1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/IntrinsicsRISCV.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/KnownBits.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "riscv-lower" 45 46 STATISTIC(NumTailCalls, "Number of tail calls"); 47 48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 49 const RISCVSubtarget &STI) 50 : TargetLowering(TM), Subtarget(STI) { 51 52 if (Subtarget.isRV32E()) 53 report_fatal_error("Codegen not yet implemented for RV32E"); 54 55 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 56 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 57 58 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 59 !Subtarget.hasStdExtF()) { 60 errs() << "Hard-float 'f' ABI can't be used for a target that " 61 "doesn't support the F instruction set extension (ignoring " 62 "target-abi)\n"; 63 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 64 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 65 !Subtarget.hasStdExtD()) { 66 errs() << "Hard-float 'd' ABI can't be used for a target that " 67 "doesn't support the D instruction set extension (ignoring " 68 "target-abi)\n"; 69 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 70 } 71 72 switch (ABI) { 73 default: 74 report_fatal_error("Don't know how to lower this ABI"); 75 case RISCVABI::ABI_ILP32: 76 case RISCVABI::ABI_ILP32F: 77 case RISCVABI::ABI_ILP32D: 78 case RISCVABI::ABI_LP64: 79 case RISCVABI::ABI_LP64F: 80 case RISCVABI::ABI_LP64D: 81 break; 82 } 83 84 MVT XLenVT = Subtarget.getXLenVT(); 85 86 // Set up the register classes. 87 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 88 89 if (Subtarget.hasStdExtZfh()) 90 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 91 if (Subtarget.hasStdExtF()) 92 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 93 if (Subtarget.hasStdExtD()) 94 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 95 96 static const MVT::SimpleValueType BoolVecVTs[] = { 97 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 98 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 99 static const MVT::SimpleValueType IntVecVTs[] = { 100 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 101 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 102 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 103 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 104 MVT::nxv4i64, MVT::nxv8i64}; 105 static const MVT::SimpleValueType F16VecVTs[] = { 106 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 107 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 108 static const MVT::SimpleValueType F32VecVTs[] = { 109 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 110 static const MVT::SimpleValueType F64VecVTs[] = { 111 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 112 113 if (Subtarget.hasVInstructions()) { 114 auto addRegClassForRVV = [this](MVT VT) { 115 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 116 const TargetRegisterClass *RC; 117 if (Size <= RISCV::RVVBitsPerBlock) 118 RC = &RISCV::VRRegClass; 119 else if (Size == 2 * RISCV::RVVBitsPerBlock) 120 RC = &RISCV::VRM2RegClass; 121 else if (Size == 4 * RISCV::RVVBitsPerBlock) 122 RC = &RISCV::VRM4RegClass; 123 else if (Size == 8 * RISCV::RVVBitsPerBlock) 124 RC = &RISCV::VRM8RegClass; 125 else 126 llvm_unreachable("Unexpected size"); 127 128 addRegisterClass(VT, RC); 129 }; 130 131 for (MVT VT : BoolVecVTs) 132 addRegClassForRVV(VT); 133 for (MVT VT : IntVecVTs) { 134 if (VT.getVectorElementType() == MVT::i64 && 135 !Subtarget.hasVInstructionsI64()) 136 continue; 137 addRegClassForRVV(VT); 138 } 139 140 if (Subtarget.hasVInstructionsF16()) 141 for (MVT VT : F16VecVTs) 142 addRegClassForRVV(VT); 143 144 if (Subtarget.hasVInstructionsF32()) 145 for (MVT VT : F32VecVTs) 146 addRegClassForRVV(VT); 147 148 if (Subtarget.hasVInstructionsF64()) 149 for (MVT VT : F64VecVTs) 150 addRegClassForRVV(VT); 151 152 if (Subtarget.useRVVForFixedLengthVectors()) { 153 auto addRegClassForFixedVectors = [this](MVT VT) { 154 MVT ContainerVT = getContainerForFixedLengthVector(VT); 155 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 156 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 157 addRegisterClass(VT, TRI.getRegClass(RCID)); 158 }; 159 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 160 if (useRVVForFixedLengthVectorVT(VT)) 161 addRegClassForFixedVectors(VT); 162 163 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 164 if (useRVVForFixedLengthVectorVT(VT)) 165 addRegClassForFixedVectors(VT); 166 } 167 } 168 169 // Compute derived properties from the register classes. 170 computeRegisterProperties(STI.getRegisterInfo()); 171 172 setStackPointerRegisterToSaveRestore(RISCV::X2); 173 174 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, XLenVT, 175 MVT::i1, Promote); 176 177 // TODO: add all necessary setOperationAction calls. 178 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 179 180 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 181 setOperationAction(ISD::BR_CC, XLenVT, Expand); 182 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 183 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 184 185 setOperationAction({ISD::STACKSAVE, ISD::STACKRESTORE}, MVT::Other, Expand); 186 187 setOperationAction(ISD::VASTART, MVT::Other, Custom); 188 setOperationAction({ISD::VAARG, ISD::VACOPY, ISD::VAEND}, MVT::Other, Expand); 189 190 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 191 192 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 193 194 if (!Subtarget.hasStdExtZbb()) 195 setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::i8, MVT::i16}, Expand); 196 197 if (Subtarget.is64Bit()) { 198 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 199 200 setOperationAction({ISD::ADD, ISD::SUB, ISD::SHL, ISD::SRA, ISD::SRL}, 201 MVT::i32, Custom); 202 203 setOperationAction({ISD::UADDO, ISD::USUBO, ISD::UADDSAT, ISD::USUBSAT}, 204 MVT::i32, Custom); 205 } else { 206 setLibcallName( 207 {RTLIB::SHL_I128, RTLIB::SRL_I128, RTLIB::SRA_I128, RTLIB::MUL_I128}, 208 nullptr); 209 setLibcallName(RTLIB::MULO_I64, nullptr); 210 } 211 212 if (!Subtarget.hasStdExtM()) { 213 setOperationAction({ISD::MUL, ISD::MULHS, ISD::MULHU, ISD::SDIV, ISD::UDIV, 214 ISD::SREM, ISD::UREM}, 215 XLenVT, Expand); 216 } else { 217 if (Subtarget.is64Bit()) { 218 setOperationAction(ISD::MUL, {MVT::i32, MVT::i128}, Custom); 219 220 setOperationAction({ISD::SDIV, ISD::UDIV, ISD::UREM}, 221 {MVT::i8, MVT::i16, MVT::i32}, Custom); 222 } else { 223 setOperationAction(ISD::MUL, MVT::i64, Custom); 224 } 225 } 226 227 setOperationAction( 228 {ISD::SDIVREM, ISD::UDIVREM, ISD::SMUL_LOHI, ISD::UMUL_LOHI}, XLenVT, 229 Expand); 230 231 setOperationAction({ISD::SHL_PARTS, ISD::SRL_PARTS, ISD::SRA_PARTS}, XLenVT, 232 Custom); 233 234 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 235 Subtarget.hasStdExtZbkb()) { 236 if (Subtarget.is64Bit()) 237 setOperationAction({ISD::ROTL, ISD::ROTR}, MVT::i32, Custom); 238 } else { 239 setOperationAction({ISD::ROTL, ISD::ROTR}, XLenVT, Expand); 240 } 241 242 if (Subtarget.hasStdExtZbp()) { 243 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 244 // more combining. 245 setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, XLenVT, Custom); 246 247 // BSWAP i8 doesn't exist. 248 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 249 250 setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i16, Custom); 251 252 if (Subtarget.is64Bit()) 253 setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i32, Custom); 254 } else { 255 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 256 // pattern match it directly in isel. 257 setOperationAction(ISD::BSWAP, XLenVT, 258 (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) 259 ? Legal 260 : Expand); 261 // Zbkb can use rev8+brev8 to implement bitreverse. 262 setOperationAction(ISD::BITREVERSE, XLenVT, 263 Subtarget.hasStdExtZbkb() ? Custom : Expand); 264 } 265 266 if (Subtarget.hasStdExtZbb()) { 267 setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, XLenVT, 268 Legal); 269 270 if (Subtarget.is64Bit()) 271 setOperationAction( 272 {ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, 273 MVT::i32, Custom); 274 } else { 275 setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP}, XLenVT, Expand); 276 277 if (Subtarget.is64Bit()) 278 setOperationAction(ISD::ABS, MVT::i32, Custom); 279 } 280 281 if (Subtarget.hasStdExtZbt()) { 282 setOperationAction({ISD::FSHL, ISD::FSHR}, XLenVT, Custom); 283 setOperationAction(ISD::SELECT, XLenVT, Legal); 284 285 if (Subtarget.is64Bit()) 286 setOperationAction({ISD::FSHL, ISD::FSHR}, MVT::i32, Custom); 287 } else { 288 setOperationAction(ISD::SELECT, XLenVT, Custom); 289 } 290 291 static constexpr ISD::NodeType FPLegalNodeTypes[] = { 292 ISD::FMINNUM, ISD::FMAXNUM, ISD::LRINT, 293 ISD::LLRINT, ISD::LROUND, ISD::LLROUND, 294 ISD::STRICT_LRINT, ISD::STRICT_LLRINT, ISD::STRICT_LROUND, 295 ISD::STRICT_LLROUND, ISD::STRICT_FMA, ISD::STRICT_FADD, 296 ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV, 297 ISD::STRICT_FSQRT, ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS}; 298 299 static const ISD::CondCode FPCCToExpand[] = { 300 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 301 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 302 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 303 304 static const ISD::NodeType FPOpToExpand[] = { 305 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 306 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 307 308 if (Subtarget.hasStdExtZfh()) 309 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 310 311 if (Subtarget.hasStdExtZfh()) { 312 for (auto NT : FPLegalNodeTypes) 313 setOperationAction(NT, MVT::f16, Legal); 314 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); 315 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 316 setCondCodeAction(FPCCToExpand, MVT::f16, Expand); 317 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 318 setOperationAction(ISD::SELECT, MVT::f16, Custom); 319 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 320 321 setOperationAction({ISD::FREM, ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, 322 ISD::FRINT, ISD::FROUND, ISD::FROUNDEVEN, ISD::FTRUNC, 323 ISD::FPOW, ISD::FPOWI, ISD::FCOS, ISD::FSIN, 324 ISD::FSINCOS, ISD::FEXP, ISD::FEXP2, ISD::FLOG, 325 ISD::FLOG2, ISD::FLOG10}, 326 MVT::f16, Promote); 327 328 // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have 329 // complete support for all operations in LegalizeDAG. 330 331 // We need to custom promote this. 332 if (Subtarget.is64Bit()) 333 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 334 } 335 336 if (Subtarget.hasStdExtF()) { 337 for (auto NT : FPLegalNodeTypes) 338 setOperationAction(NT, MVT::f32, Legal); 339 setCondCodeAction(FPCCToExpand, MVT::f32, Expand); 340 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 341 setOperationAction(ISD::SELECT, MVT::f32, Custom); 342 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 343 for (auto Op : FPOpToExpand) 344 setOperationAction(Op, MVT::f32, Expand); 345 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 346 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 347 } 348 349 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 350 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 351 352 if (Subtarget.hasStdExtD()) { 353 for (auto NT : FPLegalNodeTypes) 354 setOperationAction(NT, MVT::f64, Legal); 355 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 356 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 357 setCondCodeAction(FPCCToExpand, MVT::f64, Expand); 358 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 359 setOperationAction(ISD::SELECT, MVT::f64, Custom); 360 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 361 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 362 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 363 for (auto Op : FPOpToExpand) 364 setOperationAction(Op, MVT::f64, Expand); 365 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 366 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 367 } 368 369 if (Subtarget.is64Bit()) 370 setOperationAction({ISD::FP_TO_UINT, ISD::FP_TO_SINT, 371 ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT}, 372 MVT::i32, Custom); 373 374 if (Subtarget.hasStdExtF()) { 375 setOperationAction({ISD::FP_TO_UINT_SAT, ISD::FP_TO_SINT_SAT}, XLenVT, 376 Custom); 377 378 setOperationAction({ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT, 379 ISD::STRICT_UINT_TO_FP, ISD::STRICT_SINT_TO_FP}, 380 XLenVT, Legal); 381 382 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 383 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 384 } 385 386 setOperationAction({ISD::GlobalAddress, ISD::BlockAddress, ISD::ConstantPool, 387 ISD::JumpTable}, 388 XLenVT, Custom); 389 390 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 391 392 if (Subtarget.is64Bit()) 393 setOperationAction(ISD::Constant, MVT::i64, Custom); 394 395 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 396 // Unfortunately this can't be determined just from the ISA naming string. 397 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 398 Subtarget.is64Bit() ? Legal : Custom); 399 400 setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Legal); 401 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 402 if (Subtarget.is64Bit()) 403 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 404 405 if (Subtarget.hasStdExtA()) { 406 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 407 setMinCmpXchgSizeInBits(32); 408 } else { 409 setMaxAtomicSizeInBitsSupported(0); 410 } 411 412 setBooleanContents(ZeroOrOneBooleanContent); 413 414 if (Subtarget.hasVInstructions()) { 415 setBooleanVectorContents(ZeroOrOneBooleanContent); 416 417 setOperationAction(ISD::VSCALE, XLenVT, Custom); 418 419 // RVV intrinsics may have illegal operands. 420 // We also need to custom legalize vmv.x.s. 421 setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN}, 422 {MVT::i8, MVT::i16}, Custom); 423 if (Subtarget.is64Bit()) 424 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 425 else 426 setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN}, 427 MVT::i64, Custom); 428 429 setOperationAction({ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID}, 430 MVT::Other, Custom); 431 432 static const unsigned IntegerVPOps[] = { 433 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 434 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 435 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 436 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 437 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 438 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 439 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 440 ISD::VP_MERGE, ISD::VP_SELECT, ISD::VP_FPTOSI, 441 ISD::VP_FPTOUI, ISD::VP_SETCC, ISD::VP_SIGN_EXTEND, 442 ISD::VP_ZERO_EXTEND, ISD::VP_TRUNCATE}; 443 444 static const unsigned FloatingPointVPOps[] = { 445 ISD::VP_FADD, ISD::VP_FSUB, 446 ISD::VP_FMUL, ISD::VP_FDIV, 447 ISD::VP_FNEG, ISD::VP_FMA, 448 ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 449 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, 450 ISD::VP_MERGE, ISD::VP_SELECT, 451 ISD::VP_SITOFP, ISD::VP_UITOFP, 452 ISD::VP_SETCC, ISD::VP_FP_ROUND, 453 ISD::VP_FP_EXTEND}; 454 455 if (!Subtarget.is64Bit()) { 456 // We must custom-lower certain vXi64 operations on RV32 due to the vector 457 // element type being illegal. 458 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, 459 MVT::i64, Custom); 460 461 setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND, 462 ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR, 463 ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN, 464 ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN}, 465 MVT::i64, Custom); 466 467 setOperationAction({ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 468 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, 469 ISD::VP_REDUCE_SMAX, ISD::VP_REDUCE_SMIN, 470 ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN}, 471 MVT::i64, Custom); 472 } 473 474 for (MVT VT : BoolVecVTs) { 475 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 476 477 // Mask VTs are custom-expanded into a series of standard nodes 478 setOperationAction({ISD::TRUNCATE, ISD::CONCAT_VECTORS, 479 ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, 480 VT, Custom); 481 482 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT, 483 Custom); 484 485 setOperationAction(ISD::SELECT, VT, Custom); 486 setOperationAction( 487 {ISD::SELECT_CC, ISD::VSELECT, ISD::VP_MERGE, ISD::VP_SELECT}, VT, 488 Expand); 489 490 setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR}, VT, Custom); 491 492 setOperationAction( 493 {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT, 494 Custom); 495 496 setOperationAction( 497 {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT, 498 Custom); 499 500 // RVV has native int->float & float->int conversions where the 501 // element type sizes are within one power-of-two of each other. Any 502 // wider distances between type sizes have to be lowered as sequences 503 // which progressively narrow the gap in stages. 504 setOperationAction( 505 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}, 506 VT, Custom); 507 508 // Expand all extending loads to types larger than this, and truncating 509 // stores from types larger than this. 510 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 511 setTruncStoreAction(OtherVT, VT, Expand); 512 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT, 513 VT, Expand); 514 } 515 516 setOperationAction( 517 {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_TRUNCATE, ISD::VP_SETCC}, VT, 518 Custom); 519 } 520 521 for (MVT VT : IntVecVTs) { 522 if (VT.getVectorElementType() == MVT::i64 && 523 !Subtarget.hasVInstructionsI64()) 524 continue; 525 526 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 527 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 528 529 // Vectors implement MULHS/MULHU. 530 setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, VT, Expand); 531 532 // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*. 533 if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) 534 setOperationAction({ISD::MULHU, ISD::MULHS}, VT, Expand); 535 536 setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, VT, 537 Legal); 538 539 setOperationAction({ISD::ROTL, ISD::ROTR}, VT, Expand); 540 541 setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP, ISD::BSWAP}, VT, 542 Expand); 543 544 setOperationAction(ISD::BSWAP, VT, Expand); 545 546 // Custom-lower extensions and truncations from/to mask types. 547 setOperationAction({ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, 548 VT, Custom); 549 550 // RVV has native int->float & float->int conversions where the 551 // element type sizes are within one power-of-two of each other. Any 552 // wider distances between type sizes have to be lowered as sequences 553 // which progressively narrow the gap in stages. 554 setOperationAction( 555 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}, 556 VT, Custom); 557 558 setOperationAction( 559 {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT, Legal); 560 561 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 562 // nodes which truncate by one power of two at a time. 563 setOperationAction(ISD::TRUNCATE, VT, Custom); 564 565 // Custom-lower insert/extract operations to simplify patterns. 566 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT, 567 Custom); 568 569 // Custom-lower reduction operations to set up the corresponding custom 570 // nodes' operands. 571 setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND, 572 ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR, 573 ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN, 574 ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN}, 575 VT, Custom); 576 577 setOperationAction(IntegerVPOps, VT, Custom); 578 579 setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom); 580 581 setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, 582 VT, Custom); 583 584 setOperationAction( 585 {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT, 586 Custom); 587 588 setOperationAction( 589 {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, 590 VT, Custom); 591 592 setOperationAction(ISD::SELECT, VT, Custom); 593 setOperationAction(ISD::SELECT_CC, VT, Expand); 594 595 setOperationAction({ISD::STEP_VECTOR, ISD::VECTOR_REVERSE}, VT, Custom); 596 597 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 598 setTruncStoreAction(VT, OtherVT, Expand); 599 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT, 600 VT, Expand); 601 } 602 603 // Splice 604 setOperationAction(ISD::VECTOR_SPLICE, VT, Custom); 605 606 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 607 // type that can represent the value exactly. 608 if (VT.getVectorElementType() != MVT::i64) { 609 MVT FloatEltVT = 610 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 611 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 612 if (isTypeLegal(FloatVT)) { 613 setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT, 614 Custom); 615 } 616 } 617 } 618 619 // Expand various CCs to best match the RVV ISA, which natively supports UNE 620 // but no other unordered comparisons, and supports all ordered comparisons 621 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 622 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 623 // and we pattern-match those back to the "original", swapping operands once 624 // more. This way we catch both operations and both "vf" and "fv" forms with 625 // fewer patterns. 626 static const ISD::CondCode VFPCCToExpand[] = { 627 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 628 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 629 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 630 }; 631 632 // Sets common operation actions on RVV floating-point vector types. 633 const auto SetCommonVFPActions = [&](MVT VT) { 634 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 635 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 636 // sizes are within one power-of-two of each other. Therefore conversions 637 // between vXf16 and vXf64 must be lowered as sequences which convert via 638 // vXf32. 639 setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom); 640 // Custom-lower insert/extract operations to simplify patterns. 641 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT, 642 Custom); 643 // Expand various condition codes (explained above). 644 setCondCodeAction(VFPCCToExpand, VT, Expand); 645 646 setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, VT, Legal); 647 648 setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND}, 649 VT, Custom); 650 651 setOperationAction({ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD, 652 ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAX}, 653 VT, Custom); 654 655 // Expand FP operations that need libcalls. 656 setOperationAction(ISD::FREM, VT, Expand); 657 setOperationAction(ISD::FPOW, VT, Expand); 658 setOperationAction(ISD::FCOS, VT, Expand); 659 setOperationAction(ISD::FSIN, VT, Expand); 660 setOperationAction(ISD::FSINCOS, VT, Expand); 661 setOperationAction(ISD::FEXP, VT, Expand); 662 setOperationAction(ISD::FEXP2, VT, Expand); 663 setOperationAction(ISD::FLOG, VT, Expand); 664 setOperationAction(ISD::FLOG2, VT, Expand); 665 setOperationAction(ISD::FLOG10, VT, Expand); 666 setOperationAction(ISD::FRINT, VT, Expand); 667 setOperationAction(ISD::FNEARBYINT, VT, Expand); 668 669 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 670 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 671 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 672 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 673 674 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 675 676 setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom); 677 678 setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, 679 VT, Custom); 680 681 setOperationAction( 682 {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT, 683 Custom); 684 685 setOperationAction(ISD::SELECT, VT, Custom); 686 setOperationAction(ISD::SELECT_CC, VT, Expand); 687 688 setOperationAction( 689 {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, 690 VT, Custom); 691 692 setOperationAction({ISD::VECTOR_REVERSE, ISD::VECTOR_SPLICE}, VT, Custom); 693 694 setOperationAction(FloatingPointVPOps, VT, Custom); 695 }; 696 697 // Sets common extload/truncstore actions on RVV floating-point vector 698 // types. 699 const auto SetCommonVFPExtLoadTruncStoreActions = 700 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 701 for (auto SmallVT : SmallerVTs) { 702 setTruncStoreAction(VT, SmallVT, Expand); 703 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 704 } 705 }; 706 707 if (Subtarget.hasVInstructionsF16()) 708 for (MVT VT : F16VecVTs) 709 SetCommonVFPActions(VT); 710 711 for (MVT VT : F32VecVTs) { 712 if (Subtarget.hasVInstructionsF32()) 713 SetCommonVFPActions(VT); 714 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 715 } 716 717 for (MVT VT : F64VecVTs) { 718 if (Subtarget.hasVInstructionsF64()) 719 SetCommonVFPActions(VT); 720 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 721 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 722 } 723 724 if (Subtarget.useRVVForFixedLengthVectors()) { 725 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 726 if (!useRVVForFixedLengthVectorVT(VT)) 727 continue; 728 729 // By default everything must be expanded. 730 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 731 setOperationAction(Op, VT, Expand); 732 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 733 setTruncStoreAction(VT, OtherVT, Expand); 734 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, 735 OtherVT, VT, Expand); 736 } 737 738 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 739 setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT, 740 Custom); 741 742 setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS}, VT, 743 Custom); 744 745 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, 746 VT, Custom); 747 748 setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom); 749 750 setOperationAction(ISD::SETCC, VT, Custom); 751 752 setOperationAction(ISD::SELECT, VT, Custom); 753 754 setOperationAction(ISD::TRUNCATE, VT, Custom); 755 756 setOperationAction(ISD::BITCAST, VT, Custom); 757 758 setOperationAction( 759 {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT, 760 Custom); 761 762 setOperationAction( 763 {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT, 764 Custom); 765 766 setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, 767 ISD::FP_TO_UINT}, 768 VT, Custom); 769 770 // Operations below are different for between masks and other vectors. 771 if (VT.getVectorElementType() == MVT::i1) { 772 setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, ISD::AND, 773 ISD::OR, ISD::XOR}, 774 VT, Custom); 775 776 setOperationAction( 777 {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_SETCC, ISD::VP_TRUNCATE}, 778 VT, Custom); 779 continue; 780 } 781 782 // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to 783 // it before type legalization for i64 vectors on RV32. It will then be 784 // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle. 785 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 786 // improvements first. 787 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 788 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 789 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 790 } 791 792 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 793 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 794 795 setOperationAction( 796 {ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, VT, Custom); 797 798 setOperationAction( 799 {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT, 800 Custom); 801 802 setOperationAction({ISD::ADD, ISD::MUL, ISD::SUB, ISD::AND, ISD::OR, 803 ISD::XOR, ISD::SDIV, ISD::SREM, ISD::UDIV, 804 ISD::UREM, ISD::SHL, ISD::SRA, ISD::SRL}, 805 VT, Custom); 806 807 setOperationAction( 808 {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, ISD::ABS}, VT, Custom); 809 810 // vXi64 MULHS/MULHU requires the V extension instead of Zve64*. 811 if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) 812 setOperationAction({ISD::MULHS, ISD::MULHU}, VT, Custom); 813 814 setOperationAction( 815 {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT, 816 Custom); 817 818 setOperationAction(ISD::VSELECT, VT, Custom); 819 setOperationAction(ISD::SELECT_CC, VT, Expand); 820 821 setOperationAction( 822 {ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, VT, Custom); 823 824 // Custom-lower reduction operations to set up the corresponding custom 825 // nodes' operands. 826 setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_SMAX, 827 ISD::VECREDUCE_SMIN, ISD::VECREDUCE_UMAX, 828 ISD::VECREDUCE_UMIN}, 829 VT, Custom); 830 831 setOperationAction(IntegerVPOps, VT, Custom); 832 833 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 834 // type that can represent the value exactly. 835 if (VT.getVectorElementType() != MVT::i64) { 836 MVT FloatEltVT = 837 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 838 EVT FloatVT = 839 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 840 if (isTypeLegal(FloatVT)) 841 setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT, 842 Custom); 843 } 844 } 845 846 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 847 if (!useRVVForFixedLengthVectorVT(VT)) 848 continue; 849 850 // By default everything must be expanded. 851 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 852 setOperationAction(Op, VT, Expand); 853 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 854 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 855 setTruncStoreAction(VT, OtherVT, Expand); 856 } 857 858 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 859 setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT, 860 Custom); 861 862 setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS, 863 ISD::VECTOR_SHUFFLE, ISD::INSERT_VECTOR_ELT, 864 ISD::EXTRACT_VECTOR_ELT}, 865 VT, Custom); 866 867 setOperationAction({ISD::LOAD, ISD::STORE, ISD::MLOAD, ISD::MSTORE, 868 ISD::MGATHER, ISD::MSCATTER}, 869 VT, Custom); 870 871 setOperationAction( 872 {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT, 873 Custom); 874 875 setOperationAction({ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV, 876 ISD::FNEG, ISD::FABS, ISD::FCOPYSIGN, ISD::FSQRT, 877 ISD::FMA, ISD::FMINNUM, ISD::FMAXNUM}, 878 VT, Custom); 879 880 setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom); 881 882 setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND}, 883 VT, Custom); 884 885 for (auto CC : VFPCCToExpand) 886 setCondCodeAction(CC, VT, Expand); 887 888 setOperationAction({ISD::VSELECT, ISD::SELECT}, VT, Custom); 889 setOperationAction(ISD::SELECT_CC, VT, Expand); 890 891 setOperationAction(ISD::BITCAST, VT, Custom); 892 893 setOperationAction({ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD, 894 ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAX}, 895 VT, Custom); 896 897 setOperationAction(FloatingPointVPOps, VT, Custom); 898 } 899 900 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 901 setOperationAction(ISD::BITCAST, {MVT::i8, MVT::i16, MVT::i32, MVT::i64}, 902 Custom); 903 if (Subtarget.hasStdExtZfh()) 904 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 905 if (Subtarget.hasStdExtF()) 906 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 907 if (Subtarget.hasStdExtD()) 908 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 909 } 910 } 911 912 // Function alignments. 913 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 914 setMinFunctionAlignment(FunctionAlignment); 915 setPrefFunctionAlignment(FunctionAlignment); 916 917 setMinimumJumpTableEntries(5); 918 919 // Jumps are expensive, compared to logic 920 setJumpIsExpensive(); 921 922 setTargetDAGCombine({ISD::INTRINSIC_WO_CHAIN, ISD::ADD, ISD::SUB, ISD::AND, 923 ISD::OR, ISD::XOR}); 924 925 if (Subtarget.hasStdExtF()) 926 setTargetDAGCombine({ISD::FADD, ISD::FMAXNUM, ISD::FMINNUM}); 927 928 if (Subtarget.hasStdExtZbp()) 929 setTargetDAGCombine({ISD::ROTL, ISD::ROTR}); 930 931 if (Subtarget.hasStdExtZbb()) 932 setTargetDAGCombine({ISD::UMAX, ISD::UMIN, ISD::SMAX, ISD::SMIN}); 933 934 if (Subtarget.hasStdExtZbkb()) 935 setTargetDAGCombine(ISD::BITREVERSE); 936 if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb()) 937 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 938 if (Subtarget.hasStdExtF()) 939 setTargetDAGCombine({ISD::ZERO_EXTEND, ISD::FP_TO_SINT, ISD::FP_TO_UINT, 940 ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}); 941 if (Subtarget.hasVInstructions()) 942 setTargetDAGCombine({ISD::FCOPYSIGN, ISD::MGATHER, ISD::MSCATTER, 943 ISD::VP_GATHER, ISD::VP_SCATTER, ISD::SRA, ISD::SRL, 944 ISD::SHL, ISD::STORE, ISD::SPLAT_VECTOR}); 945 if (Subtarget.useRVVForFixedLengthVectors()) 946 setTargetDAGCombine(ISD::BITCAST); 947 948 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 949 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 950 } 951 952 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 953 LLVMContext &Context, 954 EVT VT) const { 955 if (!VT.isVector()) 956 return getPointerTy(DL); 957 if (Subtarget.hasVInstructions() && 958 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 959 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 960 return VT.changeVectorElementTypeToInteger(); 961 } 962 963 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 964 return Subtarget.getXLenVT(); 965 } 966 967 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 968 const CallInst &I, 969 MachineFunction &MF, 970 unsigned Intrinsic) const { 971 auto &DL = I.getModule()->getDataLayout(); 972 switch (Intrinsic) { 973 default: 974 return false; 975 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 976 case Intrinsic::riscv_masked_atomicrmw_add_i32: 977 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 978 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 979 case Intrinsic::riscv_masked_atomicrmw_max_i32: 980 case Intrinsic::riscv_masked_atomicrmw_min_i32: 981 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 982 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 983 case Intrinsic::riscv_masked_cmpxchg_i32: 984 Info.opc = ISD::INTRINSIC_W_CHAIN; 985 Info.memVT = MVT::i32; 986 Info.ptrVal = I.getArgOperand(0); 987 Info.offset = 0; 988 Info.align = Align(4); 989 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 990 MachineMemOperand::MOVolatile; 991 return true; 992 case Intrinsic::riscv_masked_strided_load: 993 Info.opc = ISD::INTRINSIC_W_CHAIN; 994 Info.ptrVal = I.getArgOperand(1); 995 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 996 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 997 Info.size = MemoryLocation::UnknownSize; 998 Info.flags |= MachineMemOperand::MOLoad; 999 return true; 1000 case Intrinsic::riscv_masked_strided_store: 1001 Info.opc = ISD::INTRINSIC_VOID; 1002 Info.ptrVal = I.getArgOperand(1); 1003 Info.memVT = 1004 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1005 Info.align = Align( 1006 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1007 8); 1008 Info.size = MemoryLocation::UnknownSize; 1009 Info.flags |= MachineMemOperand::MOStore; 1010 return true; 1011 case Intrinsic::riscv_seg2_load: 1012 case Intrinsic::riscv_seg3_load: 1013 case Intrinsic::riscv_seg4_load: 1014 case Intrinsic::riscv_seg5_load: 1015 case Intrinsic::riscv_seg6_load: 1016 case Intrinsic::riscv_seg7_load: 1017 case Intrinsic::riscv_seg8_load: 1018 Info.opc = ISD::INTRINSIC_W_CHAIN; 1019 Info.ptrVal = I.getArgOperand(0); 1020 Info.memVT = 1021 getValueType(DL, I.getType()->getStructElementType(0)->getScalarType()); 1022 Info.align = 1023 Align(DL.getTypeSizeInBits( 1024 I.getType()->getStructElementType(0)->getScalarType()) / 1025 8); 1026 Info.size = MemoryLocation::UnknownSize; 1027 Info.flags |= MachineMemOperand::MOLoad; 1028 return true; 1029 } 1030 } 1031 1032 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1033 const AddrMode &AM, Type *Ty, 1034 unsigned AS, 1035 Instruction *I) const { 1036 // No global is ever allowed as a base. 1037 if (AM.BaseGV) 1038 return false; 1039 1040 // RVV instructions only support register addressing. 1041 if (Subtarget.hasVInstructions() && isa<VectorType>(Ty)) 1042 return AM.HasBaseReg && AM.Scale == 0 && !AM.BaseOffs; 1043 1044 // Require a 12-bit signed offset. 1045 if (!isInt<12>(AM.BaseOffs)) 1046 return false; 1047 1048 switch (AM.Scale) { 1049 case 0: // "r+i" or just "i", depending on HasBaseReg. 1050 break; 1051 case 1: 1052 if (!AM.HasBaseReg) // allow "r+i". 1053 break; 1054 return false; // disallow "r+r" or "r+r+i". 1055 default: 1056 return false; 1057 } 1058 1059 return true; 1060 } 1061 1062 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1063 return isInt<12>(Imm); 1064 } 1065 1066 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1067 return isInt<12>(Imm); 1068 } 1069 1070 // On RV32, 64-bit integers are split into their high and low parts and held 1071 // in two different registers, so the trunc is free since the low register can 1072 // just be used. 1073 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1074 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1075 return false; 1076 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1077 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1078 return (SrcBits == 64 && DestBits == 32); 1079 } 1080 1081 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1082 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1083 !SrcVT.isInteger() || !DstVT.isInteger()) 1084 return false; 1085 unsigned SrcBits = SrcVT.getSizeInBits(); 1086 unsigned DestBits = DstVT.getSizeInBits(); 1087 return (SrcBits == 64 && DestBits == 32); 1088 } 1089 1090 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1091 // Zexts are free if they can be combined with a load. 1092 // Don't advertise i32->i64 zextload as being free for RV64. It interacts 1093 // poorly with type legalization of compares preferring sext. 1094 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1095 EVT MemVT = LD->getMemoryVT(); 1096 if ((MemVT == MVT::i8 || MemVT == MVT::i16) && 1097 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1098 LD->getExtensionType() == ISD::ZEXTLOAD)) 1099 return true; 1100 } 1101 1102 return TargetLowering::isZExtFree(Val, VT2); 1103 } 1104 1105 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1106 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1107 } 1108 1109 bool RISCVTargetLowering::signExtendConstant(const ConstantInt *CI) const { 1110 return Subtarget.is64Bit() && CI->getType()->isIntegerTy(32); 1111 } 1112 1113 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1114 return Subtarget.hasStdExtZbb(); 1115 } 1116 1117 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1118 return Subtarget.hasStdExtZbb(); 1119 } 1120 1121 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { 1122 EVT VT = Y.getValueType(); 1123 1124 // FIXME: Support vectors once we have tests. 1125 if (VT.isVector()) 1126 return false; 1127 1128 return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 1129 Subtarget.hasStdExtZbkb()) && 1130 !isa<ConstantSDNode>(Y); 1131 } 1132 1133 bool RISCVTargetLowering::hasBitTest(SDValue X, SDValue Y) const { 1134 // We can use ANDI+SEQZ/SNEZ as a bit test. Y contains the bit position. 1135 auto *C = dyn_cast<ConstantSDNode>(Y); 1136 return C && C->getAPIntValue().ule(10); 1137 } 1138 1139 bool RISCVTargetLowering:: 1140 shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 1141 SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, 1142 unsigned OldShiftOpcode, unsigned NewShiftOpcode, 1143 SelectionDAG &DAG) const { 1144 // One interesting pattern that we'd want to form is 'bit extract': 1145 // ((1 >> Y) & 1) ==/!= 0 1146 // But we also need to be careful not to try to reverse that fold. 1147 1148 // Is this '((1 >> Y) & 1)'? 1149 if (XC && OldShiftOpcode == ISD::SRL && XC->isOne()) 1150 return false; // Keep the 'bit extract' pattern. 1151 1152 // Will this be '((1 >> Y) & 1)' after the transform? 1153 if (NewShiftOpcode == ISD::SRL && CC->isOne()) 1154 return true; // Do form the 'bit extract' pattern. 1155 1156 // If 'X' is a constant, and we transform, then we will immediately 1157 // try to undo the fold, thus causing endless combine loop. 1158 // So only do the transform if X is not a constant. This matches the default 1159 // implementation of this function. 1160 return !XC; 1161 } 1162 1163 /// Check if sinking \p I's operands to I's basic block is profitable, because 1164 /// the operands can be folded into a target instruction, e.g. 1165 /// splats of scalars can fold into vector instructions. 1166 bool RISCVTargetLowering::shouldSinkOperands( 1167 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1168 using namespace llvm::PatternMatch; 1169 1170 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1171 return false; 1172 1173 auto IsSinker = [&](Instruction *I, int Operand) { 1174 switch (I->getOpcode()) { 1175 case Instruction::Add: 1176 case Instruction::Sub: 1177 case Instruction::Mul: 1178 case Instruction::And: 1179 case Instruction::Or: 1180 case Instruction::Xor: 1181 case Instruction::FAdd: 1182 case Instruction::FSub: 1183 case Instruction::FMul: 1184 case Instruction::FDiv: 1185 case Instruction::ICmp: 1186 case Instruction::FCmp: 1187 return true; 1188 case Instruction::Shl: 1189 case Instruction::LShr: 1190 case Instruction::AShr: 1191 case Instruction::UDiv: 1192 case Instruction::SDiv: 1193 case Instruction::URem: 1194 case Instruction::SRem: 1195 return Operand == 1; 1196 case Instruction::Call: 1197 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1198 switch (II->getIntrinsicID()) { 1199 case Intrinsic::fma: 1200 case Intrinsic::vp_fma: 1201 return Operand == 0 || Operand == 1; 1202 // FIXME: Our patterns can only match vx/vf instructions when the splat 1203 // it on the RHS, because TableGen doesn't recognize our VP operations 1204 // as commutative. 