1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "RISCV.h" 16 #include "RISCVMachineFunctionInfo.h" 17 #include "RISCVRegisterInfo.h" 18 #include "RISCVSubtarget.h" 19 #include "RISCVTargetMachine.h" 20 #include "Utils/RISCVMatInt.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IntrinsicsRISCV.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/raw_ostream.h" 37 38 using namespace llvm; 39 40 #define DEBUG_TYPE "riscv-lower" 41 42 STATISTIC(NumTailCalls, "Number of tail calls"); 43 44 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 45 const RISCVSubtarget &STI) 46 : TargetLowering(TM), Subtarget(STI) { 47 48 if (Subtarget.isRV32E()) 49 report_fatal_error("Codegen not yet implemented for RV32E"); 50 51 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 52 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 53 54 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 55 !Subtarget.hasStdExtF()) { 56 errs() << "Hard-float 'f' ABI can't be used for a target that " 57 "doesn't support the F instruction set extension (ignoring " 58 "target-abi)\n"; 59 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 60 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 61 !Subtarget.hasStdExtD()) { 62 errs() << "Hard-float 'd' ABI can't be used for a target that " 63 "doesn't support the D instruction set extension (ignoring " 64 "target-abi)\n"; 65 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 66 } 67 68 switch (ABI) { 69 default: 70 report_fatal_error("Don't know how to lower this ABI"); 71 case RISCVABI::ABI_ILP32: 72 case RISCVABI::ABI_ILP32F: 73 case RISCVABI::ABI_ILP32D: 74 case RISCVABI::ABI_LP64: 75 case RISCVABI::ABI_LP64F: 76 case RISCVABI::ABI_LP64D: 77 break; 78 } 79 80 MVT XLenVT = Subtarget.getXLenVT(); 81 82 // Set up the register classes. 83 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 84 85 if (Subtarget.hasStdExtZfh()) 86 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 87 if (Subtarget.hasStdExtF()) 88 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 89 if (Subtarget.hasStdExtD()) 90 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 91 92 if (Subtarget.hasStdExtV()) { 93 addRegisterClass(RISCVVMVTs::vbool64_t, &RISCV::VRRegClass); 94 addRegisterClass(RISCVVMVTs::vbool32_t, &RISCV::VRRegClass); 95 addRegisterClass(RISCVVMVTs::vbool16_t, &RISCV::VRRegClass); 96 addRegisterClass(RISCVVMVTs::vbool8_t, &RISCV::VRRegClass); 97 addRegisterClass(RISCVVMVTs::vbool4_t, &RISCV::VRRegClass); 98 addRegisterClass(RISCVVMVTs::vbool2_t, &RISCV::VRRegClass); 99 addRegisterClass(RISCVVMVTs::vbool1_t, &RISCV::VRRegClass); 100 101 addRegisterClass(RISCVVMVTs::vint8mf8_t, &RISCV::VRRegClass); 102 addRegisterClass(RISCVVMVTs::vint8mf4_t, &RISCV::VRRegClass); 103 addRegisterClass(RISCVVMVTs::vint8mf2_t, &RISCV::VRRegClass); 104 addRegisterClass(RISCVVMVTs::vint8m1_t, &RISCV::VRRegClass); 105 addRegisterClass(RISCVVMVTs::vint8m2_t, &RISCV::VRM2RegClass); 106 addRegisterClass(RISCVVMVTs::vint8m4_t, &RISCV::VRM4RegClass); 107 addRegisterClass(RISCVVMVTs::vint8m8_t, &RISCV::VRM8RegClass); 108 109 addRegisterClass(RISCVVMVTs::vint16mf4_t, &RISCV::VRRegClass); 110 addRegisterClass(RISCVVMVTs::vint16mf2_t, &RISCV::VRRegClass); 111 addRegisterClass(RISCVVMVTs::vint16m1_t, &RISCV::VRRegClass); 112 addRegisterClass(RISCVVMVTs::vint16m2_t, &RISCV::VRM2RegClass); 113 addRegisterClass(RISCVVMVTs::vint16m4_t, &RISCV::VRM4RegClass); 114 addRegisterClass(RISCVVMVTs::vint16m8_t, &RISCV::VRM8RegClass); 115 116 addRegisterClass(RISCVVMVTs::vint32mf2_t, &RISCV::VRRegClass); 117 addRegisterClass(RISCVVMVTs::vint32m1_t, &RISCV::VRRegClass); 118 addRegisterClass(RISCVVMVTs::vint32m2_t, &RISCV::VRM2RegClass); 119 addRegisterClass(RISCVVMVTs::vint32m4_t, &RISCV::VRM4RegClass); 120 addRegisterClass(RISCVVMVTs::vint32m8_t, &RISCV::VRM8RegClass); 121 122 addRegisterClass(RISCVVMVTs::vint64m1_t, &RISCV::VRRegClass); 123 addRegisterClass(RISCVVMVTs::vint64m2_t, &RISCV::VRM2RegClass); 124 addRegisterClass(RISCVVMVTs::vint64m4_t, &RISCV::VRM4RegClass); 125 addRegisterClass(RISCVVMVTs::vint64m8_t, &RISCV::VRM8RegClass); 126 127 addRegisterClass(RISCVVMVTs::vfloat16mf4_t, &RISCV::VRRegClass); 128 addRegisterClass(RISCVVMVTs::vfloat16mf2_t, &RISCV::VRRegClass); 129 addRegisterClass(RISCVVMVTs::vfloat16m1_t, &RISCV::VRRegClass); 130 addRegisterClass(RISCVVMVTs::vfloat16m2_t, &RISCV::VRM2RegClass); 131 addRegisterClass(RISCVVMVTs::vfloat16m4_t, &RISCV::VRM4RegClass); 132 addRegisterClass(RISCVVMVTs::vfloat16m8_t, &RISCV::VRM8RegClass); 133 134 addRegisterClass(RISCVVMVTs::vfloat32mf2_t, &RISCV::VRRegClass); 135 addRegisterClass(RISCVVMVTs::vfloat32m1_t, &RISCV::VRRegClass); 136 addRegisterClass(RISCVVMVTs::vfloat32m2_t, &RISCV::VRM2RegClass); 137 addRegisterClass(RISCVVMVTs::vfloat32m4_t, &RISCV::VRM4RegClass); 138 addRegisterClass(RISCVVMVTs::vfloat32m8_t, &RISCV::VRM8RegClass); 139 140 addRegisterClass(RISCVVMVTs::vfloat64m1_t, &RISCV::VRRegClass); 141 addRegisterClass(RISCVVMVTs::vfloat64m2_t, &RISCV::VRM2RegClass); 142 addRegisterClass(RISCVVMVTs::vfloat64m4_t, &RISCV::VRM4RegClass); 143 addRegisterClass(RISCVVMVTs::vfloat64m8_t, &RISCV::VRM8RegClass); 144 } 145 146 // Compute derived properties from the register classes. 147 computeRegisterProperties(STI.getRegisterInfo()); 148 149 setStackPointerRegisterToSaveRestore(RISCV::X2); 150 151 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 152 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 153 154 // TODO: add all necessary setOperationAction calls. 155 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 156 157 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 158 setOperationAction(ISD::BR_CC, XLenVT, Expand); 159 setOperationAction(ISD::SELECT, XLenVT, Custom); 160 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 161 162 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 163 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 164 165 setOperationAction(ISD::VASTART, MVT::Other, Custom); 166 setOperationAction(ISD::VAARG, MVT::Other, Expand); 167 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 168 setOperationAction(ISD::VAEND, MVT::Other, Expand); 169 170 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 171 if (!Subtarget.hasStdExtZbb()) { 172 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 173 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 174 } 175 176 if (Subtarget.is64Bit()) { 177 setOperationAction(ISD::ADD, MVT::i32, Custom); 178 setOperationAction(ISD::SUB, MVT::i32, Custom); 179 setOperationAction(ISD::SHL, MVT::i32, Custom); 180 setOperationAction(ISD::SRA, MVT::i32, Custom); 181 setOperationAction(ISD::SRL, MVT::i32, Custom); 182 } 183 184 if (!Subtarget.hasStdExtM()) { 185 setOperationAction(ISD::MUL, XLenVT, Expand); 186 setOperationAction(ISD::MULHS, XLenVT, Expand); 187 setOperationAction(ISD::MULHU, XLenVT, Expand); 188 setOperationAction(ISD::SDIV, XLenVT, Expand); 189 setOperationAction(ISD::UDIV, XLenVT, Expand); 190 setOperationAction(ISD::SREM, XLenVT, Expand); 191 setOperationAction(ISD::UREM, XLenVT, Expand); 192 } 193 194 if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) { 195 setOperationAction(ISD::MUL, MVT::i32, Custom); 196 setOperationAction(ISD::SDIV, MVT::i32, Custom); 197 setOperationAction(ISD::UDIV, MVT::i32, Custom); 198 setOperationAction(ISD::UREM, MVT::i32, Custom); 199 } 200 201 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 202 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 203 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 204 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 205 206 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 207 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 208 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 209 210 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 211 if (Subtarget.is64Bit()) { 212 setOperationAction(ISD::ROTL, MVT::i32, Custom); 213 setOperationAction(ISD::ROTR, MVT::i32, Custom); 214 } 215 } else { 216 setOperationAction(ISD::ROTL, XLenVT, Expand); 217 setOperationAction(ISD::ROTR, XLenVT, Expand); 218 } 219 220 if (Subtarget.hasStdExtZbp()) { 221 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 222 setOperationAction(ISD::BSWAP, XLenVT, Custom); 223 224 if (Subtarget.is64Bit()) { 225 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 226 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 227 } 228 } else { 229 setOperationAction(ISD::BSWAP, XLenVT, Expand); 230 } 231 232 if (Subtarget.hasStdExtZbb()) { 233 setOperationAction(ISD::SMIN, XLenVT, Legal); 234 setOperationAction(ISD::SMAX, XLenVT, Legal); 235 setOperationAction(ISD::UMIN, XLenVT, Legal); 236 setOperationAction(ISD::UMAX, XLenVT, Legal); 237 } else { 238 setOperationAction(ISD::CTTZ, XLenVT, Expand); 239 setOperationAction(ISD::CTLZ, XLenVT, Expand); 240 setOperationAction(ISD::CTPOP, XLenVT, Expand); 241 } 242 243 if (Subtarget.hasStdExtZbt()) { 244 setOperationAction(ISD::FSHL, XLenVT, Legal); 245 setOperationAction(ISD::FSHR, XLenVT, Legal); 246 247 if (Subtarget.is64Bit()) { 248 setOperationAction(ISD::FSHL, MVT::i32, Custom); 249 setOperationAction(ISD::FSHR, MVT::i32, Custom); 250 } 251 } 252 253 ISD::CondCode FPCCToExpand[] = { 254 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 255 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 256 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 257 258 ISD::NodeType FPOpToExpand[] = { 259 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 260 ISD::FP_TO_FP16}; 261 262 if (Subtarget.hasStdExtZfh()) 263 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 264 265 if (Subtarget.hasStdExtZfh()) { 266 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 267 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 268 for (auto CC : FPCCToExpand) 269 setCondCodeAction(CC, MVT::f16, Expand); 270 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 271 setOperationAction(ISD::SELECT, MVT::f16, Custom); 272 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 273 for (auto Op : FPOpToExpand) 274 setOperationAction(Op, MVT::f16, Expand); 275 } 276 277 if (Subtarget.hasStdExtF()) { 278 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 279 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 280 for (auto CC : FPCCToExpand) 281 setCondCodeAction(CC, MVT::f32, Expand); 282 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 283 setOperationAction(ISD::SELECT, MVT::f32, Custom); 284 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 285 for (auto Op : FPOpToExpand) 286 setOperationAction(Op, MVT::f32, Expand); 287 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 288 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 289 } 290 291 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 292 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 293 294 if (Subtarget.hasStdExtD()) { 295 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 296 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 297 for (auto CC : FPCCToExpand) 298 setCondCodeAction(CC, MVT::f64, Expand); 299 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 300 setOperationAction(ISD::SELECT, MVT::f64, Custom); 301 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 302 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 303 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 304 for (auto Op : FPOpToExpand) 305 setOperationAction(Op, MVT::f64, Expand); 306 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 307 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 308 } 309 310 if (Subtarget.is64Bit()) { 311 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 312 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 313 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 314 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 315 } 316 317 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 318 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 319 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 320 321 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 322 323 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 324 // Unfortunately this can't be determined just from the ISA naming string. 325 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 326 Subtarget.is64Bit() ? Legal : Custom); 327 328 setOperationAction(ISD::TRAP, MVT::Other, Legal); 329 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 330 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 331 332 if (Subtarget.hasStdExtA()) { 333 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 334 setMinCmpXchgSizeInBits(32); 335 } else { 336 setMaxAtomicSizeInBitsSupported(0); 337 } 338 339 setBooleanContents(ZeroOrOneBooleanContent); 340 341 if (Subtarget.hasStdExtV()) { 342 setBooleanVectorContents(ZeroOrOneBooleanContent); 343 344 // RVV intrinsics may have illegal operands. 345 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 346 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 347 if (Subtarget.is64Bit()) 348 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 349 } 350 351 // Function alignments. 352 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 353 setMinFunctionAlignment(FunctionAlignment); 354 setPrefFunctionAlignment(FunctionAlignment); 355 356 // Effectively disable jump table generation. 357 setMinimumJumpTableEntries(INT_MAX); 358 359 // Jumps are expensive, compared to logic 360 setJumpIsExpensive(); 361 362 // We can use any register for comparisons 363 setHasMultipleConditionRegisters(); 364 365 if (Subtarget.hasStdExtZbp()) { 366 setTargetDAGCombine(ISD::OR); 367 } 368 } 369 370 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, 371 EVT VT) const { 372 if (!VT.isVector()) 373 return getPointerTy(DL); 374 return VT.changeVectorElementTypeToInteger(); 375 } 376 377 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 378 const CallInst &I, 379 MachineFunction &MF, 380 unsigned Intrinsic) const { 381 switch (Intrinsic) { 382 default: 383 return false; 384 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 385 case Intrinsic::riscv_masked_atomicrmw_add_i32: 386 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 387 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 388 case Intrinsic::riscv_masked_atomicrmw_max_i32: 389 case Intrinsic::riscv_masked_atomicrmw_min_i32: 390 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 391 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 392 case Intrinsic::riscv_masked_cmpxchg_i32: 393 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 394 Info.opc = ISD::INTRINSIC_W_CHAIN; 395 Info.memVT = MVT::getVT(PtrTy->getElementType()); 396 Info.ptrVal = I.getArgOperand(0); 397 Info.offset = 0; 398 Info.align = Align(4); 399 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 400 MachineMemOperand::MOVolatile; 401 return true; 402 } 403 } 404 405 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 406 const AddrMode &AM, Type *Ty, 407 unsigned AS, 408 Instruction *I) const { 409 // No global is ever allowed as a base. 410 if (AM.BaseGV) 411 return false; 412 413 // Require a 12-bit signed offset. 414 if (!isInt<12>(AM.BaseOffs)) 415 return false; 416 417 switch (AM.Scale) { 418 case 0: // "r+i" or just "i", depending on HasBaseReg. 419 break; 420 case 1: 421 if (!AM.HasBaseReg) // allow "r+i". 422 break; 423 return false; // disallow "r+r" or "r+r+i". 424 default: 425 return false; 426 } 427 428 return true; 429 } 430 431 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 432 return isInt<12>(Imm); 433 } 434 435 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 436 return isInt<12>(Imm); 437 } 438 439 // On RV32, 64-bit integers are split into their high and low parts and held 440 // in two different registers, so the trunc is free since the low register can 441 // just be used. 442 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 443 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 444 return false; 445 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 446 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 447 return (SrcBits == 64 && DestBits == 32); 448 } 449 450 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 451 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 452 !SrcVT.isInteger() || !DstVT.isInteger()) 453 return false; 454 unsigned SrcBits = SrcVT.getSizeInBits(); 455 unsigned DestBits = DstVT.getSizeInBits(); 456 return (SrcBits == 64 && DestBits == 32); 457 } 458 459 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 460 // Zexts are free if they can be combined with a load. 461 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 462 EVT MemVT = LD->getMemoryVT(); 463 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 464 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 465 (LD->getExtensionType() == ISD::NON_EXTLOAD || 466 LD->getExtensionType() == ISD::ZEXTLOAD)) 467 return true; 468 } 469 470 return TargetLowering::isZExtFree(Val, VT2); 471 } 472 473 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 474 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 475 } 476 477 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 478 return Subtarget.hasStdExtZbb(); 479 } 480 481 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 482 return Subtarget.hasStdExtZbb(); 483 } 484 485 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 486 bool ForCodeSize) const { 487 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 488 return false; 489 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 490 return false; 491 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 492 return false; 493 if (Imm.isNegZero()) 494 return false; 495 return Imm.isZero(); 496 } 497 498 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 499 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 500 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 501 (VT == MVT::f64 && Subtarget.hasStdExtD()); 502 } 503 504 // Changes the condition code and swaps operands if necessary, so the SetCC 505 // operation matches one of the comparisons supported directly in the RISC-V 506 // ISA. 507 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { 508 switch (CC) { 509 default: 510 break; 511 case ISD::SETGT: 512 case ISD::SETLE: 513 case ISD::SETUGT: 514 case ISD::SETULE: 515 CC = ISD::getSetCCSwappedOperands(CC); 516 std::swap(LHS, RHS); 517 break; 518 } 519 } 520 521 // Return the RISC-V branch opcode that matches the given DAG integer 522 // condition code. The CondCode must be one of those supported by the RISC-V 523 // ISA (see normaliseSetCC). 