both operations and both "vf" and "fv" forms with 624 // fewer patterns. 625 static const ISD::CondCode VFPCCToExpand[] = { 626 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 627 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 628 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 629 }; 630 631 // Sets common operation actions on RVV floating-point vector types. 632 const auto SetCommonVFPActions = [&](MVT VT) { 633 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 634 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 635 // sizes are within one power-of-two of each other. Therefore conversions 636 // between vXf16 and vXf64 must be lowered as sequences which convert via 637 // vXf32. 638 setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom); 639 // Custom-lower insert/extract operations to simplify patterns. 640 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT, 641 Custom); 642 // Expand various condition codes (explained above). 643 setCondCodeAction(VFPCCToExpand, VT, Expand); 644 645 setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, VT, Legal); 646 647 setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND}, 648 VT, Custom); 649 650 setOperationAction({ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD, 651 ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAX}, 652 VT, Custom); 653 654 // Expand FP operations that need libcalls. 655 setOperationAction(ISD::FREM, VT, Expand); 656 setOperationAction(ISD::FPOW, VT, Expand); 657 setOperationAction(ISD::FCOS, VT, Expand); 658 setOperationAction(ISD::FSIN, VT, Expand); 659 setOperationAction(ISD::FSINCOS, VT, Expand); 660 setOperationAction(ISD::FEXP, VT, Expand); 661 setOperationAction(ISD::FEXP2, VT, Expand); 662 setOperationAction(ISD::FLOG, VT, Expand); 663 setOperationAction(ISD::FLOG2, VT, Expand); 664 setOperationAction(ISD::FLOG10, VT, Expand); 665 setOperationAction(ISD::FRINT, VT, Expand); 666 setOperationAction(ISD::FNEARBYINT, VT, Expand); 667 668 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 669 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 670 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 671 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 672 673 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 674 675 setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom); 676 677 setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, 678 VT, Custom); 679 680 setOperationAction( 681 {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT, 682 Custom); 683 684 setOperationAction(ISD::SELECT, VT, Custom); 685 setOperationAction(ISD::SELECT_CC, VT, Expand); 686 687 setOperationAction( 688 {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, 689 VT, Custom); 690 691 setOperationAction({ISD::VECTOR_REVERSE, ISD::VECTOR_SPLICE}, VT, Custom); 692 693 setOperationAction(FloatingPointVPOps, VT, Custom); 694 }; 695 696 // Sets common extload/truncstore actions on RVV floating-point vector 697 // types. 698 const auto SetCommonVFPExtLoadTruncStoreActions = 699 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 700 for (auto SmallVT : SmallerVTs) { 701 setTruncStoreAction(VT, SmallVT, Expand); 702 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 703 } 704 }; 705 706 if (Subtarget.hasVInstructionsF16()) 707 for (MVT VT : F16VecVTs) 708 SetCommonVFPActions(VT); 709 710 for (MVT VT : F32VecVTs) { 711 if (Subtarget.hasVInstructionsF32()) 712 SetCommonVFPActions(VT); 713 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 714 } 715 716 for (MVT VT : F64VecVTs) { 717 if (Subtarget.hasVInstructionsF64()) 718 SetCommonVFPActions(VT); 719 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 720 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 721 } 722 723 if (Subtarget.useRVVForFixedLengthVectors()) { 724 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 725 if (!useRVVForFixedLengthVectorVT(VT)) 726 continue; 727 728 // By default everything must be expanded. 729 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 730 setOperationAction(Op, VT, Expand); 731 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 732 setTruncStoreAction(VT, OtherVT, Expand); 733 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, 734 OtherVT, VT, Expand); 735 } 736 737 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 738 setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT, 739 Custom); 740 741 setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS}, VT, 742 Custom); 743 744 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, 745 VT, Custom); 746 747 setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom); 748 749 setOperationAction(ISD::SETCC, VT, Custom); 750 751 setOperationAction(ISD::SELECT, VT, Custom); 752 753 setOperationAction(ISD::TRUNCATE, VT, Custom); 754 755 setOperationAction(ISD::BITCAST, VT, Custom); 756 757 setOperationAction( 758 {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT, 759 Custom); 760 761 setOperationAction( 762 {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT, 763 Custom); 764 765 setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, 766 ISD::FP_TO_UINT}, 767 VT, Custom); 768 769 // Operations below are different for between masks and other vectors. 770 if (VT.getVectorElementType() == MVT::i1) { 771 setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, ISD::AND, 772 ISD::OR, ISD::XOR}, 773 VT, Custom); 774 775 setOperationAction( 776 {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_SETCC, ISD::VP_TRUNCATE}, 777 VT, Custom); 778 continue; 779 } 780 781 // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to 782 // it before type legalization for i64 vectors on RV32. It will then be 783 // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle. 784 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 785 // improvements first. 786 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 787 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 788 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 789 } 790 791 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 792 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 793 794 setOperationAction( 795 {ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, VT, Custom); 796 797 setOperationAction( 798 {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT, 799 Custom); 800 801 setOperationAction({ISD::ADD, ISD::MUL, ISD::SUB, ISD::AND, ISD::OR, 802 ISD::XOR, ISD::SDIV, ISD::SREM, ISD::UDIV, 803 ISD::UREM, ISD::SHL, ISD::SRA, ISD::SRL}, 804 VT, Custom); 805 806 setOperationAction( 807 {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, ISD::ABS}, VT, Custom); 808 809 // vXi64 MULHS/MULHU requires the V extension instead of Zve64*. 810 if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) 811 setOperationAction({ISD::MULHS, ISD::MULHU}, VT, Custom); 812 813 setOperationAction( 814 {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT, 815 Custom); 816 817 setOperationAction(ISD::VSELECT, VT, Custom); 818 setOperationAction(ISD::SELECT_CC, VT, Expand); 819 820 setOperationAction( 821 {ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, VT, Custom); 822 823 // Custom-lower reduction operations to set up the corresponding custom 824 // nodes' operands. 825 setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_SMAX, 826 ISD::VECREDUCE_SMIN, ISD::VECREDUCE_UMAX, 827 ISD::VECREDUCE_UMIN}, 828 VT, Custom); 829 830 setOperationAction(IntegerVPOps, VT, Custom); 831 832 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 833 // type that can represent the value exactly. 834 if (VT.getVectorElementType() != MVT::i64) { 835 MVT FloatEltVT = 836 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 837 EVT FloatVT = 838 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 839 if (isTypeLegal(FloatVT)) 840 setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT, 841 Custom); 842 } 843 } 844 845 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 846 if (!useRVVForFixedLengthVectorVT(VT)) 847 continue; 848 849 // By default everything must be expanded. 850 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 851 setOperationAction(Op, VT, Expand); 852 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 853 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 854 setTruncStoreAction(VT, OtherVT, Expand); 855 } 856 857 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 858 setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT, 859 Custom); 860 861 setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS, 862 ISD::VECTOR_SHUFFLE, ISD::INSERT_VECTOR_ELT, 863 ISD::EXTRACT_VECTOR_ELT}, 864 VT, Custom); 865 866 setOperationAction({ISD::LOAD, ISD::STORE, ISD::MLOAD, ISD::MSTORE, 867 ISD::MGATHER, ISD::MSCATTER}, 868 VT, Custom); 869 870 setOperationAction( 871 {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT, 872 Custom); 873 874 setOperationAction({ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV, 875 ISD::FNEG, ISD::FABS, ISD::FCOPYSIGN, ISD::FSQRT, 876 ISD::FMA, ISD::FMINNUM, ISD::FMAXNUM}, 877 VT, Custom); 878 879 setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom); 880 881 setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND}, 882 VT, Custom); 883 884 for (auto CC : VFPCCToExpand) 885 setCondCodeAction(CC, VT, Expand); 886 887 setOperationAction({ISD::VSELECT, ISD::SELECT}, VT, Custom); 888 setOperationAction(ISD::SELECT_CC, VT, Expand); 889 890 setOperationAction(ISD::BITCAST, VT, Custom); 891 892 setOperationAction({ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD, 893 ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAX}, 894 VT, Custom); 895 896 setOperationAction(FloatingPointVPOps, VT, Custom); 897 } 898 899 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 900 setOperationAction(ISD::BITCAST, {MVT::i8, MVT::i16, MVT::i32, MVT::i64}, 901 Custom); 902 if (Subtarget.hasStdExtZfh()) 903 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 904 if (Subtarget.hasStdExtF()) 905 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 906 if (Subtarget.hasStdExtD()) 907 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 908 } 909 } 910 911 // Function alignments. 912 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 913 setMinFunctionAlignment(FunctionAlignment); 914 setPrefFunctionAlignment(FunctionAlignment); 915 916 setMinimumJumpTableEntries(5); 917 918 // Jumps are expensive, compared to logic 919 setJumpIsExpensive(); 920 921 setTargetDAGCombine({ISD::INTRINSIC_WO_CHAIN, ISD::ADD, ISD::SUB, ISD::AND, 922 ISD::OR, ISD::XOR}); 923 924 if (Subtarget.hasStdExtF()) 925 setTargetDAGCombine({ISD::FADD, ISD::FMAXNUM, ISD::FMINNUM}); 926 927 if (Subtarget.hasStdExtZbp()) 928 setTargetDAGCombine({ISD::ROTL, ISD::ROTR}); 929 930 if (Subtarget.hasStdExtZbb()) 931 setTargetDAGCombine({ISD::UMAX, ISD::UMIN, ISD::SMAX, ISD::SMIN}); 932 933 if (Subtarget.hasStdExtZbkb()) 934 setTargetDAGCombine(ISD::BITREVERSE); 935 if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb()) 936 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 937 if (Subtarget.hasStdExtF()) 938 setTargetDAGCombine({ISD::ZERO_EXTEND, ISD::FP_TO_SINT, ISD::FP_TO_UINT, 939 ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}); 940 if (Subtarget.hasVInstructions()) 941 setTargetDAGCombine({ISD::FCOPYSIGN, ISD::MGATHER, ISD::MSCATTER, 942 ISD::VP_GATHER, ISD::VP_SCATTER, ISD::SRA, ISD::SRL, 943 ISD::SHL, ISD::STORE, ISD::SPLAT_VECTOR}); 944 945 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 946 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 947 } 948 949 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 950 LLVMContext &Context, 951 EVT VT) const { 952 if (!VT.isVector()) 953 return getPointerTy(DL); 954 if (Subtarget.hasVInstructions() && 955 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 956 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 957 return VT.changeVectorElementTypeToInteger(); 958 } 959 960 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 961 return Subtarget.getXLenVT(); 962 } 963 964 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 965 const CallInst &I, 966 MachineFunction &MF, 967 unsigned Intrinsic) const { 968 auto &DL = I.getModule()->getDataLayout(); 969 switch (Intrinsic) { 970 default: 971 return false; 972 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 973 case Intrinsic::riscv_masked_atomicrmw_add_i32: 974 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 975 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 976 case Intrinsic::riscv_masked_atomicrmw_max_i32: 977 case Intrinsic::riscv_masked_atomicrmw_min_i32: 978 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 979 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 980 case Intrinsic::riscv_masked_cmpxchg_i32: 981 Info.opc = ISD::INTRINSIC_W_CHAIN; 982 Info.memVT = MVT::i32; 983 Info.ptrVal = I.getArgOperand(0); 984 Info.offset = 0; 985 Info.align = Align(4); 986 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 987 MachineMemOperand::MOVolatile; 988 return true; 989 case Intrinsic::riscv_masked_strided_load: 990 Info.opc = ISD::INTRINSIC_W_CHAIN; 991 Info.ptrVal = I.getArgOperand(1); 992 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 993 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 994 Info.size = MemoryLocation::UnknownSize; 995 Info.flags |= MachineMemOperand::MOLoad; 996 return true; 997 case Intrinsic::riscv_masked_strided_store: 998 Info.opc = ISD::INTRINSIC_VOID; 999 Info.ptrVal = I.getArgOperand(1); 1000 Info.memVT = 1001 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1002 Info.align = Align( 1003 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1004 8); 1005 Info.size = MemoryLocation::UnknownSize; 1006 Info.flags |= MachineMemOperand::MOStore; 1007 return true; 1008 case Intrinsic::riscv_seg2_load: 1009 case Intrinsic::riscv_seg3_load: 1010 case Intrinsic::riscv_seg4_load: 1011 case Intrinsic::riscv_seg5_load: 1012 case Intrinsic::riscv_seg6_load: 1013 case Intrinsic::riscv_seg7_load: 1014 case Intrinsic::riscv_seg8_load: 1015 Info.opc = ISD::INTRINSIC_W_CHAIN; 1016 Info.ptrVal = I.getArgOperand(0); 1017 Info.memVT = 1018 getValueType(DL, I.getType()->getStructElementType(0)->getScalarType()); 1019 Info.align = 1020 Align(DL.getTypeSizeInBits( 1021 I.getType()->getStructElementType(0)->getScalarType()) / 1022 8); 1023 Info.size = MemoryLocation::UnknownSize; 1024 Info.flags |= MachineMemOperand::MOLoad; 1025 return true; 1026 } 1027 } 1028 1029 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1030 const AddrMode &AM, Type *Ty, 1031 unsigned AS, 1032 Instruction *I) const { 1033 // No global is ever allowed as a base. 1034 if (AM.BaseGV) 1035 return false; 1036 1037 // RVV instructions only support register addressing. 1038 if (Subtarget.hasVInstructions() && isa<VectorType>(Ty)) 1039 return AM.HasBaseReg && AM.Scale == 0 && !AM.BaseOffs; 1040 1041 // Require a 12-bit signed offset. 1042 if (!isInt<12>(AM.BaseOffs)) 1043 return false; 1044 1045 switch (AM.Scale) { 1046 case 0: // "r+i" or just "i", depending on HasBaseReg. 1047 break; 1048 case 1: 1049 if (!AM.HasBaseReg) // allow "r+i". 1050 break; 1051 return false; // disallow "r+r" or "r+r+i". 1052 default: 1053 return false; 1054 } 1055 1056 return true; 1057 } 1058 1059 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1060 return isInt<12>(Imm); 1061 } 1062 1063 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1064 return isInt<12>(Imm); 1065 } 1066 1067 // On RV32, 64-bit integers are split into their high and low parts and held 1068 // in two different registers, so the trunc is free since the low register can 1069 // just be used. 1070 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1071 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1072 return false; 1073 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1074 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1075 return (SrcBits == 64 && DestBits == 32); 1076 } 1077 1078 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1079 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1080 !SrcVT.isInteger() || !DstVT.isInteger()) 1081 return false; 1082 unsigned SrcBits = SrcVT.getSizeInBits(); 1083 unsigned DestBits = DstVT.getSizeInBits(); 1084 return (SrcBits == 64 && DestBits == 32); 1085 } 1086 1087 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1088 // Zexts are free if they can be combined with a load. 1089 // Don't advertise i32->i64 zextload as being free for RV64. It interacts 1090 // poorly with type legalization of compares preferring sext. 1091 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1092 EVT MemVT = LD->getMemoryVT(); 1093 if ((MemVT == MVT::i8 || MemVT == MVT::i16) && 1094 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1095 LD->getExtensionType() == ISD::ZEXTLOAD)) 1096 return true; 1097 } 1098 1099 return TargetLowering::isZExtFree(Val, VT2); 1100 } 1101 1102 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1103 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1104 } 1105 1106 bool RISCVTargetLowering::signExtendConstant(const ConstantInt *CI) const { 1107 return Subtarget.is64Bit() && CI->getType()->isIntegerTy(32); 1108 } 1109 1110 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1111 return Subtarget.hasStdExtZbb(); 1112 } 1113 1114 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1115 return Subtarget.hasStdExtZbb(); 1116 } 1117 1118 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { 1119 EVT VT = Y.getValueType(); 1120 1121 // FIXME: Support vectors once we have tests. 1122 if (VT.isVector()) 1123 return false; 1124 1125 return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 1126 Subtarget.hasStdExtZbkb()) && 1127 !isa<ConstantSDNode>(Y); 1128 } 1129 1130 bool RISCVTargetLowering::hasBitTest(SDValue X, SDValue Y) const { 1131 // We can use ANDI+SEQZ/SNEZ as a bit test. Y contains the bit position. 1132 auto *C = dyn_cast<ConstantSDNode>(Y); 1133 return C && C->getAPIntValue().ule(10); 1134 } 1135 1136 bool RISCVTargetLowering:: 1137 shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 1138 SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, 1139 unsigned OldShiftOpcode, unsigned NewShiftOpcode, 1140 SelectionDAG &DAG) const { 1141 // One interesting pattern that we'd want to form is 'bit extract': 1142 // ((1 >> Y) & 1) ==/!= 0 1143 // But we also need to be careful not to try to reverse that fold. 1144 1145 // Is this '((1 >> Y) & 1)'? 1146 if (XC && OldShiftOpcode == ISD::SRL && XC->isOne()) 1147 return false; // Keep the 'bit extract' pattern. 1148 1149 // Will this be '((1 >> Y) & 1)' after the transform? 1150 if (NewShiftOpcode == ISD::SRL && CC->isOne()) 1151 return true; // Do form the 'bit extract' pattern. 1152 1153 // If 'X' is a constant, and we transform, then we will immediately 1154 // try to undo the fold, thus causing endless combine loop. 1155 // So only do the transform if X is not a constant. This matches the default 1156 // implementation of this function. 1157 return !XC; 1158 } 1159 1160 /// Check if sinking \p I's operands to I's basic block is profitable, because 1161 /// the operands can be folded into a target instruction, e.g. 1162 /// splats of scalars can fold into vector instructions. 1163 bool RISCVTargetLowering::shouldSinkOperands( 1164 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1165 using namespace llvm::PatternMatch; 1166 1167 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1168 return false; 1169 1170 auto IsSinker = [&](Instruction *I, int Operand) { 1171 switch (I->getOpcode()) { 1172 case Instruction::Add: 1173 case Instruction::Sub: 1174 case Instruction::Mul: 1175 case Instruction::And: 1176 case Instruction::Or: 1177 case Instruction::Xor: 1178 case Instruction::FAdd: 1179 case Instruction::FSub: 1180 case Instruction::FMul: 1181 case Instruction::FDiv: 1182 case Instruction::ICmp: 1183 case Instruction::FCmp: 1184 return true; 1185 case Instruction::Shl: 1186 case Instruction::LShr: 1187 case Instruction::AShr: 1188 case Instruction::UDiv: 1189 case Instruction::SDiv: 1190 case Instruction::URem: 1191 case Instruction::SRem: 1192 return Operand == 1; 1193 case Instruction::Call: 1194 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1195 switch (II->getIntrinsicID()) { 1196 case Intrinsic::fma: 1197 case Intrinsic::vp_fma: 1198 return Operand == 0 || Operand == 1; 1199 // FIXME: Our patterns can only match vx/vf instructions when the splat 1200 // it on the RHS, because TableGen doesn't recognize our VP operations 1201 // as commutative. 1202 case Intrinsic::vp_add: 1203 case Intrinsic::vp_mul: 1204 case Intrinsic::vp_and: 1205 case Intrinsic::vp_or: 1206 case Intrinsic::vp_xor: 1207 case Intrinsic::vp_fadd: 1208 case Intrinsic::vp_fmul: 1209 case Intrinsic::vp_shl: 1210 case Intrinsic::vp_lshr: 1211 case Intrinsic::vp_ashr: 1212 case Intrinsic::vp_udiv: 1213 case Intrinsic::vp_sdiv: 1214 case Intrinsic::vp_urem: 1215 case Intrinsic::vp_srem: 1216 return Operand == 1; 1217 // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have 1218 // explicit patterns for both LHS and RHS (as 'vr' versions). 1219 case Intrinsic::vp_sub: 1220 case Intrinsic::vp_fsub: 1221 case Intrinsic::vp_fdiv: 1222 return Operand == 0 || Operand == 1; 1223 default: 1224 return false; 1225 } 1226 } 1227 return false; 1228 default: 1229 return false; 1230 } 1231 }; 1232 1233 for (auto OpIdx : enumerate(I->operands())) { 1234 if (!IsSinker(I, OpIdx.index())) 1235 continue; 1236 1237 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1238 // Make sure we are not already sinking this operand 1239 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1240 continue; 1241 1242 // We are looking for a splat that can be sunk. 1243 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1244 m_Undef(), m_ZeroMask()))) 1245 continue; 1246 1247 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1248 // and vector registers 1249 for (Use &U : Op->uses()) { 1250 Instruction *Insn = cast<Instruction>(U.getUser()); 1251 if (!IsSinker(Insn, U.getOperandNo())) 1252 return false; 1253 } 1254 1255 Ops.push_back(&Op->getOperandUse(0)); 1256 Ops.push_back(&OpIdx.value()); 1257 } 1258 return true; 1259 } 1260 1261 bool RISCVTargetLowering::isOffsetFoldingLegal( 1262 const GlobalAddressSDNode *GA) const { 1263 // In order to maximise the opportunity for common subexpression elimination, 1264 // keep a separate ADD node for the global address offset instead of folding 1265 // it in the global address node. Later peephole optimisations may choose to 1266 // fold it back in when profitable. 1267 return false; 1268 } 1269 1270 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1271 bool ForCodeSize) const { 1272 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1273 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1274 return false; 1275 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1276 return false; 1277 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1278 return false; 1279 return Imm.isZero(); 1280 } 1281 1282 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1283 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1284 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1285 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1286 } 1287 1288 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1289 CallingConv::ID CC, 1290 EVT VT) const { 1291 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1292 // We might still end up using a GPR but that will be decided based on ABI. 1293 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1294 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1295 return MVT::f32; 1296 1297 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1298 } 1299 1300 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1301 CallingConv::ID CC, 1302 EVT VT) const { 1303 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1304 // We might still end up using a GPR but that will be decided based on ABI. 1305 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1306 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1307 return 1; 1308 1309 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1310 } 1311 1312 // Changes the condition code and swaps operands if necessary, so the SetCC 1313 // operation matches one of the comparisons supported directly by branches 1314 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1315 // with 1/-1. 1316 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1317 ISD::CondCode &CC, SelectionDAG &DAG) { 1318 // Convert X > -1 to X >= 0. 1319 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1320 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1321 CC = ISD::SETGE; 1322 return; 1323 } 1324 // Convert X < 1 to 0 >= X. 1325 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1326 RHS = LHS; 1327 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1328 CC = ISD::SETGE; 1329 return; 1330 } 1331 1332 switch (CC) { 1333 default: 1334 break; 1335 case ISD::SETGT: 1336 case ISD::SETLE: 1337 case ISD::SETUGT: 1338 case ISD::SETULE: 1339 CC = ISD::getSetCCSwappedOperands(CC); 1340 std::swap(LHS, RHS); 1341 break; 1342 } 1343 } 1344 1345 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1346 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1347 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1348 if (VT.getVectorElementType() == MVT::i1) 1349 KnownSize *= 8; 1350 1351 switch (KnownSize) { 1352 default: 1353 llvm_unreachable("Invalid LMUL."); 1354 case 8: 1355 return RISCVII::VLMUL::LMUL_F8; 1356 case 16: 1357 return RISCVII::VLMUL::LMUL_F4; 1358 case 32: 1359 return RISCVII::VLMUL::LMUL_F2; 1360 case 64: 1361 return RISCVII::VLMUL::LMUL_1; 1362 case 128: 1363 return RISCVII::VLMUL::LMUL_2; 1364 case 256: 1365 return RISCVII::VLMUL::LMUL_4; 1366 case 512: 1367 return RISCVII::VLMUL::LMUL_8; 1368 } 1369 } 1370 1371 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1372 switch (LMul) { 1373 default: 1374 llvm_unreachable("Invalid LMUL."); 1375 case RISCVII::VLMUL::LMUL_F8: 1376 case RISCVII::VLMUL::LMUL_F4: 1377 case RISCVII::VLMUL::LMUL_F2: 1378 case RISCVII::VLMUL::LMUL_1: 1379 return RISCV::VRRegClassID; 1380 case RISCVII::VLMUL::LMUL_2: 1381 return RISCV::VRM2RegClassID; 1382 case RISCVII::VLMUL::LMUL_4: 1383 return RISCV::VRM4RegClassID; 1384 case RISCVII::VLMUL::LMUL_8: 1385 return RISCV::VRM8RegClassID; 1386 } 1387 } 1388 1389 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1390 RISCVII::VLMUL LMUL = getLMUL(VT); 1391 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1392 LMUL == RISCVII::VLMUL::LMUL_F4 || 1393 LMUL == RISCVII::VLMUL::LMUL_F2 || 1394 LMUL == RISCVII::VLMUL::LMUL_1) { 1395 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1396 "Unexpected subreg numbering"); 1397 return RISCV::sub_vrm1_0 + Index; 1398 } 1399 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1400 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1401 "Unexpected subreg numbering"); 1402 return RISCV::sub_vrm2_0 + Index; 1403 } 1404 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1405 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1406 "Unexpected subreg numbering"); 1407 return RISCV::sub_vrm4_0 + Index; 1408 } 1409 llvm_unreachable("Invalid vector type."); 1410 } 1411 1412 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1413 if (VT.getVectorElementType() == MVT::i1) 1414 return RISCV::VRRegClassID; 1415 return getRegClassIDForLMUL(getLMUL(VT)); 1416 } 1417 1418 // Attempt to decompose a subvector insert/extract between VecVT and 1419 // SubVecVT via subregister indices. Returns the subregister index that 1420 // can perform the subvector insert/extract with the given element index, as 1421 // well as the index corresponding to any leftover subvectors that must be 1422 // further inserted/extracted within the register class for SubVecVT. 1423 std::pair<unsigned, unsigned> 1424 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1425 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1426 const RISCVRegisterInfo *TRI) { 1427 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1428 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1429 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1430 "Register classes not ordered"); 1431 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1432 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1433 // Try to compose a subregister index that takes us from the incoming 1434 // LMUL>1 register class down to the outgoing one. At each step we half 1435 // the LMUL: 1436 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1437 // Note that this is not guaranteed to find a subregister index, such as 1438 // when we are extracting from one VR type to another. 1439 unsigned SubRegIdx = RISCV::NoSubRegister; 1440 for (const unsigned RCID : 1441 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1442 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1443 VecVT = VecVT.getHalfNumVectorElementsVT(); 1444 bool IsHi = 1445 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1446 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1447 getSubregIndexByMVT(VecVT, IsHi)); 1448 if (IsHi) 1449 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1450 } 1451 return {SubRegIdx, InsertExtractIdx}; 1452 } 1453 1454 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1455 // stores for those types. 1456 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1457 return !Subtarget.useRVVForFixedLengthVectors() || 1458 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1459 } 1460 1461 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1462 if (ScalarTy->isPointerTy()) 1463 return true; 1464 1465 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1466 ScalarTy->isIntegerTy(32)) 1467 return true; 1468 1469 if (ScalarTy->isIntegerTy(64)) 1470 return Subtarget.hasVInstructionsI64(); 1471 1472 if (ScalarTy->isHalfTy()) 1473 return Subtarget.hasVInstructionsF16(); 1474 if (ScalarTy->isFloatTy()) 1475 return Subtarget.hasVInstructionsF32(); 1476 if (ScalarTy->isDoubleTy()) 1477 return Subtarget.hasVInstructionsF64(); 1478 1479 return false; 1480 } 1481 1482 static SDValue getVLOperand(SDValue Op) { 1483 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1484 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 1485 "Unexpected opcode"); 1486 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 1487 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 1488 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1489 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 1490 if (!II) 1491 return SDValue(); 1492 return Op.getOperand(II->VLOperand + 1 + HasChain); 1493 } 1494 1495 static bool useRVVForFixedLengthVectorVT(MVT VT, 1496 const RISCVSubtarget &Subtarget) { 1497 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1498 if (!Subtarget.useRVVForFixedLengthVectors()) 1499 return false; 1500 1501 // We only support a set of vector types with a consistent maximum fixed size 1502 // across all supported vector element types to avoid legalization issues. 1503 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1504 // fixed-length vector type we support is 1024 bytes. 1505 if (VT.getFixedSizeInBits() > 1024 * 8) 1506 return false; 1507 1508 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1509 1510 MVT EltVT = VT.getVectorElementType(); 1511 1512 // Don't use RVV for vectors we cannot scalarize if required. 1513 switch (EltVT.SimpleTy) { 1514 // i1 is supported but has different rules. 1515 default: 1516 return false; 1517 case MVT::i1: 1518 // Masks can only use a single register. 1519 if (VT.getVectorNumElements() > MinVLen) 1520 return false; 1521 MinVLen /= 8; 1522 break; 1523 case MVT::i8: 1524 case MVT::i16: 1525 case MVT::i32: 1526 break; 1527 case MVT::i64: 1528 if (!Subtarget.hasVInstructionsI64()) 1529 return false; 1530 break; 1531 case MVT::f16: 1532 if (!Subtarget.hasVInstructionsF16()) 1533 return false; 1534 break; 1535 case MVT::f32: 1536 if (!Subtarget.hasVInstructionsF32()) 1537 return false; 1538 break; 1539 case MVT::f64: 1540 if (!Subtarget.hasVInstructionsF64()) 1541 return false; 1542 break; 1543 } 1544 1545 // Reject elements larger than ELEN. 1546 if (EltVT.getSizeInBits() > Subtarget.getELEN()) 1547 return false; 1548 1549 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1550 // Don't use RVV for types that don't fit. 1551 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1552 return false; 1553 1554 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1555 // the base fixed length RVV support in place. 1556 if (!VT.isPow2VectorType()) 1557 return false; 1558 1559 return true; 1560 } 1561 1562 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1563 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1564 } 1565 1566 // Return the largest legal scalable vector type that matches VT's element type. 1567 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1568 const RISCVSubtarget &Subtarget) { 1569 // This may be called before legal types are setup. 1570 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1571 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1572 "Expected legal fixed length vector!"); 1573 1574 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1575 unsigned MaxELen = Subtarget.getELEN(); 1576 1577 MVT EltVT = VT.getVectorElementType(); 1578 switch (EltVT.SimpleTy) { 1579 default: 1580 llvm_unreachable("unexpected element type for RVV container"); 1581 case MVT::i1: 1582 case MVT::i8: 1583 case MVT::i16: 1584 case MVT::i32: 1585 case MVT::i64: 1586 case MVT::f16: 1587 case MVT::f32: 1588 case MVT::f64: { 1589 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1590 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1591 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1592 unsigned NumElts = 1593 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1594 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1595 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1596 return MVT::getScalableVectorVT(EltVT, NumElts); 1597 } 1598 } 1599 } 1600 1601 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1602 const RISCVSubtarget &Subtarget) { 1603 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1604 Subtarget); 1605 } 1606 1607 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1608 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1609 } 1610 1611 // Grow V to consume an entire RVV register. 1612 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1613 const RISCVSubtarget &Subtarget) { 1614 assert(VT.isScalableVector() && 1615 "Expected to convert into a scalable vector!"); 1616 assert(V.getValueType().isFixedLengthVector() && 1617 "Expected a fixed length vector operand!"); 1618 SDLoc DL(V); 1619 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1620 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1621 } 1622 1623 // Shrink V so it's just big enough to maintain a VT's worth of data. 1624 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1625 const RISCVSubtarget &Subtarget) { 1626 assert(VT.isFixedLengthVector() && 1627 "Expected to convert into a fixed length vector!"); 1628 assert(V.getValueType().isScalableVector() && 1629 "Expected a scalable vector operand!"); 1630 SDLoc DL(V); 1631 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1632 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1633 } 1634 1635 /// Return the type of the mask type suitable for masking the provided 1636 /// vector type. This is simply an i1 element type vector of the same 1637 /// (possibly scalable) length. 1638 static MVT getMaskTypeFor(EVT VecVT) { 1639 assert(VecVT.isVector()); 1640 ElementCount EC = VecVT.getVectorElementCount(); 1641 return MVT::getVectorVT(MVT::i1, EC); 1642 } 1643 1644 /// Creates an all ones mask suitable for masking a vector of type VecTy with 1645 /// vector length VL. . 1646 static SDValue getAllOnesMask(MVT VecVT, SDValue VL, SDLoc DL, 1647 SelectionDAG &DAG) { 1648 MVT MaskVT = getMaskTypeFor(VecVT); 1649 return DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1650 } 1651 1652 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1653 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1654 // the vector type that it is contained in. 1655 static std::pair<SDValue, SDValue> 1656 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1657 const RISCVSubtarget &Subtarget) { 1658 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1659 MVT XLenVT = Subtarget.getXLenVT(); 1660 SDValue VL = VecVT.isFixedLengthVector() 1661 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1662 : DAG.getRegister(RISCV::X0, XLenVT); 1663 SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG); 1664 return {Mask, VL}; 1665 } 1666 1667 // As above but assuming the given type is a scalable vector type. 1668 static std::pair<SDValue, SDValue> 1669 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1670 const RISCVSubtarget &Subtarget) { 1671 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1672 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1673 } 1674 1675 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1676 // of either is (currently) supported. This can get us into an infinite loop 1677 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1678 // as a ..., etc. 1679 // Until either (or both) of these can reliably lower any node, reporting that 1680 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1681 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1682 // which is not desirable. 1683 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1684 EVT VT, unsigned DefinedValues) const { 1685 return false; 1686 } 1687 1688 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, 1689 const RISCVSubtarget &Subtarget) { 1690 // RISCV FP-to-int conversions saturate to the destination register size, but 1691 // don't produce 0 for nan. We can use a conversion instruction and fix the 1692 // nan case with a compare and a select. 1693 SDValue Src = Op.getOperand(0); 1694 1695 EVT DstVT = Op.getValueType(); 1696 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1697 1698 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1699 unsigned Opc; 1700 if (SatVT == DstVT) 1701 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 1702 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1703 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 1704 else 1705 return SDValue(); 1706 // FIXME: Support other SatVTs by clamping before or after the conversion. 1707 1708 SDLoc DL(Op); 1709 SDValue FpToInt = DAG.getNode( 1710 Opc, DL, DstVT, Src, 1711 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT())); 1712 1713 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1714 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1715 } 1716 1717 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1718 // and back. Taking care to avoid converting values that are nan or already 1719 // correct. 1720 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1721 // have FRM dependencies modeled yet. 1722 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1723 MVT VT = Op.getSimpleValueType(); 1724 assert(VT.isVector() && "Unexpected type"); 1725 1726 SDLoc DL(Op); 1727 1728 // Freeze the source since we are increasing the number of uses. 1729 SDValue Src = DAG.getFreeze(Op.getOperand(0)); 1730 1731 // Truncate to integer and convert back to FP. 1732 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1733 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1734 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1735 1736 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1737 1738 if (Op.getOpcode() == ISD::FCEIL) { 1739 // If the truncated value is the greater than or equal to the original 1740 // value, we've computed the ceil. Otherwise, we went the wrong way and 1741 // need to increase by 1. 1742 // FIXME: This should use a masked operation. Handle here or in isel? 1743 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1744 DAG.getConstantFP(1.0, DL, VT)); 1745 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1746 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1747 } else if (Op.getOpcode() == ISD::FFLOOR) { 1748 // If the truncated value is the less than or equal to the original value, 1749 // we've computed the floor. Otherwise, we went the wrong way and need to 1750 // decrease by 1. 1751 // FIXME: This should use a masked operation. Handle here or in isel? 1752 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1753 DAG.getConstantFP(1.0, DL, VT)); 1754 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1755 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1756 } 1757 1758 // Restore the original sign so that -0.0 is preserved. 1759 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1760 1761 // Determine the largest integer that can be represented exactly. This and 1762 // values larger than it don't have any fractional bits so don't need to 1763 // be converted. 1764 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1765 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1766 APFloat MaxVal = APFloat(FltSem); 1767 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1768 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1769 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1770 1771 // If abs(Src) was larger than MaxVal or nan, keep it. 1772 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1773 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1774 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1775 } 1776 1777 // ISD::FROUND is defined to round to nearest with ties rounding away from 0. 1778 // This mode isn't supported in vector hardware on RISCV. But as long as we 1779 // aren't compiling with trapping math, we can emulate this with 1780 // floor(X + copysign(nextafter(0.5, 0.0), X)). 1781 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM 1782 // dependencies modeled yet. 1783 // FIXME: Use masked operations to avoid final merge. 1784 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) { 1785 MVT VT = Op.getSimpleValueType(); 1786 assert(VT.isVector() && "Unexpected type"); 1787 1788 SDLoc DL(Op); 1789 1790 // Freeze the source since we are increasing the number of uses. 1791 SDValue Src = DAG.getFreeze(Op.getOperand(0)); 1792 1793 // We do the conversion on the absolute value and fix the sign at the end. 1794 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1795 1796 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1797 bool Ignored; 1798 APFloat Point5Pred = APFloat(0.5f); 1799 Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored); 1800 Point5Pred.next(/*nextDown*/ true); 1801 1802 // Add the adjustment. 1803 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs, 1804 DAG.getConstantFP(Point5Pred, DL, VT)); 1805 1806 // Truncate to integer and convert back to fp. 1807 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1808 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust); 1809 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1810 1811 // Restore the original sign. 1812 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1813 1814 // Determine the largest integer that can be represented exactly. This and 1815 // values larger than it don't have any fractional bits so don't need to 1816 // be converted. 1817 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1818 APFloat MaxVal = APFloat(FltSem); 1819 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1820 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1821 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1822 1823 // If abs(Src) was larger than MaxVal or nan, keep it. 1824 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1825 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1826 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1827 } 1828 1829 struct VIDSequence { 1830 int64_t StepNumerator; 1831 unsigned StepDenominator; 1832 int64_t Addend; 1833 }; 1834 1835 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1836 // to the (non-zero) step S and start value X. This can be then lowered as the 1837 // RVV sequence (VID * S) + X, for example. 1838 // The step S is represented as an integer numerator divided by a positive 1839 // denominator. Note that the implementation currently only identifies 1840 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1841 // cannot detect 2/3, for example. 1842 // Note that this method will also match potentially unappealing index 1843 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1844 // determine whether this is worth generating code for. 1845 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1846 unsigned NumElts = Op.getNumOperands(); 1847 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1848 if (!Op.getValueType().isInteger()) 1849 return None; 1850 1851 Optional<unsigned> SeqStepDenom; 1852 Optional<int64_t> SeqStepNum, SeqAddend; 1853 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1854 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1855 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1856 // Assume undef elements match the sequence; we just have to be careful 1857 // when interpolating across them. 1858 if (Op.getOperand(Idx).isUndef()) 1859 continue; 1860 // The BUILD_VECTOR must be all constants. 1861 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1862 return None; 1863 1864 uint64_t Val = Op.getConstantOperandVal(Idx) & 1865 maskTrailingOnes<uint64_t>(EltSizeInBits); 1866 1867 if (PrevElt) { 1868 // Calculate the step since the last non-undef element, and ensure 1869 // it's consistent across the entire sequence. 1870 unsigned IdxDiff = Idx - PrevElt->second; 1871 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1872 1873 // A zero-value value difference means that we're somewhere in the middle 1874 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1875 // step change before evaluating the sequence. 1876 if (ValDiff == 0) 1877 continue; 1878 1879 int64_t Remainder = ValDiff % IdxDiff; 1880 // Normalize the step if it's greater than 1. 1881 if (Remainder != ValDiff) { 1882 // The difference must cleanly divide the element span. 1883 if (Remainder != 0) 1884 return None; 1885 ValDiff /= IdxDiff; 1886 IdxDiff = 1; 1887 } 1888 1889 if (!SeqStepNum) 1890 SeqStepNum = ValDiff; 1891 else if (ValDiff != SeqStepNum) 1892 return None; 1893 1894 if (!SeqStepDenom) 1895 SeqStepDenom = IdxDiff; 1896 else if (IdxDiff != *SeqStepDenom) 1897 return None; 1898 } 1899 1900 // Record this non-undef element for later. 1901 if (!PrevElt || PrevElt->first != Val) 1902 PrevElt = std::make_pair(Val, Idx); 1903 } 1904 1905 // We need to have logged a step for this to count as a legal index sequence. 1906 if (!SeqStepNum || !SeqStepDenom) 1907 return None; 1908 1909 // Loop back through the sequence and validate elements we might have skipped 1910 // while waiting for a valid step. While doing this, log any sequence addend. 1911 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1912 if (Op.getOperand(Idx).isUndef()) 1913 continue; 1914 uint64_t Val = Op.getConstantOperandVal(Idx) & 1915 maskTrailingOnes<uint64_t>(EltSizeInBits); 1916 uint64_t ExpectedVal = 1917 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1918 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1919 if (!SeqAddend) 1920 SeqAddend = Addend; 1921 else if (Addend != SeqAddend) 1922 return None; 1923 } 1924 1925 assert(SeqAddend && "Must have an addend if we have a step"); 1926 1927 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1928 } 1929 1930 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT 1931 // and lower it as a VRGATHER_VX_VL from the source vector. 1932 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL, 1933 SelectionDAG &DAG, 1934 const RISCVSubtarget &Subtarget) { 1935 if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1936 return SDValue(); 1937 SDValue Vec = SplatVal.getOperand(0); 1938 // Only perform this optimization on vectors of the same size for simplicity. 1939 if (Vec.getValueType() != VT) 1940 return SDValue(); 1941 SDValue Idx = SplatVal.getOperand(1); 1942 // The index must be a legal type. 1943 if (Idx.getValueType() != Subtarget.getXLenVT()) 1944 return SDValue(); 1945 1946 MVT ContainerVT = VT; 1947 if (VT.isFixedLengthVector()) { 1948 ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1949 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 1950 } 1951 1952 SDValue Mask, VL; 1953 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1954 1955 SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec, 1956 Idx, Mask, VL); 1957 1958 if (!VT.isFixedLengthVector()) 1959 return Gather; 1960 1961 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1962 } 1963 1964 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1965 const RISCVSubtarget &Subtarget) { 1966 MVT VT = Op.getSimpleValueType(); 1967 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1968 1969 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1970 1971 SDLoc DL(Op); 1972 SDValue Mask, VL; 1973 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1974 1975 MVT XLenVT = Subtarget.getXLenVT(); 1976 unsigned NumElts = Op.getNumOperands(); 1977 1978 if (VT.getVectorElementType() == MVT::i1) { 1979 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1980 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1981 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1982 } 1983 1984 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1985 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1986 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1987 } 1988 1989 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1990 // scalar integer chunks whose bit-width depends on the number of mask 1991 // bits and XLEN. 1992 // First, determine the most appropriate scalar integer type to use. This 1993 // is at most XLenVT, but may be shrunk to a smaller vector element type 1994 // according to the size of the final vector - use i8 chunks rather than 1995 // XLenVT if we're producing a v8i1. This results in more consistent 1996 // codegen across RV32 and RV64. 1997 unsigned NumViaIntegerBits = 1998 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1999 NumViaIntegerBits = std::min(NumViaIntegerBits, Subtarget.getELEN()); 2000 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 2001 // If we have to use more than one INSERT_VECTOR_ELT then this 2002 // optimization is likely to increase code size; avoid peforming it in 2003 // such a case. We can use a load from a constant pool in this case. 2004 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 2005 return SDValue(); 2006 // Now we can create our integer vector type. Note that it may be larger 2007 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 2008 MVT IntegerViaVecVT = 2009 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 2010 divideCeil(NumElts, NumViaIntegerBits)); 2011 2012 uint64_t Bits = 0; 2013 unsigned BitPos = 0, IntegerEltIdx = 0; 2014 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 2015 2016 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 2017 // Once we accumulate enough bits to fill our scalar type, insert into 2018 // our vector and clear our accumulated data. 2019 if (I != 0 && I % NumViaIntegerBits == 0) { 2020 if (NumViaIntegerBits <= 32) 2021 Bits = SignExtend64<32>(Bits); 2022 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2023 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 2024 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2025 Bits = 0; 2026 BitPos = 0; 2027 IntegerEltIdx++; 2028 } 2029 SDValue V = Op.getOperand(I); 2030 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 2031 Bits |= ((uint64_t)BitValue << BitPos); 2032 } 2033 2034 // Insert the (remaining) scalar value into position in our integer 2035 // vector type. 2036 if (NumViaIntegerBits <= 32) 2037 Bits = SignExtend64<32>(Bits); 2038 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2039 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 2040 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2041 2042 if (NumElts < NumViaIntegerBits) { 2043 // If we're producing a smaller vector than our minimum legal integer 2044 // type, bitcast to the equivalent (known-legal) mask type, and extract 2045 // our final mask. 2046 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 2047 Vec = DAG.getBitcast(MVT::v8i1, Vec); 2048 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 2049 DAG.getConstant(0, DL, XLenVT)); 2050 } else { 2051 // Else we must have produced an integer type with the same size as the 2052 // mask type; bitcast for the final result. 2053 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 2054 Vec = DAG.getBitcast(VT, Vec); 2055 } 2056 2057 return Vec; 2058 } 2059 2060 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 2061 // vector type, we have a legal equivalently-sized i8 type, so we can use 2062 // that. 2063 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 2064 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 2065 2066 SDValue WideVec; 2067 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2068 // For a splat, perform a scalar truncate before creating the wider 2069 // vector. 2070 assert(Splat.getValueType() == XLenVT && 2071 "Unexpected type for i1 splat value"); 2072 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 2073 DAG.getConstant(1, DL, XLenVT)); 2074 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 2075 } else { 2076 SmallVector<SDValue, 8> Ops(Op->op_values()); 2077 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 2078 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 2079 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 2080 } 2081 2082 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 2083 } 2084 2085 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2086 if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget)) 2087 return Gather; 2088 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 2089 : RISCVISD::VMV_V_X_VL; 2090 Splat = 2091 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL); 2092 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2093 } 2094 2095 // Try and match index sequences, which we can lower to the vid instruction 2096 // with optional modifications. An all-undef vector is matched by 2097 // getSplatValue, above. 