1205 case Intrinsic::vp_add: 1206 case Intrinsic::vp_mul: 1207 case Intrinsic::vp_and: 1208 case Intrinsic::vp_or: 1209 case Intrinsic::vp_xor: 1210 case Intrinsic::vp_fadd: 1211 case Intrinsic::vp_fmul: 1212 case Intrinsic::vp_shl: 1213 case Intrinsic::vp_lshr: 1214 case Intrinsic::vp_ashr: 1215 case Intrinsic::vp_udiv: 1216 case Intrinsic::vp_sdiv: 1217 case Intrinsic::vp_urem: 1218 case Intrinsic::vp_srem: 1219 return Operand == 1; 1220 // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have 1221 // explicit patterns for both LHS and RHS (as 'vr' versions). 1222 case Intrinsic::vp_sub: 1223 case Intrinsic::vp_fsub: 1224 case Intrinsic::vp_fdiv: 1225 return Operand == 0 || Operand == 1; 1226 default: 1227 return false; 1228 } 1229 } 1230 return false; 1231 default: 1232 return false; 1233 } 1234 }; 1235 1236 for (auto OpIdx : enumerate(I->operands())) { 1237 if (!IsSinker(I, OpIdx.index())) 1238 continue; 1239 1240 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1241 // Make sure we are not already sinking this operand 1242 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1243 continue; 1244 1245 // We are looking for a splat that can be sunk. 1246 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1247 m_Undef(), m_ZeroMask()))) 1248 continue; 1249 1250 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1251 // and vector registers 1252 for (Use &U : Op->uses()) { 1253 Instruction *Insn = cast<Instruction>(U.getUser()); 1254 if (!IsSinker(Insn, U.getOperandNo())) 1255 return false; 1256 } 1257 1258 Ops.push_back(&Op->getOperandUse(0)); 1259 Ops.push_back(&OpIdx.value()); 1260 } 1261 return true; 1262 } 1263 1264 bool RISCVTargetLowering::isOffsetFoldingLegal( 1265 const GlobalAddressSDNode *GA) const { 1266 // In order to maximise the opportunity for common subexpression elimination, 1267 // keep a separate ADD node for the global address offset instead of folding 1268 // it in the global address node. Later peephole optimisations may choose to 1269 // fold it back in when profitable. 1270 return false; 1271 } 1272 1273 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1274 bool ForCodeSize) const { 1275 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1276 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1277 return false; 1278 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1279 return false; 1280 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1281 return false; 1282 return Imm.isZero(); 1283 } 1284 1285 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1286 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1287 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1288 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1289 } 1290 1291 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1292 CallingConv::ID CC, 1293 EVT VT) const { 1294 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1295 // We might still end up using a GPR but that will be decided based on ABI. 1296 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1297 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1298 return MVT::f32; 1299 1300 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1301 } 1302 1303 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1304 CallingConv::ID CC, 1305 EVT VT) const { 1306 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1307 // We might still end up using a GPR but that will be decided based on ABI. 1308 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1309 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1310 return 1; 1311 1312 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1313 } 1314 1315 // Changes the condition code and swaps operands if necessary, so the SetCC 1316 // operation matches one of the comparisons supported directly by branches 1317 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1318 // with 1/-1. 1319 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1320 ISD::CondCode &CC, SelectionDAG &DAG) { 1321 // Convert X > -1 to X >= 0. 1322 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1323 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1324 CC = ISD::SETGE; 1325 return; 1326 } 1327 // Convert X < 1 to 0 >= X. 1328 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1329 RHS = LHS; 1330 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1331 CC = ISD::SETGE; 1332 return; 1333 } 1334 1335 switch (CC) { 1336 default: 1337 break; 1338 case ISD::SETGT: 1339 case ISD::SETLE: 1340 case ISD::SETUGT: 1341 case ISD::SETULE: 1342 CC = ISD::getSetCCSwappedOperands(CC); 1343 std::swap(LHS, RHS); 1344 break; 1345 } 1346 } 1347 1348 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1349 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1350 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1351 if (VT.getVectorElementType() == MVT::i1) 1352 KnownSize *= 8; 1353 1354 switch (KnownSize) { 1355 default: 1356 llvm_unreachable("Invalid LMUL."); 1357 case 8: 1358 return RISCVII::VLMUL::LMUL_F8; 1359 case 16: 1360 return RISCVII::VLMUL::LMUL_F4; 1361 case 32: 1362 return RISCVII::VLMUL::LMUL_F2; 1363 case 64: 1364 return RISCVII::VLMUL::LMUL_1; 1365 case 128: 1366 return RISCVII::VLMUL::LMUL_2; 1367 case 256: 1368 return RISCVII::VLMUL::LMUL_4; 1369 case 512: 1370 return RISCVII::VLMUL::LMUL_8; 1371 } 1372 } 1373 1374 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1375 switch (LMul) { 1376 default: 1377 llvm_unreachable("Invalid LMUL."); 1378 case RISCVII::VLMUL::LMUL_F8: 1379 case RISCVII::VLMUL::LMUL_F4: 1380 case RISCVII::VLMUL::LMUL_F2: 1381 case RISCVII::VLMUL::LMUL_1: 1382 return RISCV::VRRegClassID; 1383 case RISCVII::VLMUL::LMUL_2: 1384 return RISCV::VRM2RegClassID; 1385 case RISCVII::VLMUL::LMUL_4: 1386 return RISCV::VRM4RegClassID; 1387 case RISCVII::VLMUL::LMUL_8: 1388 return RISCV::VRM8RegClassID; 1389 } 1390 } 1391 1392 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1393 RISCVII::VLMUL LMUL = getLMUL(VT); 1394 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1395 LMUL == RISCVII::VLMUL::LMUL_F4 || 1396 LMUL == RISCVII::VLMUL::LMUL_F2 || 1397 LMUL == RISCVII::VLMUL::LMUL_1) { 1398 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1399 "Unexpected subreg numbering"); 1400 return RISCV::sub_vrm1_0 + Index; 1401 } 1402 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1403 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1404 "Unexpected subreg numbering"); 1405 return RISCV::sub_vrm2_0 + Index; 1406 } 1407 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1408 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1409 "Unexpected subreg numbering"); 1410 return RISCV::sub_vrm4_0 + Index; 1411 } 1412 llvm_unreachable("Invalid vector type."); 1413 } 1414 1415 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1416 if (VT.getVectorElementType() == MVT::i1) 1417 return RISCV::VRRegClassID; 1418 return getRegClassIDForLMUL(getLMUL(VT)); 1419 } 1420 1421 // Attempt to decompose a subvector insert/extract between VecVT and 1422 // SubVecVT via subregister indices. Returns the subregister index that 1423 // can perform the subvector insert/extract with the given element index, as 1424 // well as the index corresponding to any leftover subvectors that must be 1425 // further inserted/extracted within the register class for SubVecVT. 1426 std::pair<unsigned, unsigned> 1427 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1428 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1429 const RISCVRegisterInfo *TRI) { 1430 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1431 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1432 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1433 "Register classes not ordered"); 1434 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1435 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1436 // Try to compose a subregister index that takes us from the incoming 1437 // LMUL>1 register class down to the outgoing one. At each step we half 1438 // the LMUL: 1439 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1440 // Note that this is not guaranteed to find a subregister index, such as 1441 // when we are extracting from one VR type to another. 1442 unsigned SubRegIdx = RISCV::NoSubRegister; 1443 for (const unsigned RCID : 1444 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1445 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1446 VecVT = VecVT.getHalfNumVectorElementsVT(); 1447 bool IsHi = 1448 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1449 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1450 getSubregIndexByMVT(VecVT, IsHi)); 1451 if (IsHi) 1452 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1453 } 1454 return {SubRegIdx, InsertExtractIdx}; 1455 } 1456 1457 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1458 // stores for those types. 1459 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1460 return !Subtarget.useRVVForFixedLengthVectors() || 1461 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1462 } 1463 1464 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1465 if (ScalarTy->isPointerTy()) 1466 return true; 1467 1468 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1469 ScalarTy->isIntegerTy(32)) 1470 return true; 1471 1472 if (ScalarTy->isIntegerTy(64)) 1473 return Subtarget.hasVInstructionsI64(); 1474 1475 if (ScalarTy->isHalfTy()) 1476 return Subtarget.hasVInstructionsF16(); 1477 if (ScalarTy->isFloatTy()) 1478 return Subtarget.hasVInstructionsF32(); 1479 if (ScalarTy->isDoubleTy()) 1480 return Subtarget.hasVInstructionsF64(); 1481 1482 return false; 1483 } 1484 1485 static SDValue getVLOperand(SDValue Op) { 1486 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1487 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 1488 "Unexpected opcode"); 1489 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 1490 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 1491 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1492 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 1493 if (!II) 1494 return SDValue(); 1495 return Op.getOperand(II->VLOperand + 1 + HasChain); 1496 } 1497 1498 static bool useRVVForFixedLengthVectorVT(MVT VT, 1499 const RISCVSubtarget &Subtarget) { 1500 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1501 if (!Subtarget.useRVVForFixedLengthVectors()) 1502 return false; 1503 1504 // We only support a set of vector types with a consistent maximum fixed size 1505 // across all supported vector element types to avoid legalization issues. 1506 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1507 // fixed-length vector type we support is 1024 bytes. 1508 if (VT.getFixedSizeInBits() > 1024 * 8) 1509 return false; 1510 1511 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1512 1513 MVT EltVT = VT.getVectorElementType(); 1514 1515 // Don't use RVV for vectors we cannot scalarize if required. 1516 switch (EltVT.SimpleTy) { 1517 // i1 is supported but has different rules. 1518 default: 1519 return false; 1520 case MVT::i1: 1521 // Masks can only use a single register. 1522 if (VT.getVectorNumElements() > MinVLen) 1523 return false; 1524 MinVLen /= 8; 1525 break; 1526 case MVT::i8: 1527 case MVT::i16: 1528 case MVT::i32: 1529 break; 1530 case MVT::i64: 1531 if (!Subtarget.hasVInstructionsI64()) 1532 return false; 1533 break; 1534 case MVT::f16: 1535 if (!Subtarget.hasVInstructionsF16()) 1536 return false; 1537 break; 1538 case MVT::f32: 1539 if (!Subtarget.hasVInstructionsF32()) 1540 return false; 1541 break; 1542 case MVT::f64: 1543 if (!Subtarget.hasVInstructionsF64()) 1544 return false; 1545 break; 1546 } 1547 1548 // Reject elements larger than ELEN. 1549 if (EltVT.getSizeInBits() > Subtarget.getELEN()) 1550 return false; 1551 1552 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1553 // Don't use RVV for types that don't fit. 1554 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1555 return false; 1556 1557 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1558 // the base fixed length RVV support in place. 1559 if (!VT.isPow2VectorType()) 1560 return false; 1561 1562 return true; 1563 } 1564 1565 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1566 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1567 } 1568 1569 // Return the largest legal scalable vector type that matches VT's element type. 1570 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1571 const RISCVSubtarget &Subtarget) { 1572 // This may be called before legal types are setup. 1573 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1574 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1575 "Expected legal fixed length vector!"); 1576 1577 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1578 unsigned MaxELen = Subtarget.getELEN(); 1579 1580 MVT EltVT = VT.getVectorElementType(); 1581 switch (EltVT.SimpleTy) { 1582 default: 1583 llvm_unreachable("unexpected element type for RVV container"); 1584 case MVT::i1: 1585 case MVT::i8: 1586 case MVT::i16: 1587 case MVT::i32: 1588 case MVT::i64: 1589 case MVT::f16: 1590 case MVT::f32: 1591 case MVT::f64: { 1592 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1593 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1594 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1595 unsigned NumElts = 1596 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1597 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1598 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1599 return MVT::getScalableVectorVT(EltVT, NumElts); 1600 } 1601 } 1602 } 1603 1604 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1605 const RISCVSubtarget &Subtarget) { 1606 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1607 Subtarget); 1608 } 1609 1610 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1611 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1612 } 1613 1614 // Grow V to consume an entire RVV register. 1615 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1616 const RISCVSubtarget &Subtarget) { 1617 assert(VT.isScalableVector() && 1618 "Expected to convert into a scalable vector!"); 1619 assert(V.getValueType().isFixedLengthVector() && 1620 "Expected a fixed length vector operand!"); 1621 SDLoc DL(V); 1622 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1623 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1624 } 1625 1626 // Shrink V so it's just big enough to maintain a VT's worth of data. 1627 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1628 const RISCVSubtarget &Subtarget) { 1629 assert(VT.isFixedLengthVector() && 1630 "Expected to convert into a fixed length vector!"); 1631 assert(V.getValueType().isScalableVector() && 1632 "Expected a scalable vector operand!"); 1633 SDLoc DL(V); 1634 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1635 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1636 } 1637 1638 /// Return the type of the mask type suitable for masking the provided 1639 /// vector type. This is simply an i1 element type vector of the same 1640 /// (possibly scalable) length. 1641 static MVT getMaskTypeFor(EVT VecVT) { 1642 assert(VecVT.isVector()); 1643 ElementCount EC = VecVT.getVectorElementCount(); 1644 return MVT::getVectorVT(MVT::i1, EC); 1645 } 1646 1647 /// Creates an all ones mask suitable for masking a vector of type VecTy with 1648 /// vector length VL. . 1649 static SDValue getAllOnesMask(MVT VecVT, SDValue VL, SDLoc DL, 1650 SelectionDAG &DAG) { 1651 MVT MaskVT = getMaskTypeFor(VecVT); 1652 return DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1653 } 1654 1655 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1656 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1657 // the vector type that it is contained in. 1658 static std::pair<SDValue, SDValue> 1659 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1660 const RISCVSubtarget &Subtarget) { 1661 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1662 MVT XLenVT = Subtarget.getXLenVT(); 1663 SDValue VL = VecVT.isFixedLengthVector() 1664 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1665 : DAG.getRegister(RISCV::X0, XLenVT); 1666 SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG); 1667 return {Mask, VL}; 1668 } 1669 1670 // As above but assuming the given type is a scalable vector type. 1671 static std::pair<SDValue, SDValue> 1672 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1673 const RISCVSubtarget &Subtarget) { 1674 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1675 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1676 } 1677 1678 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1679 // of either is (currently) supported. This can get us into an infinite loop 1680 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1681 // as a ..., etc. 1682 // Until either (or both) of these can reliably lower any node, reporting that 1683 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1684 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1685 // which is not desirable. 1686 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1687 EVT VT, unsigned DefinedValues) const { 1688 return false; 1689 } 1690 1691 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, 1692 const RISCVSubtarget &Subtarget) { 1693 // RISCV FP-to-int conversions saturate to the destination register size, but 1694 // don't produce 0 for nan. We can use a conversion instruction and fix the 1695 // nan case with a compare and a select. 1696 SDValue Src = Op.getOperand(0); 1697 1698 EVT DstVT = Op.getValueType(); 1699 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1700 1701 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1702 unsigned Opc; 1703 if (SatVT == DstVT) 1704 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 1705 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1706 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 1707 else 1708 return SDValue(); 1709 // FIXME: Support other SatVTs by clamping before or after the conversion. 1710 1711 SDLoc DL(Op); 1712 SDValue FpToInt = DAG.getNode( 1713 Opc, DL, DstVT, Src, 1714 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT())); 1715 1716 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1717 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1718 } 1719 1720 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1721 // and back. Taking care to avoid converting values that are nan or already 1722 // correct. 1723 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1724 // have FRM dependencies modeled yet. 1725 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1726 MVT VT = Op.getSimpleValueType(); 1727 assert(VT.isVector() && "Unexpected type"); 1728 1729 SDLoc DL(Op); 1730 1731 // Freeze the source since we are increasing the number of uses. 1732 SDValue Src = DAG.getFreeze(Op.getOperand(0)); 1733 1734 // Truncate to integer and convert back to FP. 1735 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1736 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1737 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1738 1739 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1740 1741 if (Op.getOpcode() == ISD::FCEIL) { 1742 // If the truncated value is the greater than or equal to the original 1743 // value, we've computed the ceil. Otherwise, we went the wrong way and 1744 // need to increase by 1. 1745 // FIXME: This should use a masked operation. Handle here or in isel? 1746 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1747 DAG.getConstantFP(1.0, DL, VT)); 1748 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1749 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1750 } else if (Op.getOpcode() == ISD::FFLOOR) { 1751 // If the truncated value is the less than or equal to the original value, 1752 // we've computed the floor. Otherwise, we went the wrong way and need to 1753 // decrease by 1. 1754 // FIXME: This should use a masked operation. Handle here or in isel? 1755 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1756 DAG.getConstantFP(1.0, DL, VT)); 1757 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1758 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1759 } 1760 1761 // Restore the original sign so that -0.0 is preserved. 1762 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1763 1764 // Determine the largest integer that can be represented exactly. This and 1765 // values larger than it don't have any fractional bits so don't need to 1766 // be converted. 1767 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1768 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1769 APFloat MaxVal = APFloat(FltSem); 1770 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1771 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1772 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1773 1774 // If abs(Src) was larger than MaxVal or nan, keep it. 1775 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1776 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1777 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1778 } 1779 1780 // ISD::FROUND is defined to round to nearest with ties rounding away from 0. 1781 // This mode isn't supported in vector hardware on RISCV. But as long as we 1782 // aren't compiling with trapping math, we can emulate this with 1783 // floor(X + copysign(nextafter(0.5, 0.0), X)). 1784 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM 1785 // dependencies modeled yet. 1786 // FIXME: Use masked operations to avoid final merge. 1787 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) { 1788 MVT VT = Op.getSimpleValueType(); 1789 assert(VT.isVector() && "Unexpected type"); 1790 1791 SDLoc DL(Op); 1792 1793 // Freeze the source since we are increasing the number of uses. 1794 SDValue Src = DAG.getFreeze(Op.getOperand(0)); 1795 1796 // We do the conversion on the absolute value and fix the sign at the end. 1797 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1798 1799 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1800 bool Ignored; 1801 APFloat Point5Pred = APFloat(0.5f); 1802 Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored); 1803 Point5Pred.next(/*nextDown*/ true); 1804 1805 // Add the adjustment. 1806 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs, 1807 DAG.getConstantFP(Point5Pred, DL, VT)); 1808 1809 // Truncate to integer and convert back to fp. 1810 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1811 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust); 1812 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1813 1814 // Restore the original sign. 1815 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1816 1817 // Determine the largest integer that can be represented exactly. This and 1818 // values larger than it don't have any fractional bits so don't need to 1819 // be converted. 1820 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1821 APFloat MaxVal = APFloat(FltSem); 1822 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1823 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1824 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1825 1826 // If abs(Src) was larger than MaxVal or nan, keep it. 1827 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1828 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1829 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1830 } 1831 1832 struct VIDSequence { 1833 int64_t StepNumerator; 1834 unsigned StepDenominator; 1835 int64_t Addend; 1836 }; 1837 1838 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1839 // to the (non-zero) step S and start value X. This can be then lowered as the 1840 // RVV sequence (VID * S) + X, for example. 1841 // The step S is represented as an integer numerator divided by a positive 1842 // denominator. Note that the implementation currently only identifies 1843 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1844 // cannot detect 2/3, for example. 1845 // Note that this method will also match potentially unappealing index 1846 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1847 // determine whether this is worth generating code for. 1848 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1849 unsigned NumElts = Op.getNumOperands(); 1850 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1851 if (!Op.getValueType().isInteger()) 1852 return None; 1853 1854 Optional<unsigned> SeqStepDenom; 1855 Optional<int64_t> SeqStepNum, SeqAddend; 1856 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1857 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1858 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1859 // Assume undef elements match the sequence; we just have to be careful 1860 // when interpolating across them. 1861 if (Op.getOperand(Idx).isUndef()) 1862 continue; 1863 // The BUILD_VECTOR must be all constants. 1864 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1865 return None; 1866 1867 uint64_t Val = Op.getConstantOperandVal(Idx) & 1868 maskTrailingOnes<uint64_t>(EltSizeInBits); 1869 1870 if (PrevElt) { 1871 // Calculate the step since the last non-undef element, and ensure 1872 // it's consistent across the entire sequence. 1873 unsigned IdxDiff = Idx - PrevElt->second; 1874 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1875 1876 // A zero-value value difference means that we're somewhere in the middle 1877 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1878 // step change before evaluating the sequence. 1879 if (ValDiff == 0) 1880 continue; 1881 1882 int64_t Remainder = ValDiff % IdxDiff; 1883 // Normalize the step if it's greater than 1. 1884 if (Remainder != ValDiff) { 1885 // The difference must cleanly divide the element span. 1886 if (Remainder != 0) 1887 return None; 1888 ValDiff /= IdxDiff; 1889 IdxDiff = 1; 1890 } 1891 1892 if (!SeqStepNum) 1893 SeqStepNum = ValDiff; 1894 else if (ValDiff != SeqStepNum) 1895 return None; 1896 1897 if (!SeqStepDenom) 1898 SeqStepDenom = IdxDiff; 1899 else if (IdxDiff != *SeqStepDenom) 1900 return None; 1901 } 1902 1903 // Record this non-undef element for later. 1904 if (!PrevElt || PrevElt->first != Val) 1905 PrevElt = std::make_pair(Val, Idx); 1906 } 1907 1908 // We need to have logged a step for this to count as a legal index sequence. 1909 if (!SeqStepNum || !SeqStepDenom) 1910 return None; 1911 1912 // Loop back through the sequence and validate elements we might have skipped 1913 // while waiting for a valid step. While doing this, log any sequence addend. 1914 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1915 if (Op.getOperand(Idx).isUndef()) 1916 continue; 1917 uint64_t Val = Op.getConstantOperandVal(Idx) & 1918 maskTrailingOnes<uint64_t>(EltSizeInBits); 1919 uint64_t ExpectedVal = 1920 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1921 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1922 if (!SeqAddend) 1923 SeqAddend = Addend; 1924 else if (Addend != SeqAddend) 1925 return None; 1926 } 1927 1928 assert(SeqAddend && "Must have an addend if we have a step"); 1929 1930 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1931 } 1932 1933 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT 1934 // and lower it as a VRGATHER_VX_VL from the source vector. 1935 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL, 1936 SelectionDAG &DAG, 1937 const RISCVSubtarget &Subtarget) { 1938 if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1939 return SDValue(); 1940 SDValue Vec = SplatVal.getOperand(0); 1941 // Only perform this optimization on vectors of the same size for simplicity. 1942 // Don't perform this optimization for i1 vectors. 1943 // FIXME: Support i1 vectors, maybe by promoting to i8? 1944 if (Vec.getValueType() != VT || VT.getVectorElementType() == MVT::i1) 1945 return SDValue(); 1946 SDValue Idx = SplatVal.getOperand(1); 1947 // The index must be a legal type. 1948 if (Idx.getValueType() != Subtarget.getXLenVT()) 1949 return SDValue(); 1950 1951 MVT ContainerVT = VT; 1952 if (VT.isFixedLengthVector()) { 1953 ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1954 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 1955 } 1956 1957 SDValue Mask, VL; 1958 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1959 1960 SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec, 1961 Idx, Mask, DAG.getUNDEF(ContainerVT), VL); 1962 1963 if (!VT.isFixedLengthVector()) 1964 return Gather; 1965 1966 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1967 } 1968 1969 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1970 const RISCVSubtarget &Subtarget) { 1971 MVT VT = Op.getSimpleValueType(); 1972 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1973 1974 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1975 1976 SDLoc DL(Op); 1977 SDValue Mask, VL; 1978 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1979 1980 MVT XLenVT = Subtarget.getXLenVT(); 1981 unsigned NumElts = Op.getNumOperands(); 1982 1983 if (VT.getVectorElementType() == MVT::i1) { 1984 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1985 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1986 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1987 } 1988 1989 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1990 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1991 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1992 } 1993 1994 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1995 // scalar integer chunks whose bit-width depends on the number of mask 1996 // bits and XLEN. 1997 // First, determine the most appropriate scalar integer type to use. This 1998 // is at most XLenVT, but may be shrunk to a smaller vector element type 1999 // according to the size of the final vector - use i8 chunks rather than 2000 // XLenVT if we're producing a v8i1. This results in more consistent 2001 // codegen across RV32 and RV64. 2002 unsigned NumViaIntegerBits = 2003 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 2004 NumViaIntegerBits = std::min(NumViaIntegerBits, Subtarget.getELEN()); 2005 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 2006 // If we have to use more than one INSERT_VECTOR_ELT then this 2007 // optimization is likely to increase code size; avoid peforming it in 2008 // such a case. We can use a load from a constant pool in this case. 2009 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 2010 return SDValue(); 2011 // Now we can create our integer vector type. Note that it may be larger 2012 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 2013 MVT IntegerViaVecVT = 2014 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 2015 divideCeil(NumElts, NumViaIntegerBits)); 2016 2017 uint64_t Bits = 0; 2018 unsigned BitPos = 0, IntegerEltIdx = 0; 2019 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 2020 2021 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 2022 // Once we accumulate enough bits to fill our scalar type, insert into 2023 // our vector and clear our accumulated data. 2024 if (I != 0 && I % NumViaIntegerBits == 0) { 2025 if (NumViaIntegerBits <= 32) 2026 Bits = SignExtend64<32>(Bits); 2027 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2028 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 2029 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2030 Bits = 0; 2031 BitPos = 0; 2032 IntegerEltIdx++; 2033 } 2034 SDValue V = Op.getOperand(I); 2035 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 2036 Bits |= ((uint64_t)BitValue << BitPos); 2037 } 2038 2039 // Insert the (remaining) scalar value into position in our integer 2040 // vector type. 2041 if (NumViaIntegerBits <= 32) 2042 Bits = SignExtend64<32>(Bits); 2043 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2044 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 2045 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2046 2047 if (NumElts < NumViaIntegerBits) { 2048 // If we're producing a smaller vector than our minimum legal integer 2049 // type, bitcast to the equivalent (known-legal) mask type, and extract 2050 // our final mask. 2051 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 2052 Vec = DAG.getBitcast(MVT::v8i1, Vec); 2053 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 2054 DAG.getConstant(0, DL, XLenVT)); 2055 } else { 2056 // Else we must have produced an integer type with the same size as the 2057 // mask type; bitcast for the final result. 2058 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 2059 Vec = DAG.getBitcast(VT, Vec); 2060 } 2061 2062 return Vec; 2063 } 2064 2065 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 2066 // vector type, we have a legal equivalently-sized i8 type, so we can use 2067 // that. 2068 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 2069 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 2070 2071 SDValue WideVec; 2072 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2073 // For a splat, perform a scalar truncate before creating the wider 2074 // vector. 2075 assert(Splat.getValueType() == XLenVT && 2076 "Unexpected type for i1 splat value"); 2077 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 2078 DAG.getConstant(1, DL, XLenVT)); 2079 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 2080 } else { 2081 SmallVector<SDValue, 8> Ops(Op->op_values()); 2082 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 2083 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 2084 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 2085 } 2086 2087 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 2088 } 2089 2090 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2091 if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget)) 2092 return Gather; 2093 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 2094 : RISCVISD::VMV_V_X_VL; 2095 Splat = 2096 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL); 2097 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2098 } 2099 2100 // Try and match index sequences, which we can lower to the vid instruction 2101 // with optional modifications. An all-undef vector is matched by 2102 // getSplatValue, above. 2103 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 2104 int64_t StepNumerator = SimpleVID->StepNumerator; 2105 unsigned StepDenominator = SimpleVID->StepDenominator; 2106 int64_t Addend = SimpleVID->Addend; 2107 2108 assert(StepNumerator != 0 && "Invalid step"); 2109 bool Negate = false; 2110 int64_t SplatStepVal = StepNumerator; 2111 unsigned StepOpcode = ISD::MUL; 2112 if (StepNumerator != 1) { 2113 if (isPowerOf2_64(std::abs(StepNumerator))) { 2114 Negate = StepNumerator < 0; 2115 StepOpcode = ISD::SHL; 2116 SplatStepVal = Log2_64(std::abs(StepNumerator)); 2117 } 2118 } 2119 2120 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 2121 // threshold since it's the immediate value many RVV instructions accept. 2122 // There is no vmul.vi instruction so ensure multiply constant can fit in 2123 // a single addi instruction. 2124 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 2125 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 2126 isPowerOf2_32(StepDenominator) && 2127 (SplatStepVal >= 0 || StepDenominator == 1) && isInt<5>(Addend)) { 2128 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 2129 // Convert right out of the scalable type so we can use standard ISD 2130 // nodes for the rest of the computation. If we used scalable types with 2131 // these, we'd lose the fixed-length vector info and generate worse 2132 // vsetvli code. 2133 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 2134 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 2135 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 2136 SDValue SplatStep = DAG.getSplatBuildVector( 2137 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 2138 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); 2139 } 2140 if (StepDenominator != 1) { 2141 SDValue SplatStep = DAG.getSplatBuildVector( 2142 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 2143 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 2144 } 2145 if (Addend != 0 || Negate) { 2146 SDValue SplatAddend = DAG.getSplatBuildVector( 2147 VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 2148 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 2149 } 2150 return VID; 2151 } 2152 } 2153 2154 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2155 // when re-interpreted as a vector with a larger element type. For example, 2156 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2157 // could be instead splat as 2158 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2159 // TODO: This optimization could also work on non-constant splats, but it 2160 // would require bit-manipulation instructions to construct the splat value. 2161 SmallVector<SDValue> Sequence; 2162 unsigned EltBitSize = VT.getScalarSizeInBits(); 2163 const auto *BV = cast<BuildVectorSDNode>(Op); 2164 if (VT.isInteger() && EltBitSize < 64 && 2165 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2166 BV->getRepeatedSequence(Sequence) && 2167 (Sequence.size() * EltBitSize) <= 64) { 2168 unsigned SeqLen = Sequence.size(); 2169 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2170 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2171 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2172 ViaIntVT == MVT::i64) && 2173 "Unexpected sequence type"); 2174 2175 unsigned EltIdx = 0; 2176 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2177 uint64_t SplatValue = 0; 2178 // Construct the amalgamated value which can be splatted as this larger 2179 // vector type. 2180 for (const auto &SeqV : Sequence) { 2181 if (!SeqV.isUndef()) 2182 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2183 << (EltIdx * EltBitSize)); 2184 EltIdx++; 2185 } 2186 2187 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2188 // achieve better constant materializion. 2189 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2190 SplatValue = SignExtend64<32>(SplatValue); 2191 2192 // Since we can't introduce illegal i64 types at this stage, we can only 2193 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2194 // way we can use RVV instructions to splat. 2195 assert((ViaIntVT.bitsLE(XLenVT) || 2196 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2197 "Unexpected bitcast sequence"); 2198 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2199 SDValue ViaVL = 2200 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2201 MVT ViaContainerVT = 2202 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2203 SDValue Splat = 2204 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2205 DAG.getUNDEF(ViaContainerVT), 2206 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2207 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2208 return DAG.getBitcast(VT, Splat); 2209 } 2210 } 2211 2212 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2213 // which constitute a large proportion of the elements. In such cases we can 2214 // splat a vector with the dominant element and make up the shortfall with 2215 // INSERT_VECTOR_ELTs. 2216 // Note that this includes vectors of 2 elements by association. The 2217 // upper-most element is the "dominant" one, allowing us to use a splat to 2218 // "insert" the upper element, and an insert of the lower element at position 2219 // 0, which improves codegen. 2220 SDValue DominantValue; 2221 unsigned MostCommonCount = 0; 2222 DenseMap<SDValue, unsigned> ValueCounts; 2223 unsigned NumUndefElts = 2224 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2225 2226 // Track the number of scalar loads we know we'd be inserting, estimated as 2227 // any non-zero floating-point constant. Other kinds of element are either 2228 // already in registers or are materialized on demand. The threshold at which 2229 // a vector load is more desirable than several scalar materializion and 2230 // vector-insertion instructions is not known. 2231 unsigned NumScalarLoads = 0; 2232 2233 for (SDValue V : Op->op_values()) { 2234 if (V.isUndef()) 2235 continue; 2236 2237 ValueCounts.insert(std::make_pair(V, 0)); 2238 unsigned &Count = ValueCounts[V]; 2239 2240 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2241 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2242 2243 // Is this value dominant? In case of a tie, prefer the highest element as 2244 // it's cheaper to insert near the beginning of a vector than it is at the 2245 // end. 2246 if (++Count >= MostCommonCount) { 2247 DominantValue = V; 2248 MostCommonCount = Count; 2249 } 2250 } 2251 2252 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2253 unsigned NumDefElts = NumElts - NumUndefElts; 2254 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2255 2256 // Don't perform this optimization when optimizing for size, since 2257 // materializing elements and inserting them tends to cause code bloat. 2258 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2259 ((MostCommonCount > DominantValueCountThreshold) || 2260 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2261 // Start by splatting the most common element. 2262 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2263 2264 DenseSet<SDValue> Processed{DominantValue}; 2265 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2266 for (const auto &OpIdx : enumerate(Op->ops())) { 2267 const SDValue &V = OpIdx.value(); 2268 if (V.isUndef() || !Processed.insert(V).second) 2269 continue; 2270 if (ValueCounts[V] == 1) { 2271 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2272 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2273 } else { 2274 // Blend in all instances of this value using a VSELECT, using a 2275 // mask where each bit signals whether that element is the one 2276 // we're after. 