524 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 525 switch (CC) { 526 default: 527 llvm_unreachable("Unsupported CondCode"); 528 case ISD::SETEQ: 529 return RISCV::BEQ; 530 case ISD::SETNE: 531 return RISCV::BNE; 532 case ISD::SETLT: 533 return RISCV::BLT; 534 case ISD::SETGE: 535 return RISCV::BGE; 536 case ISD::SETULT: 537 return RISCV::BLTU; 538 case ISD::SETUGE: 539 return RISCV::BGEU; 540 } 541 } 542 543 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 544 SelectionDAG &DAG) const { 545 switch (Op.getOpcode()) { 546 default: 547 report_fatal_error("unimplemented operand"); 548 case ISD::GlobalAddress: 549 return lowerGlobalAddress(Op, DAG); 550 case ISD::BlockAddress: 551 return lowerBlockAddress(Op, DAG); 552 case ISD::ConstantPool: 553 return lowerConstantPool(Op, DAG); 554 case ISD::GlobalTLSAddress: 555 return lowerGlobalTLSAddress(Op, DAG); 556 case ISD::SELECT: 557 return lowerSELECT(Op, DAG); 558 case ISD::VASTART: 559 return lowerVASTART(Op, DAG); 560 case ISD::FRAMEADDR: 561 return lowerFRAMEADDR(Op, DAG); 562 case ISD::RETURNADDR: 563 return lowerRETURNADDR(Op, DAG); 564 case ISD::SHL_PARTS: 565 return lowerShiftLeftParts(Op, DAG); 566 case ISD::SRA_PARTS: 567 return lowerShiftRightParts(Op, DAG, true); 568 case ISD::SRL_PARTS: 569 return lowerShiftRightParts(Op, DAG, false); 570 case ISD::BITCAST: { 571 assert(((Subtarget.is64Bit() && Subtarget.hasStdExtF()) || 572 Subtarget.hasStdExtZfh()) && 573 "Unexpected custom legalisation"); 574 SDLoc DL(Op); 575 SDValue Op0 = Op.getOperand(0); 576 if (Op.getValueType() == MVT::f16 && Subtarget.hasStdExtZfh()) { 577 if (Op0.getValueType() != MVT::i16) 578 return SDValue(); 579 SDValue NewOp0 = 580 DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), Op0); 581 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 582 return FPConv; 583 } else if (Op.getValueType() == MVT::f32 && Subtarget.is64Bit() && 584 Subtarget.hasStdExtF()) { 585 if (Op0.getValueType() != MVT::i32) 586 return SDValue(); 587 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 588 SDValue FPConv = 589 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 590 return FPConv; 591 } 592 return SDValue(); 593 } 594 case ISD::INTRINSIC_WO_CHAIN: 595 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 596 case ISD::BSWAP: 597 case ISD::BITREVERSE: { 598 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 599 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 600 MVT VT = Op.getSimpleValueType(); 601 SDLoc DL(Op); 602 // Start with the maximum immediate value which is the bitwidth - 1. 603 unsigned Imm = VT.getSizeInBits() - 1; 604 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 605 if (Op.getOpcode() == ISD::BSWAP) 606 Imm &= ~0x7U; 607 return DAG.getNode(RISCVISD::GREVI, DL, VT, Op.getOperand(0), 608 DAG.getTargetConstant(Imm, DL, Subtarget.getXLenVT())); 609 } 610 } 611 } 612 613 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 614 SelectionDAG &DAG, unsigned Flags) { 615 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 616 } 617 618 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 619 SelectionDAG &DAG, unsigned Flags) { 620 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 621 Flags); 622 } 623 624 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 625 SelectionDAG &DAG, unsigned Flags) { 626 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 627 N->getOffset(), Flags); 628 } 629 630 template <class NodeTy> 631 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 632 bool IsLocal) const { 633 SDLoc DL(N); 634 EVT Ty = getPointerTy(DAG.getDataLayout()); 635 636 if (isPositionIndependent()) { 637 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 638 if (IsLocal) 639 // Use PC-relative addressing to access the symbol. This generates the 640 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 641 // %pcrel_lo(auipc)). 642 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 643 644 // Use PC-relative addressing to access the GOT for this symbol, then load 645 // the address from the GOT. This generates the pattern (PseudoLA sym), 646 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 647 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 648 } 649 650 switch (getTargetMachine().getCodeModel()) { 651 default: 652 report_fatal_error("Unsupported code model for lowering"); 653 case CodeModel::Small: { 654 // Generate a sequence for accessing addresses within the first 2 GiB of 655 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 656 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 657 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 658 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 659 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 660 } 661 case CodeModel::Medium: { 662 // Generate a sequence for accessing addresses within any 2GiB range within 663 // the address space. This generates the pattern (PseudoLLA sym), which 664 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 665 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 666 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 667 } 668 } 669 } 670 671 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 672 SelectionDAG &DAG) const { 673 SDLoc DL(Op); 674 EVT Ty = Op.getValueType(); 675 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 676 int64_t Offset = N->getOffset(); 677 MVT XLenVT = Subtarget.getXLenVT(); 678 679 const GlobalValue *GV = N->getGlobal(); 680 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 681 SDValue Addr = getAddr(N, DAG, IsLocal); 682 683 // In order to maximise the opportunity for common subexpression elimination, 684 // emit a separate ADD node for the global address offset instead of folding 685 // it in the global address node. Later peephole optimisations may choose to 686 // fold it back in when profitable. 687 if (Offset != 0) 688 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 689 DAG.getConstant(Offset, DL, XLenVT)); 690 return Addr; 691 } 692 693 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 694 SelectionDAG &DAG) const { 695 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 696 697 return getAddr(N, DAG); 698 } 699 700 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 701 SelectionDAG &DAG) const { 702 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 703 704 return getAddr(N, DAG); 705 } 706 707 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 708 SelectionDAG &DAG, 709 bool UseGOT) const { 710 SDLoc DL(N); 711 EVT Ty = getPointerTy(DAG.getDataLayout()); 712 const GlobalValue *GV = N->getGlobal(); 713 MVT XLenVT = Subtarget.getXLenVT(); 714 715 if (UseGOT) { 716 // Use PC-relative addressing to access the GOT for this TLS symbol, then 717 // load the address from the GOT and add the thread pointer. This generates 718 // the pattern (PseudoLA_TLS_IE sym), which expands to 719 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 720 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 721 SDValue Load = 722 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 723 724 // Add the thread pointer. 725 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 726 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 727 } 728 729 // Generate a sequence for accessing the address relative to the thread 730 // pointer, with the appropriate adjustment for the thread pointer offset. 731 // This generates the pattern 732 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 733 SDValue AddrHi = 734 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 735 SDValue AddrAdd = 736 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 737 SDValue AddrLo = 738 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 739 740 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 741 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 742 SDValue MNAdd = SDValue( 743 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 744 0); 745 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 746 } 747 748 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 749 SelectionDAG &DAG) const { 750 SDLoc DL(N); 751 EVT Ty = getPointerTy(DAG.getDataLayout()); 752 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 753 const GlobalValue *GV = N->getGlobal(); 754 755 // Use a PC-relative addressing mode to access the global dynamic GOT address. 756 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 757 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 758 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 759 SDValue Load = 760 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 761 762 // Prepare argument list to generate call. 763 ArgListTy Args; 764 ArgListEntry Entry; 765 Entry.Node = Load; 766 Entry.Ty = CallTy; 767 Args.push_back(Entry); 768 769 // Setup call to __tls_get_addr. 770 TargetLowering::CallLoweringInfo CLI(DAG); 771 CLI.setDebugLoc(DL) 772 .setChain(DAG.getEntryNode()) 773 .setLibCallee(CallingConv::C, CallTy, 774 DAG.getExternalSymbol("__tls_get_addr", Ty), 775 std::move(Args)); 776 777 return LowerCallTo(CLI).first; 778 } 779 780 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 781 SelectionDAG &DAG) const { 782 SDLoc DL(Op); 783 EVT Ty = Op.getValueType(); 784 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 785 int64_t Offset = N->getOffset(); 786 MVT XLenVT = Subtarget.getXLenVT(); 787 788 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 789 790 if (DAG.getMachineFunction().getFunction().getCallingConv() == 791 CallingConv::GHC) 792 report_fatal_error("In GHC calling convention TLS is not supported"); 793 794 SDValue Addr; 795 switch (Model) { 796 case TLSModel::LocalExec: 797 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 798 break; 799 case TLSModel::InitialExec: 800 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 801 break; 802 case TLSModel::LocalDynamic: 803 case TLSModel::GeneralDynamic: 804 Addr = getDynamicTLSAddr(N, DAG); 805 break; 806 } 807 808 // In order to maximise the opportunity for common subexpression elimination, 809 // emit a separate ADD node for the global address offset instead of folding 810 // it in the global address node. Later peephole optimisations may choose to 811 // fold it back in when profitable. 812 if (Offset != 0) 813 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 814 DAG.getConstant(Offset, DL, XLenVT)); 815 return Addr; 816 } 817 818 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 819 SDValue CondV = Op.getOperand(0); 820 SDValue TrueV = Op.getOperand(1); 821 SDValue FalseV = Op.getOperand(2); 822 SDLoc DL(Op); 823 MVT XLenVT = Subtarget.getXLenVT(); 824 825 // If the result type is XLenVT and CondV is the output of a SETCC node 826 // which also operated on XLenVT inputs, then merge the SETCC node into the 827 // lowered RISCVISD::SELECT_CC to take advantage of the integer 828 // compare+branch instructions. i.e.: 829 // (select (setcc lhs, rhs, cc), truev, falsev) 830 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 831 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 832 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 833 SDValue LHS = CondV.getOperand(0); 834 SDValue RHS = CondV.getOperand(1); 835 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 836 ISD::CondCode CCVal = CC->get(); 837 838 normaliseSetCC(LHS, RHS, CCVal); 839 840 SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); 841 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 842 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 843 } 844 845 // Otherwise: 846 // (select condv, truev, falsev) 847 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 848 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 849 SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); 850 851 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 852 853 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 854 } 855 856 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 857 MachineFunction &MF = DAG.getMachineFunction(); 858 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 859 860 SDLoc DL(Op); 861 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 862 getPointerTy(MF.getDataLayout())); 863 864 // vastart just stores the address of the VarArgsFrameIndex slot into the 865 // memory location argument. 866 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 867 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 868 MachinePointerInfo(SV)); 869 } 870 871 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 872 SelectionDAG &DAG) const { 873 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 874 MachineFunction &MF = DAG.getMachineFunction(); 875 MachineFrameInfo &MFI = MF.getFrameInfo(); 876 MFI.setFrameAddressIsTaken(true); 877 Register FrameReg = RI.getFrameRegister(MF); 878 int XLenInBytes = Subtarget.getXLen() / 8; 879 880 EVT VT = Op.getValueType(); 881 SDLoc DL(Op); 882 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 883 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 884 while (Depth--) { 885 int Offset = -(XLenInBytes * 2); 886 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 887 DAG.getIntPtrConstant(Offset, DL)); 888 FrameAddr = 889 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 890 } 891 return FrameAddr; 892 } 893 894 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 895 SelectionDAG &DAG) const { 896 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 897 MachineFunction &MF = DAG.getMachineFunction(); 898 MachineFrameInfo &MFI = MF.getFrameInfo(); 899 MFI.setReturnAddressIsTaken(true); 900 MVT XLenVT = Subtarget.getXLenVT(); 901 int XLenInBytes = Subtarget.getXLen() / 8; 902 903 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 904 return SDValue(); 905 906 EVT VT = Op.getValueType(); 907 SDLoc DL(Op); 908 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 909 if (Depth) { 910 int Off = -XLenInBytes; 911 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 912 SDValue Offset = DAG.getConstant(Off, DL, VT); 913 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 914 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 915 MachinePointerInfo()); 916 } 917 918 // Return the value of the return address register, marking it an implicit 919 // live-in. 920 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 921 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 922 } 923 924 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 925 SelectionDAG &DAG) const { 926 SDLoc DL(Op); 927 SDValue Lo = Op.getOperand(0); 928 SDValue Hi = Op.getOperand(1); 929 SDValue Shamt = Op.getOperand(2); 930 EVT VT = Lo.getValueType(); 931 932 // if Shamt-XLEN < 0: // Shamt < XLEN 933 // Lo = Lo << Shamt 934 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 935 // else: 936 // Lo = 0 937 // Hi = Lo << (Shamt-XLEN) 938 939 SDValue Zero = DAG.getConstant(0, DL, VT); 940 SDValue One = DAG.getConstant(1, DL, VT); 941 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 942 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 943 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 944 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 945 946 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 947 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 948 SDValue ShiftRightLo = 949 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 950 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 951 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 952 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 953 954 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 955 956 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 957 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 958 959 SDValue Parts[2] = {Lo, Hi}; 960 return DAG.getMergeValues(Parts, DL); 961 } 962 963 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 964 bool IsSRA) const { 965 SDLoc DL(Op); 966 SDValue Lo = Op.getOperand(0); 967 SDValue Hi = Op.getOperand(1); 968 SDValue Shamt = Op.getOperand(2); 969 EVT VT = Lo.getValueType(); 970 971 // SRA expansion: 972 // if Shamt-XLEN < 0: // Shamt < XLEN 973 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 974 // Hi = Hi >>s Shamt 975 // else: 976 // Lo = Hi >>s (Shamt-XLEN); 977 // Hi = Hi >>s (XLEN-1) 978 // 979 // SRL expansion: 980 // if Shamt-XLEN < 0: // Shamt < XLEN 981 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 982 // Hi = Hi >>u Shamt 983 // else: 984 // Lo = Hi >>u (Shamt-XLEN); 985 // Hi = 0; 986 987 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 988 989 SDValue Zero = DAG.getConstant(0, DL, VT); 990 SDValue One = DAG.getConstant(1, DL, VT); 991 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 992 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 993 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 994 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 995 996 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 997 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 998 SDValue ShiftLeftHi = 999 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 1000 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 1001 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 1002 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 1003 SDValue HiFalse = 1004 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 1005 1006 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 1007 1008 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 1009 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 1010 1011 SDValue Parts[2] = {Lo, Hi}; 1012 return DAG.getMergeValues(Parts, DL); 1013 } 1014 1015 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 1016 SelectionDAG &DAG) const { 1017 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1018 SDLoc DL(Op); 1019 1020 if (Subtarget.hasStdExtV()) { 1021 // Some RVV intrinsics may claim that they want an integer operand to be 1022 // extended. 