2098 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 2099 int64_t StepNumerator = SimpleVID->StepNumerator; 2100 unsigned StepDenominator = SimpleVID->StepDenominator; 2101 int64_t Addend = SimpleVID->Addend; 2102 2103 assert(StepNumerator != 0 && "Invalid step"); 2104 bool Negate = false; 2105 int64_t SplatStepVal = StepNumerator; 2106 unsigned StepOpcode = ISD::MUL; 2107 if (StepNumerator != 1) { 2108 if (isPowerOf2_64(std::abs(StepNumerator))) { 2109 Negate = StepNumerator < 0; 2110 StepOpcode = ISD::SHL; 2111 SplatStepVal = Log2_64(std::abs(StepNumerator)); 2112 } 2113 } 2114 2115 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 2116 // threshold since it's the immediate value many RVV instructions accept. 2117 // There is no vmul.vi instruction so ensure multiply constant can fit in 2118 // a single addi instruction. 2119 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 2120 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 2121 isPowerOf2_32(StepDenominator) && 2122 (SplatStepVal >= 0 || StepDenominator == 1) && isInt<5>(Addend)) { 2123 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 2124 // Convert right out of the scalable type so we can use standard ISD 2125 // nodes for the rest of the computation. If we used scalable types with 2126 // these, we'd lose the fixed-length vector info and generate worse 2127 // vsetvli code. 2128 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 2129 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 2130 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 2131 SDValue SplatStep = DAG.getSplatBuildVector( 2132 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 2133 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); 2134 } 2135 if (StepDenominator != 1) { 2136 SDValue SplatStep = DAG.getSplatBuildVector( 2137 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 2138 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 2139 } 2140 if (Addend != 0 || Negate) { 2141 SDValue SplatAddend = DAG.getSplatBuildVector( 2142 VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 2143 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 2144 } 2145 return VID; 2146 } 2147 } 2148 2149 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2150 // when re-interpreted as a vector with a larger element type. For example, 2151 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2152 // could be instead splat as 2153 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2154 // TODO: This optimization could also work on non-constant splats, but it 2155 // would require bit-manipulation instructions to construct the splat value. 2156 SmallVector<SDValue> Sequence; 2157 unsigned EltBitSize = VT.getScalarSizeInBits(); 2158 const auto *BV = cast<BuildVectorSDNode>(Op); 2159 if (VT.isInteger() && EltBitSize < 64 && 2160 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2161 BV->getRepeatedSequence(Sequence) && 2162 (Sequence.size() * EltBitSize) <= 64) { 2163 unsigned SeqLen = Sequence.size(); 2164 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2165 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2166 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2167 ViaIntVT == MVT::i64) && 2168 "Unexpected sequence type"); 2169 2170 unsigned EltIdx = 0; 2171 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2172 uint64_t SplatValue = 0; 2173 // Construct the amalgamated value which can be splatted as this larger 2174 // vector type. 2175 for (const auto &SeqV : Sequence) { 2176 if (!SeqV.isUndef()) 2177 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2178 << (EltIdx * EltBitSize)); 2179 EltIdx++; 2180 } 2181 2182 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2183 // achieve better constant materializion. 2184 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2185 SplatValue = SignExtend64<32>(SplatValue); 2186 2187 // Since we can't introduce illegal i64 types at this stage, we can only 2188 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2189 // way we can use RVV instructions to splat. 2190 assert((ViaIntVT.bitsLE(XLenVT) || 2191 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2192 "Unexpected bitcast sequence"); 2193 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2194 SDValue ViaVL = 2195 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2196 MVT ViaContainerVT = 2197 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2198 SDValue Splat = 2199 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2200 DAG.getUNDEF(ViaContainerVT), 2201 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2202 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2203 return DAG.getBitcast(VT, Splat); 2204 } 2205 } 2206 2207 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2208 // which constitute a large proportion of the elements. In such cases we can 2209 // splat a vector with the dominant element and make up the shortfall with 2210 // INSERT_VECTOR_ELTs. 2211 // Note that this includes vectors of 2 elements by association. The 2212 // upper-most element is the "dominant" one, allowing us to use a splat to 2213 // "insert" the upper element, and an insert of the lower element at position 2214 // 0, which improves codegen. 2215 SDValue DominantValue; 2216 unsigned MostCommonCount = 0; 2217 DenseMap<SDValue, unsigned> ValueCounts; 2218 unsigned NumUndefElts = 2219 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2220 2221 // Track the number of scalar loads we know we'd be inserting, estimated as 2222 // any non-zero floating-point constant. Other kinds of element are either 2223 // already in registers or are materialized on demand. The threshold at which 2224 // a vector load is more desirable than several scalar materializion and 2225 // vector-insertion instructions is not known. 2226 unsigned NumScalarLoads = 0; 2227 2228 for (SDValue V : Op->op_values()) { 2229 if (V.isUndef()) 2230 continue; 2231 2232 ValueCounts.insert(std::make_pair(V, 0)); 2233 unsigned &Count = ValueCounts[V]; 2234 2235 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2236 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2237 2238 // Is this value dominant? In case of a tie, prefer the highest element as 2239 // it's cheaper to insert near the beginning of a vector than it is at the 2240 // end. 2241 if (++Count >= MostCommonCount) { 2242 DominantValue = V; 2243 MostCommonCount = Count; 2244 } 2245 } 2246 2247 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2248 unsigned NumDefElts = NumElts - NumUndefElts; 2249 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2250 2251 // Don't perform this optimization when optimizing for size, since 2252 // materializing elements and inserting them tends to cause code bloat. 2253 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2254 ((MostCommonCount > DominantValueCountThreshold) || 2255 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2256 // Start by splatting the most common element. 2257 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2258 2259 DenseSet<SDValue> Processed{DominantValue}; 2260 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2261 for (const auto &OpIdx : enumerate(Op->ops())) { 2262 const SDValue &V = OpIdx.value(); 2263 if (V.isUndef() || !Processed.insert(V).second) 2264 continue; 2265 if (ValueCounts[V] == 1) { 2266 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2267 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2268 } else { 2269 // Blend in all instances of this value using a VSELECT, using a 2270 // mask where each bit signals whether that element is the one 2271 // we're after. 2272 SmallVector<SDValue> Ops; 2273 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2274 return DAG.getConstant(V == V1, DL, XLenVT); 2275 }); 2276 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2277 DAG.getBuildVector(SelMaskTy, DL, Ops), 2278 DAG.getSplatBuildVector(VT, DL, V), Vec); 2279 } 2280 } 2281 2282 return Vec; 2283 } 2284 2285 return SDValue(); 2286 } 2287 2288 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, 2289 SDValue Lo, SDValue Hi, SDValue VL, 2290 SelectionDAG &DAG) { 2291 if (!Passthru) 2292 Passthru = DAG.getUNDEF(VT); 2293 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2294 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2295 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2296 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2297 // node in order to try and match RVV vector/scalar instructions. 2298 if ((LoC >> 31) == HiC) 2299 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL); 2300 2301 // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use 2302 // vmv.v.x whose EEW = 32 to lower it. 2303 auto *Const = dyn_cast<ConstantSDNode>(VL); 2304 if (LoC == HiC && Const && Const->isAllOnesValue()) { 2305 MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 2306 // TODO: if vl <= min(VLMAX), we can also do this. But we could not 2307 // access the subtarget here now. 2308 auto InterVec = DAG.getNode( 2309 RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo, 2310 DAG.getRegister(RISCV::X0, MVT::i32)); 2311 return DAG.getNode(ISD::BITCAST, DL, VT, InterVec); 2312 } 2313 } 2314 2315 // Fall back to a stack store and stride x0 vector load. 2316 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo, 2317 Hi, VL); 2318 } 2319 2320 // Called by type legalization to handle splat of i64 on RV32. 2321 // FIXME: We can optimize this when the type has sign or zero bits in one 2322 // of the halves. 2323 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, 2324 SDValue Scalar, SDValue VL, 2325 SelectionDAG &DAG) { 2326 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2327 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2328 DAG.getConstant(0, DL, MVT::i32)); 2329 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2330 DAG.getConstant(1, DL, MVT::i32)); 2331 return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG); 2332 } 2333 2334 // This function lowers a splat of a scalar operand Splat with the vector 2335 // length VL. It ensures the final sequence is type legal, which is useful when 2336 // lowering a splat after type legalization. 2337 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL, 2338 MVT VT, SDLoc DL, SelectionDAG &DAG, 2339 const RISCVSubtarget &Subtarget) { 2340 bool HasPassthru = Passthru && !Passthru.isUndef(); 2341 if (!HasPassthru && !Passthru) 2342 Passthru = DAG.getUNDEF(VT); 2343 if (VT.isFloatingPoint()) { 2344 // If VL is 1, we could use vfmv.s.f. 2345 if (isOneConstant(VL)) 2346 return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL); 2347 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL); 2348 } 2349 2350 MVT XLenVT = Subtarget.getXLenVT(); 2351 2352 // Simplest case is that the operand needs to be promoted to XLenVT. 2353 if (Scalar.getValueType().bitsLE(XLenVT)) { 2354 // If the operand is a constant, sign extend to increase our chances 2355 // of being able to use a .vi instruction. ANY_EXTEND would become a 2356 // a zero extend and the simm5 check in isel would fail. 2357 // FIXME: Should we ignore the upper bits in isel instead? 2358 unsigned ExtOpc = 2359 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2360 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2361 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar); 2362 // If VL is 1 and the scalar value won't benefit from immediate, we could 2363 // use vmv.s.x. 2364 if (isOneConstant(VL) && 2365 (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue()))) 2366 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL); 2367 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL); 2368 } 2369 2370 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2371 "Unexpected scalar for splat lowering!"); 2372 2373 if (isOneConstant(VL) && isNullConstant(Scalar)) 2374 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, 2375 DAG.getConstant(0, DL, XLenVT), VL); 2376 2377 // Otherwise use the more complicated splatting algorithm. 2378 return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG); 2379 } 2380 2381 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources, 2382 const RISCVSubtarget &Subtarget) { 2383 // We need to be able to widen elements to the next larger integer type. 2384 if (VT.getScalarSizeInBits() >= Subtarget.getELEN()) 2385 return false; 2386 2387 int Size = Mask.size(); 2388 assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); 2389 2390 int Srcs[] = {-1, -1}; 2391 for (int i = 0; i != Size; ++i) { 2392 // Ignore undef elements. 2393 if (Mask[i] < 0) 2394 continue; 2395 2396 // Is this an even or odd element. 2397 int Pol = i % 2; 2398 2399 // Ensure we consistently use the same source for this element polarity. 2400 int Src = Mask[i] / Size; 2401 if (Srcs[Pol] < 0) 2402 Srcs[Pol] = Src; 2403 if (Srcs[Pol] != Src) 2404 return false; 2405 2406 // Make sure the element within the source is appropriate for this element 2407 // in the destination. 2408 int Elt = Mask[i] % Size; 2409 if (Elt != i / 2) 2410 return false; 2411 } 2412 2413 // We need to find a source for each polarity and they can't be the same. 2414 if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1]) 2415 return false; 2416 2417 // Swap the sources if the second source was in the even polarity. 2418 SwapSources = Srcs[0] > Srcs[1]; 2419 2420 return true; 2421 } 2422 2423 /// Match shuffles that concatenate two vectors, rotate the concatenation, 2424 /// and then extract the original number of elements from the rotated result. 2425 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The 2426 /// returned rotation amount is for a rotate right, where elements move from 2427 /// higher elements to lower elements. \p LoSrc indicates the first source 2428 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector 2429 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be 2430 /// 0 or 1 if a rotation is found. 2431 /// 2432 /// NOTE: We talk about rotate to the right which matches how bit shift and 2433 /// rotate instructions are described where LSBs are on the right, but LLVM IR 2434 /// and the table below write vectors with the lowest elements on the left. 2435 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) { 2436 int Size = Mask.size(); 2437 2438 // We need to detect various ways of spelling a rotation: 2439 // [11, 12, 13, 14, 15, 0, 1, 2] 2440 // [-1, 12, 13, 14, -1, -1, 1, -1] 2441 // [-1, -1, -1, -1, -1, -1, 1, 2] 2442 // [ 3, 4, 5, 6, 7, 8, 9, 10] 2443 // [-1, 4, 5, 6, -1, -1, 9, -1] 2444 // [-1, 4, 5, 6, -1, -1, -1, -1] 2445 int Rotation = 0; 2446 LoSrc = -1; 2447 HiSrc = -1; 2448 for (int i = 0; i != Size; ++i) { 2449 int M = Mask[i]; 2450 if (M < 0) 2451 continue; 2452 2453 // Determine where a rotate vector would have started. 2454 int StartIdx = i - (M % Size); 2455 // The identity rotation isn't interesting, stop. 2456 if (StartIdx == 0) 2457 return -1; 2458 2459 // If we found the tail of a vector the rotation must be the missing 2460 // front. If we found the head of a vector, it must be how much of the 2461 // head. 2462 int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx; 2463 2464 if (Rotation == 0) 2465 Rotation = CandidateRotation; 2466 else if (Rotation != CandidateRotation) 2467 // The rotations don't match, so we can't match this mask. 2468 return -1; 2469 2470 // Compute which value this mask is pointing at. 2471 int MaskSrc = M < Size ? 0 : 1; 2472 2473 // Compute which of the two target values this index should be assigned to. 2474 // This reflects whether the high elements are remaining or the low elemnts 2475 // are remaining. 2476 int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc; 2477 2478 // Either set up this value if we've not encountered it before, or check 2479 // that it remains consistent. 2480 if (TargetSrc < 0) 2481 TargetSrc = MaskSrc; 2482 else if (TargetSrc != MaskSrc) 2483 // This may be a rotation, but it pulls from the inputs in some 2484 // unsupported interleaving. 2485 return -1; 2486 } 2487 2488 // Check that we successfully analyzed the mask, and normalize the results. 2489 assert(Rotation != 0 && "Failed to locate a viable rotation!"); 2490 assert((LoSrc >= 0 || HiSrc >= 0) && 2491 "Failed to find a rotated input vector!"); 2492 2493 return Rotation; 2494 } 2495 2496 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2497 const RISCVSubtarget &Subtarget) { 2498 SDValue V1 = Op.getOperand(0); 2499 SDValue V2 = Op.getOperand(1); 2500 SDLoc DL(Op); 2501 MVT XLenVT = Subtarget.getXLenVT(); 2502 MVT VT = Op.getSimpleValueType(); 2503 unsigned NumElts = VT.getVectorNumElements(); 2504 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2505 2506 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2507 2508 SDValue TrueMask, VL; 2509 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2510 2511 if (SVN->isSplat()) { 2512 const int Lane = SVN->getSplatIndex(); 2513 if (Lane >= 0) { 2514 MVT SVT = VT.getVectorElementType(); 2515 2516 // Turn splatted vector load into a strided load with an X0 stride. 2517 SDValue V = V1; 2518 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2519 // with undef. 2520 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2521 int Offset = Lane; 2522 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2523 int OpElements = 2524 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2525 V = V.getOperand(Offset / OpElements); 2526 Offset %= OpElements; 2527 } 2528 2529 // We need to ensure the load isn't atomic or volatile. 2530 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2531 auto *Ld = cast<LoadSDNode>(V); 2532 Offset *= SVT.getStoreSize(); 2533 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2534 TypeSize::Fixed(Offset), DL); 2535 2536 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2537 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2538 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2539 SDValue IntID = 2540 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2541 SDValue Ops[] = {Ld->getChain(), 2542 IntID, 2543 DAG.getUNDEF(ContainerVT), 2544 NewAddr, 2545 DAG.getRegister(RISCV::X0, XLenVT), 2546 VL}; 2547 SDValue NewLoad = DAG.getMemIntrinsicNode( 2548 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2549 DAG.getMachineFunction().getMachineMemOperand( 2550 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2551 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2552 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2553 } 2554 2555 // Otherwise use a scalar load and splat. This will give the best 2556 // opportunity to fold a splat into the operation. ISel can turn it into 2557 // the x0 strided load if we aren't able to fold away the select. 2558 if (SVT.isFloatingPoint()) 2559 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2560 Ld->getPointerInfo().getWithOffset(Offset), 2561 Ld->getOriginalAlign(), 2562 Ld->getMemOperand()->getFlags()); 2563 else 2564 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2565 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2566 Ld->getOriginalAlign(), 2567 Ld->getMemOperand()->getFlags()); 2568 DAG.makeEquivalentMemoryOrdering(Ld, V); 2569 2570 unsigned Opc = 2571 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2572 SDValue Splat = 2573 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL); 2574 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2575 } 2576 2577 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2578 assert(Lane < (int)NumElts && "Unexpected lane!"); 2579 SDValue Gather = 2580 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2581 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2582 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2583 } 2584 } 2585 2586 ArrayRef<int> Mask = SVN->getMask(); 2587 2588 // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may 2589 // be undef which can be handled with a single SLIDEDOWN/UP. 2590 int LoSrc, HiSrc; 2591 int Rotation = isElementRotate(LoSrc, HiSrc, Mask); 2592 if (Rotation > 0) { 2593 SDValue LoV, HiV; 2594 if (LoSrc >= 0) { 2595 LoV = LoSrc == 0 ? V1 : V2; 2596 LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget); 2597 } 2598 if (HiSrc >= 0) { 2599 HiV = HiSrc == 0 ? V1 : V2; 2600 HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget); 2601 } 2602 2603 // We found a rotation. We need to slide HiV down by Rotation. Then we need 2604 // to slide LoV up by (NumElts - Rotation). 2605 unsigned InvRotate = NumElts - Rotation; 2606 2607 SDValue Res = DAG.getUNDEF(ContainerVT); 2608 if (HiV) { 2609 // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN. 2610 // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it 2611 // causes multiple vsetvlis in some test cases such as lowering 2612 // reduce.mul 2613 SDValue DownVL = VL; 2614 if (LoV) 2615 DownVL = DAG.getConstant(InvRotate, DL, XLenVT); 2616 Res = 2617 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV, 2618 DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL); 2619 } 2620 if (LoV) 2621 Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV, 2622 DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL); 2623 2624 return convertFromScalableVector(VT, Res, DAG, Subtarget); 2625 } 2626 2627 // Detect an interleave shuffle and lower to 2628 // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1)) 2629 bool SwapSources; 2630 if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) { 2631 // Swap sources if needed. 2632 if (SwapSources) 2633 std::swap(V1, V2); 2634 2635 // Extract the lower half of the vectors. 2636 MVT HalfVT = VT.getHalfNumVectorElementsVT(); 2637 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1, 2638 DAG.getConstant(0, DL, XLenVT)); 2639 V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2, 2640 DAG.getConstant(0, DL, XLenVT)); 2641 2642 // Double the element width and halve the number of elements in an int type. 2643 unsigned EltBits = VT.getScalarSizeInBits(); 2644 MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2); 2645 MVT WideIntVT = 2646 MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2); 2647 // Convert this to a scalable vector. We need to base this on the 2648 // destination size to ensure there's always a type with a smaller LMUL. 2649 MVT WideIntContainerVT = 2650 getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget); 2651 2652 // Convert sources to scalable vectors with the same element count as the 2653 // larger type. 2654 MVT HalfContainerVT = MVT::getVectorVT( 2655 VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount()); 2656 V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget); 2657 V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget); 2658 2659 // Cast sources to integer. 2660 MVT IntEltVT = MVT::getIntegerVT(EltBits); 2661 MVT IntHalfVT = 2662 MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount()); 2663 V1 = DAG.getBitcast(IntHalfVT, V1); 2664 V2 = DAG.getBitcast(IntHalfVT, V2); 2665 2666 // Freeze V2 since we use it twice and we need to be sure that the add and 2667 // multiply see the same value. 2668 V2 = DAG.getFreeze(V2); 2669 2670 // Recreate TrueMask using the widened type's element count. 2671 TrueMask = getAllOnesMask(HalfContainerVT, VL, DL, DAG); 2672 2673 // Widen V1 and V2 with 0s and add one copy of V2 to V1. 2674 SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1, 2675 V2, TrueMask, VL); 2676 // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer. 2677 SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT, 2678 DAG.getUNDEF(IntHalfVT), 2679 DAG.getAllOnesConstant(DL, XLenVT)); 2680 SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT, 2681 V2, Multiplier, TrueMask, VL); 2682 // Add the new copies to our previous addition giving us 2^eltbits copies of 2683 // V2. This is equivalent to shifting V2 left by eltbits. This should 2684 // combine with the vwmulu.vv above to form vwmaccu.vv. 2685 Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul, 2686 TrueMask, VL); 2687 // Cast back to ContainerVT. We need to re-create a new ContainerVT in case 2688 // WideIntContainerVT is a larger fractional LMUL than implied by the fixed 2689 // vector VT. 2690 ContainerVT = 2691 MVT::getVectorVT(VT.getVectorElementType(), 2692 WideIntContainerVT.getVectorElementCount() * 2); 2693 Add = DAG.getBitcast(ContainerVT, Add); 2694 return convertFromScalableVector(VT, Add, DAG, Subtarget); 2695 } 2696 2697 // Detect shuffles which can be re-expressed as vector selects; these are 2698 // shuffles in which each element in the destination is taken from an element 2699 // at the corresponding index in either source vectors. 2700 bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) { 2701 int MaskIndex = MaskIdx.value(); 2702 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2703 }); 2704 2705 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2706 2707 SmallVector<SDValue> MaskVals; 2708 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2709 // merged with a second vrgather. 2710 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2711 2712 // By default we preserve the original operand order, and use a mask to 2713 // select LHS as true and RHS as false. However, since RVV vector selects may 2714 // feature splats but only on the LHS, we may choose to invert our mask and 2715 // instead select between RHS and LHS. 2716 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2717 bool InvertMask = IsSelect == SwapOps; 2718 2719 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2720 // half. 2721 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2722 2723 // Now construct the mask that will be used by the vselect or blended 2724 // vrgather operation. For vrgathers, construct the appropriate indices into 2725 // each vector. 2726 for (int MaskIndex : Mask) { 2727 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2728 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2729 if (!IsSelect) { 2730 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2731 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2732 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2733 : DAG.getUNDEF(XLenVT)); 2734 GatherIndicesRHS.push_back( 2735 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2736 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2737 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2738 ++LHSIndexCounts[MaskIndex]; 2739 if (!IsLHSOrUndefIndex) 2740 ++RHSIndexCounts[MaskIndex - NumElts]; 2741 } 2742 } 2743 2744 if (SwapOps) { 2745 std::swap(V1, V2); 2746 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2747 } 2748 2749 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2750 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2751 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2752 2753 if (IsSelect) 2754 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2755 2756 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2757 // On such a large vector we're unable to use i8 as the index type. 2758 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2759 // may involve vector splitting if we're already at LMUL=8, or our 2760 // user-supplied maximum fixed-length LMUL. 2761 return SDValue(); 2762 } 2763 2764 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2765 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2766 MVT IndexVT = VT.changeTypeToInteger(); 2767 // Since we can't introduce illegal index types at this stage, use i16 and 2768 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2769 // than XLenVT. 2770 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2771 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2772 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2773 } 2774 2775 MVT IndexContainerVT = 2776 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2777 2778 SDValue Gather; 2779 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2780 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2781 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2782 Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG, 2783 Subtarget); 2784 } else { 2785 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2786 // If only one index is used, we can use a "splat" vrgather. 2787 // TODO: We can splat the most-common index and fix-up any stragglers, if 2788 // that's beneficial. 2789 if (LHSIndexCounts.size() == 1) { 2790 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2791 Gather = 2792 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2793 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2794 } else { 2795 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2796 LHSIndices = 2797 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2798 2799 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2800 TrueMask, VL); 2801 } 2802 } 2803 2804 // If a second vector operand is used by this shuffle, blend it in with an 2805 // additional vrgather. 2806 if (!V2.isUndef()) { 2807 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2808 // If only one index is used, we can use a "splat" vrgather. 2809 // TODO: We can splat the most-common index and fix-up any stragglers, if 2810 // that's beneficial. 2811 if (RHSIndexCounts.size() == 1) { 2812 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2813 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2814 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2815 } else { 2816 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2817 RHSIndices = 2818 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2819 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2820 VL); 2821 } 2822 2823 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2824 SelectMask = 2825 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2826 2827 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2828 Gather, VL); 2829 } 2830 2831 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2832 } 2833 2834 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 2835 // Support splats for any type. These should type legalize well. 2836 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 2837 return true; 2838 2839 // Only support legal VTs for other shuffles for now. 2840 if (!isTypeLegal(VT)) 2841 return false; 2842 2843 MVT SVT = VT.getSimpleVT(); 2844 2845 bool SwapSources; 2846 int LoSrc, HiSrc; 2847 return (isElementRotate(LoSrc, HiSrc, M) > 0) || 2848 isInterleaveShuffle(M, SVT, SwapSources, Subtarget); 2849 } 2850 2851 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2852 // the exponent. 2853 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2854 MVT VT = Op.getSimpleValueType(); 2855 unsigned EltSize = VT.getScalarSizeInBits(); 2856 SDValue Src = Op.getOperand(0); 2857 SDLoc DL(Op); 2858 2859 // We need a FP type that can represent the value. 2860 // TODO: Use f16 for i8 when possible? 2861 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2862 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2863 2864 // Legal types should have been checked in the RISCVTargetLowering 2865 // constructor. 2866 // TODO: Splitting may make sense in some cases. 2867 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2868 "Expected legal float type!"); 2869 2870 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2871 // The trailing zero count is equal to log2 of this single bit value. 2872 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2873 SDValue Neg = 2874 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2875 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2876 } 2877 2878 // We have a legal FP type, convert to it. 2879 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2880 // Bitcast to integer and shift the exponent to the LSB. 2881 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2882 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2883 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2884 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2885 DAG.getConstant(ShiftAmt, DL, IntVT)); 2886 // Truncate back to original type to allow vnsrl. 2887 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2888 // The exponent contains log2 of the value in biased form. 2889 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2890 2891 // For trailing zeros, we just need to subtract the bias. 2892 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2893 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2894 DAG.getConstant(ExponentBias, DL, VT)); 2895 2896 // For leading zeros, we need to remove the bias and convert from log2 to 2897 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 2898 unsigned Adjust = ExponentBias + (EltSize - 1); 2899 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 2900 } 2901 2902 // While RVV has alignment restrictions, we should always be able to load as a 2903 // legal equivalently-sized byte-typed vector instead. This method is 2904 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2905 // the load is already correctly-aligned, it returns SDValue(). 2906 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2907 SelectionDAG &DAG) const { 2908 auto *Load = cast<LoadSDNode>(Op); 2909 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2910 2911 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2912 Load->getMemoryVT(), 2913 *Load->getMemOperand())) 2914 return SDValue(); 2915 2916 SDLoc DL(Op); 2917 MVT VT = Op.getSimpleValueType(); 2918 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2919 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2920 "Unexpected unaligned RVV load type"); 2921 MVT NewVT = 2922 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2923 assert(NewVT.isValid() && 2924 "Expecting equally-sized RVV vector types to be legal"); 2925 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2926 Load->getPointerInfo(), Load->getOriginalAlign(), 2927 Load->getMemOperand()->getFlags()); 2928 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2929 } 2930 2931 // While RVV has alignment restrictions, we should always be able to store as a 2932 // legal equivalently-sized byte-typed vector instead. This method is 2933 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2934 // returns SDValue() if the store is already correctly aligned. 2935 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2936 SelectionDAG &DAG) const { 2937 auto *Store = cast<StoreSDNode>(Op); 2938 assert(Store && Store->getValue().getValueType().isVector() && 2939 "Expected vector store"); 2940 2941 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2942 Store->getMemoryVT(), 2943 *Store->getMemOperand())) 2944 return SDValue(); 2945 2946 SDLoc DL(Op); 2947 SDValue StoredVal = Store->getValue(); 2948 MVT VT = StoredVal.getSimpleValueType(); 2949 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2950 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2951 "Unexpected unaligned RVV store type"); 2952 MVT NewVT = 2953 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2954 assert(NewVT.isValid() && 2955 "Expecting equally-sized RVV vector types to be legal"); 2956 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2957 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2958 Store->getPointerInfo(), Store->getOriginalAlign(), 2959 Store->getMemOperand()->getFlags()); 2960 } 2961 2962 static SDValue lowerConstant(SDValue Op, SelectionDAG &DAG, 2963 const RISCVSubtarget &Subtarget) { 2964 assert(Op.getValueType() == MVT::i64 && "Unexpected VT"); 2965 2966 int64_t Imm = cast<ConstantSDNode>(Op)->getSExtValue(); 2967 2968 // All simm32 constants should be handled by isel. 2969 // NOTE: The getMaxBuildIntsCost call below should return a value >= 2 making 2970 // this check redundant, but small immediates are common so this check 2971 // should have better compile time. 2972 if (isInt<32>(Imm)) 2973 return Op; 2974 2975 // We only need to cost the immediate, if constant pool lowering is enabled. 2976 if (!Subtarget.useConstantPoolForLargeInts()) 2977 return Op; 2978 2979 RISCVMatInt::InstSeq Seq = 2980 RISCVMatInt::generateInstSeq(Imm, Subtarget.getFeatureBits()); 2981 if (Seq.size() <= Subtarget.getMaxBuildIntsCost()) 2982 return Op; 2983 2984 // Expand to a constant pool using the default expansion code. 2985 return SDValue(); 2986 } 2987 2988 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2989 SelectionDAG &DAG) const { 2990 switch (Op.getOpcode()) { 2991 default: 2992 report_fatal_error("unimplemented operand"); 2993 case ISD::GlobalAddress: 2994 return lowerGlobalAddress(Op, DAG); 2995 case ISD::BlockAddress: 2996 return lowerBlockAddress(Op, DAG); 2997 case ISD::ConstantPool: 2998 return lowerConstantPool(Op, DAG); 2999 case ISD::JumpTable: 3000 return lowerJumpTable(Op, DAG); 3001 case ISD::GlobalTLSAddress: 3002 return lowerGlobalTLSAddress(Op, DAG); 3003 case ISD::Constant: 3004 return lowerConstant(Op, DAG, Subtarget); 3005 case ISD::SELECT: 3006 return lowerSELECT(Op, DAG); 3007 case ISD::BRCOND: 3008 return lowerBRCOND(Op, DAG); 3009 case ISD::VASTART: 3010 return lowerVASTART(Op, DAG); 3011 case ISD::FRAMEADDR: 3012 return lowerFRAMEADDR(Op, DAG); 3013 case ISD::RETURNADDR: 3014 return lowerRETURNADDR(Op, DAG); 3015 case ISD::SHL_PARTS: 3016 return lowerShiftLeftParts(Op, DAG); 3017 case ISD::SRA_PARTS: 3018 return lowerShiftRightParts(Op, DAG, true); 3019 case ISD::SRL_PARTS: 3020 return lowerShiftRightParts(Op, DAG, false); 3021 case ISD::BITCAST: { 3022 SDLoc DL(Op); 3023 EVT VT = Op.getValueType(); 3024 SDValue Op0 = Op.getOperand(0); 3025 EVT Op0VT = Op0.getValueType(); 3026 MVT XLenVT = Subtarget.getXLenVT(); 3027 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 3028 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 3029 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 3030 return FPConv; 3031 } 3032 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 3033 Subtarget.hasStdExtF()) { 3034 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3035 SDValue FPConv = 3036 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 3037 return FPConv; 3038 } 3039 3040 // Consider other scalar<->scalar casts as legal if the types are legal. 3041 // Otherwise expand them. 3042 if (!VT.isVector() && !Op0VT.isVector()) { 3043 if (isTypeLegal(VT) && isTypeLegal(Op0VT)) 3044 return Op; 3045 return SDValue(); 3046 } 3047 3048 assert(!VT.isScalableVector() && !Op0VT.isScalableVector() && 3049 "Unexpected types"); 3050 3051 if (VT.isFixedLengthVector()) { 3052 // We can handle fixed length vector bitcasts with a simple replacement 3053 // in isel. 3054 if (Op0VT.isFixedLengthVector()) 3055 return Op; 3056 // When bitcasting from scalar to fixed-length vector, insert the scalar 3057 // into a one-element vector of the result type, and perform a vector 3058 // bitcast. 3059 if (!Op0VT.isVector()) { 3060 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 3061 if (!isTypeLegal(BVT)) 3062 return SDValue(); 3063 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 3064 DAG.getUNDEF(BVT), Op0, 3065 DAG.getConstant(0, DL, XLenVT))); 3066 } 3067 return SDValue(); 3068 } 3069 // Custom-legalize bitcasts from fixed-length vector types to scalar types 3070 // thus: bitcast the vector to a one-element vector type whose element type 3071 // is the same as the result type, and extract the first element. 3072 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 3073 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 3074 if (!isTypeLegal(BVT)) 3075 return SDValue(); 3076 SDValue BVec = DAG.getBitcast(BVT, Op0); 3077 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 3078 DAG.getConstant(0, DL, XLenVT)); 3079 } 3080 return SDValue(); 3081 } 3082 case ISD::INTRINSIC_WO_CHAIN: 3083 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 3084 case ISD::INTRINSIC_W_CHAIN: 3085 return LowerINTRINSIC_W_CHAIN(Op, DAG); 3086 case ISD::INTRINSIC_VOID: 3087 return LowerINTRINSIC_VOID(Op, DAG); 3088 case ISD::BSWAP: 3089 case ISD::BITREVERSE: { 3090 MVT VT = Op.getSimpleValueType(); 3091 SDLoc DL(Op); 3092 if (Subtarget.hasStdExtZbp()) { 3093 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 3094 // Start with the maximum immediate value which is the bitwidth - 1. 3095 unsigned Imm = VT.getSizeInBits() - 1; 3096 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 3097 if (Op.getOpcode() == ISD::BSWAP) 3098 Imm &= ~0x7U; 3099 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 3100 DAG.getConstant(Imm, DL, VT)); 3101 } 3102 assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization"); 3103 assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode"); 3104 // Expand bitreverse to a bswap(rev8) followed by brev8. 3105 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0)); 3106 // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized 3107 // as brev8 by an isel pattern. 3108 return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap, 3109 DAG.getConstant(7, DL, VT)); 3110 } 3111 case ISD::FSHL: 3112 case ISD::FSHR: { 3113 MVT VT = Op.getSimpleValueType(); 3114 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 3115 SDLoc DL(Op); 3116 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 3117 // use log(XLen) bits. Mask the shift amount accordingly to prevent 3118 // accidentally setting the extra bit. 3119 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 3120 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 3121 DAG.getConstant(ShAmtWidth, DL, VT)); 3122 // fshl and fshr concatenate their operands in the same order. fsr and fsl 3123 // instruction use different orders. fshl will return its first operand for 3124 // shift of zero, fshr will return its second operand. fsl and fsr both 3125 // return rs1 so the ISD nodes need to have different operand orders. 3126 // Shift amount is in rs2. 3127 SDValue Op0 = Op.getOperand(0); 3128 SDValue Op1 = Op.getOperand(1); 3129 unsigned Opc = RISCVISD::FSL; 3130 if (Op.getOpcode() == ISD::FSHR) { 3131 std::swap(Op0, Op1); 3132 Opc = RISCVISD::FSR; 3133 } 3134 return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt); 3135 } 3136 case ISD::TRUNCATE: 3137 // Only custom-lower vector truncates 3138 if (!Op.getSimpleValueType().isVector()) 3139 return Op; 3140 return lowerVectorTruncLike(Op, DAG); 3141 case ISD::ANY_EXTEND: 3142 case ISD::ZERO_EXTEND: 3143 if (Op.getOperand(0).getValueType().isVector() && 3144 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3145 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 3146 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 3147 case ISD::SIGN_EXTEND: 3148 if (Op.getOperand(0).getValueType().isVector() && 3149 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3150 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 3151 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 3152 case ISD::SPLAT_VECTOR_PARTS: 3153 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 3154 case ISD::INSERT_VECTOR_ELT: 3155 return lowerINSERT_VECTOR_ELT(Op, DAG); 3156 case ISD::EXTRACT_VECTOR_ELT: 3157 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 3158 case ISD::VSCALE: { 3159 MVT VT = Op.getSimpleValueType(); 3160 SDLoc DL(Op); 3161 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 3162 // We define our scalable vector types for lmul=1 to use a 64 bit known 3163 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 3164 // vscale as VLENB / 8. 3165 static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); 3166 if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock) 3167 report_fatal_error("Support for VLEN==32 is incomplete."); 3168 // We assume VLENB is a multiple of 8. We manually choose the best shift 3169 // here because SimplifyDemandedBits isn't always able to simplify it. 3170 uint64_t Val = Op.getConstantOperandVal(0); 3171 if (isPowerOf2_64(Val)) { 3172 uint64_t Log2 = Log2_64(Val); 3173 if (Log2 < 3) 3174 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 3175 DAG.getConstant(3 - Log2, DL, VT)); 3176 if (Log2 > 3) 3177 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 3178 DAG.getConstant(Log2 - 3, DL, VT)); 3179 return VLENB; 3180 } 3181 // If the multiplier is a multiple of 8, scale it down to avoid needing 3182 // to shift the VLENB value. 3183 if ((Val % 8) == 0) 3184 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 3185 DAG.getConstant(Val / 8, DL, VT)); 3186 3187 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 3188 DAG.getConstant(3, DL, VT)); 3189 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 3190 } 3191 case ISD::FPOWI: { 3192 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 3193 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 3194 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 3195 Op.getOperand(1).getValueType() == MVT::i32) { 3196 SDLoc DL(Op); 3197 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 3198 SDValue Powi = 3199 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 3200 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 3201 DAG.getIntPtrConstant(0, DL)); 3202 } 3203 return SDValue(); 3204 } 3205 case ISD::FP_EXTEND: 3206 case ISD::FP_ROUND: 3207 if (!Op.getValueType().isVector()) 3208 return Op; 3209 return lowerVectorFPExtendOrRoundLike(Op, DAG); 3210 case ISD::FP_TO_SINT: 3211 case ISD::FP_TO_UINT: 3212 case ISD::SINT_TO_FP: 3213 case ISD::UINT_TO_FP: { 3214 // RVV can only do fp<->int conversions to types half/double the size as 3215 // the source. We custom-lower any conversions that do two hops into 3216 // sequences. 3217 MVT VT = Op.getSimpleValueType(); 3218 if (!VT.isVector()) 3219 return Op; 3220 SDLoc DL(Op); 3221 SDValue Src = Op.getOperand(0); 3222 MVT EltVT = VT.getVectorElementType(); 3223 MVT SrcVT = Src.getSimpleValueType(); 3224 MVT SrcEltVT = SrcVT.getVectorElementType(); 3225 unsigned EltSize = EltVT.getSizeInBits(); 3226 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 3227 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 3228 "Unexpected vector element types"); 3229 3230 bool IsInt2FP = SrcEltVT.isInteger(); 3231 // Widening conversions 3232 if (EltSize > (2 * SrcEltSize)) { 3233 if (IsInt2FP) { 3234 // Do a regular integer sign/zero extension then convert to float. 3235 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), 3236 VT.getVectorElementCount()); 3237 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 3238 ? ISD::ZERO_EXTEND 3239 : ISD::SIGN_EXTEND; 3240 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 3241 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 3242 } 3243 // FP2Int 3244 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 3245 // Do one doubling fp_extend then complete the operation by converting 3246 // to int. 3247 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3248 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 3249 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 3250 } 3251 3252 // Narrowing conversions 3253 if (SrcEltSize > (2 * EltSize)) { 3254 if (IsInt2FP) { 3255 // One narrowing int_to_fp, then an fp_round. 3256 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 3257 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3258 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 3259 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 3260 } 3261 // FP2Int 3262 // One narrowing fp_to_int, then truncate the integer. If the float isn't 3263 // representable by the integer, the result is poison. 3264 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), 3265 VT.getVectorElementCount()); 3266 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 3267 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 3268 } 3269 3270 // Scalable vectors can exit here. Patterns will handle equally-sized 3271 // conversions halving/doubling ones. 3272 if (!VT.isFixedLengthVector()) 3273 return Op; 3274 3275 // For fixed-length vectors we lower to a custom "VL" node. 3276 unsigned RVVOpc = 0; 3277 switch (Op.getOpcode()) { 3278 default: 3279 llvm_unreachable("Impossible opcode"); 3280 case ISD::FP_TO_SINT: 3281 RVVOpc = RISCVISD::FP_TO_SINT_VL; 3282 break; 3283 case ISD::FP_TO_UINT: 3284 RVVOpc = RISCVISD::FP_TO_UINT_VL; 3285 break; 3286 case ISD::SINT_TO_FP: 3287 RVVOpc = RISCVISD::SINT_TO_FP_VL; 3288 break; 3289 case ISD::UINT_TO_FP: 3290 RVVOpc = RISCVISD::UINT_TO_FP_VL; 3291 break; 3292 } 3293 3294 MVT ContainerVT, SrcContainerVT; 3295 // Derive the reference container type from the larger vector type. 3296 if (SrcEltSize > EltSize) { 3297 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3298 ContainerVT = 3299 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3300 } else { 3301 ContainerVT = getContainerForFixedLengthVector(VT); 3302 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 3303 } 3304 3305 SDValue Mask, VL; 3306 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3307 3308 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3309 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 3310 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3311 } 3312 case ISD::FP_TO_SINT_SAT: 3313 case ISD::FP_TO_UINT_SAT: 3314 return lowerFP_TO_INT_SAT(Op, DAG, Subtarget); 3315 case ISD::FTRUNC: 3316 case ISD::FCEIL: 3317 case ISD::FFLOOR: 3318 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 3319 case ISD::FROUND: 3320 return lowerFROUND(Op, DAG); 3321 case ISD::VECREDUCE_ADD: 3322 case ISD::VECREDUCE_UMAX: 3323 case ISD::VECREDUCE_SMAX: 3324 case ISD::VECREDUCE_UMIN: 3325 case ISD::VECREDUCE_SMIN: 3326 return lowerVECREDUCE(Op, DAG); 3327 case ISD::VECREDUCE_AND: 3328 case ISD::VECREDUCE_OR: 3329 case ISD::VECREDUCE_XOR: 3330 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3331 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 3332 return lowerVECREDUCE(Op, DAG); 3333 case ISD::VECREDUCE_FADD: 3334 case ISD::VECREDUCE_SEQ_FADD: 3335 case ISD::VECREDUCE_FMIN: 3336 case ISD::VECREDUCE_FMAX: 3337 return lowerFPVECREDUCE(Op, DAG); 3338 case ISD::VP_REDUCE_ADD: 3339 case ISD::VP_REDUCE_UMAX: 3340 case ISD::VP_REDUCE_SMAX: 3341 case ISD::VP_REDUCE_UMIN: 3342 case ISD::VP_REDUCE_SMIN: 3343 case ISD::VP_REDUCE_FADD: 3344 case ISD::VP_REDUCE_SEQ_FADD: 3345 case ISD::VP_REDUCE_FMIN: 3346 case ISD::VP_REDUCE_FMAX: 3347 return lowerVPREDUCE(Op, DAG); 3348 case ISD::VP_REDUCE_AND: 3349 case ISD::VP_REDUCE_OR: 3350 case ISD::VP_REDUCE_XOR: 3351 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 3352 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 3353 return lowerVPREDUCE(Op, DAG); 3354 case ISD::INSERT_SUBVECTOR: 3355 return lowerINSERT_SUBVECTOR(Op, DAG); 3356 case ISD::EXTRACT_SUBVECTOR: 3357 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3358 case ISD::STEP_VECTOR: 3359 return lowerSTEP_VECTOR(Op, DAG); 3360 case ISD::VECTOR_REVERSE: 3361 return lowerVECTOR_REVERSE(Op, DAG); 3362 case ISD::VECTOR_SPLICE: 3363 return lowerVECTOR_SPLICE(Op, DAG); 3364 case ISD::BUILD_VECTOR: 3365 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3366 case ISD::SPLAT_VECTOR: 3367 if (Op.getValueType().getVectorElementType() == MVT::i1) 3368 return lowerVectorMaskSplat(Op, DAG); 3369 return SDValue(); 3370 case ISD::VECTOR_SHUFFLE: 3371 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3372 case ISD::CONCAT_VECTORS: { 3373 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3374 // better than going through the stack, as the default expansion does. 3375 SDLoc DL(Op); 3376 MVT VT = Op.getSimpleValueType(); 3377 unsigned NumOpElts = 3378 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3379 SDValue Vec = DAG.getUNDEF(VT); 3380 for (const auto &OpIdx : enumerate(Op->ops())) { 3381 SDValue SubVec = OpIdx.value(); 3382 // Don't insert undef subvectors. 3383 if (SubVec.isUndef()) 3384 continue; 3385 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec, 3386 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3387 } 3388 return Vec; 3389 } 3390 case ISD::LOAD: 3391 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3392 return V; 3393 if (Op.getValueType().isFixedLengthVector()) 3394 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3395 return Op; 3396 case ISD::STORE: 3397 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3398 return V; 3399 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3400 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3401 return Op; 3402 case ISD::MLOAD: 3403 case ISD::VP_LOAD: 3404 return lowerMaskedLoad(Op, DAG); 3405 case ISD::MSTORE: 3406 case ISD::VP_STORE: 3407 return lowerMaskedStore(Op, DAG); 3408 case ISD::SETCC: 3409 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3410 case ISD::ADD: 3411 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3412 case ISD::SUB: 3413 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3414 case ISD::MUL: 3415 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3416 case ISD::MULHS: 3417 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3418 case ISD::MULHU: 3419 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3420 case ISD::AND: 3421 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3422 RISCVISD::AND_VL); 3423 case ISD::OR: 3424 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3425 RISCVISD::OR_VL); 3426 case ISD::XOR: 3427 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3428 RISCVISD::XOR_VL); 3429 case ISD::SDIV: 3430 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3431 case ISD::SREM: 3432 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3433 case ISD::UDIV: 3434 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3435 case ISD::UREM: 3436 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3437 case ISD::SHL: 3438 case ISD::SRA: 3439 case ISD::SRL: 3440 if (Op.getSimpleValueType().isFixedLengthVector()) 3441 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3442 // This can be called for an i32 shift amount that needs to be promoted. 