2277 SmallVector<SDValue> Ops; 2278 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2279 return DAG.getConstant(V == V1, DL, XLenVT); 2280 }); 2281 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2282 DAG.getBuildVector(SelMaskTy, DL, Ops), 2283 DAG.getSplatBuildVector(VT, DL, V), Vec); 2284 } 2285 } 2286 2287 return Vec; 2288 } 2289 2290 return SDValue(); 2291 } 2292 2293 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, 2294 SDValue Lo, SDValue Hi, SDValue VL, 2295 SelectionDAG &DAG) { 2296 if (!Passthru) 2297 Passthru = DAG.getUNDEF(VT); 2298 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2299 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2300 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2301 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2302 // node in order to try and match RVV vector/scalar instructions. 2303 if ((LoC >> 31) == HiC) 2304 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL); 2305 2306 // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use 2307 // vmv.v.x whose EEW = 32 to lower it. 2308 auto *Const = dyn_cast<ConstantSDNode>(VL); 2309 if (LoC == HiC && Const && Const->isAllOnesValue()) { 2310 MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 2311 // TODO: if vl <= min(VLMAX), we can also do this. But we could not 2312 // access the subtarget here now. 2313 auto InterVec = DAG.getNode( 2314 RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo, 2315 DAG.getRegister(RISCV::X0, MVT::i32)); 2316 return DAG.getNode(ISD::BITCAST, DL, VT, InterVec); 2317 } 2318 } 2319 2320 // Fall back to a stack store and stride x0 vector load. 2321 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo, 2322 Hi, VL); 2323 } 2324 2325 // Called by type legalization to handle splat of i64 on RV32. 2326 // FIXME: We can optimize this when the type has sign or zero bits in one 2327 // of the halves. 2328 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, 2329 SDValue Scalar, SDValue VL, 2330 SelectionDAG &DAG) { 2331 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2332 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2333 DAG.getConstant(0, DL, MVT::i32)); 2334 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2335 DAG.getConstant(1, DL, MVT::i32)); 2336 return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG); 2337 } 2338 2339 // This function lowers a splat of a scalar operand Splat with the vector 2340 // length VL. It ensures the final sequence is type legal, which is useful when 2341 // lowering a splat after type legalization. 2342 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL, 2343 MVT VT, SDLoc DL, SelectionDAG &DAG, 2344 const RISCVSubtarget &Subtarget) { 2345 bool HasPassthru = Passthru && !Passthru.isUndef(); 2346 if (!HasPassthru && !Passthru) 2347 Passthru = DAG.getUNDEF(VT); 2348 if (VT.isFloatingPoint()) { 2349 // If VL is 1, we could use vfmv.s.f. 2350 if (isOneConstant(VL)) 2351 return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL); 2352 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL); 2353 } 2354 2355 MVT XLenVT = Subtarget.getXLenVT(); 2356 2357 // Simplest case is that the operand needs to be promoted to XLenVT. 2358 if (Scalar.getValueType().bitsLE(XLenVT)) { 2359 // If the operand is a constant, sign extend to increase our chances 2360 // of being able to use a .vi instruction. ANY_EXTEND would become a 2361 // a zero extend and the simm5 check in isel would fail. 2362 // FIXME: Should we ignore the upper bits in isel instead? 2363 unsigned ExtOpc = 2364 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2365 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2366 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar); 2367 // If VL is 1 and the scalar value won't benefit from immediate, we could 2368 // use vmv.s.x. 2369 if (isOneConstant(VL) && 2370 (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue()))) 2371 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL); 2372 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL); 2373 } 2374 2375 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2376 "Unexpected scalar for splat lowering!"); 2377 2378 if (isOneConstant(VL) && isNullConstant(Scalar)) 2379 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, 2380 DAG.getConstant(0, DL, XLenVT), VL); 2381 2382 // Otherwise use the more complicated splatting algorithm. 2383 return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG); 2384 } 2385 2386 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources, 2387 const RISCVSubtarget &Subtarget) { 2388 // We need to be able to widen elements to the next larger integer type. 2389 if (VT.getScalarSizeInBits() >= Subtarget.getELEN()) 2390 return false; 2391 2392 int Size = Mask.size(); 2393 assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); 2394 2395 int Srcs[] = {-1, -1}; 2396 for (int i = 0; i != Size; ++i) { 2397 // Ignore undef elements. 2398 if (Mask[i] < 0) 2399 continue; 2400 2401 // Is this an even or odd element. 2402 int Pol = i % 2; 2403 2404 // Ensure we consistently use the same source for this element polarity. 2405 int Src = Mask[i] / Size; 2406 if (Srcs[Pol] < 0) 2407 Srcs[Pol] = Src; 2408 if (Srcs[Pol] != Src) 2409 return false; 2410 2411 // Make sure the element within the source is appropriate for this element 2412 // in the destination. 2413 int Elt = Mask[i] % Size; 2414 if (Elt != i / 2) 2415 return false; 2416 } 2417 2418 // We need to find a source for each polarity and they can't be the same. 2419 if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1]) 2420 return false; 2421 2422 // Swap the sources if the second source was in the even polarity. 2423 SwapSources = Srcs[0] > Srcs[1]; 2424 2425 return true; 2426 } 2427 2428 /// Match shuffles that concatenate two vectors, rotate the concatenation, 2429 /// and then extract the original number of elements from the rotated result. 2430 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The 2431 /// returned rotation amount is for a rotate right, where elements move from 2432 /// higher elements to lower elements. \p LoSrc indicates the first source 2433 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector 2434 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be 2435 /// 0 or 1 if a rotation is found. 2436 /// 2437 /// NOTE: We talk about rotate to the right which matches how bit shift and 2438 /// rotate instructions are described where LSBs are on the right, but LLVM IR 2439 /// and the table below write vectors with the lowest elements on the left. 2440 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) { 2441 int Size = Mask.size(); 2442 2443 // We need to detect various ways of spelling a rotation: 2444 // [11, 12, 13, 14, 15, 0, 1, 2] 2445 // [-1, 12, 13, 14, -1, -1, 1, -1] 2446 // [-1, -1, -1, -1, -1, -1, 1, 2] 2447 // [ 3, 4, 5, 6, 7, 8, 9, 10] 2448 // [-1, 4, 5, 6, -1, -1, 9, -1] 2449 // [-1, 4, 5, 6, -1, -1, -1, -1] 2450 int Rotation = 0; 2451 LoSrc = -1; 2452 HiSrc = -1; 2453 for (int i = 0; i != Size; ++i) { 2454 int M = Mask[i]; 2455 if (M < 0) 2456 continue; 2457 2458 // Determine where a rotate vector would have started. 2459 int StartIdx = i - (M % Size); 2460 // The identity rotation isn't interesting, stop. 2461 if (StartIdx == 0) 2462 return -1; 2463 2464 // If we found the tail of a vector the rotation must be the missing 2465 // front. If we found the head of a vector, it must be how much of the 2466 // head. 2467 int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx; 2468 2469 if (Rotation == 0) 2470 Rotation = CandidateRotation; 2471 else if (Rotation != CandidateRotation) 2472 // The rotations don't match, so we can't match this mask. 2473 return -1; 2474 2475 // Compute which value this mask is pointing at. 2476 int MaskSrc = M < Size ? 0 : 1; 2477 2478 // Compute which of the two target values this index should be assigned to. 2479 // This reflects whether the high elements are remaining or the low elemnts 2480 // are remaining. 2481 int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc; 2482 2483 // Either set up this value if we've not encountered it before, or check 2484 // that it remains consistent. 2485 if (TargetSrc < 0) 2486 TargetSrc = MaskSrc; 2487 else if (TargetSrc != MaskSrc) 2488 // This may be a rotation, but it pulls from the inputs in some 2489 // unsupported interleaving. 2490 return -1; 2491 } 2492 2493 // Check that we successfully analyzed the mask, and normalize the results. 2494 assert(Rotation != 0 && "Failed to locate a viable rotation!"); 2495 assert((LoSrc >= 0 || HiSrc >= 0) && 2496 "Failed to find a rotated input vector!"); 2497 2498 return Rotation; 2499 } 2500 2501 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2502 const RISCVSubtarget &Subtarget) { 2503 SDValue V1 = Op.getOperand(0); 2504 SDValue V2 = Op.getOperand(1); 2505 SDLoc DL(Op); 2506 MVT XLenVT = Subtarget.getXLenVT(); 2507 MVT VT = Op.getSimpleValueType(); 2508 unsigned NumElts = VT.getVectorNumElements(); 2509 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2510 2511 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2512 2513 SDValue TrueMask, VL; 2514 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2515 2516 if (SVN->isSplat()) { 2517 const int Lane = SVN->getSplatIndex(); 2518 if (Lane >= 0) { 2519 MVT SVT = VT.getVectorElementType(); 2520 2521 // Turn splatted vector load into a strided load with an X0 stride. 2522 SDValue V = V1; 2523 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2524 // with undef. 2525 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2526 int Offset = Lane; 2527 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2528 int OpElements = 2529 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2530 V = V.getOperand(Offset / OpElements); 2531 Offset %= OpElements; 2532 } 2533 2534 // We need to ensure the load isn't atomic or volatile. 2535 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2536 auto *Ld = cast<LoadSDNode>(V); 2537 Offset *= SVT.getStoreSize(); 2538 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2539 TypeSize::Fixed(Offset), DL); 2540 2541 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2542 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2543 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2544 SDValue IntID = 2545 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2546 SDValue Ops[] = {Ld->getChain(), 2547 IntID, 2548 DAG.getUNDEF(ContainerVT), 2549 NewAddr, 2550 DAG.getRegister(RISCV::X0, XLenVT), 2551 VL}; 2552 SDValue NewLoad = DAG.getMemIntrinsicNode( 2553 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2554 DAG.getMachineFunction().getMachineMemOperand( 2555 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2556 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2557 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2558 } 2559 2560 // Otherwise use a scalar load and splat. This will give the best 2561 // opportunity to fold a splat into the operation. ISel can turn it into 2562 // the x0 strided load if we aren't able to fold away the select. 2563 if (SVT.isFloatingPoint()) 2564 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2565 Ld->getPointerInfo().getWithOffset(Offset), 2566 Ld->getOriginalAlign(), 2567 Ld->getMemOperand()->getFlags()); 2568 else 2569 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2570 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2571 Ld->getOriginalAlign(), 2572 Ld->getMemOperand()->getFlags()); 2573 DAG.makeEquivalentMemoryOrdering(Ld, V); 2574 2575 unsigned Opc = 2576 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2577 SDValue Splat = 2578 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL); 2579 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2580 } 2581 2582 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2583 assert(Lane < (int)NumElts && "Unexpected lane!"); 2584 SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, 2585 V1, DAG.getConstant(Lane, DL, XLenVT), 2586 TrueMask, DAG.getUNDEF(ContainerVT), VL); 2587 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2588 } 2589 } 2590 2591 ArrayRef<int> Mask = SVN->getMask(); 2592 2593 // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may 2594 // be undef which can be handled with a single SLIDEDOWN/UP. 2595 int LoSrc, HiSrc; 2596 int Rotation = isElementRotate(LoSrc, HiSrc, Mask); 2597 if (Rotation > 0) { 2598 SDValue LoV, HiV; 2599 if (LoSrc >= 0) { 2600 LoV = LoSrc == 0 ? V1 : V2; 2601 LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget); 2602 } 2603 if (HiSrc >= 0) { 2604 HiV = HiSrc == 0 ? V1 : V2; 2605 HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget); 2606 } 2607 2608 // We found a rotation. We need to slide HiV down by Rotation. Then we need 2609 // to slide LoV up by (NumElts - Rotation). 2610 unsigned InvRotate = NumElts - Rotation; 2611 2612 SDValue Res = DAG.getUNDEF(ContainerVT); 2613 if (HiV) { 2614 // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN. 2615 // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it 2616 // causes multiple vsetvlis in some test cases such as lowering 2617 // reduce.mul 2618 SDValue DownVL = VL; 2619 if (LoV) 2620 DownVL = DAG.getConstant(InvRotate, DL, XLenVT); 2621 Res = 2622 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV, 2623 DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL); 2624 } 2625 if (LoV) 2626 Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV, 2627 DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL); 2628 2629 return convertFromScalableVector(VT, Res, DAG, Subtarget); 2630 } 2631 2632 // Detect an interleave shuffle and lower to 2633 // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1)) 2634 bool SwapSources; 2635 if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) { 2636 // Swap sources if needed. 2637 if (SwapSources) 2638 std::swap(V1, V2); 2639 2640 // Extract the lower half of the vectors. 2641 MVT HalfVT = VT.getHalfNumVectorElementsVT(); 2642 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1, 2643 DAG.getConstant(0, DL, XLenVT)); 2644 V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2, 2645 DAG.getConstant(0, DL, XLenVT)); 2646 2647 // Double the element width and halve the number of elements in an int type. 2648 unsigned EltBits = VT.getScalarSizeInBits(); 2649 MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2); 2650 MVT WideIntVT = 2651 MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2); 2652 // Convert this to a scalable vector. We need to base this on the 2653 // destination size to ensure there's always a type with a smaller LMUL. 2654 MVT WideIntContainerVT = 2655 getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget); 2656 2657 // Convert sources to scalable vectors with the same element count as the 2658 // larger type. 2659 MVT HalfContainerVT = MVT::getVectorVT( 2660 VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount()); 2661 V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget); 2662 V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget); 2663 2664 // Cast sources to integer. 2665 MVT IntEltVT = MVT::getIntegerVT(EltBits); 2666 MVT IntHalfVT = 2667 MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount()); 2668 V1 = DAG.getBitcast(IntHalfVT, V1); 2669 V2 = DAG.getBitcast(IntHalfVT, V2); 2670 2671 // Freeze V2 since we use it twice and we need to be sure that the add and 2672 // multiply see the same value. 2673 V2 = DAG.getFreeze(V2); 2674 2675 // Recreate TrueMask using the widened type's element count. 2676 TrueMask = getAllOnesMask(HalfContainerVT, VL, DL, DAG); 2677 2678 // Widen V1 and V2 with 0s and add one copy of V2 to V1. 2679 SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1, 2680 V2, TrueMask, VL); 2681 // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer. 2682 SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT, 2683 DAG.getUNDEF(IntHalfVT), 2684 DAG.getAllOnesConstant(DL, XLenVT)); 2685 SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT, 2686 V2, Multiplier, TrueMask, VL); 2687 // Add the new copies to our previous addition giving us 2^eltbits copies of 2688 // V2. This is equivalent to shifting V2 left by eltbits. This should 2689 // combine with the vwmulu.vv above to form vwmaccu.vv. 2690 Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul, 2691 TrueMask, VL); 2692 // Cast back to ContainerVT. We need to re-create a new ContainerVT in case 2693 // WideIntContainerVT is a larger fractional LMUL than implied by the fixed 2694 // vector VT. 2695 ContainerVT = 2696 MVT::getVectorVT(VT.getVectorElementType(), 2697 WideIntContainerVT.getVectorElementCount() * 2); 2698 Add = DAG.getBitcast(ContainerVT, Add); 2699 return convertFromScalableVector(VT, Add, DAG, Subtarget); 2700 } 2701 2702 // Detect shuffles which can be re-expressed as vector selects; these are 2703 // shuffles in which each element in the destination is taken from an element 2704 // at the corresponding index in either source vectors. 2705 bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) { 2706 int MaskIndex = MaskIdx.value(); 2707 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2708 }); 2709 2710 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2711 2712 SmallVector<SDValue> MaskVals; 2713 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2714 // merged with a second vrgather. 2715 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2716 2717 // By default we preserve the original operand order, and use a mask to 2718 // select LHS as true and RHS as false. However, since RVV vector selects may 2719 // feature splats but only on the LHS, we may choose to invert our mask and 2720 // instead select between RHS and LHS. 2721 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2722 bool InvertMask = IsSelect == SwapOps; 2723 2724 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2725 // half. 2726 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2727 2728 // Now construct the mask that will be used by the vselect or blended 2729 // vrgather operation. For vrgathers, construct the appropriate indices into 2730 // each vector. 2731 for (int MaskIndex : Mask) { 2732 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2733 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2734 if (!IsSelect) { 2735 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2736 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2737 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2738 : DAG.getUNDEF(XLenVT)); 2739 GatherIndicesRHS.push_back( 2740 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2741 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2742 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2743 ++LHSIndexCounts[MaskIndex]; 2744 if (!IsLHSOrUndefIndex) 2745 ++RHSIndexCounts[MaskIndex - NumElts]; 2746 } 2747 } 2748 2749 if (SwapOps) { 2750 std::swap(V1, V2); 2751 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2752 } 2753 2754 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2755 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2756 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2757 2758 if (IsSelect) 2759 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2760 2761 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2762 // On such a large vector we're unable to use i8 as the index type. 2763 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2764 // may involve vector splitting if we're already at LMUL=8, or our 2765 // user-supplied maximum fixed-length LMUL. 2766 return SDValue(); 2767 } 2768 2769 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2770 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2771 MVT IndexVT = VT.changeTypeToInteger(); 2772 // Since we can't introduce illegal index types at this stage, use i16 and 2773 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2774 // than XLenVT. 2775 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2776 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2777 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2778 } 2779 2780 MVT IndexContainerVT = 2781 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2782 2783 SDValue Gather; 2784 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2785 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2786 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2787 Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG, 2788 Subtarget); 2789 } else { 2790 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2791 // If only one index is used, we can use a "splat" vrgather. 2792 // TODO: We can splat the most-common index and fix-up any stragglers, if 2793 // that's beneficial. 2794 if (LHSIndexCounts.size() == 1) { 2795 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2796 Gather = DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2797 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, 2798 DAG.getUNDEF(ContainerVT), VL); 2799 } else { 2800 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2801 LHSIndices = 2802 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2803 2804 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2805 TrueMask, DAG.getUNDEF(ContainerVT), VL); 2806 } 2807 } 2808 2809 // If a second vector operand is used by this shuffle, blend it in with an 2810 // additional vrgather. 2811 if (!V2.isUndef()) { 2812 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2813 2814 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2815 SelectMask = 2816 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2817 2818 // If only one index is used, we can use a "splat" vrgather. 2819 // TODO: We can splat the most-common index and fix-up any stragglers, if 2820 // that's beneficial. 2821 if (RHSIndexCounts.size() == 1) { 2822 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2823 Gather = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2824 DAG.getConstant(SplatIndex, DL, XLenVT), SelectMask, 2825 Gather, VL); 2826 } else { 2827 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2828 RHSIndices = 2829 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2830 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, 2831 SelectMask, Gather, VL); 2832 } 2833 } 2834 2835 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2836 } 2837 2838 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 2839 // Support splats for any type. These should type legalize well. 2840 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 2841 return true; 2842 2843 // Only support legal VTs for other shuffles for now. 2844 if (!isTypeLegal(VT)) 2845 return false; 2846 2847 MVT SVT = VT.getSimpleVT(); 2848 2849 bool SwapSources; 2850 int LoSrc, HiSrc; 2851 return (isElementRotate(LoSrc, HiSrc, M) > 0) || 2852 isInterleaveShuffle(M, SVT, SwapSources, Subtarget); 2853 } 2854 2855 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2856 // the exponent. 2857 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2858 MVT VT = Op.getSimpleValueType(); 2859 unsigned EltSize = VT.getScalarSizeInBits(); 2860 SDValue Src = Op.getOperand(0); 2861 SDLoc DL(Op); 2862 2863 // We need a FP type that can represent the value. 2864 // TODO: Use f16 for i8 when possible? 2865 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2866 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2867 2868 // Legal types should have been checked in the RISCVTargetLowering 2869 // constructor. 2870 // TODO: Splitting may make sense in some cases. 2871 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2872 "Expected legal float type!"); 2873 2874 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2875 // The trailing zero count is equal to log2 of this single bit value. 2876 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2877 SDValue Neg = 2878 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2879 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2880 } 2881 2882 // We have a legal FP type, convert to it. 2883 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2884 // Bitcast to integer and shift the exponent to the LSB. 2885 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2886 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2887 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2888 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2889 DAG.getConstant(ShiftAmt, DL, IntVT)); 2890 // Truncate back to original type to allow vnsrl. 2891 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2892 // The exponent contains log2 of the value in biased form. 2893 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2894 2895 // For trailing zeros, we just need to subtract the bias. 2896 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2897 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2898 DAG.getConstant(ExponentBias, DL, VT)); 2899 2900 // For leading zeros, we need to remove the bias and convert from log2 to 2901 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 2902 unsigned Adjust = ExponentBias + (EltSize - 1); 2903 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 2904 } 2905 2906 // While RVV has alignment restrictions, we should always be able to load as a 2907 // legal equivalently-sized byte-typed vector instead. This method is 2908 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2909 // the load is already correctly-aligned, it returns SDValue(). 2910 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2911 SelectionDAG &DAG) const { 2912 auto *Load = cast<LoadSDNode>(Op); 2913 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2914 2915 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2916 Load->getMemoryVT(), 2917 *Load->getMemOperand())) 2918 return SDValue(); 2919 2920 SDLoc DL(Op); 2921 MVT VT = Op.getSimpleValueType(); 2922 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2923 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2924 "Unexpected unaligned RVV load type"); 2925 MVT NewVT = 2926 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2927 assert(NewVT.isValid() && 2928 "Expecting equally-sized RVV vector types to be legal"); 2929 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2930 Load->getPointerInfo(), Load->getOriginalAlign(), 2931 Load->getMemOperand()->getFlags()); 2932 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2933 } 2934 2935 // While RVV has alignment restrictions, we should always be able to store as a 2936 // legal equivalently-sized byte-typed vector instead. This method is 2937 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2938 // returns SDValue() if the store is already correctly aligned. 2939 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2940 SelectionDAG &DAG) const { 2941 auto *Store = cast<StoreSDNode>(Op); 2942 assert(Store && Store->getValue().getValueType().isVector() && 2943 "Expected vector store"); 2944 2945 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2946 Store->getMemoryVT(), 2947 *Store->getMemOperand())) 2948 return SDValue(); 2949 2950 SDLoc DL(Op); 2951 SDValue StoredVal = Store->getValue(); 2952 MVT VT = StoredVal.getSimpleValueType(); 2953 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2954 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2955 "Unexpected unaligned RVV store type"); 2956 MVT NewVT = 2957 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2958 assert(NewVT.isValid() && 2959 "Expecting equally-sized RVV vector types to be legal"); 2960 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2961 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2962 Store->getPointerInfo(), Store->getOriginalAlign(), 2963 Store->getMemOperand()->getFlags()); 2964 } 2965 2966 static SDValue lowerConstant(SDValue Op, SelectionDAG &DAG, 2967 const RISCVSubtarget &Subtarget) { 2968 assert(Op.getValueType() == MVT::i64 && "Unexpected VT"); 2969 2970 int64_t Imm = cast<ConstantSDNode>(Op)->getSExtValue(); 2971 2972 // All simm32 constants should be handled by isel. 2973 // NOTE: The getMaxBuildIntsCost call below should return a value >= 2 making 2974 // this check redundant, but small immediates are common so this check 2975 // should have better compile time. 2976 if (isInt<32>(Imm)) 2977 return Op; 2978 2979 // We only need to cost the immediate, if constant pool lowering is enabled. 2980 if (!Subtarget.useConstantPoolForLargeInts()) 2981 return Op; 2982 2983 RISCVMatInt::InstSeq Seq = 2984 RISCVMatInt::generateInstSeq(Imm, Subtarget.getFeatureBits()); 2985 if (Seq.size() <= Subtarget.getMaxBuildIntsCost()) 2986 return Op; 2987 2988 // Expand to a constant pool using the default expansion code. 2989 return SDValue(); 2990 } 2991 2992 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2993 SelectionDAG &DAG) const { 2994 switch (Op.getOpcode()) { 2995 default: 2996 report_fatal_error("unimplemented operand"); 2997 case ISD::GlobalAddress: 2998 return lowerGlobalAddress(Op, DAG); 2999 case ISD::BlockAddress: 3000 return lowerBlockAddress(Op, DAG); 3001 case ISD::ConstantPool: 3002 return lowerConstantPool(Op, DAG); 3003 case ISD::JumpTable: 3004 return lowerJumpTable(Op, DAG); 3005 case ISD::GlobalTLSAddress: 3006 return lowerGlobalTLSAddress(Op, DAG); 3007 case ISD::Constant: 3008 return lowerConstant(Op, DAG, Subtarget); 3009 case ISD::SELECT: 3010 return lowerSELECT(Op, DAG); 3011 case ISD::BRCOND: 3012 return lowerBRCOND(Op, DAG); 3013 case ISD::VASTART: 3014 return lowerVASTART(Op, DAG); 3015 case ISD::FRAMEADDR: 3016 return lowerFRAMEADDR(Op, DAG); 3017 case ISD::RETURNADDR: 3018 return lowerRETURNADDR(Op, DAG); 3019 case ISD::SHL_PARTS: 3020 return lowerShiftLeftParts(Op, DAG); 3021 case ISD::SRA_PARTS: 3022 return lowerShiftRightParts(Op, DAG, true); 3023 case ISD::SRL_PARTS: 3024 return lowerShiftRightParts(Op, DAG, false); 3025 case ISD::BITCAST: { 3026 SDLoc DL(Op); 3027 EVT VT = Op.getValueType(); 3028 SDValue Op0 = Op.getOperand(0); 3029 EVT Op0VT = Op0.getValueType(); 3030 MVT XLenVT = Subtarget.getXLenVT(); 3031 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 3032 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 3033 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 3034 return FPConv; 3035 } 3036 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 3037 Subtarget.hasStdExtF()) { 3038 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3039 SDValue FPConv = 3040 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 3041 return FPConv; 3042 } 3043 3044 // Consider other scalar<->scalar casts as legal if the types are legal. 3045 // Otherwise expand them. 3046 if (!VT.isVector() && !Op0VT.isVector()) { 3047 if (isTypeLegal(VT) && isTypeLegal(Op0VT)) 3048 return Op; 3049 return SDValue(); 3050 } 3051 3052 assert(!VT.isScalableVector() && !Op0VT.isScalableVector() && 3053 "Unexpected types"); 3054 3055 if (VT.isFixedLengthVector()) { 3056 // We can handle fixed length vector bitcasts with a simple replacement 3057 // in isel. 3058 if (Op0VT.isFixedLengthVector()) 3059 return Op; 3060 // When bitcasting from scalar to fixed-length vector, insert the scalar 3061 // into a one-element vector of the result type, and perform a vector 3062 // bitcast. 3063 if (!Op0VT.isVector()) { 3064 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 3065 if (!isTypeLegal(BVT)) 3066 return SDValue(); 3067 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 3068 DAG.getUNDEF(BVT), Op0, 3069 DAG.getConstant(0, DL, XLenVT))); 3070 } 3071 return SDValue(); 3072 } 3073 // Custom-legalize bitcasts from fixed-length vector types to scalar types 3074 // thus: bitcast the vector to a one-element vector type whose element type 3075 // is the same as the result type, and extract the first element. 3076 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 3077 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 3078 if (!isTypeLegal(BVT)) 3079 return SDValue(); 3080 SDValue BVec = DAG.getBitcast(BVT, Op0); 3081 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 3082 DAG.getConstant(0, DL, XLenVT)); 3083 } 3084 return SDValue(); 3085 } 3086 case ISD::INTRINSIC_WO_CHAIN: 3087 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 3088 case ISD::INTRINSIC_W_CHAIN: 3089 return LowerINTRINSIC_W_CHAIN(Op, DAG); 3090 case ISD::INTRINSIC_VOID: 3091 return LowerINTRINSIC_VOID(Op, DAG); 3092 case ISD::BSWAP: 3093 case ISD::BITREVERSE: { 3094 MVT VT = Op.getSimpleValueType(); 3095 SDLoc DL(Op); 3096 if (Subtarget.hasStdExtZbp()) { 3097 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 3098 // Start with the maximum immediate value which is the bitwidth - 1. 3099 unsigned Imm = VT.getSizeInBits() - 1; 3100 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 3101 if (Op.getOpcode() == ISD::BSWAP) 3102 Imm &= ~0x7U; 3103 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 3104 DAG.getConstant(Imm, DL, VT)); 3105 } 3106 assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization"); 3107 assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode"); 3108 // Expand bitreverse to a bswap(rev8) followed by brev8. 3109 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0)); 3110 // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized 3111 // as brev8 by an isel pattern. 3112 return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap, 3113 DAG.getConstant(7, DL, VT)); 3114 } 3115 case ISD::FSHL: 3116 case ISD::FSHR: { 3117 MVT VT = Op.getSimpleValueType(); 3118 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 3119 SDLoc DL(Op); 3120 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 3121 // use log(XLen) bits. Mask the shift amount accordingly to prevent 3122 // accidentally setting the extra bit. 3123 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 3124 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 3125 DAG.getConstant(ShAmtWidth, DL, VT)); 3126 // fshl and fshr concatenate their operands in the same order. fsr and fsl 3127 // instruction use different orders. fshl will return its first operand for 3128 // shift of zero, fshr will return its second operand. fsl and fsr both 3129 // return rs1 so the ISD nodes need to have different operand orders. 3130 // Shift amount is in rs2. 3131 SDValue Op0 = Op.getOperand(0); 3132 SDValue Op1 = Op.getOperand(1); 3133 unsigned Opc = RISCVISD::FSL; 3134 if (Op.getOpcode() == ISD::FSHR) { 3135 std::swap(Op0, Op1); 3136 Opc = RISCVISD::FSR; 3137 } 3138 return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt); 3139 } 3140 case ISD::TRUNCATE: 3141 // Only custom-lower vector truncates 3142 if (!Op.getSimpleValueType().isVector()) 3143 return Op; 3144 return lowerVectorTruncLike(Op, DAG); 3145 case ISD::ANY_EXTEND: 3146 case ISD::ZERO_EXTEND: 3147 if (Op.getOperand(0).getValueType().isVector() && 3148 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3149 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 3150 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 3151 case ISD::SIGN_EXTEND: 3152 if (Op.getOperand(0).getValueType().isVector() && 3153 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3154 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 3155 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 3156 case ISD::SPLAT_VECTOR_PARTS: 3157 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 3158 case ISD::INSERT_VECTOR_ELT: 3159 return lowerINSERT_VECTOR_ELT(Op, DAG); 3160 case ISD::EXTRACT_VECTOR_ELT: 3161 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 3162 case ISD::VSCALE: { 3163 MVT VT = Op.getSimpleValueType(); 3164 SDLoc DL(Op); 3165 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 3166 // We define our scalable vector types for lmul=1 to use a 64 bit known 3167 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 3168 // vscale as VLENB / 8. 3169 static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); 3170 if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock) 3171 report_fatal_error("Support for VLEN==32 is incomplete."); 3172 // We assume VLENB is a multiple of 8. We manually choose the best shift 3173 // here because SimplifyDemandedBits isn't always able to simplify it. 3174 uint64_t Val = Op.getConstantOperandVal(0); 3175 if (isPowerOf2_64(Val)) { 3176 uint64_t Log2 = Log2_64(Val); 3177 if (Log2 < 3) 3178 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 3179 DAG.getConstant(3 - Log2, DL, VT)); 3180 if (Log2 > 3) 3181 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 3182 DAG.getConstant(Log2 - 3, DL, VT)); 3183 return VLENB; 3184 } 3185 // If the multiplier is a multiple of 8, scale it down to avoid needing 3186 // to shift the VLENB value. 3187 if ((Val % 8) == 0) 3188 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 3189 DAG.getConstant(Val / 8, DL, VT)); 3190 3191 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 3192 DAG.getConstant(3, DL, VT)); 3193 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 3194 } 3195 case ISD::FPOWI: { 3196 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 3197 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 3198 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 3199 Op.getOperand(1).getValueType() == MVT::i32) { 3200 SDLoc DL(Op); 3201 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 3202 SDValue Powi = 3203 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 3204 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 3205 DAG.getIntPtrConstant(0, DL)); 3206 } 3207 return SDValue(); 3208 } 3209 case ISD::FP_EXTEND: 3210 case ISD::FP_ROUND: 3211 if (!Op.getValueType().isVector()) 3212 return Op; 3213 return lowerVectorFPExtendOrRoundLike(Op, DAG); 3214 case ISD::FP_TO_SINT: 3215 case ISD::FP_TO_UINT: 3216 case ISD::SINT_TO_FP: 3217 case ISD::UINT_TO_FP: { 3218 // RVV can only do fp<->int conversions to types half/double the size as 3219 // the source. We custom-lower any conversions that do two hops into 3220 // sequences. 3221 MVT VT = Op.getSimpleValueType(); 3222 if (!VT.isVector()) 3223 return Op; 3224 SDLoc DL(Op); 3225 SDValue Src = Op.getOperand(0); 3226 MVT EltVT = VT.getVectorElementType(); 3227 MVT SrcVT = Src.getSimpleValueType(); 3228 MVT SrcEltVT = SrcVT.getVectorElementType(); 3229 unsigned EltSize = EltVT.getSizeInBits(); 3230 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 3231 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 3232 "Unexpected vector element types"); 3233 3234 bool IsInt2FP = SrcEltVT.isInteger(); 3235 // Widening conversions 3236 if (EltSize > (2 * SrcEltSize)) { 3237 if (IsInt2FP) { 3238 // Do a regular integer sign/zero extension then convert to float. 3239 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), 3240 VT.getVectorElementCount()); 3241 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 3242 ? ISD::ZERO_EXTEND 3243 : ISD::SIGN_EXTEND; 3244 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 3245 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 3246 } 3247 // FP2Int 3248 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 3249 // Do one doubling fp_extend then complete the operation by converting 3250 // to int. 3251 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3252 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 3253 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 3254 } 3255 3256 // Narrowing conversions 3257 if (SrcEltSize > (2 * EltSize)) { 3258 if (IsInt2FP) { 3259 // One narrowing int_to_fp, then an fp_round. 3260 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 3261 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3262 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 3263 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 3264 } 3265 // FP2Int 3266 // One narrowing fp_to_int, then truncate the integer. If the float isn't 3267 // representable by the integer, the result is poison. 