1023 if (const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1024 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo)) { 1025 if (II->ExtendedOperand) { 1026 assert(II->ExtendedOperand < Op.getNumOperands()); 1027 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 1028 SDValue &ScalarOp = Operands[II->ExtendedOperand]; 1029 if (ScalarOp.getValueType() == MVT::i8 || 1030 ScalarOp.getValueType() == MVT::i16 || 1031 ScalarOp.getValueType() == MVT::i32) { 1032 ScalarOp = 1033 DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), ScalarOp); 1034 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(), 1035 Operands); 1036 } 1037 } 1038 } 1039 } 1040 1041 switch (IntNo) { 1042 default: 1043 return SDValue(); // Don't custom lower most intrinsics. 1044 case Intrinsic::thread_pointer: { 1045 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1046 return DAG.getRegister(RISCV::X4, PtrVT); 1047 } 1048 } 1049 } 1050 1051 // Returns the opcode of the target-specific SDNode that implements the 32-bit 1052 // form of the given Opcode. 1053 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 1054 switch (Opcode) { 1055 default: 1056 llvm_unreachable("Unexpected opcode"); 1057 case ISD::SHL: 1058 return RISCVISD::SLLW; 1059 case ISD::SRA: 1060 return RISCVISD::SRAW; 1061 case ISD::SRL: 1062 return RISCVISD::SRLW; 1063 case ISD::SDIV: 1064 return RISCVISD::DIVW; 1065 case ISD::UDIV: 1066 return RISCVISD::DIVUW; 1067 case ISD::UREM: 1068 return RISCVISD::REMUW; 1069 case ISD::ROTL: 1070 return RISCVISD::ROLW; 1071 case ISD::ROTR: 1072 return RISCVISD::RORW; 1073 case RISCVISD::GREVI: 1074 return RISCVISD::GREVIW; 1075 case RISCVISD::GORCI: 1076 return RISCVISD::GORCIW; 1077 } 1078 } 1079 1080 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 1081 // Because i32 isn't a legal type for RV64, these operations would otherwise 1082 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 1083 // later one because the fact the operation was originally of type i32 is 1084 // lost. 1085 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG) { 1086 SDLoc DL(N); 1087 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 1088 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1089 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 1090 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 1091 // ReplaceNodeResults requires we maintain the same type for the return value. 1092 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 1093 } 1094 1095 // Converts the given 32-bit operation to a i64 operation with signed extension 1096 // semantic to reduce the signed extension instructions. 1097 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 1098 SDLoc DL(N); 1099 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1100 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 1101 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 1102 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 1103 DAG.getValueType(MVT::i32)); 1104 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 1105 } 1106 1107 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 1108 SmallVectorImpl<SDValue> &Results, 1109 SelectionDAG &DAG) const { 1110 SDLoc DL(N); 1111 switch (N->getOpcode()) { 1112 default: 1113 llvm_unreachable("Don't know how to custom type legalize this operation!"); 1114 case ISD::STRICT_FP_TO_SINT: 1115 case ISD::STRICT_FP_TO_UINT: 1116 case ISD::FP_TO_SINT: 1117 case ISD::FP_TO_UINT: { 1118 bool IsStrict = N->isStrictFPOpcode(); 1119 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1120 "Unexpected custom legalisation"); 1121 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 1122 // If the FP type needs to be softened, emit a library call using the 'si' 1123 // version. If we left it to default legalization we'd end up with 'di'. If 1124 // the FP type doesn't need to be softened just let generic type 1125 // legalization promote the result type. 1126 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 1127 TargetLowering::TypeSoftenFloat) 1128 return; 1129 RTLIB::Libcall LC; 1130 if (N->getOpcode() == ISD::FP_TO_SINT || 1131 N->getOpcode() == ISD::STRICT_FP_TO_SINT) 1132 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 1133 else 1134 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 1135 MakeLibCallOptions CallOptions; 1136 EVT OpVT = Op0.getValueType(); 1137 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 1138 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 1139 SDValue Result; 1140 std::tie(Result, Chain) = 1141 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 1142 Results.push_back(Result); 1143 if (IsStrict) 1144 Results.push_back(Chain); 1145 break; 1146 } 1147 case ISD::READCYCLECOUNTER: { 1148 assert(!Subtarget.is64Bit() && 1149 "READCYCLECOUNTER only has custom type legalization on riscv32"); 1150 1151 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 1152 SDValue RCW = 1153 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 1154 1155 Results.push_back( 1156 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 1157 Results.push_back(RCW.getValue(2)); 1158 break; 1159 } 1160 case ISD::ADD: 1161 case ISD::SUB: 1162 case ISD::MUL: 1163 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1164 "Unexpected custom legalisation"); 1165 if (N->getOperand(1).getOpcode() == ISD::Constant) 1166 return; 1167 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 1168 break; 1169 case ISD::SHL: 1170 case ISD::SRA: 1171 case ISD::SRL: 1172 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1173 "Unexpected custom legalisation"); 1174 if (N->getOperand(1).getOpcode() == ISD::Constant) 1175 return; 1176 Results.push_back(customLegalizeToWOp(N, DAG)); 1177 break; 1178 case ISD::ROTL: 1179 case ISD::ROTR: 1180 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1181 "Unexpected custom legalisation"); 1182 Results.push_back(customLegalizeToWOp(N, DAG)); 1183 break; 1184 case ISD::SDIV: 1185 case ISD::UDIV: 1186 case ISD::UREM: 1187 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1188 Subtarget.hasStdExtM() && "Unexpected custom legalisation"); 1189 if (N->getOperand(0).getOpcode() == ISD::Constant || 1190 N->getOperand(1).getOpcode() == ISD::Constant) 1191 return; 1192 Results.push_back(customLegalizeToWOp(N, DAG)); 1193 break; 1194 case ISD::BITCAST: { 1195 assert(((N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1196 Subtarget.hasStdExtF()) || 1197 (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh())) && 1198 "Unexpected custom legalisation"); 1199 SDValue Op0 = N->getOperand(0); 1200 if (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh()) { 1201 if (Op0.getValueType() != MVT::f16) 1202 return; 1203 SDValue FPConv = 1204 DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, Subtarget.getXLenVT(), Op0); 1205 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 1206 } else if (N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1207 Subtarget.hasStdExtF()) { 1208 if (Op0.getValueType() != MVT::f32) 1209 return; 1210 SDValue FPConv = 1211 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 1212 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 1213 } 1214 break; 1215 } 1216 case RISCVISD::GREVI: 1217 case RISCVISD::GORCI: { 1218 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1219 "Unexpected custom legalisation"); 1220 // This is similar to customLegalizeToWOp, except that we pass the second 1221 // operand (a TargetConstant) straight through: it is already of type 1222 // XLenVT. 1223 SDLoc DL(N); 1224 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 1225 SDValue NewOp0 = 1226 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1227 SDValue NewRes = 1228 DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, N->getOperand(1)); 1229 // ReplaceNodeResults requires we maintain the same type for the return 1230 // value. 1231 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 1232 break; 1233 } 1234 case ISD::BSWAP: 1235 case ISD::BITREVERSE: { 1236 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1237 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 1238 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 1239 N->getOperand(0)); 1240 unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24; 1241 SDValue GREVIW = DAG.getNode(RISCVISD::GREVIW, DL, MVT::i64, NewOp0, 1242 DAG.getTargetConstant(Imm, DL, 1243 Subtarget.getXLenVT())); 1244 // ReplaceNodeResults requires we maintain the same type for the return 1245 // value. 1246 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW)); 1247 break; 1248 } 1249 case ISD::FSHL: 1250 case ISD::FSHR: { 1251 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1252 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 1253 SDValue NewOp0 = 1254 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1255 SDValue NewOp1 = 1256 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 1257 SDValue NewOp2 = 1258 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 1259 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 1260 // Mask the shift amount to 5 bits. 1261 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 1262 DAG.getConstant(0x1f, DL, MVT::i64)); 1263 unsigned Opc = 1264 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 1265 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 1266 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 1267 break; 1268 } 1269 } 1270 } 1271 1272 // A structure to hold one of the bit-manipulation patterns below. Together, a 1273 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 1274 // (or (and (shl x, 1), 0xAAAAAAAA), 1275 // (and (srl x, 1), 0x55555555)) 1276 struct RISCVBitmanipPat { 1277 SDValue Op; 1278 unsigned ShAmt; 1279 bool IsSHL; 1280 1281 bool formsPairWith(const RISCVBitmanipPat &Other) const { 1282 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 1283 } 1284 }; 1285 1286 // Matches any of the following bit-manipulation patterns: 1287 // (and (shl x, 1), (0x55555555 << 1)) 1288 // (and (srl x, 1), 0x55555555) 1289 // (shl (and x, 0x55555555), 1) 1290 // (srl (and x, (0x55555555 << 1)), 1) 1291 // where the shift amount and mask may vary thus: 1292 // [1] = 0x55555555 / 0xAAAAAAAA 1293 // [2] = 0x33333333 / 0xCCCCCCCC 1294 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 1295 // [8] = 0x00FF00FF / 0xFF00FF00 1296 // [16] = 0x0000FFFF / 0xFFFFFFFF 1297 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 1298 static Optional<RISCVBitmanipPat> matchRISCVBitmanipPat(SDValue Op) { 1299 Optional<uint64_t> Mask; 1300 // Optionally consume a mask around the shift operation. 1301 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 1302 Mask = Op.getConstantOperandVal(1); 1303 Op = Op.getOperand(0); 1304 } 1305 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 1306 return None; 1307 bool IsSHL = Op.getOpcode() == ISD::SHL; 1308 1309 if (!isa<ConstantSDNode>(Op.getOperand(1))) 1310 return None; 1311 auto ShAmt = Op.getConstantOperandVal(1); 1312 1313 if (!isPowerOf2_64(ShAmt)) 1314 return None; 1315 1316 // These are the unshifted masks which we use to match bit-manipulation 1317 // patterns. They may be shifted left in certain circumstances. 1318 static const uint64_t BitmanipMasks[] = { 1319 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 1320 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL, 1321 }; 1322 1323 unsigned MaskIdx = Log2_64(ShAmt); 1324 if (MaskIdx >= array_lengthof(BitmanipMasks)) 1325 return None; 1326 1327 auto Src = Op.getOperand(0); 1328 1329 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 1330 auto ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 1331 1332 // The expected mask is shifted left when the AND is found around SHL 1333 // patterns. 1334 // ((x >> 1) & 0x55555555) 1335 // ((x << 1) & 0xAAAAAAAA) 1336 bool SHLExpMask = IsSHL; 1337 1338 if (!Mask) { 1339 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 1340 // the mask is all ones: consume that now. 1341 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 1342 Mask = Src.getConstantOperandVal(1); 1343 Src = Src.getOperand(0); 1344 // The expected mask is now in fact shifted left for SRL, so reverse the 1345 // decision. 1346 // ((x & 0xAAAAAAAA) >> 1) 1347 // ((x & 0x55555555) << 1) 1348 SHLExpMask = !SHLExpMask; 1349 } else { 1350 // Use a default shifted mask of all-ones if there's no AND, truncated 1351 // down to the expected width. This simplifies the logic later on. 1352 Mask = maskTrailingOnes<uint64_t>(Width); 1353 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 1354 } 1355 } 1356 1357 if (SHLExpMask) 1358 ExpMask <<= ShAmt; 1359 1360 if (Mask != ExpMask) 1361 return None; 1362 1363 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 1364 } 1365 1366 // Match the following pattern as a GREVI(W) operation 1367 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 1368 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 1369 const RISCVSubtarget &Subtarget) { 1370 EVT VT = Op.getValueType(); 1371 1372 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 1373 auto LHS = matchRISCVBitmanipPat(Op.getOperand(0)); 1374 auto RHS = matchRISCVBitmanipPat(Op.getOperand(1)); 1375 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 1376 SDLoc DL(Op); 1377 return DAG.getNode( 1378 RISCVISD::GREVI, DL, VT, LHS->Op, 1379 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 1380 } 1381 } 1382 return SDValue(); 1383 } 1384 1385 // Matches any the following pattern as a GORCI(W) operation 1386 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 1387 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 1388 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 1389 // Note that with the variant of 3., 1390 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 1391 // the inner pattern will first be matched as GREVI and then the outer 1392 // pattern will be matched to GORC via the first rule above. 1393 // 4. (or (rotl/rotr x, bitwidth/2), x) 1394 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 1395 const RISCVSubtarget &Subtarget) { 1396 EVT VT = Op.getValueType(); 1397 1398 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 1399 SDLoc DL(Op); 1400 SDValue Op0 = Op.getOperand(0); 1401 SDValue Op1 = Op.getOperand(1); 1402 1403 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 1404 if (Reverse.getOpcode() == RISCVISD::GREVI && Reverse.getOperand(0) == X && 1405 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 1406 return DAG.getNode(RISCVISD::GORCI, DL, VT, X, Reverse.getOperand(1)); 1407 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 1408 if ((Reverse.getOpcode() == ISD::ROTL || 1409 Reverse.getOpcode() == ISD::ROTR) && 1410 Reverse.getOperand(0) == X && 1411 isa<ConstantSDNode>(Reverse.getOperand(1))) { 1412 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 1413 if (RotAmt == (VT.getSizeInBits() / 2)) 1414 return DAG.getNode( 1415 RISCVISD::GORCI, DL, VT, X, 1416 DAG.getTargetConstant(RotAmt, DL, Subtarget.getXLenVT())); 1417 } 1418 return SDValue(); 1419 }; 1420 1421 // Check for either commutable permutation of (or (GREVI x, shamt), x) 1422 if (SDValue V = MatchOROfReverse(Op0, Op1)) 1423 return V; 1424 if (SDValue V = MatchOROfReverse(Op1, Op0)) 1425 return V; 1426 1427 // OR is commutable so canonicalize its OR operand to the left 1428 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 1429 std::swap(Op0, Op1); 1430 if (Op0.getOpcode() != ISD::OR) 1431 return SDValue(); 1432 SDValue OrOp0 = Op0.getOperand(0); 1433 SDValue OrOp1 = Op0.getOperand(1); 1434 auto LHS = matchRISCVBitmanipPat(OrOp0); 1435 // OR is commutable so swap the operands and try again: x might have been 1436 // on the left 1437 if (!LHS) { 1438 std::swap(OrOp0, OrOp1); 1439 LHS = matchRISCVBitmanipPat(OrOp0); 1440 } 1441 auto RHS = matchRISCVBitmanipPat(Op1); 1442 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 1443 return DAG.getNode( 1444 RISCVISD::GORCI, DL, VT, LHS->Op, 1445 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 1446 } 1447 } 1448 return SDValue(); 1449 } 1450 1451 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 1452 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 1453 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 1454 // not undo itself, but they are redundant. 