3443 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3444 "Unexpected custom legalisation"); 3445 return SDValue(); 3446 case ISD::SADDSAT: 3447 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3448 case ISD::UADDSAT: 3449 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3450 case ISD::SSUBSAT: 3451 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3452 case ISD::USUBSAT: 3453 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3454 case ISD::FADD: 3455 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3456 case ISD::FSUB: 3457 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3458 case ISD::FMUL: 3459 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3460 case ISD::FDIV: 3461 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3462 case ISD::FNEG: 3463 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3464 case ISD::FABS: 3465 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3466 case ISD::FSQRT: 3467 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3468 case ISD::FMA: 3469 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 3470 case ISD::SMIN: 3471 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3472 case ISD::SMAX: 3473 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3474 case ISD::UMIN: 3475 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3476 case ISD::UMAX: 3477 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3478 case ISD::FMINNUM: 3479 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3480 case ISD::FMAXNUM: 3481 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3482 case ISD::ABS: 3483 return lowerABS(Op, DAG); 3484 case ISD::CTLZ_ZERO_UNDEF: 3485 case ISD::CTTZ_ZERO_UNDEF: 3486 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3487 case ISD::VSELECT: 3488 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3489 case ISD::FCOPYSIGN: 3490 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3491 case ISD::MGATHER: 3492 case ISD::VP_GATHER: 3493 return lowerMaskedGather(Op, DAG); 3494 case ISD::MSCATTER: 3495 case ISD::VP_SCATTER: 3496 return lowerMaskedScatter(Op, DAG); 3497 case ISD::FLT_ROUNDS_: 3498 return lowerGET_ROUNDING(Op, DAG); 3499 case ISD::SET_ROUNDING: 3500 return lowerSET_ROUNDING(Op, DAG); 3501 case ISD::EH_DWARF_CFA: 3502 return lowerEH_DWARF_CFA(Op, DAG); 3503 case ISD::VP_SELECT: 3504 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3505 case ISD::VP_MERGE: 3506 return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL); 3507 case ISD::VP_ADD: 3508 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3509 case ISD::VP_SUB: 3510 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3511 case ISD::VP_MUL: 3512 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3513 case ISD::VP_SDIV: 3514 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3515 case ISD::VP_UDIV: 3516 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3517 case ISD::VP_SREM: 3518 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3519 case ISD::VP_UREM: 3520 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3521 case ISD::VP_AND: 3522 return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL); 3523 case ISD::VP_OR: 3524 return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL); 3525 case ISD::VP_XOR: 3526 return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL); 3527 case ISD::VP_ASHR: 3528 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3529 case ISD::VP_LSHR: 3530 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3531 case ISD::VP_SHL: 3532 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3533 case ISD::VP_FADD: 3534 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3535 case ISD::VP_FSUB: 3536 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3537 case ISD::VP_FMUL: 3538 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3539 case ISD::VP_FDIV: 3540 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3541 case ISD::VP_FNEG: 3542 return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL); 3543 case ISD::VP_FMA: 3544 return lowerVPOp(Op, DAG, RISCVISD::FMA_VL); 3545 case ISD::VP_SIGN_EXTEND: 3546 case ISD::VP_ZERO_EXTEND: 3547 if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1) 3548 return lowerVPExtMaskOp(Op, DAG); 3549 return lowerVPOp(Op, DAG, 3550 Op.getOpcode() == ISD::VP_SIGN_EXTEND 3551 ? RISCVISD::VSEXT_VL 3552 : RISCVISD::VZEXT_VL); 3553 case ISD::VP_TRUNCATE: 3554 return lowerVectorTruncLike(Op, DAG); 3555 case ISD::VP_FP_EXTEND: 3556 case ISD::VP_FP_ROUND: 3557 return lowerVectorFPExtendOrRoundLike(Op, DAG); 3558 case ISD::VP_FPTOSI: 3559 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_SINT_VL); 3560 case ISD::VP_FPTOUI: 3561 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_UINT_VL); 3562 case ISD::VP_SITOFP: 3563 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::SINT_TO_FP_VL); 3564 case ISD::VP_UITOFP: 3565 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::UINT_TO_FP_VL); 3566 case ISD::VP_SETCC: 3567 if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1) 3568 return lowerVPSetCCMaskOp(Op, DAG); 3569 return lowerVPOp(Op, DAG, RISCVISD::SETCC_VL); 3570 } 3571 } 3572 3573 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3574 SelectionDAG &DAG, unsigned Flags) { 3575 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3576 } 3577 3578 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3579 SelectionDAG &DAG, unsigned Flags) { 3580 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3581 Flags); 3582 } 3583 3584 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3585 SelectionDAG &DAG, unsigned Flags) { 3586 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3587 N->getOffset(), Flags); 3588 } 3589 3590 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3591 SelectionDAG &DAG, unsigned Flags) { 3592 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3593 } 3594 3595 template <class NodeTy> 3596 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3597 bool IsLocal) const { 3598 SDLoc DL(N); 3599 EVT Ty = getPointerTy(DAG.getDataLayout()); 3600 3601 if (isPositionIndependent()) { 3602 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3603 if (IsLocal) 3604 // Use PC-relative addressing to access the symbol. This generates the 3605 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3606 // %pcrel_lo(auipc)). 3607 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3608 3609 // Use PC-relative addressing to access the GOT for this symbol, then load 3610 // the address from the GOT. This generates the pattern (PseudoLA sym), 3611 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3612 SDValue Load = 3613 SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3614 MachineFunction &MF = DAG.getMachineFunction(); 3615 MachineMemOperand *MemOp = MF.getMachineMemOperand( 3616 MachinePointerInfo::getGOT(MF), 3617 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 3618 MachineMemOperand::MOInvariant, 3619 LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); 3620 DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp}); 3621 return Load; 3622 } 3623 3624 switch (getTargetMachine().getCodeModel()) { 3625 default: 3626 report_fatal_error("Unsupported code model for lowering"); 3627 case CodeModel::Small: { 3628 // Generate a sequence for accessing addresses within the first 2 GiB of 3629 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3630 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3631 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3632 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3633 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3634 } 3635 case CodeModel::Medium: { 3636 // Generate a sequence for accessing addresses within any 2GiB range within 3637 // the address space. This generates the pattern (PseudoLLA sym), which 3638 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3639 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3640 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3641 } 3642 } 3643 } 3644 3645 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3646 SelectionDAG &DAG) const { 3647 SDLoc DL(Op); 3648 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3649 assert(N->getOffset() == 0 && "unexpected offset in global node"); 3650 3651 const GlobalValue *GV = N->getGlobal(); 3652 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3653 return getAddr(N, DAG, IsLocal); 3654 } 3655 3656 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3657 SelectionDAG &DAG) const { 3658 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3659 3660 return getAddr(N, DAG); 3661 } 3662 3663 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3664 SelectionDAG &DAG) const { 3665 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3666 3667 return getAddr(N, DAG); 3668 } 3669 3670 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3671 SelectionDAG &DAG) const { 3672 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3673 3674 return getAddr(N, DAG); 3675 } 3676 3677 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3678 SelectionDAG &DAG, 3679 bool UseGOT) const { 3680 SDLoc DL(N); 3681 EVT Ty = getPointerTy(DAG.getDataLayout()); 3682 const GlobalValue *GV = N->getGlobal(); 3683 MVT XLenVT = Subtarget.getXLenVT(); 3684 3685 if (UseGOT) { 3686 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3687 // load the address from the GOT and add the thread pointer. This generates 3688 // the pattern (PseudoLA_TLS_IE sym), which expands to 3689 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3690 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3691 SDValue Load = 3692 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3693 MachineFunction &MF = DAG.getMachineFunction(); 3694 MachineMemOperand *MemOp = MF.getMachineMemOperand( 3695 MachinePointerInfo::getGOT(MF), 3696 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 3697 MachineMemOperand::MOInvariant, 3698 LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); 3699 DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp}); 3700 3701 // Add the thread pointer. 3702 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3703 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3704 } 3705 3706 // Generate a sequence for accessing the address relative to the thread 3707 // pointer, with the appropriate adjustment for the thread pointer offset. 3708 // This generates the pattern 3709 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3710 SDValue AddrHi = 3711 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3712 SDValue AddrAdd = 3713 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3714 SDValue AddrLo = 3715 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3716 3717 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3718 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3719 SDValue MNAdd = SDValue( 3720 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3721 0); 3722 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3723 } 3724 3725 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3726 SelectionDAG &DAG) const { 3727 SDLoc DL(N); 3728 EVT Ty = getPointerTy(DAG.getDataLayout()); 3729 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3730 const GlobalValue *GV = N->getGlobal(); 3731 3732 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3733 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3734 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3735 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3736 SDValue Load = 3737 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3738 3739 // Prepare argument list to generate call. 3740 ArgListTy Args; 3741 ArgListEntry Entry; 3742 Entry.Node = Load; 3743 Entry.Ty = CallTy; 3744 Args.push_back(Entry); 3745 3746 // Setup call to __tls_get_addr. 3747 TargetLowering::CallLoweringInfo CLI(DAG); 3748 CLI.setDebugLoc(DL) 3749 .setChain(DAG.getEntryNode()) 3750 .setLibCallee(CallingConv::C, CallTy, 3751 DAG.getExternalSymbol("__tls_get_addr", Ty), 3752 std::move(Args)); 3753 3754 return LowerCallTo(CLI).first; 3755 } 3756 3757 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3758 SelectionDAG &DAG) const { 3759 SDLoc DL(Op); 3760 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3761 assert(N->getOffset() == 0 && "unexpected offset in global node"); 3762 3763 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3764 3765 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3766 CallingConv::GHC) 3767 report_fatal_error("In GHC calling convention TLS is not supported"); 3768 3769 SDValue Addr; 3770 switch (Model) { 3771 case TLSModel::LocalExec: 3772 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3773 break; 3774 case TLSModel::InitialExec: 3775 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3776 break; 3777 case TLSModel::LocalDynamic: 3778 case TLSModel::GeneralDynamic: 3779 Addr = getDynamicTLSAddr(N, DAG); 3780 break; 3781 } 3782 3783 return Addr; 3784 } 3785 3786 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3787 SDValue CondV = Op.getOperand(0); 3788 SDValue TrueV = Op.getOperand(1); 3789 SDValue FalseV = Op.getOperand(2); 3790 SDLoc DL(Op); 3791 MVT VT = Op.getSimpleValueType(); 3792 MVT XLenVT = Subtarget.getXLenVT(); 3793 3794 // Lower vector SELECTs to VSELECTs by splatting the condition. 3795 if (VT.isVector()) { 3796 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3797 SDValue CondSplat = VT.isScalableVector() 3798 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3799 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3800 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3801 } 3802 3803 // If the result type is XLenVT and CondV is the output of a SETCC node 3804 // which also operated on XLenVT inputs, then merge the SETCC node into the 3805 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3806 // compare+branch instructions. i.e.: 3807 // (select (setcc lhs, rhs, cc), truev, falsev) 3808 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3809 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3810 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3811 SDValue LHS = CondV.getOperand(0); 3812 SDValue RHS = CondV.getOperand(1); 3813 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3814 ISD::CondCode CCVal = CC->get(); 3815 3816 // Special case for a select of 2 constants that have a diffence of 1. 3817 // Normally this is done by DAGCombine, but if the select is introduced by 3818 // type legalization or op legalization, we miss it. Restricting to SETLT 3819 // case for now because that is what signed saturating add/sub need. 3820 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3821 // but we would probably want to swap the true/false values if the condition 3822 // is SETGE/SETLE to avoid an XORI. 3823 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3824 CCVal == ISD::SETLT) { 3825 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3826 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3827 if (TrueVal - 1 == FalseVal) 3828 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3829 if (TrueVal + 1 == FalseVal) 3830 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3831 } 3832 3833 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3834 3835 SDValue TargetCC = DAG.getCondCode(CCVal); 3836 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3837 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3838 } 3839 3840 // Otherwise: 3841 // (select condv, truev, falsev) 3842 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3843 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3844 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3845 3846 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3847 3848 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3849 } 3850 3851 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3852 SDValue CondV = Op.getOperand(1); 3853 SDLoc DL(Op); 3854 MVT XLenVT = Subtarget.getXLenVT(); 3855 3856 if (CondV.getOpcode() == ISD::SETCC && 3857 CondV.getOperand(0).getValueType() == XLenVT) { 3858 SDValue LHS = CondV.getOperand(0); 3859 SDValue RHS = CondV.getOperand(1); 3860 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3861 3862 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3863 3864 SDValue TargetCC = DAG.getCondCode(CCVal); 3865 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3866 LHS, RHS, TargetCC, Op.getOperand(2)); 3867 } 3868 3869 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3870 CondV, DAG.getConstant(0, DL, XLenVT), 3871 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3872 } 3873 3874 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3875 MachineFunction &MF = DAG.getMachineFunction(); 3876 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3877 3878 SDLoc DL(Op); 3879 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3880 getPointerTy(MF.getDataLayout())); 3881 3882 // vastart just stores the address of the VarArgsFrameIndex slot into the 3883 // memory location argument. 3884 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3885 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3886 MachinePointerInfo(SV)); 3887 } 3888 3889 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3890 SelectionDAG &DAG) const { 3891 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3892 MachineFunction &MF = DAG.getMachineFunction(); 3893 MachineFrameInfo &MFI = MF.getFrameInfo(); 3894 MFI.setFrameAddressIsTaken(true); 3895 Register FrameReg = RI.getFrameRegister(MF); 3896 int XLenInBytes = Subtarget.getXLen() / 8; 3897 3898 EVT VT = Op.getValueType(); 3899 SDLoc DL(Op); 3900 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3901 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3902 while (Depth--) { 3903 int Offset = -(XLenInBytes * 2); 3904 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3905 DAG.getIntPtrConstant(Offset, DL)); 3906 FrameAddr = 3907 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3908 } 3909 return FrameAddr; 3910 } 3911 3912 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3913 SelectionDAG &DAG) const { 3914 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3915 MachineFunction &MF = DAG.getMachineFunction(); 3916 MachineFrameInfo &MFI = MF.getFrameInfo(); 3917 MFI.setReturnAddressIsTaken(true); 3918 MVT XLenVT = Subtarget.getXLenVT(); 3919 int XLenInBytes = Subtarget.getXLen() / 8; 3920 3921 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3922 return SDValue(); 3923 3924 EVT VT = Op.getValueType(); 3925 SDLoc DL(Op); 3926 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3927 if (Depth) { 3928 int Off = -XLenInBytes; 3929 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3930 SDValue Offset = DAG.getConstant(Off, DL, VT); 3931 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3932 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3933 MachinePointerInfo()); 3934 } 3935 3936 // Return the value of the return address register, marking it an implicit 3937 // live-in. 3938 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3939 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3940 } 3941 3942 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3943 SelectionDAG &DAG) const { 3944 SDLoc DL(Op); 3945 SDValue Lo = Op.getOperand(0); 3946 SDValue Hi = Op.getOperand(1); 3947 SDValue Shamt = Op.getOperand(2); 3948 EVT VT = Lo.getValueType(); 3949 3950 // if Shamt-XLEN < 0: // Shamt < XLEN 3951 // Lo = Lo << Shamt 3952 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt)) 3953 // else: 3954 // Lo = 0 3955 // Hi = Lo << (Shamt-XLEN) 3956 3957 SDValue Zero = DAG.getConstant(0, DL, VT); 3958 SDValue One = DAG.getConstant(1, DL, VT); 3959 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3960 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3961 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3962 SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1); 3963 3964 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3965 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3966 SDValue ShiftRightLo = 3967 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3968 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3969 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3970 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3971 3972 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3973 3974 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3975 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3976 3977 SDValue Parts[2] = {Lo, Hi}; 3978 return DAG.getMergeValues(Parts, DL); 3979 } 3980 3981 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3982 bool IsSRA) const { 3983 SDLoc DL(Op); 3984 SDValue Lo = Op.getOperand(0); 3985 SDValue Hi = Op.getOperand(1); 3986 SDValue Shamt = Op.getOperand(2); 3987 EVT VT = Lo.getValueType(); 3988 3989 // SRA expansion: 3990 // if Shamt-XLEN < 0: // Shamt < XLEN 3991 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1)) 3992 // Hi = Hi >>s Shamt 3993 // else: 3994 // Lo = Hi >>s (Shamt-XLEN); 3995 // Hi = Hi >>s (XLEN-1) 3996 // 3997 // SRL expansion: 3998 // if Shamt-XLEN < 0: // Shamt < XLEN 3999 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1)) 4000 // Hi = Hi >>u Shamt 4001 // else: 4002 // Lo = Hi >>u (Shamt-XLEN); 4003 // Hi = 0; 4004 4005 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 4006 4007 SDValue Zero = DAG.getConstant(0, DL, VT); 4008 SDValue One = DAG.getConstant(1, DL, VT); 4009 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 4010 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 4011 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 4012 SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1); 4013 4014 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 4015 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 4016 SDValue ShiftLeftHi = 4017 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 4018 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 4019 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 4020 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 4021 SDValue HiFalse = 4022 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 4023 4024 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 4025 4026 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 4027 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 4028 4029 SDValue Parts[2] = {Lo, Hi}; 4030 return DAG.getMergeValues(Parts, DL); 4031 } 4032 4033 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 4034 // legal equivalently-sized i8 type, so we can use that as a go-between. 4035 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 4036 SelectionDAG &DAG) const { 4037 SDLoc DL(Op); 4038 MVT VT = Op.getSimpleValueType(); 4039 SDValue SplatVal = Op.getOperand(0); 4040 // All-zeros or all-ones splats are handled specially. 4041 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 4042 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4043 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 4044 } 4045 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 4046 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4047 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 4048 } 4049 MVT XLenVT = Subtarget.getXLenVT(); 4050 assert(SplatVal.getValueType() == XLenVT && 4051 "Unexpected type for i1 splat value"); 4052 MVT InterVT = VT.changeVectorElementType(MVT::i8); 4053 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 4054 DAG.getConstant(1, DL, XLenVT)); 4055 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 4056 SDValue Zero = DAG.getConstant(0, DL, InterVT); 4057 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 4058 } 4059 4060 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 4061 // illegal (currently only vXi64 RV32). 4062 // FIXME: We could also catch non-constant sign-extended i32 values and lower 4063 // them to VMV_V_X_VL. 4064 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 4065 SelectionDAG &DAG) const { 4066 SDLoc DL(Op); 4067 MVT VecVT = Op.getSimpleValueType(); 4068 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 4069 "Unexpected SPLAT_VECTOR_PARTS lowering"); 4070 4071 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 4072 SDValue Lo = Op.getOperand(0); 4073 SDValue Hi = Op.getOperand(1); 4074 4075 if (VecVT.isFixedLengthVector()) { 4076 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4077 SDLoc DL(Op); 4078 SDValue Mask, VL; 4079 std::tie(Mask, VL) = 4080 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4081 4082 SDValue Res = 4083 splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG); 4084 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 4085 } 4086 4087 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 4088 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 4089 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 4090 // If Hi constant is all the same sign bit as Lo, lower this as a custom 4091 // node in order to try and match RVV vector/scalar instructions. 4092 if ((LoC >> 31) == HiC) 4093 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 4094 Lo, DAG.getRegister(RISCV::X0, MVT::i32)); 4095 } 4096 4097 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 4098 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 4099 isa<ConstantSDNode>(Hi.getOperand(1)) && 4100 Hi.getConstantOperandVal(1) == 31) 4101 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo, 4102 DAG.getRegister(RISCV::X0, MVT::i32)); 4103 4104 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 4105 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, 4106 DAG.getUNDEF(VecVT), Lo, Hi, 4107 DAG.getRegister(RISCV::X0, MVT::i32)); 4108 } 4109 4110 // Custom-lower extensions from mask vectors by using a vselect either with 1 4111 // for zero/any-extension or -1 for sign-extension: 4112 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 4113 // Note that any-extension is lowered identically to zero-extension. 4114 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 4115 int64_t ExtTrueVal) const { 4116 SDLoc DL(Op); 4117 MVT VecVT = Op.getSimpleValueType(); 4118 SDValue Src = Op.getOperand(0); 4119 // Only custom-lower extensions from mask types 4120 assert(Src.getValueType().isVector() && 4121 Src.getValueType().getVectorElementType() == MVT::i1); 4122 4123 if (VecVT.isScalableVector()) { 4124 SDValue SplatZero = DAG.getConstant(0, DL, VecVT); 4125 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT); 4126 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 4127 } 4128 4129 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4130 MVT I1ContainerVT = 4131 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4132 4133 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 4134 4135 SDValue Mask, VL; 4136 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4137 4138 MVT XLenVT = Subtarget.getXLenVT(); 4139 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 4140 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 4141 4142 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4143 DAG.getUNDEF(ContainerVT), SplatZero, VL); 4144 SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4145 DAG.getUNDEF(ContainerVT), SplatTrueVal, VL); 4146 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 4147 SplatTrueVal, SplatZero, VL); 4148 4149 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 4150 } 4151 4152 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 4153 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 4154 MVT ExtVT = Op.getSimpleValueType(); 4155 // Only custom-lower extensions from fixed-length vector types. 4156 if (!ExtVT.isFixedLengthVector()) 4157 return Op; 4158 MVT VT = Op.getOperand(0).getSimpleValueType(); 4159 // Grab the canonical container type for the extended type. Infer the smaller 4160 // type from that to ensure the same number of vector elements, as we know 4161 // the LMUL will be sufficient to hold the smaller type. 4162 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 4163 // Get the extended container type manually to ensure the same number of 4164 // vector elements between source and dest. 4165 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4166 ContainerExtVT.getVectorElementCount()); 4167 4168 SDValue Op1 = 4169 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4170 4171 SDLoc DL(Op); 4172 SDValue Mask, VL; 4173 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4174 4175 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 4176 4177 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 4178 } 4179 4180 // Custom-lower truncations from vectors to mask vectors by using a mask and a 4181 // setcc operation: 4182 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 4183 SDValue RISCVTargetLowering::lowerVectorMaskTruncLike(SDValue Op, 4184 SelectionDAG &DAG) const { 4185 bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE; 4186 SDLoc DL(Op); 4187 EVT MaskVT = Op.getValueType(); 4188 // Only expect to custom-lower truncations to mask types 4189 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 4190 "Unexpected type for vector mask lowering"); 4191 SDValue Src = Op.getOperand(0); 4192 MVT VecVT = Src.getSimpleValueType(); 4193 SDValue Mask, VL; 4194 if (IsVPTrunc) { 4195 Mask = Op.getOperand(1); 4196 VL = Op.getOperand(2); 4197 } 4198 // If this is a fixed vector, we need to convert it to a scalable vector. 4199 MVT ContainerVT = VecVT; 4200 4201 if (VecVT.isFixedLengthVector()) { 4202 ContainerVT = getContainerForFixedLengthVector(VecVT); 4203 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 4204 if (IsVPTrunc) { 4205 MVT MaskContainerVT = 4206 getContainerForFixedLengthVector(Mask.getSimpleValueType()); 4207 Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget); 4208 } 4209 } 4210 4211 if (!IsVPTrunc) { 4212 std::tie(Mask, VL) = 4213 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4214 } 4215 4216 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 4217 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 4218 4219 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4220 DAG.getUNDEF(ContainerVT), SplatOne, VL); 4221 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4222 DAG.getUNDEF(ContainerVT), SplatZero, VL); 4223 4224 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 4225 SDValue Trunc = 4226 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 4227 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 4228 DAG.getCondCode(ISD::SETNE), Mask, VL); 4229 if (MaskVT.isFixedLengthVector()) 4230 Trunc = convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 4231 return Trunc; 4232 } 4233 4234 SDValue RISCVTargetLowering::lowerVectorTruncLike(SDValue Op, 4235 SelectionDAG &DAG) const { 4236 bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE; 4237 SDLoc DL(Op); 4238 4239 MVT VT = Op.getSimpleValueType(); 4240 // Only custom-lower vector truncates 4241 assert(VT.isVector() && "Unexpected type for vector truncate lowering"); 4242 4243 // Truncates to mask types are handled differently 4244 if (VT.getVectorElementType() == MVT::i1) 4245 return lowerVectorMaskTruncLike(Op, DAG); 4246 4247 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 4248 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 4249 // truncate by one power of two at a time. 4250 MVT DstEltVT = VT.getVectorElementType(); 4251 4252 SDValue Src = Op.getOperand(0); 4253 MVT SrcVT = Src.getSimpleValueType(); 4254 MVT SrcEltVT = SrcVT.getVectorElementType(); 4255 4256 assert(DstEltVT.bitsLT(SrcEltVT) && isPowerOf2_64(DstEltVT.getSizeInBits()) && 4257 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 4258 "Unexpected vector truncate lowering"); 4259 4260 MVT ContainerVT = SrcVT; 4261 SDValue Mask, VL; 4262 if (IsVPTrunc) { 4263 Mask = Op.getOperand(1); 4264 VL = Op.getOperand(2); 4265 } 4266 if (SrcVT.isFixedLengthVector()) { 4267 ContainerVT = getContainerForFixedLengthVector(SrcVT); 4268 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 4269 if (IsVPTrunc) { 4270 MVT MaskVT = getMaskTypeFor(ContainerVT); 4271 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4272 } 4273 } 4274 4275 SDValue Result = Src; 4276 if (!IsVPTrunc) { 4277 std::tie(Mask, VL) = 4278 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 4279 } 4280 4281 LLVMContext &Context = *DAG.getContext(); 4282 const ElementCount Count = ContainerVT.getVectorElementCount(); 4283 do { 4284 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 4285 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 4286 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 4287 Mask, VL); 4288 } while (SrcEltVT != DstEltVT); 4289 4290 if (SrcVT.isFixedLengthVector()) 4291 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4292 4293 return Result; 4294 } 4295 4296 SDValue 4297 RISCVTargetLowering::lowerVectorFPExtendOrRoundLike(SDValue Op, 4298 SelectionDAG &DAG) const { 4299 bool IsVP = 4300 Op.getOpcode() == ISD::VP_FP_ROUND || Op.getOpcode() == ISD::VP_FP_EXTEND; 4301 bool IsExtend = 4302 Op.getOpcode() == ISD::VP_FP_EXTEND || Op.getOpcode() == ISD::FP_EXTEND; 4303 // RVV can only do truncate fp to types half the size as the source. We 4304 // custom-lower f64->f16 rounds via RVV's round-to-odd float 4305 // conversion instruction. 4306 SDLoc DL(Op); 4307 MVT VT = Op.getSimpleValueType(); 4308 4309 assert(VT.isVector() && "Unexpected type for vector truncate lowering"); 4310 4311 SDValue Src = Op.getOperand(0); 4312 MVT SrcVT = Src.getSimpleValueType(); 4313 4314 bool IsDirectExtend = IsExtend && (VT.getVectorElementType() != MVT::f64 || 4315 SrcVT.getVectorElementType() != MVT::f16); 4316 bool IsDirectTrunc = !IsExtend && (VT.getVectorElementType() != MVT::f16 || 4317 SrcVT.getVectorElementType() != MVT::f64); 4318 4319 bool IsDirectConv = IsDirectExtend || IsDirectTrunc; 4320 4321 // Prepare any fixed-length vector operands. 4322 MVT ContainerVT = VT; 4323 SDValue Mask, VL; 4324 if (IsVP) { 4325 Mask = Op.getOperand(1); 4326 VL = Op.getOperand(2); 4327 } 4328 if (VT.isFixedLengthVector()) { 4329 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 4330 ContainerVT = 4331 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 4332 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 4333 if (IsVP) { 4334 MVT MaskVT = getMaskTypeFor(ContainerVT); 4335 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4336 } 4337 } 4338 4339 if (!IsVP) 4340 std::tie(Mask, VL) = 4341 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 4342 4343 unsigned ConvOpc = IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::FP_ROUND_VL; 4344 4345 if (IsDirectConv) { 4346 Src = DAG.getNode(ConvOpc, DL, ContainerVT, Src, Mask, VL); 4347 if (VT.isFixedLengthVector()) 4348 Src = convertFromScalableVector(VT, Src, DAG, Subtarget); 4349 return Src; 4350 } 4351 4352 unsigned InterConvOpc = 4353 IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::VFNCVT_ROD_VL; 4354 4355 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 4356 SDValue IntermediateConv = 4357 DAG.getNode(InterConvOpc, DL, InterVT, Src, Mask, VL); 4358 SDValue Result = 4359 DAG.getNode(ConvOpc, DL, ContainerVT, IntermediateConv, Mask, VL); 4360 if (VT.isFixedLengthVector()) 4361 return convertFromScalableVector(VT, Result, DAG, Subtarget); 4362 return Result; 4363 } 4364 4365 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 4366 // first position of a vector, and that vector is slid up to the insert index. 4367 // By limiting the active vector length to index+1 and merging with the 4368 // original vector (with an undisturbed tail policy for elements >= VL), we 4369 // achieve the desired result of leaving all elements untouched except the one 4370 // at VL-1, which is replaced with the desired value. 4371 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4372 SelectionDAG &DAG) const { 4373 SDLoc DL(Op); 4374 MVT VecVT = Op.getSimpleValueType(); 4375 SDValue Vec = Op.getOperand(0); 4376 SDValue Val = Op.getOperand(1); 4377 SDValue Idx = Op.getOperand(2); 4378 4379 if (VecVT.getVectorElementType() == MVT::i1) { 4380 // FIXME: For now we just promote to an i8 vector and insert into that, 4381 // but this is probably not optimal. 4382 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4383 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4384 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 4385 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 4386 } 4387 4388 MVT ContainerVT = VecVT; 4389 // If the operand is a fixed-length vector, convert to a scalable one. 4390 if (VecVT.isFixedLengthVector()) { 4391 ContainerVT = getContainerForFixedLengthVector(VecVT); 4392 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4393 } 4394 4395 MVT XLenVT = Subtarget.getXLenVT(); 4396 4397 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4398 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 4399 // Even i64-element vectors on RV32 can be lowered without scalar 4400 // legalization if the most-significant 32 bits of the value are not affected 4401 // by the sign-extension of the lower 32 bits. 4402 // TODO: We could also catch sign extensions of a 32-bit value. 4403 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 4404 const auto *CVal = cast<ConstantSDNode>(Val); 4405 if (isInt<32>(CVal->getSExtValue())) { 4406 IsLegalInsert = true; 4407 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4408 } 4409 } 4410 4411 SDValue Mask, VL; 4412 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4413 4414 SDValue ValInVec; 4415 4416 if (IsLegalInsert) { 4417 unsigned Opc = 4418 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 4419 if (isNullConstant(Idx)) { 4420 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 4421 if (!VecVT.isFixedLengthVector()) 4422 return Vec; 4423 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 4424 } 4425 ValInVec = 4426 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 4427 } else { 4428 // On RV32, i64-element vectors must be specially handled to place the 4429 // value at element 0, by using two vslide1up instructions in sequence on 4430 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 4431 // this. 4432 SDValue One = DAG.getConstant(1, DL, XLenVT); 4433 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 4434 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 4435 MVT I32ContainerVT = 4436 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 4437 SDValue I32Mask = 4438 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 4439 // Limit the active VL to two. 4440 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 4441 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 4442 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 4443 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, 4444 DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL); 4445 // First slide in the hi value, then the lo in underneath it. 4446 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, 4447 DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi, 4448 I32Mask, InsertI64VL); 4449 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, 4450 DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo, 4451 I32Mask, InsertI64VL); 4452 // Bitcast back to the right container type. 4453 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 4454 } 4455 4456 // Now that the value is in a vector, slide it into position. 4457 SDValue InsertVL = 4458 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 4459 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4460 ValInVec, Idx, Mask, InsertVL); 4461 if (!VecVT.isFixedLengthVector()) 4462 return Slideup; 4463 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4464 } 4465 4466 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 4467 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 4468 // types this is done using VMV_X_S to allow us to glean information about the 4469 // sign bits of the result. 4470 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4471 SelectionDAG &DAG) const { 4472 SDLoc DL(Op); 4473 SDValue Idx = Op.getOperand(1); 4474 SDValue Vec = Op.getOperand(0); 4475 EVT EltVT = Op.getValueType(); 4476 MVT VecVT = Vec.getSimpleValueType(); 4477 MVT XLenVT = Subtarget.getXLenVT(); 4478 4479 if (VecVT.getVectorElementType() == MVT::i1) { 4480 if (VecVT.isFixedLengthVector()) { 4481 unsigned NumElts = VecVT.getVectorNumElements(); 4482 if (NumElts >= 8) { 4483 MVT WideEltVT; 4484 unsigned WidenVecLen; 4485 SDValue ExtractElementIdx; 4486 SDValue ExtractBitIdx; 4487 unsigned MaxEEW = Subtarget.getELEN(); 4488 MVT LargestEltVT = MVT::getIntegerVT( 4489 std::min(MaxEEW, unsigned(XLenVT.getSizeInBits()))); 4490 if (NumElts <= LargestEltVT.getSizeInBits()) { 4491 assert(isPowerOf2_32(NumElts) && 4492 "the number of elements should be power of 2"); 4493 WideEltVT = MVT::getIntegerVT(NumElts); 4494 WidenVecLen = 1; 4495 ExtractElementIdx = DAG.getConstant(0, DL, XLenVT); 4496 ExtractBitIdx = Idx; 4497 } else { 4498 WideEltVT = LargestEltVT; 4499 WidenVecLen = NumElts / WideEltVT.getSizeInBits(); 4500 // extract element index = index / element width 4501 ExtractElementIdx = DAG.getNode( 4502 ISD::SRL, DL, XLenVT, Idx, 4503 DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT)); 4504 // mask bit index = index % element width 4505 ExtractBitIdx = DAG.getNode( 4506 ISD::AND, DL, XLenVT, Idx, 4507 DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT)); 4508 } 4509 MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen); 4510 Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec); 4511 SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT, 4512 Vec, ExtractElementIdx); 4513 // Extract the bit from GPR. 4514 SDValue ShiftRight = 4515 DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx); 4516 return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight, 4517 DAG.getConstant(1, DL, XLenVT)); 4518 } 4519 } 4520 // Otherwise, promote to an i8 vector and extract from that. 4521 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4522 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4523 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 4524 } 4525 4526 // If this is a fixed vector, we need to convert it to a scalable vector. 4527 MVT ContainerVT = VecVT; 4528 if (VecVT.isFixedLengthVector()) { 4529 ContainerVT = getContainerForFixedLengthVector(VecVT); 4530 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4531 } 4532 4533 // If the index is 0, the vector is already in the right position. 4534 if (!isNullConstant(Idx)) { 4535 // Use a VL of 1 to avoid processing more elements than we need. 4536 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4537 SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG); 4538 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4539 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4540 } 4541 4542 if (!EltVT.isInteger()) { 4543 // Floating-point extracts are handled in TableGen. 4544 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 4545 DAG.getConstant(0, DL, XLenVT)); 4546 } 4547 4548 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4549 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 4550 } 4551 4552 // Some RVV intrinsics may claim that they want an integer operand to be 4553 // promoted or expanded. 4554 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG, 4555 const RISCVSubtarget &Subtarget) { 4556 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 4557 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 4558 "Unexpected opcode"); 4559 4560 if (!Subtarget.hasVInstructions()) 4561 return SDValue(); 4562 4563 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 4564 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 4565 SDLoc DL(Op); 4566 4567 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4568 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4569 if (!II || !II->hasScalarOperand()) 4570 return SDValue(); 4571 4572 unsigned SplatOp = II->ScalarOperand + 1 + HasChain; 4573 assert(SplatOp < Op.getNumOperands()); 4574 4575 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4576 SDValue &ScalarOp = Operands[SplatOp]; 4577 MVT OpVT = ScalarOp.getSimpleValueType(); 4578 MVT XLenVT = Subtarget.getXLenVT(); 4579 4580 // If this isn't a scalar, or its type is XLenVT we're done. 4581 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4582 return SDValue(); 4583 4584 // Simplest case is that the operand needs to be promoted to XLenVT. 4585 if (OpVT.bitsLT(XLenVT)) { 4586 // If the operand is a constant, sign extend to increase our chances 4587 // of being able to use a .vi instruction. ANY_EXTEND would become a 4588 // a zero extend and the simm5 check in isel would fail. 4589 // FIXME: Should we ignore the upper bits in isel instead? 4590 unsigned ExtOpc = 4591 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4592 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4593 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4594 } 4595 4596 // Use the previous operand to get the vXi64 VT. The result might be a mask 4597 // VT for compares. Using the previous operand assumes that the previous 4598 // operand will never have a smaller element size than a scalar operand and 4599 // that a widening operation never uses SEW=64. 4600 // NOTE: If this fails the below assert, we can probably just find the 4601 // element count from any operand or result and use it to construct the VT. 4602 assert(II->ScalarOperand > 0 && "Unexpected splat operand!"); 4603 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4604 4605 // The more complex case is when the scalar is larger than XLenVT. 4606 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4607 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4608 4609 // If this is a sign-extended 32-bit value, we can truncate it and rely on the 4610 // instruction to sign-extend since SEW>XLEN. 4611 if (DAG.ComputeNumSignBits(ScalarOp) > 32) { 4612 ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp); 4613 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4614 } 4615 4616 switch (IntNo) { 4617 case Intrinsic::riscv_vslide1up: 4618 case Intrinsic::riscv_vslide1down: 4619 case Intrinsic::riscv_vslide1up_mask: 4620 case Intrinsic::riscv_vslide1down_mask: { 4621 // We need to special case these when the scalar is larger than XLen. 4622 unsigned NumOps = Op.getNumOperands(); 4623 bool IsMasked = NumOps == 7; 4624 4625 // Convert the vector source to the equivalent nxvXi32 vector. 4626 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4627 SDValue Vec = DAG.getBitcast(I32VT, Operands[2]); 4628 4629 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp, 4630 DAG.getConstant(0, DL, XLenVT)); 4631 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp, 4632 DAG.getConstant(1, DL, XLenVT)); 4633 4634 // Double the VL since we halved SEW. 4635 SDValue AVL = getVLOperand(Op); 4636 SDValue I32VL; 4637 4638 // Optimize for constant AVL 4639 if (isa<ConstantSDNode>(AVL)) { 4640 unsigned EltSize = VT.getScalarSizeInBits(); 4641 unsigned MinSize = VT.getSizeInBits().getKnownMinValue(); 4642 4643 unsigned VectorBitsMax = Subtarget.getRealMaxVLen(); 4644 unsigned MaxVLMAX = 4645 RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); 4646 4647 unsigned VectorBitsMin = Subtarget.getRealMinVLen(); 4648 unsigned MinVLMAX = 4649 RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize); 4650 4651 uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue(); 4652 if (AVLInt <= MinVLMAX) { 4653 I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT); 4654 } else if (AVLInt >= 2 * MaxVLMAX) { 4655 // Just set vl to VLMAX in this situation 4656 RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT); 4657 SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); 4658 unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits()); 4659 SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); 4660 SDValue SETVLMAX = DAG.getTargetConstant( 4661 Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32); 4662 I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW, 4663 LMUL); 4664 } else { 4665 // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl 4666 // is related to the hardware implementation. 4667 // So let the following code handle 4668 } 4669 } 4670 if (!I32VL) { 4671 RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT); 4672 SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); 4673 unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits()); 4674 SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); 4675 SDValue SETVL = 4676 DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32); 4677 // Using vsetvli instruction to get actually used length which related to 4678 // the hardware implementation 4679 SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL, 4680 SEW, LMUL); 4681 I32VL = 4682 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4683 } 4684 4685 SDValue I32Mask = getAllOnesMask(I32VT, I32VL, DL, DAG); 4686 4687 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4688 // instructions. 4689 SDValue Passthru; 4690 if (IsMasked) 4691 Passthru = DAG.getUNDEF(I32VT); 4692 else 4693 Passthru = DAG.getBitcast(I32VT, Operands[1]); 4694 4695 if (IntNo == Intrinsic::riscv_vslide1up || 4696 IntNo == Intrinsic::riscv_vslide1up_mask) { 4697 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, 4698 ScalarHi, I32Mask, I32VL); 4699 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, 4700 ScalarLo, I32Mask, I32VL); 4701 } else { 4702 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, 4703 ScalarLo, I32Mask, I32VL); 4704 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, 4705 ScalarHi, I32Mask, I32VL); 4706 } 4707 4708 // Convert back to nxvXi64. 4709 Vec = DAG.getBitcast(VT, Vec); 4710 4711 if (!IsMasked) 4712 return Vec; 4713 // Apply mask after the operation. 4714 SDValue Mask = Operands[NumOps - 3]; 4715 SDValue MaskedOff = Operands[1]; 4716 // Assume Policy operand is the last operand. 4717 uint64_t Policy = 4718 cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue(); 4719 // We don't need to select maskedoff if it's undef. 4720 if (MaskedOff.isUndef()) 4721 return Vec; 4722 // TAMU 4723 if (Policy == RISCVII::TAIL_AGNOSTIC) 4724 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, 4725 AVL); 4726 // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma. 4727 // It's fine because vmerge does not care mask policy. 4728 return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff, 4729 AVL); 4730 } 4731 } 4732 4733 // We need to convert the scalar to a splat vector. 4734 SDValue VL = getVLOperand(Op); 4735 assert(VL.getValueType() == XLenVT); 4736 ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG); 4737 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4738 } 4739 4740 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4741 SelectionDAG &DAG) const { 4742 unsigned IntNo = Op.getConstantOperandVal(0); 4743 SDLoc DL(Op); 4744 MVT XLenVT = Subtarget.getXLenVT(); 4745 4746 switch (IntNo) { 4747 default: 4748 break; // Don't custom lower most intrinsics. 4749 case Intrinsic::thread_pointer: { 4750 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4751 return DAG.getRegister(RISCV::X4, PtrVT); 4752 } 4753 case Intrinsic::riscv_orc_b: 4754 case Intrinsic::riscv_brev8: { 4755 // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8. 4756 unsigned Opc = 4757 IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC; 4758 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4759 DAG.getConstant(7, DL, XLenVT)); 4760 } 4761 case Intrinsic::riscv_grev: 4762 case Intrinsic::riscv_gorc: { 4763 unsigned Opc = 4764 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4765 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4766 } 4767 case Intrinsic::riscv_zip: 4768 case Intrinsic::riscv_unzip: { 4769 // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip. 4770 // For i32 the immediate is 15. For i64 the immediate is 31. 4771 unsigned Opc = 4772 IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4773 unsigned BitWidth = Op.getValueSizeInBits(); 4774 assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width"); 4775 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4776 DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT)); 4777 } 4778 case Intrinsic::riscv_shfl: 4779 case Intrinsic::riscv_unshfl: { 4780 unsigned Opc = 4781 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4782 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4783 } 4784 case Intrinsic::riscv_bcompress: 4785 case Intrinsic::riscv_bdecompress: { 4786 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4787 : RISCVISD::BDECOMPRESS; 4788 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4789 } 4790 case Intrinsic::riscv_bfp: 4791 return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1), 4792 Op.getOperand(2)); 4793 case Intrinsic::riscv_fsl: 4794 return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1), 4795 Op.getOperand(2), Op.getOperand(3)); 4796 case Intrinsic::riscv_fsr: 4797 return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1), 4798 Op.getOperand(2), Op.getOperand(3)); 4799 case Intrinsic::riscv_vmv_x_s: 4800 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4801 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4802 Op.getOperand(1)); 4803 case Intrinsic::riscv_vmv_v_x: 4804 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4805 Op.getOperand(3), Op.getSimpleValueType(), DL, DAG, 4806 Subtarget); 4807 case Intrinsic::riscv_vfmv_v_f: 4808 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4809 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4810 case Intrinsic::riscv_vmv_s_x: { 4811 SDValue Scalar = Op.getOperand(2); 4812 4813 if (Scalar.getValueType().bitsLE(XLenVT)) { 4814 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4815 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4816 Op.getOperand(1), Scalar, Op.getOperand(3)); 4817 } 4818 4819 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4820 4821 // This is an i64 value that lives in two scalar registers. We have to 4822 // insert this in a convoluted way. First we build vXi64 splat containing 4823 // the two values that we assemble using some bit math. Next we'll use 4824 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4825 // to merge element 0 from our splat into the source vector. 4826 // FIXME: This is probably not the best way to do this, but it is 4827 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4828 // point. 