3268 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), 3269 VT.getVectorElementCount()); 3270 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 3271 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 3272 } 3273 3274 // Scalable vectors can exit here. Patterns will handle equally-sized 3275 // conversions halving/doubling ones. 3276 if (!VT.isFixedLengthVector()) 3277 return Op; 3278 3279 // For fixed-length vectors we lower to a custom "VL" node. 3280 unsigned RVVOpc = 0; 3281 switch (Op.getOpcode()) { 3282 default: 3283 llvm_unreachable("Impossible opcode"); 3284 case ISD::FP_TO_SINT: 3285 RVVOpc = RISCVISD::FP_TO_SINT_VL; 3286 break; 3287 case ISD::FP_TO_UINT: 3288 RVVOpc = RISCVISD::FP_TO_UINT_VL; 3289 break; 3290 case ISD::SINT_TO_FP: 3291 RVVOpc = RISCVISD::SINT_TO_FP_VL; 3292 break; 3293 case ISD::UINT_TO_FP: 3294 RVVOpc = RISCVISD::UINT_TO_FP_VL; 3295 break; 3296 } 3297 3298 MVT ContainerVT, SrcContainerVT; 3299 // Derive the reference container type from the larger vector type. 3300 if (SrcEltSize > EltSize) { 3301 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3302 ContainerVT = 3303 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3304 } else { 3305 ContainerVT = getContainerForFixedLengthVector(VT); 3306 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 3307 } 3308 3309 SDValue Mask, VL; 3310 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3311 3312 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3313 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 3314 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3315 } 3316 case ISD::FP_TO_SINT_SAT: 3317 case ISD::FP_TO_UINT_SAT: 3318 return lowerFP_TO_INT_SAT(Op, DAG, Subtarget); 3319 case ISD::FTRUNC: 3320 case ISD::FCEIL: 3321 case ISD::FFLOOR: 3322 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 3323 case ISD::FROUND: 3324 return lowerFROUND(Op, DAG); 3325 case ISD::VECREDUCE_ADD: 3326 case ISD::VECREDUCE_UMAX: 3327 case ISD::VECREDUCE_SMAX: 3328 case ISD::VECREDUCE_UMIN: 3329 case ISD::VECREDUCE_SMIN: 3330 return lowerVECREDUCE(Op, DAG); 3331 case ISD::VECREDUCE_AND: 3332 case ISD::VECREDUCE_OR: 3333 case ISD::VECREDUCE_XOR: 3334 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3335 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 3336 return lowerVECREDUCE(Op, DAG); 3337 case ISD::VECREDUCE_FADD: 3338 case ISD::VECREDUCE_SEQ_FADD: 3339 case ISD::VECREDUCE_FMIN: 3340 case ISD::VECREDUCE_FMAX: 3341 return lowerFPVECREDUCE(Op, DAG); 3342 case ISD::VP_REDUCE_ADD: 3343 case ISD::VP_REDUCE_UMAX: 3344 case ISD::VP_REDUCE_SMAX: 3345 case ISD::VP_REDUCE_UMIN: 3346 case ISD::VP_REDUCE_SMIN: 3347 case ISD::VP_REDUCE_FADD: 3348 case ISD::VP_REDUCE_SEQ_FADD: 3349 case ISD::VP_REDUCE_FMIN: 3350 case ISD::VP_REDUCE_FMAX: 3351 return lowerVPREDUCE(Op, DAG); 3352 case ISD::VP_REDUCE_AND: 3353 case ISD::VP_REDUCE_OR: 3354 case ISD::VP_REDUCE_XOR: 3355 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 3356 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 3357 return lowerVPREDUCE(Op, DAG); 3358 case ISD::INSERT_SUBVECTOR: 3359 return lowerINSERT_SUBVECTOR(Op, DAG); 3360 case ISD::EXTRACT_SUBVECTOR: 3361 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3362 case ISD::STEP_VECTOR: 3363 return lowerSTEP_VECTOR(Op, DAG); 3364 case ISD::VECTOR_REVERSE: 3365 return lowerVECTOR_REVERSE(Op, DAG); 3366 case ISD::VECTOR_SPLICE: 3367 return lowerVECTOR_SPLICE(Op, DAG); 3368 case ISD::BUILD_VECTOR: 3369 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3370 case ISD::SPLAT_VECTOR: 3371 if (Op.getValueType().getVectorElementType() == MVT::i1) 3372 return lowerVectorMaskSplat(Op, DAG); 3373 return SDValue(); 3374 case ISD::VECTOR_SHUFFLE: 3375 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3376 case ISD::CONCAT_VECTORS: { 3377 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3378 // better than going through the stack, as the default expansion does. 3379 SDLoc DL(Op); 3380 MVT VT = Op.getSimpleValueType(); 3381 unsigned NumOpElts = 3382 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3383 SDValue Vec = DAG.getUNDEF(VT); 3384 for (const auto &OpIdx : enumerate(Op->ops())) { 3385 SDValue SubVec = OpIdx.value(); 3386 // Don't insert undef subvectors. 3387 if (SubVec.isUndef()) 3388 continue; 3389 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec, 3390 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3391 } 3392 return Vec; 3393 } 3394 case ISD::LOAD: 3395 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3396 return V; 3397 if (Op.getValueType().isFixedLengthVector()) 3398 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3399 return Op; 3400 case ISD::STORE: 3401 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3402 return V; 3403 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3404 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3405 return Op; 3406 case ISD::MLOAD: 3407 case ISD::VP_LOAD: 3408 return lowerMaskedLoad(Op, DAG); 3409 case ISD::MSTORE: 3410 case ISD::VP_STORE: 3411 return lowerMaskedStore(Op, DAG); 3412 case ISD::SETCC: 3413 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3414 case ISD::ADD: 3415 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3416 case ISD::SUB: 3417 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3418 case ISD::MUL: 3419 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3420 case ISD::MULHS: 3421 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3422 case ISD::MULHU: 3423 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3424 case ISD::AND: 3425 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3426 RISCVISD::AND_VL); 3427 case ISD::OR: 3428 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3429 RISCVISD::OR_VL); 3430 case ISD::XOR: 3431 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3432 RISCVISD::XOR_VL); 3433 case ISD::SDIV: 3434 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3435 case ISD::SREM: 3436 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3437 case ISD::UDIV: 3438 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3439 case ISD::UREM: 3440 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3441 case ISD::SHL: 3442 case ISD::SRA: 3443 case ISD::SRL: 3444 if (Op.getSimpleValueType().isFixedLengthVector()) 3445 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3446 // This can be called for an i32 shift amount that needs to be promoted. 3447 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3448 "Unexpected custom legalisation"); 3449 return SDValue(); 3450 case ISD::SADDSAT: 3451 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3452 case ISD::UADDSAT: 3453 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3454 case ISD::SSUBSAT: 3455 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3456 case ISD::USUBSAT: 3457 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3458 case ISD::FADD: 3459 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3460 case ISD::FSUB: 3461 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3462 case ISD::FMUL: 3463 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3464 case ISD::FDIV: 3465 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3466 case ISD::FNEG: 3467 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3468 case ISD::FABS: 3469 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3470 case ISD::FSQRT: 3471 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3472 case ISD::FMA: 3473 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 3474 case ISD::SMIN: 3475 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3476 case ISD::SMAX: 3477 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3478 case ISD::UMIN: 3479 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3480 case ISD::UMAX: 3481 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3482 case ISD::FMINNUM: 3483 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3484 case ISD::FMAXNUM: 3485 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3486 case ISD::ABS: 3487 return lowerABS(Op, DAG); 3488 case ISD::CTLZ_ZERO_UNDEF: 3489 case ISD::CTTZ_ZERO_UNDEF: 3490 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3491 case ISD::VSELECT: 3492 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3493 case ISD::FCOPYSIGN: 3494 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3495 case ISD::MGATHER: 3496 case ISD::VP_GATHER: 3497 return lowerMaskedGather(Op, DAG); 3498 case ISD::MSCATTER: 3499 case ISD::VP_SCATTER: 3500 return lowerMaskedScatter(Op, DAG); 3501 case ISD::FLT_ROUNDS_: 3502 return lowerGET_ROUNDING(Op, DAG); 3503 case ISD::SET_ROUNDING: 3504 return lowerSET_ROUNDING(Op, DAG); 3505 case ISD::EH_DWARF_CFA: 3506 return lowerEH_DWARF_CFA(Op, DAG); 3507 case ISD::VP_SELECT: 3508 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3509 case ISD::VP_MERGE: 3510 return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL); 3511 case ISD::VP_ADD: 3512 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3513 case ISD::VP_SUB: 3514 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3515 case ISD::VP_MUL: 3516 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3517 case ISD::VP_SDIV: 3518 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3519 case ISD::VP_UDIV: 3520 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3521 case ISD::VP_SREM: 3522 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3523 case ISD::VP_UREM: 3524 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3525 case ISD::VP_AND: 3526 return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL); 3527 case ISD::VP_OR: 3528 return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL); 3529 case ISD::VP_XOR: 3530 return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL); 3531 case ISD::VP_ASHR: 3532 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3533 case ISD::VP_LSHR: 3534 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3535 case ISD::VP_SHL: 3536 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3537 case ISD::VP_FADD: 3538 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3539 case ISD::VP_FSUB: 3540 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3541 case ISD::VP_FMUL: 3542 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3543 case ISD::VP_FDIV: 3544 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3545 case ISD::VP_FNEG: 3546 return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL); 3547 case ISD::VP_FMA: 3548 return lowerVPOp(Op, DAG, RISCVISD::FMA_VL); 3549 case ISD::VP_SIGN_EXTEND: 3550 case ISD::VP_ZERO_EXTEND: 3551 if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1) 3552 return lowerVPExtMaskOp(Op, DAG); 3553 return lowerVPOp(Op, DAG, 3554 Op.getOpcode() == ISD::VP_SIGN_EXTEND 3555 ? RISCVISD::VSEXT_VL 3556 : RISCVISD::VZEXT_VL); 3557 case ISD::VP_TRUNCATE: 3558 return lowerVectorTruncLike(Op, DAG); 3559 case ISD::VP_FP_EXTEND: 3560 case ISD::VP_FP_ROUND: 3561 return lowerVectorFPExtendOrRoundLike(Op, DAG); 3562 case ISD::VP_FPTOSI: 3563 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_SINT_VL); 3564 case ISD::VP_FPTOUI: 3565 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_UINT_VL); 3566 case ISD::VP_SITOFP: 3567 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::SINT_TO_FP_VL); 3568 case ISD::VP_UITOFP: 3569 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::UINT_TO_FP_VL); 3570 case ISD::VP_SETCC: 3571 if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1) 3572 return lowerVPSetCCMaskOp(Op, DAG); 3573 return lowerVPOp(Op, DAG, RISCVISD::SETCC_VL); 3574 } 3575 } 3576 3577 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3578 SelectionDAG &DAG, unsigned Flags) { 3579 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3580 } 3581 3582 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3583 SelectionDAG &DAG, unsigned Flags) { 3584 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3585 Flags); 3586 } 3587 3588 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3589 SelectionDAG &DAG, unsigned Flags) { 3590 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3591 N->getOffset(), Flags); 3592 } 3593 3594 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3595 SelectionDAG &DAG, unsigned Flags) { 3596 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3597 } 3598 3599 template <class NodeTy> 3600 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3601 bool IsLocal) const { 3602 SDLoc DL(N); 3603 EVT Ty = getPointerTy(DAG.getDataLayout()); 3604 3605 if (isPositionIndependent()) { 3606 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3607 if (IsLocal) 3608 // Use PC-relative addressing to access the symbol. This generates the 3609 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3610 // %pcrel_lo(auipc)). 3611 return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr); 3612 3613 // Use PC-relative addressing to access the GOT for this symbol, then load 3614 // the address from the GOT. This generates the pattern (PseudoLA sym), 3615 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3616 SDValue Load = 3617 SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3618 MachineFunction &MF = DAG.getMachineFunction(); 3619 MachineMemOperand *MemOp = MF.getMachineMemOperand( 3620 MachinePointerInfo::getGOT(MF), 3621 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 3622 MachineMemOperand::MOInvariant, 3623 LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); 3624 DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp}); 3625 return Load; 3626 } 3627 3628 switch (getTargetMachine().getCodeModel()) { 3629 default: 3630 report_fatal_error("Unsupported code model for lowering"); 3631 case CodeModel::Small: { 3632 // Generate a sequence for accessing addresses within the first 2 GiB of 3633 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3634 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3635 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3636 SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi); 3637 return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNHi, AddrLo); 3638 } 3639 case CodeModel::Medium: { 3640 // Generate a sequence for accessing addresses within any 2GiB range within 3641 // the address space. This generates the pattern (PseudoLLA sym), which 3642 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3643 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3644 return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr); 3645 } 3646 } 3647 } 3648 3649 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3650 SelectionDAG &DAG) const { 3651 SDLoc DL(Op); 3652 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3653 assert(N->getOffset() == 0 && "unexpected offset in global node"); 3654 3655 const GlobalValue *GV = N->getGlobal(); 3656 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3657 return getAddr(N, DAG, IsLocal); 3658 } 3659 3660 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3661 SelectionDAG &DAG) const { 3662 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3663 3664 return getAddr(N, DAG); 3665 } 3666 3667 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3668 SelectionDAG &DAG) const { 3669 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3670 3671 return getAddr(N, DAG); 3672 } 3673 3674 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3675 SelectionDAG &DAG) const { 3676 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3677 3678 return getAddr(N, DAG); 3679 } 3680 3681 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3682 SelectionDAG &DAG, 3683 bool UseGOT) const { 3684 SDLoc DL(N); 3685 EVT Ty = getPointerTy(DAG.getDataLayout()); 3686 const GlobalValue *GV = N->getGlobal(); 3687 MVT XLenVT = Subtarget.getXLenVT(); 3688 3689 if (UseGOT) { 3690 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3691 // load the address from the GOT and add the thread pointer. This generates 3692 // the pattern (PseudoLA_TLS_IE sym), which expands to 3693 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3694 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3695 SDValue Load = 3696 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3697 MachineFunction &MF = DAG.getMachineFunction(); 3698 MachineMemOperand *MemOp = MF.getMachineMemOperand( 3699 MachinePointerInfo::getGOT(MF), 3700 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 3701 MachineMemOperand::MOInvariant, 3702 LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); 3703 DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp}); 3704 3705 // Add the thread pointer. 3706 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3707 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3708 } 3709 3710 // Generate a sequence for accessing the address relative to the thread 3711 // pointer, with the appropriate adjustment for the thread pointer offset. 3712 // This generates the pattern 3713 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3714 SDValue AddrHi = 3715 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3716 SDValue AddrAdd = 3717 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3718 SDValue AddrLo = 3719 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3720 3721 SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi); 3722 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3723 SDValue MNAdd = 3724 DAG.getNode(RISCVISD::ADD_TPREL, DL, Ty, MNHi, TPReg, AddrAdd); 3725 return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNAdd, AddrLo); 3726 } 3727 3728 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3729 SelectionDAG &DAG) const { 3730 SDLoc DL(N); 3731 EVT Ty = getPointerTy(DAG.getDataLayout()); 3732 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3733 const GlobalValue *GV = N->getGlobal(); 3734 3735 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3736 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3737 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3738 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3739 SDValue Load = 3740 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3741 3742 // Prepare argument list to generate call. 3743 ArgListTy Args; 3744 ArgListEntry Entry; 3745 Entry.Node = Load; 3746 Entry.Ty = CallTy; 3747 Args.push_back(Entry); 3748 3749 // Setup call to __tls_get_addr. 3750 TargetLowering::CallLoweringInfo CLI(DAG); 3751 CLI.setDebugLoc(DL) 3752 .setChain(DAG.getEntryNode()) 3753 .setLibCallee(CallingConv::C, CallTy, 3754 DAG.getExternalSymbol("__tls_get_addr", Ty), 3755 std::move(Args)); 3756 3757 return LowerCallTo(CLI).first; 3758 } 3759 3760 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3761 SelectionDAG &DAG) const { 3762 SDLoc DL(Op); 3763 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3764 assert(N->getOffset() == 0 && "unexpected offset in global node"); 3765 3766 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3767 3768 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3769 CallingConv::GHC) 3770 report_fatal_error("In GHC calling convention TLS is not supported"); 3771 3772 SDValue Addr; 3773 switch (Model) { 3774 case TLSModel::LocalExec: 3775 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3776 break; 3777 case TLSModel::InitialExec: 3778 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3779 break; 3780 case TLSModel::LocalDynamic: 3781 case TLSModel::GeneralDynamic: 3782 Addr = getDynamicTLSAddr(N, DAG); 3783 break; 3784 } 3785 3786 return Addr; 3787 } 3788 3789 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3790 SDValue CondV = Op.getOperand(0); 3791 SDValue TrueV = Op.getOperand(1); 3792 SDValue FalseV = Op.getOperand(2); 3793 SDLoc DL(Op); 3794 MVT VT = Op.getSimpleValueType(); 3795 MVT XLenVT = Subtarget.getXLenVT(); 3796 3797 // Lower vector SELECTs to VSELECTs by splatting the condition. 3798 if (VT.isVector()) { 3799 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3800 SDValue CondSplat = VT.isScalableVector() 3801 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3802 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3803 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3804 } 3805 3806 // If the result type is XLenVT and CondV is the output of a SETCC node 3807 // which also operated on XLenVT inputs, then merge the SETCC node into the 3808 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3809 // compare+branch instructions. i.e.: 3810 // (select (setcc lhs, rhs, cc), truev, falsev) 3811 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3812 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3813 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3814 SDValue LHS = CondV.getOperand(0); 3815 SDValue RHS = CondV.getOperand(1); 3816 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3817 ISD::CondCode CCVal = CC->get(); 3818 3819 // Special case for a select of 2 constants that have a diffence of 1. 3820 // Normally this is done by DAGCombine, but if the select is introduced by 3821 // type legalization or op legalization, we miss it. Restricting to SETLT 3822 // case for now because that is what signed saturating add/sub need. 3823 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3824 // but we would probably want to swap the true/false values if the condition 3825 // is SETGE/SETLE to avoid an XORI. 3826 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3827 CCVal == ISD::SETLT) { 3828 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3829 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3830 if (TrueVal - 1 == FalseVal) 3831 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3832 if (TrueVal + 1 == FalseVal) 3833 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3834 } 3835 3836 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3837 3838 SDValue TargetCC = DAG.getCondCode(CCVal); 3839 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3840 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3841 } 3842 3843 // Otherwise: 3844 // (select condv, truev, falsev) 3845 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3846 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3847 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3848 3849 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3850 3851 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3852 } 3853 3854 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3855 SDValue CondV = Op.getOperand(1); 3856 SDLoc DL(Op); 3857 MVT XLenVT = Subtarget.getXLenVT(); 3858 3859 if (CondV.getOpcode() == ISD::SETCC && 3860 CondV.getOperand(0).getValueType() == XLenVT) { 3861 SDValue LHS = CondV.getOperand(0); 3862 SDValue RHS = CondV.getOperand(1); 3863 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3864 3865 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3866 3867 SDValue TargetCC = DAG.getCondCode(CCVal); 3868 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3869 LHS, RHS, TargetCC, Op.getOperand(2)); 3870 } 3871 3872 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3873 CondV, DAG.getConstant(0, DL, XLenVT), 3874 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3875 } 3876 3877 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3878 MachineFunction &MF = DAG.getMachineFunction(); 3879 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3880 3881 SDLoc DL(Op); 3882 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3883 getPointerTy(MF.getDataLayout())); 3884 3885 // vastart just stores the address of the VarArgsFrameIndex slot into the 3886 // memory location argument. 3887 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3888 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3889 MachinePointerInfo(SV)); 3890 } 3891 3892 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3893 SelectionDAG &DAG) const { 3894 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3895 MachineFunction &MF = DAG.getMachineFunction(); 3896 MachineFrameInfo &MFI = MF.getFrameInfo(); 3897 MFI.setFrameAddressIsTaken(true); 3898 Register FrameReg = RI.getFrameRegister(MF); 3899 int XLenInBytes = Subtarget.getXLen() / 8; 3900 3901 EVT VT = Op.getValueType(); 3902 SDLoc DL(Op); 3903 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3904 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3905 while (Depth--) { 3906 int Offset = -(XLenInBytes * 2); 3907 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3908 DAG.getIntPtrConstant(Offset, DL)); 3909 FrameAddr = 3910 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3911 } 3912 return FrameAddr; 3913 } 3914 3915 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3916 SelectionDAG &DAG) const { 3917 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3918 MachineFunction &MF = DAG.getMachineFunction(); 3919 MachineFrameInfo &MFI = MF.getFrameInfo(); 3920 MFI.setReturnAddressIsTaken(true); 3921 MVT XLenVT = Subtarget.getXLenVT(); 3922 int XLenInBytes = Subtarget.getXLen() / 8; 3923 3924 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3925 return SDValue(); 3926 3927 EVT VT = Op.getValueType(); 3928 SDLoc DL(Op); 3929 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3930 if (Depth) { 3931 int Off = -XLenInBytes; 3932 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3933 SDValue Offset = DAG.getConstant(Off, DL, VT); 3934 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3935 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3936 MachinePointerInfo()); 3937 } 3938 3939 // Return the value of the return address register, marking it an implicit 3940 // live-in. 3941 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3942 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3943 } 3944 3945 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3946 SelectionDAG &DAG) const { 3947 SDLoc DL(Op); 3948 SDValue Lo = Op.getOperand(0); 3949 SDValue Hi = Op.getOperand(1); 3950 SDValue Shamt = Op.getOperand(2); 3951 EVT VT = Lo.getValueType(); 3952 3953 // if Shamt-XLEN < 0: // Shamt < XLEN 3954 // Lo = Lo << Shamt 3955 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt)) 3956 // else: 3957 // Lo = 0 3958 // Hi = Lo << (Shamt-XLEN) 3959 3960 SDValue Zero = DAG.getConstant(0, DL, VT); 3961 SDValue One = DAG.getConstant(1, DL, VT); 3962 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3963 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3964 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3965 SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1); 3966 3967 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3968 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3969 SDValue ShiftRightLo = 3970 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3971 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3972 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3973 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3974 3975 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3976 3977 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3978 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3979 3980 SDValue Parts[2] = {Lo, Hi}; 3981 return DAG.getMergeValues(Parts, DL); 3982 } 3983 3984 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3985 bool IsSRA) const { 3986 SDLoc DL(Op); 3987 SDValue Lo = Op.getOperand(0); 3988 SDValue Hi = Op.getOperand(1); 3989 SDValue Shamt = Op.getOperand(2); 3990 EVT VT = Lo.getValueType(); 3991 3992 // SRA expansion: 3993 // if Shamt-XLEN < 0: // Shamt < XLEN 3994 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1)) 3995 // Hi = Hi >>s Shamt 3996 // else: 3997 // Lo = Hi >>s (Shamt-XLEN); 3998 // Hi = Hi >>s (XLEN-1) 3999 // 4000 // SRL expansion: 4001 // if Shamt-XLEN < 0: // Shamt < XLEN 4002 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1)) 4003 // Hi = Hi >>u Shamt 4004 // else: 4005 // Lo = Hi >>u (Shamt-XLEN); 4006 // Hi = 0; 4007 4008 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 4009 4010 SDValue Zero = DAG.getConstant(0, DL, VT); 4011 SDValue One = DAG.getConstant(1, DL, VT); 4012 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 4013 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 4014 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 4015 SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1); 4016 4017 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 4018 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 4019 SDValue ShiftLeftHi = 4020 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 4021 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 4022 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 4023 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 4024 SDValue HiFalse = 4025 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 4026 4027 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 4028 4029 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 4030 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 4031 4032 SDValue Parts[2] = {Lo, Hi}; 4033 return DAG.getMergeValues(Parts, DL); 4034 } 4035 4036 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 4037 // legal equivalently-sized i8 type, so we can use that as a go-between. 4038 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 4039 SelectionDAG &DAG) const { 4040 SDLoc DL(Op); 4041 MVT VT = Op.getSimpleValueType(); 4042 SDValue SplatVal = Op.getOperand(0); 4043 // All-zeros or all-ones splats are handled specially. 4044 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 4045 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4046 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 4047 } 4048 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 4049 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4050 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 4051 } 4052 MVT XLenVT = Subtarget.getXLenVT(); 4053 assert(SplatVal.getValueType() == XLenVT && 4054 "Unexpected type for i1 splat value"); 4055 MVT InterVT = VT.changeVectorElementType(MVT::i8); 4056 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 4057 DAG.getConstant(1, DL, XLenVT)); 4058 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 4059 SDValue Zero = DAG.getConstant(0, DL, InterVT); 4060 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 4061 } 4062 4063 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 4064 // illegal (currently only vXi64 RV32). 4065 // FIXME: We could also catch non-constant sign-extended i32 values and lower 4066 // them to VMV_V_X_VL. 4067 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 4068 SelectionDAG &DAG) const { 4069 SDLoc DL(Op); 4070 MVT VecVT = Op.getSimpleValueType(); 4071 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 4072 "Unexpected SPLAT_VECTOR_PARTS lowering"); 4073 4074 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 4075 SDValue Lo = Op.getOperand(0); 4076 SDValue Hi = Op.getOperand(1); 4077 4078 if (VecVT.isFixedLengthVector()) { 4079 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4080 SDLoc DL(Op); 4081 SDValue Mask, VL; 4082 std::tie(Mask, VL) = 4083 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4084 4085 SDValue Res = 4086 splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG); 4087 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 4088 } 4089 4090 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 4091 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 4092 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 4093 // If Hi constant is all the same sign bit as Lo, lower this as a custom 4094 // node in order to try and match RVV vector/scalar instructions. 4095 if ((LoC >> 31) == HiC) 4096 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 4097 Lo, DAG.getRegister(RISCV::X0, MVT::i32)); 4098 } 4099 4100 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 4101 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 4102 isa<ConstantSDNode>(Hi.getOperand(1)) && 4103 Hi.getConstantOperandVal(1) == 31) 4104 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo, 4105 DAG.getRegister(RISCV::X0, MVT::i32)); 4106 4107 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 4108 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, 4109 DAG.getUNDEF(VecVT), Lo, Hi, 4110 DAG.getRegister(RISCV::X0, MVT::i32)); 4111 } 4112 4113 // Custom-lower extensions from mask vectors by using a vselect either with 1 4114 // for zero/any-extension or -1 for sign-extension: 4115 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 4116 // Note that any-extension is lowered identically to zero-extension. 4117 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 4118 int64_t ExtTrueVal) const { 4119 SDLoc DL(Op); 4120 MVT VecVT = Op.getSimpleValueType(); 4121 SDValue Src = Op.getOperand(0); 4122 // Only custom-lower extensions from mask types 4123 assert(Src.getValueType().isVector() && 4124 Src.getValueType().getVectorElementType() == MVT::i1); 4125 4126 if (VecVT.isScalableVector()) { 4127 SDValue SplatZero = DAG.getConstant(0, DL, VecVT); 4128 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT); 4129 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 4130 } 4131 4132 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4133 MVT I1ContainerVT = 4134 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4135 4136 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 4137 4138 SDValue Mask, VL; 4139 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4140 4141 MVT XLenVT = Subtarget.getXLenVT(); 4142 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 4143 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 4144 4145 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4146 DAG.getUNDEF(ContainerVT), SplatZero, VL); 4147 SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4148 DAG.getUNDEF(ContainerVT), SplatTrueVal, VL); 4149 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 4150 SplatTrueVal, SplatZero, VL); 4151 4152 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 4153 } 4154 4155 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 4156 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 4157 MVT ExtVT = Op.getSimpleValueType(); 4158 // Only custom-lower extensions from fixed-length vector types. 4159 if (!ExtVT.isFixedLengthVector()) 4160 return Op; 4161 MVT VT = Op.getOperand(0).getSimpleValueType(); 4162 // Grab the canonical container type for the extended type. Infer the smaller 4163 // type from that to ensure the same number of vector elements, as we know 4164 // the LMUL will be sufficient to hold the smaller type. 4165 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 4166 // Get the extended container type manually to ensure the same number of 4167 // vector elements between source and dest. 4168 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4169 ContainerExtVT.getVectorElementCount()); 4170 4171 SDValue Op1 = 4172 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4173 4174 SDLoc DL(Op); 4175 SDValue Mask, VL; 4176 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4177 4178 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 4179 4180 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 4181 } 4182 4183 // Custom-lower truncations from vectors to mask vectors by using a mask and a 4184 // setcc operation: 4185 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 4186 SDValue RISCVTargetLowering::lowerVectorMaskTruncLike(SDValue Op, 4187 SelectionDAG &DAG) const { 4188 bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE; 4189 SDLoc DL(Op); 4190 EVT MaskVT = Op.getValueType(); 4191 // Only expect to custom-lower truncations to mask types 4192 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 4193 "Unexpected type for vector mask lowering"); 4194 SDValue Src = Op.getOperand(0); 4195 MVT VecVT = Src.getSimpleValueType(); 4196 SDValue Mask, VL; 4197 if (IsVPTrunc) { 4198 Mask = Op.getOperand(1); 4199 VL = Op.getOperand(2); 4200 } 4201 // If this is a fixed vector, we need to convert it to a scalable vector. 4202 MVT ContainerVT = VecVT; 4203 4204 if (VecVT.isFixedLengthVector()) { 4205 ContainerVT = getContainerForFixedLengthVector(VecVT); 4206 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 4207 if (IsVPTrunc) { 4208 MVT MaskContainerVT = 4209 getContainerForFixedLengthVector(Mask.getSimpleValueType()); 4210 Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget); 4211 } 4212 } 4213 4214 if (!IsVPTrunc) { 4215 std::tie(Mask, VL) = 4216 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4217 } 4218 4219 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 4220 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 4221 4222 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4223 DAG.getUNDEF(ContainerVT), SplatOne, VL); 4224 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4225 DAG.getUNDEF(ContainerVT), SplatZero, VL); 4226 4227 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 4228 SDValue Trunc = 4229 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 4230 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 4231 DAG.getCondCode(ISD::SETNE), Mask, VL); 4232 if (MaskVT.isFixedLengthVector()) 4233 Trunc = convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 4234 return Trunc; 4235 } 4236 4237 SDValue RISCVTargetLowering::lowerVectorTruncLike(SDValue Op, 4238 SelectionDAG &DAG) const { 4239 bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE; 4240 SDLoc DL(Op); 4241 4242 MVT VT = Op.getSimpleValueType(); 4243 // Only custom-lower vector truncates 4244 assert(VT.isVector() && "Unexpected type for vector truncate lowering"); 4245 4246 // Truncates to mask types are handled differently 4247 if (VT.getVectorElementType() == MVT::i1) 4248 return lowerVectorMaskTruncLike(Op, DAG); 4249 4250 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 4251 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 4252 // truncate by one power of two at a time. 4253 MVT DstEltVT = VT.getVectorElementType(); 4254 4255 SDValue Src = Op.getOperand(0); 4256 MVT SrcVT = Src.getSimpleValueType(); 4257 MVT SrcEltVT = SrcVT.getVectorElementType(); 4258 4259 assert(DstEltVT.bitsLT(SrcEltVT) && isPowerOf2_64(DstEltVT.getSizeInBits()) && 4260 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 4261 "Unexpected vector truncate lowering"); 4262 4263 MVT ContainerVT = SrcVT; 4264 SDValue Mask, VL; 4265 if (IsVPTrunc) { 4266 Mask = Op.getOperand(1); 4267 VL = Op.getOperand(2); 4268 } 4269 if (SrcVT.isFixedLengthVector()) { 4270 ContainerVT = getContainerForFixedLengthVector(SrcVT); 4271 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 4272 if (IsVPTrunc) { 4273 MVT MaskVT = getMaskTypeFor(ContainerVT); 4274 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4275 } 4276 } 4277 4278 SDValue Result = Src; 4279 if (!IsVPTrunc) { 4280 std::tie(Mask, VL) = 4281 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 4282 } 4283 4284 LLVMContext &Context = *DAG.getContext(); 4285 const ElementCount Count = ContainerVT.getVectorElementCount(); 4286 do { 4287 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 4288 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 4289 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 4290 Mask, VL); 4291 } while (SrcEltVT != DstEltVT); 4292 4293 if (SrcVT.isFixedLengthVector()) 4294 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4295 4296 return Result; 4297 } 4298 4299 SDValue 4300 RISCVTargetLowering::lowerVectorFPExtendOrRoundLike(SDValue Op, 4301 SelectionDAG &DAG) const { 4302 bool IsVP = 4303 Op.getOpcode() == ISD::VP_FP_ROUND || Op.getOpcode() == ISD::VP_FP_EXTEND; 4304 bool IsExtend = 4305 Op.getOpcode() == ISD::VP_FP_EXTEND || Op.getOpcode() == ISD::FP_EXTEND; 4306 // RVV can only do truncate fp to types half the size as the source. We 4307 // custom-lower f64->f16 rounds via RVV's round-to-odd float 4308 // conversion instruction. 4309 SDLoc DL(Op); 4310 MVT VT = Op.getSimpleValueType(); 4311 4312 assert(VT.isVector() && "Unexpected type for vector truncate lowering"); 4313 4314 SDValue Src = Op.getOperand(0); 4315 MVT SrcVT = Src.getSimpleValueType(); 4316 4317 bool IsDirectExtend = IsExtend && (VT.getVectorElementType() != MVT::f64 || 4318 SrcVT.getVectorElementType() != MVT::f16); 4319 bool IsDirectTrunc = !IsExtend && (VT.getVectorElementType() != MVT::f16 || 4320 SrcVT.getVectorElementType() != MVT::f64); 4321 4322 bool IsDirectConv = IsDirectExtend || IsDirectTrunc; 4323 4324 // Prepare any fixed-length vector operands. 4325 MVT ContainerVT = VT; 4326 SDValue Mask, VL; 4327 if (IsVP) { 4328 Mask = Op.getOperand(1); 4329 VL = Op.getOperand(2); 4330 } 4331 if (VT.isFixedLengthVector()) { 4332 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 4333 ContainerVT = 4334 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 4335 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 4336 if (IsVP) { 4337 MVT MaskVT = getMaskTypeFor(ContainerVT); 4338 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4339 } 4340 } 4341 4342 if (!IsVP) 4343 std::tie(Mask, VL) = 4344 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 4345 4346 unsigned ConvOpc = IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::FP_ROUND_VL; 4347 4348 if (IsDirectConv) { 4349 Src = DAG.getNode(ConvOpc, DL, ContainerVT, Src, Mask, VL); 4350 if (VT.isFixedLengthVector()) 4351 Src = convertFromScalableVector(VT, Src, DAG, Subtarget); 4352 return Src; 4353 } 4354 4355 unsigned InterConvOpc = 4356 IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::VFNCVT_ROD_VL; 4357 4358 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 4359 SDValue IntermediateConv = 4360 DAG.getNode(InterConvOpc, DL, InterVT, Src, Mask, VL); 4361 SDValue Result = 4362 DAG.getNode(ConvOpc, DL, ContainerVT, IntermediateConv, Mask, VL); 4363 if (VT.isFixedLengthVector()) 4364 return convertFromScalableVector(VT, Result, DAG, Subtarget); 4365 return Result; 4366 } 4367 4368 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 4369 // first position of a vector, and that vector is slid up to the insert index. 4370 // By limiting the active vector length to index+1 and merging with the 4371 // original vector (with an undisturbed tail policy for elements >= VL), we 4372 // achieve the desired result of leaving all elements untouched except the one 4373 // at VL-1, which is replaced with the desired value. 4374 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4375 SelectionDAG &DAG) const { 4376 SDLoc DL(Op); 4377 MVT VecVT = Op.getSimpleValueType(); 4378 SDValue Vec = Op.getOperand(0); 4379 SDValue Val = Op.getOperand(1); 4380 SDValue Idx = Op.getOperand(2); 4381 4382 if (VecVT.getVectorElementType() == MVT::i1) { 4383 // FIXME: For now we just promote to an i8 vector and insert into that, 4384 // but this is probably not optimal. 4385 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4386 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4387 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 4388 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 4389 } 4390 4391 MVT ContainerVT = VecVT; 4392 // If the operand is a fixed-length vector, convert to a scalable one. 4393 if (VecVT.isFixedLengthVector()) { 4394 ContainerVT = getContainerForFixedLengthVector(VecVT); 4395 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4396 } 4397 4398 MVT XLenVT = Subtarget.getXLenVT(); 4399 4400 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4401 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 4402 // Even i64-element vectors on RV32 can be lowered without scalar 4403 // legalization if the most-significant 32 bits of the value are not affected 4404 // by the sign-extension of the lower 32 bits. 4405 // TODO: We could also catch sign extensions of a 32-bit value. 