1455 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 1456 unsigned ShAmt1 = N->getConstantOperandVal(1); 1457 SDValue Src = N->getOperand(0); 1458 1459 if (Src.getOpcode() != N->getOpcode()) 1460 return SDValue(); 1461 1462 unsigned ShAmt2 = Src.getConstantOperandVal(1); 1463 Src = Src.getOperand(0); 1464 1465 unsigned CombinedShAmt; 1466 if (N->getOpcode() == RISCVISD::GORCI || N->getOpcode() == RISCVISD::GORCIW) 1467 CombinedShAmt = ShAmt1 | ShAmt2; 1468 else 1469 CombinedShAmt = ShAmt1 ^ ShAmt2; 1470 1471 if (CombinedShAmt == 0) 1472 return Src; 1473 1474 SDLoc DL(N); 1475 return DAG.getNode(N->getOpcode(), DL, N->getValueType(0), Src, 1476 DAG.getTargetConstant(CombinedShAmt, DL, 1477 N->getOperand(1).getValueType())); 1478 } 1479 1480 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 1481 DAGCombinerInfo &DCI) const { 1482 SelectionDAG &DAG = DCI.DAG; 1483 1484 switch (N->getOpcode()) { 1485 default: 1486 break; 1487 case RISCVISD::SplitF64: { 1488 SDValue Op0 = N->getOperand(0); 1489 // If the input to SplitF64 is just BuildPairF64 then the operation is 1490 // redundant. Instead, use BuildPairF64's operands directly. 1491 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 1492 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 1493 1494 SDLoc DL(N); 1495 1496 // It's cheaper to materialise two 32-bit integers than to load a double 1497 // from the constant pool and transfer it to integer registers through the 1498 // stack. 1499 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 1500 APInt V = C->getValueAPF().bitcastToAPInt(); 1501 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 1502 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 1503 return DCI.CombineTo(N, Lo, Hi); 1504 } 1505 1506 // This is a target-specific version of a DAGCombine performed in 1507 // DAGCombiner::visitBITCAST. It performs the equivalent of: 1508 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 1509 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 1510 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 1511 !Op0.getNode()->hasOneUse()) 1512 break; 1513 SDValue NewSplitF64 = 1514 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 1515 Op0.getOperand(0)); 1516 SDValue Lo = NewSplitF64.getValue(0); 1517 SDValue Hi = NewSplitF64.getValue(1); 1518 APInt SignBit = APInt::getSignMask(32); 1519 if (Op0.getOpcode() == ISD::FNEG) { 1520 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 1521 DAG.getConstant(SignBit, DL, MVT::i32)); 1522 return DCI.CombineTo(N, Lo, NewHi); 1523 } 1524 assert(Op0.getOpcode() == ISD::FABS); 1525 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 1526 DAG.getConstant(~SignBit, DL, MVT::i32)); 1527 return DCI.CombineTo(N, Lo, NewHi); 1528 } 1529 case RISCVISD::SLLW: 1530 case RISCVISD::SRAW: 1531 case RISCVISD::SRLW: 1532 case RISCVISD::ROLW: 1533 case RISCVISD::RORW: { 1534 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 1535 SDValue LHS = N->getOperand(0); 1536 SDValue RHS = N->getOperand(1); 1537 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 1538 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 1539 if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) || 1540 SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) { 1541 if (N->getOpcode() != ISD::DELETED_NODE) 1542 DCI.AddToWorklist(N); 1543 return SDValue(N, 0); 1544 } 1545 break; 1546 } 1547 case RISCVISD::FSLW: 1548 case RISCVISD::FSRW: { 1549 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 1550 // read. 1551 SDValue Op0 = N->getOperand(0); 1552 SDValue Op1 = N->getOperand(1); 1553 SDValue ShAmt = N->getOperand(2); 1554 APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 1555 APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6); 1556 if (SimplifyDemandedBits(Op0, OpMask, DCI) || 1557 SimplifyDemandedBits(Op1, OpMask, DCI) || 1558 SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 1559 if (N->getOpcode() != ISD::DELETED_NODE) 1560 DCI.AddToWorklist(N); 1561 return SDValue(N, 0); 1562 } 1563 break; 1564 } 1565 case RISCVISD::GREVIW: 1566 case RISCVISD::GORCIW: { 1567 // Only the lower 32 bits of the first operand are read 1568 SDValue Op0 = N->getOperand(0); 1569 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 1570 if (SimplifyDemandedBits(Op0, Mask, DCI)) { 1571 if (N->getOpcode() != ISD::DELETED_NODE) 1572 DCI.AddToWorklist(N); 1573 return SDValue(N, 0); 1574 } 1575 1576 return combineGREVI_GORCI(N, DCI.DAG); 1577 } 1578 case RISCVISD::FMV_X_ANYEXTW_RV64: { 1579 SDLoc DL(N); 1580 SDValue Op0 = N->getOperand(0); 1581 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 1582 // conversion is unnecessary and can be replaced with an ANY_EXTEND 1583 // of the FMV_W_X_RV64 operand. 1584 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 1585 assert(Op0.getOperand(0).getValueType() == MVT::i64 && 1586 "Unexpected value type!"); 1587 return Op0.getOperand(0); 1588 } 1589 1590 // This is a target-specific version of a DAGCombine performed in 1591 // DAGCombiner::visitBITCAST. It performs the equivalent of: 1592 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 1593 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 1594 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 1595 !Op0.getNode()->hasOneUse()) 1596 break; 1597 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 1598 Op0.getOperand(0)); 1599 APInt SignBit = APInt::getSignMask(32).sext(64); 1600 if (Op0.getOpcode() == ISD::FNEG) 1601 return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 1602 DAG.getConstant(SignBit, DL, MVT::i64)); 1603 1604 assert(Op0.getOpcode() == ISD::FABS); 1605 return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 1606 DAG.getConstant(~SignBit, DL, MVT::i64)); 1607 } 1608 case RISCVISD::GREVI: 1609 case RISCVISD::GORCI: 1610 return combineGREVI_GORCI(N, DCI.DAG); 1611 case ISD::OR: 1612 if (auto GREV = combineORToGREV(SDValue(N, 0), DCI.DAG, Subtarget)) 1613 return GREV; 1614 if (auto GORC = combineORToGORC(SDValue(N, 0), DCI.DAG, Subtarget)) 1615 return GORC; 1616 break; 1617 } 1618 1619 return SDValue(); 1620 } 1621 1622 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 1623 const SDNode *N, CombineLevel Level) const { 1624 // The following folds are only desirable if `(OP _, c1 << c2)` can be 1625 // materialised in fewer instructions than `(OP _, c1)`: 1626 // 1627 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 1628 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 1629 SDValue N0 = N->getOperand(0); 1630 EVT Ty = N0.getValueType(); 1631 if (Ty.isScalarInteger() && 1632 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 1633 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 1634 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 1635 if (C1 && C2) { 1636 APInt C1Int = C1->getAPIntValue(); 1637 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 1638 1639 // We can materialise `c1 << c2` into an add immediate, so it's "free", 1640 // and the combine should happen, to potentially allow further combines 1641 // later. 1642 if (ShiftedC1Int.getMinSignedBits() <= 64 && 1643 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 1644 return true; 1645 1646 // We can materialise `c1` in an add immediate, so it's "free", and the 1647 // combine should be prevented. 1648 if (C1Int.getMinSignedBits() <= 64 && 1649 isLegalAddImmediate(C1Int.getSExtValue())) 1650 return false; 1651 1652 // Neither constant will fit into an immediate, so find materialisation 1653 // costs. 1654 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 1655 Subtarget.is64Bit()); 1656 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 1657 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 1658 1659 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 1660 // combine should be prevented. 1661 if (C1Cost < ShiftedC1Cost) 1662 return false; 1663 } 1664 } 1665 return true; 1666 } 1667 1668 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 1669 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 1670 unsigned Depth) const { 1671 switch (Op.getOpcode()) { 1672 default: 1673 break; 1674 case RISCVISD::SLLW: 1675 case RISCVISD::SRAW: 1676 case RISCVISD::SRLW: 1677 case RISCVISD::DIVW: 1678 case RISCVISD::DIVUW: 1679 case RISCVISD::REMUW: 1680 case RISCVISD::ROLW: 1681 case RISCVISD::RORW: 1682 case RISCVISD::GREVIW: 1683 case RISCVISD::GORCIW: 1684 case RISCVISD::FSLW: 1685 case RISCVISD::FSRW: 1686 // TODO: As the result is sign-extended, this is conservatively correct. A 1687 // more precise answer could be calculated for SRAW depending on known 1688 // bits in the shift amount. 1689 return 33; 1690 } 1691 1692 return 1; 1693 } 1694 1695 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 1696 MachineBasicBlock *BB) { 1697 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 1698 1699 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 1700 // Should the count have wrapped while it was being read, we need to try 1701 // again. 1702 // ... 1703 // read: 1704 // rdcycleh x3 # load high word of cycle 1705 // rdcycle x2 # load low word of cycle 1706 // rdcycleh x4 # load high word of cycle 1707 // bne x3, x4, read # check if high word reads match, otherwise try again 1708 // ... 1709 1710 MachineFunction &MF = *BB->getParent(); 1711 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1712 MachineFunction::iterator It = ++BB->getIterator(); 1713 1714 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 1715 MF.insert(It, LoopMBB); 1716 1717 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 1718 MF.insert(It, DoneMBB); 1719 1720 // Transfer the remainder of BB and its successor edges to DoneMBB. 1721 DoneMBB->splice(DoneMBB->begin(), BB, 1722 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1723 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 1724 1725 BB->addSuccessor(LoopMBB); 1726 1727 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1728 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1729 Register LoReg = MI.getOperand(0).getReg(); 1730 Register HiReg = MI.getOperand(1).getReg(); 1731 DebugLoc DL = MI.getDebugLoc(); 1732 1733 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1734 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 1735 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 1736 .addReg(RISCV::X0); 1737 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 1738 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 1739 .addReg(RISCV::X0); 1740 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 1741 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 1742 .addReg(RISCV::X0); 1743 1744 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 1745 .addReg(HiReg) 1746 .addReg(ReadAgainReg) 1747 .addMBB(LoopMBB); 1748 1749 LoopMBB->addSuccessor(LoopMBB); 1750 LoopMBB->addSuccessor(DoneMBB); 1751 1752 MI.eraseFromParent(); 1753 1754 return DoneMBB; 1755 } 1756 1757 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 1758 MachineBasicBlock *BB) { 1759 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 1760 1761 MachineFunction &MF = *BB->getParent(); 1762 DebugLoc DL = MI.getDebugLoc(); 1763 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1764 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 1765 Register LoReg = MI.getOperand(0).getReg(); 1766 Register HiReg = MI.getOperand(1).getReg(); 1767 Register SrcReg = MI.getOperand(2).getReg(); 1768 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 1769 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 1770 1771 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 1772 RI); 1773 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 1774 MachineMemOperand *MMOLo = 1775 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 1776 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 1777 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 1778 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 1779 .addFrameIndex(FI) 1780 .addImm(0) 1781 .addMemOperand(MMOLo); 1782 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 1783 .addFrameIndex(FI) 1784 .addImm(4) 1785 .addMemOperand(MMOHi); 1786 MI.eraseFromParent(); // The pseudo instruction is gone now. 1787 return BB; 1788 } 1789 1790 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 1791 MachineBasicBlock *BB) { 1792 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 1793 "Unexpected instruction"); 1794 1795 MachineFunction &MF = *BB->getParent(); 1796 DebugLoc DL = MI.getDebugLoc(); 1797 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1798 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 1799 Register DstReg = MI.getOperand(0).getReg(); 1800 Register LoReg = MI.getOperand(1).getReg(); 1801 Register HiReg = MI.getOperand(2).getReg(); 1802 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 1803 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 1804 1805 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 1806 MachineMemOperand *MMOLo = 1807 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 1808 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 1809 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 1810 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 1811 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 1812 .addFrameIndex(FI) 1813 .addImm(0) 1814 .addMemOperand(MMOLo); 1815 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 1816 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 1817 .addFrameIndex(FI) 1818 .addImm(4) 1819 .addMemOperand(MMOHi); 1820 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 1821 MI.eraseFromParent(); // The pseudo instruction is gone now. 1822 return BB; 1823 } 1824 1825 static bool isSelectPseudo(MachineInstr &MI) { 1826 switch (MI.getOpcode()) { 1827 default: 1828 return false; 1829 case RISCV::Select_GPR_Using_CC_GPR: 1830 case RISCV::Select_FPR16_Using_CC_GPR: 1831 case RISCV::Select_FPR32_Using_CC_GPR: 1832 case RISCV::Select_FPR64_Using_CC_GPR: 1833 return true; 1834 } 1835 } 1836 1837 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 1838 MachineBasicBlock *BB) { 1839 // To "insert" Select_* instructions, we actually have to insert the triangle 1840 // control-flow pattern. The incoming instructions know the destination vreg 1841 // to set, the condition code register to branch on, the true/false values to 1842 // select between, and the condcode to use to select the appropriate branch. 1843 // 1844 // We produce the following control flow: 1845 // HeadMBB 1846 // | \ 1847 // | IfFalseMBB 1848 // | / 1849 // TailMBB 1850 // 1851 // When we find a sequence of selects we attempt to optimize their emission 1852 // by sharing the control flow. Currently we only handle cases where we have 1853 // multiple selects with the exact same condition (same LHS, RHS and CC). 1854 // The selects may be interleaved with other instructions if the other 1855 // instructions meet some requirements we deem safe: 1856 // - They are debug instructions. Otherwise, 1857 // - They do not have side-effects, do not access memory and their inputs do 1858 // not depend on the results of the select pseudo-instructions. 1859 // The TrueV/FalseV operands of the selects cannot depend on the result of 1860 // previous selects in the sequence. 1861 // These conditions could be further relaxed. See the X86 target for a 1862 // related approach and more information. 1863 Register LHS = MI.getOperand(1).getReg(); 1864 Register RHS = MI.getOperand(2).getReg(); 1865 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 1866 1867 SmallVector<MachineInstr *, 4> SelectDebugValues; 1868 SmallSet<Register, 4> SelectDests; 1869 SelectDests.insert(MI.getOperand(0).getReg()); 1870 1871 MachineInstr *LastSelectPseudo = &MI; 1872 1873 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 1874 SequenceMBBI != E; ++SequenceMBBI) { 1875 if (SequenceMBBI->isDebugInstr()) 1876 continue; 1877 else if (isSelectPseudo(*SequenceMBBI)) { 1878 if (SequenceMBBI->getOperand(1).getReg() != LHS || 1879 SequenceMBBI->getOperand(2).getReg() != RHS || 1880 SequenceMBBI->getOperand(3).getImm() != CC || 1881 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 1882 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 1883 break; 1884 LastSelectPseudo = &*SequenceMBBI; 1885 SequenceMBBI->collectDebugValues(SelectDebugValues); 1886 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 1887 } else { 1888 if (SequenceMBBI->hasUnmodeledSideEffects() || 1889 SequenceMBBI->mayLoadOrStore()) 1890 break; 1891 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 1892 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 1893 })) 1894 break; 1895 } 1896 } 1897 1898 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 1899 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1900 DebugLoc DL = MI.getDebugLoc(); 1901 MachineFunction::iterator I = ++BB->getIterator(); 1902 1903 MachineBasicBlock *HeadMBB = BB; 1904 MachineFunction *F = BB->getParent(); 1905 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 1906 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 1907 1908 F->insert(I, IfFalseMBB); 1909 F->insert(I, TailMBB); 1910 1911 // Transfer debug instructions associated with the selects to TailMBB. 