4829 // sw lo, (a0) 4830 // sw hi, 4(a0) 4831 // vlse vX, (a0) 4832 // 4833 // vid.v vVid 4834 // vmseq.vx mMask, vVid, 0 4835 // vmerge.vvm vDest, vSrc, vVal, mMask 4836 MVT VT = Op.getSimpleValueType(); 4837 SDValue Vec = Op.getOperand(1); 4838 SDValue VL = getVLOperand(Op); 4839 4840 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG); 4841 if (Op.getOperand(1).isUndef()) 4842 return SplattedVal; 4843 SDValue SplattedIdx = 4844 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 4845 DAG.getConstant(0, DL, MVT::i32), VL); 4846 4847 MVT MaskVT = getMaskTypeFor(VT); 4848 SDValue Mask = getAllOnesMask(VT, VL, DL, DAG); 4849 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4850 SDValue SelectCond = 4851 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4852 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4853 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4854 Vec, VL); 4855 } 4856 } 4857 4858 return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); 4859 } 4860 4861 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4862 SelectionDAG &DAG) const { 4863 unsigned IntNo = Op.getConstantOperandVal(1); 4864 switch (IntNo) { 4865 default: 4866 break; 4867 case Intrinsic::riscv_masked_strided_load: { 4868 SDLoc DL(Op); 4869 MVT XLenVT = Subtarget.getXLenVT(); 4870 4871 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4872 // the selection of the masked intrinsics doesn't do this for us. 4873 SDValue Mask = Op.getOperand(5); 4874 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4875 4876 MVT VT = Op->getSimpleValueType(0); 4877 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4878 4879 SDValue PassThru = Op.getOperand(2); 4880 if (!IsUnmasked) { 4881 MVT MaskVT = getMaskTypeFor(ContainerVT); 4882 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4883 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4884 } 4885 4886 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4887 4888 SDValue IntID = DAG.getTargetConstant( 4889 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4890 XLenVT); 4891 4892 auto *Load = cast<MemIntrinsicSDNode>(Op); 4893 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4894 if (IsUnmasked) 4895 Ops.push_back(DAG.getUNDEF(ContainerVT)); 4896 else 4897 Ops.push_back(PassThru); 4898 Ops.push_back(Op.getOperand(3)); // Ptr 4899 Ops.push_back(Op.getOperand(4)); // Stride 4900 if (!IsUnmasked) 4901 Ops.push_back(Mask); 4902 Ops.push_back(VL); 4903 if (!IsUnmasked) { 4904 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4905 Ops.push_back(Policy); 4906 } 4907 4908 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4909 SDValue Result = 4910 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4911 Load->getMemoryVT(), Load->getMemOperand()); 4912 SDValue Chain = Result.getValue(1); 4913 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4914 return DAG.getMergeValues({Result, Chain}, DL); 4915 } 4916 case Intrinsic::riscv_seg2_load: 4917 case Intrinsic::riscv_seg3_load: 4918 case Intrinsic::riscv_seg4_load: 4919 case Intrinsic::riscv_seg5_load: 4920 case Intrinsic::riscv_seg6_load: 4921 case Intrinsic::riscv_seg7_load: 4922 case Intrinsic::riscv_seg8_load: { 4923 SDLoc DL(Op); 4924 static const Intrinsic::ID VlsegInts[7] = { 4925 Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3, 4926 Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5, 4927 Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7, 4928 Intrinsic::riscv_vlseg8}; 4929 unsigned NF = Op->getNumValues() - 1; 4930 assert(NF >= 2 && NF <= 8 && "Unexpected seg number"); 4931 MVT XLenVT = Subtarget.getXLenVT(); 4932 MVT VT = Op->getSimpleValueType(0); 4933 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4934 4935 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4936 SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT); 4937 auto *Load = cast<MemIntrinsicSDNode>(Op); 4938 SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT); 4939 ContainerVTs.push_back(MVT::Other); 4940 SDVTList VTs = DAG.getVTList(ContainerVTs); 4941 SmallVector<SDValue, 12> Ops = {Load->getChain(), IntID}; 4942 Ops.insert(Ops.end(), NF, DAG.getUNDEF(ContainerVT)); 4943 Ops.push_back(Op.getOperand(2)); 4944 Ops.push_back(VL); 4945 SDValue Result = 4946 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4947 Load->getMemoryVT(), Load->getMemOperand()); 4948 SmallVector<SDValue, 9> Results; 4949 for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++) 4950 Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx), 4951 DAG, Subtarget)); 4952 Results.push_back(Result.getValue(NF)); 4953 return DAG.getMergeValues(Results, DL); 4954 } 4955 } 4956 4957 return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); 4958 } 4959 4960 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4961 SelectionDAG &DAG) const { 4962 unsigned IntNo = Op.getConstantOperandVal(1); 4963 switch (IntNo) { 4964 default: 4965 break; 4966 case Intrinsic::riscv_masked_strided_store: { 4967 SDLoc DL(Op); 4968 MVT XLenVT = Subtarget.getXLenVT(); 4969 4970 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4971 // the selection of the masked intrinsics doesn't do this for us. 4972 SDValue Mask = Op.getOperand(5); 4973 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4974 4975 SDValue Val = Op.getOperand(2); 4976 MVT VT = Val.getSimpleValueType(); 4977 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4978 4979 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4980 if (!IsUnmasked) { 4981 MVT MaskVT = getMaskTypeFor(ContainerVT); 4982 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4983 } 4984 4985 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4986 4987 SDValue IntID = DAG.getTargetConstant( 4988 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4989 XLenVT); 4990 4991 auto *Store = cast<MemIntrinsicSDNode>(Op); 4992 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4993 Ops.push_back(Val); 4994 Ops.push_back(Op.getOperand(3)); // Ptr 4995 Ops.push_back(Op.getOperand(4)); // Stride 4996 if (!IsUnmasked) 4997 Ops.push_back(Mask); 4998 Ops.push_back(VL); 4999 5000 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 5001 Ops, Store->getMemoryVT(), 5002 Store->getMemOperand()); 5003 } 5004 } 5005 5006 return SDValue(); 5007 } 5008 5009 static MVT getLMUL1VT(MVT VT) { 5010 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 5011 "Unexpected vector MVT"); 5012 return MVT::getScalableVectorVT( 5013 VT.getVectorElementType(), 5014 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 5015 } 5016 5017 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 5018 switch (ISDOpcode) { 5019 default: 5020 llvm_unreachable("Unhandled reduction"); 5021 case ISD::VECREDUCE_ADD: 5022 return RISCVISD::VECREDUCE_ADD_VL; 5023 case ISD::VECREDUCE_UMAX: 5024 return RISCVISD::VECREDUCE_UMAX_VL; 5025 case ISD::VECREDUCE_SMAX: 5026 return RISCVISD::VECREDUCE_SMAX_VL; 5027 case ISD::VECREDUCE_UMIN: 5028 return RISCVISD::VECREDUCE_UMIN_VL; 5029 case ISD::VECREDUCE_SMIN: 5030 return RISCVISD::VECREDUCE_SMIN_VL; 5031 case ISD::VECREDUCE_AND: 5032 return RISCVISD::VECREDUCE_AND_VL; 5033 case ISD::VECREDUCE_OR: 5034 return RISCVISD::VECREDUCE_OR_VL; 5035 case ISD::VECREDUCE_XOR: 5036 return RISCVISD::VECREDUCE_XOR_VL; 5037 } 5038 } 5039 5040 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 5041 SelectionDAG &DAG, 5042 bool IsVP) const { 5043 SDLoc DL(Op); 5044 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 5045 MVT VecVT = Vec.getSimpleValueType(); 5046 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 5047 Op.getOpcode() == ISD::VECREDUCE_OR || 5048 Op.getOpcode() == ISD::VECREDUCE_XOR || 5049 Op.getOpcode() == ISD::VP_REDUCE_AND || 5050 Op.getOpcode() == ISD::VP_REDUCE_OR || 5051 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 5052 "Unexpected reduction lowering"); 5053 5054 MVT XLenVT = Subtarget.getXLenVT(); 5055 assert(Op.getValueType() == XLenVT && 5056 "Expected reduction output to be legalized to XLenVT"); 5057 5058 MVT ContainerVT = VecVT; 5059 if (VecVT.isFixedLengthVector()) { 5060 ContainerVT = getContainerForFixedLengthVector(VecVT); 5061 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5062 } 5063 5064 SDValue Mask, VL; 5065 if (IsVP) { 5066 Mask = Op.getOperand(2); 5067 VL = Op.getOperand(3); 5068 } else { 5069 std::tie(Mask, VL) = 5070 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5071 } 5072 5073 unsigned BaseOpc; 5074 ISD::CondCode CC; 5075 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 5076 5077 switch (Op.getOpcode()) { 5078 default: 5079 llvm_unreachable("Unhandled reduction"); 5080 case ISD::VECREDUCE_AND: 5081 case ISD::VP_REDUCE_AND: { 5082 // vcpop ~x == 0 5083 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 5084 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 5085 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5086 CC = ISD::SETEQ; 5087 BaseOpc = ISD::AND; 5088 break; 5089 } 5090 case ISD::VECREDUCE_OR: 5091 case ISD::VP_REDUCE_OR: 5092 // vcpop x != 0 5093 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5094 CC = ISD::SETNE; 5095 BaseOpc = ISD::OR; 5096 break; 5097 case ISD::VECREDUCE_XOR: 5098 case ISD::VP_REDUCE_XOR: { 5099 // ((vcpop x) & 1) != 0 5100 SDValue One = DAG.getConstant(1, DL, XLenVT); 5101 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5102 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 5103 CC = ISD::SETNE; 5104 BaseOpc = ISD::XOR; 5105 break; 5106 } 5107 } 5108 5109 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 5110 5111 if (!IsVP) 5112 return SetCC; 5113 5114 // Now include the start value in the operation. 5115 // Note that we must return the start value when no elements are operated 5116 // upon. The vcpop instructions we've emitted in each case above will return 5117 // 0 for an inactive vector, and so we've already received the neutral value: 5118 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 5119 // can simply include the start value. 5120 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 5121 } 5122 5123 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 5124 SelectionDAG &DAG) const { 5125 SDLoc DL(Op); 5126 SDValue Vec = Op.getOperand(0); 5127 EVT VecEVT = Vec.getValueType(); 5128 5129 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 5130 5131 // Due to ordering in legalize types we may have a vector type that needs to 5132 // be split. Do that manually so we can get down to a legal type. 5133 while (getTypeAction(*DAG.getContext(), VecEVT) == 5134 TargetLowering::TypeSplitVector) { 5135 SDValue Lo, Hi; 5136 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 5137 VecEVT = Lo.getValueType(); 5138 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 5139 } 5140 5141 // TODO: The type may need to be widened rather than split. Or widened before 5142 // it can be split. 5143 if (!isTypeLegal(VecEVT)) 5144 return SDValue(); 5145 5146 MVT VecVT = VecEVT.getSimpleVT(); 5147 MVT VecEltVT = VecVT.getVectorElementType(); 5148 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 5149 5150 MVT ContainerVT = VecVT; 5151 if (VecVT.isFixedLengthVector()) { 5152 ContainerVT = getContainerForFixedLengthVector(VecVT); 5153 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5154 } 5155 5156 MVT M1VT = getLMUL1VT(ContainerVT); 5157 MVT XLenVT = Subtarget.getXLenVT(); 5158 5159 SDValue Mask, VL; 5160 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5161 5162 SDValue NeutralElem = 5163 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 5164 SDValue IdentitySplat = 5165 lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT), 5166 M1VT, DL, DAG, Subtarget); 5167 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 5168 IdentitySplat, Mask, VL); 5169 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5170 DAG.getConstant(0, DL, XLenVT)); 5171 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5172 } 5173 5174 // Given a reduction op, this function returns the matching reduction opcode, 5175 // the vector SDValue and the scalar SDValue required to lower this to a 5176 // RISCVISD node. 5177 static std::tuple<unsigned, SDValue, SDValue> 5178 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 5179 SDLoc DL(Op); 5180 auto Flags = Op->getFlags(); 5181 unsigned Opcode = Op.getOpcode(); 5182 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 5183 switch (Opcode) { 5184 default: 5185 llvm_unreachable("Unhandled reduction"); 5186 case ISD::VECREDUCE_FADD: { 5187 // Use positive zero if we can. It is cheaper to materialize. 5188 SDValue Zero = 5189 DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); 5190 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); 5191 } 5192 case ISD::VECREDUCE_SEQ_FADD: 5193 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 5194 Op.getOperand(0)); 5195 case ISD::VECREDUCE_FMIN: 5196 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 5197 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5198 case ISD::VECREDUCE_FMAX: 5199 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 5200 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5201 } 5202 } 5203 5204 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 5205 SelectionDAG &DAG) const { 5206 SDLoc DL(Op); 5207 MVT VecEltVT = Op.getSimpleValueType(); 5208 5209 unsigned RVVOpcode; 5210 SDValue VectorVal, ScalarVal; 5211 std::tie(RVVOpcode, VectorVal, ScalarVal) = 5212 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 5213 MVT VecVT = VectorVal.getSimpleValueType(); 5214 5215 MVT ContainerVT = VecVT; 5216 if (VecVT.isFixedLengthVector()) { 5217 ContainerVT = getContainerForFixedLengthVector(VecVT); 5218 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 5219 } 5220 5221 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 5222 MVT XLenVT = Subtarget.getXLenVT(); 5223 5224 SDValue Mask, VL; 5225 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5226 5227 SDValue ScalarSplat = 5228 lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT), 5229 M1VT, DL, DAG, Subtarget); 5230 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 5231 VectorVal, ScalarSplat, Mask, VL); 5232 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5233 DAG.getConstant(0, DL, XLenVT)); 5234 } 5235 5236 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 5237 switch (ISDOpcode) { 5238 default: 5239 llvm_unreachable("Unhandled reduction"); 5240 case ISD::VP_REDUCE_ADD: 5241 return RISCVISD::VECREDUCE_ADD_VL; 5242 case ISD::VP_REDUCE_UMAX: 5243 return RISCVISD::VECREDUCE_UMAX_VL; 5244 case ISD::VP_REDUCE_SMAX: 5245 return RISCVISD::VECREDUCE_SMAX_VL; 5246 case ISD::VP_REDUCE_UMIN: 5247 return RISCVISD::VECREDUCE_UMIN_VL; 5248 case ISD::VP_REDUCE_SMIN: 5249 return RISCVISD::VECREDUCE_SMIN_VL; 5250 case ISD::VP_REDUCE_AND: 5251 return RISCVISD::VECREDUCE_AND_VL; 5252 case ISD::VP_REDUCE_OR: 5253 return RISCVISD::VECREDUCE_OR_VL; 5254 case ISD::VP_REDUCE_XOR: 5255 return RISCVISD::VECREDUCE_XOR_VL; 5256 case ISD::VP_REDUCE_FADD: 5257 return RISCVISD::VECREDUCE_FADD_VL; 5258 case ISD::VP_REDUCE_SEQ_FADD: 5259 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 5260 case ISD::VP_REDUCE_FMAX: 5261 return RISCVISD::VECREDUCE_FMAX_VL; 5262 case ISD::VP_REDUCE_FMIN: 5263 return RISCVISD::VECREDUCE_FMIN_VL; 5264 } 5265 } 5266 5267 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 5268 SelectionDAG &DAG) const { 5269 SDLoc DL(Op); 5270 SDValue Vec = Op.getOperand(1); 5271 EVT VecEVT = Vec.getValueType(); 5272 5273 // TODO: The type may need to be widened rather than split. Or widened before 5274 // it can be split. 5275 if (!isTypeLegal(VecEVT)) 5276 return SDValue(); 5277 5278 MVT VecVT = VecEVT.getSimpleVT(); 5279 MVT VecEltVT = VecVT.getVectorElementType(); 5280 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 5281 5282 MVT ContainerVT = VecVT; 5283 if (VecVT.isFixedLengthVector()) { 5284 ContainerVT = getContainerForFixedLengthVector(VecVT); 5285 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5286 } 5287 5288 SDValue VL = Op.getOperand(3); 5289 SDValue Mask = Op.getOperand(2); 5290 5291 MVT M1VT = getLMUL1VT(ContainerVT); 5292 MVT XLenVT = Subtarget.getXLenVT(); 5293 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 5294 5295 SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0), 5296 DAG.getConstant(1, DL, XLenVT), M1VT, 5297 DL, DAG, Subtarget); 5298 SDValue Reduction = 5299 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 5300 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 5301 DAG.getConstant(0, DL, XLenVT)); 5302 if (!VecVT.isInteger()) 5303 return Elt0; 5304 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5305 } 5306 5307 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 5308 SelectionDAG &DAG) const { 5309 SDValue Vec = Op.getOperand(0); 5310 SDValue SubVec = Op.getOperand(1); 5311 MVT VecVT = Vec.getSimpleValueType(); 5312 MVT SubVecVT = SubVec.getSimpleValueType(); 5313 5314 SDLoc DL(Op); 5315 MVT XLenVT = Subtarget.getXLenVT(); 5316 unsigned OrigIdx = Op.getConstantOperandVal(2); 5317 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5318 5319 // We don't have the ability to slide mask vectors up indexed by their i1 5320 // elements; the smallest we can do is i8. Often we are able to bitcast to 5321 // equivalent i8 vectors. Note that when inserting a fixed-length vector 5322 // into a scalable one, we might not necessarily have enough scalable 5323 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 5324 if (SubVecVT.getVectorElementType() == MVT::i1 && 5325 (OrigIdx != 0 || !Vec.isUndef())) { 5326 if (VecVT.getVectorMinNumElements() >= 8 && 5327 SubVecVT.getVectorMinNumElements() >= 8) { 5328 assert(OrigIdx % 8 == 0 && "Invalid index"); 5329 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5330 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5331 "Unexpected mask vector lowering"); 5332 OrigIdx /= 8; 5333 SubVecVT = 5334 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5335 SubVecVT.isScalableVector()); 5336 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5337 VecVT.isScalableVector()); 5338 Vec = DAG.getBitcast(VecVT, Vec); 5339 SubVec = DAG.getBitcast(SubVecVT, SubVec); 5340 } else { 5341 // We can't slide this mask vector up indexed by its i1 elements. 5342 // This poses a problem when we wish to insert a scalable vector which 5343 // can't be re-expressed as a larger type. Just choose the slow path and 5344 // extend to a larger type, then truncate back down. 5345 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5346 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5347 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5348 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 5349 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 5350 Op.getOperand(2)); 5351 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 5352 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 5353 } 5354 } 5355 5356 // If the subvector vector is a fixed-length type, we cannot use subregister 5357 // manipulation to simplify the codegen; we don't know which register of a 5358 // LMUL group contains the specific subvector as we only know the minimum 5359 // register size. Therefore we must slide the vector group up the full 5360 // amount. 5361 if (SubVecVT.isFixedLengthVector()) { 5362 if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector()) 5363 return Op; 5364 MVT ContainerVT = VecVT; 5365 if (VecVT.isFixedLengthVector()) { 5366 ContainerVT = getContainerForFixedLengthVector(VecVT); 5367 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5368 } 5369 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 5370 DAG.getUNDEF(ContainerVT), SubVec, 5371 DAG.getConstant(0, DL, XLenVT)); 5372 if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) { 5373 SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget); 5374 return DAG.getBitcast(Op.getValueType(), SubVec); 5375 } 5376 SDValue Mask = 5377 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5378 // Set the vector length to only the number of elements we care about. Note 5379 // that for slideup this includes the offset. 5380 SDValue VL = 5381 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 5382 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5383 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 5384 SubVec, SlideupAmt, Mask, VL); 5385 if (VecVT.isFixedLengthVector()) 5386 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 5387 return DAG.getBitcast(Op.getValueType(), Slideup); 5388 } 5389 5390 unsigned SubRegIdx, RemIdx; 5391 std::tie(SubRegIdx, RemIdx) = 5392 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5393 VecVT, SubVecVT, OrigIdx, TRI); 5394 5395 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 5396 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 5397 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 5398 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 5399 5400 // 1. If the Idx has been completely eliminated and this subvector's size is 5401 // a vector register or a multiple thereof, or the surrounding elements are 5402 // undef, then this is a subvector insert which naturally aligns to a vector 5403 // register. These can easily be handled using subregister manipulation. 5404 // 2. If the subvector is smaller than a vector register, then the insertion 5405 // must preserve the undisturbed elements of the register. We do this by 5406 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 5407 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 5408 // subvector within the vector register, and an INSERT_SUBVECTOR of that 5409 // LMUL=1 type back into the larger vector (resolving to another subregister 5410 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 5411 // to avoid allocating a large register group to hold our subvector. 5412 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 5413 return Op; 5414 5415 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 5416 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 5417 // (in our case undisturbed). This means we can set up a subvector insertion 5418 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 5419 // size of the subvector. 5420 MVT InterSubVT = VecVT; 5421 SDValue AlignedExtract = Vec; 5422 unsigned AlignedIdx = OrigIdx - RemIdx; 5423 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5424 InterSubVT = getLMUL1VT(VecVT); 5425 // Extract a subvector equal to the nearest full vector register type. This 5426 // should resolve to a EXTRACT_SUBREG instruction. 5427 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5428 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5429 } 5430 5431 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5432 // For scalable vectors this must be further multiplied by vscale. 5433 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 5434 5435 SDValue Mask, VL; 5436 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5437 5438 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 5439 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 5440 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 5441 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 5442 5443 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 5444 DAG.getUNDEF(InterSubVT), SubVec, 5445 DAG.getConstant(0, DL, XLenVT)); 5446 5447 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 5448 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 5449 5450 // If required, insert this subvector back into the correct vector register. 5451 // This should resolve to an INSERT_SUBREG instruction. 5452 if (VecVT.bitsGT(InterSubVT)) 5453 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 5454 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5455 5456 // We might have bitcast from a mask type: cast back to the original type if 5457 // required. 5458 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 5459 } 5460 5461 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 5462 SelectionDAG &DAG) const { 5463 SDValue Vec = Op.getOperand(0); 5464 MVT SubVecVT = Op.getSimpleValueType(); 5465 MVT VecVT = Vec.getSimpleValueType(); 5466 5467 SDLoc DL(Op); 5468 MVT XLenVT = Subtarget.getXLenVT(); 5469 unsigned OrigIdx = Op.getConstantOperandVal(1); 5470 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5471 5472 // We don't have the ability to slide mask vectors down indexed by their i1 5473 // elements; the smallest we can do is i8. Often we are able to bitcast to 5474 // equivalent i8 vectors. Note that when extracting a fixed-length vector 5475 // from a scalable one, we might not necessarily have enough scalable 5476 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 5477 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 5478 if (VecVT.getVectorMinNumElements() >= 8 && 5479 SubVecVT.getVectorMinNumElements() >= 8) { 5480 assert(OrigIdx % 8 == 0 && "Invalid index"); 5481 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5482 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5483 "Unexpected mask vector lowering"); 5484 OrigIdx /= 8; 5485 SubVecVT = 5486 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5487 SubVecVT.isScalableVector()); 5488 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5489 VecVT.isScalableVector()); 5490 Vec = DAG.getBitcast(VecVT, Vec); 5491 } else { 5492 // We can't slide this mask vector down, indexed by its i1 elements. 5493 // This poses a problem when we wish to extract a scalable vector which 5494 // can't be re-expressed as a larger type. Just choose the slow path and 5495 // extend to a larger type, then truncate back down. 5496 // TODO: We could probably improve this when extracting certain fixed 5497 // from fixed, where we can extract as i8 and shift the correct element 5498 // right to reach the desired subvector? 5499 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5500 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5501 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5502 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 5503 Op.getOperand(1)); 5504 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 5505 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 5506 } 5507 } 5508 5509 // If the subvector vector is a fixed-length type, we cannot use subregister 5510 // manipulation to simplify the codegen; we don't know which register of a 5511 // LMUL group contains the specific subvector as we only know the minimum 5512 // register size. Therefore we must slide the vector group down the full 5513 // amount. 5514 if (SubVecVT.isFixedLengthVector()) { 5515 // With an index of 0 this is a cast-like subvector, which can be performed 5516 // with subregister operations. 5517 if (OrigIdx == 0) 5518 return Op; 5519 MVT ContainerVT = VecVT; 5520 if (VecVT.isFixedLengthVector()) { 5521 ContainerVT = getContainerForFixedLengthVector(VecVT); 5522 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5523 } 5524 SDValue Mask = 5525 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5526 // Set the vector length to only the number of elements we care about. This 5527 // avoids sliding down elements we're going to discard straight away. 5528 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 5529 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5530 SDValue Slidedown = 5531 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5532 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 5533 // Now we can use a cast-like subvector extract to get the result. 5534 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5535 DAG.getConstant(0, DL, XLenVT)); 5536 return DAG.getBitcast(Op.getValueType(), Slidedown); 5537 } 5538 5539 unsigned SubRegIdx, RemIdx; 5540 std::tie(SubRegIdx, RemIdx) = 5541 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5542 VecVT, SubVecVT, OrigIdx, TRI); 5543 5544 // If the Idx has been completely eliminated then this is a subvector extract 5545 // which naturally aligns to a vector register. These can easily be handled 5546 // using subregister manipulation. 5547 if (RemIdx == 0) 5548 return Op; 5549 5550 // Else we must shift our vector register directly to extract the subvector. 5551 // Do this using VSLIDEDOWN. 5552 5553 // If the vector type is an LMUL-group type, extract a subvector equal to the 5554 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 5555 // instruction. 5556 MVT InterSubVT = VecVT; 5557 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5558 InterSubVT = getLMUL1VT(VecVT); 5559 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5560 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 5561 } 5562 5563 // Slide this vector register down by the desired number of elements in order 5564 // to place the desired subvector starting at element 0. 5565 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5566 // For scalable vectors this must be further multiplied by vscale. 5567 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 5568 5569 SDValue Mask, VL; 5570 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 5571 SDValue Slidedown = 5572 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 5573 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 5574 5575 // Now the vector is in the right position, extract our final subvector. This 5576 // should resolve to a COPY. 5577 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5578 DAG.getConstant(0, DL, XLenVT)); 5579 5580 // We might have bitcast from a mask type: cast back to the original type if 5581 // required. 5582 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 5583 } 5584 5585 // Lower step_vector to the vid instruction. Any non-identity step value must 5586 // be accounted for my manual expansion. 5587 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 5588 SelectionDAG &DAG) const { 5589 SDLoc DL(Op); 5590 MVT VT = Op.getSimpleValueType(); 5591 MVT XLenVT = Subtarget.getXLenVT(); 5592 SDValue Mask, VL; 5593 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 5594 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 5595 uint64_t StepValImm = Op.getConstantOperandVal(0); 5596 if (StepValImm != 1) { 5597 if (isPowerOf2_64(StepValImm)) { 5598 SDValue StepVal = 5599 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 5600 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 5601 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 5602 } else { 5603 SDValue StepVal = lowerScalarSplat( 5604 SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), 5605 VL, VT, DL, DAG, Subtarget); 5606 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 5607 } 5608 } 5609 return StepVec; 5610 } 5611 5612 // Implement vector_reverse using vrgather.vv with indices determined by 5613 // subtracting the id of each element from (VLMAX-1). This will convert 5614 // the indices like so: 5615 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 5616 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 5617 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 5618 SelectionDAG &DAG) const { 5619 SDLoc DL(Op); 5620 MVT VecVT = Op.getSimpleValueType(); 5621 unsigned EltSize = VecVT.getScalarSizeInBits(); 5622 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 5623 5624 unsigned MaxVLMAX = 0; 5625 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 5626 if (VectorBitsMax != 0) 5627 MaxVLMAX = 5628 RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); 5629 5630 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 5631 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 5632 5633 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 5634 // to use vrgatherei16.vv. 5635 // TODO: It's also possible to use vrgatherei16.vv for other types to 5636 // decrease register width for the index calculation. 5637 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 5638 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 5639 // Reverse each half, then reassemble them in reverse order. 5640 // NOTE: It's also possible that after splitting that VLMAX no longer 5641 // requires vrgatherei16.vv. 5642 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 5643 SDValue Lo, Hi; 5644 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 5645 EVT LoVT, HiVT; 5646 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5647 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 5648 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 5649 // Reassemble the low and high pieces reversed. 5650 // FIXME: This is a CONCAT_VECTORS. 5651 SDValue Res = 5652 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 5653 DAG.getIntPtrConstant(0, DL)); 5654 return DAG.getNode( 5655 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 5656 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 5657 } 5658 5659 // Just promote the int type to i16 which will double the LMUL. 5660 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 5661 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 5662 } 5663 5664 MVT XLenVT = Subtarget.getXLenVT(); 5665 SDValue Mask, VL; 5666 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5667 5668 // Calculate VLMAX-1 for the desired SEW. 5669 unsigned MinElts = VecVT.getVectorMinNumElements(); 5670 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5671 DAG.getConstant(MinElts, DL, XLenVT)); 5672 SDValue VLMinus1 = 5673 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 5674 5675 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 5676 bool IsRV32E64 = 5677 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 5678 SDValue SplatVL; 5679 if (!IsRV32E64) 5680 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 5681 else 5682 SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT), 5683 VLMinus1, DAG.getRegister(RISCV::X0, XLenVT)); 5684 5685 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 5686 SDValue Indices = 5687 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 5688 5689 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 5690 } 5691 5692 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op, 5693 SelectionDAG &DAG) const { 5694 SDLoc DL(Op); 5695 SDValue V1 = Op.getOperand(0); 5696 SDValue V2 = Op.getOperand(1); 5697 MVT XLenVT = Subtarget.getXLenVT(); 5698 MVT VecVT = Op.getSimpleValueType(); 5699 5700 unsigned MinElts = VecVT.getVectorMinNumElements(); 5701 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5702 DAG.getConstant(MinElts, DL, XLenVT)); 5703 5704 int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue(); 5705 SDValue DownOffset, UpOffset; 5706 if (ImmValue >= 0) { 5707 // The operand is a TargetConstant, we need to rebuild it as a regular 5708 // constant. 5709 DownOffset = DAG.getConstant(ImmValue, DL, XLenVT); 5710 UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset); 5711 } else { 5712 // The operand is a TargetConstant, we need to rebuild it as a regular 5713 // constant rather than negating the original operand. 5714 UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT); 5715 DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset); 5716 } 5717 5718 SDValue TrueMask = getAllOnesMask(VecVT, VLMax, DL, DAG); 5719 5720 SDValue SlideDown = 5721 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1, 5722 DownOffset, TrueMask, UpOffset); 5723 return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset, 5724 TrueMask, 5725 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT)); 5726 } 5727 5728 SDValue 5729 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5730 SelectionDAG &DAG) const { 5731 SDLoc DL(Op); 5732 auto *Load = cast<LoadSDNode>(Op); 5733 5734 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5735 Load->getMemoryVT(), 5736 *Load->getMemOperand()) && 5737 "Expecting a correctly-aligned load"); 5738 5739 MVT VT = Op.getSimpleValueType(); 5740 MVT XLenVT = Subtarget.getXLenVT(); 5741 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5742 5743 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5744 5745 bool IsMaskOp = VT.getVectorElementType() == MVT::i1; 5746 SDValue IntID = DAG.getTargetConstant( 5747 IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT); 5748 SmallVector<SDValue, 4> Ops{Load->getChain(), IntID}; 5749 if (!IsMaskOp) 5750 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5751 Ops.push_back(Load->getBasePtr()); 5752 Ops.push_back(VL); 5753 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5754 SDValue NewLoad = 5755 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 5756 Load->getMemoryVT(), Load->getMemOperand()); 5757 5758 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5759 return DAG.getMergeValues({Result, NewLoad.getValue(1)}, DL); 5760 } 5761 5762 SDValue 5763 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5764 SelectionDAG &DAG) const { 5765 SDLoc DL(Op); 5766 auto *Store = cast<StoreSDNode>(Op); 5767 5768 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5769 Store->getMemoryVT(), 5770 *Store->getMemOperand()) && 5771 "Expecting a correctly-aligned store"); 5772 5773 SDValue StoreVal = Store->getValue(); 5774 MVT VT = StoreVal.getSimpleValueType(); 5775 MVT XLenVT = Subtarget.getXLenVT(); 5776 5777 // If the size less than a byte, we need to pad with zeros to make a byte. 5778 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5779 VT = MVT::v8i1; 5780 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5781 DAG.getConstant(0, DL, VT), StoreVal, 5782 DAG.getIntPtrConstant(0, DL)); 5783 } 5784 5785 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5786 5787 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5788 5789 SDValue NewValue = 5790 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5791 5792 bool IsMaskOp = VT.getVectorElementType() == MVT::i1; 5793 SDValue IntID = DAG.getTargetConstant( 5794 IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT); 5795 return DAG.getMemIntrinsicNode( 5796 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), 5797 {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL}, 5798 Store->getMemoryVT(), Store->getMemOperand()); 5799 } 5800 5801 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5802 SelectionDAG &DAG) const { 5803 SDLoc DL(Op); 5804 MVT VT = Op.getSimpleValueType(); 5805 5806 const auto *MemSD = cast<MemSDNode>(Op); 5807 EVT MemVT = MemSD->getMemoryVT(); 5808 MachineMemOperand *MMO = MemSD->getMemOperand(); 5809 SDValue Chain = MemSD->getChain(); 5810 SDValue BasePtr = MemSD->getBasePtr(); 5811 5812 SDValue Mask, PassThru, VL; 5813 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5814 Mask = VPLoad->getMask(); 5815 PassThru = DAG.getUNDEF(VT); 5816 VL = VPLoad->getVectorLength(); 5817 } else { 5818 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5819 Mask = MLoad->getMask(); 5820 PassThru = MLoad->getPassThru(); 5821 } 5822 5823 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5824 5825 MVT XLenVT = Subtarget.getXLenVT(); 5826 5827 MVT ContainerVT = VT; 5828 if (VT.isFixedLengthVector()) { 5829 ContainerVT = getContainerForFixedLengthVector(VT); 5830 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5831 if (!IsUnmasked) { 5832 MVT MaskVT = getMaskTypeFor(ContainerVT); 5833 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5834 } 5835 } 5836 5837 if (!VL) 5838 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5839 5840 unsigned IntID = 5841 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5842 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5843 if (IsUnmasked) 5844 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5845 else 5846 Ops.push_back(PassThru); 5847 Ops.push_back(BasePtr); 5848 if (!IsUnmasked) 5849 Ops.push_back(Mask); 5850 Ops.push_back(VL); 5851 if (!IsUnmasked) 5852 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5853 5854 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5855 5856 SDValue Result = 5857 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5858 Chain = Result.getValue(1); 5859 5860 if (VT.isFixedLengthVector()) 5861 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5862 5863 return DAG.getMergeValues({Result, Chain}, DL); 5864 } 5865 5866 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5867 SelectionDAG &DAG) const { 5868 SDLoc DL(Op); 5869 5870 const auto *MemSD = cast<MemSDNode>(Op); 5871 EVT MemVT = MemSD->getMemoryVT(); 5872 MachineMemOperand *MMO = MemSD->getMemOperand(); 5873 SDValue Chain = MemSD->getChain(); 5874 SDValue BasePtr = MemSD->getBasePtr(); 5875 SDValue Val, Mask, VL; 5876 5877 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5878 Val = VPStore->getValue(); 5879 Mask = VPStore->getMask(); 5880 VL = VPStore->getVectorLength(); 5881 } else { 5882 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5883 Val = MStore->getValue(); 5884 Mask = MStore->getMask(); 5885 } 5886 5887 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5888 5889 MVT VT = Val.getSimpleValueType(); 5890 MVT XLenVT = Subtarget.getXLenVT(); 5891 5892 MVT ContainerVT = VT; 5893 if (VT.isFixedLengthVector()) { 5894 ContainerVT = getContainerForFixedLengthVector(VT); 5895 5896 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5897 if (!IsUnmasked) { 5898 MVT MaskVT = getMaskTypeFor(ContainerVT); 5899 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5900 } 5901 } 5902 5903 if (!VL) 5904 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5905 5906 unsigned IntID = 5907 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 5908 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5909 Ops.push_back(Val); 5910 Ops.push_back(BasePtr); 5911 if (!IsUnmasked) 5912 Ops.push_back(Mask); 5913 Ops.push_back(VL); 5914 5915 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5916 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5917 } 5918 5919 SDValue 5920 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 5921 SelectionDAG &DAG) const { 5922 MVT InVT = Op.getOperand(0).getSimpleValueType(); 5923 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 5924 5925 MVT VT = Op.getSimpleValueType(); 5926 5927 SDValue Op1 = 5928 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 5929 SDValue Op2 = 5930 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5931 5932 SDLoc DL(Op); 5933 SDValue VL = 5934 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5935 5936 MVT MaskVT = getMaskTypeFor(ContainerVT); 5937 SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG); 5938 5939 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 5940 Op.getOperand(2), Mask, VL); 5941 5942 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 5943 } 5944 5945 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5946 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5947 MVT VT = Op.getSimpleValueType(); 5948 5949 if (VT.getVectorElementType() == MVT::i1) 5950 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5951 5952 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5953 } 5954 5955 SDValue 5956 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5957 SelectionDAG &DAG) const { 5958 unsigned Opc; 5959 switch (Op.getOpcode()) { 5960 default: llvm_unreachable("Unexpected opcode!"); 5961 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5962 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5963 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5964 } 5965 5966 return lowerToScalableOp(Op, DAG, Opc); 5967 } 5968 5969 // Lower vector ABS to smax(X, sub(0, X)). 5970 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5971 SDLoc DL(Op); 5972 MVT VT = Op.getSimpleValueType(); 5973 SDValue X = Op.getOperand(0); 5974 5975 assert(VT.isFixedLengthVector() && "Unexpected type"); 5976 5977 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5978 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5979 5980 SDValue Mask, VL; 5981 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5982 5983 SDValue SplatZero = DAG.getNode( 5984 RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), 5985 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 5986 SDValue NegX = 5987 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 5988 SDValue Max = 5989 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 5990 5991 return convertFromScalableVector(VT, Max, DAG, Subtarget); 5992 } 5993 5994 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 5995 SDValue Op, SelectionDAG &DAG) const { 5996 SDLoc DL(Op); 5997 MVT VT = Op.getSimpleValueType(); 5998 SDValue Mag = Op.getOperand(0); 5999 SDValue Sign = Op.getOperand(1); 6000 assert(Mag.getValueType() == Sign.getValueType() && 6001 "Can only handle COPYSIGN with matching types."); 6002 6003 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6004 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 6005 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 6006 6007 SDValue Mask, VL; 6008 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6009 6010 SDValue CopySign = 6011 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 6012 6013 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 6014 } 6015 6016 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 6017 SDValue Op, SelectionDAG &DAG) const { 6018 MVT VT = Op.getSimpleValueType(); 6019 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6020 6021 MVT I1ContainerVT = 6022 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6023 6024 SDValue CC = 6025 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 6026 SDValue Op1 = 6027 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 6028 SDValue Op2 = 6029 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 6030 6031 SDLoc DL(Op); 6032 SDValue Mask, VL; 6033 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6034 6035 SDValue Select = 6036 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 6037 6038 return convertFromScalableVector(VT, Select, DAG, Subtarget); 6039 } 6040 6041 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 6042 unsigned NewOpc, 6043 bool HasMask) const { 6044 MVT VT = Op.getSimpleValueType(); 6045 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6046 6047 // Create list of operands by converting existing ones to scalable types. 6048 SmallVector<SDValue, 6> Ops; 6049 for (const SDValue &V : Op->op_values()) { 6050 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 6051 6052 // Pass through non-vector operands. 6053 if (!V.getValueType().isVector()) { 6054 Ops.push_back(V); 6055 continue; 6056 } 6057 6058 // "cast" fixed length vector to a scalable vector. 6059 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 6060 "Only fixed length vectors are supported!"); 6061 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 6062 } 6063 6064 SDLoc DL(Op); 6065 SDValue Mask, VL; 6066 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6067 if (HasMask) 6068 Ops.push_back(Mask); 6069 Ops.push_back(VL); 6070 6071 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 6072 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 6073 } 6074 6075 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 6076 // * Operands of each node are assumed to be in the same order. 6077 // * The EVL operand is promoted from i32 to i64 on RV64. 6078 // * Fixed-length vectors are converted to their scalable-vector container 6079 // types. 6080 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 6081 unsigned RISCVISDOpc) const { 6082 SDLoc DL(Op); 6083 MVT VT = Op.getSimpleValueType(); 6084 SmallVector<SDValue, 4> Ops; 6085 6086 for (const auto &OpIdx : enumerate(Op->ops())) { 6087 SDValue V = OpIdx.value(); 6088 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 6089 // Pass through operands which aren't fixed-length vectors. 6090 if (!V.getValueType().isFixedLengthVector()) { 6091 Ops.push_back(V); 6092 continue; 6093 } 6094 // "cast" fixed length vector to a scalable vector. 6095 MVT OpVT = V.getSimpleValueType(); 6096 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 6097 assert(useRVVForFixedLengthVectorVT(OpVT) && 6098 "Only fixed length vectors are supported!"); 6099 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 6100 } 6101 6102 if (!VT.isFixedLengthVector()) 6103 return DAG.getNode(RISCVISDOpc, DL, VT, Ops, Op->getFlags()); 6104 6105 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6106 6107 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops, Op->getFlags()); 6108 6109 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 6110 } 6111 6112 SDValue RISCVTargetLowering::lowerVPExtMaskOp(SDValue Op, 6113 SelectionDAG &DAG) const { 6114 SDLoc DL(Op); 6115 MVT VT = Op.getSimpleValueType(); 6116 6117 SDValue Src = Op.getOperand(0); 6118 // NOTE: Mask is dropped. 6119 SDValue VL = Op.getOperand(2); 6120 6121 MVT ContainerVT = VT; 6122 if (VT.isFixedLengthVector()) { 6123 ContainerVT = getContainerForFixedLengthVector(VT); 6124 MVT SrcVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6125 Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget); 6126 } 6127 6128 MVT XLenVT = Subtarget.getXLenVT(); 6129 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 6130 SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6131 DAG.getUNDEF(ContainerVT), Zero, VL); 6132 6133 SDValue SplatValue = DAG.getConstant( 6134 Op.getOpcode() == ISD::VP_ZERO_EXTEND ? 1 : -1, DL, XLenVT); 6135 SDValue Splat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6136 DAG.getUNDEF(ContainerVT), SplatValue, VL); 6137 6138 SDValue Result = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, Src, 6139 Splat, ZeroSplat, VL); 6140 if (!VT.isFixedLengthVector()) 6141 return Result; 6142 return convertFromScalableVector(VT, Result, DAG, Subtarget); 6143 } 6144 6145 SDValue RISCVTargetLowering::lowerVPSetCCMaskOp(SDValue Op, 6146 SelectionDAG &DAG) const { 6147 SDLoc DL(Op); 6148 MVT VT = Op.getSimpleValueType(); 6149 6150 SDValue Op1 = Op.getOperand(0); 6151 SDValue Op2 = Op.getOperand(1); 6152 ISD::CondCode Condition = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 6153 // NOTE: Mask is dropped. 6154 SDValue VL = Op.getOperand(4); 6155 6156 MVT ContainerVT = VT; 6157 if (VT.isFixedLengthVector()) { 6158 ContainerVT = getContainerForFixedLengthVector(VT); 6159 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 6160 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 6161 } 6162 6163 SDValue Result; 6164 SDValue AllOneMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 6165 6166 switch (Condition) { 6167 default: 6168 break; 6169 // X != Y --> (X^Y) 6170 case ISD::SETNE: 6171 Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL); 6172 break; 6173 // X == Y --> ~(X^Y) 6174 case ISD::SETEQ: { 6175 SDValue Temp = 6176 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL); 6177 Result = 6178 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, AllOneMask, VL); 6179 break; 6180 } 6181 // X >s Y --> X == 0 & Y == 1 --> ~X & Y 6182 // X <u Y --> X == 0 & Y == 1 --> ~X & Y 6183 case ISD::SETGT: 6184 case ISD::SETULT: { 6185 SDValue Temp = 6186 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL); 6187 Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Temp, Op2, VL); 6188 break; 6189 } 6190 // X <s Y --> X == 1 & Y == 0 --> ~Y & X 6191 // X >u Y --> X == 1 & Y == 0 --> ~Y & X 6192 case ISD::SETLT: 6193 case ISD::SETUGT: { 6194 SDValue Temp = 6195 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL); 6196 Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Op1, Temp, VL); 6197 break; 6198 } 6199 // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 6200 // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 6201 case ISD::SETGE: 6202 case ISD::SETULE: { 6203 SDValue Temp = 6204 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL); 6205 Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op2, VL); 6206 break; 6207 } 6208 // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 6209 // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 6210 case ISD::SETLE: 6211 case ISD::SETUGE: { 6212 SDValue Temp = 6213 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL); 6214 Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op1, VL); 6215 break; 6216 } 6217 } 6218 6219 if (!VT.isFixedLengthVector()) 6220 return Result; 6221 return convertFromScalableVector(VT, Result, DAG, Subtarget); 6222 } 6223 6224 // Lower Floating-Point/Integer Type-Convert VP SDNodes 6225 SDValue RISCVTargetLowering::lowerVPFPIntConvOp(SDValue Op, SelectionDAG &DAG, 6226 unsigned RISCVISDOpc) const { 6227 SDLoc DL(Op); 6228 6229 SDValue Src = Op.getOperand(0); 6230 SDValue Mask = Op.getOperand(1); 6231 SDValue VL = Op.getOperand(2); 6232 6233 MVT DstVT = Op.getSimpleValueType(); 6234 MVT SrcVT = Src.getSimpleValueType(); 6235 if (DstVT.isFixedLengthVector()) { 6236 DstVT = getContainerForFixedLengthVector(DstVT); 6237 SrcVT = getContainerForFixedLengthVector(SrcVT); 6238 Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget); 6239 MVT MaskVT = getMaskTypeFor(DstVT); 6240 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6241 } 6242 6243 unsigned RISCVISDExtOpc = (RISCVISDOpc == RISCVISD::SINT_TO_FP_VL || 6244 RISCVISDOpc == RISCVISD::FP_TO_SINT_VL) 6245 ? RISCVISD::VSEXT_VL 6246 : RISCVISD::VZEXT_VL; 6247 6248 unsigned DstEltSize = DstVT.getScalarSizeInBits(); 6249 unsigned SrcEltSize = SrcVT.getScalarSizeInBits(); 6250 6251 SDValue Result; 6252 if (DstEltSize >= SrcEltSize) { // Single-width and widening conversion. 6253 if (SrcVT.isInteger()) { 6254 assert(DstVT.isFloatingPoint() && "Wrong input/output vector types"); 6255 6256 // Do we need to do any pre-widening before converting? 6257 if (SrcEltSize == 1) { 6258 MVT IntVT = DstVT.changeVectorElementTypeToInteger(); 6259 MVT XLenVT = Subtarget.getXLenVT(); 6260 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 6261 SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, 6262 DAG.getUNDEF(IntVT), Zero, VL); 6263 SDValue One = DAG.getConstant( 6264 RISCVISDExtOpc == RISCVISD::VZEXT_VL ? 1 : -1, DL, XLenVT); 6265 SDValue OneSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, 6266 DAG.getUNDEF(IntVT), One, VL); 6267 Src = DAG.getNode(RISCVISD::VSELECT_VL, DL, IntVT, Src, OneSplat, 6268 ZeroSplat, VL); 6269 } else if (DstEltSize > (2 * SrcEltSize)) { 6270 // Widen before converting. 6271 MVT IntVT = MVT::getVectorVT(MVT::getIntegerVT(DstEltSize / 2), 6272 DstVT.getVectorElementCount()); 6273 Src = DAG.getNode(RISCVISDExtOpc, DL, IntVT, Src, Mask, VL); 6274 } 6275 6276 Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL); 6277 } else { 6278 assert(SrcVT.isFloatingPoint() && DstVT.isInteger() && 6279 "Wrong input/output vector types"); 6280 6281 // Convert f16 to f32 then convert f32 to i64. 6282 if (DstEltSize > (2 * SrcEltSize)) { 6283 assert(SrcVT.getVectorElementType() == MVT::f16 && "Unexpected type!"); 6284 MVT InterimFVT = 6285 MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount()); 6286 Src = 6287 DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterimFVT, Src, Mask, VL); 6288 } 6289 6290 Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL); 6291 } 6292 } else { // Narrowing + Conversion 6293 if (SrcVT.isInteger()) { 6294 assert(DstVT.isFloatingPoint() && "Wrong input/output vector types"); 6295 // First do a narrowing convert to an FP type half the size, then round 6296 // the FP type to a small FP type if needed. 