4406 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 4407 const auto *CVal = cast<ConstantSDNode>(Val); 4408 if (isInt<32>(CVal->getSExtValue())) { 4409 IsLegalInsert = true; 4410 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4411 } 4412 } 4413 4414 SDValue Mask, VL; 4415 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4416 4417 SDValue ValInVec; 4418 4419 if (IsLegalInsert) { 4420 unsigned Opc = 4421 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 4422 if (isNullConstant(Idx)) { 4423 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 4424 if (!VecVT.isFixedLengthVector()) 4425 return Vec; 4426 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 4427 } 4428 ValInVec = 4429 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 4430 } else { 4431 // On RV32, i64-element vectors must be specially handled to place the 4432 // value at element 0, by using two vslide1up instructions in sequence on 4433 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 4434 // this. 4435 SDValue One = DAG.getConstant(1, DL, XLenVT); 4436 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 4437 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 4438 MVT I32ContainerVT = 4439 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 4440 SDValue I32Mask = 4441 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 4442 // Limit the active VL to two. 4443 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 4444 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 4445 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 4446 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, 4447 DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL); 4448 // First slide in the hi value, then the lo in underneath it. 4449 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, 4450 DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi, 4451 I32Mask, InsertI64VL); 4452 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, 4453 DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo, 4454 I32Mask, InsertI64VL); 4455 // Bitcast back to the right container type. 4456 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 4457 } 4458 4459 // Now that the value is in a vector, slide it into position. 4460 SDValue InsertVL = 4461 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 4462 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4463 ValInVec, Idx, Mask, InsertVL); 4464 if (!VecVT.isFixedLengthVector()) 4465 return Slideup; 4466 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4467 } 4468 4469 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 4470 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 4471 // types this is done using VMV_X_S to allow us to glean information about the 4472 // sign bits of the result. 4473 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4474 SelectionDAG &DAG) const { 4475 SDLoc DL(Op); 4476 SDValue Idx = Op.getOperand(1); 4477 SDValue Vec = Op.getOperand(0); 4478 EVT EltVT = Op.getValueType(); 4479 MVT VecVT = Vec.getSimpleValueType(); 4480 MVT XLenVT = Subtarget.getXLenVT(); 4481 4482 if (VecVT.getVectorElementType() == MVT::i1) { 4483 if (VecVT.isFixedLengthVector()) { 4484 unsigned NumElts = VecVT.getVectorNumElements(); 4485 if (NumElts >= 8) { 4486 MVT WideEltVT; 4487 unsigned WidenVecLen; 4488 SDValue ExtractElementIdx; 4489 SDValue ExtractBitIdx; 4490 unsigned MaxEEW = Subtarget.getELEN(); 4491 MVT LargestEltVT = MVT::getIntegerVT( 4492 std::min(MaxEEW, unsigned(XLenVT.getSizeInBits()))); 4493 if (NumElts <= LargestEltVT.getSizeInBits()) { 4494 assert(isPowerOf2_32(NumElts) && 4495 "the number of elements should be power of 2"); 4496 WideEltVT = MVT::getIntegerVT(NumElts); 4497 WidenVecLen = 1; 4498 ExtractElementIdx = DAG.getConstant(0, DL, XLenVT); 4499 ExtractBitIdx = Idx; 4500 } else { 4501 WideEltVT = LargestEltVT; 4502 WidenVecLen = NumElts / WideEltVT.getSizeInBits(); 4503 // extract element index = index / element width 4504 ExtractElementIdx = DAG.getNode( 4505 ISD::SRL, DL, XLenVT, Idx, 4506 DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT)); 4507 // mask bit index = index % element width 4508 ExtractBitIdx = DAG.getNode( 4509 ISD::AND, DL, XLenVT, Idx, 4510 DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT)); 4511 } 4512 MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen); 4513 Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec); 4514 SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT, 4515 Vec, ExtractElementIdx); 4516 // Extract the bit from GPR. 4517 SDValue ShiftRight = 4518 DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx); 4519 return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight, 4520 DAG.getConstant(1, DL, XLenVT)); 4521 } 4522 } 4523 // Otherwise, promote to an i8 vector and extract from that. 4524 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4525 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4526 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 4527 } 4528 4529 // If this is a fixed vector, we need to convert it to a scalable vector. 4530 MVT ContainerVT = VecVT; 4531 if (VecVT.isFixedLengthVector()) { 4532 ContainerVT = getContainerForFixedLengthVector(VecVT); 4533 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4534 } 4535 4536 // If the index is 0, the vector is already in the right position. 4537 if (!isNullConstant(Idx)) { 4538 // Use a VL of 1 to avoid processing more elements than we need. 4539 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4540 SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG); 4541 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4542 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4543 } 4544 4545 if (!EltVT.isInteger()) { 4546 // Floating-point extracts are handled in TableGen. 4547 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 4548 DAG.getConstant(0, DL, XLenVT)); 4549 } 4550 4551 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4552 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 4553 } 4554 4555 // Some RVV intrinsics may claim that they want an integer operand to be 4556 // promoted or expanded. 4557 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG, 4558 const RISCVSubtarget &Subtarget) { 4559 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 4560 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 4561 "Unexpected opcode"); 4562 4563 if (!Subtarget.hasVInstructions()) 4564 return SDValue(); 4565 4566 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 4567 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 4568 SDLoc DL(Op); 4569 4570 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4571 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4572 if (!II || !II->hasScalarOperand()) 4573 return SDValue(); 4574 4575 unsigned SplatOp = II->ScalarOperand + 1 + HasChain; 4576 assert(SplatOp < Op.getNumOperands()); 4577 4578 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4579 SDValue &ScalarOp = Operands[SplatOp]; 4580 MVT OpVT = ScalarOp.getSimpleValueType(); 4581 MVT XLenVT = Subtarget.getXLenVT(); 4582 4583 // If this isn't a scalar, or its type is XLenVT we're done. 4584 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4585 return SDValue(); 4586 4587 // Simplest case is that the operand needs to be promoted to XLenVT. 4588 if (OpVT.bitsLT(XLenVT)) { 4589 // If the operand is a constant, sign extend to increase our chances 4590 // of being able to use a .vi instruction. ANY_EXTEND would become a 4591 // a zero extend and the simm5 check in isel would fail. 4592 // FIXME: Should we ignore the upper bits in isel instead? 4593 unsigned ExtOpc = 4594 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4595 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4596 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4597 } 4598 4599 // Use the previous operand to get the vXi64 VT. The result might be a mask 4600 // VT for compares. Using the previous operand assumes that the previous 4601 // operand will never have a smaller element size than a scalar operand and 4602 // that a widening operation never uses SEW=64. 4603 // NOTE: If this fails the below assert, we can probably just find the 4604 // element count from any operand or result and use it to construct the VT. 4605 assert(II->ScalarOperand > 0 && "Unexpected splat operand!"); 4606 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4607 4608 // The more complex case is when the scalar is larger than XLenVT. 4609 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4610 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4611 4612 // If this is a sign-extended 32-bit value, we can truncate it and rely on the 4613 // instruction to sign-extend since SEW>XLEN. 4614 if (DAG.ComputeNumSignBits(ScalarOp) > 32) { 4615 ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp); 4616 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4617 } 4618 4619 switch (IntNo) { 4620 case Intrinsic::riscv_vslide1up: 4621 case Intrinsic::riscv_vslide1down: 4622 case Intrinsic::riscv_vslide1up_mask: 4623 case Intrinsic::riscv_vslide1down_mask: { 4624 // We need to special case these when the scalar is larger than XLen. 4625 unsigned NumOps = Op.getNumOperands(); 4626 bool IsMasked = NumOps == 7; 4627 4628 // Convert the vector source to the equivalent nxvXi32 vector. 4629 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4630 SDValue Vec = DAG.getBitcast(I32VT, Operands[2]); 4631 4632 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp, 4633 DAG.getConstant(0, DL, XLenVT)); 4634 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp, 4635 DAG.getConstant(1, DL, XLenVT)); 4636 4637 // Double the VL since we halved SEW. 4638 SDValue AVL = getVLOperand(Op); 4639 SDValue I32VL; 4640 4641 // Optimize for constant AVL 4642 if (isa<ConstantSDNode>(AVL)) { 4643 unsigned EltSize = VT.getScalarSizeInBits(); 4644 unsigned MinSize = VT.getSizeInBits().getKnownMinValue(); 4645 4646 unsigned VectorBitsMax = Subtarget.getRealMaxVLen(); 4647 unsigned MaxVLMAX = 4648 RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); 4649 4650 unsigned VectorBitsMin = Subtarget.getRealMinVLen(); 4651 unsigned MinVLMAX = 4652 RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize); 4653 4654 uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue(); 4655 if (AVLInt <= MinVLMAX) { 4656 I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT); 4657 } else if (AVLInt >= 2 * MaxVLMAX) { 4658 // Just set vl to VLMAX in this situation 4659 RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT); 4660 SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); 4661 unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits()); 4662 SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); 4663 SDValue SETVLMAX = DAG.getTargetConstant( 4664 Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32); 4665 I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW, 4666 LMUL); 4667 } else { 4668 // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl 4669 // is related to the hardware implementation. 4670 // So let the following code handle 4671 } 4672 } 4673 if (!I32VL) { 4674 RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT); 4675 SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); 4676 unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits()); 4677 SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); 4678 SDValue SETVL = 4679 DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32); 4680 // Using vsetvli instruction to get actually used length which related to 4681 // the hardware implementation 4682 SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL, 4683 SEW, LMUL); 4684 I32VL = 4685 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4686 } 4687 4688 SDValue I32Mask = getAllOnesMask(I32VT, I32VL, DL, DAG); 4689 4690 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4691 // instructions. 4692 SDValue Passthru; 4693 if (IsMasked) 4694 Passthru = DAG.getUNDEF(I32VT); 4695 else 4696 Passthru = DAG.getBitcast(I32VT, Operands[1]); 4697 4698 if (IntNo == Intrinsic::riscv_vslide1up || 4699 IntNo == Intrinsic::riscv_vslide1up_mask) { 4700 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, 4701 ScalarHi, I32Mask, I32VL); 4702 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, 4703 ScalarLo, I32Mask, I32VL); 4704 } else { 4705 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, 4706 ScalarLo, I32Mask, I32VL); 4707 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, 4708 ScalarHi, I32Mask, I32VL); 4709 } 4710 4711 // Convert back to nxvXi64. 4712 Vec = DAG.getBitcast(VT, Vec); 4713 4714 if (!IsMasked) 4715 return Vec; 4716 // Apply mask after the operation. 4717 SDValue Mask = Operands[NumOps - 3]; 4718 SDValue MaskedOff = Operands[1]; 4719 // Assume Policy operand is the last operand. 4720 uint64_t Policy = 4721 cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue(); 4722 // We don't need to select maskedoff if it's undef. 4723 if (MaskedOff.isUndef()) 4724 return Vec; 4725 // TAMU 4726 if (Policy == RISCVII::TAIL_AGNOSTIC) 4727 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, 4728 AVL); 4729 // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma. 4730 // It's fine because vmerge does not care mask policy. 4731 return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff, 4732 AVL); 4733 } 4734 } 4735 4736 // We need to convert the scalar to a splat vector. 4737 SDValue VL = getVLOperand(Op); 4738 assert(VL.getValueType() == XLenVT); 4739 ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG); 4740 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4741 } 4742 4743 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4744 SelectionDAG &DAG) const { 4745 unsigned IntNo = Op.getConstantOperandVal(0); 4746 SDLoc DL(Op); 4747 MVT XLenVT = Subtarget.getXLenVT(); 4748 4749 switch (IntNo) { 4750 default: 4751 break; // Don't custom lower most intrinsics. 4752 case Intrinsic::thread_pointer: { 4753 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4754 return DAG.getRegister(RISCV::X4, PtrVT); 4755 } 4756 case Intrinsic::riscv_orc_b: 4757 case Intrinsic::riscv_brev8: { 4758 // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8. 4759 unsigned Opc = 4760 IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC; 4761 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4762 DAG.getConstant(7, DL, XLenVT)); 4763 } 4764 case Intrinsic::riscv_grev: 4765 case Intrinsic::riscv_gorc: { 4766 unsigned Opc = 4767 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4768 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4769 } 4770 case Intrinsic::riscv_zip: 4771 case Intrinsic::riscv_unzip: { 4772 // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip. 4773 // For i32 the immediate is 15. For i64 the immediate is 31. 4774 unsigned Opc = 4775 IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4776 unsigned BitWidth = Op.getValueSizeInBits(); 4777 assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width"); 4778 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4779 DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT)); 4780 } 4781 case Intrinsic::riscv_shfl: 4782 case Intrinsic::riscv_unshfl: { 4783 unsigned Opc = 4784 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4785 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4786 } 4787 case Intrinsic::riscv_bcompress: 4788 case Intrinsic::riscv_bdecompress: { 4789 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4790 : RISCVISD::BDECOMPRESS; 4791 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4792 } 4793 case Intrinsic::riscv_bfp: 4794 return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1), 4795 Op.getOperand(2)); 4796 case Intrinsic::riscv_fsl: 4797 return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1), 4798 Op.getOperand(2), Op.getOperand(3)); 4799 case Intrinsic::riscv_fsr: 4800 return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1), 4801 Op.getOperand(2), Op.getOperand(3)); 4802 case Intrinsic::riscv_vmv_x_s: 4803 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4804 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4805 Op.getOperand(1)); 4806 case Intrinsic::riscv_vmv_v_x: 4807 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4808 Op.getOperand(3), Op.getSimpleValueType(), DL, DAG, 4809 Subtarget); 4810 case Intrinsic::riscv_vfmv_v_f: 4811 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4812 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4813 case Intrinsic::riscv_vmv_s_x: { 4814 SDValue Scalar = Op.getOperand(2); 4815 4816 if (Scalar.getValueType().bitsLE(XLenVT)) { 4817 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4818 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4819 Op.getOperand(1), Scalar, Op.getOperand(3)); 4820 } 4821 4822 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4823 4824 // This is an i64 value that lives in two scalar registers. We have to 4825 // insert this in a convoluted way. First we build vXi64 splat containing 4826 // the two values that we assemble using some bit math. Next we'll use 4827 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4828 // to merge element 0 from our splat into the source vector. 4829 // FIXME: This is probably not the best way to do this, but it is 4830 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4831 // point. 4832 // sw lo, (a0) 4833 // sw hi, 4(a0) 4834 // vlse vX, (a0) 4835 // 4836 // vid.v vVid 4837 // vmseq.vx mMask, vVid, 0 4838 // vmerge.vvm vDest, vSrc, vVal, mMask 4839 MVT VT = Op.getSimpleValueType(); 4840 SDValue Vec = Op.getOperand(1); 4841 SDValue VL = getVLOperand(Op); 4842 4843 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG); 4844 if (Op.getOperand(1).isUndef()) 4845 return SplattedVal; 4846 SDValue SplattedIdx = 4847 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 4848 DAG.getConstant(0, DL, MVT::i32), VL); 4849 4850 MVT MaskVT = getMaskTypeFor(VT); 4851 SDValue Mask = getAllOnesMask(VT, VL, DL, DAG); 4852 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4853 SDValue SelectCond = 4854 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4855 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4856 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4857 Vec, VL); 4858 } 4859 } 4860 4861 return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); 4862 } 4863 4864 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4865 SelectionDAG &DAG) const { 4866 unsigned IntNo = Op.getConstantOperandVal(1); 4867 switch (IntNo) { 4868 default: 4869 break; 4870 case Intrinsic::riscv_masked_strided_load: { 4871 SDLoc DL(Op); 4872 MVT XLenVT = Subtarget.getXLenVT(); 4873 4874 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4875 // the selection of the masked intrinsics doesn't do this for us. 4876 SDValue Mask = Op.getOperand(5); 4877 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4878 4879 MVT VT = Op->getSimpleValueType(0); 4880 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4881 4882 SDValue PassThru = Op.getOperand(2); 4883 if (!IsUnmasked) { 4884 MVT MaskVT = getMaskTypeFor(ContainerVT); 4885 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4886 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4887 } 4888 4889 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4890 4891 SDValue IntID = DAG.getTargetConstant( 4892 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4893 XLenVT); 4894 4895 auto *Load = cast<MemIntrinsicSDNode>(Op); 4896 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4897 if (IsUnmasked) 4898 Ops.push_back(DAG.getUNDEF(ContainerVT)); 4899 else 4900 Ops.push_back(PassThru); 4901 Ops.push_back(Op.getOperand(3)); // Ptr 4902 Ops.push_back(Op.getOperand(4)); // Stride 4903 if (!IsUnmasked) 4904 Ops.push_back(Mask); 4905 Ops.push_back(VL); 4906 if (!IsUnmasked) { 4907 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4908 Ops.push_back(Policy); 4909 } 4910 4911 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4912 SDValue Result = 4913 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4914 Load->getMemoryVT(), Load->getMemOperand()); 4915 SDValue Chain = Result.getValue(1); 4916 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4917 return DAG.getMergeValues({Result, Chain}, DL); 4918 } 4919 case Intrinsic::riscv_seg2_load: 4920 case Intrinsic::riscv_seg3_load: 4921 case Intrinsic::riscv_seg4_load: 4922 case Intrinsic::riscv_seg5_load: 4923 case Intrinsic::riscv_seg6_load: 4924 case Intrinsic::riscv_seg7_load: 4925 case Intrinsic::riscv_seg8_load: { 4926 SDLoc DL(Op); 4927 static const Intrinsic::ID VlsegInts[7] = { 4928 Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3, 4929 Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5, 4930 Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7, 4931 Intrinsic::riscv_vlseg8}; 4932 unsigned NF = Op->getNumValues() - 1; 4933 assert(NF >= 2 && NF <= 8 && "Unexpected seg number"); 4934 MVT XLenVT = Subtarget.getXLenVT(); 4935 MVT VT = Op->getSimpleValueType(0); 4936 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4937 4938 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4939 SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT); 4940 auto *Load = cast<MemIntrinsicSDNode>(Op); 4941 SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT); 4942 ContainerVTs.push_back(MVT::Other); 4943 SDVTList VTs = DAG.getVTList(ContainerVTs); 4944 SmallVector<SDValue, 12> Ops = {Load->getChain(), IntID}; 4945 Ops.insert(Ops.end(), NF, DAG.getUNDEF(ContainerVT)); 4946 Ops.push_back(Op.getOperand(2)); 4947 Ops.push_back(VL); 4948 SDValue Result = 4949 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4950 Load->getMemoryVT(), Load->getMemOperand()); 4951 SmallVector<SDValue, 9> Results; 4952 for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++) 4953 Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx), 4954 DAG, Subtarget)); 4955 Results.push_back(Result.getValue(NF)); 4956 return DAG.getMergeValues(Results, DL); 4957 } 4958 } 4959 4960 return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); 4961 } 4962 4963 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4964 SelectionDAG &DAG) const { 4965 unsigned IntNo = Op.getConstantOperandVal(1); 4966 switch (IntNo) { 4967 default: 4968 break; 4969 case Intrinsic::riscv_masked_strided_store: { 4970 SDLoc DL(Op); 4971 MVT XLenVT = Subtarget.getXLenVT(); 4972 4973 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4974 // the selection of the masked intrinsics doesn't do this for us. 4975 SDValue Mask = Op.getOperand(5); 4976 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4977 4978 SDValue Val = Op.getOperand(2); 4979 MVT VT = Val.getSimpleValueType(); 4980 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4981 4982 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4983 if (!IsUnmasked) { 4984 MVT MaskVT = getMaskTypeFor(ContainerVT); 4985 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4986 } 4987 4988 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4989 4990 SDValue IntID = DAG.getTargetConstant( 4991 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4992 XLenVT); 4993 4994 auto *Store = cast<MemIntrinsicSDNode>(Op); 4995 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4996 Ops.push_back(Val); 4997 Ops.push_back(Op.getOperand(3)); // Ptr 4998 Ops.push_back(Op.getOperand(4)); // Stride 4999 if (!IsUnmasked) 5000 Ops.push_back(Mask); 5001 Ops.push_back(VL); 5002 5003 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 5004 Ops, Store->getMemoryVT(), 5005 Store->getMemOperand()); 5006 } 5007 } 5008 5009 return SDValue(); 5010 } 5011 5012 static MVT getLMUL1VT(MVT VT) { 5013 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 5014 "Unexpected vector MVT"); 5015 return MVT::getScalableVectorVT( 5016 VT.getVectorElementType(), 5017 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 5018 } 5019 5020 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 5021 switch (ISDOpcode) { 5022 default: 5023 llvm_unreachable("Unhandled reduction"); 5024 case ISD::VECREDUCE_ADD: 5025 return RISCVISD::VECREDUCE_ADD_VL; 5026 case ISD::VECREDUCE_UMAX: 5027 return RISCVISD::VECREDUCE_UMAX_VL; 5028 case ISD::VECREDUCE_SMAX: 5029 return RISCVISD::VECREDUCE_SMAX_VL; 5030 case ISD::VECREDUCE_UMIN: 5031 return RISCVISD::VECREDUCE_UMIN_VL; 5032 case ISD::VECREDUCE_SMIN: 5033 return RISCVISD::VECREDUCE_SMIN_VL; 5034 case ISD::VECREDUCE_AND: 5035 return RISCVISD::VECREDUCE_AND_VL; 5036 case ISD::VECREDUCE_OR: 5037 return RISCVISD::VECREDUCE_OR_VL; 5038 case ISD::VECREDUCE_XOR: 5039 return RISCVISD::VECREDUCE_XOR_VL; 5040 } 5041 } 5042 5043 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 5044 SelectionDAG &DAG, 5045 bool IsVP) const { 5046 SDLoc DL(Op); 5047 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 5048 MVT VecVT = Vec.getSimpleValueType(); 5049 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 5050 Op.getOpcode() == ISD::VECREDUCE_OR || 5051 Op.getOpcode() == ISD::VECREDUCE_XOR || 5052 Op.getOpcode() == ISD::VP_REDUCE_AND || 5053 Op.getOpcode() == ISD::VP_REDUCE_OR || 5054 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 5055 "Unexpected reduction lowering"); 5056 5057 MVT XLenVT = Subtarget.getXLenVT(); 5058 assert(Op.getValueType() == XLenVT && 5059 "Expected reduction output to be legalized to XLenVT"); 5060 5061 MVT ContainerVT = VecVT; 5062 if (VecVT.isFixedLengthVector()) { 5063 ContainerVT = getContainerForFixedLengthVector(VecVT); 5064 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5065 } 5066 5067 SDValue Mask, VL; 5068 if (IsVP) { 5069 Mask = Op.getOperand(2); 5070 VL = Op.getOperand(3); 5071 } else { 5072 std::tie(Mask, VL) = 5073 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5074 } 5075 5076 unsigned BaseOpc; 5077 ISD::CondCode CC; 5078 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 5079 5080 switch (Op.getOpcode()) { 5081 default: 5082 llvm_unreachable("Unhandled reduction"); 5083 case ISD::VECREDUCE_AND: 5084 case ISD::VP_REDUCE_AND: { 5085 // vcpop ~x == 0 5086 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 5087 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 5088 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5089 CC = ISD::SETEQ; 5090 BaseOpc = ISD::AND; 5091 break; 5092 } 5093 case ISD::VECREDUCE_OR: 5094 case ISD::VP_REDUCE_OR: 5095 // vcpop x != 0 5096 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5097 CC = ISD::SETNE; 5098 BaseOpc = ISD::OR; 5099 break; 5100 case ISD::VECREDUCE_XOR: 5101 case ISD::VP_REDUCE_XOR: { 5102 // ((vcpop x) & 1) != 0 5103 SDValue One = DAG.getConstant(1, DL, XLenVT); 5104 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5105 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 5106 CC = ISD::SETNE; 5107 BaseOpc = ISD::XOR; 5108 break; 5109 } 5110 } 5111 5112 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 5113 5114 if (!IsVP) 5115 return SetCC; 5116 5117 // Now include the start value in the operation. 5118 // Note that we must return the start value when no elements are operated 5119 // upon. The vcpop instructions we've emitted in each case above will return 5120 // 0 for an inactive vector, and so we've already received the neutral value: 5121 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 5122 // can simply include the start value. 5123 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 5124 } 5125 5126 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 5127 SelectionDAG &DAG) const { 5128 SDLoc DL(Op); 5129 SDValue Vec = Op.getOperand(0); 5130 EVT VecEVT = Vec.getValueType(); 5131 5132 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 5133 5134 // Due to ordering in legalize types we may have a vector type that needs to 5135 // be split. Do that manually so we can get down to a legal type. 5136 while (getTypeAction(*DAG.getContext(), VecEVT) == 5137 TargetLowering::TypeSplitVector) { 5138 SDValue Lo, Hi; 5139 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 5140 VecEVT = Lo.getValueType(); 5141 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 5142 } 5143 5144 // TODO: The type may need to be widened rather than split. Or widened before 5145 // it can be split. 5146 if (!isTypeLegal(VecEVT)) 5147 return SDValue(); 5148 5149 MVT VecVT = VecEVT.getSimpleVT(); 5150 MVT VecEltVT = VecVT.getVectorElementType(); 5151 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 5152 5153 MVT ContainerVT = VecVT; 5154 if (VecVT.isFixedLengthVector()) { 5155 ContainerVT = getContainerForFixedLengthVector(VecVT); 5156 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5157 } 5158 5159 MVT M1VT = getLMUL1VT(ContainerVT); 5160 MVT XLenVT = Subtarget.getXLenVT(); 5161 5162 SDValue Mask, VL; 5163 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5164 5165 SDValue NeutralElem = 5166 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 5167 SDValue IdentitySplat = 5168 lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT), 5169 M1VT, DL, DAG, Subtarget); 5170 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 5171 IdentitySplat, Mask, VL); 5172 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5173 DAG.getConstant(0, DL, XLenVT)); 5174 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5175 } 5176 5177 // Given a reduction op, this function returns the matching reduction opcode, 5178 // the vector SDValue and the scalar SDValue required to lower this to a 5179 // RISCVISD node. 5180 static std::tuple<unsigned, SDValue, SDValue> 5181 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 5182 SDLoc DL(Op); 5183 auto Flags = Op->getFlags(); 5184 unsigned Opcode = Op.getOpcode(); 5185 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 5186 switch (Opcode) { 5187 default: 5188 llvm_unreachable("Unhandled reduction"); 5189 case ISD::VECREDUCE_FADD: { 5190 // Use positive zero if we can. It is cheaper to materialize. 5191 SDValue Zero = 5192 DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); 5193 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); 5194 } 5195 case ISD::VECREDUCE_SEQ_FADD: 5196 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 5197 Op.getOperand(0)); 5198 case ISD::VECREDUCE_FMIN: 5199 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 5200 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5201 case ISD::VECREDUCE_FMAX: 5202 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 5203 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5204 } 5205 } 5206 5207 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 5208 SelectionDAG &DAG) const { 5209 SDLoc DL(Op); 5210 MVT VecEltVT = Op.getSimpleValueType(); 5211 5212 unsigned RVVOpcode; 5213 SDValue VectorVal, ScalarVal; 5214 std::tie(RVVOpcode, VectorVal, ScalarVal) = 5215 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 5216 MVT VecVT = VectorVal.getSimpleValueType(); 5217 5218 MVT ContainerVT = VecVT; 5219 if (VecVT.isFixedLengthVector()) { 5220 ContainerVT = getContainerForFixedLengthVector(VecVT); 5221 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 5222 } 5223 5224 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 5225 MVT XLenVT = Subtarget.getXLenVT(); 5226 5227 SDValue Mask, VL; 5228 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5229 5230 SDValue ScalarSplat = 5231 lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT), 5232 M1VT, DL, DAG, Subtarget); 5233 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 5234 VectorVal, ScalarSplat, Mask, VL); 5235 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5236 DAG.getConstant(0, DL, XLenVT)); 5237 } 5238 5239 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 5240 switch (ISDOpcode) { 5241 default: 5242 llvm_unreachable("Unhandled reduction"); 5243 case ISD::VP_REDUCE_ADD: 5244 return RISCVISD::VECREDUCE_ADD_VL; 5245 case ISD::VP_REDUCE_UMAX: 5246 return RISCVISD::VECREDUCE_UMAX_VL; 5247 case ISD::VP_REDUCE_SMAX: 5248 return RISCVISD::VECREDUCE_SMAX_VL; 5249 case ISD::VP_REDUCE_UMIN: 5250 return RISCVISD::VECREDUCE_UMIN_VL; 5251 case ISD::VP_REDUCE_SMIN: 5252 return RISCVISD::VECREDUCE_SMIN_VL; 5253 case ISD::VP_REDUCE_AND: 5254 return RISCVISD::VECREDUCE_AND_VL; 5255 case ISD::VP_REDUCE_OR: 5256 return RISCVISD::VECREDUCE_OR_VL; 5257 case ISD::VP_REDUCE_XOR: 5258 return RISCVISD::VECREDUCE_XOR_VL; 5259 case ISD::VP_REDUCE_FADD: 5260 return RISCVISD::VECREDUCE_FADD_VL; 5261 case ISD::VP_REDUCE_SEQ_FADD: 5262 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 5263 case ISD::VP_REDUCE_FMAX: 5264 return RISCVISD::VECREDUCE_FMAX_VL; 5265 case ISD::VP_REDUCE_FMIN: 5266 return RISCVISD::VECREDUCE_FMIN_VL; 5267 } 5268 } 5269 5270 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 5271 SelectionDAG &DAG) const { 5272 SDLoc DL(Op); 5273 SDValue Vec = Op.getOperand(1); 5274 EVT VecEVT = Vec.getValueType(); 5275 5276 // TODO: The type may need to be widened rather than split. Or widened before 5277 // it can be split. 5278 if (!isTypeLegal(VecEVT)) 5279 return SDValue(); 5280 5281 MVT VecVT = VecEVT.getSimpleVT(); 5282 MVT VecEltVT = VecVT.getVectorElementType(); 5283 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 5284 5285 MVT ContainerVT = VecVT; 5286 if (VecVT.isFixedLengthVector()) { 5287 ContainerVT = getContainerForFixedLengthVector(VecVT); 5288 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5289 } 5290 5291 SDValue VL = Op.getOperand(3); 5292 SDValue Mask = Op.getOperand(2); 5293 5294 MVT M1VT = getLMUL1VT(ContainerVT); 5295 MVT XLenVT = Subtarget.getXLenVT(); 5296 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 5297 5298 SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0), 5299 DAG.getConstant(1, DL, XLenVT), M1VT, 5300 DL, DAG, Subtarget); 5301 SDValue Reduction = 5302 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 5303 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 5304 DAG.getConstant(0, DL, XLenVT)); 5305 if (!VecVT.isInteger()) 5306 return Elt0; 5307 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5308 } 5309 5310 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 5311 SelectionDAG &DAG) const { 5312 SDValue Vec = Op.getOperand(0); 5313 SDValue SubVec = Op.getOperand(1); 5314 MVT VecVT = Vec.getSimpleValueType(); 5315 MVT SubVecVT = SubVec.getSimpleValueType(); 5316 5317 SDLoc DL(Op); 5318 MVT XLenVT = Subtarget.getXLenVT(); 5319 unsigned OrigIdx = Op.getConstantOperandVal(2); 5320 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5321 5322 // We don't have the ability to slide mask vectors up indexed by their i1 5323 // elements; the smallest we can do is i8. Often we are able to bitcast to 5324 // equivalent i8 vectors. Note that when inserting a fixed-length vector 5325 // into a scalable one, we might not necessarily have enough scalable 5326 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 5327 if (SubVecVT.getVectorElementType() == MVT::i1 && 5328 (OrigIdx != 0 || !Vec.isUndef())) { 5329 if (VecVT.getVectorMinNumElements() >= 8 && 5330 SubVecVT.getVectorMinNumElements() >= 8) { 5331 assert(OrigIdx % 8 == 0 && "Invalid index"); 5332 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5333 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5334 "Unexpected mask vector lowering"); 5335 OrigIdx /= 8; 5336 SubVecVT = 5337 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5338 SubVecVT.isScalableVector()); 5339 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5340 VecVT.isScalableVector()); 5341 Vec = DAG.getBitcast(VecVT, Vec); 5342 SubVec = DAG.getBitcast(SubVecVT, SubVec); 5343 } else { 5344 // We can't slide this mask vector up indexed by its i1 elements. 5345 // This poses a problem when we wish to insert a scalable vector which 5346 // can't be re-expressed as a larger type. Just choose the slow path and 5347 // extend to a larger type, then truncate back down. 5348 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5349 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5350 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5351 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 5352 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 5353 Op.getOperand(2)); 5354 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 5355 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 5356 } 5357 } 5358 5359 // If the subvector vector is a fixed-length type, we cannot use subregister 5360 // manipulation to simplify the codegen; we don't know which register of a 5361 // LMUL group contains the specific subvector as we only know the minimum 5362 // register size. Therefore we must slide the vector group up the full 5363 // amount. 5364 if (SubVecVT.isFixedLengthVector()) { 5365 if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector()) 5366 return Op; 5367 MVT ContainerVT = VecVT; 5368 if (VecVT.isFixedLengthVector()) { 5369 ContainerVT = getContainerForFixedLengthVector(VecVT); 5370 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5371 } 5372 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 5373 DAG.getUNDEF(ContainerVT), SubVec, 5374 DAG.getConstant(0, DL, XLenVT)); 5375 if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) { 5376 SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget); 5377 return DAG.getBitcast(Op.getValueType(), SubVec); 5378 } 5379 SDValue Mask = 5380 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5381 // Set the vector length to only the number of elements we care about. Note 5382 // that for slideup this includes the offset. 5383 SDValue VL = 5384 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 5385 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5386 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 5387 SubVec, SlideupAmt, Mask, VL); 5388 if (VecVT.isFixedLengthVector()) 5389 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 5390 return DAG.getBitcast(Op.getValueType(), Slideup); 5391 } 5392 5393 unsigned SubRegIdx, RemIdx; 5394 std::tie(SubRegIdx, RemIdx) = 5395 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5396 VecVT, SubVecVT, OrigIdx, TRI); 5397 5398 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 5399 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 5400 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 5401 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 5402 5403 // 1. If the Idx has been completely eliminated and this subvector's size is 5404 // a vector register or a multiple thereof, or the surrounding elements are 5405 // undef, then this is a subvector insert which naturally aligns to a vector 5406 // register. These can easily be handled using subregister manipulation. 5407 // 2. If the subvector is smaller than a vector register, then the insertion 5408 // must preserve the undisturbed elements of the register. We do this by 5409 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 5410 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 5411 // subvector within the vector register, and an INSERT_SUBVECTOR of that 5412 // LMUL=1 type back into the larger vector (resolving to another subregister 5413 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 5414 // to avoid allocating a large register group to hold our subvector. 5415 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 5416 return Op; 5417 5418 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 5419 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 5420 // (in our case undisturbed). This means we can set up a subvector insertion 5421 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 5422 // size of the subvector. 5423 MVT InterSubVT = VecVT; 5424 SDValue AlignedExtract = Vec; 5425 unsigned AlignedIdx = OrigIdx - RemIdx; 5426 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5427 InterSubVT = getLMUL1VT(VecVT); 5428 // Extract a subvector equal to the nearest full vector register type. This 5429 // should resolve to a EXTRACT_SUBREG instruction. 5430 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5431 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5432 } 5433 5434 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5435 // For scalable vectors this must be further multiplied by vscale. 5436 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 5437 5438 SDValue Mask, VL; 5439 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5440 5441 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 5442 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 5443 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 5444 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 5445 5446 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 5447 DAG.getUNDEF(InterSubVT), SubVec, 5448 DAG.getConstant(0, DL, XLenVT)); 5449 5450 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 5451 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 5452 5453 // If required, insert this subvector back into the correct vector register. 5454 // This should resolve to an INSERT_SUBREG instruction. 5455 if (VecVT.bitsGT(InterSubVT)) 5456 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 5457 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5458 5459 // We might have bitcast from a mask type: cast back to the original type if 5460 // required. 5461 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 5462 } 5463 5464 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 5465 SelectionDAG &DAG) const { 5466 SDValue Vec = Op.getOperand(0); 5467 MVT SubVecVT = Op.getSimpleValueType(); 5468 MVT VecVT = Vec.getSimpleValueType(); 5469 5470 SDLoc DL(Op); 5471 MVT XLenVT = Subtarget.getXLenVT(); 5472 unsigned OrigIdx = Op.getConstantOperandVal(1); 5473 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5474 5475 // We don't have the ability to slide mask vectors down indexed by their i1 5476 // elements; the smallest we can do is i8. Often we are able to bitcast to 5477 // equivalent i8 vectors. Note that when extracting a fixed-length vector 5478 // from a scalable one, we might not necessarily have enough scalable 5479 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 5480 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 5481 if (VecVT.getVectorMinNumElements() >= 8 && 5482 SubVecVT.getVectorMinNumElements() >= 8) { 5483 assert(OrigIdx % 8 == 0 && "Invalid index"); 5484 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5485 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5486 "Unexpected mask vector lowering"); 5487 OrigIdx /= 8; 5488 SubVecVT = 5489 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5490 SubVecVT.isScalableVector()); 5491 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5492 VecVT.isScalableVector()); 5493 Vec = DAG.getBitcast(VecVT, Vec); 5494 } else { 5495 // We can't slide this mask vector down, indexed by its i1 elements. 