1912 for (MachineInstr *DebugInstr : SelectDebugValues) { 1913 TailMBB->push_back(DebugInstr->removeFromParent()); 1914 } 1915 1916 // Move all instructions after the sequence to TailMBB. 1917 TailMBB->splice(TailMBB->end(), HeadMBB, 1918 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 1919 // Update machine-CFG edges by transferring all successors of the current 1920 // block to the new block which will contain the Phi nodes for the selects. 1921 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 1922 // Set the successors for HeadMBB. 1923 HeadMBB->addSuccessor(IfFalseMBB); 1924 HeadMBB->addSuccessor(TailMBB); 1925 1926 // Insert appropriate branch. 1927 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 1928 1929 BuildMI(HeadMBB, DL, TII.get(Opcode)) 1930 .addReg(LHS) 1931 .addReg(RHS) 1932 .addMBB(TailMBB); 1933 1934 // IfFalseMBB just falls through to TailMBB. 1935 IfFalseMBB->addSuccessor(TailMBB); 1936 1937 // Create PHIs for all of the select pseudo-instructions. 1938 auto SelectMBBI = MI.getIterator(); 1939 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 1940 auto InsertionPoint = TailMBB->begin(); 1941 while (SelectMBBI != SelectEnd) { 1942 auto Next = std::next(SelectMBBI); 1943 if (isSelectPseudo(*SelectMBBI)) { 1944 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 1945 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 1946 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 1947 .addReg(SelectMBBI->getOperand(4).getReg()) 1948 .addMBB(HeadMBB) 1949 .addReg(SelectMBBI->getOperand(5).getReg()) 1950 .addMBB(IfFalseMBB); 1951 SelectMBBI->eraseFromParent(); 1952 } 1953 SelectMBBI = Next; 1954 } 1955 1956 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 1957 return TailMBB; 1958 } 1959 1960 static MachineBasicBlock *addVSetVL(MachineInstr &MI, MachineBasicBlock *BB, 1961 int VLIndex, unsigned SEWIndex, 1962 unsigned VLMul) { 1963 MachineFunction &MF = *BB->getParent(); 1964 DebugLoc DL = MI.getDebugLoc(); 1965 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1966 1967 unsigned SEW = MI.getOperand(SEWIndex).getImm(); 1968 assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW"); 1969 RISCVVSEW ElementWidth = static_cast<RISCVVSEW>(Log2_32(SEW / 8)); 1970 1971 // LMUL should already be encoded correctly. 1972 RISCVVLMUL Multiplier = static_cast<RISCVVLMUL>(VLMul); 1973 1974 MachineRegisterInfo &MRI = MF.getRegInfo(); 1975 1976 // VL and VTYPE are alive here. 1977 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI)); 1978 1979 if (VLIndex >= 0) { 1980 // Set VL (rs1 != X0). 1981 Register DestReg = MRI.createVirtualRegister(&RISCV::GPRRegClass); 1982 MIB.addReg(DestReg, RegState::Define | RegState::Dead) 1983 .addReg(MI.getOperand(VLIndex).getReg()); 1984 } else 1985 // With no VL operator in the pseudo, do not modify VL (rd = X0, rs1 = X0). 1986 MIB.addReg(RISCV::X0, RegState::Define | RegState::Dead) 1987 .addReg(RISCV::X0, RegState::Kill); 1988 1989 // For simplicity we reuse the vtype representation here. 1990 MIB.addImm(RISCVVType::encodeVTYPE(Multiplier, ElementWidth, 1991 /*TailAgnostic*/ true, 1992 /*MaskAgnostic*/ false)); 1993 1994 // Remove (now) redundant operands from pseudo 1995 MI.getOperand(SEWIndex).setImm(-1); 1996 if (VLIndex >= 0) { 1997 MI.getOperand(VLIndex).setReg(RISCV::NoRegister); 1998 MI.getOperand(VLIndex).setIsKill(false); 1999 } 2000 2001 return BB; 2002 } 2003 2004 MachineBasicBlock * 2005 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 2006 MachineBasicBlock *BB) const { 2007 2008 if (const RISCVVPseudosTable::PseudoInfo *RVV = 2009 RISCVVPseudosTable::getPseudoInfo(MI.getOpcode())) { 2010 int VLIndex = RVV->getVLIndex(); 2011 int SEWIndex = RVV->getSEWIndex(); 2012 2013 assert(SEWIndex >= 0 && "SEWIndex must be >= 0"); 2014 return addVSetVL(MI, BB, VLIndex, SEWIndex, RVV->VLMul); 2015 } 2016 2017 switch (MI.getOpcode()) { 2018 default: 2019 llvm_unreachable("Unexpected instr type to insert"); 2020 case RISCV::ReadCycleWide: 2021 assert(!Subtarget.is64Bit() && 2022 "ReadCycleWrite is only to be used on riscv32"); 2023 return emitReadCycleWidePseudo(MI, BB); 2024 case RISCV::Select_GPR_Using_CC_GPR: 2025 case RISCV::Select_FPR16_Using_CC_GPR: 2026 case RISCV::Select_FPR32_Using_CC_GPR: 2027 case RISCV::Select_FPR64_Using_CC_GPR: 2028 return emitSelectPseudo(MI, BB); 2029 case RISCV::BuildPairF64Pseudo: 2030 return emitBuildPairF64Pseudo(MI, BB); 2031 case RISCV::SplitF64Pseudo: 2032 return emitSplitF64Pseudo(MI, BB); 2033 } 2034 } 2035 2036 // Calling Convention Implementation. 2037 // The expectations for frontend ABI lowering vary from target to target. 2038 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 2039 // details, but this is a longer term goal. For now, we simply try to keep the 2040 // role of the frontend as simple and well-defined as possible. The rules can 2041 // be summarised as: 2042 // * Never split up large scalar arguments. We handle them here. 2043 // * If a hardfloat calling convention is being used, and the struct may be 2044 // passed in a pair of registers (fp+fp, int+fp), and both registers are 2045 // available, then pass as two separate arguments. If either the GPRs or FPRs 2046 // are exhausted, then pass according to the rule below. 2047 // * If a struct could never be passed in registers or directly in a stack 2048 // slot (as it is larger than 2*XLEN and the floating point rules don't 2049 // apply), then pass it using a pointer with the byval attribute. 2050 // * If a struct is less than 2*XLEN, then coerce to either a two-element 2051 // word-sized array or a 2*XLEN scalar (depending on alignment). 2052 // * The frontend can determine whether a struct is returned by reference or 2053 // not based on its size and fields. If it will be returned by reference, the 2054 // frontend must modify the prototype so a pointer with the sret annotation is 2055 // passed as the first argument. This is not necessary for large scalar 2056 // returns. 2057 // * Struct return values and varargs should be coerced to structs containing 2058 // register-size fields in the same situations they would be for fixed 2059 // arguments. 2060 2061 static const MCPhysReg ArgGPRs[] = { 2062 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 2063 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 2064 }; 2065 static const MCPhysReg ArgFPR16s[] = { 2066 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 2067 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 2068 }; 2069 static const MCPhysReg ArgFPR32s[] = { 2070 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 2071 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 2072 }; 2073 static const MCPhysReg ArgFPR64s[] = { 2074 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 2075 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 2076 }; 2077 // This is an interim calling convention and it may be changed in the future. 2078 static const MCPhysReg ArgVRs[] = { 2079 RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, RISCV::V20, 2080 RISCV::V21, RISCV::V22, RISCV::V23 2081 }; 2082 static const MCPhysReg ArgVRM2s[] = { 2083 RISCV::V16M2, RISCV::V18M2, RISCV::V20M2, RISCV::V22M2 2084 }; 2085 static const MCPhysReg ArgVRM4s[] = {RISCV::V16M4, RISCV::V20M4}; 2086 static const MCPhysReg ArgVRM8s[] = {RISCV::V16M8}; 2087 2088 // Pass a 2*XLEN argument that has been split into two XLEN values through 2089 // registers or the stack as necessary. 2090 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 2091 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 2092 MVT ValVT2, MVT LocVT2, 2093 ISD::ArgFlagsTy ArgFlags2) { 2094 unsigned XLenInBytes = XLen / 8; 2095 if (Register Reg = State.AllocateReg(ArgGPRs)) { 2096 // At least one half can be passed via register. 2097 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 2098 VA1.getLocVT(), CCValAssign::Full)); 2099 } else { 2100 // Both halves must be passed on the stack, with proper alignment. 2101 Align StackAlign = 2102 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 2103 State.addLoc( 2104 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 2105 State.AllocateStack(XLenInBytes, StackAlign), 2106 VA1.getLocVT(), CCValAssign::Full)); 2107 State.addLoc(CCValAssign::getMem( 2108 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 2109 LocVT2, CCValAssign::Full)); 2110 return false; 2111 } 2112 2113 if (Register Reg = State.AllocateReg(ArgGPRs)) { 2114 // The second half can also be passed via register. 2115 State.addLoc( 2116 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 2117 } else { 2118 // The second half is passed via the stack, without additional alignment. 2119 State.addLoc(CCValAssign::getMem( 2120 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 2121 LocVT2, CCValAssign::Full)); 2122 } 2123 2124 return false; 2125 } 2126 2127 // Implements the RISC-V calling convention. Returns true upon failure. 2128 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 2129 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 2130 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 2131 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 2132 Optional<unsigned> FirstMaskArgument) { 2133 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 2134 assert(XLen == 32 || XLen == 64); 2135 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 2136 2137 // Any return value split in to more than two values can't be returned 2138 // directly. 2139 if (IsRet && ValNo > 1) 2140 return true; 2141 2142 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 2143 // variadic argument, or if no F16/F32 argument registers are available. 2144 bool UseGPRForF16_F32 = true; 2145 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 2146 // variadic argument, or if no F64 argument registers are available. 2147 bool UseGPRForF64 = true; 2148 2149 switch (ABI) { 2150 default: 2151 llvm_unreachable("Unexpected ABI"); 2152 case RISCVABI::ABI_ILP32: 2153 case RISCVABI::ABI_LP64: 2154 break; 2155 case RISCVABI::ABI_ILP32F: 2156 case RISCVABI::ABI_LP64F: 2157 UseGPRForF16_F32 = !IsFixed; 2158 break; 2159 case RISCVABI::ABI_ILP32D: 2160 case RISCVABI::ABI_LP64D: 2161 UseGPRForF16_F32 = !IsFixed; 2162 UseGPRForF64 = !IsFixed; 2163 break; 2164 } 2165 2166 // FPR16, FPR32, and FPR64 alias each other. 2167 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 2168 UseGPRForF16_F32 = true; 2169 UseGPRForF64 = true; 2170 } 2171 2172 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 2173 // similar local variables rather than directly checking against the target 2174 // ABI. 2175 2176 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 2177 LocVT = XLenVT; 2178 LocInfo = CCValAssign::BCvt; 2179 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 2180 LocVT = MVT::i64; 2181 LocInfo = CCValAssign::BCvt; 2182 } 2183 2184 // If this is a variadic argument, the RISC-V calling convention requires 2185 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 2186 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 2187 // be used regardless of whether the original argument was split during 2188 // legalisation or not. The argument will not be passed by registers if the 2189 // original type is larger than 2*XLEN, so the register alignment rule does 2190 // not apply. 2191 unsigned TwoXLenInBytes = (2 * XLen) / 8; 2192 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 2193 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 2194 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 2195 // Skip 'odd' register if necessary. 2196 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 2197 State.AllocateReg(ArgGPRs); 2198 } 2199 2200 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 2201 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 2202 State.getPendingArgFlags(); 2203 2204 assert(PendingLocs.size() == PendingArgFlags.size() && 2205 "PendingLocs and PendingArgFlags out of sync"); 2206 2207 // Handle passing f64 on RV32D with a soft float ABI or when floating point 2208 // registers are exhausted. 2209 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 2210 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 2211 "Can't lower f64 if it is split"); 2212 // Depending on available argument GPRS, f64 may be passed in a pair of 2213 // GPRs, split between a GPR and the stack, or passed completely on the 2214 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 2215 // cases. 2216 Register Reg = State.AllocateReg(ArgGPRs); 2217 LocVT = MVT::i32; 2218 if (!Reg) { 2219 unsigned StackOffset = State.AllocateStack(8, Align(8)); 2220 State.addLoc( 2221 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 2222 return false; 2223 } 2224 if (!State.AllocateReg(ArgGPRs)) 2225 State.AllocateStack(4, Align(4)); 2226 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2227 return false; 2228 } 2229 2230 // Split arguments might be passed indirectly, so keep track of the pending 2231 // values. 2232 if (ArgFlags.isSplit() || !PendingLocs.empty()) { 2233 LocVT = XLenVT; 2234 LocInfo = CCValAssign::Indirect; 2235 PendingLocs.push_back( 2236 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 2237 PendingArgFlags.push_back(ArgFlags); 2238 if (!ArgFlags.isSplitEnd()) { 2239 return false; 2240 } 2241 } 2242 2243 // If the split argument only had two elements, it should be passed directly 2244 // in registers or on the stack. 2245 if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 2246 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 2247 // Apply the normal calling convention rules to the first half of the 2248 // split argument. 2249 CCValAssign VA = PendingLocs[0]; 2250 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 2251 PendingLocs.clear(); 2252 PendingArgFlags.clear(); 2253 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 2254 ArgFlags); 2255 } 2256 2257 // Allocate to a register if possible, or else a stack slot. 2258 Register Reg; 2259 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 2260 Reg = State.AllocateReg(ArgFPR16s); 2261 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 2262 Reg = State.AllocateReg(ArgFPR32s); 2263 else if (ValVT == MVT::f64 && !UseGPRForF64) 2264 Reg = State.AllocateReg(ArgFPR64s); 2265 else if (ValVT.isScalableVector()) { 2266 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 2267 if (RC == &RISCV::VRRegClass) { 2268 // Assign the first mask argument to V0. 2269 // This is an interim calling convention and it may be changed in the 2270 // future. 2271 if (FirstMaskArgument.hasValue() && 2272 ValNo == FirstMaskArgument.getValue()) { 2273 Reg = State.AllocateReg(RISCV::V0); 2274 } else { 2275 Reg = State.AllocateReg(ArgVRs); 2276 } 2277 } else if (RC == &RISCV::VRM2RegClass) { 2278 Reg = State.AllocateReg(ArgVRM2s); 2279 } else if (RC == &RISCV::VRM4RegClass) { 2280 Reg = State.AllocateReg(ArgVRM4s); 2281 } else if (RC == &RISCV::VRM8RegClass) { 2282 Reg = State.AllocateReg(ArgVRM8s); 2283 } else { 2284 llvm_unreachable("Unhandled class register for ValueType"); 2285 } 2286 if (!Reg) { 2287 LocInfo = CCValAssign::Indirect; 2288 // Try using a GPR to pass the address 2289 Reg = State.AllocateReg(ArgGPRs); 2290 LocVT = XLenVT; 2291 } 2292 } else 2293 Reg = State.AllocateReg(ArgGPRs); 2294 unsigned StackOffset = 2295 Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8)); 2296 2297 // If we reach this point and PendingLocs is non-empty, we must be at the 2298 // end of a split argument that must be passed indirectly. 2299 if (!PendingLocs.empty()) { 2300 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 2301 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 2302 2303 for (auto &It : PendingLocs) { 2304 if (Reg) 2305 It.convertToReg(Reg); 2306 else 2307 It.convertToMem(StackOffset); 2308 State.addLoc(It); 2309 } 2310 PendingLocs.clear(); 2311 PendingArgFlags.clear(); 2312 return false; 2313 } 2314 2315 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 2316 (TLI.getSubtarget().hasStdExtV() && ValVT.isScalableVector())) && 2317 "Expected an XLenVT or scalable vector types at this stage"); 2318 2319 if (Reg) { 2320 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2321 return false; 2322 } 2323 2324 // When a floating-point value is passed on the stack, no bit-conversion is 2325 // needed. 