6297 6298 MVT InterimFVT = DstVT; 6299 if (SrcEltSize > (2 * DstEltSize)) { 6300 assert(SrcEltSize == (4 * DstEltSize) && "Unexpected types!"); 6301 assert(DstVT.getVectorElementType() == MVT::f16 && "Unexpected type!"); 6302 InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount()); 6303 } 6304 6305 Result = DAG.getNode(RISCVISDOpc, DL, InterimFVT, Src, Mask, VL); 6306 6307 if (InterimFVT != DstVT) { 6308 Src = Result; 6309 Result = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, DstVT, Src, Mask, VL); 6310 } 6311 } else { 6312 assert(SrcVT.isFloatingPoint() && DstVT.isInteger() && 6313 "Wrong input/output vector types"); 6314 // First do a narrowing conversion to an integer half the size, then 6315 // truncate if needed. 6316 6317 if (DstEltSize == 1) { 6318 // First convert to the same size integer, then convert to mask using 6319 // setcc. 6320 assert(SrcEltSize >= 16 && "Unexpected FP type!"); 6321 MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize), 6322 DstVT.getVectorElementCount()); 6323 Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL); 6324 6325 // Compare the integer result to 0. The integer should be 0 or 1/-1, 6326 // otherwise the conversion was undefined. 6327 MVT XLenVT = Subtarget.getXLenVT(); 6328 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 6329 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterimIVT, 6330 DAG.getUNDEF(InterimIVT), SplatZero); 6331 Result = DAG.getNode(RISCVISD::SETCC_VL, DL, DstVT, Result, SplatZero, 6332 DAG.getCondCode(ISD::SETNE), Mask, VL); 6333 } else { 6334 MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), 6335 DstVT.getVectorElementCount()); 6336 6337 Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL); 6338 6339 while (InterimIVT != DstVT) { 6340 SrcEltSize /= 2; 6341 Src = Result; 6342 InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), 6343 DstVT.getVectorElementCount()); 6344 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, InterimIVT, 6345 Src, Mask, VL); 6346 } 6347 } 6348 } 6349 } 6350 6351 MVT VT = Op.getSimpleValueType(); 6352 if (!VT.isFixedLengthVector()) 6353 return Result; 6354 return convertFromScalableVector(VT, Result, DAG, Subtarget); 6355 } 6356 6357 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG, 6358 unsigned MaskOpc, 6359 unsigned VecOpc) const { 6360 MVT VT = Op.getSimpleValueType(); 6361 if (VT.getVectorElementType() != MVT::i1) 6362 return lowerVPOp(Op, DAG, VecOpc); 6363 6364 // It is safe to drop mask parameter as masked-off elements are undef. 6365 SDValue Op1 = Op->getOperand(0); 6366 SDValue Op2 = Op->getOperand(1); 6367 SDValue VL = Op->getOperand(3); 6368 6369 MVT ContainerVT = VT; 6370 const bool IsFixed = VT.isFixedLengthVector(); 6371 if (IsFixed) { 6372 ContainerVT = getContainerForFixedLengthVector(VT); 6373 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 6374 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 6375 } 6376 6377 SDLoc DL(Op); 6378 SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL); 6379 if (!IsFixed) 6380 return Val; 6381 return convertFromScalableVector(VT, Val, DAG, Subtarget); 6382 } 6383 6384 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 6385 // matched to a RVV indexed load. The RVV indexed load instructions only 6386 // support the "unsigned unscaled" addressing mode; indices are implicitly 6387 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 6388 // signed or scaled indexing is extended to the XLEN value type and scaled 6389 // accordingly. 6390 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 6391 SelectionDAG &DAG) const { 6392 SDLoc DL(Op); 6393 MVT VT = Op.getSimpleValueType(); 6394 6395 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 6396 EVT MemVT = MemSD->getMemoryVT(); 6397 MachineMemOperand *MMO = MemSD->getMemOperand(); 6398 SDValue Chain = MemSD->getChain(); 6399 SDValue BasePtr = MemSD->getBasePtr(); 6400 6401 ISD::LoadExtType LoadExtType; 6402 SDValue Index, Mask, PassThru, VL; 6403 6404 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 6405 Index = VPGN->getIndex(); 6406 Mask = VPGN->getMask(); 6407 PassThru = DAG.getUNDEF(VT); 6408 VL = VPGN->getVectorLength(); 6409 // VP doesn't support extending loads. 6410 LoadExtType = ISD::NON_EXTLOAD; 6411 } else { 6412 // Else it must be a MGATHER. 6413 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 6414 Index = MGN->getIndex(); 6415 Mask = MGN->getMask(); 6416 PassThru = MGN->getPassThru(); 6417 LoadExtType = MGN->getExtensionType(); 6418 } 6419 6420 MVT IndexVT = Index.getSimpleValueType(); 6421 MVT XLenVT = Subtarget.getXLenVT(); 6422 6423 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 6424 "Unexpected VTs!"); 6425 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 6426 // Targets have to explicitly opt-in for extending vector loads. 6427 assert(LoadExtType == ISD::NON_EXTLOAD && 6428 "Unexpected extending MGATHER/VP_GATHER"); 6429 (void)LoadExtType; 6430 6431 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 6432 // the selection of the masked intrinsics doesn't do this for us. 6433 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 6434 6435 MVT ContainerVT = VT; 6436 if (VT.isFixedLengthVector()) { 6437 ContainerVT = getContainerForFixedLengthVector(VT); 6438 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6439 ContainerVT.getVectorElementCount()); 6440 6441 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6442 6443 if (!IsUnmasked) { 6444 MVT MaskVT = getMaskTypeFor(ContainerVT); 6445 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6446 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 6447 } 6448 } 6449 6450 if (!VL) 6451 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6452 6453 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6454 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6455 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6456 VL); 6457 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6458 TrueMask, VL); 6459 } 6460 6461 unsigned IntID = 6462 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 6463 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6464 if (IsUnmasked) 6465 Ops.push_back(DAG.getUNDEF(ContainerVT)); 6466 else 6467 Ops.push_back(PassThru); 6468 Ops.push_back(BasePtr); 6469 Ops.push_back(Index); 6470 if (!IsUnmasked) 6471 Ops.push_back(Mask); 6472 Ops.push_back(VL); 6473 if (!IsUnmasked) 6474 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 6475 6476 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 6477 SDValue Result = 6478 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 6479 Chain = Result.getValue(1); 6480 6481 if (VT.isFixedLengthVector()) 6482 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 6483 6484 return DAG.getMergeValues({Result, Chain}, DL); 6485 } 6486 6487 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 6488 // matched to a RVV indexed store. The RVV indexed store instructions only 6489 // support the "unsigned unscaled" addressing mode; indices are implicitly 6490 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 6491 // signed or scaled indexing is extended to the XLEN value type and scaled 6492 // accordingly. 6493 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 6494 SelectionDAG &DAG) const { 6495 SDLoc DL(Op); 6496 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 6497 EVT MemVT = MemSD->getMemoryVT(); 6498 MachineMemOperand *MMO = MemSD->getMemOperand(); 6499 SDValue Chain = MemSD->getChain(); 6500 SDValue BasePtr = MemSD->getBasePtr(); 6501 6502 bool IsTruncatingStore = false; 6503 SDValue Index, Mask, Val, VL; 6504 6505 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 6506 Index = VPSN->getIndex(); 6507 Mask = VPSN->getMask(); 6508 Val = VPSN->getValue(); 6509 VL = VPSN->getVectorLength(); 6510 // VP doesn't support truncating stores. 6511 IsTruncatingStore = false; 6512 } else { 6513 // Else it must be a MSCATTER. 6514 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 6515 Index = MSN->getIndex(); 6516 Mask = MSN->getMask(); 6517 Val = MSN->getValue(); 6518 IsTruncatingStore = MSN->isTruncatingStore(); 6519 } 6520 6521 MVT VT = Val.getSimpleValueType(); 6522 MVT IndexVT = Index.getSimpleValueType(); 6523 MVT XLenVT = Subtarget.getXLenVT(); 6524 6525 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 6526 "Unexpected VTs!"); 6527 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 6528 // Targets have to explicitly opt-in for extending vector loads and 6529 // truncating vector stores. 6530 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 6531 (void)IsTruncatingStore; 6532 6533 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 6534 // the selection of the masked intrinsics doesn't do this for us. 6535 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 6536 6537 MVT ContainerVT = VT; 6538 if (VT.isFixedLengthVector()) { 6539 ContainerVT = getContainerForFixedLengthVector(VT); 6540 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6541 ContainerVT.getVectorElementCount()); 6542 6543 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6544 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 6545 6546 if (!IsUnmasked) { 6547 MVT MaskVT = getMaskTypeFor(ContainerVT); 6548 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6549 } 6550 } 6551 6552 if (!VL) 6553 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6554 6555 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6556 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6557 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6558 VL); 6559 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6560 TrueMask, VL); 6561 } 6562 6563 unsigned IntID = 6564 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 6565 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6566 Ops.push_back(Val); 6567 Ops.push_back(BasePtr); 6568 Ops.push_back(Index); 6569 if (!IsUnmasked) 6570 Ops.push_back(Mask); 6571 Ops.push_back(VL); 6572 6573 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 6574 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 6575 } 6576 6577 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 6578 SelectionDAG &DAG) const { 6579 const MVT XLenVT = Subtarget.getXLenVT(); 6580 SDLoc DL(Op); 6581 SDValue Chain = Op->getOperand(0); 6582 SDValue SysRegNo = DAG.getTargetConstant( 6583 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6584 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 6585 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 6586 6587 // Encoding used for rounding mode in RISCV differs from that used in 6588 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 6589 // table, which consists of a sequence of 4-bit fields, each representing 6590 // corresponding FLT_ROUNDS mode. 6591 static const int Table = 6592 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 6593 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 6594 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 6595 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 6596 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 6597 6598 SDValue Shift = 6599 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 6600 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6601 DAG.getConstant(Table, DL, XLenVT), Shift); 6602 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6603 DAG.getConstant(7, DL, XLenVT)); 6604 6605 return DAG.getMergeValues({Masked, Chain}, DL); 6606 } 6607 6608 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 6609 SelectionDAG &DAG) const { 6610 const MVT XLenVT = Subtarget.getXLenVT(); 6611 SDLoc DL(Op); 6612 SDValue Chain = Op->getOperand(0); 6613 SDValue RMValue = Op->getOperand(1); 6614 SDValue SysRegNo = DAG.getTargetConstant( 6615 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6616 6617 // Encoding used for rounding mode in RISCV differs from that used in 6618 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 6619 // a table, which consists of a sequence of 4-bit fields, each representing 6620 // corresponding RISCV mode. 6621 static const unsigned Table = 6622 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 6623 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 6624 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 6625 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 6626 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 6627 6628 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 6629 DAG.getConstant(2, DL, XLenVT)); 6630 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6631 DAG.getConstant(Table, DL, XLenVT), Shift); 6632 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6633 DAG.getConstant(0x7, DL, XLenVT)); 6634 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 6635 RMValue); 6636 } 6637 6638 SDValue RISCVTargetLowering::lowerEH_DWARF_CFA(SDValue Op, 6639 SelectionDAG &DAG) const { 6640 MachineFunction &MF = DAG.getMachineFunction(); 6641 6642 bool isRISCV64 = Subtarget.is64Bit(); 6643 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6644 6645 int FI = MF.getFrameInfo().CreateFixedObject(isRISCV64 ? 8 : 4, 0, false); 6646 return DAG.getFrameIndex(FI, PtrVT); 6647 } 6648 6649 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) { 6650 switch (IntNo) { 6651 default: 6652 llvm_unreachable("Unexpected Intrinsic"); 6653 case Intrinsic::riscv_bcompress: 6654 return RISCVISD::BCOMPRESSW; 6655 case Intrinsic::riscv_bdecompress: 6656 return RISCVISD::BDECOMPRESSW; 6657 case Intrinsic::riscv_bfp: 6658 return RISCVISD::BFPW; 6659 case Intrinsic::riscv_fsl: 6660 return RISCVISD::FSLW; 6661 case Intrinsic::riscv_fsr: 6662 return RISCVISD::FSRW; 6663 } 6664 } 6665 6666 // Converts the given intrinsic to a i64 operation with any extension. 6667 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG, 6668 unsigned IntNo) { 6669 SDLoc DL(N); 6670 RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo); 6671 // Deal with the Instruction Operands 6672 SmallVector<SDValue, 3> NewOps; 6673 for (SDValue Op : drop_begin(N->ops())) 6674 // Promote the operand to i64 type 6675 NewOps.push_back(DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op)); 6676 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOps); 6677 // ReplaceNodeResults requires we maintain the same type for the return value. 6678 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6679 } 6680 6681 // Returns the opcode of the target-specific SDNode that implements the 32-bit 6682 // form of the given Opcode. 6683 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 6684 switch (Opcode) { 6685 default: 6686 llvm_unreachable("Unexpected opcode"); 6687 case ISD::SHL: 6688 return RISCVISD::SLLW; 6689 case ISD::SRA: 6690 return RISCVISD::SRAW; 6691 case ISD::SRL: 6692 return RISCVISD::SRLW; 6693 case ISD::SDIV: 6694 return RISCVISD::DIVW; 6695 case ISD::UDIV: 6696 return RISCVISD::DIVUW; 6697 case ISD::UREM: 6698 return RISCVISD::REMUW; 6699 case ISD::ROTL: 6700 return RISCVISD::ROLW; 6701 case ISD::ROTR: 6702 return RISCVISD::RORW; 6703 } 6704 } 6705 6706 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 6707 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 6708 // otherwise be promoted to i64, making it difficult to select the 6709 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 6710 // type i8/i16/i32 is lost. 6711 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 6712 unsigned ExtOpc = ISD::ANY_EXTEND) { 6713 SDLoc DL(N); 6714 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6715 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 6716 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 6717 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6718 // ReplaceNodeResults requires we maintain the same type for the return value. 6719 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6720 } 6721 6722 // Converts the given 32-bit operation to a i64 operation with signed extension 6723 // semantic to reduce the signed extension instructions. 6724 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 6725 SDLoc DL(N); 6726 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6727 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6728 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 6729 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6730 DAG.getValueType(MVT::i32)); 6731 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 6732 } 6733 6734 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 6735 SmallVectorImpl<SDValue> &Results, 6736 SelectionDAG &DAG) const { 6737 SDLoc DL(N); 6738 switch (N->getOpcode()) { 6739 default: 6740 llvm_unreachable("Don't know how to custom type legalize this operation!"); 6741 case ISD::STRICT_FP_TO_SINT: 6742 case ISD::STRICT_FP_TO_UINT: 6743 case ISD::FP_TO_SINT: 6744 case ISD::FP_TO_UINT: { 6745 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6746 "Unexpected custom legalisation"); 6747 bool IsStrict = N->isStrictFPOpcode(); 6748 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 6749 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 6750 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 6751 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 6752 TargetLowering::TypeSoftenFloat) { 6753 if (!isTypeLegal(Op0.getValueType())) 6754 return; 6755 if (IsStrict) { 6756 unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64 6757 : RISCVISD::STRICT_FCVT_WU_RV64; 6758 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 6759 SDValue Res = DAG.getNode( 6760 Opc, DL, VTs, N->getOperand(0), Op0, 6761 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6762 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6763 Results.push_back(Res.getValue(1)); 6764 return; 6765 } 6766 unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 6767 SDValue Res = 6768 DAG.getNode(Opc, DL, MVT::i64, Op0, 6769 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6770 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6771 return; 6772 } 6773 // If the FP type needs to be softened, emit a library call using the 'si' 6774 // version. If we left it to default legalization we'd end up with 'di'. If 6775 // the FP type doesn't need to be softened just let generic type 6776 // legalization promote the result type. 6777 RTLIB::Libcall LC; 6778 if (IsSigned) 6779 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 6780 else 6781 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 6782 MakeLibCallOptions CallOptions; 6783 EVT OpVT = Op0.getValueType(); 6784 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 6785 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 6786 SDValue Result; 6787 std::tie(Result, Chain) = 6788 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 6789 Results.push_back(Result); 6790 if (IsStrict) 6791 Results.push_back(Chain); 6792 break; 6793 } 6794 case ISD::READCYCLECOUNTER: { 6795 assert(!Subtarget.is64Bit() && 6796 "READCYCLECOUNTER only has custom type legalization on riscv32"); 6797 6798 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 6799 SDValue RCW = 6800 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 6801 6802 Results.push_back( 6803 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 6804 Results.push_back(RCW.getValue(2)); 6805 break; 6806 } 6807 case ISD::MUL: { 6808 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 6809 unsigned XLen = Subtarget.getXLen(); 6810 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 6811 if (Size > XLen) { 6812 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 6813 SDValue LHS = N->getOperand(0); 6814 SDValue RHS = N->getOperand(1); 6815 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 6816 6817 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 6818 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 6819 // We need exactly one side to be unsigned. 6820 if (LHSIsU == RHSIsU) 6821 return; 6822 6823 auto MakeMULPair = [&](SDValue S, SDValue U) { 6824 MVT XLenVT = Subtarget.getXLenVT(); 6825 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 6826 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 6827 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 6828 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 6829 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 6830 }; 6831 6832 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 6833 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 6834 6835 // The other operand should be signed, but still prefer MULH when 6836 // possible. 6837 if (RHSIsU && LHSIsS && !RHSIsS) 6838 Results.push_back(MakeMULPair(LHS, RHS)); 6839 else if (LHSIsU && RHSIsS && !LHSIsS) 6840 Results.push_back(MakeMULPair(RHS, LHS)); 6841 6842 return; 6843 } 6844 LLVM_FALLTHROUGH; 6845 } 6846 case ISD::ADD: 6847 case ISD::SUB: 6848 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6849 "Unexpected custom legalisation"); 6850 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 6851 break; 6852 case ISD::SHL: 6853 case ISD::SRA: 6854 case ISD::SRL: 6855 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6856 "Unexpected custom legalisation"); 6857 if (N->getOperand(1).getOpcode() != ISD::Constant) { 6858 // If we can use a BSET instruction, allow default promotion to apply. 6859 if (N->getOpcode() == ISD::SHL && Subtarget.hasStdExtZbs() && 6860 isOneConstant(N->getOperand(0))) 6861 break; 6862 Results.push_back(customLegalizeToWOp(N, DAG)); 6863 break; 6864 } 6865 6866 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 6867 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 6868 // shift amount. 6869 if (N->getOpcode() == ISD::SHL) { 6870 SDLoc DL(N); 6871 SDValue NewOp0 = 6872 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6873 SDValue NewOp1 = 6874 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 6875 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 6876 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6877 DAG.getValueType(MVT::i32)); 6878 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6879 } 6880 6881 break; 6882 case ISD::ROTL: 6883 case ISD::ROTR: 6884 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6885 "Unexpected custom legalisation"); 6886 Results.push_back(customLegalizeToWOp(N, DAG)); 6887 break; 6888 case ISD::CTTZ: 6889 case ISD::CTTZ_ZERO_UNDEF: 6890 case ISD::CTLZ: 6891 case ISD::CTLZ_ZERO_UNDEF: { 6892 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6893 "Unexpected custom legalisation"); 6894 6895 SDValue NewOp0 = 6896 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6897 bool IsCTZ = 6898 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 6899 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 6900 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 6901 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6902 return; 6903 } 6904 case ISD::SDIV: 6905 case ISD::UDIV: 6906 case ISD::UREM: { 6907 MVT VT = N->getSimpleValueType(0); 6908 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 6909 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 6910 "Unexpected custom legalisation"); 6911 // Don't promote division/remainder by constant since we should expand those 6912 // to multiply by magic constant. 6913 // FIXME: What if the expansion is disabled for minsize. 6914 if (N->getOperand(1).getOpcode() == ISD::Constant) 6915 return; 6916 6917 // If the input is i32, use ANY_EXTEND since the W instructions don't read 6918 // the upper 32 bits. For other types we need to sign or zero extend 6919 // based on the opcode. 6920 unsigned ExtOpc = ISD::ANY_EXTEND; 6921 if (VT != MVT::i32) 6922 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 6923 : ISD::ZERO_EXTEND; 6924 6925 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 6926 break; 6927 } 6928 case ISD::UADDO: 6929 case ISD::USUBO: { 6930 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6931 "Unexpected custom legalisation"); 6932 bool IsAdd = N->getOpcode() == ISD::UADDO; 6933 // Create an ADDW or SUBW. 6934 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6935 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6936 SDValue Res = 6937 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 6938 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 6939 DAG.getValueType(MVT::i32)); 6940 6941 SDValue Overflow; 6942 if (IsAdd && isOneConstant(RHS)) { 6943 // Special case uaddo X, 1 overflowed if the addition result is 0. 6944 // The general case (X + C) < C is not necessarily beneficial. Although we 6945 // reduce the live range of X, we may introduce the materialization of 6946 // constant C, especially when the setcc result is used by branch. We have 6947 // no compare with constant and branch instructions. 6948 Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, 6949 DAG.getConstant(0, DL, MVT::i64), ISD::SETEQ); 6950 } else { 6951 // Sign extend the LHS and perform an unsigned compare with the ADDW 6952 // result. Since the inputs are sign extended from i32, this is equivalent 6953 // to comparing the lower 32 bits. 6954 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6955 Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 6956 IsAdd ? ISD::SETULT : ISD::SETUGT); 6957 } 6958 6959 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6960 Results.push_back(Overflow); 6961 return; 6962 } 6963 case ISD::UADDSAT: 6964 case ISD::USUBSAT: { 6965 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6966 "Unexpected custom legalisation"); 6967 if (Subtarget.hasStdExtZbb()) { 6968 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 6969 // sign extend allows overflow of the lower 32 bits to be detected on 6970 // the promoted size. 6971 SDValue LHS = 6972 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6973 SDValue RHS = 6974 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 6975 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 6976 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6977 return; 6978 } 6979 6980 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 6981 // promotion for UADDO/USUBO. 6982 Results.push_back(expandAddSubSat(N, DAG)); 6983 return; 6984 } 6985 case ISD::ABS: { 6986 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6987 "Unexpected custom legalisation"); 6988 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6989 6990 // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y) 6991 6992 SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6993 6994 // Freeze the source so we can increase it's use count. 6995 Src = DAG.getFreeze(Src); 6996 6997 // Copy sign bit to all bits using the sraiw pattern. 6998 SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src, 6999 DAG.getValueType(MVT::i32)); 7000 SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill, 7001 DAG.getConstant(31, DL, MVT::i64)); 7002 7003 SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill); 7004 NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill); 7005 7006 // NOTE: The result is only required to be anyextended, but sext is 7007 // consistent with type legalization of sub. 7008 NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes, 7009 DAG.getValueType(MVT::i32)); 7010 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 7011 return; 7012 } 7013 case ISD::BITCAST: { 7014 EVT VT = N->getValueType(0); 7015 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 7016 SDValue Op0 = N->getOperand(0); 7017 EVT Op0VT = Op0.getValueType(); 7018 MVT XLenVT = Subtarget.getXLenVT(); 7019 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 7020 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 7021 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 7022 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 7023 Subtarget.hasStdExtF()) { 7024 SDValue FPConv = 7025 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 7026 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 7027 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 7028 isTypeLegal(Op0VT)) { 7029 // Custom-legalize bitcasts from fixed-length vector types to illegal 7030 // scalar types in order to improve codegen. Bitcast the vector to a 7031 // one-element vector type whose element type is the same as the result 7032 // type, and extract the first element. 7033 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 7034 if (isTypeLegal(BVT)) { 7035 SDValue BVec = DAG.getBitcast(BVT, Op0); 7036 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 7037 DAG.getConstant(0, DL, XLenVT))); 7038 } 7039 } 7040 break; 7041 } 7042 case RISCVISD::GREV: 7043 case RISCVISD::GORC: 7044 case RISCVISD::SHFL: { 7045 MVT VT = N->getSimpleValueType(0); 7046 MVT XLenVT = Subtarget.getXLenVT(); 7047 assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) && 7048 "Unexpected custom legalisation"); 7049 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 7050 assert((Subtarget.hasStdExtZbp() || 7051 (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV && 7052 N->getConstantOperandVal(1) == 7)) && 7053 "Unexpected extension"); 7054 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 7055 SDValue NewOp1 = 7056 DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1)); 7057 SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1); 7058 // ReplaceNodeResults requires we maintain the same type for the return 7059 // value. 7060 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes)); 7061 break; 7062 } 7063 case ISD::BSWAP: 7064 case ISD::BITREVERSE: { 7065 MVT VT = N->getSimpleValueType(0); 7066 MVT XLenVT = Subtarget.getXLenVT(); 7067 assert((VT == MVT::i8 || VT == MVT::i16 || 7068 (VT == MVT::i32 && Subtarget.is64Bit())) && 7069 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 7070 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 7071 unsigned Imm = VT.getSizeInBits() - 1; 7072 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 7073 if (N->getOpcode() == ISD::BSWAP) 7074 Imm &= ~0x7U; 7075 SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0, 7076 DAG.getConstant(Imm, DL, XLenVT)); 7077 // ReplaceNodeResults requires we maintain the same type for the return 7078 // value. 7079 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 7080 break; 7081 } 7082 case ISD::FSHL: 7083 case ISD::FSHR: { 7084 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7085 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 7086 SDValue NewOp0 = 7087 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 7088 SDValue NewOp1 = 7089 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7090 SDValue NewShAmt = 7091 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 7092 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 7093 // Mask the shift amount to 5 bits to prevent accidentally setting bit 5. 7094 NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt, 7095 DAG.getConstant(0x1f, DL, MVT::i64)); 7096 // fshl and fshr concatenate their operands in the same order. fsrw and fslw 7097 // instruction use different orders. fshl will return its first operand for 7098 // shift of zero, fshr will return its second operand. fsl and fsr both 7099 // return rs1 so the ISD nodes need to have different operand orders. 7100 // Shift amount is in rs2. 7101 unsigned Opc = RISCVISD::FSLW; 7102 if (N->getOpcode() == ISD::FSHR) { 7103 std::swap(NewOp0, NewOp1); 7104 Opc = RISCVISD::FSRW; 7105 } 7106 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt); 7107 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 7108 break; 7109 } 7110 case ISD::EXTRACT_VECTOR_ELT: { 7111 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 7112 // type is illegal (currently only vXi64 RV32). 7113 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 7114 // transferred to the destination register. We issue two of these from the 7115 // upper- and lower- halves of the SEW-bit vector element, slid down to the 7116 // first element. 7117 SDValue Vec = N->getOperand(0); 7118 SDValue Idx = N->getOperand(1); 7119 7120 // The vector type hasn't been legalized yet so we can't issue target 7121 // specific nodes if it needs legalization. 7122 // FIXME: We would manually legalize if it's important. 7123 if (!isTypeLegal(Vec.getValueType())) 7124 return; 7125 7126 MVT VecVT = Vec.getSimpleValueType(); 7127 7128 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 7129 VecVT.getVectorElementType() == MVT::i64 && 7130 "Unexpected EXTRACT_VECTOR_ELT legalization"); 7131 7132 // If this is a fixed vector, we need to convert it to a scalable vector. 7133 MVT ContainerVT = VecVT; 7134 if (VecVT.isFixedLengthVector()) { 7135 ContainerVT = getContainerForFixedLengthVector(VecVT); 7136 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 7137 } 7138 7139 MVT XLenVT = Subtarget.getXLenVT(); 7140 7141 // Use a VL of 1 to avoid processing more elements than we need. 7142 SDValue VL = DAG.getConstant(1, DL, XLenVT); 7143 SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG); 7144 7145 // Unless the index is known to be 0, we must slide the vector down to get 7146 // the desired element into index 0. 7147 if (!isNullConstant(Idx)) { 7148 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 7149 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 7150 } 7151 7152 // Extract the lower XLEN bits of the correct vector element. 7153 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 7154 7155 // To extract the upper XLEN bits of the vector element, shift the first 7156 // element right by 32 bits and re-extract the lower XLEN bits. 7157 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 7158 DAG.getUNDEF(ContainerVT), 7159 DAG.getConstant(32, DL, XLenVT), VL); 7160 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 7161 ThirtyTwoV, Mask, VL); 7162 7163 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 7164 7165 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 7166 break; 7167 } 7168 case ISD::INTRINSIC_WO_CHAIN: { 7169 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 7170 switch (IntNo) { 7171 default: 7172 llvm_unreachable( 7173 "Don't know how to custom type legalize this intrinsic!"); 7174 case Intrinsic::riscv_grev: 7175 case Intrinsic::riscv_gorc: { 7176 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7177 "Unexpected custom legalisation"); 7178 SDValue NewOp1 = 7179 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7180 SDValue NewOp2 = 7181 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 7182 unsigned Opc = 7183 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 7184 // If the control is a constant, promote the node by clearing any extra 7185 // bits bits in the control. isel will form greviw/gorciw if the result is 7186 // sign extended. 7187 if (isa<ConstantSDNode>(NewOp2)) { 7188 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 7189 DAG.getConstant(0x1f, DL, MVT::i64)); 7190 Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 7191 } 7192 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 7193 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7194 break; 7195 } 7196 case Intrinsic::riscv_bcompress: 7197 case Intrinsic::riscv_bdecompress: 7198 case Intrinsic::riscv_bfp: 7199 case Intrinsic::riscv_fsl: 7200 case Intrinsic::riscv_fsr: { 7201 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7202 "Unexpected custom legalisation"); 7203 Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo)); 7204 break; 7205 } 7206 case Intrinsic::riscv_orc_b: { 7207 // Lower to the GORCI encoding for orc.b with the operand extended. 7208 SDValue NewOp = 7209 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7210 SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp, 7211 DAG.getConstant(7, DL, MVT::i64)); 7212 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7213 return; 7214 } 7215 case Intrinsic::riscv_shfl: 7216 case Intrinsic::riscv_unshfl: { 7217 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7218 "Unexpected custom legalisation"); 7219 SDValue NewOp1 = 7220 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7221 SDValue NewOp2 = 7222 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 7223 unsigned Opc = 7224 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 7225 // There is no (UN)SHFLIW. If the control word is a constant, we can use 7226 // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half 7227 // will be shuffled the same way as the lower 32 bit half, but the two 7228 // halves won't cross. 7229 if (isa<ConstantSDNode>(NewOp2)) { 7230 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 7231 DAG.getConstant(0xf, DL, MVT::i64)); 7232 Opc = 7233 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 7234 } 7235 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 7236 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7237 break; 7238 } 7239 case Intrinsic::riscv_vmv_x_s: { 7240 EVT VT = N->getValueType(0); 7241 MVT XLenVT = Subtarget.getXLenVT(); 7242 if (VT.bitsLT(XLenVT)) { 7243 // Simple case just extract using vmv.x.s and truncate. 7244 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 7245 Subtarget.getXLenVT(), N->getOperand(1)); 7246 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 7247 return; 7248 } 7249 7250 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 7251 "Unexpected custom legalization"); 7252 7253 // We need to do the move in two steps. 7254 SDValue Vec = N->getOperand(1); 7255 MVT VecVT = Vec.getSimpleValueType(); 7256 7257 // First extract the lower XLEN bits of the element. 7258 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 7259 7260 // To extract the upper XLEN bits of the vector element, shift the first 7261 // element right by 32 bits and re-extract the lower XLEN bits. 7262 SDValue VL = DAG.getConstant(1, DL, XLenVT); 7263 SDValue Mask = getAllOnesMask(VecVT, VL, DL, DAG); 7264 7265 SDValue ThirtyTwoV = 7266 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 7267 DAG.getConstant(32, DL, XLenVT), VL); 7268 SDValue LShr32 = 7269 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 7270 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 7271 7272 Results.push_back( 7273 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 7274 break; 7275 } 7276 } 7277 break; 7278 } 7279 case ISD::VECREDUCE_ADD: 7280 case ISD::VECREDUCE_AND: 7281 case ISD::VECREDUCE_OR: 7282 case ISD::VECREDUCE_XOR: 7283 case ISD::VECREDUCE_SMAX: 7284 case ISD::VECREDUCE_UMAX: 7285 case ISD::VECREDUCE_SMIN: 7286 case ISD::VECREDUCE_UMIN: 7287 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 7288 Results.push_back(V); 7289 break; 7290 case ISD::VP_REDUCE_ADD: 7291 case ISD::VP_REDUCE_AND: 7292 case ISD::VP_REDUCE_OR: 7293 case ISD::VP_REDUCE_XOR: 7294 case ISD::VP_REDUCE_SMAX: 7295 case ISD::VP_REDUCE_UMAX: 7296 case ISD::VP_REDUCE_SMIN: 7297 case ISD::VP_REDUCE_UMIN: 7298 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 7299 Results.push_back(V); 7300 break; 7301 case ISD::FLT_ROUNDS_: { 7302 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 7303 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 7304 Results.push_back(Res.getValue(0)); 7305 Results.push_back(Res.getValue(1)); 7306 break; 7307 } 7308 } 7309 } 7310 7311 // A structure to hold one of the bit-manipulation patterns below. Together, a 7312 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 7313 // (or (and (shl x, 1), 0xAAAAAAAA), 7314 // (and (srl x, 1), 0x55555555)) 7315 struct RISCVBitmanipPat { 7316 SDValue Op; 7317 unsigned ShAmt; 7318 bool IsSHL; 7319 7320 bool formsPairWith(const RISCVBitmanipPat &Other) const { 7321 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 7322 } 7323 }; 7324 7325 // Matches patterns of the form 7326 // (and (shl x, C2), (C1 << C2)) 7327 // (and (srl x, C2), C1) 7328 // (shl (and x, C1), C2) 7329 // (srl (and x, (C1 << C2)), C2) 7330 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 7331 // The expected masks for each shift amount are specified in BitmanipMasks where 7332 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 7333 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 7334 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 7335 // XLen is 64. 7336 static Optional<RISCVBitmanipPat> 7337 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 7338 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 7339 "Unexpected number of masks"); 7340 Optional<uint64_t> Mask; 7341 // Optionally consume a mask around the shift operation. 7342 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 7343 Mask = Op.getConstantOperandVal(1); 7344 Op = Op.getOperand(0); 7345 } 7346 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 7347 return None; 7348 bool IsSHL = Op.getOpcode() == ISD::SHL; 7349 7350 if (!isa<ConstantSDNode>(Op.getOperand(1))) 7351 return None; 7352 uint64_t ShAmt = Op.getConstantOperandVal(1); 7353 7354 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7355 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 7356 return None; 7357 // If we don't have enough masks for 64 bit, then we must be trying to 7358 // match SHFL so we're only allowed to shift 1/4 of the width. 7359 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 7360 return None; 7361 7362 SDValue Src = Op.getOperand(0); 7363 7364 // The expected mask is shifted left when the AND is found around SHL 7365 // patterns. 7366 // ((x >> 1) & 0x55555555) 7367 // ((x << 1) & 0xAAAAAAAA) 7368 bool SHLExpMask = IsSHL; 7369 7370 if (!Mask) { 7371 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 7372 // the mask is all ones: consume that now. 7373 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 7374 Mask = Src.getConstantOperandVal(1); 7375 Src = Src.getOperand(0); 7376 // The expected mask is now in fact shifted left for SRL, so reverse the 7377 // decision. 7378 // ((x & 0xAAAAAAAA) >> 1) 7379 // ((x & 0x55555555) << 1) 7380 SHLExpMask = !SHLExpMask; 7381 } else { 7382 // Use a default shifted mask of all-ones if there's no AND, truncated 7383 // down to the expected width. This simplifies the logic later on. 7384 Mask = maskTrailingOnes<uint64_t>(Width); 7385 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 7386 } 7387 } 7388 7389 unsigned MaskIdx = Log2_32(ShAmt); 7390 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7391 7392 if (SHLExpMask) 7393 ExpMask <<= ShAmt; 7394 7395 if (Mask != ExpMask) 7396 return None; 7397 7398 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 7399 } 7400 7401 // Matches any of the following bit-manipulation patterns: 7402 // (and (shl x, 1), (0x55555555 << 1)) 7403 // (and (srl x, 1), 0x55555555) 7404 // (shl (and x, 0x55555555), 1) 7405 // (srl (and x, (0x55555555 << 1)), 1) 7406 // where the shift amount and mask may vary thus: 7407 // [1] = 0x55555555 / 0xAAAAAAAA 7408 // [2] = 0x33333333 / 0xCCCCCCCC 7409 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 7410 // [8] = 0x00FF00FF / 0xFF00FF00 7411 // [16] = 0x0000FFFF / 0xFFFFFFFF 7412 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 7413 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 7414 // These are the unshifted masks which we use to match bit-manipulation 7415 // patterns. They may be shifted left in certain circumstances. 7416 static const uint64_t BitmanipMasks[] = { 7417 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 7418 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 7419 7420 return matchRISCVBitmanipPat(Op, BitmanipMasks); 7421 } 7422 7423 // Try to fold (<bop> x, (reduction.<bop> vec, start)) 7424 static SDValue combineBinOpToReduce(SDNode *N, SelectionDAG &DAG) { 7425 auto BinOpToRVVReduce = [](unsigned Opc) { 7426 switch (Opc) { 7427 default: 7428 llvm_unreachable("Unhandled binary to transfrom reduction"); 7429 case ISD::ADD: 7430 return RISCVISD::VECREDUCE_ADD_VL; 7431 case ISD::UMAX: 7432 return RISCVISD::VECREDUCE_UMAX_VL; 7433 case ISD::SMAX: 7434 return RISCVISD::VECREDUCE_SMAX_VL; 7435 case ISD::UMIN: 7436 return RISCVISD::VECREDUCE_UMIN_VL; 7437 case ISD::SMIN: 7438 return RISCVISD::VECREDUCE_SMIN_VL; 7439 case ISD::AND: 7440 return RISCVISD::VECREDUCE_AND_VL; 7441 case ISD::OR: 7442 return RISCVISD::VECREDUCE_OR_VL; 7443 case ISD::XOR: 7444 return RISCVISD::VECREDUCE_XOR_VL; 7445 case ISD::FADD: 7446 return RISCVISD::VECREDUCE_FADD_VL; 7447 case ISD::FMAXNUM: 7448 return RISCVISD::VECREDUCE_FMAX_VL; 7449 case ISD::FMINNUM: 7450 return RISCVISD::VECREDUCE_FMIN_VL; 7451 } 7452 }; 7453 7454 auto IsReduction = [&BinOpToRVVReduce](SDValue V, unsigned Opc) { 7455 return V.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 7456 isNullConstant(V.getOperand(1)) && 7457 V.getOperand(0).getOpcode() == BinOpToRVVReduce(Opc); 7458 }; 7459 7460 unsigned Opc = N->getOpcode(); 7461 unsigned ReduceIdx; 7462 if (IsReduction(N->getOperand(0), Opc)) 7463 ReduceIdx = 0; 7464 else if (IsReduction(N->getOperand(1), Opc)) 7465 ReduceIdx = 1; 7466 else 7467 return SDValue(); 7468 7469 // Skip if FADD disallows reassociation but the combiner needs. 7470 if (Opc == ISD::FADD && !N->getFlags().hasAllowReassociation()) 7471 return SDValue(); 7472 7473 SDValue Extract = N->getOperand(ReduceIdx); 7474 SDValue Reduce = Extract.getOperand(0); 7475 if (!Reduce.hasOneUse()) 7476 return SDValue(); 7477 7478 SDValue ScalarV = Reduce.getOperand(2); 7479 7480 // Make sure that ScalarV is a splat with VL=1. 7481 if (ScalarV.getOpcode() != RISCVISD::VFMV_S_F_VL && 7482 ScalarV.getOpcode() != RISCVISD::VMV_S_X_VL && 7483 ScalarV.getOpcode() != RISCVISD::VMV_V_X_VL) 7484 return SDValue(); 7485 7486 if (!isOneConstant(ScalarV.getOperand(2))) 7487 return SDValue(); 7488 7489 // TODO: Deal with value other than neutral element. 7490 auto IsRVVNeutralElement = [Opc, &DAG](SDNode *N, SDValue V) { 7491 if (Opc == ISD::FADD && N->getFlags().hasNoSignedZeros() && 7492 isNullFPConstant(V)) 7493 return true; 7494 return DAG.getNeutralElement(Opc, SDLoc(V), V.getSimpleValueType(), 7495 N->getFlags()) == V; 7496 }; 7497 7498 // Check the scalar of ScalarV is neutral element 7499 if (!IsRVVNeutralElement(N, ScalarV.getOperand(1))) 7500 return SDValue(); 7501 7502 if (!ScalarV.hasOneUse()) 7503 return SDValue(); 7504 7505 EVT SplatVT = ScalarV.getValueType(); 7506 SDValue NewStart = N->getOperand(1 - ReduceIdx); 7507 unsigned SplatOpc = RISCVISD::VFMV_S_F_VL; 7508 if (SplatVT.isInteger()) { 7509 auto *C = dyn_cast<ConstantSDNode>(NewStart.getNode()); 7510 if (!C || C->isZero() || !isInt<5>(C->getSExtValue())) 7511 SplatOpc = RISCVISD::VMV_S_X_VL; 7512 else 7513 SplatOpc = RISCVISD::VMV_V_X_VL; 7514 } 7515 7516 SDValue NewScalarV = 7517 DAG.getNode(SplatOpc, SDLoc(N), SplatVT, ScalarV.getOperand(0), NewStart, 7518 ScalarV.getOperand(2)); 7519 SDValue NewReduce = 7520 DAG.getNode(Reduce.getOpcode(), SDLoc(Reduce), Reduce.getValueType(), 7521 Reduce.getOperand(0), Reduce.getOperand(1), NewScalarV, 7522 Reduce.getOperand(3), Reduce.getOperand(4)); 7523 return DAG.getNode(Extract.getOpcode(), SDLoc(Extract), 7524 Extract.getValueType(), NewReduce, Extract.getOperand(1)); 7525 } 7526 7527 // Match the following pattern as a GREVI(W) operation 7528 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 7529 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 7530 const RISCVSubtarget &Subtarget) { 7531 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7532 EVT VT = Op.getValueType(); 7533 7534 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 7535 auto LHS = matchGREVIPat(Op.getOperand(0)); 7536 auto RHS = matchGREVIPat(Op.getOperand(1)); 7537 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 7538 SDLoc DL(Op); 7539 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 7540 DAG.getConstant(LHS->ShAmt, DL, VT)); 7541 } 7542 } 7543 return SDValue(); 7544 } 7545 7546 // Matches any the following pattern as a GORCI(W) operation 7547 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 7548 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 7549 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 7550 // Note that with the variant of 3., 7551 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 7552 // the inner pattern will first be matched as GREVI and then the outer 7553 // pattern will be matched to GORC via the first rule above. 7554 // 4. (or (rotl/rotr x, bitwidth/2), x) 7555 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 7556 const RISCVSubtarget &Subtarget) { 7557 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7558 EVT VT = Op.getValueType(); 7559 7560 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 7561 SDLoc DL(Op); 7562 SDValue Op0 = Op.getOperand(0); 7563 SDValue Op1 = Op.getOperand(1); 7564 7565 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 7566 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 7567 isa<ConstantSDNode>(Reverse.getOperand(1)) && 7568 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 7569 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 7570 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 7571 if ((Reverse.getOpcode() == ISD::ROTL || 7572 Reverse.getOpcode() == ISD::ROTR) && 7573 Reverse.getOperand(0) == X && 7574 isa<ConstantSDNode>(Reverse.getOperand(1))) { 7575 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 7576 if (RotAmt == (VT.getSizeInBits() / 2)) 7577 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 7578 DAG.getConstant(RotAmt, DL, VT)); 7579 } 7580 return SDValue(); 7581 }; 7582 7583 // Check for either commutable permutation of (or (GREVI x, shamt), x) 7584 if (SDValue V = MatchOROfReverse(Op0, Op1)) 7585 return V; 7586 if (SDValue V = MatchOROfReverse(Op1, Op0)) 7587 return V; 7588 7589 // OR is commutable so canonicalize its OR operand to the left 7590 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 7591 std::swap(Op0, Op1); 7592 if (Op0.getOpcode() != ISD::OR) 7593 return SDValue(); 7594 SDValue OrOp0 = Op0.getOperand(0); 7595 SDValue OrOp1 = Op0.getOperand(1); 7596 auto LHS = matchGREVIPat(OrOp0); 7597 // OR is commutable so swap the operands and try again: x might have been 7598 // on the left 7599 if (!LHS) { 7600 std::swap(OrOp0, OrOp1); 7601 LHS = matchGREVIPat(OrOp0); 7602 } 7603 auto RHS = matchGREVIPat(Op1); 7604 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 7605 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 7606 DAG.getConstant(LHS->ShAmt, DL, VT)); 7607 } 7608 } 7609 return SDValue(); 7610 } 7611 7612 // Matches any of the following bit-manipulation patterns: 7613 // (and (shl x, 1), (0x22222222 << 1)) 7614 // (and (srl x, 1), 0x22222222) 7615 // (shl (and x, 0x22222222), 1) 7616 // (srl (and x, (0x22222222 << 1)), 1) 7617 // where the shift amount and mask may vary thus: 7618 // [1] = 0x22222222 / 0x44444444 7619 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 7620 // [4] = 0x00F000F0 / 0x0F000F00 7621 // [8] = 0x0000FF00 / 0x00FF0000 7622 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 7623 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 7624 // These are the unshifted masks which we use to match bit-manipulation 7625 // patterns. They may be shifted left in certain circumstances. 7626 static const uint64_t BitmanipMasks[] = { 7627 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 7628 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 7629 7630 return matchRISCVBitmanipPat(Op, BitmanipMasks); 7631 } 7632 7633 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 7634 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 7635 const RISCVSubtarget &Subtarget) { 7636 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7637 EVT VT = Op.getValueType(); 7638 7639 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 7640 return SDValue(); 7641 7642 SDValue Op0 = Op.getOperand(0); 7643 SDValue Op1 = Op.getOperand(1); 7644 7645 // Or is commutable so canonicalize the second OR to the LHS. 7646 if (Op0.getOpcode() != ISD::OR) 7647 std::swap(Op0, Op1); 7648 if (Op0.getOpcode() != ISD::OR) 7649 return SDValue(); 7650 7651 // We found an inner OR, so our operands are the operands of the inner OR 7652 // and the other operand of the outer OR. 7653 SDValue A = Op0.getOperand(0); 7654 SDValue B = Op0.getOperand(1); 7655 SDValue C = Op1; 7656 7657 auto Match1 = matchSHFLPat(A); 7658 auto Match2 = matchSHFLPat(B); 7659 7660 // If neither matched, we failed. 7661 if (!Match1 && !Match2) 7662 return SDValue(); 7663 7664 // We had at least one match. if one failed, try the remaining C operand. 7665 if (!Match1) { 7666 std::swap(A, C); 7667 Match1 = matchSHFLPat(A); 7668 if (!Match1) 7669 return SDValue(); 7670 } else if (!Match2) { 7671 std::swap(B, C); 7672 Match2 = matchSHFLPat(B); 7673 if (!Match2) 7674 return SDValue(); 7675 } 7676 assert(Match1 && Match2); 7677 7678 // Make sure our matches pair up. 7679 if (!Match1->formsPairWith(*Match2)) 7680 return SDValue(); 7681 7682 // All the remains is to make sure C is an AND with the same input, that masks 7683 // out the bits that are being shuffled. 7684 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 7685 C.getOperand(0) != Match1->Op) 7686 return SDValue(); 7687 7688 uint64_t Mask = C.getConstantOperandVal(1); 7689 7690 static const uint64_t BitmanipMasks[] = { 7691 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 7692 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 7693 }; 7694 7695 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7696 unsigned MaskIdx = Log2_32(Match1->ShAmt); 7697 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7698 7699 if (Mask != ExpMask) 7700 return SDValue(); 7701 7702 SDLoc DL(Op); 7703 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 7704 DAG.getConstant(Match1->ShAmt, DL, VT)); 7705 } 7706 7707 // Optimize (add (shl x, c0), (shl y, c1)) -> 7708 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 7709 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 7710 const RISCVSubtarget &Subtarget) { 7711 // Perform this optimization only in the zba extension. 7712 if (!Subtarget.hasStdExtZba()) 7713 return SDValue(); 7714 7715 // Skip for vector types and larger types. 7716 EVT VT = N->getValueType(0); 7717 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7718 return SDValue(); 7719 7720 // The two operand nodes must be SHL and have no other use. 7721 SDValue N0 = N->getOperand(0); 7722 SDValue N1 = N->getOperand(1); 7723 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 7724 !N0->hasOneUse() || !N1->hasOneUse()) 7725 return SDValue(); 7726 7727 // Check c0 and c1. 