5496 // This poses a problem when we wish to extract a scalable vector which 5497 // can't be re-expressed as a larger type. Just choose the slow path and 5498 // extend to a larger type, then truncate back down. 5499 // TODO: We could probably improve this when extracting certain fixed 5500 // from fixed, where we can extract as i8 and shift the correct element 5501 // right to reach the desired subvector? 5502 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5503 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5504 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5505 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 5506 Op.getOperand(1)); 5507 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 5508 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 5509 } 5510 } 5511 5512 // If the subvector vector is a fixed-length type, we cannot use subregister 5513 // manipulation to simplify the codegen; we don't know which register of a 5514 // LMUL group contains the specific subvector as we only know the minimum 5515 // register size. Therefore we must slide the vector group down the full 5516 // amount. 5517 if (SubVecVT.isFixedLengthVector()) { 5518 // With an index of 0 this is a cast-like subvector, which can be performed 5519 // with subregister operations. 5520 if (OrigIdx == 0) 5521 return Op; 5522 MVT ContainerVT = VecVT; 5523 if (VecVT.isFixedLengthVector()) { 5524 ContainerVT = getContainerForFixedLengthVector(VecVT); 5525 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5526 } 5527 SDValue Mask = 5528 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5529 // Set the vector length to only the number of elements we care about. This 5530 // avoids sliding down elements we're going to discard straight away. 5531 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 5532 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5533 SDValue Slidedown = 5534 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5535 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 5536 // Now we can use a cast-like subvector extract to get the result. 5537 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5538 DAG.getConstant(0, DL, XLenVT)); 5539 return DAG.getBitcast(Op.getValueType(), Slidedown); 5540 } 5541 5542 unsigned SubRegIdx, RemIdx; 5543 std::tie(SubRegIdx, RemIdx) = 5544 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5545 VecVT, SubVecVT, OrigIdx, TRI); 5546 5547 // If the Idx has been completely eliminated then this is a subvector extract 5548 // which naturally aligns to a vector register. These can easily be handled 5549 // using subregister manipulation. 5550 if (RemIdx == 0) 5551 return Op; 5552 5553 // Else we must shift our vector register directly to extract the subvector. 5554 // Do this using VSLIDEDOWN. 5555 5556 // If the vector type is an LMUL-group type, extract a subvector equal to the 5557 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 5558 // instruction. 5559 MVT InterSubVT = VecVT; 5560 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5561 InterSubVT = getLMUL1VT(VecVT); 5562 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5563 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 5564 } 5565 5566 // Slide this vector register down by the desired number of elements in order 5567 // to place the desired subvector starting at element 0. 5568 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5569 // For scalable vectors this must be further multiplied by vscale. 5570 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 5571 5572 SDValue Mask, VL; 5573 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 5574 SDValue Slidedown = 5575 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 5576 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 5577 5578 // Now the vector is in the right position, extract our final subvector. This 5579 // should resolve to a COPY. 5580 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5581 DAG.getConstant(0, DL, XLenVT)); 5582 5583 // We might have bitcast from a mask type: cast back to the original type if 5584 // required. 5585 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 5586 } 5587 5588 // Lower step_vector to the vid instruction. Any non-identity step value must 5589 // be accounted for my manual expansion. 5590 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 5591 SelectionDAG &DAG) const { 5592 SDLoc DL(Op); 5593 MVT VT = Op.getSimpleValueType(); 5594 MVT XLenVT = Subtarget.getXLenVT(); 5595 SDValue Mask, VL; 5596 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 5597 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 5598 uint64_t StepValImm = Op.getConstantOperandVal(0); 5599 if (StepValImm != 1) { 5600 if (isPowerOf2_64(StepValImm)) { 5601 SDValue StepVal = 5602 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 5603 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 5604 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 5605 } else { 5606 SDValue StepVal = lowerScalarSplat( 5607 SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), 5608 VL, VT, DL, DAG, Subtarget); 5609 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 5610 } 5611 } 5612 return StepVec; 5613 } 5614 5615 // Implement vector_reverse using vrgather.vv with indices determined by 5616 // subtracting the id of each element from (VLMAX-1). This will convert 5617 // the indices like so: 5618 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 5619 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 5620 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 5621 SelectionDAG &DAG) const { 5622 SDLoc DL(Op); 5623 MVT VecVT = Op.getSimpleValueType(); 5624 unsigned EltSize = VecVT.getScalarSizeInBits(); 5625 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 5626 5627 unsigned MaxVLMAX = 0; 5628 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 5629 if (VectorBitsMax != 0) 5630 MaxVLMAX = 5631 RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); 5632 5633 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 5634 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 5635 5636 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 5637 // to use vrgatherei16.vv. 5638 // TODO: It's also possible to use vrgatherei16.vv for other types to 5639 // decrease register width for the index calculation. 5640 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 5641 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 5642 // Reverse each half, then reassemble them in reverse order. 5643 // NOTE: It's also possible that after splitting that VLMAX no longer 5644 // requires vrgatherei16.vv. 5645 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 5646 SDValue Lo, Hi; 5647 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 5648 EVT LoVT, HiVT; 5649 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5650 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 5651 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 5652 // Reassemble the low and high pieces reversed. 5653 // FIXME: This is a CONCAT_VECTORS. 5654 SDValue Res = 5655 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 5656 DAG.getIntPtrConstant(0, DL)); 5657 return DAG.getNode( 5658 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 5659 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 5660 } 5661 5662 // Just promote the int type to i16 which will double the LMUL. 5663 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 5664 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 5665 } 5666 5667 MVT XLenVT = Subtarget.getXLenVT(); 5668 SDValue Mask, VL; 5669 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5670 5671 // Calculate VLMAX-1 for the desired SEW. 5672 unsigned MinElts = VecVT.getVectorMinNumElements(); 5673 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5674 DAG.getConstant(MinElts, DL, XLenVT)); 5675 SDValue VLMinus1 = 5676 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 5677 5678 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 5679 bool IsRV32E64 = 5680 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 5681 SDValue SplatVL; 5682 if (!IsRV32E64) 5683 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 5684 else 5685 SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT), 5686 VLMinus1, DAG.getRegister(RISCV::X0, XLenVT)); 5687 5688 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 5689 SDValue Indices = 5690 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 5691 5692 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, 5693 DAG.getUNDEF(VecVT), VL); 5694 } 5695 5696 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op, 5697 SelectionDAG &DAG) const { 5698 SDLoc DL(Op); 5699 SDValue V1 = Op.getOperand(0); 5700 SDValue V2 = Op.getOperand(1); 5701 MVT XLenVT = Subtarget.getXLenVT(); 5702 MVT VecVT = Op.getSimpleValueType(); 5703 5704 unsigned MinElts = VecVT.getVectorMinNumElements(); 5705 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5706 DAG.getConstant(MinElts, DL, XLenVT)); 5707 5708 int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue(); 5709 SDValue DownOffset, UpOffset; 5710 if (ImmValue >= 0) { 5711 // The operand is a TargetConstant, we need to rebuild it as a regular 5712 // constant. 5713 DownOffset = DAG.getConstant(ImmValue, DL, XLenVT); 5714 UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset); 5715 } else { 5716 // The operand is a TargetConstant, we need to rebuild it as a regular 5717 // constant rather than negating the original operand. 5718 UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT); 5719 DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset); 5720 } 5721 5722 SDValue TrueMask = getAllOnesMask(VecVT, VLMax, DL, DAG); 5723 5724 SDValue SlideDown = 5725 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1, 5726 DownOffset, TrueMask, UpOffset); 5727 return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset, 5728 TrueMask, 5729 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT)); 5730 } 5731 5732 SDValue 5733 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5734 SelectionDAG &DAG) const { 5735 SDLoc DL(Op); 5736 auto *Load = cast<LoadSDNode>(Op); 5737 5738 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5739 Load->getMemoryVT(), 5740 *Load->getMemOperand()) && 5741 "Expecting a correctly-aligned load"); 5742 5743 MVT VT = Op.getSimpleValueType(); 5744 MVT XLenVT = Subtarget.getXLenVT(); 5745 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5746 5747 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5748 5749 bool IsMaskOp = VT.getVectorElementType() == MVT::i1; 5750 SDValue IntID = DAG.getTargetConstant( 5751 IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT); 5752 SmallVector<SDValue, 4> Ops{Load->getChain(), IntID}; 5753 if (!IsMaskOp) 5754 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5755 Ops.push_back(Load->getBasePtr()); 5756 Ops.push_back(VL); 5757 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5758 SDValue NewLoad = 5759 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 5760 Load->getMemoryVT(), Load->getMemOperand()); 5761 5762 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5763 return DAG.getMergeValues({Result, NewLoad.getValue(1)}, DL); 5764 } 5765 5766 SDValue 5767 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5768 SelectionDAG &DAG) const { 5769 SDLoc DL(Op); 5770 auto *Store = cast<StoreSDNode>(Op); 5771 5772 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5773 Store->getMemoryVT(), 5774 *Store->getMemOperand()) && 5775 "Expecting a correctly-aligned store"); 5776 5777 SDValue StoreVal = Store->getValue(); 5778 MVT VT = StoreVal.getSimpleValueType(); 5779 MVT XLenVT = Subtarget.getXLenVT(); 5780 5781 // If the size less than a byte, we need to pad with zeros to make a byte. 5782 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5783 VT = MVT::v8i1; 5784 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5785 DAG.getConstant(0, DL, VT), StoreVal, 5786 DAG.getIntPtrConstant(0, DL)); 5787 } 5788 5789 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5790 5791 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5792 5793 SDValue NewValue = 5794 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5795 5796 bool IsMaskOp = VT.getVectorElementType() == MVT::i1; 5797 SDValue IntID = DAG.getTargetConstant( 5798 IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT); 5799 return DAG.getMemIntrinsicNode( 5800 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), 5801 {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL}, 5802 Store->getMemoryVT(), Store->getMemOperand()); 5803 } 5804 5805 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5806 SelectionDAG &DAG) const { 5807 SDLoc DL(Op); 5808 MVT VT = Op.getSimpleValueType(); 5809 5810 const auto *MemSD = cast<MemSDNode>(Op); 5811 EVT MemVT = MemSD->getMemoryVT(); 5812 MachineMemOperand *MMO = MemSD->getMemOperand(); 5813 SDValue Chain = MemSD->getChain(); 5814 SDValue BasePtr = MemSD->getBasePtr(); 5815 5816 SDValue Mask, PassThru, VL; 5817 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5818 Mask = VPLoad->getMask(); 5819 PassThru = DAG.getUNDEF(VT); 5820 VL = VPLoad->getVectorLength(); 5821 } else { 5822 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5823 Mask = MLoad->getMask(); 5824 PassThru = MLoad->getPassThru(); 5825 } 5826 5827 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5828 5829 MVT XLenVT = Subtarget.getXLenVT(); 5830 5831 MVT ContainerVT = VT; 5832 if (VT.isFixedLengthVector()) { 5833 ContainerVT = getContainerForFixedLengthVector(VT); 5834 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5835 if (!IsUnmasked) { 5836 MVT MaskVT = getMaskTypeFor(ContainerVT); 5837 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5838 } 5839 } 5840 5841 if (!VL) 5842 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5843 5844 unsigned IntID = 5845 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5846 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5847 if (IsUnmasked) 5848 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5849 else 5850 Ops.push_back(PassThru); 5851 Ops.push_back(BasePtr); 5852 if (!IsUnmasked) 5853 Ops.push_back(Mask); 5854 Ops.push_back(VL); 5855 if (!IsUnmasked) 5856 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5857 5858 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5859 5860 SDValue Result = 5861 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5862 Chain = Result.getValue(1); 5863 5864 if (VT.isFixedLengthVector()) 5865 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5866 5867 return DAG.getMergeValues({Result, Chain}, DL); 5868 } 5869 5870 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5871 SelectionDAG &DAG) const { 5872 SDLoc DL(Op); 5873 5874 const auto *MemSD = cast<MemSDNode>(Op); 5875 EVT MemVT = MemSD->getMemoryVT(); 5876 MachineMemOperand *MMO = MemSD->getMemOperand(); 5877 SDValue Chain = MemSD->getChain(); 5878 SDValue BasePtr = MemSD->getBasePtr(); 5879 SDValue Val, Mask, VL; 5880 5881 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5882 Val = VPStore->getValue(); 5883 Mask = VPStore->getMask(); 5884 VL = VPStore->getVectorLength(); 5885 } else { 5886 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5887 Val = MStore->getValue(); 5888 Mask = MStore->getMask(); 5889 } 5890 5891 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5892 5893 MVT VT = Val.getSimpleValueType(); 5894 MVT XLenVT = Subtarget.getXLenVT(); 5895 5896 MVT ContainerVT = VT; 5897 if (VT.isFixedLengthVector()) { 5898 ContainerVT = getContainerForFixedLengthVector(VT); 5899 5900 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5901 if (!IsUnmasked) { 5902 MVT MaskVT = getMaskTypeFor(ContainerVT); 5903 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5904 } 5905 } 5906 5907 if (!VL) 5908 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5909 5910 unsigned IntID = 5911 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 5912 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5913 Ops.push_back(Val); 5914 Ops.push_back(BasePtr); 5915 if (!IsUnmasked) 5916 Ops.push_back(Mask); 5917 Ops.push_back(VL); 5918 5919 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5920 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5921 } 5922 5923 SDValue 5924 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 5925 SelectionDAG &DAG) const { 5926 MVT InVT = Op.getOperand(0).getSimpleValueType(); 5927 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 5928 5929 MVT VT = Op.getSimpleValueType(); 5930 5931 SDValue Op1 = 5932 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 5933 SDValue Op2 = 5934 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5935 5936 SDLoc DL(Op); 5937 SDValue VL = 5938 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5939 5940 MVT MaskVT = getMaskTypeFor(ContainerVT); 5941 SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG); 5942 5943 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 5944 Op.getOperand(2), Mask, VL); 5945 5946 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 5947 } 5948 5949 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5950 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5951 MVT VT = Op.getSimpleValueType(); 5952 5953 if (VT.getVectorElementType() == MVT::i1) 5954 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5955 5956 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5957 } 5958 5959 SDValue 5960 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5961 SelectionDAG &DAG) const { 5962 unsigned Opc; 5963 switch (Op.getOpcode()) { 5964 default: llvm_unreachable("Unexpected opcode!"); 5965 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5966 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5967 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5968 } 5969 5970 return lowerToScalableOp(Op, DAG, Opc); 5971 } 5972 5973 // Lower vector ABS to smax(X, sub(0, X)). 5974 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5975 SDLoc DL(Op); 5976 MVT VT = Op.getSimpleValueType(); 5977 SDValue X = Op.getOperand(0); 5978 5979 assert(VT.isFixedLengthVector() && "Unexpected type"); 5980 5981 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5982 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5983 5984 SDValue Mask, VL; 5985 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5986 5987 SDValue SplatZero = DAG.getNode( 5988 RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), 5989 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 5990 SDValue NegX = 5991 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 5992 SDValue Max = 5993 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 5994 5995 return convertFromScalableVector(VT, Max, DAG, Subtarget); 5996 } 5997 5998 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 5999 SDValue Op, SelectionDAG &DAG) const { 6000 SDLoc DL(Op); 6001 MVT VT = Op.getSimpleValueType(); 6002 SDValue Mag = Op.getOperand(0); 6003 SDValue Sign = Op.getOperand(1); 6004 assert(Mag.getValueType() == Sign.getValueType() && 6005 "Can only handle COPYSIGN with matching types."); 6006 6007 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6008 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 6009 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 6010 6011 SDValue Mask, VL; 6012 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6013 6014 SDValue CopySign = 6015 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 6016 6017 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 6018 } 6019 6020 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 6021 SDValue Op, SelectionDAG &DAG) const { 6022 MVT VT = Op.getSimpleValueType(); 6023 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6024 6025 MVT I1ContainerVT = 6026 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6027 6028 SDValue CC = 6029 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 6030 SDValue Op1 = 6031 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 6032 SDValue Op2 = 6033 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 6034 6035 SDLoc DL(Op); 6036 SDValue Mask, VL; 6037 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6038 6039 SDValue Select = 6040 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 6041 6042 return convertFromScalableVector(VT, Select, DAG, Subtarget); 6043 } 6044 6045 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 6046 unsigned NewOpc, 6047 bool HasMask) const { 6048 MVT VT = Op.getSimpleValueType(); 6049 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6050 6051 // Create list of operands by converting existing ones to scalable types. 6052 SmallVector<SDValue, 6> Ops; 6053 for (const SDValue &V : Op->op_values()) { 6054 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 6055 6056 // Pass through non-vector operands. 6057 if (!V.getValueType().isVector()) { 6058 Ops.push_back(V); 6059 continue; 6060 } 6061 6062 // "cast" fixed length vector to a scalable vector. 6063 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 6064 "Only fixed length vectors are supported!"); 6065 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 6066 } 6067 6068 SDLoc DL(Op); 6069 SDValue Mask, VL; 6070 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6071 if (HasMask) 6072 Ops.push_back(Mask); 6073 Ops.push_back(VL); 6074 6075 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 6076 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 6077 } 6078 6079 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 6080 // * Operands of each node are assumed to be in the same order. 6081 // * The EVL operand is promoted from i32 to i64 on RV64. 6082 // * Fixed-length vectors are converted to their scalable-vector container 6083 // types. 6084 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 6085 unsigned RISCVISDOpc) const { 6086 SDLoc DL(Op); 6087 MVT VT = Op.getSimpleValueType(); 6088 SmallVector<SDValue, 4> Ops; 6089 6090 for (const auto &OpIdx : enumerate(Op->ops())) { 6091 SDValue V = OpIdx.value(); 6092 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 6093 // Pass through operands which aren't fixed-length vectors. 6094 if (!V.getValueType().isFixedLengthVector()) { 6095 Ops.push_back(V); 6096 continue; 6097 } 6098 // "cast" fixed length vector to a scalable vector. 6099 MVT OpVT = V.getSimpleValueType(); 6100 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 6101 assert(useRVVForFixedLengthVectorVT(OpVT) && 6102 "Only fixed length vectors are supported!"); 6103 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 6104 } 6105 6106 if (!VT.isFixedLengthVector()) 6107 return DAG.getNode(RISCVISDOpc, DL, VT, Ops, Op->getFlags()); 6108 6109 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6110 6111 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops, Op->getFlags()); 6112 6113 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 6114 } 6115 6116 SDValue RISCVTargetLowering::lowerVPExtMaskOp(SDValue Op, 6117 SelectionDAG &DAG) const { 6118 SDLoc DL(Op); 6119 MVT VT = Op.getSimpleValueType(); 6120 6121 SDValue Src = Op.getOperand(0); 6122 // NOTE: Mask is dropped. 6123 SDValue VL = Op.getOperand(2); 6124 6125 MVT ContainerVT = VT; 6126 if (VT.isFixedLengthVector()) { 6127 ContainerVT = getContainerForFixedLengthVector(VT); 6128 MVT SrcVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6129 Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget); 6130 } 6131 6132 MVT XLenVT = Subtarget.getXLenVT(); 6133 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 6134 SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6135 DAG.getUNDEF(ContainerVT), Zero, VL); 6136 6137 SDValue SplatValue = DAG.getConstant( 6138 Op.getOpcode() == ISD::VP_ZERO_EXTEND ? 1 : -1, DL, XLenVT); 6139 SDValue Splat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6140 DAG.getUNDEF(ContainerVT), SplatValue, VL); 6141 6142 SDValue Result = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, Src, 6143 Splat, ZeroSplat, VL); 6144 if (!VT.isFixedLengthVector()) 6145 return Result; 6146 return convertFromScalableVector(VT, Result, DAG, Subtarget); 6147 } 6148 6149 SDValue RISCVTargetLowering::lowerVPSetCCMaskOp(SDValue Op, 6150 SelectionDAG &DAG) const { 6151 SDLoc DL(Op); 6152 MVT VT = Op.getSimpleValueType(); 6153 6154 SDValue Op1 = Op.getOperand(0); 6155 SDValue Op2 = Op.getOperand(1); 6156 ISD::CondCode Condition = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 6157 // NOTE: Mask is dropped. 6158 SDValue VL = Op.getOperand(4); 6159 6160 MVT ContainerVT = VT; 6161 if (VT.isFixedLengthVector()) { 6162 ContainerVT = getContainerForFixedLengthVector(VT); 6163 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 6164 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 6165 } 6166 6167 SDValue Result; 6168 SDValue AllOneMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 6169 6170 switch (Condition) { 6171 default: 6172 break; 6173 // X != Y --> (X^Y) 6174 case ISD::SETNE: 6175 Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL); 6176 break; 6177 // X == Y --> ~(X^Y) 6178 case ISD::SETEQ: { 6179 SDValue Temp = 6180 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL); 6181 Result = 6182 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, AllOneMask, VL); 6183 break; 6184 } 6185 // X >s Y --> X == 0 & Y == 1 --> ~X & Y 6186 // X <u Y --> X == 0 & Y == 1 --> ~X & Y 6187 case ISD::SETGT: 6188 case ISD::SETULT: { 6189 SDValue Temp = 6190 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL); 6191 Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Temp, Op2, VL); 6192 break; 6193 } 6194 // X <s Y --> X == 1 & Y == 0 --> ~Y & X 6195 // X >u Y --> X == 1 & Y == 0 --> ~Y & X 6196 case ISD::SETLT: 6197 case ISD::SETUGT: { 6198 SDValue Temp = 6199 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL); 6200 Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Op1, Temp, VL); 6201 break; 6202 } 6203 // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 6204 // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 6205 case ISD::SETGE: 6206 case ISD::SETULE: { 6207 SDValue Temp = 6208 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL); 6209 Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op2, VL); 6210 break; 6211 } 6212 // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 6213 // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 6214 case ISD::SETLE: 6215 case ISD::SETUGE: { 6216 SDValue Temp = 6217 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL); 6218 Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op1, VL); 6219 break; 6220 } 6221 } 6222 6223 if (!VT.isFixedLengthVector()) 6224 return Result; 6225 return convertFromScalableVector(VT, Result, DAG, Subtarget); 6226 } 6227 6228 // Lower Floating-Point/Integer Type-Convert VP SDNodes 6229 SDValue RISCVTargetLowering::lowerVPFPIntConvOp(SDValue Op, SelectionDAG &DAG, 6230 unsigned RISCVISDOpc) const { 6231 SDLoc DL(Op); 6232 6233 SDValue Src = Op.getOperand(0); 6234 SDValue Mask = Op.getOperand(1); 6235 SDValue VL = Op.getOperand(2); 6236 6237 MVT DstVT = Op.getSimpleValueType(); 6238 MVT SrcVT = Src.getSimpleValueType(); 6239 if (DstVT.isFixedLengthVector()) { 6240 DstVT = getContainerForFixedLengthVector(DstVT); 6241 SrcVT = getContainerForFixedLengthVector(SrcVT); 6242 Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget); 6243 MVT MaskVT = getMaskTypeFor(DstVT); 6244 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6245 } 6246 6247 unsigned RISCVISDExtOpc = (RISCVISDOpc == RISCVISD::SINT_TO_FP_VL || 6248 RISCVISDOpc == RISCVISD::FP_TO_SINT_VL) 6249 ? RISCVISD::VSEXT_VL 6250 : RISCVISD::VZEXT_VL; 6251 6252 unsigned DstEltSize = DstVT.getScalarSizeInBits(); 6253 unsigned SrcEltSize = SrcVT.getScalarSizeInBits(); 6254 6255 SDValue Result; 6256 if (DstEltSize >= SrcEltSize) { // Single-width and widening conversion. 6257 if (SrcVT.isInteger()) { 6258 assert(DstVT.isFloatingPoint() && "Wrong input/output vector types"); 6259 6260 // Do we need to do any pre-widening before converting? 6261 if (SrcEltSize == 1) { 6262 MVT IntVT = DstVT.changeVectorElementTypeToInteger(); 6263 MVT XLenVT = Subtarget.getXLenVT(); 6264 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 6265 SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, 6266 DAG.getUNDEF(IntVT), Zero, VL); 6267 SDValue One = DAG.getConstant( 6268 RISCVISDExtOpc == RISCVISD::VZEXT_VL ? 1 : -1, DL, XLenVT); 6269 SDValue OneSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, 6270 DAG.getUNDEF(IntVT), One, VL); 6271 Src = DAG.getNode(RISCVISD::VSELECT_VL, DL, IntVT, Src, OneSplat, 6272 ZeroSplat, VL); 6273 } else if (DstEltSize > (2 * SrcEltSize)) { 6274 // Widen before converting. 6275 MVT IntVT = MVT::getVectorVT(MVT::getIntegerVT(DstEltSize / 2), 6276 DstVT.getVectorElementCount()); 6277 Src = DAG.getNode(RISCVISDExtOpc, DL, IntVT, Src, Mask, VL); 6278 } 6279 6280 Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL); 6281 } else { 6282 assert(SrcVT.isFloatingPoint() && DstVT.isInteger() && 6283 "Wrong input/output vector types"); 6284 6285 // Convert f16 to f32 then convert f32 to i64. 6286 if (DstEltSize > (2 * SrcEltSize)) { 6287 assert(SrcVT.getVectorElementType() == MVT::f16 && "Unexpected type!"); 6288 MVT InterimFVT = 6289 MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount()); 6290 Src = 6291 DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterimFVT, Src, Mask, VL); 6292 } 6293 6294 Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL); 6295 } 6296 } else { // Narrowing + Conversion 6297 if (SrcVT.isInteger()) { 6298 assert(DstVT.isFloatingPoint() && "Wrong input/output vector types"); 6299 // First do a narrowing convert to an FP type half the size, then round 6300 // the FP type to a small FP type if needed. 6301 6302 MVT InterimFVT = DstVT; 6303 if (SrcEltSize > (2 * DstEltSize)) { 6304 assert(SrcEltSize == (4 * DstEltSize) && "Unexpected types!"); 6305 assert(DstVT.getVectorElementType() == MVT::f16 && "Unexpected type!"); 6306 InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount()); 6307 } 6308 6309 Result = DAG.getNode(RISCVISDOpc, DL, InterimFVT, Src, Mask, VL); 6310 6311 if (InterimFVT != DstVT) { 6312 Src = Result; 6313 Result = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, DstVT, Src, Mask, VL); 6314 } 6315 } else { 6316 assert(SrcVT.isFloatingPoint() && DstVT.isInteger() && 6317 "Wrong input/output vector types"); 6318 // First do a narrowing conversion to an integer half the size, then 6319 // truncate if needed. 6320 6321 if (DstEltSize == 1) { 6322 // First convert to the same size integer, then convert to mask using 6323 // setcc. 6324 assert(SrcEltSize >= 16 && "Unexpected FP type!"); 6325 MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize), 6326 DstVT.getVectorElementCount()); 6327 Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL); 6328 6329 // Compare the integer result to 0. The integer should be 0 or 1/-1, 6330 // otherwise the conversion was undefined. 6331 MVT XLenVT = Subtarget.getXLenVT(); 6332 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 6333 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterimIVT, 6334 DAG.getUNDEF(InterimIVT), SplatZero); 6335 Result = DAG.getNode(RISCVISD::SETCC_VL, DL, DstVT, Result, SplatZero, 6336 DAG.getCondCode(ISD::SETNE), Mask, VL); 6337 } else { 6338 MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), 6339 DstVT.getVectorElementCount()); 6340 6341 Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL); 6342 6343 while (InterimIVT != DstVT) { 6344 SrcEltSize /= 2; 6345 Src = Result; 6346 InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), 6347 DstVT.getVectorElementCount()); 6348 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, InterimIVT, 6349 Src, Mask, VL); 6350 } 6351 } 6352 } 6353 } 6354 6355 MVT VT = Op.getSimpleValueType(); 6356 if (!VT.isFixedLengthVector()) 6357 return Result; 6358 return convertFromScalableVector(VT, Result, DAG, Subtarget); 6359 } 6360 6361 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG, 6362 unsigned MaskOpc, 6363 unsigned VecOpc) const { 6364 MVT VT = Op.getSimpleValueType(); 6365 if (VT.getVectorElementType() != MVT::i1) 6366 return lowerVPOp(Op, DAG, VecOpc); 6367 6368 // It is safe to drop mask parameter as masked-off elements are undef. 6369 SDValue Op1 = Op->getOperand(0); 6370 SDValue Op2 = Op->getOperand(1); 6371 SDValue VL = Op->getOperand(3); 6372 6373 MVT ContainerVT = VT; 6374 const bool IsFixed = VT.isFixedLengthVector(); 6375 if (IsFixed) { 6376 ContainerVT = getContainerForFixedLengthVector(VT); 6377 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 6378 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 6379 } 6380 6381 SDLoc DL(Op); 6382 SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL); 6383 if (!IsFixed) 6384 return Val; 6385 return convertFromScalableVector(VT, Val, DAG, Subtarget); 6386 } 6387 6388 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 6389 // matched to a RVV indexed load. The RVV indexed load instructions only 6390 // support the "unsigned unscaled" addressing mode; indices are implicitly 6391 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 6392 // signed or scaled indexing is extended to the XLEN value type and scaled 6393 // accordingly. 6394 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 6395 SelectionDAG &DAG) const { 6396 SDLoc DL(Op); 6397 MVT VT = Op.getSimpleValueType(); 6398 6399 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 6400 EVT MemVT = MemSD->getMemoryVT(); 6401 MachineMemOperand *MMO = MemSD->getMemOperand(); 6402 SDValue Chain = MemSD->getChain(); 6403 SDValue BasePtr = MemSD->getBasePtr(); 6404 6405 ISD::LoadExtType LoadExtType; 6406 SDValue Index, Mask, PassThru, VL; 6407 6408 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 6409 Index = VPGN->getIndex(); 6410 Mask = VPGN->getMask(); 6411 PassThru = DAG.getUNDEF(VT); 6412 VL = VPGN->getVectorLength(); 6413 // VP doesn't support extending loads. 6414 LoadExtType = ISD::NON_EXTLOAD; 6415 } else { 6416 // Else it must be a MGATHER. 6417 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 6418 Index = MGN->getIndex(); 6419 Mask = MGN->getMask(); 6420 PassThru = MGN->getPassThru(); 6421 LoadExtType = MGN->getExtensionType(); 6422 } 6423 6424 MVT IndexVT = Index.getSimpleValueType(); 6425 MVT XLenVT = Subtarget.getXLenVT(); 6426 6427 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 6428 "Unexpected VTs!"); 6429 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 6430 // Targets have to explicitly opt-in for extending vector loads. 6431 assert(LoadExtType == ISD::NON_EXTLOAD && 6432 "Unexpected extending MGATHER/VP_GATHER"); 6433 (void)LoadExtType; 6434 6435 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 6436 // the selection of the masked intrinsics doesn't do this for us. 6437 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 6438 6439 MVT ContainerVT = VT; 6440 if (VT.isFixedLengthVector()) { 6441 ContainerVT = getContainerForFixedLengthVector(VT); 6442 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6443 ContainerVT.getVectorElementCount()); 6444 6445 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6446 6447 if (!IsUnmasked) { 6448 MVT MaskVT = getMaskTypeFor(ContainerVT); 6449 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6450 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 6451 } 6452 } 6453 6454 if (!VL) 6455 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6456 6457 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6458 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6459 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6460 VL); 6461 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6462 TrueMask, VL); 6463 } 6464 6465 unsigned IntID = 6466 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 6467 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6468 if (IsUnmasked) 6469 Ops.push_back(DAG.getUNDEF(ContainerVT)); 6470 else 6471 Ops.push_back(PassThru); 6472 Ops.push_back(BasePtr); 6473 Ops.push_back(Index); 6474 if (!IsUnmasked) 6475 Ops.push_back(Mask); 6476 Ops.push_back(VL); 6477 if (!IsUnmasked) 6478 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 6479 6480 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 6481 SDValue Result = 6482 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 6483 Chain = Result.getValue(1); 6484 6485 if (VT.isFixedLengthVector()) 6486 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 6487 6488 return DAG.getMergeValues({Result, Chain}, DL); 6489 } 6490 6491 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 6492 // matched to a RVV indexed store. The RVV indexed store instructions only 6493 // support the "unsigned unscaled" addressing mode; indices are implicitly 6494 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 6495 // signed or scaled indexing is extended to the XLEN value type and scaled 6496 // accordingly. 6497 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 6498 SelectionDAG &DAG) const { 6499 SDLoc DL(Op); 6500 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 6501 EVT MemVT = MemSD->getMemoryVT(); 6502 MachineMemOperand *MMO = MemSD->getMemOperand(); 6503 SDValue Chain = MemSD->getChain(); 6504 SDValue BasePtr = MemSD->getBasePtr(); 6505 6506 bool IsTruncatingStore = false; 6507 SDValue Index, Mask, Val, VL; 6508 6509 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 6510 Index = VPSN->getIndex(); 6511 Mask = VPSN->getMask(); 6512 Val = VPSN->getValue(); 6513 VL = VPSN->getVectorLength(); 6514 // VP doesn't support truncating stores. 6515 IsTruncatingStore = false; 6516 } else { 6517 // Else it must be a MSCATTER. 6518 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 6519 Index = MSN->getIndex(); 6520 Mask = MSN->getMask(); 6521 Val = MSN->getValue(); 6522 IsTruncatingStore = MSN->isTruncatingStore(); 6523 } 6524 6525 MVT VT = Val.getSimpleValueType(); 6526 MVT IndexVT = Index.getSimpleValueType(); 6527 MVT XLenVT = Subtarget.getXLenVT(); 6528 6529 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 6530 "Unexpected VTs!"); 6531 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 6532 // Targets have to explicitly opt-in for extending vector loads and 6533 // truncating vector stores. 6534 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 6535 (void)IsTruncatingStore; 6536 6537 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 6538 // the selection of the masked intrinsics doesn't do this for us. 6539 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 6540 6541 MVT ContainerVT = VT; 6542 if (VT.isFixedLengthVector()) { 6543 ContainerVT = getContainerForFixedLengthVector(VT); 6544 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6545 ContainerVT.getVectorElementCount()); 6546 6547 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6548 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 6549 6550 if (!IsUnmasked) { 6551 MVT MaskVT = getMaskTypeFor(ContainerVT); 6552 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6553 } 6554 } 6555 6556 if (!VL) 6557 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6558 6559 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6560 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6561 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6562 VL); 6563 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6564 TrueMask, VL); 6565 } 6566 6567 unsigned IntID = 6568 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 6569 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6570 Ops.push_back(Val); 6571 Ops.push_back(BasePtr); 6572 Ops.push_back(Index); 6573 if (!IsUnmasked) 6574 Ops.push_back(Mask); 6575 Ops.push_back(VL); 6576 6577 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 6578 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 6579 } 6580 6581 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 6582 SelectionDAG &DAG) const { 6583 const MVT XLenVT = Subtarget.getXLenVT(); 6584 SDLoc DL(Op); 6585 SDValue Chain = Op->getOperand(0); 6586 SDValue SysRegNo = DAG.getTargetConstant( 6587 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6588 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 6589 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 6590 6591 // Encoding used for rounding mode in RISCV differs from that used in 6592 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 6593 // table, which consists of a sequence of 4-bit fields, each representing 6594 // corresponding FLT_ROUNDS mode. 6595 static const int Table = 6596 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 6597 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 6598 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 6599 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 6600 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 6601 6602 SDValue Shift = 6603 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 6604 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6605 DAG.getConstant(Table, DL, XLenVT), Shift); 6606 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6607 DAG.getConstant(7, DL, XLenVT)); 6608 6609 return DAG.getMergeValues({Masked, Chain}, DL); 6610 } 6611 6612 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 6613 SelectionDAG &DAG) const { 6614 const MVT XLenVT = Subtarget.getXLenVT(); 6615 SDLoc DL(Op); 6616 SDValue Chain = Op->getOperand(0); 6617 SDValue RMValue = Op->getOperand(1); 6618 SDValue SysRegNo = DAG.getTargetConstant( 6619 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6620 6621 // Encoding used for rounding mode in RISCV differs from that used in 6622 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 6623 // a table, which consists of a sequence of 4-bit fields, each representing 6624 // corresponding RISCV mode. 6625 static const unsigned Table = 6626 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 6627 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 6628 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 6629 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 6630 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 6631 6632 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 6633 DAG.getConstant(2, DL, XLenVT)); 6634 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6635 DAG.getConstant(Table, DL, XLenVT), Shift); 6636 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6637 DAG.getConstant(0x7, DL, XLenVT)); 6638 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 6639 RMValue); 6640 } 6641 6642 SDValue RISCVTargetLowering::lowerEH_DWARF_CFA(SDValue Op, 6643 SelectionDAG &DAG) const { 6644 MachineFunction &MF = DAG.getMachineFunction(); 6645 6646 bool isRISCV64 = Subtarget.is64Bit(); 6647 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6648 6649 int FI = MF.getFrameInfo().CreateFixedObject(isRISCV64 ? 