2326 if (ValVT.isFloatingPoint()) { 2327 LocVT = ValVT; 2328 LocInfo = CCValAssign::Full; 2329 } 2330 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 2331 return false; 2332 } 2333 2334 template <typename ArgTy> 2335 static void preAssignMask(const ArgTy &Args, 2336 Optional<unsigned> &FirstMaskArgument, 2337 CCState &CCInfo) { 2338 unsigned NumArgs = Args.size(); 2339 for (unsigned I = 0; I != NumArgs; ++I) { 2340 MVT ArgVT = Args[I].VT; 2341 if (!ArgVT.isScalableVector() || 2342 ArgVT.getVectorElementType().SimpleTy != MVT::i1) 2343 continue; 2344 2345 FirstMaskArgument = I; 2346 break; 2347 } 2348 } 2349 2350 void RISCVTargetLowering::analyzeInputArgs( 2351 MachineFunction &MF, CCState &CCInfo, 2352 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 2353 unsigned NumArgs = Ins.size(); 2354 FunctionType *FType = MF.getFunction().getFunctionType(); 2355 2356 Optional<unsigned> FirstMaskArgument; 2357 if (Subtarget.hasStdExtV()) 2358 preAssignMask(Ins, FirstMaskArgument, CCInfo); 2359 2360 for (unsigned i = 0; i != NumArgs; ++i) { 2361 MVT ArgVT = Ins[i].VT; 2362 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 2363 2364 Type *ArgTy = nullptr; 2365 if (IsRet) 2366 ArgTy = FType->getReturnType(); 2367 else if (Ins[i].isOrigArg()) 2368 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 2369 2370 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 2371 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 2372 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 2373 FirstMaskArgument)) { 2374 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 2375 << EVT(ArgVT).getEVTString() << '\n'); 2376 llvm_unreachable(nullptr); 2377 } 2378 } 2379 } 2380 2381 void RISCVTargetLowering::analyzeOutputArgs( 2382 MachineFunction &MF, CCState &CCInfo, 2383 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 2384 CallLoweringInfo *CLI) const { 2385 unsigned NumArgs = Outs.size(); 2386 2387 Optional<unsigned> FirstMaskArgument; 2388 if (Subtarget.hasStdExtV()) 2389 preAssignMask(Outs, FirstMaskArgument, CCInfo); 2390 2391 for (unsigned i = 0; i != NumArgs; i++) { 2392 MVT ArgVT = Outs[i].VT; 2393 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 2394 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 2395 2396 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 2397 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 2398 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 2399 FirstMaskArgument)) { 2400 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 2401 << EVT(ArgVT).getEVTString() << "\n"); 2402 llvm_unreachable(nullptr); 2403 } 2404 } 2405 } 2406 2407 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 2408 // values. 2409 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 2410 const CCValAssign &VA, const SDLoc &DL) { 2411 switch (VA.getLocInfo()) { 2412 default: 2413 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 2414 case CCValAssign::Full: 2415 break; 2416 case CCValAssign::BCvt: 2417 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 2418 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 2419 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 2420 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 2421 else 2422 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 2423 break; 2424 } 2425 return Val; 2426 } 2427 2428 // The caller is responsible for loading the full value if the argument is 2429 // passed with CCValAssign::Indirect. 2430 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 2431 const CCValAssign &VA, const SDLoc &DL, 2432 const RISCVTargetLowering &TLI) { 2433 MachineFunction &MF = DAG.getMachineFunction(); 2434 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 2435 EVT LocVT = VA.getLocVT(); 2436 SDValue Val; 2437 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 2438 Register VReg = RegInfo.createVirtualRegister(RC); 2439 RegInfo.addLiveIn(VA.getLocReg(), VReg); 2440 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 2441 2442 if (VA.getLocInfo() == CCValAssign::Indirect) 2443 return Val; 2444 2445 return convertLocVTToValVT(DAG, Val, VA, DL); 2446 } 2447 2448 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 2449 const CCValAssign &VA, const SDLoc &DL) { 2450 EVT LocVT = VA.getLocVT(); 2451 2452 switch (VA.getLocInfo()) { 2453 default: 2454 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 2455 case CCValAssign::Full: 2456 break; 2457 case CCValAssign::BCvt: 2458 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 2459 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 2460 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 2461 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 2462 else 2463 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 2464 break; 2465 } 2466 return Val; 2467 } 2468 2469 // The caller is responsible for loading the full value if the argument is 2470 // passed with CCValAssign::Indirect. 2471 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 2472 const CCValAssign &VA, const SDLoc &DL) { 2473 MachineFunction &MF = DAG.getMachineFunction(); 2474 MachineFrameInfo &MFI = MF.getFrameInfo(); 2475 EVT LocVT = VA.getLocVT(); 2476 EVT ValVT = VA.getValVT(); 2477 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 2478 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 2479 VA.getLocMemOffset(), /*Immutable=*/true); 2480 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2481 SDValue Val; 2482 2483 ISD::LoadExtType ExtType; 2484 switch (VA.getLocInfo()) { 2485 default: 2486 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 2487 case CCValAssign::Full: 2488 case CCValAssign::Indirect: 2489 case CCValAssign::BCvt: 2490 ExtType = ISD::NON_EXTLOAD; 2491 break; 2492 } 2493 Val = DAG.getExtLoad( 2494 ExtType, DL, LocVT, Chain, FIN, 2495 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 2496 return Val; 2497 } 2498 2499 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 2500 const CCValAssign &VA, const SDLoc &DL) { 2501 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 2502 "Unexpected VA"); 2503 MachineFunction &MF = DAG.getMachineFunction(); 2504 MachineFrameInfo &MFI = MF.getFrameInfo(); 2505 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 2506 2507 if (VA.isMemLoc()) { 2508 // f64 is passed on the stack. 2509 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 2510 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 2511 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 2512 MachinePointerInfo::getFixedStack(MF, FI)); 2513 } 2514 2515 assert(VA.isRegLoc() && "Expected register VA assignment"); 2516 2517 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 2518 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 2519 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 2520 SDValue Hi; 2521 if (VA.getLocReg() == RISCV::X17) { 2522 // Second half of f64 is passed on the stack. 2523 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 2524 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 2525 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 2526 MachinePointerInfo::getFixedStack(MF, FI)); 2527 } else { 2528 // Second half of f64 is passed in another GPR. 2529 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 2530 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 2531 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 2532 } 2533 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 2534 } 2535 2536 // FastCC has less than 1% performance improvement for some particular 2537 // benchmark. But theoretically, it may has benenfit for some cases. 2538 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT, 2539 CCValAssign::LocInfo LocInfo, 2540 ISD::ArgFlagsTy ArgFlags, CCState &State) { 2541 2542 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 2543 // X5 and X6 might be used for save-restore libcall. 2544 static const MCPhysReg GPRList[] = { 2545 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 2546 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 2547 RISCV::X29, RISCV::X30, RISCV::X31}; 2548 if (unsigned Reg = State.AllocateReg(GPRList)) { 2549 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2550 return false; 2551 } 2552 } 2553 2554 if (LocVT == MVT::f16) { 2555 static const MCPhysReg FPR16List[] = { 2556 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 2557 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 2558 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 2559 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 2560 if (unsigned Reg = State.AllocateReg(FPR16List)) { 2561 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2562 return false; 2563 } 2564 } 2565 2566 if (LocVT == MVT::f32) { 2567 static const MCPhysReg FPR32List[] = { 2568 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 2569 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 2570 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 2571 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 2572 if (unsigned Reg = State.AllocateReg(FPR32List)) { 2573 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2574 return false; 2575 } 2576 } 2577 2578 if (LocVT == MVT::f64) { 2579 static const MCPhysReg FPR64List[] = { 2580 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 2581 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 2582 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 2583 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 2584 if (unsigned Reg = State.AllocateReg(FPR64List)) { 2585 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2586 return false; 2587 } 2588 } 2589 2590 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 2591 unsigned Offset4 = State.AllocateStack(4, Align(4)); 2592 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 2593 return false; 2594 } 2595 2596 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 2597 unsigned Offset5 = State.AllocateStack(8, Align(8)); 2598 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 2599 return false; 2600 } 2601 2602 return true; // CC didn't match. 2603 } 2604 2605 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 2606 CCValAssign::LocInfo LocInfo, 2607 ISD::ArgFlagsTy ArgFlags, CCState &State) { 2608 2609 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 2610 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 2611 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 2612 static const MCPhysReg GPRList[] = { 2613 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 2614 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 2615 if (unsigned Reg = State.AllocateReg(GPRList)) { 2616 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2617 return false; 2618 } 2619 } 2620 2621 if (LocVT == MVT::f32) { 2622 // Pass in STG registers: F1, ..., F6 2623 // fs0 ... fs5 2624 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 2625 RISCV::F18_F, RISCV::F19_F, 2626 RISCV::F20_F, RISCV::F21_F}; 2627 if (unsigned Reg = State.AllocateReg(FPR32List)) { 2628 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2629 return false; 2630 } 2631 } 2632 2633 if (LocVT == MVT::f64) { 2634 // Pass in STG registers: D1, ..., D6 2635 // fs6 ... fs11 2636 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 2637 RISCV::F24_D, RISCV::F25_D, 2638 RISCV::F26_D, RISCV::F27_D}; 2639 if (unsigned Reg = State.AllocateReg(FPR64List)) { 2640 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2641 return false; 2642 } 2643 } 2644 2645 report_fatal_error("No registers left in GHC calling convention"); 2646 return true; 2647 } 2648 2649 // Transform physical registers into virtual registers. 2650 SDValue RISCVTargetLowering::LowerFormalArguments( 2651 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 2652 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2653 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2654 2655 MachineFunction &MF = DAG.getMachineFunction(); 2656 2657 switch (CallConv) { 2658 default: 2659 report_fatal_error("Unsupported calling convention"); 2660 case CallingConv::C: 2661 case CallingConv::Fast: 2662 break; 2663 case CallingConv::GHC: 2664 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 2665 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 2666 report_fatal_error( 2667 "GHC calling convention requires the F and D instruction set extensions"); 2668 } 2669 2670 const Function &Func = MF.getFunction(); 2671 if (Func.hasFnAttribute("interrupt")) { 2672 if (!Func.arg_empty()) 2673 report_fatal_error( 2674 "Functions with the interrupt attribute cannot have arguments!"); 2675 2676 StringRef Kind = 2677 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 2678 2679 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 2680 report_fatal_error( 2681 "Function interrupt attribute argument not supported!"); 2682 } 2683 2684 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2685 MVT XLenVT = Subtarget.getXLenVT(); 2686 unsigned XLenInBytes = Subtarget.getXLen() / 8; 2687 // Used with vargs to acumulate store chains. 2688 std::vector<SDValue> OutChains; 2689 2690 // Assign locations to all of the incoming arguments. 2691 SmallVector<CCValAssign, 16> ArgLocs; 2692 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 2693 2694 if (CallConv == CallingConv::Fast) 2695 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC); 2696 else if (CallConv == CallingConv::GHC) 2697 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 2698 else 2699 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 2700 2701 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2702 CCValAssign &VA = ArgLocs[i]; 2703 SDValue ArgValue; 2704 // Passing f64 on RV32D with a soft float ABI must be handled as a special 2705 // case. 2706 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 2707 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 2708 else if (VA.isRegLoc()) 2709 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 2710 else 2711 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 2712 2713 if (VA.getLocInfo() == CCValAssign::Indirect) { 2714 // If the original argument was split and passed by reference (e.g. i128 2715 // on RV32), we need to load all parts of it here (using the same 2716 // address). 2717 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 2718 MachinePointerInfo())); 2719 unsigned ArgIndex = Ins[i].OrigArgIndex; 2720 assert(Ins[i].PartOffset == 0); 2721 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 2722 CCValAssign &PartVA = ArgLocs[i + 1]; 2723 unsigned PartOffset = Ins[i + 1].PartOffset; 2724 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 2725 DAG.getIntPtrConstant(PartOffset, DL)); 2726 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 2727 MachinePointerInfo())); 2728 ++i; 2729 } 2730 continue; 2731 } 2732 InVals.push_back(ArgValue); 2733 } 2734 2735 if (IsVarArg) { 2736 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 2737 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 2738 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 2739 MachineFrameInfo &MFI = MF.getFrameInfo(); 2740 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 2741 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 2742 2743 // Offset of the first variable argument from stack pointer, and size of 2744 // the vararg save area. For now, the varargs save area is either zero or 2745 // large enough to hold a0-a7. 2746 int VaArgOffset, VarArgsSaveSize; 2747 2748 // If all registers are allocated, then all varargs must be passed on the 2749 // stack and we don't need to save any argregs. 2750 if (ArgRegs.size() == Idx) { 2751 VaArgOffset = CCInfo.getNextStackOffset(); 2752 VarArgsSaveSize = 0; 2753 } else { 2754 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 2755 VaArgOffset = -VarArgsSaveSize; 2756 } 2757 2758 // Record the frame index of the first variable argument 2759 // which is a value necessary to VASTART. 2760 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 2761 RVFI->setVarArgsFrameIndex(FI); 2762 2763 // If saving an odd number of registers then create an extra stack slot to 2764 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 2765 // offsets to even-numbered registered remain 2*XLEN-aligned. 2766 if (Idx % 2) { 2767 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 2768 VarArgsSaveSize += XLenInBytes; 2769 } 2770 2771 // Copy the integer registers that may have been used for passing varargs 2772 // to the vararg save area. 2773 for (unsigned I = Idx; I < ArgRegs.size(); 2774 ++I, VaArgOffset += XLenInBytes) { 2775 const Register Reg = RegInfo.createVirtualRegister(RC); 2776 RegInfo.addLiveIn(ArgRegs[I], Reg); 2777 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 2778 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 2779 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2780 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 2781 MachinePointerInfo::getFixedStack(MF, FI)); 2782 cast<StoreSDNode>(Store.getNode()) 2783 ->getMemOperand() 2784 ->setValue((Value *)nullptr); 2785 OutChains.push_back(Store); 2786 } 2787 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 2788 } 2789 2790 // All stores are grouped in one node to allow the matching between 2791 // the size of Ins and InVals. This only happens for vararg functions. 2792 if (!OutChains.empty()) { 2793 OutChains.push_back(Chain); 2794 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 2795 } 2796 2797 return Chain; 2798 } 2799 2800 /// isEligibleForTailCallOptimization - Check whether the call is eligible 2801 /// for tail call optimization. 2802 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 2803 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 2804 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 2805 const SmallVector<CCValAssign, 16> &ArgLocs) const { 2806 2807 auto &Callee = CLI.Callee; 2808 auto CalleeCC = CLI.CallConv; 2809 auto &Outs = CLI.Outs; 2810 auto &Caller = MF.getFunction(); 2811 auto CallerCC = Caller.getCallingConv(); 2812 2813 // Exception-handling functions need a special set of instructions to 2814 // indicate a return to the hardware. Tail-calling another function would 2815 // probably break this. 2816 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 2817 // should be expanded as new function attributes are introduced. 