7728 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7729 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 7730 if (!N0C || !N1C) 7731 return SDValue(); 7732 int64_t C0 = N0C->getSExtValue(); 7733 int64_t C1 = N1C->getSExtValue(); 7734 if (C0 <= 0 || C1 <= 0) 7735 return SDValue(); 7736 7737 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 7738 int64_t Bits = std::min(C0, C1); 7739 int64_t Diff = std::abs(C0 - C1); 7740 if (Diff != 1 && Diff != 2 && Diff != 3) 7741 return SDValue(); 7742 7743 // Build nodes. 7744 SDLoc DL(N); 7745 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 7746 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 7747 SDValue NA0 = 7748 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 7749 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 7750 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 7751 } 7752 7753 // Combine 7754 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32 7755 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32 7756 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64 7757 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64 7758 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64 7759 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64 7760 // The grev patterns represents BSWAP. 7761 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB 7762 // off the grev. 7763 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG, 7764 const RISCVSubtarget &Subtarget) { 7765 bool IsWInstruction = 7766 N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW; 7767 assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL || 7768 IsWInstruction) && 7769 "Unexpected opcode!"); 7770 SDValue Src = N->getOperand(0); 7771 EVT VT = N->getValueType(0); 7772 SDLoc DL(N); 7773 7774 if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV) 7775 return SDValue(); 7776 7777 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7778 !isa<ConstantSDNode>(Src.getOperand(1))) 7779 return SDValue(); 7780 7781 unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits(); 7782 assert(isPowerOf2_32(BitWidth) && "Expected a power of 2"); 7783 7784 // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for 7785 // RORW/ROLW. And the grev should be the encoding for bswap for this width. 7786 unsigned ShAmt1 = N->getConstantOperandVal(1); 7787 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7788 if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8)) 7789 return SDValue(); 7790 7791 Src = Src.getOperand(0); 7792 7793 // Toggle bit the MSB of the shift. 7794 unsigned CombinedShAmt = ShAmt1 ^ ShAmt2; 7795 if (CombinedShAmt == 0) 7796 return Src; 7797 7798 SDValue Res = DAG.getNode( 7799 RISCVISD::GREV, DL, VT, Src, 7800 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7801 if (!IsWInstruction) 7802 return Res; 7803 7804 // Sign extend the result to match the behavior of the rotate. This will be 7805 // selected to GREVIW in isel. 7806 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res, 7807 DAG.getValueType(MVT::i32)); 7808 } 7809 7810 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 7811 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 7812 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 7813 // not undo itself, but they are redundant. 7814 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 7815 bool IsGORC = N->getOpcode() == RISCVISD::GORC; 7816 assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode"); 7817 SDValue Src = N->getOperand(0); 7818 7819 if (Src.getOpcode() != N->getOpcode()) 7820 return SDValue(); 7821 7822 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7823 !isa<ConstantSDNode>(Src.getOperand(1))) 7824 return SDValue(); 7825 7826 unsigned ShAmt1 = N->getConstantOperandVal(1); 7827 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7828 Src = Src.getOperand(0); 7829 7830 unsigned CombinedShAmt; 7831 if (IsGORC) 7832 CombinedShAmt = ShAmt1 | ShAmt2; 7833 else 7834 CombinedShAmt = ShAmt1 ^ ShAmt2; 7835 7836 if (CombinedShAmt == 0) 7837 return Src; 7838 7839 SDLoc DL(N); 7840 return DAG.getNode( 7841 N->getOpcode(), DL, N->getValueType(0), Src, 7842 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7843 } 7844 7845 // Combine a constant select operand into its use: 7846 // 7847 // (and (select cond, -1, c), x) 7848 // -> (select cond, x, (and x, c)) [AllOnes=1] 7849 // (or (select cond, 0, c), x) 7850 // -> (select cond, x, (or x, c)) [AllOnes=0] 7851 // (xor (select cond, 0, c), x) 7852 // -> (select cond, x, (xor x, c)) [AllOnes=0] 7853 // (add (select cond, 0, c), x) 7854 // -> (select cond, x, (add x, c)) [AllOnes=0] 7855 // (sub x, (select cond, 0, c)) 7856 // -> (select cond, x, (sub x, c)) [AllOnes=0] 7857 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 7858 SelectionDAG &DAG, bool AllOnes) { 7859 EVT VT = N->getValueType(0); 7860 7861 // Skip vectors. 7862 if (VT.isVector()) 7863 return SDValue(); 7864 7865 if ((Slct.getOpcode() != ISD::SELECT && 7866 Slct.getOpcode() != RISCVISD::SELECT_CC) || 7867 !Slct.hasOneUse()) 7868 return SDValue(); 7869 7870 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 7871 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 7872 }; 7873 7874 bool SwapSelectOps; 7875 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 7876 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 7877 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 7878 SDValue NonConstantVal; 7879 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 7880 SwapSelectOps = false; 7881 NonConstantVal = FalseVal; 7882 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 7883 SwapSelectOps = true; 7884 NonConstantVal = TrueVal; 7885 } else 7886 return SDValue(); 7887 7888 // Slct is now know to be the desired identity constant when CC is true. 7889 TrueVal = OtherOp; 7890 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 7891 // Unless SwapSelectOps says the condition should be false. 7892 if (SwapSelectOps) 7893 std::swap(TrueVal, FalseVal); 7894 7895 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 7896 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 7897 {Slct.getOperand(0), Slct.getOperand(1), 7898 Slct.getOperand(2), TrueVal, FalseVal}); 7899 7900 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 7901 {Slct.getOperand(0), TrueVal, FalseVal}); 7902 } 7903 7904 // Attempt combineSelectAndUse on each operand of a commutative operator N. 7905 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 7906 bool AllOnes) { 7907 SDValue N0 = N->getOperand(0); 7908 SDValue N1 = N->getOperand(1); 7909 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 7910 return Result; 7911 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 7912 return Result; 7913 return SDValue(); 7914 } 7915 7916 // Transform (add (mul x, c0), c1) -> 7917 // (add (mul (add x, c1/c0), c0), c1%c0). 7918 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 7919 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 7920 // to an infinite loop in DAGCombine if transformed. 7921 // Or transform (add (mul x, c0), c1) -> 7922 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 7923 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 7924 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 7925 // lead to an infinite loop in DAGCombine if transformed. 7926 // Or transform (add (mul x, c0), c1) -> 7927 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 7928 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 7929 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 7930 // lead to an infinite loop in DAGCombine if transformed. 7931 // Or transform (add (mul x, c0), c1) -> 7932 // (mul (add x, c1/c0), c0). 7933 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 7934 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 7935 const RISCVSubtarget &Subtarget) { 7936 // Skip for vector types and larger types. 7937 EVT VT = N->getValueType(0); 7938 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7939 return SDValue(); 7940 // The first operand node must be a MUL and has no other use. 7941 SDValue N0 = N->getOperand(0); 7942 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 7943 return SDValue(); 7944 // Check if c0 and c1 match above conditions. 7945 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7946 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7947 if (!N0C || !N1C) 7948 return SDValue(); 7949 // If N0C has multiple uses it's possible one of the cases in 7950 // DAGCombiner::isMulAddWithConstProfitable will be true, which would result 7951 // in an infinite loop. 7952 if (!N0C->hasOneUse()) 7953 return SDValue(); 7954 int64_t C0 = N0C->getSExtValue(); 7955 int64_t C1 = N1C->getSExtValue(); 7956 int64_t CA, CB; 7957 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 7958 return SDValue(); 7959 // Search for proper CA (non-zero) and CB that both are simm12. 7960 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 7961 !isInt<12>(C0 * (C1 / C0))) { 7962 CA = C1 / C0; 7963 CB = C1 % C0; 7964 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 7965 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 7966 CA = C1 / C0 + 1; 7967 CB = C1 % C0 - C0; 7968 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 7969 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 7970 CA = C1 / C0 - 1; 7971 CB = C1 % C0 + C0; 7972 } else 7973 return SDValue(); 7974 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 7975 SDLoc DL(N); 7976 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 7977 DAG.getConstant(CA, DL, VT)); 7978 SDValue New1 = 7979 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 7980 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 7981 } 7982 7983 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 7984 const RISCVSubtarget &Subtarget) { 7985 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 7986 return V; 7987 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 7988 return V; 7989 if (SDValue V = combineBinOpToReduce(N, DAG)) 7990 return V; 7991 // fold (add (select lhs, rhs, cc, 0, y), x) -> 7992 // (select lhs, rhs, cc, x, (add x, y)) 7993 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7994 } 7995 7996 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 7997 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 7998 // (select lhs, rhs, cc, x, (sub x, y)) 7999 SDValue N0 = N->getOperand(0); 8000 SDValue N1 = N->getOperand(1); 8001 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 8002 } 8003 8004 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG, 8005 const RISCVSubtarget &Subtarget) { 8006 SDValue N0 = N->getOperand(0); 8007 // Pre-promote (i32 (and (srl X, Y), 1)) on RV64 with Zbs without zero 8008 // extending X. This is safe since we only need the LSB after the shift and 8009 // shift amounts larger than 31 would produce poison. If we wait until 8010 // type legalization, we'll create RISCVISD::SRLW and we can't recover it 8011 // to use a BEXT instruction. 8012 if (Subtarget.is64Bit() && Subtarget.hasStdExtZbs() && 8013 N->getValueType(0) == MVT::i32 && isOneConstant(N->getOperand(1)) && 8014 N0.getOpcode() == ISD::SRL && !isa<ConstantSDNode>(N0.getOperand(1)) && 8015 N0.hasOneUse()) { 8016 SDLoc DL(N); 8017 SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0)); 8018 SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1)); 8019 SDValue Srl = DAG.getNode(ISD::SRL, DL, MVT::i64, Op0, Op1); 8020 SDValue And = DAG.getNode(ISD::AND, DL, MVT::i64, Srl, 8021 DAG.getConstant(1, DL, MVT::i64)); 8022 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, And); 8023 } 8024 8025 if (SDValue V = combineBinOpToReduce(N, DAG)) 8026 return V; 8027 8028 // fold (and (select lhs, rhs, cc, -1, y), x) -> 8029 // (select lhs, rhs, cc, x, (and x, y)) 8030 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 8031 } 8032 8033 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 8034 const RISCVSubtarget &Subtarget) { 8035 if (Subtarget.hasStdExtZbp()) { 8036 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 8037 return GREV; 8038 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 8039 return GORC; 8040 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 8041 return SHFL; 8042 } 8043 8044 if (SDValue V = combineBinOpToReduce(N, DAG)) 8045 return V; 8046 // fold (or (select cond, 0, y), x) -> 8047 // (select cond, x, (or x, y)) 8048 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 8049 } 8050 8051 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 8052 SDValue N0 = N->getOperand(0); 8053 SDValue N1 = N->getOperand(1); 8054 8055 // fold (xor (sllw 1, x), -1) -> (rolw ~1, x) 8056 // NOTE: Assumes ROL being legal means ROLW is legal. 8057 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8058 if (N0.getOpcode() == RISCVISD::SLLW && 8059 isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0)) && 8060 TLI.isOperationLegal(ISD::ROTL, MVT::i64)) { 8061 SDLoc DL(N); 8062 return DAG.getNode(RISCVISD::ROLW, DL, MVT::i64, 8063 DAG.getConstant(~1, DL, MVT::i64), N0.getOperand(1)); 8064 } 8065 8066 if (SDValue V = combineBinOpToReduce(N, DAG)) 8067 return V; 8068 // fold (xor (select cond, 0, y), x) -> 8069 // (select cond, x, (xor x, y)) 8070 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 8071 } 8072 8073 static SDValue 8074 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG, 8075 const RISCVSubtarget &Subtarget) { 8076 SDValue Src = N->getOperand(0); 8077 EVT VT = N->getValueType(0); 8078 8079 // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X) 8080 if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH && 8081 cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16)) 8082 return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT, 8083 Src.getOperand(0)); 8084 8085 // Fold (i64 (sext_inreg (abs X), i32)) -> 8086 // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits. 8087 // The (sext_inreg (neg X), i32) will be selected to negw by isel. This 8088 // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user 8089 // of the (i32 (abs X)) is a sext or setcc or something else that causes type 8090 // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have 8091 // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg 8092 // may get combined into an earlier operation so we need to use 8093 // ComputeNumSignBits. 8094 // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for 8095 // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so 8096 // we can't assume that X has 33 sign bits. We must check. 8097 if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() && 8098 Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 && 8099 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 && 8100 DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) { 8101 SDLoc DL(N); 8102 SDValue Freeze = DAG.getFreeze(Src.getOperand(0)); 8103 SDValue Neg = 8104 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze); 8105 Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg, 8106 DAG.getValueType(MVT::i32)); 8107 return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg); 8108 } 8109 8110 return SDValue(); 8111 } 8112 8113 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to 8114 // vwadd(u).vv/vx or vwsub(u).vv/vx. 8115 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG, 8116 bool Commute = false) { 8117 assert((N->getOpcode() == RISCVISD::ADD_VL || 8118 N->getOpcode() == RISCVISD::SUB_VL) && 8119 "Unexpected opcode"); 8120 bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL; 8121 SDValue Op0 = N->getOperand(0); 8122 SDValue Op1 = N->getOperand(1); 8123 if (Commute) 8124 std::swap(Op0, Op1); 8125 8126 MVT VT = N->getSimpleValueType(0); 8127 8128 // Determine the narrow size for a widening add/sub. 8129 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 8130 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 8131 VT.getVectorElementCount()); 8132 8133 SDValue Mask = N->getOperand(2); 8134 SDValue VL = N->getOperand(3); 8135 8136 SDLoc DL(N); 8137 8138 // If the RHS is a sext or zext, we can form a widening op. 8139 if ((Op1.getOpcode() == RISCVISD::VZEXT_VL || 8140 Op1.getOpcode() == RISCVISD::VSEXT_VL) && 8141 Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) { 8142 unsigned ExtOpc = Op1.getOpcode(); 8143 Op1 = Op1.getOperand(0); 8144 // Re-introduce narrower extends if needed. 8145 if (Op1.getValueType() != NarrowVT) 8146 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 8147 8148 unsigned WOpc; 8149 if (ExtOpc == RISCVISD::VSEXT_VL) 8150 WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL; 8151 else 8152 WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL; 8153 8154 return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL); 8155 } 8156 8157 // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar 8158 // sext/zext? 8159 8160 return SDValue(); 8161 } 8162 8163 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or 8164 // vwsub(u).vv/vx. 8165 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) { 8166 SDValue Op0 = N->getOperand(0); 8167 SDValue Op1 = N->getOperand(1); 8168 SDValue Mask = N->getOperand(2); 8169 SDValue VL = N->getOperand(3); 8170 8171 MVT VT = N->getSimpleValueType(0); 8172 MVT NarrowVT = Op1.getSimpleValueType(); 8173 unsigned NarrowSize = NarrowVT.getScalarSizeInBits(); 8174 8175 unsigned VOpc; 8176 switch (N->getOpcode()) { 8177 default: llvm_unreachable("Unexpected opcode"); 8178 case RISCVISD::VWADD_W_VL: VOpc = RISCVISD::VWADD_VL; break; 8179 case RISCVISD::VWSUB_W_VL: VOpc = RISCVISD::VWSUB_VL; break; 8180 case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break; 8181 case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break; 8182 } 8183 8184 bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL || 8185 N->getOpcode() == RISCVISD::VWSUB_W_VL; 8186 8187 SDLoc DL(N); 8188 8189 // If the LHS is a sext or zext, we can narrow this op to the same size as 8190 // the RHS. 8191 if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) || 8192 (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) && 8193 Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) { 8194 unsigned ExtOpc = Op0.getOpcode(); 8195 Op0 = Op0.getOperand(0); 8196 // Re-introduce narrower extends if needed. 8197 if (Op0.getValueType() != NarrowVT) 8198 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 8199 return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL); 8200 } 8201 8202 bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL || 8203 N->getOpcode() == RISCVISD::VWADDU_W_VL; 8204 8205 // Look for splats on the left hand side of a vwadd(u).wv. We might be able 8206 // to commute and use a vwadd(u).vx instead. 8207 if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL && 8208 Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) { 8209 Op0 = Op0.getOperand(1); 8210 8211 // See if have enough sign bits or zero bits in the scalar to use a 8212 // widening add/sub by splatting to smaller element size. 8213 unsigned EltBits = VT.getScalarSizeInBits(); 8214 unsigned ScalarBits = Op0.getValueSizeInBits(); 8215 // Make sure we're getting all element bits from the scalar register. 8216 // FIXME: Support implicit sign extension of vmv.v.x? 8217 if (ScalarBits < EltBits) 8218 return SDValue(); 8219 8220 if (IsSigned) { 8221 if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize)) 8222 return SDValue(); 8223 } else { 8224 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 8225 if (!DAG.MaskedValueIsZero(Op0, Mask)) 8226 return SDValue(); 8227 } 8228 8229 Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, 8230 DAG.getUNDEF(NarrowVT), Op0, VL); 8231 return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL); 8232 } 8233 8234 return SDValue(); 8235 } 8236 8237 // Try to form VWMUL, VWMULU or VWMULSU. 8238 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op. 8239 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG, 8240 bool Commute) { 8241 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 8242 SDValue Op0 = N->getOperand(0); 8243 SDValue Op1 = N->getOperand(1); 8244 if (Commute) 8245 std::swap(Op0, Op1); 8246 8247 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 8248 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 8249 bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL; 8250 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 8251 return SDValue(); 8252 8253 SDValue Mask = N->getOperand(2); 8254 SDValue VL = N->getOperand(3); 8255 8256 // Make sure the mask and VL match. 8257 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 8258 return SDValue(); 8259 8260 MVT VT = N->getSimpleValueType(0); 8261 8262 // Determine the narrow size for a widening multiply. 8263 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 8264 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 8265 VT.getVectorElementCount()); 8266 8267 SDLoc DL(N); 8268 8269 // See if the other operand is the same opcode. 8270 if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) { 8271 if (!Op1.hasOneUse()) 8272 return SDValue(); 8273 8274 // Make sure the mask and VL match. 8275 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 8276 return SDValue(); 8277 8278 Op1 = Op1.getOperand(0); 8279 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 8280 // The operand is a splat of a scalar. 8281 8282 // The pasthru must be undef for tail agnostic 8283 if (!Op1.getOperand(0).isUndef()) 8284 return SDValue(); 8285 // The VL must be the same. 8286 if (Op1.getOperand(2) != VL) 8287 return SDValue(); 8288 8289 // Get the scalar value. 8290 Op1 = Op1.getOperand(1); 8291 8292 // See if have enough sign bits or zero bits in the scalar to use a 8293 // widening multiply by splatting to smaller element size. 8294 unsigned EltBits = VT.getScalarSizeInBits(); 8295 unsigned ScalarBits = Op1.getValueSizeInBits(); 8296 // Make sure we're getting all element bits from the scalar register. 8297 // FIXME: Support implicit sign extension of vmv.v.x? 8298 if (ScalarBits < EltBits) 8299 return SDValue(); 8300 8301 // If the LHS is a sign extend, try to use vwmul. 8302 if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) { 8303 // Can use vwmul. 8304 } else { 8305 // Otherwise try to use vwmulu or vwmulsu. 8306 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 8307 if (DAG.MaskedValueIsZero(Op1, Mask)) 8308 IsVWMULSU = IsSignExt; 8309 else 8310 return SDValue(); 8311 } 8312 8313 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, 8314 DAG.getUNDEF(NarrowVT), Op1, VL); 8315 } else 8316 return SDValue(); 8317 8318 Op0 = Op0.getOperand(0); 8319 8320 // Re-introduce narrower extends if needed. 8321 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 8322 if (Op0.getValueType() != NarrowVT) 8323 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 8324 // vwmulsu requires second operand to be zero extended. 8325 ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc; 8326 if (Op1.getValueType() != NarrowVT) 8327 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 8328 8329 unsigned WMulOpc = RISCVISD::VWMULSU_VL; 8330 if (!IsVWMULSU) 8331 WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 8332 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 8333 } 8334 8335 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) { 8336 switch (Op.getOpcode()) { 8337 case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE; 8338 case ISD::FTRUNC: return RISCVFPRndMode::RTZ; 8339 case ISD::FFLOOR: return RISCVFPRndMode::RDN; 8340 case ISD::FCEIL: return RISCVFPRndMode::RUP; 8341 case ISD::FROUND: return RISCVFPRndMode::RMM; 8342 } 8343 8344 return RISCVFPRndMode::Invalid; 8345 } 8346 8347 // Fold 8348 // (fp_to_int (froundeven X)) -> fcvt X, rne 8349 // (fp_to_int (ftrunc X)) -> fcvt X, rtz 8350 // (fp_to_int (ffloor X)) -> fcvt X, rdn 8351 // (fp_to_int (fceil X)) -> fcvt X, rup 8352 // (fp_to_int (fround X)) -> fcvt X, rmm 8353 static SDValue performFP_TO_INTCombine(SDNode *N, 8354 TargetLowering::DAGCombinerInfo &DCI, 8355 const RISCVSubtarget &Subtarget) { 8356 SelectionDAG &DAG = DCI.DAG; 8357 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8358 MVT XLenVT = Subtarget.getXLenVT(); 8359 8360 // Only handle XLen or i32 types. Other types narrower than XLen will 8361 // eventually be legalized to XLenVT. 8362 EVT VT = N->getValueType(0); 8363 if (VT != MVT::i32 && VT != XLenVT) 8364 return SDValue(); 8365 8366 SDValue Src = N->getOperand(0); 8367 8368 // Ensure the FP type is also legal. 8369 if (!TLI.isTypeLegal(Src.getValueType())) 8370 return SDValue(); 8371 8372 // Don't do this for f16 with Zfhmin and not Zfh. 8373 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 8374 return SDValue(); 8375 8376 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 8377 if (FRM == RISCVFPRndMode::Invalid) 8378 return SDValue(); 8379 8380 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; 8381 8382 unsigned Opc; 8383 if (VT == XLenVT) 8384 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 8385 else 8386 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 8387 8388 SDLoc DL(N); 8389 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0), 8390 DAG.getTargetConstant(FRM, DL, XLenVT)); 8391 return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt); 8392 } 8393 8394 // Fold 8395 // (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne)) 8396 // (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz)) 8397 // (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn)) 8398 // (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup)) 8399 // (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm)) 8400 static SDValue performFP_TO_INT_SATCombine(SDNode *N, 8401 TargetLowering::DAGCombinerInfo &DCI, 8402 const RISCVSubtarget &Subtarget) { 8403 SelectionDAG &DAG = DCI.DAG; 8404 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8405 MVT XLenVT = Subtarget.getXLenVT(); 8406 8407 // Only handle XLen types. Other types narrower than XLen will eventually be 8408 // legalized to XLenVT. 8409 EVT DstVT = N->getValueType(0); 8410 if (DstVT != XLenVT) 8411 return SDValue(); 8412 8413 SDValue Src = N->getOperand(0); 8414 8415 // Ensure the FP type is also legal. 8416 if (!TLI.isTypeLegal(Src.getValueType())) 8417 return SDValue(); 8418 8419 // Don't do this for f16 with Zfhmin and not Zfh. 8420 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 8421 return SDValue(); 8422 8423 EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 8424 8425 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 8426 if (FRM == RISCVFPRndMode::Invalid) 8427 return SDValue(); 8428 8429 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT; 8430 8431 unsigned Opc; 8432 if (SatVT == DstVT) 8433 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 8434 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 8435 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 8436 else 8437 return SDValue(); 8438 // FIXME: Support other SatVTs by clamping before or after the conversion. 8439 8440 Src = Src.getOperand(0); 8441 8442 SDLoc DL(N); 8443 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src, 8444 DAG.getTargetConstant(FRM, DL, XLenVT)); 8445 8446 // RISCV FP-to-int conversions saturate to the destination register size, but 8447 // don't produce 0 for nan. 8448 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 8449 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 8450 } 8451 8452 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is 8453 // smaller than XLenVT. 8454 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG, 8455 const RISCVSubtarget &Subtarget) { 8456 assert(Subtarget.hasStdExtZbkb() && "Unexpected extension"); 8457 8458 SDValue Src = N->getOperand(0); 8459 if (Src.getOpcode() != ISD::BSWAP) 8460 return SDValue(); 8461 8462 EVT VT = N->getValueType(0); 8463 if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() || 8464 !isPowerOf2_32(VT.getSizeInBits())) 8465 return SDValue(); 8466 8467 SDLoc DL(N); 8468 return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0), 8469 DAG.getConstant(7, DL, VT)); 8470 } 8471 8472 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 8473 DAGCombinerInfo &DCI) const { 8474 SelectionDAG &DAG = DCI.DAG; 8475 8476 // Helper to call SimplifyDemandedBits on an operand of N where only some low 8477 // bits are demanded. N will be added to the Worklist if it was not deleted. 8478 // Caller should return SDValue(N, 0) if this returns true. 8479 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 8480 SDValue Op = N->getOperand(OpNo); 8481 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 8482 if (!SimplifyDemandedBits(Op, Mask, DCI)) 8483 return false; 8484 8485 if (N->getOpcode() != ISD::DELETED_NODE) 8486 DCI.AddToWorklist(N); 8487 return true; 8488 }; 8489 8490 switch (N->getOpcode()) { 8491 default: 8492 break; 8493 case RISCVISD::SplitF64: { 8494 SDValue Op0 = N->getOperand(0); 8495 // If the input to SplitF64 is just BuildPairF64 then the operation is 8496 // redundant. Instead, use BuildPairF64's operands directly. 8497 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 8498 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 8499 8500 if (Op0->isUndef()) { 8501 SDValue Lo = DAG.getUNDEF(MVT::i32); 8502 SDValue Hi = DAG.getUNDEF(MVT::i32); 8503 return DCI.CombineTo(N, Lo, Hi); 8504 } 8505 8506 SDLoc DL(N); 8507 8508 // It's cheaper to materialise two 32-bit integers than to load a double 8509 // from the constant pool and transfer it to integer registers through the 8510 // stack. 8511 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 8512 APInt V = C->getValueAPF().bitcastToAPInt(); 8513 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 8514 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 8515 return DCI.CombineTo(N, Lo, Hi); 8516 } 8517 8518 // This is a target-specific version of a DAGCombine performed in 8519 // DAGCombiner::visitBITCAST. It performs the equivalent of: 8520 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 8521 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 8522 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 8523 !Op0.getNode()->hasOneUse()) 8524 break; 8525 SDValue NewSplitF64 = 8526 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 8527 Op0.getOperand(0)); 8528 SDValue Lo = NewSplitF64.getValue(0); 8529 SDValue Hi = NewSplitF64.getValue(1); 8530 APInt SignBit = APInt::getSignMask(32); 8531 if (Op0.getOpcode() == ISD::FNEG) { 8532 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 8533 DAG.getConstant(SignBit, DL, MVT::i32)); 8534 return DCI.CombineTo(N, Lo, NewHi); 8535 } 8536 assert(Op0.getOpcode() == ISD::FABS); 8537 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 8538 DAG.getConstant(~SignBit, DL, MVT::i32)); 8539 return DCI.CombineTo(N, Lo, NewHi); 8540 } 8541 case RISCVISD::SLLW: 8542 case RISCVISD::SRAW: 8543 case RISCVISD::SRLW: { 8544 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8545 if (SimplifyDemandedLowBitsHelper(0, 32) || 8546 SimplifyDemandedLowBitsHelper(1, 5)) 8547 return SDValue(N, 0); 8548 8549 break; 8550 } 8551 case ISD::ROTR: 8552 case ISD::ROTL: 8553 case RISCVISD::RORW: 8554 case RISCVISD::ROLW: { 8555 if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) { 8556 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8557 if (SimplifyDemandedLowBitsHelper(0, 32) || 8558 SimplifyDemandedLowBitsHelper(1, 5)) 8559 return SDValue(N, 0); 8560 } 8561 8562 return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget); 8563 } 8564 case RISCVISD::CLZW: 8565 case RISCVISD::CTZW: { 8566 // Only the lower 32 bits of the first operand are read 8567 if (SimplifyDemandedLowBitsHelper(0, 32)) 8568 return SDValue(N, 0); 8569 break; 8570 } 8571 case RISCVISD::GREV: 8572 case RISCVISD::GORC: { 8573 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 8574 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 8575 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8576 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 8577 return SDValue(N, 0); 8578 8579 return combineGREVI_GORCI(N, DAG); 8580 } 8581 case RISCVISD::GREVW: 8582 case RISCVISD::GORCW: { 8583 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8584 if (SimplifyDemandedLowBitsHelper(0, 32) || 8585 SimplifyDemandedLowBitsHelper(1, 5)) 8586 return SDValue(N, 0); 8587 8588 break; 8589 } 8590 case RISCVISD::SHFL: 8591 case RISCVISD::UNSHFL: { 8592 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 8593 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 8594 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8595 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 8596 return SDValue(N, 0); 8597 8598 break; 8599 } 8600 case RISCVISD::SHFLW: 8601 case RISCVISD::UNSHFLW: { 8602 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 8603 if (SimplifyDemandedLowBitsHelper(0, 32) || 8604 SimplifyDemandedLowBitsHelper(1, 4)) 8605 return SDValue(N, 0); 8606 8607 break; 8608 } 8609 case RISCVISD::BCOMPRESSW: 8610 case RISCVISD::BDECOMPRESSW: { 8611 // Only the lower 32 bits of LHS and RHS are read. 8612 if (SimplifyDemandedLowBitsHelper(0, 32) || 8613 SimplifyDemandedLowBitsHelper(1, 32)) 8614 return SDValue(N, 0); 8615 8616 break; 8617 } 8618 case RISCVISD::FSR: 8619 case RISCVISD::FSL: 8620 case RISCVISD::FSRW: 8621 case RISCVISD::FSLW: { 8622 bool IsWInstruction = 8623 N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW; 8624 unsigned BitWidth = 8625 IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits(); 8626 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8627 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 8628 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1)) 8629 return SDValue(N, 0); 8630 8631 break; 8632 } 8633 case RISCVISD::FMV_X_ANYEXTH: 8634 case RISCVISD::FMV_X_ANYEXTW_RV64: { 8635 SDLoc DL(N); 8636 SDValue Op0 = N->getOperand(0); 8637 MVT VT = N->getSimpleValueType(0); 8638 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 8639 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 8640 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 8641 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 8642 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 8643 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 8644 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 8645 assert(Op0.getOperand(0).getValueType() == VT && 8646 "Unexpected value type!"); 8647 return Op0.getOperand(0); 8648 } 8649 8650 // This is a target-specific version of a DAGCombine performed in 8651 // DAGCombiner::visitBITCAST. It performs the equivalent of: 8652 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 8653 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 8654 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 8655 !Op0.getNode()->hasOneUse()) 8656 break; 8657 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 8658 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 8659 APInt SignBit = APInt::getSignMask(FPBits).sext(VT.getSizeInBits()); 8660 if (Op0.getOpcode() == ISD::FNEG) 8661 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 8662 DAG.getConstant(SignBit, DL, VT)); 8663 8664 assert(Op0.getOpcode() == ISD::FABS); 8665 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 8666 DAG.getConstant(~SignBit, DL, VT)); 8667 } 8668 case ISD::ADD: 8669 return performADDCombine(N, DAG, Subtarget); 8670 case ISD::SUB: 8671 return performSUBCombine(N, DAG); 8672 case ISD::AND: 8673 return performANDCombine(N, DAG, Subtarget); 8674 case ISD::OR: 8675 return performORCombine(N, DAG, Subtarget); 8676 case ISD::XOR: 8677 return performXORCombine(N, DAG); 8678 case ISD::FADD: 8679 case ISD::UMAX: 8680 case ISD::UMIN: 8681 case ISD::SMAX: 8682 case ISD::SMIN: 8683 case ISD::FMAXNUM: 8684 case ISD::FMINNUM: 8685 return combineBinOpToReduce(N, DAG); 8686 case ISD::SIGN_EXTEND_INREG: 8687 return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget); 8688 case ISD::ZERO_EXTEND: 8689 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 8690 // type legalization. This is safe because fp_to_uint produces poison if 8691 // it overflows. 8692 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { 8693 SDValue Src = N->getOperand(0); 8694 if (Src.getOpcode() == ISD::FP_TO_UINT && 8695 isTypeLegal(Src.getOperand(0).getValueType())) 8696 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 8697 Src.getOperand(0)); 8698 if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && 8699 isTypeLegal(Src.getOperand(1).getValueType())) { 8700 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 8701 SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, 8702 Src.getOperand(0), Src.getOperand(1)); 8703 DCI.CombineTo(N, Res); 8704 DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); 8705 DCI.recursivelyDeleteUnusedNodes(Src.getNode()); 8706 return SDValue(N, 0); // Return N so it doesn't get rechecked. 8707 } 8708 } 8709 return SDValue(); 8710 case RISCVISD::SELECT_CC: { 8711 // Transform 8712 SDValue LHS = N->getOperand(0); 8713 SDValue RHS = N->getOperand(1); 8714 SDValue TrueV = N->getOperand(3); 8715 SDValue FalseV = N->getOperand(4); 8716 8717 // If the True and False values are the same, we don't need a select_cc. 8718 if (TrueV == FalseV) 8719 return TrueV; 8720 8721 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 8722 if (!ISD::isIntEqualitySetCC(CCVal)) 8723 break; 8724 8725 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 8726 // (select_cc X, Y, lt, trueV, falseV) 8727 // Sometimes the setcc is introduced after select_cc has been formed. 8728 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 8729 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 8730 // If we're looking for eq 0 instead of ne 0, we need to invert the 8731 // condition. 8732 bool Invert = CCVal == ISD::SETEQ; 8733 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8734 if (Invert) 8735 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8736 8737 SDLoc DL(N); 8738 RHS = LHS.getOperand(1); 8739 LHS = LHS.getOperand(0); 8740 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 8741 8742 SDValue TargetCC = DAG.getCondCode(CCVal); 8743 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 8744 {LHS, RHS, TargetCC, TrueV, FalseV}); 8745 } 8746 8747 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 8748 // (select_cc X, Y, eq/ne, trueV, falseV) 8749 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 8750 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 8751 {LHS.getOperand(0), LHS.getOperand(1), 8752 N->getOperand(2), TrueV, FalseV}); 8753 // (select_cc X, 1, setne, trueV, falseV) -> 8754 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 8755 // This can occur when legalizing some floating point comparisons. 8756 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 8757 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 8758 SDLoc DL(N); 8759 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8760 SDValue TargetCC = DAG.getCondCode(CCVal); 8761 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 8762 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 8763 {LHS, RHS, TargetCC, TrueV, FalseV}); 8764 } 8765 8766 break; 8767 } 8768 case RISCVISD::BR_CC: { 8769 SDValue LHS = N->getOperand(1); 8770 SDValue RHS = N->getOperand(2); 8771 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 8772 if (!ISD::isIntEqualitySetCC(CCVal)) 8773 break; 8774 8775 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 8776 // (br_cc X, Y, lt, dest) 8777 // Sometimes the setcc is introduced after br_cc has been formed. 8778 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 8779 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 8780 // If we're looking for eq 0 instead of ne 0, we need to invert the 8781 // condition. 8782 bool Invert = CCVal == ISD::SETEQ; 8783 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8784 if (Invert) 8785 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8786 8787 SDLoc DL(N); 8788 RHS = LHS.getOperand(1); 8789 LHS = LHS.getOperand(0); 8790 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 8791 8792 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 8793 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 8794 N->getOperand(4)); 8795 } 8796 8797 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 8798 // (br_cc X, Y, eq/ne, trueV, falseV) 8799 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 8800 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 8801 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 8802 N->getOperand(3), N->getOperand(4)); 8803 8804 // (br_cc X, 1, setne, br_cc) -> 8805 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 8806 // This can occur when legalizing some floating point comparisons. 8807 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 8808 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 8809 SDLoc DL(N); 8810 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8811 SDValue TargetCC = DAG.getCondCode(CCVal); 8812 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 8813 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 8814 N->getOperand(0), LHS, RHS, TargetCC, 8815 N->getOperand(4)); 8816 } 8817 break; 8818 } 8819 case ISD::BITREVERSE: 8820 return performBITREVERSECombine(N, DAG, Subtarget); 8821 case ISD::FP_TO_SINT: 8822 case ISD::FP_TO_UINT: 8823 return performFP_TO_INTCombine(N, DCI, Subtarget); 8824 case ISD::FP_TO_SINT_SAT: 8825 case ISD::FP_TO_UINT_SAT: 8826 return performFP_TO_INT_SATCombine(N, DCI, Subtarget); 8827 case ISD::FCOPYSIGN: { 8828 EVT VT = N->getValueType(0); 8829 if (!VT.isVector()) 8830 break; 8831 // There is a form of VFSGNJ which injects the negated sign of its second 8832 // operand. Try and bubble any FNEG up after the extend/round to produce 8833 // this optimized pattern. Avoid modifying cases where FP_ROUND and 8834 // TRUNC=1. 8835 SDValue In2 = N->getOperand(1); 8836 // Avoid cases where the extend/round has multiple uses, as duplicating 8837 // those is typically more expensive than removing a fneg. 8838 if (!In2.hasOneUse()) 8839 break; 8840 if (In2.getOpcode() != ISD::FP_EXTEND && 8841 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 8842 break; 8843 In2 = In2.getOperand(0); 8844 if (In2.getOpcode() != ISD::FNEG) 8845 break; 8846 SDLoc DL(N); 8847 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 8848 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 8849 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 8850 } 8851 case ISD::MGATHER: 8852 case ISD::MSCATTER: 8853 case ISD::VP_GATHER: 8854 case ISD::VP_SCATTER: { 8855 if (!DCI.isBeforeLegalize()) 8856 break; 8857 SDValue Index, ScaleOp; 8858 bool IsIndexScaled = false; 8859 bool IsIndexSigned = false; 8860 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 8861 Index = VPGSN->getIndex(); 8862 ScaleOp = VPGSN->getScale(); 8863 IsIndexScaled = VPGSN->isIndexScaled(); 8864 IsIndexSigned = VPGSN->isIndexSigned(); 8865 } else { 8866 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 8867 Index = MGSN->getIndex(); 8868 ScaleOp = MGSN->getScale(); 8869 IsIndexScaled = MGSN->isIndexScaled(); 8870 IsIndexSigned = MGSN->isIndexSigned(); 8871 } 8872 EVT IndexVT = Index.getValueType(); 8873 MVT XLenVT = Subtarget.getXLenVT(); 8874 // RISCV indexed loads only support the "unsigned unscaled" addressing 8875 // mode, so anything else must be manually legalized. 8876 bool NeedsIdxLegalization = 8877 IsIndexScaled || 8878 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 8879 if (!NeedsIdxLegalization) 8880 break; 8881 8882 SDLoc DL(N); 8883 8884 // Any index legalization should first promote to XLenVT, so we don't lose 8885 // bits when scaling. This may create an illegal index type so we let 8886 // LLVM's legalization take care of the splitting. 8887 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 8888 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 8889 IndexVT = IndexVT.changeVectorElementType(XLenVT); 8890 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 8891 DL, IndexVT, Index); 8892 } 8893 8894 if (IsIndexScaled) { 8895 // Manually scale the indices. 8896 // TODO: Sanitize the scale operand here? 8897 // TODO: For VP nodes, should we use VP_SHL here? 8898 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 8899 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 8900 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 8901 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 8902 ScaleOp = DAG.getTargetConstant(1, DL, ScaleOp.getValueType()); 8903 } 8904 8905 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_SCALED; 8906 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 8907 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 8908 {VPGN->getChain(), VPGN->getBasePtr(), Index, 8909 ScaleOp, VPGN->getMask(), 8910 VPGN->getVectorLength()}, 8911 VPGN->getMemOperand(), NewIndexTy); 8912 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 8913 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 8914 {VPSN->getChain(), VPSN->getValue(), 8915 VPSN->getBasePtr(), Index, ScaleOp, 8916 VPSN->getMask(), VPSN->getVectorLength()}, 8917 VPSN->getMemOperand(), NewIndexTy); 8918 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 8919 return DAG.getMaskedGather( 8920 N->getVTList(), MGN->getMemoryVT(), DL, 8921 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 8922 MGN->getBasePtr(), Index, ScaleOp}, 8923 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 8924 const auto *MSN = cast<MaskedScatterSDNode>(N); 8925 return DAG.getMaskedScatter( 8926 N->getVTList(), MSN->getMemoryVT(), DL, 8927 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 8928 Index, ScaleOp}, 8929 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 8930 } 8931 case RISCVISD::SRA_VL: 8932 case RISCVISD::SRL_VL: 8933 case RISCVISD::SHL_VL: { 8934 SDValue ShAmt = N->getOperand(1); 8935 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8936 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8937 SDLoc DL(N); 8938 SDValue VL = N->getOperand(3); 8939 EVT VT = N->getValueType(0); 8940 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 8941 ShAmt.getOperand(1), VL); 8942 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 8943 N->getOperand(2), N->getOperand(3)); 8944 } 8945 break; 8946 } 8947 case ISD::SRA: 8948 case ISD::SRL: 8949 case ISD::SHL: { 8950 SDValue ShAmt = N->getOperand(1); 8951 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8952 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8953 SDLoc DL(N); 8954 EVT VT = N->getValueType(0); 8955 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 8956 ShAmt.getOperand(1), 8957 DAG.getRegister(RISCV::X0, Subtarget.getXLenVT())); 8958 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 8959 } 8960 break; 8961 } 8962 case RISCVISD::ADD_VL: 8963 if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false)) 8964 return V; 8965 return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true); 8966 case RISCVISD::SUB_VL: 8967 return combineADDSUB_VLToVWADDSUB_VL(N, DAG); 8968 case RISCVISD::VWADD_W_VL: 8969 case RISCVISD::VWADDU_W_VL: 8970 case RISCVISD::VWSUB_W_VL: 8971 case RISCVISD::VWSUBU_W_VL: 8972 return combineVWADD_W_VL_VWSUB_W_VL(N, DAG); 8973 case RISCVISD::MUL_VL: 8974 if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false)) 8975 return V; 8976 // Mul is commutative. 8977 return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true); 8978 case ISD::STORE: { 8979 auto *Store = cast<StoreSDNode>(N); 8980 SDValue Val = Store->getValue(); 8981 // Combine store of vmv.x.s to vse with VL of 1. 8982 // FIXME: Support FP. 8983 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 8984 SDValue Src = Val.getOperand(0); 8985 EVT VecVT = Src.getValueType(); 8986 EVT MemVT = Store->getMemoryVT(); 8987 // The memory VT and the element type must match. 8988 if (VecVT.getVectorElementType() == MemVT) { 8989 SDLoc DL(N); 8990 MVT MaskVT = getMaskTypeFor(VecVT); 8991 return DAG.getStoreVP( 8992 Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(), 8993 DAG.getConstant(1, DL, MaskVT), 8994 DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT, 8995 Store->getMemOperand(), Store->getAddressingMode(), 8996 Store->isTruncatingStore(), /*IsCompress*/ false); 8997 } 8998 } 8999 9000 break; 9001 } 9002 case ISD::SPLAT_VECTOR: { 9003 EVT VT = N->getValueType(0); 9004 // Only perform this combine on legal MVT types. 9005 if (!isTypeLegal(VT)) 9006 break; 9007 if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N, 9008 DAG, Subtarget)) 9009 return Gather; 9010 break; 9011 } 9012 case RISCVISD::VMV_V_X_VL: { 9013 // Tail agnostic VMV.V.X only demands the vector element bitwidth from the 9014 // scalar input. 9015 unsigned ScalarSize = N->getOperand(1).getValueSizeInBits(); 9016 unsigned EltWidth = N->getValueType(0).getScalarSizeInBits(); 9017 if (ScalarSize > EltWidth && N->getOperand(0).isUndef()) 9018 if (SimplifyDemandedLowBitsHelper(1, EltWidth)) 9019 return SDValue(N, 0); 9020 9021 break; 9022 } 9023 case ISD::INTRINSIC_WO_CHAIN: { 9024 unsigned IntNo = N->getConstantOperandVal(0); 9025 switch (IntNo) { 9026 // By default we do not combine any intrinsic. 9027 default: 9028 return SDValue(); 9029 case Intrinsic::riscv_vcpop: 9030 case Intrinsic::riscv_vcpop_mask: 9031 case Intrinsic::riscv_vfirst: 9032 case Intrinsic::riscv_vfirst_mask: { 9033 SDValue VL = N->getOperand(2); 9034 if (IntNo == Intrinsic::riscv_vcpop_mask || 9035 IntNo == Intrinsic::riscv_vfirst_mask) 9036 VL = N->getOperand(3); 9037 if (!isNullConstant(VL)) 9038 return SDValue(); 9039 // If VL is 0, vcpop -> li 0, vfirst -> li -1. 9040 SDLoc DL(N); 9041 EVT VT = N->getValueType(0); 9042 if (IntNo == Intrinsic::riscv_vfirst || 9043 IntNo == Intrinsic::riscv_vfirst_mask) 9044 return DAG.getConstant(-1, DL, VT); 9045 return DAG.getConstant(0, DL, VT); 9046 } 9047 } 9048 } 9049 } 9050 9051 return SDValue(); 9052 } 9053 9054 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 9055 const SDNode *N, CombineLevel Level) const { 9056 // The following folds are only desirable if `(OP _, c1 << c2)` can be 9057 // materialised in fewer instructions than `(OP _, c1)`: 9058 // 9059 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 9060 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 9061 SDValue N0 = N->getOperand(0); 9062 EVT Ty = N0.getValueType(); 9063 if (Ty.isScalarInteger() && 9064 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 9065 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 9066 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9067 if (C1 && C2) { 9068 const APInt &C1Int = C1->getAPIntValue(); 9069 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 9070 9071 // We can materialise `c1 << c2` into an add immediate, so it's "free", 9072 // and the combine should happen, to potentially allow further combines 9073 // later. 9074 if (ShiftedC1Int.getMinSignedBits() <= 64 && 9075 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 9076 return true; 9077 9078 // We can materialise `c1` in an add immediate, so it's "free", and the 9079 // combine should be prevented. 9080 if (C1Int.getMinSignedBits() <= 64 && 9081 isLegalAddImmediate(C1Int.getSExtValue())) 9082 return false; 9083 9084 // Neither constant will fit into an immediate, so find materialisation 9085 // costs. 9086 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 9087 Subtarget.getFeatureBits(), 9088 /*CompressionCost*/true); 9089 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 9090 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 9091 /*CompressionCost*/true); 9092 9093 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 9094 // combine should be prevented. 9095 if (C1Cost < ShiftedC1Cost) 9096 return false; 9097 } 9098 } 9099 return true; 9100 } 9101 9102 bool RISCVTargetLowering::targetShrinkDemandedConstant( 9103 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 9104 TargetLoweringOpt &TLO) const { 9105 // Delay this optimization as late as possible. 9106 if (!TLO.LegalOps) 9107 return false; 9108 9109 EVT VT = Op.getValueType(); 9110 if (VT.isVector()) 9111 return false; 9112 9113 // Only handle AND for now. 9114 if (Op.getOpcode() != ISD::AND) 9115 return false; 9116 9117 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 9118 if (!C) 9119 return false; 9120 9121 const APInt &Mask = C->getAPIntValue(); 9122 9123 // Clear all non-demanded bits initially. 9124 APInt ShrunkMask = Mask & DemandedBits; 9125 9126 // Try to make a smaller immediate by setting undemanded bits. 9127 9128 APInt ExpandedMask = Mask | ~DemandedBits; 9129 9130 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 9131 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 9132 }; 9133 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 9134 if (NewMask == Mask) 9135 return true; 9136 SDLoc DL(Op); 9137 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 9138 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 9139 return TLO.CombineTo(Op, NewOp); 9140 }; 9141 9142 // If the shrunk mask fits in sign extended 12 bits, let the target 9143 // independent code apply it. 9144 if (ShrunkMask.isSignedIntN(12)) 9145 return false; 9146 9147 // Preserve (and X, 0xffff) when zext.h is supported. 9148 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 9149 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 9150 if (IsLegalMask(NewMask)) 9151 return UseMask(NewMask); 9152 } 9153 9154 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 9155 if (VT == MVT::i64) { 9156 APInt NewMask = APInt(64, 0xffffffff); 9157 if (IsLegalMask(NewMask)) 9158 return UseMask(NewMask); 9159 } 9160 9161 // For the remaining optimizations, we need to be able to make a negative 9162 // number through a combination of mask and undemanded bits. 9163 if (!ExpandedMask.isNegative()) 9164 return false; 9165 9166 // What is the fewest number of bits we need to represent the negative number. 