8 : 4, 0, false); 6650 return DAG.getFrameIndex(FI, PtrVT); 6651 } 6652 6653 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) { 6654 switch (IntNo) { 6655 default: 6656 llvm_unreachable("Unexpected Intrinsic"); 6657 case Intrinsic::riscv_bcompress: 6658 return RISCVISD::BCOMPRESSW; 6659 case Intrinsic::riscv_bdecompress: 6660 return RISCVISD::BDECOMPRESSW; 6661 case Intrinsic::riscv_bfp: 6662 return RISCVISD::BFPW; 6663 case Intrinsic::riscv_fsl: 6664 return RISCVISD::FSLW; 6665 case Intrinsic::riscv_fsr: 6666 return RISCVISD::FSRW; 6667 } 6668 } 6669 6670 // Converts the given intrinsic to a i64 operation with any extension. 6671 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG, 6672 unsigned IntNo) { 6673 SDLoc DL(N); 6674 RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo); 6675 // Deal with the Instruction Operands 6676 SmallVector<SDValue, 3> NewOps; 6677 for (SDValue Op : drop_begin(N->ops())) 6678 // Promote the operand to i64 type 6679 NewOps.push_back(DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op)); 6680 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOps); 6681 // ReplaceNodeResults requires we maintain the same type for the return value. 6682 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6683 } 6684 6685 // Returns the opcode of the target-specific SDNode that implements the 32-bit 6686 // form of the given Opcode. 6687 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 6688 switch (Opcode) { 6689 default: 6690 llvm_unreachable("Unexpected opcode"); 6691 case ISD::SHL: 6692 return RISCVISD::SLLW; 6693 case ISD::SRA: 6694 return RISCVISD::SRAW; 6695 case ISD::SRL: 6696 return RISCVISD::SRLW; 6697 case ISD::SDIV: 6698 return RISCVISD::DIVW; 6699 case ISD::UDIV: 6700 return RISCVISD::DIVUW; 6701 case ISD::UREM: 6702 return RISCVISD::REMUW; 6703 case ISD::ROTL: 6704 return RISCVISD::ROLW; 6705 case ISD::ROTR: 6706 return RISCVISD::RORW; 6707 } 6708 } 6709 6710 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 6711 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 6712 // otherwise be promoted to i64, making it difficult to select the 6713 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 6714 // type i8/i16/i32 is lost. 6715 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 6716 unsigned ExtOpc = ISD::ANY_EXTEND) { 6717 SDLoc DL(N); 6718 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6719 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 6720 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 6721 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6722 // ReplaceNodeResults requires we maintain the same type for the return value. 6723 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6724 } 6725 6726 // Converts the given 32-bit operation to a i64 operation with signed extension 6727 // semantic to reduce the signed extension instructions. 6728 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 6729 SDLoc DL(N); 6730 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6731 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6732 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 6733 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6734 DAG.getValueType(MVT::i32)); 6735 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 6736 } 6737 6738 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 6739 SmallVectorImpl<SDValue> &Results, 6740 SelectionDAG &DAG) const { 6741 SDLoc DL(N); 6742 switch (N->getOpcode()) { 6743 default: 6744 llvm_unreachable("Don't know how to custom type legalize this operation!"); 6745 case ISD::STRICT_FP_TO_SINT: 6746 case ISD::STRICT_FP_TO_UINT: 6747 case ISD::FP_TO_SINT: 6748 case ISD::FP_TO_UINT: { 6749 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6750 "Unexpected custom legalisation"); 6751 bool IsStrict = N->isStrictFPOpcode(); 6752 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 6753 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 6754 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 6755 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 6756 TargetLowering::TypeSoftenFloat) { 6757 if (!isTypeLegal(Op0.getValueType())) 6758 return; 6759 if (IsStrict) { 6760 unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64 6761 : RISCVISD::STRICT_FCVT_WU_RV64; 6762 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 6763 SDValue Res = DAG.getNode( 6764 Opc, DL, VTs, N->getOperand(0), Op0, 6765 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6766 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6767 Results.push_back(Res.getValue(1)); 6768 return; 6769 } 6770 unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 6771 SDValue Res = 6772 DAG.getNode(Opc, DL, MVT::i64, Op0, 6773 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6774 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6775 return; 6776 } 6777 // If the FP type needs to be softened, emit a library call using the 'si' 6778 // version. If we left it to default legalization we'd end up with 'di'. If 6779 // the FP type doesn't need to be softened just let generic type 6780 // legalization promote the result type. 6781 RTLIB::Libcall LC; 6782 if (IsSigned) 6783 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 6784 else 6785 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 6786 MakeLibCallOptions CallOptions; 6787 EVT OpVT = Op0.getValueType(); 6788 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 6789 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 6790 SDValue Result; 6791 std::tie(Result, Chain) = 6792 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 6793 Results.push_back(Result); 6794 if (IsStrict) 6795 Results.push_back(Chain); 6796 break; 6797 } 6798 case ISD::READCYCLECOUNTER: { 6799 assert(!Subtarget.is64Bit() && 6800 "READCYCLECOUNTER only has custom type legalization on riscv32"); 6801 6802 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 6803 SDValue RCW = 6804 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 6805 6806 Results.push_back( 6807 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 6808 Results.push_back(RCW.getValue(2)); 6809 break; 6810 } 6811 case ISD::MUL: { 6812 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 6813 unsigned XLen = Subtarget.getXLen(); 6814 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 6815 if (Size > XLen) { 6816 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 6817 SDValue LHS = N->getOperand(0); 6818 SDValue RHS = N->getOperand(1); 6819 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 6820 6821 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 6822 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 6823 // We need exactly one side to be unsigned. 6824 if (LHSIsU == RHSIsU) 6825 return; 6826 6827 auto MakeMULPair = [&](SDValue S, SDValue U) { 6828 MVT XLenVT = Subtarget.getXLenVT(); 6829 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 6830 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 6831 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 6832 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 6833 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 6834 }; 6835 6836 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 6837 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 6838 6839 // The other operand should be signed, but still prefer MULH when 6840 // possible. 6841 if (RHSIsU && LHSIsS && !RHSIsS) 6842 Results.push_back(MakeMULPair(LHS, RHS)); 6843 else if (LHSIsU && RHSIsS && !LHSIsS) 6844 Results.push_back(MakeMULPair(RHS, LHS)); 6845 6846 return; 6847 } 6848 LLVM_FALLTHROUGH; 6849 } 6850 case ISD::ADD: 6851 case ISD::SUB: 6852 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6853 "Unexpected custom legalisation"); 6854 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 6855 break; 6856 case ISD::SHL: 6857 case ISD::SRA: 6858 case ISD::SRL: 6859 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6860 "Unexpected custom legalisation"); 6861 if (N->getOperand(1).getOpcode() != ISD::Constant) { 6862 // If we can use a BSET instruction, allow default promotion to apply. 6863 if (N->getOpcode() == ISD::SHL && Subtarget.hasStdExtZbs() && 6864 isOneConstant(N->getOperand(0))) 6865 break; 6866 Results.push_back(customLegalizeToWOp(N, DAG)); 6867 break; 6868 } 6869 6870 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 6871 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 6872 // shift amount. 6873 if (N->getOpcode() == ISD::SHL) { 6874 SDLoc DL(N); 6875 SDValue NewOp0 = 6876 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6877 SDValue NewOp1 = 6878 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 6879 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 6880 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6881 DAG.getValueType(MVT::i32)); 6882 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6883 } 6884 6885 break; 6886 case ISD::ROTL: 6887 case ISD::ROTR: 6888 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6889 "Unexpected custom legalisation"); 6890 Results.push_back(customLegalizeToWOp(N, DAG)); 6891 break; 6892 case ISD::CTTZ: 6893 case ISD::CTTZ_ZERO_UNDEF: 6894 case ISD::CTLZ: 6895 case ISD::CTLZ_ZERO_UNDEF: { 6896 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6897 "Unexpected custom legalisation"); 6898 6899 SDValue NewOp0 = 6900 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6901 bool IsCTZ = 6902 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 6903 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 6904 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 6905 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6906 return; 6907 } 6908 case ISD::SDIV: 6909 case ISD::UDIV: 6910 case ISD::UREM: { 6911 MVT VT = N->getSimpleValueType(0); 6912 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 6913 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 6914 "Unexpected custom legalisation"); 6915 // Don't promote division/remainder by constant since we should expand those 6916 // to multiply by magic constant. 6917 // FIXME: What if the expansion is disabled for minsize. 6918 if (N->getOperand(1).getOpcode() == ISD::Constant) 6919 return; 6920 6921 // If the input is i32, use ANY_EXTEND since the W instructions don't read 6922 // the upper 32 bits. For other types we need to sign or zero extend 6923 // based on the opcode. 6924 unsigned ExtOpc = ISD::ANY_EXTEND; 6925 if (VT != MVT::i32) 6926 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 6927 : ISD::ZERO_EXTEND; 6928 6929 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 6930 break; 6931 } 6932 case ISD::UADDO: 6933 case ISD::USUBO: { 6934 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6935 "Unexpected custom legalisation"); 6936 bool IsAdd = N->getOpcode() == ISD::UADDO; 6937 // Create an ADDW or SUBW. 6938 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6939 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6940 SDValue Res = 6941 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 6942 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 6943 DAG.getValueType(MVT::i32)); 6944 6945 SDValue Overflow; 6946 if (IsAdd && isOneConstant(RHS)) { 6947 // Special case uaddo X, 1 overflowed if the addition result is 0. 6948 // The general case (X + C) < C is not necessarily beneficial. Although we 6949 // reduce the live range of X, we may introduce the materialization of 6950 // constant C, especially when the setcc result is used by branch. We have 6951 // no compare with constant and branch instructions. 6952 Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, 6953 DAG.getConstant(0, DL, MVT::i64), ISD::SETEQ); 6954 } else { 6955 // Sign extend the LHS and perform an unsigned compare with the ADDW 6956 // result. Since the inputs are sign extended from i32, this is equivalent 6957 // to comparing the lower 32 bits. 6958 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6959 Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 6960 IsAdd ? ISD::SETULT : ISD::SETUGT); 6961 } 6962 6963 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6964 Results.push_back(Overflow); 6965 return; 6966 } 6967 case ISD::UADDSAT: 6968 case ISD::USUBSAT: { 6969 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6970 "Unexpected custom legalisation"); 6971 if (Subtarget.hasStdExtZbb()) { 6972 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 6973 // sign extend allows overflow of the lower 32 bits to be detected on 6974 // the promoted size. 6975 SDValue LHS = 6976 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6977 SDValue RHS = 6978 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 6979 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 6980 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6981 return; 6982 } 6983 6984 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 6985 // promotion for UADDO/USUBO. 6986 Results.push_back(expandAddSubSat(N, DAG)); 6987 return; 6988 } 6989 case ISD::ABS: { 6990 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6991 "Unexpected custom legalisation"); 6992 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6993 6994 // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y) 6995 6996 SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6997 6998 // Freeze the source so we can increase it's use count. 6999 Src = DAG.getFreeze(Src); 7000 7001 // Copy sign bit to all bits using the sraiw pattern. 7002 SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src, 7003 DAG.getValueType(MVT::i32)); 7004 SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill, 7005 DAG.getConstant(31, DL, MVT::i64)); 7006 7007 SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill); 7008 NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill); 7009 7010 // NOTE: The result is only required to be anyextended, but sext is 7011 // consistent with type legalization of sub. 7012 NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes, 7013 DAG.getValueType(MVT::i32)); 7014 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 7015 return; 7016 } 7017 case ISD::BITCAST: { 7018 EVT VT = N->getValueType(0); 7019 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 7020 SDValue Op0 = N->getOperand(0); 7021 EVT Op0VT = Op0.getValueType(); 7022 MVT XLenVT = Subtarget.getXLenVT(); 7023 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 7024 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 7025 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 7026 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 7027 Subtarget.hasStdExtF()) { 7028 SDValue FPConv = 7029 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 7030 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 7031 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 7032 isTypeLegal(Op0VT)) { 7033 // Custom-legalize bitcasts from fixed-length vector types to illegal 7034 // scalar types in order to improve codegen. Bitcast the vector to a 7035 // one-element vector type whose element type is the same as the result 7036 // type, and extract the first element. 7037 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 7038 if (isTypeLegal(BVT)) { 7039 SDValue BVec = DAG.getBitcast(BVT, Op0); 7040 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 7041 DAG.getConstant(0, DL, XLenVT))); 7042 } 7043 } 7044 break; 7045 } 7046 case RISCVISD::GREV: 7047 case RISCVISD::GORC: 7048 case RISCVISD::SHFL: { 7049 MVT VT = N->getSimpleValueType(0); 7050 MVT XLenVT = Subtarget.getXLenVT(); 7051 assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) && 7052 "Unexpected custom legalisation"); 7053 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 7054 assert((Subtarget.hasStdExtZbp() || 7055 (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV && 7056 N->getConstantOperandVal(1) == 7)) && 7057 "Unexpected extension"); 7058 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 7059 SDValue NewOp1 = 7060 DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1)); 7061 SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1); 7062 // ReplaceNodeResults requires we maintain the same type for the return 7063 // value. 7064 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes)); 7065 break; 7066 } 7067 case ISD::BSWAP: 7068 case ISD::BITREVERSE: { 7069 MVT VT = N->getSimpleValueType(0); 7070 MVT XLenVT = Subtarget.getXLenVT(); 7071 assert((VT == MVT::i8 || VT == MVT::i16 || 7072 (VT == MVT::i32 && Subtarget.is64Bit())) && 7073 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 7074 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 7075 unsigned Imm = VT.getSizeInBits() - 1; 7076 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 7077 if (N->getOpcode() == ISD::BSWAP) 7078 Imm &= ~0x7U; 7079 SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0, 7080 DAG.getConstant(Imm, DL, XLenVT)); 7081 // ReplaceNodeResults requires we maintain the same type for the return 7082 // value. 7083 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 7084 break; 7085 } 7086 case ISD::FSHL: 7087 case ISD::FSHR: { 7088 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7089 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 7090 SDValue NewOp0 = 7091 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 7092 SDValue NewOp1 = 7093 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7094 SDValue NewShAmt = 7095 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 7096 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 7097 // Mask the shift amount to 5 bits to prevent accidentally setting bit 5. 7098 NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt, 7099 DAG.getConstant(0x1f, DL, MVT::i64)); 7100 // fshl and fshr concatenate their operands in the same order. fsrw and fslw 7101 // instruction use different orders. fshl will return its first operand for 7102 // shift of zero, fshr will return its second operand. fsl and fsr both 7103 // return rs1 so the ISD nodes need to have different operand orders. 7104 // Shift amount is in rs2. 7105 unsigned Opc = RISCVISD::FSLW; 7106 if (N->getOpcode() == ISD::FSHR) { 7107 std::swap(NewOp0, NewOp1); 7108 Opc = RISCVISD::FSRW; 7109 } 7110 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt); 7111 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 7112 break; 7113 } 7114 case ISD::EXTRACT_VECTOR_ELT: { 7115 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 7116 // type is illegal (currently only vXi64 RV32). 7117 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 7118 // transferred to the destination register. We issue two of these from the 7119 // upper- and lower- halves of the SEW-bit vector element, slid down to the 7120 // first element. 7121 SDValue Vec = N->getOperand(0); 7122 SDValue Idx = N->getOperand(1); 7123 7124 // The vector type hasn't been legalized yet so we can't issue target 7125 // specific nodes if it needs legalization. 7126 // FIXME: We would manually legalize if it's important. 7127 if (!isTypeLegal(Vec.getValueType())) 7128 return; 7129 7130 MVT VecVT = Vec.getSimpleValueType(); 7131 7132 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 7133 VecVT.getVectorElementType() == MVT::i64 && 7134 "Unexpected EXTRACT_VECTOR_ELT legalization"); 7135 7136 // If this is a fixed vector, we need to convert it to a scalable vector. 7137 MVT ContainerVT = VecVT; 7138 if (VecVT.isFixedLengthVector()) { 7139 ContainerVT = getContainerForFixedLengthVector(VecVT); 7140 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 7141 } 7142 7143 MVT XLenVT = Subtarget.getXLenVT(); 7144 7145 // Use a VL of 1 to avoid processing more elements than we need. 7146 SDValue VL = DAG.getConstant(1, DL, XLenVT); 7147 SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG); 7148 7149 // Unless the index is known to be 0, we must slide the vector down to get 7150 // the desired element into index 0. 7151 if (!isNullConstant(Idx)) { 7152 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 7153 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 7154 } 7155 7156 // Extract the lower XLEN bits of the correct vector element. 7157 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 7158 7159 // To extract the upper XLEN bits of the vector element, shift the first 7160 // element right by 32 bits and re-extract the lower XLEN bits. 7161 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 7162 DAG.getUNDEF(ContainerVT), 7163 DAG.getConstant(32, DL, XLenVT), VL); 7164 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 7165 ThirtyTwoV, Mask, VL); 7166 7167 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 7168 7169 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 7170 break; 7171 } 7172 case ISD::INTRINSIC_WO_CHAIN: { 7173 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 7174 switch (IntNo) { 7175 default: 7176 llvm_unreachable( 7177 "Don't know how to custom type legalize this intrinsic!"); 7178 case Intrinsic::riscv_grev: 7179 case Intrinsic::riscv_gorc: { 7180 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7181 "Unexpected custom legalisation"); 7182 SDValue NewOp1 = 7183 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7184 SDValue NewOp2 = 7185 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 7186 unsigned Opc = 7187 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 7188 // If the control is a constant, promote the node by clearing any extra 7189 // bits bits in the control. isel will form greviw/gorciw if the result is 7190 // sign extended. 7191 if (isa<ConstantSDNode>(NewOp2)) { 7192 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 7193 DAG.getConstant(0x1f, DL, MVT::i64)); 7194 Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 7195 } 7196 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 7197 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7198 break; 7199 } 7200 case Intrinsic::riscv_bcompress: 7201 case Intrinsic::riscv_bdecompress: 7202 case Intrinsic::riscv_bfp: 7203 case Intrinsic::riscv_fsl: 7204 case Intrinsic::riscv_fsr: { 7205 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7206 "Unexpected custom legalisation"); 7207 Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo)); 7208 break; 7209 } 7210 case Intrinsic::riscv_orc_b: { 7211 // Lower to the GORCI encoding for orc.b with the operand extended. 7212 SDValue NewOp = 7213 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7214 SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp, 7215 DAG.getConstant(7, DL, MVT::i64)); 7216 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7217 return; 7218 } 7219 case Intrinsic::riscv_shfl: 7220 case Intrinsic::riscv_unshfl: { 7221 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7222 "Unexpected custom legalisation"); 7223 SDValue NewOp1 = 7224 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7225 SDValue NewOp2 = 7226 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 7227 unsigned Opc = 7228 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 7229 // There is no (UN)SHFLIW. If the control word is a constant, we can use 7230 // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half 7231 // will be shuffled the same way as the lower 32 bit half, but the two 7232 // halves won't cross. 7233 if (isa<ConstantSDNode>(NewOp2)) { 7234 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 7235 DAG.getConstant(0xf, DL, MVT::i64)); 7236 Opc = 7237 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 7238 } 7239 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 7240 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7241 break; 7242 } 7243 case Intrinsic::riscv_vmv_x_s: { 7244 EVT VT = N->getValueType(0); 7245 MVT XLenVT = Subtarget.getXLenVT(); 7246 if (VT.bitsLT(XLenVT)) { 7247 // Simple case just extract using vmv.x.s and truncate. 7248 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 7249 Subtarget.getXLenVT(), N->getOperand(1)); 7250 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 7251 return; 7252 } 7253 7254 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 7255 "Unexpected custom legalization"); 7256 7257 // We need to do the move in two steps. 7258 SDValue Vec = N->getOperand(1); 7259 MVT VecVT = Vec.getSimpleValueType(); 7260 7261 // First extract the lower XLEN bits of the element. 7262 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 7263 7264 // To extract the upper XLEN bits of the vector element, shift the first 7265 // element right by 32 bits and re-extract the lower XLEN bits. 7266 SDValue VL = DAG.getConstant(1, DL, XLenVT); 7267 SDValue Mask = getAllOnesMask(VecVT, VL, DL, DAG); 7268 7269 SDValue ThirtyTwoV = 7270 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 7271 DAG.getConstant(32, DL, XLenVT), VL); 7272 SDValue LShr32 = 7273 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 7274 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 7275 7276 Results.push_back( 7277 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 7278 break; 7279 } 7280 } 7281 break; 7282 } 7283 case ISD::VECREDUCE_ADD: 7284 case ISD::VECREDUCE_AND: 7285 case ISD::VECREDUCE_OR: 7286 case ISD::VECREDUCE_XOR: 7287 case ISD::VECREDUCE_SMAX: 7288 case ISD::VECREDUCE_UMAX: 7289 case ISD::VECREDUCE_SMIN: 7290 case ISD::VECREDUCE_UMIN: 7291 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 7292 Results.push_back(V); 7293 break; 7294 case ISD::VP_REDUCE_ADD: 7295 case ISD::VP_REDUCE_AND: 7296 case ISD::VP_REDUCE_OR: 7297 case ISD::VP_REDUCE_XOR: 7298 case ISD::VP_REDUCE_SMAX: 7299 case ISD::VP_REDUCE_UMAX: 7300 case ISD::VP_REDUCE_SMIN: 7301 case ISD::VP_REDUCE_UMIN: 7302 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 7303 Results.push_back(V); 7304 break; 7305 case ISD::FLT_ROUNDS_: { 7306 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 7307 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 7308 Results.push_back(Res.getValue(0)); 7309 Results.push_back(Res.getValue(1)); 7310 break; 7311 } 7312 } 7313 } 7314 7315 // A structure to hold one of the bit-manipulation patterns below. Together, a 7316 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 7317 // (or (and (shl x, 1), 0xAAAAAAAA), 7318 // (and (srl x, 1), 0x55555555)) 7319 struct RISCVBitmanipPat { 7320 SDValue Op; 7321 unsigned ShAmt; 7322 bool IsSHL; 7323 7324 bool formsPairWith(const RISCVBitmanipPat &Other) const { 7325 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 7326 } 7327 }; 7328 7329 // Matches patterns of the form 7330 // (and (shl x, C2), (C1 << C2)) 7331 // (and (srl x, C2), C1) 7332 // (shl (and x, C1), C2) 7333 // (srl (and x, (C1 << C2)), C2) 7334 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 7335 // The expected masks for each shift amount are specified in BitmanipMasks where 7336 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 7337 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 7338 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 7339 // XLen is 64. 7340 static Optional<RISCVBitmanipPat> 7341 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 7342 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 7343 "Unexpected number of masks"); 7344 Optional<uint64_t> Mask; 7345 // Optionally consume a mask around the shift operation. 7346 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 7347 Mask = Op.getConstantOperandVal(1); 7348 Op = Op.getOperand(0); 7349 } 7350 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 7351 return None; 7352 bool IsSHL = Op.getOpcode() == ISD::SHL; 7353 7354 if (!isa<ConstantSDNode>(Op.getOperand(1))) 7355 return None; 7356 uint64_t ShAmt = Op.getConstantOperandVal(1); 7357 7358 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7359 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 7360 return None; 7361 // If we don't have enough masks for 64 bit, then we must be trying to 7362 // match SHFL so we're only allowed to shift 1/4 of the width. 7363 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 7364 return None; 7365 7366 SDValue Src = Op.getOperand(0); 7367 7368 // The expected mask is shifted left when the AND is found around SHL 7369 // patterns. 7370 // ((x >> 1) & 0x55555555) 7371 // ((x << 1) & 0xAAAAAAAA) 7372 bool SHLExpMask = IsSHL; 7373 7374 if (!Mask) { 7375 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 7376 // the mask is all ones: consume that now. 7377 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 7378 Mask = Src.getConstantOperandVal(1); 7379 Src = Src.getOperand(0); 7380 // The expected mask is now in fact shifted left for SRL, so reverse the 7381 // decision. 7382 // ((x & 0xAAAAAAAA) >> 1) 7383 // ((x & 0x55555555) << 1) 7384 SHLExpMask = !SHLExpMask; 7385 } else { 7386 // Use a default shifted mask of all-ones if there's no AND, truncated 7387 // down to the expected width. This simplifies the logic later on. 7388 Mask = maskTrailingOnes<uint64_t>(Width); 7389 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 7390 } 7391 } 7392 7393 unsigned MaskIdx = Log2_32(ShAmt); 7394 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7395 7396 if (SHLExpMask) 7397 ExpMask <<= ShAmt; 7398 7399 if (Mask != ExpMask) 7400 return None; 7401 7402 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 7403 } 7404 7405 // Matches any of the following bit-manipulation patterns: 7406 // (and (shl x, 1), (0x55555555 << 1)) 7407 // (and (srl x, 1), 0x55555555) 7408 // (shl (and x, 0x55555555), 1) 7409 // (srl (and x, (0x55555555 << 1)), 1) 7410 // where the shift amount and mask may vary thus: 7411 // [1] = 0x55555555 / 0xAAAAAAAA 7412 // [2] = 0x33333333 / 0xCCCCCCCC 7413 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 7414 // [8] = 0x00FF00FF / 0xFF00FF00 7415 // [16] = 0x0000FFFF / 0xFFFFFFFF 7416 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 7417 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 7418 // These are the unshifted masks which we use to match bit-manipulation 7419 // patterns. They may be shifted left in certain circumstances. 7420 static const uint64_t BitmanipMasks[] = { 7421 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 7422 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 7423 7424 return matchRISCVBitmanipPat(Op, BitmanipMasks); 7425 } 7426 7427 // Try to fold (<bop> x, (reduction.<bop> vec, start)) 7428 static SDValue combineBinOpToReduce(SDNode *N, SelectionDAG &DAG) { 7429 auto BinOpToRVVReduce = [](unsigned Opc) { 7430 switch (Opc) { 7431 default: 7432 llvm_unreachable("Unhandled binary to transfrom reduction"); 7433 case ISD::ADD: 7434 return RISCVISD::VECREDUCE_ADD_VL; 7435 case ISD::UMAX: 7436 return RISCVISD::VECREDUCE_UMAX_VL; 7437 case ISD::SMAX: 7438 return RISCVISD::VECREDUCE_SMAX_VL; 7439 case ISD::UMIN: 7440 return RISCVISD::VECREDUCE_UMIN_VL; 7441 case ISD::SMIN: 7442 return RISCVISD::VECREDUCE_SMIN_VL; 7443 case ISD::AND: 7444 return RISCVISD::VECREDUCE_AND_VL; 7445 case ISD::OR: 7446 return RISCVISD::VECREDUCE_OR_VL; 7447 case ISD::XOR: 7448 return RISCVISD::VECREDUCE_XOR_VL; 7449 case ISD::FADD: 7450 return RISCVISD::VECREDUCE_FADD_VL; 7451 case ISD::FMAXNUM: 7452 return RISCVISD::VECREDUCE_FMAX_VL; 7453 case ISD::FMINNUM: 7454 return RISCVISD::VECREDUCE_FMIN_VL; 7455 } 7456 }; 7457 7458 auto IsReduction = [&BinOpToRVVReduce](SDValue V, unsigned Opc) { 7459 return V.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 7460 isNullConstant(V.getOperand(1)) && 7461 V.getOperand(0).getOpcode() == BinOpToRVVReduce(Opc); 7462 }; 7463 7464 unsigned Opc = N->getOpcode(); 7465 unsigned ReduceIdx; 7466 if (IsReduction(N->getOperand(0), Opc)) 7467 ReduceIdx = 0; 7468 else if (IsReduction(N->getOperand(1), Opc)) 7469 ReduceIdx = 1; 7470 else 7471 return SDValue(); 7472 7473 // Skip if FADD disallows reassociation but the combiner needs. 7474 if (Opc == ISD::FADD && !N->getFlags().hasAllowReassociation()) 7475 return SDValue(); 7476 7477 SDValue Extract = N->getOperand(ReduceIdx); 7478 SDValue Reduce = Extract.getOperand(0); 7479 if (!Reduce.hasOneUse()) 7480 return SDValue(); 7481 7482 SDValue ScalarV = Reduce.getOperand(2); 7483 7484 // Make sure that ScalarV is a splat with VL=1. 7485 if (ScalarV.getOpcode() != RISCVISD::VFMV_S_F_VL && 7486 ScalarV.getOpcode() != RISCVISD::VMV_S_X_VL && 7487 ScalarV.getOpcode() != RISCVISD::VMV_V_X_VL) 7488 return SDValue(); 7489 7490 if (!isOneConstant(ScalarV.getOperand(2))) 7491 return SDValue(); 7492 7493 // TODO: Deal with value other than neutral element. 7494 auto IsRVVNeutralElement = [Opc, &DAG](SDNode *N, SDValue V) { 7495 if (Opc == ISD::FADD && N->getFlags().hasNoSignedZeros() && 7496 isNullFPConstant(V)) 7497 return true; 7498 return DAG.getNeutralElement(Opc, SDLoc(V), V.getSimpleValueType(), 7499 N->getFlags()) == V; 7500 }; 7501 7502 // Check the scalar of ScalarV is neutral element 7503 if (!IsRVVNeutralElement(N, ScalarV.getOperand(1))) 7504 return SDValue(); 7505 7506 if (!ScalarV.hasOneUse()) 7507 return SDValue(); 7508 7509 EVT SplatVT = ScalarV.getValueType(); 7510 SDValue NewStart = N->getOperand(1 - ReduceIdx); 7511 unsigned SplatOpc = RISCVISD::VFMV_S_F_VL; 7512 if (SplatVT.isInteger()) { 7513 auto *C = dyn_cast<ConstantSDNode>(NewStart.getNode()); 7514 if (!C || C->isZero() || !isInt<5>(C->getSExtValue())) 7515 SplatOpc = RISCVISD::VMV_S_X_VL; 7516 else 7517 SplatOpc = RISCVISD::VMV_V_X_VL; 7518 } 7519 7520 SDValue NewScalarV = 7521 DAG.getNode(SplatOpc, SDLoc(N), SplatVT, ScalarV.getOperand(0), NewStart, 7522 ScalarV.getOperand(2)); 7523 SDValue NewReduce = 7524 DAG.getNode(Reduce.getOpcode(), SDLoc(Reduce), Reduce.getValueType(), 7525 Reduce.getOperand(0), Reduce.getOperand(1), NewScalarV, 7526 Reduce.getOperand(3), Reduce.getOperand(4)); 7527 return DAG.getNode(Extract.getOpcode(), SDLoc(Extract), 7528 Extract.getValueType(), NewReduce, Extract.getOperand(1)); 7529 } 7530 7531 // Match the following pattern as a GREVI(W) operation 7532 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 7533 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 7534 const RISCVSubtarget &Subtarget) { 7535 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7536 EVT VT = Op.getValueType(); 7537 7538 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 7539 auto LHS = matchGREVIPat(Op.getOperand(0)); 7540 auto RHS = matchGREVIPat(Op.getOperand(1)); 7541 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 7542 SDLoc DL(Op); 7543 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 7544 DAG.getConstant(LHS->ShAmt, DL, VT)); 7545 } 7546 } 7547 return SDValue(); 7548 } 7549 7550 // Matches any the following pattern as a GORCI(W) operation 7551 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 7552 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 7553 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 7554 // Note that with the variant of 3., 7555 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 7556 // the inner pattern will first be matched as GREVI and then the outer 7557 // pattern will be matched to GORC via the first rule above. 7558 // 4. (or (rotl/rotr x, bitwidth/2), x) 7559 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 7560 const RISCVSubtarget &Subtarget) { 7561 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7562 EVT VT = Op.getValueType(); 7563 7564 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 7565 SDLoc DL(Op); 7566 SDValue Op0 = Op.getOperand(0); 7567 SDValue Op1 = Op.getOperand(1); 7568 7569 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 7570 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 7571 isa<ConstantSDNode>(Reverse.getOperand(1)) && 7572 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 7573 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 7574 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 7575 if ((Reverse.getOpcode() == ISD::ROTL || 7576 Reverse.getOpcode() == ISD::ROTR) && 7577 Reverse.getOperand(0) == X && 7578 isa<ConstantSDNode>(Reverse.getOperand(1))) { 7579 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 7580 if (RotAmt == (VT.getSizeInBits() / 2)) 7581 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 7582 DAG.getConstant(RotAmt, DL, VT)); 7583 } 7584 return SDValue(); 7585 }; 7586 7587 // Check for either commutable permutation of (or (GREVI x, shamt), x) 7588 if (SDValue V = MatchOROfReverse(Op0, Op1)) 7589 return V; 7590 if (SDValue V = MatchOROfReverse(Op1, Op0)) 7591 return V; 7592 7593 // OR is commutable so canonicalize its OR operand to the left 7594 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 7595 std::swap(Op0, Op1); 7596 if (Op0.getOpcode() != ISD::OR) 7597 return SDValue(); 7598 SDValue OrOp0 = Op0.getOperand(0); 7599 SDValue OrOp1 = Op0.getOperand(1); 7600 auto LHS = matchGREVIPat(OrOp0); 7601 // OR is commutable so swap the operands and try again: x might have been 7602 // on the left 7603 if (!LHS) { 7604 std::swap(OrOp0, OrOp1); 7605 LHS = matchGREVIPat(OrOp0); 7606 } 7607 auto RHS = matchGREVIPat(Op1); 7608 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 7609 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 7610 DAG.getConstant(LHS->ShAmt, DL, VT)); 7611 } 7612 } 7613 return SDValue(); 7614 } 7615 7616 // Matches any of the following bit-manipulation patterns: 7617 // (and (shl x, 1), (0x22222222 << 1)) 7618 // (and (srl x, 1), 0x22222222) 7619 // (shl (and x, 0x22222222), 1) 7620 // (srl (and x, (0x22222222 << 1)), 1) 7621 // where the shift amount and mask may vary thus: 7622 // [1] = 0x22222222 / 0x44444444 7623 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 7624 // [4] = 0x00F000F0 / 0x0F000F00 7625 // [8] = 0x0000FF00 / 0x00FF0000 7626 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 7627 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 7628 // These are the unshifted masks which we use to match bit-manipulation 7629 // patterns. They may be shifted left in certain circumstances. 7630 static const uint64_t BitmanipMasks[] = { 7631 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 7632 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 7633 7634 return matchRISCVBitmanipPat(Op, BitmanipMasks); 7635 } 7636 7637 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 7638 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 7639 const RISCVSubtarget &Subtarget) { 7640 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7641 EVT VT = Op.getValueType(); 7642 7643 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 7644 return SDValue(); 7645 7646 SDValue Op0 = Op.getOperand(0); 7647 SDValue Op1 = Op.getOperand(1); 7648 7649 // Or is commutable so canonicalize the second OR to the LHS. 7650 if (Op0.getOpcode() != ISD::OR) 7651 std::swap(Op0, Op1); 7652 if (Op0.getOpcode() != ISD::OR) 7653 return SDValue(); 7654 7655 // We found an inner OR, so our operands are the operands of the inner OR 7656 // and the other operand of the outer OR. 7657 SDValue A = Op0.getOperand(0); 7658 SDValue B = Op0.getOperand(1); 7659 SDValue C = Op1; 7660 7661 auto Match1 = matchSHFLPat(A); 7662 auto Match2 = matchSHFLPat(B); 7663 7664 // If neither matched, we failed. 7665 if (!Match1 && !Match2) 7666 return SDValue(); 7667 7668 // We had at least one match. if one failed, try the remaining C operand. 7669 if (!Match1) { 7670 std::swap(A, C); 7671 Match1 = matchSHFLPat(A); 7672 if (!Match1) 7673 return SDValue(); 7674 } else if (!Match2) { 7675 std::swap(B, C); 7676 Match2 = matchSHFLPat(B); 7677 if (!Match2) 7678 return SDValue(); 7679 } 7680 assert(Match1 && Match2); 7681 7682 // Make sure our matches pair up. 7683 if (!Match1->formsPairWith(*Match2)) 7684 return SDValue(); 7685 7686 // All the remains is to make sure C is an AND with the same input, that masks 7687 // out the bits that are being shuffled. 7688 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 7689 C.getOperand(0) != Match1->Op) 7690 return SDValue(); 7691 7692 uint64_t Mask = C.getConstantOperandVal(1); 7693 7694 static const uint64_t BitmanipMasks[] = { 7695 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 7696 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 7697 }; 7698 7699 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7700 unsigned MaskIdx = Log2_32(Match1->ShAmt); 7701 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7702 7703 if (Mask != ExpMask) 7704 return SDValue(); 7705 7706 SDLoc DL(Op); 7707 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 7708 DAG.getConstant(Match1->ShAmt, DL, VT)); 7709 } 7710 7711 // Optimize (add (shl x, c0), (shl y, c1)) -> 7712 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 7713 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 7714 const RISCVSubtarget &Subtarget) { 7715 // Perform this optimization only in the zba extension. 