2818 if (Caller.hasFnAttribute("interrupt")) 2819 return false; 2820 2821 // Do not tail call opt if the stack is used to pass parameters. 2822 if (CCInfo.getNextStackOffset() != 0) 2823 return false; 2824 2825 // Do not tail call opt if any parameters need to be passed indirectly. 2826 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 2827 // passed indirectly. So the address of the value will be passed in a 2828 // register, or if not available, then the address is put on the stack. In 2829 // order to pass indirectly, space on the stack often needs to be allocated 2830 // in order to store the value. In this case the CCInfo.getNextStackOffset() 2831 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 2832 // are passed CCValAssign::Indirect. 2833 for (auto &VA : ArgLocs) 2834 if (VA.getLocInfo() == CCValAssign::Indirect) 2835 return false; 2836 2837 // Do not tail call opt if either caller or callee uses struct return 2838 // semantics. 2839 auto IsCallerStructRet = Caller.hasStructRetAttr(); 2840 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 2841 if (IsCallerStructRet || IsCalleeStructRet) 2842 return false; 2843 2844 // Externally-defined functions with weak linkage should not be 2845 // tail-called. The behaviour of branch instructions in this situation (as 2846 // used for tail calls) is implementation-defined, so we cannot rely on the 2847 // linker replacing the tail call with a return. 2848 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 2849 const GlobalValue *GV = G->getGlobal(); 2850 if (GV->hasExternalWeakLinkage()) 2851 return false; 2852 } 2853 2854 // The callee has to preserve all registers the caller needs to preserve. 2855 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2856 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 2857 if (CalleeCC != CallerCC) { 2858 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 2859 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 2860 return false; 2861 } 2862 2863 // Byval parameters hand the function a pointer directly into the stack area 2864 // we want to reuse during a tail call. Working around this *is* possible 2865 // but less efficient and uglier in LowerCall. 2866 for (auto &Arg : Outs) 2867 if (Arg.Flags.isByVal()) 2868 return false; 2869 2870 return true; 2871 } 2872 2873 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 2874 // and output parameter nodes. 2875 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 2876 SmallVectorImpl<SDValue> &InVals) const { 2877 SelectionDAG &DAG = CLI.DAG; 2878 SDLoc &DL = CLI.DL; 2879 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 2880 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 2881 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 2882 SDValue Chain = CLI.Chain; 2883 SDValue Callee = CLI.Callee; 2884 bool &IsTailCall = CLI.IsTailCall; 2885 CallingConv::ID CallConv = CLI.CallConv; 2886 bool IsVarArg = CLI.IsVarArg; 2887 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2888 MVT XLenVT = Subtarget.getXLenVT(); 2889 2890 MachineFunction &MF = DAG.getMachineFunction(); 2891 2892 // Analyze the operands of the call, assigning locations to each operand. 2893 SmallVector<CCValAssign, 16> ArgLocs; 2894 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 2895 2896 if (CallConv == CallingConv::Fast) 2897 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC); 2898 else if (CallConv == CallingConv::GHC) 2899 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 2900 else 2901 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 2902 2903 // Check if it's really possible to do a tail call. 2904 if (IsTailCall) 2905 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 2906 2907 if (IsTailCall) 2908 ++NumTailCalls; 2909 else if (CLI.CB && CLI.CB->isMustTailCall()) 2910 report_fatal_error("failed to perform tail call elimination on a call " 2911 "site marked musttail"); 2912 2913 // Get a count of how many bytes are to be pushed on the stack. 2914 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 2915 2916 // Create local copies for byval args 2917 SmallVector<SDValue, 8> ByValArgs; 2918 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 2919 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2920 if (!Flags.isByVal()) 2921 continue; 2922 2923 SDValue Arg = OutVals[i]; 2924 unsigned Size = Flags.getByValSize(); 2925 Align Alignment = Flags.getNonZeroByValAlign(); 2926 2927 int FI = 2928 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 2929 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2930 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 2931 2932 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 2933 /*IsVolatile=*/false, 2934 /*AlwaysInline=*/false, IsTailCall, 2935 MachinePointerInfo(), MachinePointerInfo()); 2936 ByValArgs.push_back(FIPtr); 2937 } 2938 2939 if (!IsTailCall) 2940 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 2941 2942 // Copy argument values to their designated locations. 2943 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 2944 SmallVector<SDValue, 8> MemOpChains; 2945 SDValue StackPtr; 2946 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 2947 CCValAssign &VA = ArgLocs[i]; 2948 SDValue ArgValue = OutVals[i]; 2949 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2950 2951 // Handle passing f64 on RV32D with a soft float ABI as a special case. 2952 bool IsF64OnRV32DSoftABI = 2953 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 2954 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 2955 SDValue SplitF64 = DAG.getNode( 2956 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 2957 SDValue Lo = SplitF64.getValue(0); 2958 SDValue Hi = SplitF64.getValue(1); 2959 2960 Register RegLo = VA.getLocReg(); 2961 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 2962 2963 if (RegLo == RISCV::X17) { 2964 // Second half of f64 is passed on the stack. 2965 // Work out the address of the stack slot. 2966 if (!StackPtr.getNode()) 2967 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 2968 // Emit the store. 2969 MemOpChains.push_back( 2970 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 2971 } else { 2972 // Second half of f64 is passed in another GPR. 2973 assert(RegLo < RISCV::X31 && "Invalid register pair"); 2974 Register RegHigh = RegLo + 1; 2975 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 2976 } 2977 continue; 2978 } 2979 2980 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 2981 // as any other MemLoc. 2982 2983 // Promote the value if needed. 2984 // For now, only handle fully promoted and indirect arguments. 2985 if (VA.getLocInfo() == CCValAssign::Indirect) { 2986 // Store the argument in a stack slot and pass its address. 2987 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); 2988 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 2989 MemOpChains.push_back( 2990 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 2991 MachinePointerInfo::getFixedStack(MF, FI))); 2992 // If the original argument was split (e.g. i128), we need 2993 // to store all parts of it here (and pass just one address). 2994 unsigned ArgIndex = Outs[i].OrigArgIndex; 2995 assert(Outs[i].PartOffset == 0); 2996 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 2997 SDValue PartValue = OutVals[i + 1]; 2998 unsigned PartOffset = Outs[i + 1].PartOffset; 2999 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 3000 DAG.getIntPtrConstant(PartOffset, DL)); 3001 MemOpChains.push_back( 3002 DAG.getStore(Chain, DL, PartValue, Address, 3003 MachinePointerInfo::getFixedStack(MF, FI))); 3004 ++i; 3005 } 3006 ArgValue = SpillSlot; 3007 } else { 3008 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL); 3009 } 3010 3011 // Use local copy if it is a byval arg. 3012 if (Flags.isByVal()) 3013 ArgValue = ByValArgs[j++]; 3014 3015 if (VA.isRegLoc()) { 3016 // Queue up the argument copies and emit them at the end. 3017 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 3018 } else { 3019 assert(VA.isMemLoc() && "Argument not register or memory"); 3020 assert(!IsTailCall && "Tail call not allowed if stack is used " 3021 "for passing parameters"); 3022 3023 // Work out the address of the stack slot. 3024 if (!StackPtr.getNode()) 3025 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 3026 SDValue Address = 3027 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 3028 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 3029 3030 // Emit the store. 3031 MemOpChains.push_back( 3032 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 3033 } 3034 } 3035 3036 // Join the stores, which are independent of one another. 3037 if (!MemOpChains.empty()) 3038 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 3039 3040 SDValue Glue; 3041 3042 // Build a sequence of copy-to-reg nodes, chained and glued together. 3043 for (auto &Reg : RegsToPass) { 3044 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 3045 Glue = Chain.getValue(1); 3046 } 3047 3048 // Validate that none of the argument registers have been marked as 3049 // reserved, if so report an error. Do the same for the return address if this 3050 // is not a tailcall. 3051 validateCCReservedRegs(RegsToPass, MF); 3052 if (!IsTailCall && 3053 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 3054 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 3055 MF.getFunction(), 3056 "Return address register required, but has been reserved."}); 3057 3058 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 3059 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 3060 // split it and then direct call can be matched by PseudoCALL. 3061 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 3062 const GlobalValue *GV = S->getGlobal(); 3063 3064 unsigned OpFlags = RISCVII::MO_CALL; 3065 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 3066 OpFlags = RISCVII::MO_PLT; 3067 3068 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 3069 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 3070 unsigned OpFlags = RISCVII::MO_CALL; 3071 3072 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 3073 nullptr)) 3074 OpFlags = RISCVII::MO_PLT; 3075 3076 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 3077 } 3078 3079 // The first call operand is the chain and the second is the target address. 3080 SmallVector<SDValue, 8> Ops; 3081 Ops.push_back(Chain); 3082 Ops.push_back(Callee); 3083 3084 // Add argument registers to the end of the list so that they are 3085 // known live into the call. 3086 for (auto &Reg : RegsToPass) 3087 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 3088 3089 if (!IsTailCall) { 3090 // Add a register mask operand representing the call-preserved registers. 3091 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3092 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 3093 assert(Mask && "Missing call preserved mask for calling convention"); 3094 Ops.push_back(DAG.getRegisterMask(Mask)); 3095 } 3096 3097 // Glue the call to the argument copies, if any. 3098 if (Glue.getNode()) 3099 Ops.push_back(Glue); 3100 3101 // Emit the call. 3102 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3103 3104 if (IsTailCall) { 3105 MF.getFrameInfo().setHasTailCall(); 3106 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 3107 } 3108 3109 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 3110 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 3111 Glue = Chain.getValue(1); 3112 3113 // Mark the end of the call, which is glued to the call itself. 3114 Chain = DAG.getCALLSEQ_END(Chain, 3115 DAG.getConstant(NumBytes, DL, PtrVT, true), 3116 DAG.getConstant(0, DL, PtrVT, true), 3117 Glue, DL); 3118 Glue = Chain.getValue(1); 3119 3120 // Assign locations to each value returned by this call. 3121 SmallVector<CCValAssign, 16> RVLocs; 3122 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 3123 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 3124 3125 // Copy all of the result registers out of their specified physreg. 3126 for (auto &VA : RVLocs) { 3127 // Copy the value out 3128 SDValue RetValue = 3129 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 3130 // Glue the RetValue to the end of the call sequence 3131 Chain = RetValue.getValue(1); 3132 Glue = RetValue.getValue(2); 3133 3134 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 3135 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 3136 SDValue RetValue2 = 3137 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 3138 Chain = RetValue2.getValue(1); 3139 Glue = RetValue2.getValue(2); 3140 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 3141 RetValue2); 3142 } 3143 3144 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL); 3145 3146 InVals.push_back(RetValue); 3147 } 3148 3149 return Chain; 3150 } 3151 3152 bool RISCVTargetLowering::CanLowerReturn( 3153 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 3154 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 3155 SmallVector<CCValAssign, 16> RVLocs; 3156 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 3157 3158 Optional<unsigned> FirstMaskArgument; 3159 if (Subtarget.hasStdExtV()) 3160 preAssignMask(Outs, FirstMaskArgument, CCInfo); 3161 3162 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 3163 MVT VT = Outs[i].VT; 3164 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 3165 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 3166 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 3167 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 3168 *this, FirstMaskArgument)) 3169 return false; 3170 } 3171 return true; 3172 } 3173 3174 SDValue 3175 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 3176 bool IsVarArg, 3177 const SmallVectorImpl<ISD::OutputArg> &Outs, 3178 const SmallVectorImpl<SDValue> &OutVals, 3179 const SDLoc &DL, SelectionDAG &DAG) const { 3180 const MachineFunction &MF = DAG.getMachineFunction(); 3181 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 3182 3183 // Stores the assignment of the return value to a location. 3184 SmallVector<CCValAssign, 16> RVLocs; 3185 3186 // Info about the registers and stack slot. 3187 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 3188 *DAG.getContext()); 3189 3190 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 3191 nullptr); 3192 3193 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 3194 report_fatal_error("GHC functions return void only"); 3195 3196 SDValue Glue; 3197 SmallVector<SDValue, 4> RetOps(1, Chain); 3198 3199 // Copy the result values into the output registers. 3200 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 3201 SDValue Val = OutVals[i]; 3202 CCValAssign &VA = RVLocs[i]; 3203 assert(VA.isRegLoc() && "Can only return in registers!"); 3204 3205 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 3206 // Handle returning f64 on RV32D with a soft float ABI. 3207 assert(VA.isRegLoc() && "Expected return via registers"); 3208 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 3209 DAG.getVTList(MVT::i32, MVT::i32), Val); 3210 SDValue Lo = SplitF64.getValue(0); 3211 SDValue Hi = SplitF64.getValue(1); 3212 Register RegLo = VA.getLocReg(); 3213 assert(RegLo < RISCV::X31 && "Invalid register pair"); 3214 Register RegHi = RegLo + 1; 3215 3216 if (STI.isRegisterReservedByUser(RegLo) || 3217 STI.isRegisterReservedByUser(RegHi)) 3218 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 3219 MF.getFunction(), 3220 "Return value register required, but has been reserved."}); 3221 3222 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 3223 Glue = Chain.getValue(1); 3224 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 3225 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 3226 Glue = Chain.getValue(1); 3227 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 3228 } else { 3229 // Handle a 'normal' return. 3230 Val = convertValVTToLocVT(DAG, Val, VA, DL); 3231 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 3232 3233 if (STI.isRegisterReservedByUser(VA.getLocReg())) 3234 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 3235 MF.getFunction(), 3236 "Return value register required, but has been reserved."}); 3237 3238 // Guarantee that all emitted copies are stuck together. 3239 Glue = Chain.getValue(1); 3240 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 3241 } 3242 } 3243 3244 RetOps[0] = Chain; // Update chain. 3245 3246 // Add the glue node if we have it. 3247 if (Glue.getNode()) { 3248 RetOps.push_back(Glue); 3249 } 3250 3251 // Interrupt service routines use different return instructions. 3252 const Function &Func = DAG.getMachineFunction().getFunction(); 3253 if (Func.hasFnAttribute("interrupt")) { 3254 if (!Func.getReturnType()->isVoidTy()) 3255 report_fatal_error( 3256 "Functions with the interrupt attribute must have void return type!"); 3257 3258 MachineFunction &MF = DAG.getMachineFunction(); 3259 StringRef Kind = 3260 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 3261 3262 unsigned RetOpc; 3263 if (Kind == "user") 3264 RetOpc = RISCVISD::URET_FLAG; 3265 else if (Kind == "supervisor") 3266 RetOpc = RISCVISD::SRET_FLAG; 3267 else 3268 RetOpc = RISCVISD::MRET_FLAG; 3269 3270 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 3271 } 3272 3273 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 3274 } 3275 3276 void RISCVTargetLowering::validateCCReservedRegs( 3277 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 3278 MachineFunction &MF) const { 3279 const Function &F = MF.getFunction(); 3280 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 3281 3282 if (std::any_of(std::begin(Regs), std::end(Regs), [&STI](auto Reg) { 3283 return STI.isRegisterReservedByUser(Reg.first); 3284 })) 3285 F.getContext().diagnose(DiagnosticInfoUnsupported{ 3286 F, "Argument register required, but has been reserved."