9167 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 9168 9169 // Try to make a 12 bit negative immediate. If that fails try to make a 32 9170 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 9171 APInt NewMask = ShrunkMask; 9172 if (MinSignedBits <= 12) 9173 NewMask.setBitsFrom(11); 9174 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 9175 NewMask.setBitsFrom(31); 9176 else 9177 return false; 9178 9179 // Check that our new mask is a subset of the demanded mask. 9180 assert(IsLegalMask(NewMask)); 9181 return UseMask(NewMask); 9182 } 9183 9184 static uint64_t computeGREVOrGORC(uint64_t x, unsigned ShAmt, bool IsGORC) { 9185 static const uint64_t GREVMasks[] = { 9186 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 9187 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 9188 9189 for (unsigned Stage = 0; Stage != 6; ++Stage) { 9190 unsigned Shift = 1 << Stage; 9191 if (ShAmt & Shift) { 9192 uint64_t Mask = GREVMasks[Stage]; 9193 uint64_t Res = ((x & Mask) << Shift) | ((x >> Shift) & Mask); 9194 if (IsGORC) 9195 Res |= x; 9196 x = Res; 9197 } 9198 } 9199 9200 return x; 9201 } 9202 9203 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 9204 KnownBits &Known, 9205 const APInt &DemandedElts, 9206 const SelectionDAG &DAG, 9207 unsigned Depth) const { 9208 unsigned BitWidth = Known.getBitWidth(); 9209 unsigned Opc = Op.getOpcode(); 9210 assert((Opc >= ISD::BUILTIN_OP_END || 9211 Opc == ISD::INTRINSIC_WO_CHAIN || 9212 Opc == ISD::INTRINSIC_W_CHAIN || 9213 Opc == ISD::INTRINSIC_VOID) && 9214 "Should use MaskedValueIsZero if you don't know whether Op" 9215 " is a target node!"); 9216 9217 Known.resetAll(); 9218 switch (Opc) { 9219 default: break; 9220 case RISCVISD::SELECT_CC: { 9221 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 9222 // If we don't know any bits, early out. 9223 if (Known.isUnknown()) 9224 break; 9225 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 9226 9227 // Only known if known in both the LHS and RHS. 9228 Known = KnownBits::commonBits(Known, Known2); 9229 break; 9230 } 9231 case RISCVISD::REMUW: { 9232 KnownBits Known2; 9233 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 9234 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 9235 // We only care about the lower 32 bits. 9236 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 9237 // Restore the original width by sign extending. 9238 Known = Known.sext(BitWidth); 9239 break; 9240 } 9241 case RISCVISD::DIVUW: { 9242 KnownBits Known2; 9243 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 9244 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 9245 // We only care about the lower 32 bits. 9246 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 9247 // Restore the original width by sign extending. 9248 Known = Known.sext(BitWidth); 9249 break; 9250 } 9251 case RISCVISD::CTZW: { 9252 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 9253 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 9254 unsigned LowBits = Log2_32(PossibleTZ) + 1; 9255 Known.Zero.setBitsFrom(LowBits); 9256 break; 9257 } 9258 case RISCVISD::CLZW: { 9259 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 9260 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 9261 unsigned LowBits = Log2_32(PossibleLZ) + 1; 9262 Known.Zero.setBitsFrom(LowBits); 9263 break; 9264 } 9265 case RISCVISD::GREV: 9266 case RISCVISD::GORC: { 9267 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 9268 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 9269 unsigned ShAmt = C->getZExtValue() & (Known.getBitWidth() - 1); 9270 bool IsGORC = Op.getOpcode() == RISCVISD::GORC; 9271 // To compute zeros, we need to invert the value and invert it back after. 9272 Known.Zero = 9273 ~computeGREVOrGORC(~Known.Zero.getZExtValue(), ShAmt, IsGORC); 9274 Known.One = computeGREVOrGORC(Known.One.getZExtValue(), ShAmt, IsGORC); 9275 } 9276 break; 9277 } 9278 case RISCVISD::READ_VLENB: { 9279 // If we know the minimum VLen from Zvl extensions, we can use that to 9280 // determine the trailing zeros of VLENB. 9281 // FIXME: Limit to 128 bit vectors until we have more testing. 9282 unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8; 9283 if (MinVLenB > 0) 9284 Known.Zero.setLowBits(Log2_32(MinVLenB)); 9285 // We assume VLENB is no more than 65536 / 8 bytes. 9286 Known.Zero.setBitsFrom(14); 9287 break; 9288 } 9289 case ISD::INTRINSIC_W_CHAIN: 9290 case ISD::INTRINSIC_WO_CHAIN: { 9291 unsigned IntNo = 9292 Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1); 9293 switch (IntNo) { 9294 default: 9295 // We can't do anything for most intrinsics. 9296 break; 9297 case Intrinsic::riscv_vsetvli: 9298 case Intrinsic::riscv_vsetvlimax: 9299 case Intrinsic::riscv_vsetvli_opt: 9300 case Intrinsic::riscv_vsetvlimax_opt: 9301 // Assume that VL output is positive and would fit in an int32_t. 9302 // TODO: VLEN might be capped at 16 bits in a future V spec update. 9303 if (BitWidth >= 32) 9304 Known.Zero.setBitsFrom(31); 9305 break; 9306 } 9307 break; 9308 } 9309 } 9310 } 9311 9312 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 9313 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 9314 unsigned Depth) const { 9315 switch (Op.getOpcode()) { 9316 default: 9317 break; 9318 case RISCVISD::SELECT_CC: { 9319 unsigned Tmp = 9320 DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 9321 if (Tmp == 1) return 1; // Early out. 9322 unsigned Tmp2 = 9323 DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 9324 return std::min(Tmp, Tmp2); 9325 } 9326 case RISCVISD::SLLW: 9327 case RISCVISD::SRAW: 9328 case RISCVISD::SRLW: 9329 case RISCVISD::DIVW: 9330 case RISCVISD::DIVUW: 9331 case RISCVISD::REMUW: 9332 case RISCVISD::ROLW: 9333 case RISCVISD::RORW: 9334 case RISCVISD::GREVW: 9335 case RISCVISD::GORCW: 9336 case RISCVISD::FSLW: 9337 case RISCVISD::FSRW: 9338 case RISCVISD::SHFLW: 9339 case RISCVISD::UNSHFLW: 9340 case RISCVISD::BCOMPRESSW: 9341 case RISCVISD::BDECOMPRESSW: 9342 case RISCVISD::BFPW: 9343 case RISCVISD::FCVT_W_RV64: 9344 case RISCVISD::FCVT_WU_RV64: 9345 case RISCVISD::STRICT_FCVT_W_RV64: 9346 case RISCVISD::STRICT_FCVT_WU_RV64: 9347 // TODO: As the result is sign-extended, this is conservatively correct. A 9348 // more precise answer could be calculated for SRAW depending on known 9349 // bits in the shift amount. 9350 return 33; 9351 case RISCVISD::SHFL: 9352 case RISCVISD::UNSHFL: { 9353 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 9354 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 9355 // will stay within the upper 32 bits. If there were more than 32 sign bits 9356 // before there will be at least 33 sign bits after. 9357 if (Op.getValueType() == MVT::i64 && 9358 isa<ConstantSDNode>(Op.getOperand(1)) && 9359 (Op.getConstantOperandVal(1) & 0x10) == 0) { 9360 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 9361 if (Tmp > 32) 9362 return 33; 9363 } 9364 break; 9365 } 9366 case RISCVISD::VMV_X_S: { 9367 // The number of sign bits of the scalar result is computed by obtaining the 9368 // element type of the input vector operand, subtracting its width from the 9369 // XLEN, and then adding one (sign bit within the element type). If the 9370 // element type is wider than XLen, the least-significant XLEN bits are 9371 // taken. 9372 unsigned XLen = Subtarget.getXLen(); 9373 unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits(); 9374 if (EltBits <= XLen) 9375 return XLen - EltBits + 1; 9376 break; 9377 } 9378 } 9379 9380 return 1; 9381 } 9382 9383 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 9384 MachineBasicBlock *BB) { 9385 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 9386 9387 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 9388 // Should the count have wrapped while it was being read, we need to try 9389 // again. 9390 // ... 9391 // read: 9392 // rdcycleh x3 # load high word of cycle 9393 // rdcycle x2 # load low word of cycle 9394 // rdcycleh x4 # load high word of cycle 9395 // bne x3, x4, read # check if high word reads match, otherwise try again 9396 // ... 9397 9398 MachineFunction &MF = *BB->getParent(); 9399 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9400 MachineFunction::iterator It = ++BB->getIterator(); 9401 9402 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 9403 MF.insert(It, LoopMBB); 9404 9405 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 9406 MF.insert(It, DoneMBB); 9407 9408 // Transfer the remainder of BB and its successor edges to DoneMBB. 9409 DoneMBB->splice(DoneMBB->begin(), BB, 9410 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9411 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 9412 9413 BB->addSuccessor(LoopMBB); 9414 9415 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9416 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9417 Register LoReg = MI.getOperand(0).getReg(); 9418 Register HiReg = MI.getOperand(1).getReg(); 9419 DebugLoc DL = MI.getDebugLoc(); 9420 9421 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 9422 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 9423 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 9424 .addReg(RISCV::X0); 9425 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 9426 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 9427 .addReg(RISCV::X0); 9428 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 9429 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 9430 .addReg(RISCV::X0); 9431 9432 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 9433 .addReg(HiReg) 9434 .addReg(ReadAgainReg) 9435 .addMBB(LoopMBB); 9436 9437 LoopMBB->addSuccessor(LoopMBB); 9438 LoopMBB->addSuccessor(DoneMBB); 9439 9440 MI.eraseFromParent(); 9441 9442 return DoneMBB; 9443 } 9444 9445 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 9446 MachineBasicBlock *BB) { 9447 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 9448 9449 MachineFunction &MF = *BB->getParent(); 9450 DebugLoc DL = MI.getDebugLoc(); 9451 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 9452 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 9453 Register LoReg = MI.getOperand(0).getReg(); 9454 Register HiReg = MI.getOperand(1).getReg(); 9455 Register SrcReg = MI.getOperand(2).getReg(); 9456 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 9457 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 9458 9459 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 9460 RI); 9461 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 9462 MachineMemOperand *MMOLo = 9463 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 9464 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 9465 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 9466 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 9467 .addFrameIndex(FI) 9468 .addImm(0) 9469 .addMemOperand(MMOLo); 9470 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 9471 .addFrameIndex(FI) 9472 .addImm(4) 9473 .addMemOperand(MMOHi); 9474 MI.eraseFromParent(); // The pseudo instruction is gone now. 9475 return BB; 9476 } 9477 9478 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 9479 MachineBasicBlock *BB) { 9480 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 9481 "Unexpected instruction"); 9482 9483 MachineFunction &MF = *BB->getParent(); 9484 DebugLoc DL = MI.getDebugLoc(); 9485 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 9486 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 9487 Register DstReg = MI.getOperand(0).getReg(); 9488 Register LoReg = MI.getOperand(1).getReg(); 9489 Register HiReg = MI.getOperand(2).getReg(); 9490 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 9491 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 9492 9493 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 9494 MachineMemOperand *MMOLo = 9495 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 9496 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 9497 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 9498 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 9499 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 9500 .addFrameIndex(FI) 9501 .addImm(0) 9502 .addMemOperand(MMOLo); 9503 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 9504 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 9505 .addFrameIndex(FI) 9506 .addImm(4) 9507 .addMemOperand(MMOHi); 9508 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 9509 MI.eraseFromParent(); // The pseudo instruction is gone now. 9510 return BB; 9511 } 9512 9513 static bool isSelectPseudo(MachineInstr &MI) { 9514 switch (MI.getOpcode()) { 9515 default: 9516 return false; 9517 case RISCV::Select_GPR_Using_CC_GPR: 9518 case RISCV::Select_FPR16_Using_CC_GPR: 9519 case RISCV::Select_FPR32_Using_CC_GPR: 9520 case RISCV::Select_FPR64_Using_CC_GPR: 9521 return true; 9522 } 9523 } 9524 9525 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB, 9526 unsigned RelOpcode, unsigned EqOpcode, 9527 const RISCVSubtarget &Subtarget) { 9528 DebugLoc DL = MI.getDebugLoc(); 9529 Register DstReg = MI.getOperand(0).getReg(); 9530 Register Src1Reg = MI.getOperand(1).getReg(); 9531 Register Src2Reg = MI.getOperand(2).getReg(); 9532 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 9533 Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass); 9534 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 9535 9536 // Save the current FFLAGS. 9537 BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags); 9538 9539 auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg) 9540 .addReg(Src1Reg) 9541 .addReg(Src2Reg); 9542 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 9543 MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); 9544 9545 // Restore the FFLAGS. 9546 BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) 9547 .addReg(SavedFFlags, RegState::Kill); 9548 9549 // Issue a dummy FEQ opcode to raise exception for signaling NaNs. 9550 auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0) 9551 .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill())) 9552 .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill())); 9553 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 9554 MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept); 9555 9556 // Erase the pseudoinstruction. 9557 MI.eraseFromParent(); 9558 return BB; 9559 } 9560 9561 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 9562 MachineBasicBlock *BB, 9563 const RISCVSubtarget &Subtarget) { 9564 // To "insert" Select_* instructions, we actually have to insert the triangle 9565 // control-flow pattern. The incoming instructions know the destination vreg 9566 // to set, the condition code register to branch on, the true/false values to 9567 // select between, and the condcode to use to select the appropriate branch. 9568 // 9569 // We produce the following control flow: 9570 // HeadMBB 9571 // | \ 9572 // | IfFalseMBB 9573 // | / 9574 // TailMBB 9575 // 9576 // When we find a sequence of selects we attempt to optimize their emission 9577 // by sharing the control flow. Currently we only handle cases where we have 9578 // multiple selects with the exact same condition (same LHS, RHS and CC). 9579 // The selects may be interleaved with other instructions if the other 9580 // instructions meet some requirements we deem safe: 9581 // - They are debug instructions. Otherwise, 9582 // - They do not have side-effects, do not access memory and their inputs do 9583 // not depend on the results of the select pseudo-instructions. 9584 // The TrueV/FalseV operands of the selects cannot depend on the result of 9585 // previous selects in the sequence. 9586 // These conditions could be further relaxed. See the X86 target for a 9587 // related approach and more information. 9588 Register LHS = MI.getOperand(1).getReg(); 9589 Register RHS = MI.getOperand(2).getReg(); 9590 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 9591 9592 SmallVector<MachineInstr *, 4> SelectDebugValues; 9593 SmallSet<Register, 4> SelectDests; 9594 SelectDests.insert(MI.getOperand(0).getReg()); 9595 9596 MachineInstr *LastSelectPseudo = &MI; 9597 9598 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 9599 SequenceMBBI != E; ++SequenceMBBI) { 9600 if (SequenceMBBI->isDebugInstr()) 9601 continue; 9602 if (isSelectPseudo(*SequenceMBBI)) { 9603 if (SequenceMBBI->getOperand(1).getReg() != LHS || 9604 SequenceMBBI->getOperand(2).getReg() != RHS || 9605 SequenceMBBI->getOperand(3).getImm() != CC || 9606 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 9607 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 9608 break; 9609 LastSelectPseudo = &*SequenceMBBI; 9610 SequenceMBBI->collectDebugValues(SelectDebugValues); 9611 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 9612 } else { 9613 if (SequenceMBBI->hasUnmodeledSideEffects() || 9614 SequenceMBBI->mayLoadOrStore()) 9615 break; 9616 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 9617 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 9618 })) 9619 break; 9620 } 9621 } 9622 9623 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 9624 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9625 DebugLoc DL = MI.getDebugLoc(); 9626 MachineFunction::iterator I = ++BB->getIterator(); 9627 9628 MachineBasicBlock *HeadMBB = BB; 9629 MachineFunction *F = BB->getParent(); 9630 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 9631 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 9632 9633 F->insert(I, IfFalseMBB); 9634 F->insert(I, TailMBB); 9635 9636 // Transfer debug instructions associated with the selects to TailMBB. 9637 for (MachineInstr *DebugInstr : SelectDebugValues) { 9638 TailMBB->push_back(DebugInstr->removeFromParent()); 9639 } 9640 9641 // Move all instructions after the sequence to TailMBB. 9642 TailMBB->splice(TailMBB->end(), HeadMBB, 9643 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 9644 // Update machine-CFG edges by transferring all successors of the current 9645 // block to the new block which will contain the Phi nodes for the selects. 9646 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 9647 // Set the successors for HeadMBB. 9648 HeadMBB->addSuccessor(IfFalseMBB); 9649 HeadMBB->addSuccessor(TailMBB); 9650 9651 // Insert appropriate branch. 9652 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 9653 .addReg(LHS) 9654 .addReg(RHS) 9655 .addMBB(TailMBB); 9656 9657 // IfFalseMBB just falls through to TailMBB. 9658 IfFalseMBB->addSuccessor(TailMBB); 9659 9660 // Create PHIs for all of the select pseudo-instructions. 9661 auto SelectMBBI = MI.getIterator(); 9662 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 9663 auto InsertionPoint = TailMBB->begin(); 9664 while (SelectMBBI != SelectEnd) { 9665 auto Next = std::next(SelectMBBI); 9666 if (isSelectPseudo(*SelectMBBI)) { 9667 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 9668 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 9669 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 9670 .addReg(SelectMBBI->getOperand(4).getReg()) 9671 .addMBB(HeadMBB) 9672 .addReg(SelectMBBI->getOperand(5).getReg()) 9673 .addMBB(IfFalseMBB); 9674 SelectMBBI->eraseFromParent(); 9675 } 9676 SelectMBBI = Next; 9677 } 9678 9679 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 9680 return TailMBB; 9681 } 9682 9683 MachineBasicBlock * 9684 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 9685 MachineBasicBlock *BB) const { 9686 switch (MI.getOpcode()) { 9687 default: 9688 llvm_unreachable("Unexpected instr type to insert"); 9689 case RISCV::ReadCycleWide: 9690 assert(!Subtarget.is64Bit() && 9691 "ReadCycleWrite is only to be used on riscv32"); 9692 return emitReadCycleWidePseudo(MI, BB); 9693 case RISCV::Select_GPR_Using_CC_GPR: 9694 case RISCV::Select_FPR16_Using_CC_GPR: 9695 case RISCV::Select_FPR32_Using_CC_GPR: 9696 case RISCV::Select_FPR64_Using_CC_GPR: 9697 return emitSelectPseudo(MI, BB, Subtarget); 9698 case RISCV::BuildPairF64Pseudo: 9699 return emitBuildPairF64Pseudo(MI, BB); 9700 case RISCV::SplitF64Pseudo: 9701 return emitSplitF64Pseudo(MI, BB); 9702 case RISCV::PseudoQuietFLE_H: 9703 return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget); 9704 case RISCV::PseudoQuietFLT_H: 9705 return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget); 9706 case RISCV::PseudoQuietFLE_S: 9707 return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget); 9708 case RISCV::PseudoQuietFLT_S: 9709 return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget); 9710 case RISCV::PseudoQuietFLE_D: 9711 return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget); 9712 case RISCV::PseudoQuietFLT_D: 9713 return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget); 9714 } 9715 } 9716 9717 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 9718 SDNode *Node) const { 9719 // Add FRM dependency to any instructions with dynamic rounding mode. 9720 unsigned Opc = MI.getOpcode(); 9721 auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); 9722 if (Idx < 0) 9723 return; 9724 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) 9725 return; 9726 // If the instruction already reads FRM, don't add another read. 9727 if (MI.readsRegister(RISCV::FRM)) 9728 return; 9729 MI.addOperand( 9730 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); 9731 } 9732 9733 // Calling Convention Implementation. 9734 // The expectations for frontend ABI lowering vary from target to target. 9735 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 9736 // details, but this is a longer term goal. For now, we simply try to keep the 9737 // role of the frontend as simple and well-defined as possible. The rules can 9738 // be summarised as: 9739 // * Never split up large scalar arguments. We handle them here. 9740 // * If a hardfloat calling convention is being used, and the struct may be 9741 // passed in a pair of registers (fp+fp, int+fp), and both registers are 9742 // available, then pass as two separate arguments. If either the GPRs or FPRs 9743 // are exhausted, then pass according to the rule below. 9744 // * If a struct could never be passed in registers or directly in a stack 9745 // slot (as it is larger than 2*XLEN and the floating point rules don't 9746 // apply), then pass it using a pointer with the byval attribute. 9747 // * If a struct is less than 2*XLEN, then coerce to either a two-element 9748 // word-sized array or a 2*XLEN scalar (depending on alignment). 9749 // * The frontend can determine whether a struct is returned by reference or 9750 // not based on its size and fields. If it will be returned by reference, the 9751 // frontend must modify the prototype so a pointer with the sret annotation is 9752 // passed as the first argument. This is not necessary for large scalar 9753 // returns. 9754 // * Struct return values and varargs should be coerced to structs containing 9755 // register-size fields in the same situations they would be for fixed 9756 // arguments. 9757 9758 static const MCPhysReg ArgGPRs[] = { 9759 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 9760 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 9761 }; 9762 static const MCPhysReg ArgFPR16s[] = { 9763 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 9764 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 9765 }; 9766 static const MCPhysReg ArgFPR32s[] = { 9767 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 9768 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 9769 }; 9770 static const MCPhysReg ArgFPR64s[] = { 9771 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 9772 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 9773 }; 9774 // This is an interim calling convention and it may be changed in the future. 9775 static const MCPhysReg ArgVRs[] = { 9776 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 9777 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 9778 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 9779 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 9780 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 9781 RISCV::V20M2, RISCV::V22M2}; 9782 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 9783 RISCV::V20M4}; 9784 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 9785 9786 // Pass a 2*XLEN argument that has been split into two XLEN values through 9787 // registers or the stack as necessary. 9788 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 9789 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 9790 MVT ValVT2, MVT LocVT2, 9791 ISD::ArgFlagsTy ArgFlags2) { 9792 unsigned XLenInBytes = XLen / 8; 9793 if (Register Reg = State.AllocateReg(ArgGPRs)) { 9794 // At least one half can be passed via register. 9795 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 9796 VA1.getLocVT(), CCValAssign::Full)); 9797 } else { 9798 // Both halves must be passed on the stack, with proper alignment. 9799 Align StackAlign = 9800 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 9801 State.addLoc( 9802 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 9803 State.AllocateStack(XLenInBytes, StackAlign), 9804 VA1.getLocVT(), CCValAssign::Full)); 9805 State.addLoc(CCValAssign::getMem( 9806 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 9807 LocVT2, CCValAssign::Full)); 9808 return false; 9809 } 9810 9811 if (Register Reg = State.AllocateReg(ArgGPRs)) { 9812 // The second half can also be passed via register. 9813 State.addLoc( 9814 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 9815 } else { 9816 // The second half is passed via the stack, without additional alignment. 9817 State.addLoc(CCValAssign::getMem( 9818 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 9819 LocVT2, CCValAssign::Full)); 9820 } 9821 9822 return false; 9823 } 9824 9825 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 9826 Optional<unsigned> FirstMaskArgument, 9827 CCState &State, const RISCVTargetLowering &TLI) { 9828 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 9829 if (RC == &RISCV::VRRegClass) { 9830 // Assign the first mask argument to V0. 9831 // This is an interim calling convention and it may be changed in the 9832 // future. 9833 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 9834 return State.AllocateReg(RISCV::V0); 9835 return State.AllocateReg(ArgVRs); 9836 } 9837 if (RC == &RISCV::VRM2RegClass) 9838 return State.AllocateReg(ArgVRM2s); 9839 if (RC == &RISCV::VRM4RegClass) 9840 return State.AllocateReg(ArgVRM4s); 9841 if (RC == &RISCV::VRM8RegClass) 9842 return State.AllocateReg(ArgVRM8s); 9843 llvm_unreachable("Unhandled register class for ValueType"); 9844 } 9845 9846 // Implements the RISC-V calling convention. Returns true upon failure. 9847 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 9848 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 9849 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 9850 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 9851 Optional<unsigned> FirstMaskArgument) { 9852 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 9853 assert(XLen == 32 || XLen == 64); 9854 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 9855 9856 // Any return value split in to more than two values can't be returned 9857 // directly. Vectors are returned via the available vector registers. 9858 if (!LocVT.isVector() && IsRet && ValNo > 1) 9859 return true; 9860 9861 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 9862 // variadic argument, or if no F16/F32 argument registers are available. 9863 bool UseGPRForF16_F32 = true; 9864 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 9865 // variadic argument, or if no F64 argument registers are available. 9866 bool UseGPRForF64 = true; 9867 9868 switch (ABI) { 9869 default: 9870 llvm_unreachable("Unexpected ABI"); 9871 case RISCVABI::ABI_ILP32: 9872 case RISCVABI::ABI_LP64: 9873 break; 9874 case RISCVABI::ABI_ILP32F: 9875 case RISCVABI::ABI_LP64F: 9876 UseGPRForF16_F32 = !IsFixed; 9877 break; 9878 case RISCVABI::ABI_ILP32D: 9879 case RISCVABI::ABI_LP64D: 9880 UseGPRForF16_F32 = !IsFixed; 9881 UseGPRForF64 = !IsFixed; 9882 break; 9883 } 9884 9885 // FPR16, FPR32, and FPR64 alias each other. 9886 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 9887 UseGPRForF16_F32 = true; 9888 UseGPRForF64 = true; 9889 } 9890 9891 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 9892 // similar local variables rather than directly checking against the target 9893 // ABI. 9894 9895 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 9896 LocVT = XLenVT; 9897 LocInfo = CCValAssign::BCvt; 9898 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 9899 LocVT = MVT::i64; 9900 LocInfo = CCValAssign::BCvt; 9901 } 9902 9903 // If this is a variadic argument, the RISC-V calling convention requires 9904 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 9905 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 9906 // be used regardless of whether the original argument was split during 9907 // legalisation or not. The argument will not be passed by registers if the 9908 // original type is larger than 2*XLEN, so the register alignment rule does 9909 // not apply. 9910 unsigned TwoXLenInBytes = (2 * XLen) / 8; 9911 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 9912 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 9913 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 9914 // Skip 'odd' register if necessary. 9915 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 9916 State.AllocateReg(ArgGPRs); 9917 } 9918 9919 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 9920 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 9921 State.getPendingArgFlags(); 9922 9923 assert(PendingLocs.size() == PendingArgFlags.size() && 9924 "PendingLocs and PendingArgFlags out of sync"); 9925 9926 // Handle passing f64 on RV32D with a soft float ABI or when floating point 9927 // registers are exhausted. 9928 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 9929 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 9930 "Can't lower f64 if it is split"); 9931 // Depending on available argument GPRS, f64 may be passed in a pair of 9932 // GPRs, split between a GPR and the stack, or passed completely on the 9933 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 9934 // cases. 9935 Register Reg = State.AllocateReg(ArgGPRs); 9936 LocVT = MVT::i32; 9937 if (!Reg) { 9938 unsigned StackOffset = State.AllocateStack(8, Align(8)); 9939 State.addLoc( 9940 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9941 return false; 9942 } 9943 if (!State.AllocateReg(ArgGPRs)) 9944 State.AllocateStack(4, Align(4)); 9945 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9946 return false; 9947 } 9948 9949 // Fixed-length vectors are located in the corresponding scalable-vector 9950 // container types. 9951 if (ValVT.isFixedLengthVector()) 9952 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 9953 9954 // Split arguments might be passed indirectly, so keep track of the pending 9955 // values. Split vectors are passed via a mix of registers and indirectly, so 9956 // treat them as we would any other argument. 9957 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 9958 LocVT = XLenVT; 9959 LocInfo = CCValAssign::Indirect; 9960 PendingLocs.push_back( 9961 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 9962 PendingArgFlags.push_back(ArgFlags); 9963 if (!ArgFlags.isSplitEnd()) { 9964 return false; 9965 } 9966 } 9967 9968 // If the split argument only had two elements, it should be passed directly 9969 // in registers or on the stack. 9970 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 9971 PendingLocs.size() <= 2) { 9972 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 9973 // Apply the normal calling convention rules to the first half of the 9974 // split argument. 9975 CCValAssign VA = PendingLocs[0]; 9976 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 9977 PendingLocs.clear(); 9978 PendingArgFlags.clear(); 9979 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 9980 ArgFlags); 9981 } 9982 9983 // Allocate to a register if possible, or else a stack slot. 9984 Register Reg; 9985 unsigned StoreSizeBytes = XLen / 8; 9986 Align StackAlign = Align(XLen / 8); 9987 9988 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 9989 Reg = State.AllocateReg(ArgFPR16s); 9990 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 9991 Reg = State.AllocateReg(ArgFPR32s); 9992 else if (ValVT == MVT::f64 && !UseGPRForF64) 9993 Reg = State.AllocateReg(ArgFPR64s); 9994 else if (ValVT.isVector()) { 9995 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 9996 if (!Reg) { 9997 // For return values, the vector must be passed fully via registers or 9998 // via the stack. 9999 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 10000 // but we're using all of them. 10001 if (IsRet) 10002 return true; 10003 // Try using a GPR to pass the address 10004 if ((Reg = State.AllocateReg(ArgGPRs))) { 10005 LocVT = XLenVT; 10006 LocInfo = CCValAssign::Indirect; 10007 } else if (ValVT.isScalableVector()) { 10008 LocVT = XLenVT; 10009 LocInfo = CCValAssign::Indirect; 10010 } else { 10011 // Pass fixed-length vectors on the stack. 10012 LocVT = ValVT; 10013 StoreSizeBytes = ValVT.getStoreSize(); 10014 // Align vectors to their element sizes, being careful for vXi1 10015 // vectors. 10016 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 10017 } 10018 } 10019 } else { 10020 Reg = State.AllocateReg(ArgGPRs); 10021 } 10022 10023 unsigned StackOffset = 10024 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 10025 10026 // If we reach this point and PendingLocs is non-empty, we must be at the 10027 // end of a split argument that must be passed indirectly. 10028 if (!PendingLocs.empty()) { 10029 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 10030 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 10031 10032 for (auto &It : PendingLocs) { 10033 if (Reg) 10034 It.convertToReg(Reg); 10035 else 10036 It.convertToMem(StackOffset); 10037 State.addLoc(It); 10038 } 10039 PendingLocs.clear(); 10040 PendingArgFlags.clear(); 10041 return false; 10042 } 10043 10044 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 10045 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 10046 "Expected an XLenVT or vector types at this stage"); 10047 10048 if (Reg) { 10049 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10050 return false; 10051 } 10052 10053 // When a floating-point value is passed on the stack, no bit-conversion is 10054 // needed. 10055 if (ValVT.isFloatingPoint()) { 10056 LocVT = ValVT; 10057 LocInfo = CCValAssign::Full; 10058 } 10059 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 10060 return false; 10061 } 10062 10063 template <typename ArgTy> 10064 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 10065 for (const auto &ArgIdx : enumerate(Args)) { 10066 MVT ArgVT = ArgIdx.value().VT; 10067 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 10068 return ArgIdx.index(); 10069 } 10070 return None; 10071 } 10072 10073 void RISCVTargetLowering::analyzeInputArgs( 10074 MachineFunction &MF, CCState &CCInfo, 10075 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 10076 RISCVCCAssignFn Fn) const { 10077 unsigned NumArgs = Ins.size(); 10078 FunctionType *FType = MF.getFunction().getFunctionType(); 10079 10080 Optional<unsigned> FirstMaskArgument; 10081 if (Subtarget.hasVInstructions()) 10082 FirstMaskArgument = preAssignMask(Ins); 10083 10084 for (unsigned i = 0; i != NumArgs; ++i) { 10085 MVT ArgVT = Ins[i].VT; 10086 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 10087 10088 Type *ArgTy = nullptr; 10089 if (IsRet) 10090 ArgTy = FType->getReturnType(); 10091 else if (Ins[i].isOrigArg()) 10092 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 10093 10094 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 10095 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 10096 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 10097 FirstMaskArgument)) { 10098 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 10099 << EVT(ArgVT).getEVTString() << '\n'); 10100 llvm_unreachable(nullptr); 10101 } 10102 } 10103 } 10104 10105 void RISCVTargetLowering::analyzeOutputArgs( 10106 MachineFunction &MF, CCState &CCInfo, 10107 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 10108 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 10109 unsigned NumArgs = Outs.size(); 10110 10111 Optional<unsigned> FirstMaskArgument; 10112 if (Subtarget.hasVInstructions()) 10113 FirstMaskArgument = preAssignMask(Outs); 10114 10115 for (unsigned i = 0; i != NumArgs; i++) { 10116 MVT ArgVT = Outs[i].VT; 10117 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 10118 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 10119 10120 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 10121 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 10122 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 10123 FirstMaskArgument)) { 10124 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 10125 << EVT(ArgVT).getEVTString() << "\n"); 10126 llvm_unreachable(nullptr); 10127 } 10128 } 10129 } 10130 10131 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 10132 // values. 10133 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 10134 const CCValAssign &VA, const SDLoc &DL, 10135 const RISCVSubtarget &Subtarget) { 10136 switch (VA.getLocInfo()) { 10137 default: 10138 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 10139 case CCValAssign::Full: 10140 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 10141 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 10142 break; 10143 case CCValAssign::BCvt: 10144 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 10145 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 10146 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 10147 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 10148 else 10149 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 10150 break; 10151 } 10152 return Val; 10153 } 10154 10155 // The caller is responsible for loading the full value if the argument is 10156 // passed with CCValAssign::Indirect. 10157 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 10158 const CCValAssign &VA, const SDLoc &DL, 10159 const RISCVTargetLowering &TLI) { 10160 MachineFunction &MF = DAG.getMachineFunction(); 10161 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 10162 EVT LocVT = VA.getLocVT(); 10163 SDValue Val; 10164 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 10165 Register VReg = RegInfo.createVirtualRegister(RC); 10166 RegInfo.addLiveIn(VA.getLocReg(), VReg); 10167 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 10168 10169 if (VA.getLocInfo() == CCValAssign::Indirect) 10170 return Val; 10171 10172 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 10173 } 10174 10175 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 10176 const CCValAssign &VA, const SDLoc &DL, 10177 const RISCVSubtarget &Subtarget) { 10178 EVT LocVT = VA.getLocVT(); 10179 10180 switch (VA.getLocInfo()) { 10181 default: 10182 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 10183 case CCValAssign::Full: 10184 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 10185 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 10186 break; 10187 case CCValAssign::BCvt: 10188 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 10189 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 10190 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 10191 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 10192 else 10193 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 10194 break; 10195 } 10196 return Val; 10197 } 10198 10199 // The caller is responsible for loading the full value if the argument is 10200 // passed with CCValAssign::Indirect. 10201 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 10202 const CCValAssign &VA, const SDLoc &DL) { 10203 MachineFunction &MF = DAG.getMachineFunction(); 10204 MachineFrameInfo &MFI = MF.getFrameInfo(); 10205 EVT LocVT = VA.getLocVT(); 10206 EVT ValVT = VA.getValVT(); 10207 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 10208 if (ValVT.isScalableVector()) { 10209 // When the value is a scalable vector, we save the pointer which points to 10210 // the scalable vector value in the stack. The ValVT will be the pointer 10211 // type, instead of the scalable vector type. 10212 ValVT = LocVT; 10213 } 10214 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 10215 /*IsImmutable=*/true); 10216 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 10217 SDValue Val; 10218 10219 ISD::LoadExtType ExtType; 10220 switch (VA.getLocInfo()) { 10221 default: 10222 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 10223 case CCValAssign::Full: 10224 case CCValAssign::Indirect: 10225 case CCValAssign::BCvt: 10226 ExtType = ISD::NON_EXTLOAD; 10227 break; 10228 } 10229 Val = DAG.getExtLoad( 10230 ExtType, DL, LocVT, Chain, FIN, 10231 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 10232 return Val; 10233 } 10234 10235 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 10236 const CCValAssign &VA, const SDLoc &DL) { 10237 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 10238 "Unexpected VA"); 10239 MachineFunction &MF = DAG.getMachineFunction(); 10240 MachineFrameInfo &MFI = MF.getFrameInfo(); 10241 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 10242 10243 if (VA.isMemLoc()) { 10244 // f64 is passed on the stack. 10245 int FI = 10246 MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true); 10247 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 10248 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 10249 MachinePointerInfo::getFixedStack(MF, FI)); 10250 } 10251 10252 assert(VA.isRegLoc() && "Expected register VA assignment"); 10253 10254 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 10255 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 10256 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 10257 SDValue Hi; 10258 if (VA.getLocReg() == RISCV::X17) { 10259 // Second half of f64 is passed on the stack. 10260 int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true); 10261 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 10262 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 10263 MachinePointerInfo::getFixedStack(MF, FI)); 10264 } else { 10265 // Second half of f64 is passed in another GPR. 10266 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 10267 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 10268 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 10269 } 10270 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 10271 } 10272 10273 // FastCC has less than 1% performance improvement for some particular 10274 // benchmark. But theoretically, it may has benenfit for some cases. 10275 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 10276 unsigned ValNo, MVT ValVT, MVT LocVT, 10277 CCValAssign::LocInfo LocInfo, 10278 ISD::ArgFlagsTy ArgFlags, CCState &State, 10279 bool IsFixed, bool IsRet, Type *OrigTy, 10280 const RISCVTargetLowering &TLI, 10281 Optional<unsigned> FirstMaskArgument) { 10282 10283 // X5 and X6 might be used for save-restore libcall. 10284 static const MCPhysReg GPRList[] = { 10285 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 10286 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 10287 RISCV::X29, RISCV::X30, RISCV::X31}; 10288 10289 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 10290 if (unsigned Reg = State.AllocateReg(GPRList)) { 10291 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10292 return false; 10293 } 10294 } 10295 10296 if (LocVT == MVT::f16) { 10297 static const MCPhysReg FPR16List[] = { 10298 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 10299 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 10300 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 10301 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 10302 if (unsigned Reg = State.AllocateReg(FPR16List)) { 10303 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10304 return false; 10305 } 10306 } 10307 10308 if (LocVT == MVT::f32) { 10309 static const MCPhysReg FPR32List[] = { 10310 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 10311 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 10312 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 10313 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 10314 if (unsigned Reg = State.AllocateReg(FPR32List)) { 10315 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10316 return false; 10317 } 10318 } 10319 10320 if (LocVT == MVT::f64) { 10321 static const MCPhysReg FPR64List[] = { 10322 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 10323 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 10324 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 10325 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 10326 if (unsigned Reg = State.AllocateReg(FPR64List)) { 10327 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10328 return false; 10329 } 10330 } 10331 10332 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 10333 unsigned Offset4 = State.AllocateStack(4, Align(4)); 10334 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 10335 return false; 10336 } 10337 10338 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 10339 unsigned Offset5 = State.AllocateStack(8, Align(8)); 10340 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 10341 return false; 10342 } 10343 10344 if (LocVT.isVector()) { 10345 if (unsigned Reg = 10346 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 10347 // Fixed-length vectors are located in the corresponding scalable-vector 10348 // container types. 10349 if (ValVT.isFixedLengthVector()) 10350 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 10351 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10352 } else { 10353 // Try and pass the address via a "fast" GPR. 10354 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 10355 LocInfo = CCValAssign::Indirect; 10356 LocVT = TLI.getSubtarget().getXLenVT(); 10357 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 10358 } else if (ValVT.isFixedLengthVector()) { 10359 auto StackAlign = 10360 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 10361 unsigned StackOffset = 10362 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 10363 State.addLoc( 10364 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 10365 } else { 10366 // Can't pass scalable vectors on the stack. 10367 return true; 10368 } 10369 } 10370 10371 return false; 10372 } 10373 10374 return true; // CC didn't match. 10375 } 10376 10377 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 10378 CCValAssign::LocInfo LocInfo, 10379 ISD::ArgFlagsTy ArgFlags, CCState &State) { 10380 10381 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 10382 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 10383 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 10384 static const MCPhysReg GPRList[] = { 10385 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 10386 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 10387 if (unsigned Reg = State.AllocateReg(GPRList)) { 10388 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10389 return false; 10390 } 10391 } 10392 10393 if (LocVT == MVT::f32) { 10394 // Pass in STG registers: F1, ..., F6 10395 // fs0 ... fs5 10396 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 10397 RISCV::F18_F, RISCV::F19_F, 10398 RISCV::F20_F, RISCV::F21_F}; 10399 if (unsigned Reg = State.AllocateReg(FPR32List)) { 10400 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10401 return false; 10402 } 10403 } 10404 10405 if (LocVT == MVT::f64) { 10406 // Pass in STG registers: D1, ..., D6 10407 // fs6 ... fs11 10408 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 10409 RISCV::F24_D, RISCV::F25_D, 10410 RISCV::F26_D, RISCV::F27_D}; 10411 if (unsigned Reg = State.AllocateReg(FPR64List)) { 10412 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10413 return false; 10414 } 10415 } 10416 10417 report_fatal_error("No registers left in GHC calling convention"); 10418 return true; 10419 } 10420 10421 // Transform physical registers into virtual registers. 10422 SDValue RISCVTargetLowering::LowerFormalArguments( 10423 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 10424 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 10425 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 10426 10427 MachineFunction &MF = DAG.getMachineFunction(); 10428 10429 switch (CallConv) { 10430 default: 10431 report_fatal_error("Unsupported calling convention"); 10432 case CallingConv::C: 10433 case CallingConv::Fast: 10434 break; 10435 case CallingConv::GHC: 10436 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 10437 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 10438 report_fatal_error( 10439 "GHC calling convention requires the F and D instruction set extensions"); 10440 } 10441 10442 const Function &Func = MF.getFunction(); 10443 if (Func.hasFnAttribute("interrupt")) { 10444 if (!Func.arg_empty()) 10445 report_fatal_error( 10446 "Functions with the interrupt attribute cannot have arguments!"); 10447 10448 StringRef Kind = 10449 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 10450 10451 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 10452 report_fatal_error( 10453 "Function interrupt attribute argument not supported!"); 10454 } 10455 10456 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10457 MVT XLenVT = Subtarget.getXLenVT(); 10458 unsigned XLenInBytes = Subtarget.getXLen() / 8; 10459 // Used with vargs to acumulate store chains. 10460 std::vector<SDValue> OutChains; 10461 10462 // Assign locations to all of the incoming arguments. 10463 SmallVector<CCValAssign, 16> ArgLocs; 10464 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 10465 10466 if (CallConv == CallingConv::GHC) 10467 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 10468 else 10469 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 10470 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 10471 : CC_RISCV); 10472 10473 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 10474 CCValAssign &VA = ArgLocs[i]; 10475 SDValue ArgValue; 10476 // Passing f64 on RV32D with a soft float ABI must be handled as a special 10477 // case. 10478 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 10479 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 10480 else if (VA.isRegLoc()) 10481 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 10482 else 10483 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 10484 10485 if (VA.getLocInfo() == CCValAssign::Indirect) { 10486 // If the original argument was split and passed by reference (e.g. i128 10487 // on RV32), we need to load all parts of it here (using the same 10488 // address). Vectors may be partly split to registers and partly to the 10489 // stack, in which case the base address is partly offset and subsequent 10490 // stores are relative to that. 10491 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 10492 MachinePointerInfo())); 10493 unsigned ArgIndex = Ins[i].OrigArgIndex; 10494 unsigned ArgPartOffset = Ins[i].PartOffset; 10495 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 10496 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 10497 CCValAssign &PartVA = ArgLocs[i + 1]; 10498 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 10499 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 10500 if (PartVA.getValVT().isScalableVector()) 10501 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 10502 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 10503 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 10504 MachinePointerInfo())); 10505 ++i; 10506 } 10507 continue; 10508 } 10509 InVals.push_back(ArgValue); 10510 } 10511 10512 if (IsVarArg) { 10513 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 10514 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 10515 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 10516 MachineFrameInfo &MFI = MF.getFrameInfo(); 10517 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 10518 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 10519 10520 // Offset of the first variable argument from stack pointer, and size of 10521 // the vararg save area. For now, the varargs save area is either zero or 10522 // large enough to hold a0-a7. 10523 int VaArgOffset, VarArgsSaveSize; 10524 10525 // If all registers are allocated, then all varargs must be passed on the 10526 // stack and we don't need to save any argregs. 10527 if (ArgRegs.size() == Idx) { 10528 VaArgOffset = CCInfo.getNextStackOffset(); 10529 VarArgsSaveSize = 0; 10530 } else { 10531 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 10532 VaArgOffset = -VarArgsSaveSize; 10533 } 10534 10535 // Record the frame index of the first variable argument 10536 // which is a value necessary to VASTART. 10537 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 10538 RVFI->setVarArgsFrameIndex(FI); 10539 10540 // If saving an odd number of registers then create an extra stack slot to 10541 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 10542 // offsets to even-numbered registered remain 2*XLEN-aligned. 10543 if (Idx % 2) { 10544 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 10545 VarArgsSaveSize += XLenInBytes; 10546 } 10547 10548 // Copy the integer registers that may have been used for passing varargs 10549 // to the vararg save area. 10550 for (unsigned I = Idx; I < ArgRegs.size(); 10551 ++I, VaArgOffset += XLenInBytes) { 10552 const Register Reg = RegInfo.createVirtualRegister(RC); 10553 RegInfo.addLiveIn(ArgRegs[I], Reg); 10554 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 10555 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 10556 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 10557 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 10558 MachinePointerInfo::getFixedStack(MF, FI)); 10559 cast<StoreSDNode>(Store.getNode()) 10560 ->getMemOperand() 10561 ->setValue((Value *)nullptr); 10562 OutChains.push_back(Store); 10563 } 10564 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 10565 } 10566 10567 // All stores are grouped in one node to allow the matching between 10568 // the size of Ins and InVals. This only happens for vararg functions. 10569 if (!OutChains.empty()) { 10570 OutChains.push_back(Chain); 10571 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 10572 } 10573 10574 return Chain; 10575 } 10576 10577 /// isEligibleForTailCallOptimization - Check whether the call is eligible 10578 /// for tail call optimization. 10579 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 10580 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 10581 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 10582 const SmallVector<CCValAssign, 16> &ArgLocs) const { 10583 10584 auto &Callee = CLI.Callee; 10585 auto CalleeCC = CLI.CallConv; 10586 auto &Outs = CLI.Outs; 10587 auto &Caller = MF.getFunction(); 10588 auto CallerCC = Caller.getCallingConv(); 10589 10590 // Exception-handling functions need a special set of instructions to 10591 // indicate a return to the hardware. Tail-calling another function would 10592 // probably break this. 10593 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 10594 // should be expanded as new function attributes are introduced. 