}); 3287 } 3288 3289 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 3290 return CI->isTailCall(); 3291 } 3292 3293 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 3294 #define NODE_NAME_CASE(NODE) \ 3295 case RISCVISD::NODE: \ 3296 return "RISCVISD::" #NODE; 3297 // clang-format off 3298 switch ((RISCVISD::NodeType)Opcode) { 3299 case RISCVISD::FIRST_NUMBER: 3300 break; 3301 NODE_NAME_CASE(RET_FLAG) 3302 NODE_NAME_CASE(URET_FLAG) 3303 NODE_NAME_CASE(SRET_FLAG) 3304 NODE_NAME_CASE(MRET_FLAG) 3305 NODE_NAME_CASE(CALL) 3306 NODE_NAME_CASE(SELECT_CC) 3307 NODE_NAME_CASE(BuildPairF64) 3308 NODE_NAME_CASE(SplitF64) 3309 NODE_NAME_CASE(TAIL) 3310 NODE_NAME_CASE(SLLW) 3311 NODE_NAME_CASE(SRAW) 3312 NODE_NAME_CASE(SRLW) 3313 NODE_NAME_CASE(DIVW) 3314 NODE_NAME_CASE(DIVUW) 3315 NODE_NAME_CASE(REMUW) 3316 NODE_NAME_CASE(ROLW) 3317 NODE_NAME_CASE(RORW) 3318 NODE_NAME_CASE(FSLW) 3319 NODE_NAME_CASE(FSRW) 3320 NODE_NAME_CASE(FMV_H_X) 3321 NODE_NAME_CASE(FMV_X_ANYEXTH) 3322 NODE_NAME_CASE(FMV_W_X_RV64) 3323 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 3324 NODE_NAME_CASE(READ_CYCLE_WIDE) 3325 NODE_NAME_CASE(GREVI) 3326 NODE_NAME_CASE(GREVIW) 3327 NODE_NAME_CASE(GORCI) 3328 NODE_NAME_CASE(GORCIW) 3329 } 3330 // clang-format on 3331 return nullptr; 3332 #undef NODE_NAME_CASE 3333 } 3334 3335 /// getConstraintType - Given a constraint letter, return the type of 3336 /// constraint it is for this target. 3337 RISCVTargetLowering::ConstraintType 3338 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 3339 if (Constraint.size() == 1) { 3340 switch (Constraint[0]) { 3341 default: 3342 break; 3343 case 'f': 3344 return C_RegisterClass; 3345 case 'I': 3346 case 'J': 3347 case 'K': 3348 return C_Immediate; 3349 case 'A': 3350 return C_Memory; 3351 } 3352 } 3353 return TargetLowering::getConstraintType(Constraint); 3354 } 3355 3356 std::pair<unsigned, const TargetRegisterClass *> 3357 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 3358 StringRef Constraint, 3359 MVT VT) const { 3360 // First, see if this is a constraint that directly corresponds to a 3361 // RISCV register class. 3362 if (Constraint.size() == 1) { 3363 switch (Constraint[0]) { 3364 case 'r': 3365 return std::make_pair(0U, &RISCV::GPRRegClass); 3366 case 'f': 3367 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 3368 return std::make_pair(0U, &RISCV::FPR16RegClass); 3369 if (Subtarget.hasStdExtF() && VT == MVT::f32) 3370 return std::make_pair(0U, &RISCV::FPR32RegClass); 3371 if (Subtarget.hasStdExtD() && VT == MVT::f64) 3372 return std::make_pair(0U, &RISCV::FPR64RegClass); 3373 break; 3374 default: 3375 break; 3376 } 3377 } 3378 3379 // Clang will correctly decode the usage of register name aliases into their 3380 // official names. However, other frontends like `rustc` do not. This allows 3381 // users of these frontends to use the ABI names for registers in LLVM-style 3382 // register constraints. 3383 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 3384 .Case("{zero}", RISCV::X0) 3385 .Case("{ra}", RISCV::X1) 3386 .Case("{sp}", RISCV::X2) 3387 .Case("{gp}", RISCV::X3) 3388 .Case("{tp}", RISCV::X4) 3389 .Case("{t0}", RISCV::X5) 3390 .Case("{t1}", RISCV::X6) 3391 .Case("{t2}", RISCV::X7) 3392 .Cases("{s0}", "{fp}", RISCV::X8) 3393 .Case("{s1}", RISCV::X9) 3394 .Case("{a0}", RISCV::X10) 3395 .Case("{a1}", RISCV::X11) 3396 .Case("{a2}", RISCV::X12) 3397 .Case("{a3}", RISCV::X13) 3398 .Case("{a4}", RISCV::X14) 3399 .Case("{a5}", RISCV::X15) 3400 .Case("{a6}", RISCV::X16) 3401 .Case("{a7}", RISCV::X17) 3402 .Case("{s2}", RISCV::X18) 3403 .Case("{s3}", RISCV::X19) 3404 .Case("{s4}", RISCV::X20) 3405 .Case("{s5}", RISCV::X21) 3406 .Case("{s6}", RISCV::X22) 3407 .Case("{s7}", RISCV::X23) 3408 .Case("{s8}", RISCV::X24) 3409 .Case("{s9}", RISCV::X25) 3410 .Case("{s10}", RISCV::X26) 3411 .Case("{s11}", RISCV::X27) 3412 .Case("{t3}", RISCV::X28) 3413 .Case("{t4}", RISCV::X29) 3414 .Case("{t5}", RISCV::X30) 3415 .Case("{t6}", RISCV::X31) 3416 .Default(RISCV::NoRegister); 3417 if (XRegFromAlias != RISCV::NoRegister) 3418 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 3419 3420 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 3421 // TableGen record rather than the AsmName to choose registers for InlineAsm 3422 // constraints, plus we want to match those names to the widest floating point 3423 // register type available, manually select floating point registers here. 3424 // 3425 // The second case is the ABI name of the register, so that frontends can also 3426 // use the ABI names in register constraint lists. 3427 if (Subtarget.hasStdExtF()) { 3428 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 3429 .Cases("{f0}", "{ft0}", RISCV::F0_F) 3430 .Cases("{f1}", "{ft1}", RISCV::F1_F) 3431 .Cases("{f2}", "{ft2}", RISCV::F2_F) 3432 .Cases("{f3}", "{ft3}", RISCV::F3_F) 3433 .Cases("{f4}", "{ft4}", RISCV::F4_F) 3434 .Cases("{f5}", "{ft5}", RISCV::F5_F) 3435 .Cases("{f6}", "{ft6}", RISCV::F6_F) 3436 .Cases("{f7}", "{ft7}", RISCV::F7_F) 3437 .Cases("{f8}", "{fs0}", RISCV::F8_F) 3438 .Cases("{f9}", "{fs1}", RISCV::F9_F) 3439 .Cases("{f10}", "{fa0}", RISCV::F10_F) 3440 .Cases("{f11}", "{fa1}", RISCV::F11_F) 3441 .Cases("{f12}", "{fa2}", RISCV::F12_F) 3442 .Cases("{f13}", "{fa3}", RISCV::F13_F) 3443 .Cases("{f14}", "{fa4}", RISCV::F14_F) 3444 .Cases("{f15}", "{fa5}", RISCV::F15_F) 3445 .Cases("{f16}", "{fa6}", RISCV::F16_F) 3446 .Cases("{f17}", "{fa7}", RISCV::F17_F) 3447 .Cases("{f18}", "{fs2}", RISCV::F18_F) 3448 .Cases("{f19}", "{fs3}", RISCV::F19_F) 3449 .Cases("{f20}", "{fs4}", RISCV::F20_F) 3450 .Cases("{f21}", "{fs5}", RISCV::F21_F) 3451 .Cases("{f22}", "{fs6}", RISCV::F22_F) 3452 .Cases("{f23}", "{fs7}", RISCV::F23_F) 3453 .Cases("{f24}", "{fs8}", RISCV::F24_F) 3454 .Cases("{f25}", "{fs9}", RISCV::F25_F) 3455 .Cases("{f26}", "{fs10}", RISCV::F26_F) 3456 .Cases("{f27}", "{fs11}", RISCV::F27_F) 3457 .Cases("{f28}", "{ft8}", RISCV::F28_F) 3458 .Cases("{f29}", "{ft9}", RISCV::F29_F) 3459 .Cases("{f30}", "{ft10}", RISCV::F30_F) 3460 .Cases("{f31}", "{ft11}", RISCV::F31_F) 3461 .Default(RISCV::NoRegister); 3462 if (FReg != RISCV::NoRegister) { 3463 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 3464 if (Subtarget.hasStdExtD()) { 3465 unsigned RegNo = FReg - RISCV::F0_F; 3466 unsigned DReg = RISCV::F0_D + RegNo; 3467 return std::make_pair(DReg, &RISCV::FPR64RegClass); 3468 } 3469 return std::make_pair(FReg, &RISCV::FPR32RegClass); 3470 } 3471 } 3472 3473 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 3474 } 3475 3476 unsigned 3477 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 3478 // Currently only support length 1 constraints. 3479 if (ConstraintCode.size() == 1) { 3480 switch (ConstraintCode[0]) { 3481 case 'A': 3482 return InlineAsm::Constraint_A; 3483 default: 3484 break; 3485 } 3486 } 3487 3488 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 3489 } 3490 3491 void RISCVTargetLowering::LowerAsmOperandForConstraint( 3492 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 3493 SelectionDAG &DAG) const { 3494 // Currently only support length 1 constraints. 3495 if (Constraint.length() == 1) { 3496 switch (Constraint[0]) { 3497 case 'I': 3498 // Validate & create a 12-bit signed immediate operand. 3499 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3500 uint64_t CVal = C->getSExtValue(); 3501 if (isInt<12>(CVal)) 3502 Ops.push_back( 3503 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 3504 } 3505 return; 3506 case 'J': 3507 // Validate & create an integer zero operand. 3508 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 3509 if (C->getZExtValue() == 0) 3510 Ops.push_back( 3511 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 3512 return; 3513 case 'K': 3514 // Validate & create a 5-bit unsigned immediate operand. 3515 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3516 uint64_t CVal = C->getZExtValue(); 3517 if (isUInt<5>(CVal)) 3518 Ops.push_back( 3519 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 3520 } 3521 return; 3522 default: 3523 break; 3524 } 3525 } 3526 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 3527 } 3528 3529 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 3530 Instruction *Inst, 3531 AtomicOrdering Ord) const { 3532 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 3533 return Builder.CreateFence(Ord); 3534 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 3535 return Builder.CreateFence(AtomicOrdering::Release); 3536 return nullptr; 3537 } 3538 3539 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 3540 Instruction *Inst, 3541 AtomicOrdering Ord) const { 3542 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 3543 return Builder.CreateFence(AtomicOrdering::Acquire); 3544 return nullptr; 3545 } 3546 3547 TargetLowering::AtomicExpansionKind 3548 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 3549 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 3550 // point operations can't be used in an lr/sc sequence without breaking the 3551 // forward-progress guarantee. 3552 if (AI->isFloatingPointOperation()) 3553 return AtomicExpansionKind::CmpXChg; 3554 3555 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 3556 if (Size == 8 || Size == 16) 3557 return AtomicExpansionKind::MaskedIntrinsic; 3558 return AtomicExpansionKind::None; 3559 } 3560 3561 static Intrinsic::ID 3562 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 3563 if (XLen == 32) { 3564 switch (BinOp) { 3565 default: 3566 llvm_unreachable("Unexpected AtomicRMW BinOp"); 3567 case AtomicRMWInst::Xchg: 3568 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 3569 case AtomicRMWInst::Add: 3570 return Intrinsic::riscv_masked_atomicrmw_add_i32; 3571 case AtomicRMWInst::Sub: 3572 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 3573 case AtomicRMWInst::Nand: 3574 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 3575 case AtomicRMWInst::Max: 3576 return Intrinsic::riscv_masked_atomicrmw_max_i32; 3577 case AtomicRMWInst::Min: 3578 return Intrinsic::riscv_masked_atomicrmw_min_i32; 3579 case AtomicRMWInst::UMax: 3580 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 3581 case AtomicRMWInst::UMin: 3582 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 3583 } 3584 } 3585 3586 if (XLen == 64) { 3587 switch (BinOp) { 3588 default: 3589 llvm_unreachable("Unexpected AtomicRMW BinOp"); 3590 case AtomicRMWInst::Xchg: 3591 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 3592 case AtomicRMWInst::Add: 3593 return Intrinsic::riscv_masked_atomicrmw_add_i64; 3594 case AtomicRMWInst::Sub: 3595 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 3596 case AtomicRMWInst::Nand: 3597 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 3598 case AtomicRMWInst::Max: 3599 return Intrinsic::riscv_masked_atomicrmw_max_i64; 3600 case AtomicRMWInst::Min: 3601 return Intrinsic::riscv_masked_atomicrmw_min_i64; 3602 case AtomicRMWInst::UMax: 3603 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 3604 case AtomicRMWInst::UMin: 3605 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 3606 } 3607 } 3608 3609 llvm_unreachable("Unexpected XLen\n"); 3610 } 3611 3612 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 3613 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 3614 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 3615 unsigned XLen = Subtarget.getXLen(); 3616 Value *Ordering = 3617 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 3618 Type *Tys[] = {AlignedAddr->getType()}; 3619 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 3620 AI->getModule(), 3621 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 3622 3623 if (XLen == 64) { 3624 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 3625 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 3626 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 3627 } 3628 3629 Value *Result; 3630 3631 // Must pass the shift amount needed to sign extend the loaded value prior 3632 // to performing a signed comparison for min/max. ShiftAmt is the number of 3633 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 3634 // is the number of bits to left+right shift the value in order to 3635 // sign-extend. 3636 if (AI->getOperation() == AtomicRMWInst::Min || 3637 AI->getOperation() == AtomicRMWInst::Max) { 3638 const DataLayout &DL = AI->getModule()->getDataLayout(); 3639 unsigned ValWidth = 3640 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 3641 Value *SextShamt = 3642 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 3643 Result = Builder.CreateCall(LrwOpScwLoop, 3644 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 3645 } else { 3646 Result = 3647 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 3648 } 3649 3650 if (XLen == 64) 3651 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 3652 return Result; 3653 } 3654 3655 TargetLowering::AtomicExpansionKind 3656 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 3657 AtomicCmpXchgInst *CI) const { 3658 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 3659 if (Size == 8 || Size == 16) 3660 return AtomicExpansionKind::MaskedIntrinsic; 3661 return AtomicExpansionKind::None; 3662 } 3663 3664 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 3665 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 3666 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 3667 unsigned XLen = Subtarget.getXLen(); 3668 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 3669 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 3670 if (XLen == 64) { 3671 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 3672 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 3673 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 3674 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 3675 } 3676 Type *Tys[] = {AlignedAddr->getType()}; 3677 Function *MaskedCmpXchg = 3678 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 3679 Value *Result = Builder.CreateCall( 3680 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 3681 if (XLen == 64) 3682 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 3683 return Result; 3684 } 3685 3686 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 3687 EVT VT) const { 3688 VT = VT.getScalarType(); 3689 3690 if (!VT.isSimple()) 3691 return false; 3692 3693 switch (VT.getSimpleVT().SimpleTy) { 3694 case MVT::f16: 3695 return Subtarget.hasStdExtZfh(); 3696 case MVT::f32: 3697 return Subtarget.hasStdExtF(); 3698 case MVT::f64: 3699 return Subtarget.hasStdExtD(); 3700 default: 3701 break; 3702 } 3703 3704 return false; 3705 } 3706 3707 Register RISCVTargetLowering::getExceptionPointerRegister( 3708 const Constant *PersonalityFn) const { 3709 return RISCV::X10; 3710 } 3711 3712 Register RISCVTargetLowering::getExceptionSelectorRegister( 3713 const Constant *PersonalityFn) const { 3714 return RISCV::X11; 3715 } 3716 3717 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 3718 // Return false to suppress the unnecessary extensions if the LibCall 3719 // arguments or return value is f32 type for LP64 ABI. 3720 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 3721 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 3722 return false; 3723 3724 return true; 3725 } 3726 3727 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 3728 SDValue C) const { 3729 // Check integral scalar types. 3730 if (VT.isScalarInteger()) { 3731 // Do not perform the transformation on riscv32 with the M extension. 3732 if (!Subtarget.is64Bit() && Subtarget.hasStdExtM()) 3733 return false; 3734 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 3735 if (ConstNode->getAPIntValue().getBitWidth() > 8 * sizeof(int64_t)) 3736 return false; 3737 int64_t Imm = ConstNode->getSExtValue(); 3738 if (isPowerOf2_64(Imm + 1) || isPowerOf2_64(Imm - 1) || 3739 isPowerOf2_64(1 - Imm) || isPowerOf2_64(-1 - Imm)) 3740 return true; 3741 } 3742 } 3743 3744 return false; 3745 } 3746 3747 #define GET_REGISTER_MATCHER 3748 #include "RISCVGenAsmMatcher.inc" 3749 3750 Register 3751 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 3752 const MachineFunction &MF) const { 3753 Register Reg = MatchRegisterAltName(RegName); 3754 if (Reg == RISCV::NoRegister) 3755 Reg = MatchRegisterName(RegName); 3756 if (Reg == RISCV::NoRegister) 3757 report_fatal_error( 3758 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 3759 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 3760 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 3761 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 3762 StringRef(RegName) + "\".")); 3763 return Reg; 3764 } 3765 3766 namespace llvm { 3767 namespace RISCVVIntrinsicsTable { 3768 3769 #define GET_RISCVVIntrinsicsTable_IMPL 3770 #include "RISCVGenSearchableTables.inc" 3771 3772 } // namespace RISCVVIntrinsicsTable 3773 } // namespace llvm 3774