10595 if (Caller.hasFnAttribute("interrupt")) 10596 return false; 10597 10598 // Do not tail call opt if the stack is used to pass parameters. 10599 if (CCInfo.getNextStackOffset() != 0) 10600 return false; 10601 10602 // Do not tail call opt if any parameters need to be passed indirectly. 10603 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 10604 // passed indirectly. So the address of the value will be passed in a 10605 // register, or if not available, then the address is put on the stack. In 10606 // order to pass indirectly, space on the stack often needs to be allocated 10607 // in order to store the value. In this case the CCInfo.getNextStackOffset() 10608 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 10609 // are passed CCValAssign::Indirect. 10610 for (auto &VA : ArgLocs) 10611 if (VA.getLocInfo() == CCValAssign::Indirect) 10612 return false; 10613 10614 // Do not tail call opt if either caller or callee uses struct return 10615 // semantics. 10616 auto IsCallerStructRet = Caller.hasStructRetAttr(); 10617 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 10618 if (IsCallerStructRet || IsCalleeStructRet) 10619 return false; 10620 10621 // Externally-defined functions with weak linkage should not be 10622 // tail-called. The behaviour of branch instructions in this situation (as 10623 // used for tail calls) is implementation-defined, so we cannot rely on the 10624 // linker replacing the tail call with a return. 10625 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 10626 const GlobalValue *GV = G->getGlobal(); 10627 if (GV->hasExternalWeakLinkage()) 10628 return false; 10629 } 10630 10631 // The callee has to preserve all registers the caller needs to preserve. 10632 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10633 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 10634 if (CalleeCC != CallerCC) { 10635 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 10636 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 10637 return false; 10638 } 10639 10640 // Byval parameters hand the function a pointer directly into the stack area 10641 // we want to reuse during a tail call. Working around this *is* possible 10642 // but less efficient and uglier in LowerCall. 10643 for (auto &Arg : Outs) 10644 if (Arg.Flags.isByVal()) 10645 return false; 10646 10647 return true; 10648 } 10649 10650 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 10651 return DAG.getDataLayout().getPrefTypeAlign( 10652 VT.getTypeForEVT(*DAG.getContext())); 10653 } 10654 10655 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 10656 // and output parameter nodes. 10657 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 10658 SmallVectorImpl<SDValue> &InVals) const { 10659 SelectionDAG &DAG = CLI.DAG; 10660 SDLoc &DL = CLI.DL; 10661 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 10662 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 10663 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 10664 SDValue Chain = CLI.Chain; 10665 SDValue Callee = CLI.Callee; 10666 bool &IsTailCall = CLI.IsTailCall; 10667 CallingConv::ID CallConv = CLI.CallConv; 10668 bool IsVarArg = CLI.IsVarArg; 10669 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10670 MVT XLenVT = Subtarget.getXLenVT(); 10671 10672 MachineFunction &MF = DAG.getMachineFunction(); 10673 10674 // Analyze the operands of the call, assigning locations to each operand. 10675 SmallVector<CCValAssign, 16> ArgLocs; 10676 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 10677 10678 if (CallConv == CallingConv::GHC) 10679 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 10680 else 10681 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 10682 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 10683 : CC_RISCV); 10684 10685 // Check if it's really possible to do a tail call. 10686 if (IsTailCall) 10687 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 10688 10689 if (IsTailCall) 10690 ++NumTailCalls; 10691 else if (CLI.CB && CLI.CB->isMustTailCall()) 10692 report_fatal_error("failed to perform tail call elimination on a call " 10693 "site marked musttail"); 10694 10695 // Get a count of how many bytes are to be pushed on the stack. 10696 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 10697 10698 // Create local copies for byval args 10699 SmallVector<SDValue, 8> ByValArgs; 10700 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 10701 ISD::ArgFlagsTy Flags = Outs[i].Flags; 10702 if (!Flags.isByVal()) 10703 continue; 10704 10705 SDValue Arg = OutVals[i]; 10706 unsigned Size = Flags.getByValSize(); 10707 Align Alignment = Flags.getNonZeroByValAlign(); 10708 10709 int FI = 10710 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 10711 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 10712 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 10713 10714 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 10715 /*IsVolatile=*/false, 10716 /*AlwaysInline=*/false, IsTailCall, 10717 MachinePointerInfo(), MachinePointerInfo()); 10718 ByValArgs.push_back(FIPtr); 10719 } 10720 10721 if (!IsTailCall) 10722 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 10723 10724 // Copy argument values to their designated locations. 10725 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 10726 SmallVector<SDValue, 8> MemOpChains; 10727 SDValue StackPtr; 10728 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 10729 CCValAssign &VA = ArgLocs[i]; 10730 SDValue ArgValue = OutVals[i]; 10731 ISD::ArgFlagsTy Flags = Outs[i].Flags; 10732 10733 // Handle passing f64 on RV32D with a soft float ABI as a special case. 10734 bool IsF64OnRV32DSoftABI = 10735 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 10736 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 10737 SDValue SplitF64 = DAG.getNode( 10738 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 10739 SDValue Lo = SplitF64.getValue(0); 10740 SDValue Hi = SplitF64.getValue(1); 10741 10742 Register RegLo = VA.getLocReg(); 10743 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 10744 10745 if (RegLo == RISCV::X17) { 10746 // Second half of f64 is passed on the stack. 10747 // Work out the address of the stack slot. 10748 if (!StackPtr.getNode()) 10749 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 10750 // Emit the store. 10751 MemOpChains.push_back( 10752 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 10753 } else { 10754 // Second half of f64 is passed in another GPR. 10755 assert(RegLo < RISCV::X31 && "Invalid register pair"); 10756 Register RegHigh = RegLo + 1; 10757 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 10758 } 10759 continue; 10760 } 10761 10762 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 10763 // as any other MemLoc. 10764 10765 // Promote the value if needed. 10766 // For now, only handle fully promoted and indirect arguments. 10767 if (VA.getLocInfo() == CCValAssign::Indirect) { 10768 // Store the argument in a stack slot and pass its address. 10769 Align StackAlign = 10770 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 10771 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 10772 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 10773 // If the original argument was split (e.g. i128), we need 10774 // to store the required parts of it here (and pass just one address). 10775 // Vectors may be partly split to registers and partly to the stack, in 10776 // which case the base address is partly offset and subsequent stores are 10777 // relative to that. 10778 unsigned ArgIndex = Outs[i].OrigArgIndex; 10779 unsigned ArgPartOffset = Outs[i].PartOffset; 10780 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 10781 // Calculate the total size to store. We don't have access to what we're 10782 // actually storing other than performing the loop and collecting the 10783 // info. 10784 SmallVector<std::pair<SDValue, SDValue>> Parts; 10785 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 10786 SDValue PartValue = OutVals[i + 1]; 10787 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 10788 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 10789 EVT PartVT = PartValue.getValueType(); 10790 if (PartVT.isScalableVector()) 10791 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 10792 StoredSize += PartVT.getStoreSize(); 10793 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 10794 Parts.push_back(std::make_pair(PartValue, Offset)); 10795 ++i; 10796 } 10797 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 10798 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 10799 MemOpChains.push_back( 10800 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 10801 MachinePointerInfo::getFixedStack(MF, FI))); 10802 for (const auto &Part : Parts) { 10803 SDValue PartValue = Part.first; 10804 SDValue PartOffset = Part.second; 10805 SDValue Address = 10806 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 10807 MemOpChains.push_back( 10808 DAG.getStore(Chain, DL, PartValue, Address, 10809 MachinePointerInfo::getFixedStack(MF, FI))); 10810 } 10811 ArgValue = SpillSlot; 10812 } else { 10813 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 10814 } 10815 10816 // Use local copy if it is a byval arg. 10817 if (Flags.isByVal()) 10818 ArgValue = ByValArgs[j++]; 10819 10820 if (VA.isRegLoc()) { 10821 // Queue up the argument copies and emit them at the end. 10822 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 10823 } else { 10824 assert(VA.isMemLoc() && "Argument not register or memory"); 10825 assert(!IsTailCall && "Tail call not allowed if stack is used " 10826 "for passing parameters"); 10827 10828 // Work out the address of the stack slot. 10829 if (!StackPtr.getNode()) 10830 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 10831 SDValue Address = 10832 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 10833 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 10834 10835 // Emit the store. 10836 MemOpChains.push_back( 10837 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 10838 } 10839 } 10840 10841 // Join the stores, which are independent of one another. 10842 if (!MemOpChains.empty()) 10843 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 10844 10845 SDValue Glue; 10846 10847 // Build a sequence of copy-to-reg nodes, chained and glued together. 10848 for (auto &Reg : RegsToPass) { 10849 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 10850 Glue = Chain.getValue(1); 10851 } 10852 10853 // Validate that none of the argument registers have been marked as 10854 // reserved, if so report an error. Do the same for the return address if this 10855 // is not a tailcall. 10856 validateCCReservedRegs(RegsToPass, MF); 10857 if (!IsTailCall && 10858 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 10859 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10860 MF.getFunction(), 10861 "Return address register required, but has been reserved."}); 10862 10863 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 10864 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 10865 // split it and then direct call can be matched by PseudoCALL. 10866 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 10867 const GlobalValue *GV = S->getGlobal(); 10868 10869 unsigned OpFlags = RISCVII::MO_CALL; 10870 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 10871 OpFlags = RISCVII::MO_PLT; 10872 10873 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 10874 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 10875 unsigned OpFlags = RISCVII::MO_CALL; 10876 10877 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 10878 nullptr)) 10879 OpFlags = RISCVII::MO_PLT; 10880 10881 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 10882 } 10883 10884 // The first call operand is the chain and the second is the target address. 10885 SmallVector<SDValue, 8> Ops; 10886 Ops.push_back(Chain); 10887 Ops.push_back(Callee); 10888 10889 // Add argument registers to the end of the list so that they are 10890 // known live into the call. 10891 for (auto &Reg : RegsToPass) 10892 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 10893 10894 if (!IsTailCall) { 10895 // Add a register mask operand representing the call-preserved registers. 10896 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10897 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 10898 assert(Mask && "Missing call preserved mask for calling convention"); 10899 Ops.push_back(DAG.getRegisterMask(Mask)); 10900 } 10901 10902 // Glue the call to the argument copies, if any. 10903 if (Glue.getNode()) 10904 Ops.push_back(Glue); 10905 10906 // Emit the call. 10907 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10908 10909 if (IsTailCall) { 10910 MF.getFrameInfo().setHasTailCall(); 10911 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 10912 } 10913 10914 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 10915 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 10916 Glue = Chain.getValue(1); 10917 10918 // Mark the end of the call, which is glued to the call itself. 10919 Chain = DAG.getCALLSEQ_END(Chain, 10920 DAG.getConstant(NumBytes, DL, PtrVT, true), 10921 DAG.getConstant(0, DL, PtrVT, true), 10922 Glue, DL); 10923 Glue = Chain.getValue(1); 10924 10925 // Assign locations to each value returned by this call. 10926 SmallVector<CCValAssign, 16> RVLocs; 10927 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 10928 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 10929 10930 // Copy all of the result registers out of their specified physreg. 10931 for (auto &VA : RVLocs) { 10932 // Copy the value out 10933 SDValue RetValue = 10934 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 10935 // Glue the RetValue to the end of the call sequence 10936 Chain = RetValue.getValue(1); 10937 Glue = RetValue.getValue(2); 10938 10939 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 10940 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 10941 SDValue RetValue2 = 10942 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 10943 Chain = RetValue2.getValue(1); 10944 Glue = RetValue2.getValue(2); 10945 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 10946 RetValue2); 10947 } 10948 10949 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 10950 10951 InVals.push_back(RetValue); 10952 } 10953 10954 return Chain; 10955 } 10956 10957 bool RISCVTargetLowering::CanLowerReturn( 10958 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 10959 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 10960 SmallVector<CCValAssign, 16> RVLocs; 10961 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 10962 10963 Optional<unsigned> FirstMaskArgument; 10964 if (Subtarget.hasVInstructions()) 10965 FirstMaskArgument = preAssignMask(Outs); 10966 10967 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 10968 MVT VT = Outs[i].VT; 10969 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 10970 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 10971 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 10972 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 10973 *this, FirstMaskArgument)) 10974 return false; 10975 } 10976 return true; 10977 } 10978 10979 SDValue 10980 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 10981 bool IsVarArg, 10982 const SmallVectorImpl<ISD::OutputArg> &Outs, 10983 const SmallVectorImpl<SDValue> &OutVals, 10984 const SDLoc &DL, SelectionDAG &DAG) const { 10985 const MachineFunction &MF = DAG.getMachineFunction(); 10986 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 10987 10988 // Stores the assignment of the return value to a location. 10989 SmallVector<CCValAssign, 16> RVLocs; 10990 10991 // Info about the registers and stack slot. 10992 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 10993 *DAG.getContext()); 10994 10995 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 10996 nullptr, CC_RISCV); 10997 10998 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 10999 report_fatal_error("GHC functions return void only"); 11000 11001 SDValue Glue; 11002 SmallVector<SDValue, 4> RetOps(1, Chain); 11003 11004 // Copy the result values into the output registers. 11005 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 11006 SDValue Val = OutVals[i]; 11007 CCValAssign &VA = RVLocs[i]; 11008 assert(VA.isRegLoc() && "Can only return in registers!"); 11009 11010 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 11011 // Handle returning f64 on RV32D with a soft float ABI. 11012 assert(VA.isRegLoc() && "Expected return via registers"); 11013 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 11014 DAG.getVTList(MVT::i32, MVT::i32), Val); 11015 SDValue Lo = SplitF64.getValue(0); 11016 SDValue Hi = SplitF64.getValue(1); 11017 Register RegLo = VA.getLocReg(); 11018 assert(RegLo < RISCV::X31 && "Invalid register pair"); 11019 Register RegHi = RegLo + 1; 11020 11021 if (STI.isRegisterReservedByUser(RegLo) || 11022 STI.isRegisterReservedByUser(RegHi)) 11023 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 11024 MF.getFunction(), 11025 "Return value register required, but has been reserved."}); 11026 11027 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 11028 Glue = Chain.getValue(1); 11029 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 11030 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 11031 Glue = Chain.getValue(1); 11032 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 11033 } else { 11034 // Handle a 'normal' return. 11035 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 11036 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 11037 11038 if (STI.isRegisterReservedByUser(VA.getLocReg())) 11039 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 11040 MF.getFunction(), 11041 "Return value register required, but has been reserved."}); 11042 11043 // Guarantee that all emitted copies are stuck together. 11044 Glue = Chain.getValue(1); 11045 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 11046 } 11047 } 11048 11049 RetOps[0] = Chain; // Update chain. 11050 11051 // Add the glue node if we have it. 11052 if (Glue.getNode()) { 11053 RetOps.push_back(Glue); 11054 } 11055 11056 unsigned RetOpc = RISCVISD::RET_FLAG; 11057 // Interrupt service routines use different return instructions. 11058 const Function &Func = DAG.getMachineFunction().getFunction(); 11059 if (Func.hasFnAttribute("interrupt")) { 11060 if (!Func.getReturnType()->isVoidTy()) 11061 report_fatal_error( 11062 "Functions with the interrupt attribute must have void return type!"); 11063 11064 MachineFunction &MF = DAG.getMachineFunction(); 11065 StringRef Kind = 11066 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 11067 11068 if (Kind == "user") 11069 RetOpc = RISCVISD::URET_FLAG; 11070 else if (Kind == "supervisor") 11071 RetOpc = RISCVISD::SRET_FLAG; 11072 else 11073 RetOpc = RISCVISD::MRET_FLAG; 11074 } 11075 11076 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 11077 } 11078 11079 void RISCVTargetLowering::validateCCReservedRegs( 11080 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 11081 MachineFunction &MF) const { 11082 const Function &F = MF.getFunction(); 11083 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 11084 11085 if (llvm::any_of(Regs, [&STI](auto Reg) { 11086 return STI.isRegisterReservedByUser(Reg.first); 11087 })) 11088 F.getContext().diagnose(DiagnosticInfoUnsupported{ 11089 F, "Argument register required, but has been reserved."}); 11090 } 11091 11092 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 11093 return CI->isTailCall(); 11094 } 11095 11096 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 11097 #define NODE_NAME_CASE(NODE) \ 11098 case RISCVISD::NODE: \ 11099 return "RISCVISD::" #NODE; 11100 // clang-format off 11101 switch ((RISCVISD::NodeType)Opcode) { 11102 case RISCVISD::FIRST_NUMBER: 11103 break; 11104 NODE_NAME_CASE(RET_FLAG) 11105 NODE_NAME_CASE(URET_FLAG) 11106 NODE_NAME_CASE(SRET_FLAG) 11107 NODE_NAME_CASE(MRET_FLAG) 11108 NODE_NAME_CASE(CALL) 11109 NODE_NAME_CASE(SELECT_CC) 11110 NODE_NAME_CASE(BR_CC) 11111 NODE_NAME_CASE(BuildPairF64) 11112 NODE_NAME_CASE(SplitF64) 11113 NODE_NAME_CASE(TAIL) 11114 NODE_NAME_CASE(MULHSU) 11115 NODE_NAME_CASE(SLLW) 11116 NODE_NAME_CASE(SRAW) 11117 NODE_NAME_CASE(SRLW) 11118 NODE_NAME_CASE(DIVW) 11119 NODE_NAME_CASE(DIVUW) 11120 NODE_NAME_CASE(REMUW) 11121 NODE_NAME_CASE(ROLW) 11122 NODE_NAME_CASE(RORW) 11123 NODE_NAME_CASE(CLZW) 11124 NODE_NAME_CASE(CTZW) 11125 NODE_NAME_CASE(FSLW) 11126 NODE_NAME_CASE(FSRW) 11127 NODE_NAME_CASE(FSL) 11128 NODE_NAME_CASE(FSR) 11129 NODE_NAME_CASE(FMV_H_X) 11130 NODE_NAME_CASE(FMV_X_ANYEXTH) 11131 NODE_NAME_CASE(FMV_X_SIGNEXTH) 11132 NODE_NAME_CASE(FMV_W_X_RV64) 11133 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 11134 NODE_NAME_CASE(FCVT_X) 11135 NODE_NAME_CASE(FCVT_XU) 11136 NODE_NAME_CASE(FCVT_W_RV64) 11137 NODE_NAME_CASE(FCVT_WU_RV64) 11138 NODE_NAME_CASE(STRICT_FCVT_W_RV64) 11139 NODE_NAME_CASE(STRICT_FCVT_WU_RV64) 11140 NODE_NAME_CASE(READ_CYCLE_WIDE) 11141 NODE_NAME_CASE(GREV) 11142 NODE_NAME_CASE(GREVW) 11143 NODE_NAME_CASE(GORC) 11144 NODE_NAME_CASE(GORCW) 11145 NODE_NAME_CASE(SHFL) 11146 NODE_NAME_CASE(SHFLW) 11147 NODE_NAME_CASE(UNSHFL) 11148 NODE_NAME_CASE(UNSHFLW) 11149 NODE_NAME_CASE(BFP) 11150 NODE_NAME_CASE(BFPW) 11151 NODE_NAME_CASE(BCOMPRESS) 11152 NODE_NAME_CASE(BCOMPRESSW) 11153 NODE_NAME_CASE(BDECOMPRESS) 11154 NODE_NAME_CASE(BDECOMPRESSW) 11155 NODE_NAME_CASE(VMV_V_X_VL) 11156 NODE_NAME_CASE(VFMV_V_F_VL) 11157 NODE_NAME_CASE(VMV_X_S) 11158 NODE_NAME_CASE(VMV_S_X_VL) 11159 NODE_NAME_CASE(VFMV_S_F_VL) 11160 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 11161 NODE_NAME_CASE(READ_VLENB) 11162 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 11163 NODE_NAME_CASE(VSLIDEUP_VL) 11164 NODE_NAME_CASE(VSLIDE1UP_VL) 11165 NODE_NAME_CASE(VSLIDEDOWN_VL) 11166 NODE_NAME_CASE(VSLIDE1DOWN_VL) 11167 NODE_NAME_CASE(VID_VL) 11168 NODE_NAME_CASE(VFNCVT_ROD_VL) 11169 NODE_NAME_CASE(VECREDUCE_ADD_VL) 11170 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 11171 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 11172 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 11173 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 11174 NODE_NAME_CASE(VECREDUCE_AND_VL) 11175 NODE_NAME_CASE(VECREDUCE_OR_VL) 11176 NODE_NAME_CASE(VECREDUCE_XOR_VL) 11177 NODE_NAME_CASE(VECREDUCE_FADD_VL) 11178 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 11179 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 11180 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 11181 NODE_NAME_CASE(ADD_VL) 11182 NODE_NAME_CASE(AND_VL) 11183 NODE_NAME_CASE(MUL_VL) 11184 NODE_NAME_CASE(OR_VL) 11185 NODE_NAME_CASE(SDIV_VL) 11186 NODE_NAME_CASE(SHL_VL) 11187 NODE_NAME_CASE(SREM_VL) 11188 NODE_NAME_CASE(SRA_VL) 11189 NODE_NAME_CASE(SRL_VL) 11190 NODE_NAME_CASE(SUB_VL) 11191 NODE_NAME_CASE(UDIV_VL) 11192 NODE_NAME_CASE(UREM_VL) 11193 NODE_NAME_CASE(XOR_VL) 11194 NODE_NAME_CASE(SADDSAT_VL) 11195 NODE_NAME_CASE(UADDSAT_VL) 11196 NODE_NAME_CASE(SSUBSAT_VL) 11197 NODE_NAME_CASE(USUBSAT_VL) 11198 NODE_NAME_CASE(FADD_VL) 11199 NODE_NAME_CASE(FSUB_VL) 11200 NODE_NAME_CASE(FMUL_VL) 11201 NODE_NAME_CASE(FDIV_VL) 11202 NODE_NAME_CASE(FNEG_VL) 11203 NODE_NAME_CASE(FABS_VL) 11204 NODE_NAME_CASE(FSQRT_VL) 11205 NODE_NAME_CASE(FMA_VL) 11206 NODE_NAME_CASE(FCOPYSIGN_VL) 11207 NODE_NAME_CASE(SMIN_VL) 11208 NODE_NAME_CASE(SMAX_VL) 11209 NODE_NAME_CASE(UMIN_VL) 11210 NODE_NAME_CASE(UMAX_VL) 11211 NODE_NAME_CASE(FMINNUM_VL) 11212 NODE_NAME_CASE(FMAXNUM_VL) 11213 NODE_NAME_CASE(MULHS_VL) 11214 NODE_NAME_CASE(MULHU_VL) 11215 NODE_NAME_CASE(FP_TO_SINT_VL) 11216 NODE_NAME_CASE(FP_TO_UINT_VL) 11217 NODE_NAME_CASE(SINT_TO_FP_VL) 11218 NODE_NAME_CASE(UINT_TO_FP_VL) 11219 NODE_NAME_CASE(FP_EXTEND_VL) 11220 NODE_NAME_CASE(FP_ROUND_VL) 11221 NODE_NAME_CASE(VWMUL_VL) 11222 NODE_NAME_CASE(VWMULU_VL) 11223 NODE_NAME_CASE(VWMULSU_VL) 11224 NODE_NAME_CASE(VWADD_VL) 11225 NODE_NAME_CASE(VWADDU_VL) 11226 NODE_NAME_CASE(VWSUB_VL) 11227 NODE_NAME_CASE(VWSUBU_VL) 11228 NODE_NAME_CASE(VWADD_W_VL) 11229 NODE_NAME_CASE(VWADDU_W_VL) 11230 NODE_NAME_CASE(VWSUB_W_VL) 11231 NODE_NAME_CASE(VWSUBU_W_VL) 11232 NODE_NAME_CASE(SETCC_VL) 11233 NODE_NAME_CASE(VSELECT_VL) 11234 NODE_NAME_CASE(VP_MERGE_VL) 11235 NODE_NAME_CASE(VMAND_VL) 11236 NODE_NAME_CASE(VMOR_VL) 11237 NODE_NAME_CASE(VMXOR_VL) 11238 NODE_NAME_CASE(VMCLR_VL) 11239 NODE_NAME_CASE(VMSET_VL) 11240 NODE_NAME_CASE(VRGATHER_VX_VL) 11241 NODE_NAME_CASE(VRGATHER_VV_VL) 11242 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 11243 NODE_NAME_CASE(VSEXT_VL) 11244 NODE_NAME_CASE(VZEXT_VL) 11245 NODE_NAME_CASE(VCPOP_VL) 11246 NODE_NAME_CASE(READ_CSR) 11247 NODE_NAME_CASE(WRITE_CSR) 11248 NODE_NAME_CASE(SWAP_CSR) 11249 } 11250 // clang-format on 11251 return nullptr; 11252 #undef NODE_NAME_CASE 11253 } 11254 11255 /// getConstraintType - Given a constraint letter, return the type of 11256 /// constraint it is for this target. 11257 RISCVTargetLowering::ConstraintType 11258 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 11259 if (Constraint.size() == 1) { 11260 switch (Constraint[0]) { 11261 default: 11262 break; 11263 case 'f': 11264 return C_RegisterClass; 11265 case 'I': 11266 case 'J': 11267 case 'K': 11268 return C_Immediate; 11269 case 'A': 11270 return C_Memory; 11271 case 'S': // A symbolic address 11272 return C_Other; 11273 } 11274 } else { 11275 if (Constraint == "vr" || Constraint == "vm") 11276 return C_RegisterClass; 11277 } 11278 return TargetLowering::getConstraintType(Constraint); 11279 } 11280 11281 std::pair<unsigned, const TargetRegisterClass *> 11282 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 11283 StringRef Constraint, 11284 MVT VT) const { 11285 // First, see if this is a constraint that directly corresponds to a 11286 // RISCV register class. 11287 if (Constraint.size() == 1) { 11288 switch (Constraint[0]) { 11289 case 'r': 11290 // TODO: Support fixed vectors up to XLen for P extension? 11291 if (VT.isVector()) 11292 break; 11293 return std::make_pair(0U, &RISCV::GPRRegClass); 11294 case 'f': 11295 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 11296 return std::make_pair(0U, &RISCV::FPR16RegClass); 11297 if (Subtarget.hasStdExtF() && VT == MVT::f32) 11298 return std::make_pair(0U, &RISCV::FPR32RegClass); 11299 if (Subtarget.hasStdExtD() && VT == MVT::f64) 11300 return std::make_pair(0U, &RISCV::FPR64RegClass); 11301 break; 11302 default: 11303 break; 11304 } 11305 } else if (Constraint == "vr") { 11306 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 11307 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 11308 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 11309 return std::make_pair(0U, RC); 11310 } 11311 } else if (Constraint == "vm") { 11312 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 11313 return std::make_pair(0U, &RISCV::VMV0RegClass); 11314 } 11315 11316 // Clang will correctly decode the usage of register name aliases into their 11317 // official names. However, other frontends like `rustc` do not. This allows 11318 // users of these frontends to use the ABI names for registers in LLVM-style 11319 // register constraints. 11320 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 11321 .Case("{zero}", RISCV::X0) 11322 .Case("{ra}", RISCV::X1) 11323 .Case("{sp}", RISCV::X2) 11324 .Case("{gp}", RISCV::X3) 11325 .Case("{tp}", RISCV::X4) 11326 .Case("{t0}", RISCV::X5) 11327 .Case("{t1}", RISCV::X6) 11328 .Case("{t2}", RISCV::X7) 11329 .Cases("{s0}", "{fp}", RISCV::X8) 11330 .Case("{s1}", RISCV::X9) 11331 .Case("{a0}", RISCV::X10) 11332 .Case("{a1}", RISCV::X11) 11333 .Case("{a2}", RISCV::X12) 11334 .Case("{a3}", RISCV::X13) 11335 .Case("{a4}", RISCV::X14) 11336 .Case("{a5}", RISCV::X15) 11337 .Case("{a6}", RISCV::X16) 11338 .Case("{a7}", RISCV::X17) 11339 .Case("{s2}", RISCV::X18) 11340 .Case("{s3}", RISCV::X19) 11341 .Case("{s4}", RISCV::X20) 11342 .Case("{s5}", RISCV::X21) 11343 .Case("{s6}", RISCV::X22) 11344 .Case("{s7}", RISCV::X23) 11345 .Case("{s8}", RISCV::X24) 11346 .Case("{s9}", RISCV::X25) 11347 .Case("{s10}", RISCV::X26) 11348 .Case("{s11}", RISCV::X27) 11349 .Case("{t3}", RISCV::X28) 11350 .Case("{t4}", RISCV::X29) 11351 .Case("{t5}", RISCV::X30) 11352 .Case("{t6}", RISCV::X31) 11353 .Default(RISCV::NoRegister); 11354 if (XRegFromAlias != RISCV::NoRegister) 11355 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 11356 11357 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 11358 // TableGen record rather than the AsmName to choose registers for InlineAsm 11359 // constraints, plus we want to match those names to the widest floating point 11360 // register type available, manually select floating point registers here. 11361 // 11362 // The second case is the ABI name of the register, so that frontends can also 11363 // use the ABI names in register constraint lists. 11364 if (Subtarget.hasStdExtF()) { 11365 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 11366 .Cases("{f0}", "{ft0}", RISCV::F0_F) 11367 .Cases("{f1}", "{ft1}", RISCV::F1_F) 11368 .Cases("{f2}", "{ft2}", RISCV::F2_F) 11369 .Cases("{f3}", "{ft3}", RISCV::F3_F) 11370 .Cases("{f4}", "{ft4}", RISCV::F4_F) 11371 .Cases("{f5}", "{ft5}", RISCV::F5_F) 11372 .Cases("{f6}", "{ft6}", RISCV::F6_F) 11373 .Cases("{f7}", "{ft7}", RISCV::F7_F) 11374 .Cases("{f8}", "{fs0}", RISCV::F8_F) 11375 .Cases("{f9}", "{fs1}", RISCV::F9_F) 11376 .Cases("{f10}", "{fa0}", RISCV::F10_F) 11377 .Cases("{f11}", "{fa1}", RISCV::F11_F) 11378 .Cases("{f12}", "{fa2}", RISCV::F12_F) 11379 .Cases("{f13}", "{fa3}", RISCV::F13_F) 11380 .Cases("{f14}", "{fa4}", RISCV::F14_F) 11381 .Cases("{f15}", "{fa5}", RISCV::F15_F) 11382 .Cases("{f16}", "{fa6}", RISCV::F16_F) 11383 .Cases("{f17}", "{fa7}", RISCV::F17_F) 11384 .Cases("{f18}", "{fs2}", RISCV::F18_F) 11385 .Cases("{f19}", "{fs3}", RISCV::F19_F) 11386 .Cases("{f20}", "{fs4}", RISCV::F20_F) 11387 .Cases("{f21}", "{fs5}", RISCV::F21_F) 11388 .Cases("{f22}", "{fs6}", RISCV::F22_F) 11389 .Cases("{f23}", "{fs7}", RISCV::F23_F) 11390 .Cases("{f24}", "{fs8}", RISCV::F24_F) 11391 .Cases("{f25}", "{fs9}", RISCV::F25_F) 11392 .Cases("{f26}", "{fs10}", RISCV::F26_F) 11393 .Cases("{f27}", "{fs11}", RISCV::F27_F) 11394 .Cases("{f28}", "{ft8}", RISCV::F28_F) 11395 .Cases("{f29}", "{ft9}", RISCV::F29_F) 11396 .Cases("{f30}", "{ft10}", RISCV::F30_F) 11397 .Cases("{f31}", "{ft11}", RISCV::F31_F) 11398 .Default(RISCV::NoRegister); 11399 if (FReg != RISCV::NoRegister) { 11400 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 11401 if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) { 11402 unsigned RegNo = FReg - RISCV::F0_F; 11403 unsigned DReg = RISCV::F0_D + RegNo; 11404 return std::make_pair(DReg, &RISCV::FPR64RegClass); 11405 } 11406 if (VT == MVT::f32 || VT == MVT::Other) 11407 return std::make_pair(FReg, &RISCV::FPR32RegClass); 11408 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) { 11409 unsigned RegNo = FReg - RISCV::F0_F; 11410 unsigned HReg = RISCV::F0_H + RegNo; 11411 return std::make_pair(HReg, &RISCV::FPR16RegClass); 11412 } 11413 } 11414 } 11415 11416 if (Subtarget.hasVInstructions()) { 11417 Register VReg = StringSwitch<Register>(Constraint.lower()) 11418 .Case("{v0}", RISCV::V0) 11419 .Case("{v1}", RISCV::V1) 11420 .Case("{v2}", RISCV::V2) 11421 .Case("{v3}", RISCV::V3) 11422 .Case("{v4}", RISCV::V4) 11423 .Case("{v5}", RISCV::V5) 11424 .Case("{v6}", RISCV::V6) 11425 .Case("{v7}", RISCV::V7) 11426 .Case("{v8}", RISCV::V8) 11427 .Case("{v9}", RISCV::V9) 11428 .Case("{v10}", RISCV::V10) 11429 .Case("{v11}", RISCV::V11) 11430 .Case("{v12}", RISCV::V12) 11431 .Case("{v13}", RISCV::V13) 11432 .Case("{v14}", RISCV::V14) 11433 .Case("{v15}", RISCV::V15) 11434 .Case("{v16}", RISCV::V16) 11435 .Case("{v17}", RISCV::V17) 11436 .Case("{v18}", RISCV::V18) 11437 .Case("{v19}", RISCV::V19) 11438 .Case("{v20}", RISCV::V20) 11439 .Case("{v21}", RISCV::V21) 11440 .Case("{v22}", RISCV::V22) 11441 .Case("{v23}", RISCV::V23) 11442 .Case("{v24}", RISCV::V24) 11443 .Case("{v25}", RISCV::V25) 11444 .Case("{v26}", RISCV::V26) 11445 .Case("{v27}", RISCV::V27) 11446 .Case("{v28}", RISCV::V28) 11447 .Case("{v29}", RISCV::V29) 11448 .Case("{v30}", RISCV::V30) 11449 .Case("{v31}", RISCV::V31) 11450 .Default(RISCV::NoRegister); 11451 if (VReg != RISCV::NoRegister) { 11452 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 11453 return std::make_pair(VReg, &RISCV::VMRegClass); 11454 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 11455 return std::make_pair(VReg, &RISCV::VRRegClass); 11456 for (const auto *RC : 11457 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 11458 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 11459 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 11460 return std::make_pair(VReg, RC); 11461 } 11462 } 11463 } 11464 } 11465 11466 std::pair<Register, const TargetRegisterClass *> Res = 11467 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 11468 11469 // If we picked one of the Zfinx register classes, remap it to the GPR class. 11470 // FIXME: When Zfinx is supported in CodeGen this will need to take the 11471 // Subtarget into account. 11472 if (Res.second == &RISCV::GPRF16RegClass || 11473 Res.second == &RISCV::GPRF32RegClass || 11474 Res.second == &RISCV::GPRF64RegClass) 11475 return std::make_pair(Res.first, &RISCV::GPRRegClass); 11476 11477 return Res; 11478 } 11479 11480 unsigned 11481 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 11482 // Currently only support length 1 constraints. 11483 if (ConstraintCode.size() == 1) { 11484 switch (ConstraintCode[0]) { 11485 case 'A': 11486 return InlineAsm::Constraint_A; 11487 default: 11488 break; 11489 } 11490 } 11491 11492 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 11493 } 11494 11495 void RISCVTargetLowering::LowerAsmOperandForConstraint( 11496 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 11497 SelectionDAG &DAG) const { 11498 // Currently only support length 1 constraints. 11499 if (Constraint.length() == 1) { 11500 switch (Constraint[0]) { 11501 case 'I': 11502 // Validate & create a 12-bit signed immediate operand. 11503 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 11504 uint64_t CVal = C->getSExtValue(); 11505 if (isInt<12>(CVal)) 11506 Ops.push_back( 11507 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 11508 } 11509 return; 11510 case 'J': 11511 // Validate & create an integer zero operand. 11512 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 11513 if (C->getZExtValue() == 0) 11514 Ops.push_back( 11515 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 11516 return; 11517 case 'K': 11518 // Validate & create a 5-bit unsigned immediate operand. 11519 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 11520 uint64_t CVal = C->getZExtValue(); 11521 if (isUInt<5>(CVal)) 11522 Ops.push_back( 11523 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 11524 } 11525 return; 11526 case 'S': 11527 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 11528 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 11529 GA->getValueType(0))); 11530 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 11531 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 11532 BA->getValueType(0))); 11533 } 11534 return; 11535 default: 11536 break; 11537 } 11538 } 11539 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 11540 } 11541 11542 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 11543 Instruction *Inst, 11544 AtomicOrdering Ord) const { 11545 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 11546 return Builder.CreateFence(Ord); 11547 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 11548 return Builder.CreateFence(AtomicOrdering::Release); 11549 return nullptr; 11550 } 11551 11552 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 11553 Instruction *Inst, 11554 AtomicOrdering Ord) const { 11555 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 11556 return Builder.CreateFence(AtomicOrdering::Acquire); 11557 return nullptr; 11558 } 11559 11560 TargetLowering::AtomicExpansionKind 11561 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 11562 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 11563 // point operations can't be used in an lr/sc sequence without breaking the 11564 // forward-progress guarantee. 11565 if (AI->isFloatingPointOperation()) 11566 return AtomicExpansionKind::CmpXChg; 11567 11568 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 11569 if (Size == 8 || Size == 16) 11570 return AtomicExpansionKind::MaskedIntrinsic; 11571 return AtomicExpansionKind::None; 11572 } 11573 11574 static Intrinsic::ID 11575 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 11576 if (XLen == 32) { 11577 switch (BinOp) { 11578 default: 11579 llvm_unreachable("Unexpected AtomicRMW BinOp"); 11580 case AtomicRMWInst::Xchg: 11581 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 11582 case AtomicRMWInst::Add: 11583 return Intrinsic::riscv_masked_atomicrmw_add_i32; 11584 case AtomicRMWInst::Sub: 11585 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 11586 case AtomicRMWInst::Nand: 11587 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 11588 case AtomicRMWInst::Max: 11589 return Intrinsic::riscv_masked_atomicrmw_max_i32; 11590 case AtomicRMWInst::Min: 11591 return Intrinsic::riscv_masked_atomicrmw_min_i32; 11592 case AtomicRMWInst::UMax: 11593 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 11594 case AtomicRMWInst::UMin: 11595 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 11596 } 11597 } 11598 11599 if (XLen == 64) { 11600 switch (BinOp) { 11601 default: 11602 llvm_unreachable("Unexpected AtomicRMW BinOp"); 11603 case AtomicRMWInst::Xchg: 11604 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 11605 case AtomicRMWInst::Add: 11606 return Intrinsic::riscv_masked_atomicrmw_add_i64; 11607 case AtomicRMWInst::Sub: 11608 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 11609 case AtomicRMWInst::Nand: 11610 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 11611 case AtomicRMWInst::Max: 11612 return Intrinsic::riscv_masked_atomicrmw_max_i64; 11613 case AtomicRMWInst::Min: 11614 return Intrinsic::riscv_masked_atomicrmw_min_i64; 11615 case AtomicRMWInst::UMax: 11616 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 11617 case AtomicRMWInst::UMin: 11618 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 11619 } 11620 } 11621 11622 llvm_unreachable("Unexpected XLen\n"); 11623 } 11624 11625 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 11626 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 11627 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 11628 unsigned XLen = Subtarget.getXLen(); 11629 Value *Ordering = 11630 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 11631 Type *Tys[] = {AlignedAddr->getType()}; 11632 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 11633 AI->getModule(), 11634 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 11635 11636 if (XLen == 64) { 11637 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 11638 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 11639 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 11640 } 11641 11642 Value *Result; 11643 11644 // Must pass the shift amount needed to sign extend the loaded value prior 11645 // to performing a signed comparison for min/max. ShiftAmt is the number of 11646 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 11647 // is the number of bits to left+right shift the value in order to 11648 // sign-extend. 11649 if (AI->getOperation() == AtomicRMWInst::Min || 11650 AI->getOperation() == AtomicRMWInst::Max) { 11651 const DataLayout &DL = AI->getModule()->getDataLayout(); 11652 unsigned ValWidth = 11653 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 11654 Value *SextShamt = 11655 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 11656 Result = Builder.CreateCall(LrwOpScwLoop, 11657 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 11658 } else { 11659 Result = 11660 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 11661 } 11662 11663 if (XLen == 64) 11664 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 11665 return Result; 11666 } 11667 11668 TargetLowering::AtomicExpansionKind 11669 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 11670 AtomicCmpXchgInst *CI) const { 11671 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 11672 if (Size == 8 || Size == 16) 11673 return AtomicExpansionKind::MaskedIntrinsic; 11674 return AtomicExpansionKind::None; 11675 } 11676 11677 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 11678 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 11679 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 11680 unsigned XLen = Subtarget.getXLen(); 11681 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 11682 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 11683 if (XLen == 64) { 11684 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 11685 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 11686 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 11687 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 11688 } 11689 Type *Tys[] = {AlignedAddr->getType()}; 11690 Function *MaskedCmpXchg = 11691 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 11692 Value *Result = Builder.CreateCall( 11693 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 11694 if (XLen == 64) 11695 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 11696 return Result; 11697 } 11698 11699 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT IndexVT, 11700 EVT DataVT) const { 11701 return false; 11702 } 11703 11704 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 11705 EVT VT) const { 11706 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 11707 return false; 11708 11709 switch (FPVT.getSimpleVT().SimpleTy) { 11710 case MVT::f16: 11711 return Subtarget.hasStdExtZfh(); 11712 case MVT::f32: 11713 return Subtarget.hasStdExtF(); 11714 case MVT::f64: 11715 return Subtarget.hasStdExtD(); 11716 default: 11717 return false; 11718 } 11719 } 11720 11721 unsigned RISCVTargetLowering::getJumpTableEncoding() const { 11722 // If we are using the small code model, we can reduce size of jump table 11723 // entry to 4 bytes. 11724 if (Subtarget.is64Bit() && !isPositionIndependent() && 11725 getTargetMachine().getCodeModel() == CodeModel::Small) { 11726 return MachineJumpTableInfo::EK_Custom32; 11727 } 11728 return TargetLowering::getJumpTableEncoding(); 11729 } 11730 11731 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry( 11732 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 11733 unsigned uid, MCContext &Ctx) const { 11734 assert(Subtarget.is64Bit() && !isPositionIndependent() && 11735 getTargetMachine().getCodeModel() == CodeModel::Small); 11736 return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 11737 } 11738 11739 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 11740 EVT VT) const { 11741 VT = VT.getScalarType(); 11742 11743 if (!VT.isSimple()) 11744 return false; 11745 11746 switch (VT.getSimpleVT().SimpleTy) { 11747 case MVT::f16: 11748 return Subtarget.hasStdExtZfh(); 11749 case MVT::f32: 11750 return Subtarget.hasStdExtF(); 11751 case MVT::f64: 11752 return Subtarget.hasStdExtD(); 11753 default: 11754 break; 11755 } 11756 11757 return false; 11758 } 11759 11760 Register RISCVTargetLowering::getExceptionPointerRegister( 11761 const Constant *PersonalityFn) const { 11762 return RISCV::X10; 11763 } 11764 11765 Register RISCVTargetLowering::getExceptionSelectorRegister( 11766 const Constant *PersonalityFn) const { 11767 return RISCV::X11; 11768 } 11769 11770 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 11771 // Return false to suppress the unnecessary extensions if the LibCall 11772 // arguments or return value is f32 type for LP64 ABI. 11773 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 11774 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 11775 return false; 11776 11777 return true; 11778 } 11779 11780 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 11781 if (Subtarget.is64Bit() && Type == MVT::i32) 11782 return true; 11783 11784 return IsSigned; 11785 } 11786 11787 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 11788 SDValue C) const { 11789 // Check integral scalar types. 11790 if (VT.isScalarInteger()) { 11791 // Omit the optimization if the sub target has the M extension and the data 11792 // size exceeds XLen. 11793 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 11794 return false; 11795 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 11796 // Break the MUL to a SLLI and an ADD/SUB. 11797 const APInt &Imm = ConstNode->getAPIntValue(); 11798 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 11799 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 11800 return true; 11801 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 11802 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 11803 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 11804 (Imm - 8).isPowerOf2())) 11805 return true; 11806 // Omit the following optimization if the sub target has the M extension 11807 // and the data size >= XLen. 11808 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 11809 return false; 11810 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 11811 // a pair of LUI/ADDI. 11812 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 11813 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 11814 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 11815 (1 - ImmS).isPowerOf2()) 11816 return true; 11817 } 11818 } 11819 } 11820 11821 return false; 11822 } 11823 11824 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode, 11825 SDValue ConstNode) const { 11826 // Let the DAGCombiner decide for vectors. 11827 EVT VT = AddNode.getValueType(); 11828 if (VT.isVector()) 11829 return true; 11830 11831 // Let the DAGCombiner decide for larger types. 11832 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 11833 return true; 11834 11835 // It is worse if c1 is simm12 while c1*c2 is not. 11836 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 11837 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 11838 const APInt &C1 = C1Node->getAPIntValue(); 11839 const APInt &C2 = C2Node->getAPIntValue(); 11840 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 11841 return false; 11842 11843 // Default to true and let the DAGCombiner decide. 11844 return true; 11845 } 11846 11847 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 11848 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 11849 bool *Fast) const { 11850 if (!VT.isVector()) { 11851 if (Fast) 11852 *Fast = false; 11853 return Subtarget.enableUnalignedScalarMem(); 11854 } 11855 11856 // All vector implementations must support element alignment 11857 EVT ElemVT = VT.getVectorElementType(); 11858 if (Alignment >= ElemVT.getStoreSize()) { 11859 if (Fast) 11860 *Fast = true; 11861 return true; 11862 } 11863 11864 return false; 11865 } 11866 11867 bool RISCVTargetLowering::splitValueIntoRegisterParts( 11868 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 11869 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 11870 bool IsABIRegCopy = CC.hasValue(); 11871 EVT ValueVT = Val.getValueType(); 11872 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 11873 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 11874 // and cast to f32. 11875 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 11876 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 11877 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 11878 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 11879 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 11880 Parts[0] = Val; 11881 return true; 11882 } 11883 11884 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 11885 LLVMContext &Context = *DAG.getContext(); 11886 EVT ValueEltVT = ValueVT.getVectorElementType(); 11887 EVT PartEltVT = PartVT.getVectorElementType(); 11888 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 11889 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 11890 if (PartVTBitSize % ValueVTBitSize == 0) { 11891 assert(PartVTBitSize >= ValueVTBitSize); 11892 // If the element types are different, bitcast to the same element type of 11893 // PartVT first. 11894 // Give an example here, we want copy a <vscale x 1 x i8> value to 11895 // <vscale x 4 x i16>. 11896 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 11897 // subvector, then we can bitcast to <vscale x 4 x i16>. 11898 if (ValueEltVT != PartEltVT) { 11899 if (PartVTBitSize > ValueVTBitSize) { 11900 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 11901 assert(Count != 0 && "The number of element should not be zero."); 11902 EVT SameEltTypeVT = 11903 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 11904 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 11905 DAG.getUNDEF(SameEltTypeVT), Val, 11906 DAG.getVectorIdxConstant(0, DL)); 11907 } 11908 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 11909 } else { 11910 Val = 11911 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 11912 Val, DAG.getVectorIdxConstant(0, DL)); 11913 } 11914 Parts[0] = Val; 11915 return true; 11916 } 11917 } 11918 return false; 11919 } 11920 11921 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 11922 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 11923 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 11924 bool IsABIRegCopy = CC.hasValue(); 11925 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 11926 SDValue Val = Parts[0]; 11927 11928 // Cast the f32 to i32, truncate to i16, and cast back to f16. 11929 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 11930 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 11931 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 11932 return Val; 11933 } 11934 11935 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 11936 LLVMContext &Context = *DAG.getContext(); 11937 SDValue Val = Parts[0]; 11938 EVT ValueEltVT = ValueVT.getVectorElementType(); 11939 EVT PartEltVT = PartVT.getVectorElementType(); 11940 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 11941 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 11942 if (PartVTBitSize % ValueVTBitSize == 0) { 11943 assert(PartVTBitSize >= ValueVTBitSize); 11944 EVT SameEltTypeVT = ValueVT; 11945 // If the element types are different, convert it to the same element type 11946 // of PartVT. 11947 // Give an example here, we want copy a <vscale x 1 x i8> value from 11948 // <vscale x 4 x i16>. 11949 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 11950 // then we can extract <vscale x 1 x i8>. 11951 if (ValueEltVT != PartEltVT) { 11952 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 11953 assert(Count != 0 && "The number of element should not be zero."); 11954 SameEltTypeVT = 11955 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 11956 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 11957 } 11958 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 11959 DAG.getVectorIdxConstant(0, DL)); 11960 return Val; 11961 } 11962 } 11963 return SDValue(); 11964 } 11965 11966 SDValue 11967 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 11968 SelectionDAG &DAG, 11969 SmallVectorImpl<SDNode *> &Created) const { 11970 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 11971 if (isIntDivCheap(N->getValueType(0), Attr)) 11972 return SDValue(N, 0); // Lower SDIV as SDIV 11973 11974 assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) && 11975 "Unexpected divisor!"); 11976 11977 // Conditional move is needed, so do the transformation iff Zbt is enabled. 11978 if (!Subtarget.hasStdExtZbt()) 11979 return SDValue(); 11980 11981 // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation. 11982 // Besides, more critical path instructions will be generated when dividing 11983 // by 2. So we keep using the original DAGs for these cases. 11984 unsigned Lg2 = Divisor.countTrailingZeros(); 11985 if (Lg2 == 1 || Lg2 >= 12) 11986 return SDValue(); 11987 11988 // fold (sdiv X, pow2) 11989 EVT VT = N->getValueType(0); 11990 if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64)) 11991 return SDValue(); 11992 11993 SDLoc DL(N); 11994 SDValue N0 = N->getOperand(0); 11995 SDValue Zero = DAG.getConstant(0, DL, VT); 11996 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); 11997 11998 // Add (N0 < 0) ? Pow2 - 1 : 0; 11999 SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT); 12000 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 12001 SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 12002 12003 Created.push_back(Cmp.getNode()); 12004 Created.push_back(Add.getNode()); 12005 Created.push_back(Sel.getNode()); 12006 12007 // Divide by pow2. 12008 SDValue SRA = 12009 DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT)); 12010 12011 // If we're dividing by a positive value, we're done. Otherwise, we must 12012 // negate the result. 12013 if (Divisor.isNonNegative()) 12014 return SRA; 12015 12016 Created.push_back(SRA.getNode()); 12017 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 12018 } 12019 12020 #define GET_REGISTER_MATCHER 12021 #include "RISCVGenAsmMatcher.inc" 12022 12023 Register 12024 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 12025 const MachineFunction &MF) const { 12026 Register Reg = MatchRegisterAltName(RegName); 12027 if (Reg == RISCV::NoRegister) 12028 Reg = MatchRegisterName(RegName); 12029 if (Reg == RISCV::NoRegister) 12030 report_fatal_error( 12031 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 12032 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 12033 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 12034 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 12035 StringRef(RegName) + "\".")); 12036 return Reg; 12037 } 12038 12039 namespace llvm { 12040 namespace RISCVVIntrinsicsTable { 12041 12042 #define GET_RISCVVIntrinsicsTable_IMPL 12043 #include "RISCVGenSearchableTables.inc" 12044 12045 } // namespace RISCVVIntrinsicsTable 12046 12047 } // namespace llvm 12048