7716 if (!Subtarget.hasStdExtZba()) 7717 return SDValue(); 7718 7719 // Skip for vector types and larger types. 7720 EVT VT = N->getValueType(0); 7721 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7722 return SDValue(); 7723 7724 // The two operand nodes must be SHL and have no other use. 7725 SDValue N0 = N->getOperand(0); 7726 SDValue N1 = N->getOperand(1); 7727 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 7728 !N0->hasOneUse() || !N1->hasOneUse()) 7729 return SDValue(); 7730 7731 // Check c0 and c1. 7732 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7733 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 7734 if (!N0C || !N1C) 7735 return SDValue(); 7736 int64_t C0 = N0C->getSExtValue(); 7737 int64_t C1 = N1C->getSExtValue(); 7738 if (C0 <= 0 || C1 <= 0) 7739 return SDValue(); 7740 7741 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 7742 int64_t Bits = std::min(C0, C1); 7743 int64_t Diff = std::abs(C0 - C1); 7744 if (Diff != 1 && Diff != 2 && Diff != 3) 7745 return SDValue(); 7746 7747 // Build nodes. 7748 SDLoc DL(N); 7749 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 7750 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 7751 SDValue NA0 = 7752 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 7753 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 7754 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 7755 } 7756 7757 // Combine 7758 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32 7759 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32 7760 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64 7761 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64 7762 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64 7763 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64 7764 // The grev patterns represents BSWAP. 7765 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB 7766 // off the grev. 7767 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG, 7768 const RISCVSubtarget &Subtarget) { 7769 bool IsWInstruction = 7770 N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW; 7771 assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL || 7772 IsWInstruction) && 7773 "Unexpected opcode!"); 7774 SDValue Src = N->getOperand(0); 7775 EVT VT = N->getValueType(0); 7776 SDLoc DL(N); 7777 7778 if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV) 7779 return SDValue(); 7780 7781 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7782 !isa<ConstantSDNode>(Src.getOperand(1))) 7783 return SDValue(); 7784 7785 unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits(); 7786 assert(isPowerOf2_32(BitWidth) && "Expected a power of 2"); 7787 7788 // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for 7789 // RORW/ROLW. And the grev should be the encoding for bswap for this width. 7790 unsigned ShAmt1 = N->getConstantOperandVal(1); 7791 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7792 if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8)) 7793 return SDValue(); 7794 7795 Src = Src.getOperand(0); 7796 7797 // Toggle bit the MSB of the shift. 7798 unsigned CombinedShAmt = ShAmt1 ^ ShAmt2; 7799 if (CombinedShAmt == 0) 7800 return Src; 7801 7802 SDValue Res = DAG.getNode( 7803 RISCVISD::GREV, DL, VT, Src, 7804 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7805 if (!IsWInstruction) 7806 return Res; 7807 7808 // Sign extend the result to match the behavior of the rotate. This will be 7809 // selected to GREVIW in isel. 7810 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res, 7811 DAG.getValueType(MVT::i32)); 7812 } 7813 7814 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 7815 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 7816 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 7817 // not undo itself, but they are redundant. 7818 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 7819 bool IsGORC = N->getOpcode() == RISCVISD::GORC; 7820 assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode"); 7821 SDValue Src = N->getOperand(0); 7822 7823 if (Src.getOpcode() != N->getOpcode()) 7824 return SDValue(); 7825 7826 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7827 !isa<ConstantSDNode>(Src.getOperand(1))) 7828 return SDValue(); 7829 7830 unsigned ShAmt1 = N->getConstantOperandVal(1); 7831 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7832 Src = Src.getOperand(0); 7833 7834 unsigned CombinedShAmt; 7835 if (IsGORC) 7836 CombinedShAmt = ShAmt1 | ShAmt2; 7837 else 7838 CombinedShAmt = ShAmt1 ^ ShAmt2; 7839 7840 if (CombinedShAmt == 0) 7841 return Src; 7842 7843 SDLoc DL(N); 7844 return DAG.getNode( 7845 N->getOpcode(), DL, N->getValueType(0), Src, 7846 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7847 } 7848 7849 // Combine a constant select operand into its use: 7850 // 7851 // (and (select cond, -1, c), x) 7852 // -> (select cond, x, (and x, c)) [AllOnes=1] 7853 // (or (select cond, 0, c), x) 7854 // -> (select cond, x, (or x, c)) [AllOnes=0] 7855 // (xor (select cond, 0, c), x) 7856 // -> (select cond, x, (xor x, c)) [AllOnes=0] 7857 // (add (select cond, 0, c), x) 7858 // -> (select cond, x, (add x, c)) [AllOnes=0] 7859 // (sub x, (select cond, 0, c)) 7860 // -> (select cond, x, (sub x, c)) [AllOnes=0] 7861 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 7862 SelectionDAG &DAG, bool AllOnes) { 7863 EVT VT = N->getValueType(0); 7864 7865 // Skip vectors. 7866 if (VT.isVector()) 7867 return SDValue(); 7868 7869 if ((Slct.getOpcode() != ISD::SELECT && 7870 Slct.getOpcode() != RISCVISD::SELECT_CC) || 7871 !Slct.hasOneUse()) 7872 return SDValue(); 7873 7874 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 7875 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 7876 }; 7877 7878 bool SwapSelectOps; 7879 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 7880 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 7881 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 7882 SDValue NonConstantVal; 7883 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 7884 SwapSelectOps = false; 7885 NonConstantVal = FalseVal; 7886 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 7887 SwapSelectOps = true; 7888 NonConstantVal = TrueVal; 7889 } else 7890 return SDValue(); 7891 7892 // Slct is now know to be the desired identity constant when CC is true. 7893 TrueVal = OtherOp; 7894 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 7895 // Unless SwapSelectOps says the condition should be false. 7896 if (SwapSelectOps) 7897 std::swap(TrueVal, FalseVal); 7898 7899 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 7900 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 7901 {Slct.getOperand(0), Slct.getOperand(1), 7902 Slct.getOperand(2), TrueVal, FalseVal}); 7903 7904 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 7905 {Slct.getOperand(0), TrueVal, FalseVal}); 7906 } 7907 7908 // Attempt combineSelectAndUse on each operand of a commutative operator N. 7909 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 7910 bool AllOnes) { 7911 SDValue N0 = N->getOperand(0); 7912 SDValue N1 = N->getOperand(1); 7913 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 7914 return Result; 7915 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 7916 return Result; 7917 return SDValue(); 7918 } 7919 7920 // Transform (add (mul x, c0), c1) -> 7921 // (add (mul (add x, c1/c0), c0), c1%c0). 7922 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 7923 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 7924 // to an infinite loop in DAGCombine if transformed. 7925 // Or transform (add (mul x, c0), c1) -> 7926 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 7927 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 7928 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 7929 // lead to an infinite loop in DAGCombine if transformed. 7930 // Or transform (add (mul x, c0), c1) -> 7931 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 7932 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 7933 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 7934 // lead to an infinite loop in DAGCombine if transformed. 7935 // Or transform (add (mul x, c0), c1) -> 7936 // (mul (add x, c1/c0), c0). 7937 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 7938 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 7939 const RISCVSubtarget &Subtarget) { 7940 // Skip for vector types and larger types. 7941 EVT VT = N->getValueType(0); 7942 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7943 return SDValue(); 7944 // The first operand node must be a MUL and has no other use. 7945 SDValue N0 = N->getOperand(0); 7946 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 7947 return SDValue(); 7948 // Check if c0 and c1 match above conditions. 7949 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7950 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7951 if (!N0C || !N1C) 7952 return SDValue(); 7953 // If N0C has multiple uses it's possible one of the cases in 7954 // DAGCombiner::isMulAddWithConstProfitable will be true, which would result 7955 // in an infinite loop. 7956 if (!N0C->hasOneUse()) 7957 return SDValue(); 7958 int64_t C0 = N0C->getSExtValue(); 7959 int64_t C1 = N1C->getSExtValue(); 7960 int64_t CA, CB; 7961 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 7962 return SDValue(); 7963 // Search for proper CA (non-zero) and CB that both are simm12. 7964 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 7965 !isInt<12>(C0 * (C1 / C0))) { 7966 CA = C1 / C0; 7967 CB = C1 % C0; 7968 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 7969 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 7970 CA = C1 / C0 + 1; 7971 CB = C1 % C0 - C0; 7972 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 7973 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 7974 CA = C1 / C0 - 1; 7975 CB = C1 % C0 + C0; 7976 } else 7977 return SDValue(); 7978 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 7979 SDLoc DL(N); 7980 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 7981 DAG.getConstant(CA, DL, VT)); 7982 SDValue New1 = 7983 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 7984 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 7985 } 7986 7987 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 7988 const RISCVSubtarget &Subtarget) { 7989 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 7990 return V; 7991 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 7992 return V; 7993 if (SDValue V = combineBinOpToReduce(N, DAG)) 7994 return V; 7995 // fold (add (select lhs, rhs, cc, 0, y), x) -> 7996 // (select lhs, rhs, cc, x, (add x, y)) 7997 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7998 } 7999 8000 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 8001 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 8002 // (select lhs, rhs, cc, x, (sub x, y)) 8003 SDValue N0 = N->getOperand(0); 8004 SDValue N1 = N->getOperand(1); 8005 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 8006 } 8007 8008 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG, 8009 const RISCVSubtarget &Subtarget) { 8010 SDValue N0 = N->getOperand(0); 8011 // Pre-promote (i32 (and (srl X, Y), 1)) on RV64 with Zbs without zero 8012 // extending X. This is safe since we only need the LSB after the shift and 8013 // shift amounts larger than 31 would produce poison. If we wait until 8014 // type legalization, we'll create RISCVISD::SRLW and we can't recover it 8015 // to use a BEXT instruction. 8016 if (Subtarget.is64Bit() && Subtarget.hasStdExtZbs() && 8017 N->getValueType(0) == MVT::i32 && isOneConstant(N->getOperand(1)) && 8018 N0.getOpcode() == ISD::SRL && !isa<ConstantSDNode>(N0.getOperand(1)) && 8019 N0.hasOneUse()) { 8020 SDLoc DL(N); 8021 SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0)); 8022 SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1)); 8023 SDValue Srl = DAG.getNode(ISD::SRL, DL, MVT::i64, Op0, Op1); 8024 SDValue And = DAG.getNode(ISD::AND, DL, MVT::i64, Srl, 8025 DAG.getConstant(1, DL, MVT::i64)); 8026 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, And); 8027 } 8028 8029 if (SDValue V = combineBinOpToReduce(N, DAG)) 8030 return V; 8031 8032 // fold (and (select lhs, rhs, cc, -1, y), x) -> 8033 // (select lhs, rhs, cc, x, (and x, y)) 8034 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 8035 } 8036 8037 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 8038 const RISCVSubtarget &Subtarget) { 8039 if (Subtarget.hasStdExtZbp()) { 8040 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 8041 return GREV; 8042 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 8043 return GORC; 8044 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 8045 return SHFL; 8046 } 8047 8048 if (SDValue V = combineBinOpToReduce(N, DAG)) 8049 return V; 8050 // fold (or (select cond, 0, y), x) -> 8051 // (select cond, x, (or x, y)) 8052 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 8053 } 8054 8055 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 8056 SDValue N0 = N->getOperand(0); 8057 SDValue N1 = N->getOperand(1); 8058 8059 // fold (xor (sllw 1, x), -1) -> (rolw ~1, x) 8060 // NOTE: Assumes ROL being legal means ROLW is legal. 8061 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8062 if (N0.getOpcode() == RISCVISD::SLLW && 8063 isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0)) && 8064 TLI.isOperationLegal(ISD::ROTL, MVT::i64)) { 8065 SDLoc DL(N); 8066 return DAG.getNode(RISCVISD::ROLW, DL, MVT::i64, 8067 DAG.getConstant(~1, DL, MVT::i64), N0.getOperand(1)); 8068 } 8069 8070 if (SDValue V = combineBinOpToReduce(N, DAG)) 8071 return V; 8072 // fold (xor (select cond, 0, y), x) -> 8073 // (select cond, x, (xor x, y)) 8074 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 8075 } 8076 8077 static SDValue 8078 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG, 8079 const RISCVSubtarget &Subtarget) { 8080 SDValue Src = N->getOperand(0); 8081 EVT VT = N->getValueType(0); 8082 8083 // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X) 8084 if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH && 8085 cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16)) 8086 return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT, 8087 Src.getOperand(0)); 8088 8089 // Fold (i64 (sext_inreg (abs X), i32)) -> 8090 // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits. 8091 // The (sext_inreg (neg X), i32) will be selected to negw by isel. This 8092 // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user 8093 // of the (i32 (abs X)) is a sext or setcc or something else that causes type 8094 // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have 8095 // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg 8096 // may get combined into an earlier operation so we need to use 8097 // ComputeNumSignBits. 8098 // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for 8099 // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so 8100 // we can't assume that X has 33 sign bits. We must check. 8101 if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() && 8102 Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 && 8103 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 && 8104 DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) { 8105 SDLoc DL(N); 8106 SDValue Freeze = DAG.getFreeze(Src.getOperand(0)); 8107 SDValue Neg = 8108 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze); 8109 Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg, 8110 DAG.getValueType(MVT::i32)); 8111 return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg); 8112 } 8113 8114 return SDValue(); 8115 } 8116 8117 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to 8118 // vwadd(u).vv/vx or vwsub(u).vv/vx. 8119 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG, 8120 bool Commute = false) { 8121 assert((N->getOpcode() == RISCVISD::ADD_VL || 8122 N->getOpcode() == RISCVISD::SUB_VL) && 8123 "Unexpected opcode"); 8124 bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL; 8125 SDValue Op0 = N->getOperand(0); 8126 SDValue Op1 = N->getOperand(1); 8127 if (Commute) 8128 std::swap(Op0, Op1); 8129 8130 MVT VT = N->getSimpleValueType(0); 8131 8132 // Determine the narrow size for a widening add/sub. 8133 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 8134 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 8135 VT.getVectorElementCount()); 8136 8137 SDValue Mask = N->getOperand(2); 8138 SDValue VL = N->getOperand(3); 8139 8140 SDLoc DL(N); 8141 8142 // If the RHS is a sext or zext, we can form a widening op. 8143 if ((Op1.getOpcode() == RISCVISD::VZEXT_VL || 8144 Op1.getOpcode() == RISCVISD::VSEXT_VL) && 8145 Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) { 8146 unsigned ExtOpc = Op1.getOpcode(); 8147 Op1 = Op1.getOperand(0); 8148 // Re-introduce narrower extends if needed. 8149 if (Op1.getValueType() != NarrowVT) 8150 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 8151 8152 unsigned WOpc; 8153 if (ExtOpc == RISCVISD::VSEXT_VL) 8154 WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL; 8155 else 8156 WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL; 8157 8158 return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL); 8159 } 8160 8161 // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar 8162 // sext/zext? 8163 8164 return SDValue(); 8165 } 8166 8167 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or 8168 // vwsub(u).vv/vx. 8169 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) { 8170 SDValue Op0 = N->getOperand(0); 8171 SDValue Op1 = N->getOperand(1); 8172 SDValue Mask = N->getOperand(2); 8173 SDValue VL = N->getOperand(3); 8174 8175 MVT VT = N->getSimpleValueType(0); 8176 MVT NarrowVT = Op1.getSimpleValueType(); 8177 unsigned NarrowSize = NarrowVT.getScalarSizeInBits(); 8178 8179 unsigned VOpc; 8180 switch (N->getOpcode()) { 8181 default: llvm_unreachable("Unexpected opcode"); 8182 case RISCVISD::VWADD_W_VL: VOpc = RISCVISD::VWADD_VL; break; 8183 case RISCVISD::VWSUB_W_VL: VOpc = RISCVISD::VWSUB_VL; break; 8184 case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break; 8185 case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break; 8186 } 8187 8188 bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL || 8189 N->getOpcode() == RISCVISD::VWSUB_W_VL; 8190 8191 SDLoc DL(N); 8192 8193 // If the LHS is a sext or zext, we can narrow this op to the same size as 8194 // the RHS. 8195 if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) || 8196 (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) && 8197 Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) { 8198 unsigned ExtOpc = Op0.getOpcode(); 8199 Op0 = Op0.getOperand(0); 8200 // Re-introduce narrower extends if needed. 8201 if (Op0.getValueType() != NarrowVT) 8202 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 8203 return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL); 8204 } 8205 8206 bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL || 8207 N->getOpcode() == RISCVISD::VWADDU_W_VL; 8208 8209 // Look for splats on the left hand side of a vwadd(u).wv. We might be able 8210 // to commute and use a vwadd(u).vx instead. 8211 if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL && 8212 Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) { 8213 Op0 = Op0.getOperand(1); 8214 8215 // See if have enough sign bits or zero bits in the scalar to use a 8216 // widening add/sub by splatting to smaller element size. 8217 unsigned EltBits = VT.getScalarSizeInBits(); 8218 unsigned ScalarBits = Op0.getValueSizeInBits(); 8219 // Make sure we're getting all element bits from the scalar register. 8220 // FIXME: Support implicit sign extension of vmv.v.x? 8221 if (ScalarBits < EltBits) 8222 return SDValue(); 8223 8224 if (IsSigned) { 8225 if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize)) 8226 return SDValue(); 8227 } else { 8228 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 8229 if (!DAG.MaskedValueIsZero(Op0, Mask)) 8230 return SDValue(); 8231 } 8232 8233 Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, 8234 DAG.getUNDEF(NarrowVT), Op0, VL); 8235 return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL); 8236 } 8237 8238 return SDValue(); 8239 } 8240 8241 // Try to form VWMUL, VWMULU or VWMULSU. 8242 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op. 8243 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG, 8244 bool Commute) { 8245 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 8246 SDValue Op0 = N->getOperand(0); 8247 SDValue Op1 = N->getOperand(1); 8248 if (Commute) 8249 std::swap(Op0, Op1); 8250 8251 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 8252 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 8253 bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL; 8254 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 8255 return SDValue(); 8256 8257 SDValue Mask = N->getOperand(2); 8258 SDValue VL = N->getOperand(3); 8259 8260 // Make sure the mask and VL match. 8261 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 8262 return SDValue(); 8263 8264 MVT VT = N->getSimpleValueType(0); 8265 8266 // Determine the narrow size for a widening multiply. 8267 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 8268 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 8269 VT.getVectorElementCount()); 8270 8271 SDLoc DL(N); 8272 8273 // See if the other operand is the same opcode. 8274 if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) { 8275 if (!Op1.hasOneUse()) 8276 return SDValue(); 8277 8278 // Make sure the mask and VL match. 8279 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 8280 return SDValue(); 8281 8282 Op1 = Op1.getOperand(0); 8283 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 8284 // The operand is a splat of a scalar. 8285 8286 // The pasthru must be undef for tail agnostic 8287 if (!Op1.getOperand(0).isUndef()) 8288 return SDValue(); 8289 // The VL must be the same. 8290 if (Op1.getOperand(2) != VL) 8291 return SDValue(); 8292 8293 // Get the scalar value. 8294 Op1 = Op1.getOperand(1); 8295 8296 // See if have enough sign bits or zero bits in the scalar to use a 8297 // widening multiply by splatting to smaller element size. 8298 unsigned EltBits = VT.getScalarSizeInBits(); 8299 unsigned ScalarBits = Op1.getValueSizeInBits(); 8300 // Make sure we're getting all element bits from the scalar register. 8301 // FIXME: Support implicit sign extension of vmv.v.x? 8302 if (ScalarBits < EltBits) 8303 return SDValue(); 8304 8305 // If the LHS is a sign extend, try to use vwmul. 8306 if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) { 8307 // Can use vwmul. 8308 } else { 8309 // Otherwise try to use vwmulu or vwmulsu. 8310 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 8311 if (DAG.MaskedValueIsZero(Op1, Mask)) 8312 IsVWMULSU = IsSignExt; 8313 else 8314 return SDValue(); 8315 } 8316 8317 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, 8318 DAG.getUNDEF(NarrowVT), Op1, VL); 8319 } else 8320 return SDValue(); 8321 8322 Op0 = Op0.getOperand(0); 8323 8324 // Re-introduce narrower extends if needed. 8325 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 8326 if (Op0.getValueType() != NarrowVT) 8327 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 8328 // vwmulsu requires second operand to be zero extended. 8329 ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc; 8330 if (Op1.getValueType() != NarrowVT) 8331 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 8332 8333 unsigned WMulOpc = RISCVISD::VWMULSU_VL; 8334 if (!IsVWMULSU) 8335 WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 8336 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 8337 } 8338 8339 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) { 8340 switch (Op.getOpcode()) { 8341 case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE; 8342 case ISD::FTRUNC: return RISCVFPRndMode::RTZ; 8343 case ISD::FFLOOR: return RISCVFPRndMode::RDN; 8344 case ISD::FCEIL: return RISCVFPRndMode::RUP; 8345 case ISD::FROUND: return RISCVFPRndMode::RMM; 8346 } 8347 8348 return RISCVFPRndMode::Invalid; 8349 } 8350 8351 // Fold 8352 // (fp_to_int (froundeven X)) -> fcvt X, rne 8353 // (fp_to_int (ftrunc X)) -> fcvt X, rtz 8354 // (fp_to_int (ffloor X)) -> fcvt X, rdn 8355 // (fp_to_int (fceil X)) -> fcvt X, rup 8356 // (fp_to_int (fround X)) -> fcvt X, rmm 8357 static SDValue performFP_TO_INTCombine(SDNode *N, 8358 TargetLowering::DAGCombinerInfo &DCI, 8359 const RISCVSubtarget &Subtarget) { 8360 SelectionDAG &DAG = DCI.DAG; 8361 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8362 MVT XLenVT = Subtarget.getXLenVT(); 8363 8364 // Only handle XLen or i32 types. Other types narrower than XLen will 8365 // eventually be legalized to XLenVT. 8366 EVT VT = N->getValueType(0); 8367 if (VT != MVT::i32 && VT != XLenVT) 8368 return SDValue(); 8369 8370 SDValue Src = N->getOperand(0); 8371 8372 // Ensure the FP type is also legal. 8373 if (!TLI.isTypeLegal(Src.getValueType())) 8374 return SDValue(); 8375 8376 // Don't do this for f16 with Zfhmin and not Zfh. 8377 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 8378 return SDValue(); 8379 8380 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 8381 if (FRM == RISCVFPRndMode::Invalid) 8382 return SDValue(); 8383 8384 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; 8385 8386 unsigned Opc; 8387 if (VT == XLenVT) 8388 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 8389 else 8390 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 8391 8392 SDLoc DL(N); 8393 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0), 8394 DAG.getTargetConstant(FRM, DL, XLenVT)); 8395 return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt); 8396 } 8397 8398 // Fold 8399 // (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne)) 8400 // (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz)) 8401 // (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn)) 8402 // (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup)) 8403 // (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm)) 8404 static SDValue performFP_TO_INT_SATCombine(SDNode *N, 8405 TargetLowering::DAGCombinerInfo &DCI, 8406 const RISCVSubtarget &Subtarget) { 8407 SelectionDAG &DAG = DCI.DAG; 8408 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8409 MVT XLenVT = Subtarget.getXLenVT(); 8410 8411 // Only handle XLen types. Other types narrower than XLen will eventually be 8412 // legalized to XLenVT. 8413 EVT DstVT = N->getValueType(0); 8414 if (DstVT != XLenVT) 8415 return SDValue(); 8416 8417 SDValue Src = N->getOperand(0); 8418 8419 // Ensure the FP type is also legal. 8420 if (!TLI.isTypeLegal(Src.getValueType())) 8421 return SDValue(); 8422 8423 // Don't do this for f16 with Zfhmin and not Zfh. 8424 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 8425 return SDValue(); 8426 8427 EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 8428 8429 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 8430 if (FRM == RISCVFPRndMode::Invalid) 8431 return SDValue(); 8432 8433 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT; 8434 8435 unsigned Opc; 8436 if (SatVT == DstVT) 8437 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 8438 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 8439 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 8440 else 8441 return SDValue(); 8442 // FIXME: Support other SatVTs by clamping before or after the conversion. 8443 8444 Src = Src.getOperand(0); 8445 8446 SDLoc DL(N); 8447 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src, 8448 DAG.getTargetConstant(FRM, DL, XLenVT)); 8449 8450 // RISCV FP-to-int conversions saturate to the destination register size, but 8451 // don't produce 0 for nan. 8452 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 8453 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 8454 } 8455 8456 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is 8457 // smaller than XLenVT. 8458 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG, 8459 const RISCVSubtarget &Subtarget) { 8460 assert(Subtarget.hasStdExtZbkb() && "Unexpected extension"); 8461 8462 SDValue Src = N->getOperand(0); 8463 if (Src.getOpcode() != ISD::BSWAP) 8464 return SDValue(); 8465 8466 EVT VT = N->getValueType(0); 8467 if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() || 8468 !isPowerOf2_32(VT.getSizeInBits())) 8469 return SDValue(); 8470 8471 SDLoc DL(N); 8472 return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0), 8473 DAG.getConstant(7, DL, VT)); 8474 } 8475 8476 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 8477 DAGCombinerInfo &DCI) const { 8478 SelectionDAG &DAG = DCI.DAG; 8479 8480 // Helper to call SimplifyDemandedBits on an operand of N where only some low 8481 // bits are demanded. N will be added to the Worklist if it was not deleted. 8482 // Caller should return SDValue(N, 0) if this returns true. 8483 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 8484 SDValue Op = N->getOperand(OpNo); 8485 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 8486 if (!SimplifyDemandedBits(Op, Mask, DCI)) 8487 return false; 8488 8489 if (N->getOpcode() != ISD::DELETED_NODE) 8490 DCI.AddToWorklist(N); 8491 return true; 8492 }; 8493 8494 switch (N->getOpcode()) { 8495 default: 8496 break; 8497 case RISCVISD::SplitF64: { 8498 SDValue Op0 = N->getOperand(0); 8499 // If the input to SplitF64 is just BuildPairF64 then the operation is 8500 // redundant. Instead, use BuildPairF64's operands directly. 8501 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 8502 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 8503 8504 if (Op0->isUndef()) { 8505 SDValue Lo = DAG.getUNDEF(MVT::i32); 8506 SDValue Hi = DAG.getUNDEF(MVT::i32); 8507 return DCI.CombineTo(N, Lo, Hi); 8508 } 8509 8510 SDLoc DL(N); 8511 8512 // It's cheaper to materialise two 32-bit integers than to load a double 8513 // from the constant pool and transfer it to integer registers through the 8514 // stack. 8515 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 8516 APInt V = C->getValueAPF().bitcastToAPInt(); 8517 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 8518 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 8519 return DCI.CombineTo(N, Lo, Hi); 8520 } 8521 8522 // This is a target-specific version of a DAGCombine performed in 8523 // DAGCombiner::visitBITCAST. It performs the equivalent of: 8524 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 8525 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 8526 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 8527 !Op0.getNode()->hasOneUse()) 8528 break; 8529 SDValue NewSplitF64 = 8530 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 8531 Op0.getOperand(0)); 8532 SDValue Lo = NewSplitF64.getValue(0); 8533 SDValue Hi = NewSplitF64.getValue(1); 8534 APInt SignBit = APInt::getSignMask(32); 8535 if (Op0.getOpcode() == ISD::FNEG) { 8536 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 8537 DAG.getConstant(SignBit, DL, MVT::i32)); 8538 return DCI.CombineTo(N, Lo, NewHi); 8539 } 8540 assert(Op0.getOpcode() == ISD::FABS); 8541 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 8542 DAG.getConstant(~SignBit, DL, MVT::i32)); 8543 return DCI.CombineTo(N, Lo, NewHi); 8544 } 8545 case RISCVISD::SLLW: 8546 case RISCVISD::SRAW: 8547 case RISCVISD::SRLW: { 8548 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8549 if (SimplifyDemandedLowBitsHelper(0, 32) || 8550 SimplifyDemandedLowBitsHelper(1, 5)) 8551 return SDValue(N, 0); 8552 8553 break; 8554 } 8555 case ISD::ROTR: 8556 case ISD::ROTL: 8557 case RISCVISD::RORW: 8558 case RISCVISD::ROLW: { 8559 if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) { 8560 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8561 if (SimplifyDemandedLowBitsHelper(0, 32) || 8562 SimplifyDemandedLowBitsHelper(1, 5)) 8563 return SDValue(N, 0); 8564 } 8565 8566 return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget); 8567 } 8568 case RISCVISD::CLZW: 8569 case RISCVISD::CTZW: { 8570 // Only the lower 32 bits of the first operand are read 8571 if (SimplifyDemandedLowBitsHelper(0, 32)) 8572 return SDValue(N, 0); 8573 break; 8574 } 8575 case RISCVISD::GREV: 8576 case RISCVISD::GORC: { 8577 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 8578 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 8579 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8580 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 8581 return SDValue(N, 0); 8582 8583 return combineGREVI_GORCI(N, DAG); 8584 } 8585 case RISCVISD::GREVW: 8586 case RISCVISD::GORCW: { 8587 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8588 if (SimplifyDemandedLowBitsHelper(0, 32) || 8589 SimplifyDemandedLowBitsHelper(1, 5)) 8590 return SDValue(N, 0); 8591 8592 break; 8593 } 8594 case RISCVISD::SHFL: 8595 case RISCVISD::UNSHFL: { 8596 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 8597 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 8598 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8599 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 8600 return SDValue(N, 0); 8601 8602 break; 8603 } 8604 case RISCVISD::SHFLW: 8605 case RISCVISD::UNSHFLW: { 8606 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 8607 if (SimplifyDemandedLowBitsHelper(0, 32) || 8608 SimplifyDemandedLowBitsHelper(1, 4)) 8609 return SDValue(N, 0); 8610 8611 break; 8612 } 8613 case RISCVISD::BCOMPRESSW: 8614 case RISCVISD::BDECOMPRESSW: { 8615 // Only the lower 32 bits of LHS and RHS are read. 8616 if (SimplifyDemandedLowBitsHelper(0, 32) || 8617 SimplifyDemandedLowBitsHelper(1, 32)) 8618 return SDValue(N, 0); 8619 8620 break; 8621 } 8622 case RISCVISD::FSR: 8623 case RISCVISD::FSL: 8624 case RISCVISD::FSRW: 8625 case RISCVISD::FSLW: { 8626 bool IsWInstruction = 8627 N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW; 8628 unsigned BitWidth = 8629 IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits(); 8630 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8631 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 8632 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1)) 8633 return SDValue(N, 0); 8634 8635 break; 8636 } 8637 case RISCVISD::FMV_X_ANYEXTH: 8638 case RISCVISD::FMV_X_ANYEXTW_RV64: { 8639 SDLoc DL(N); 8640 SDValue Op0 = N->getOperand(0); 8641 MVT VT = N->getSimpleValueType(0); 8642 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 8643 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 8644 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 8645 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 8646 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 8647 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 8648 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 8649 assert(Op0.getOperand(0).getValueType() == VT && 8650 "Unexpected value type!"); 8651 return Op0.getOperand(0); 8652 } 8653 8654 // This is a target-specific version of a DAGCombine performed in 8655 // DAGCombiner::visitBITCAST. It performs the equivalent of: 8656 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 8657 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 8658 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 8659 !Op0.getNode()->hasOneUse()) 8660 break; 8661 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 8662 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 8663 APInt SignBit = APInt::getSignMask(FPBits).sext(VT.getSizeInBits()); 8664 if (Op0.getOpcode() == ISD::FNEG) 8665 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 8666 DAG.getConstant(SignBit, DL, VT)); 8667 8668 assert(Op0.getOpcode() == ISD::FABS); 8669 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 8670 DAG.getConstant(~SignBit, DL, VT)); 8671 } 8672 case ISD::ADD: 8673 return performADDCombine(N, DAG, Subtarget); 8674 case ISD::SUB: 8675 return performSUBCombine(N, DAG); 8676 case ISD::AND: 8677 return performANDCombine(N, DAG, Subtarget); 8678 case ISD::OR: 8679 return performORCombine(N, DAG, Subtarget); 8680 case ISD::XOR: 8681 return performXORCombine(N, DAG); 8682 case ISD::FADD: 8683 case ISD::UMAX: 8684 case ISD::UMIN: 8685 case ISD::SMAX: 8686 case ISD::SMIN: 8687 case ISD::FMAXNUM: 8688 case ISD::FMINNUM: 8689 return combineBinOpToReduce(N, DAG); 8690 case ISD::SIGN_EXTEND_INREG: 8691 return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget); 8692 case ISD::ZERO_EXTEND: 8693 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 8694 // type legalization. This is safe because fp_to_uint produces poison if 8695 // it overflows. 8696 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { 8697 SDValue Src = N->getOperand(0); 8698 if (Src.getOpcode() == ISD::FP_TO_UINT && 8699 isTypeLegal(Src.getOperand(0).getValueType())) 8700 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 8701 Src.getOperand(0)); 8702 if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && 8703 isTypeLegal(Src.getOperand(1).getValueType())) { 8704 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 8705 SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, 8706 Src.getOperand(0), Src.getOperand(1)); 8707 DCI.CombineTo(N, Res); 8708 DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); 8709 DCI.recursivelyDeleteUnusedNodes(Src.getNode()); 8710 return SDValue(N, 0); // Return N so it doesn't get rechecked. 8711 } 8712 } 8713 return SDValue(); 8714 case RISCVISD::SELECT_CC: { 8715 // Transform 8716 SDValue LHS = N->getOperand(0); 8717 SDValue RHS = N->getOperand(1); 8718 SDValue TrueV = N->getOperand(3); 8719 SDValue FalseV = N->getOperand(4); 8720 8721 // If the True and False values are the same, we don't need a select_cc. 8722 if (TrueV == FalseV) 8723 return TrueV; 8724 8725 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 8726 if (!ISD::isIntEqualitySetCC(CCVal)) 8727 break; 8728 8729 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 8730 // (select_cc X, Y, lt, trueV, falseV) 8731 // Sometimes the setcc is introduced after select_cc has been formed. 8732 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 8733 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 8734 // If we're looking for eq 0 instead of ne 0, we need to invert the 8735 // condition. 8736 bool Invert = CCVal == ISD::SETEQ; 8737 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8738 if (Invert) 8739 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8740 8741 SDLoc DL(N); 8742 RHS = LHS.getOperand(1); 8743 LHS = LHS.getOperand(0); 8744 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 8745 8746 SDValue TargetCC = DAG.getCondCode(CCVal); 8747 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 8748 {LHS, RHS, TargetCC, TrueV, FalseV}); 8749 } 8750 8751 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 8752 // (select_cc X, Y, eq/ne, trueV, falseV) 8753 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 8754 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 8755 {LHS.getOperand(0), LHS.getOperand(1), 8756 N->getOperand(2), TrueV, FalseV}); 8757 // (select_cc X, 1, setne, trueV, falseV) -> 8758 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 8759 // This can occur when legalizing some floating point comparisons. 8760 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 8761 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 8762 SDLoc DL(N); 8763 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8764 SDValue TargetCC = DAG.getCondCode(CCVal); 8765 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 8766 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 8767 {LHS, RHS, TargetCC, TrueV, FalseV}); 8768 } 8769 8770 break; 8771 } 8772 case RISCVISD::BR_CC: { 8773 SDValue LHS = N->getOperand(1); 8774 SDValue RHS = N->getOperand(2); 8775 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 8776 if (!ISD::isIntEqualitySetCC(CCVal)) 8777 break; 8778 8779 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 8780 // (br_cc X, Y, lt, dest) 8781 // Sometimes the setcc is introduced after br_cc has been formed. 8782 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 8783 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 8784 // If we're looking for eq 0 instead of ne 0, we need to invert the 8785 // condition. 8786 bool Invert = CCVal == ISD::SETEQ; 8787 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8788 if (Invert) 8789 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8790 8791 SDLoc DL(N); 8792 RHS = LHS.getOperand(1); 8793 LHS = LHS.getOperand(0); 8794 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 8795 8796 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 8797 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 8798 N->getOperand(4)); 8799 } 8800 8801 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 8802 // (br_cc X, Y, eq/ne, trueV, falseV) 8803 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 8804 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 8805 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 8806 N->getOperand(3), N->getOperand(4)); 8807 8808 // (br_cc X, 1, setne, br_cc) -> 8809 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 8810 // This can occur when legalizing some floating point comparisons. 8811 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 8812 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 8813 SDLoc DL(N); 8814 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8815 SDValue TargetCC = DAG.getCondCode(CCVal); 8816 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 8817 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 8818 N->getOperand(0), LHS, RHS, TargetCC, 8819 N->getOperand(4)); 8820 } 8821 break; 8822 } 8823 case ISD::BITREVERSE: 8824 return performBITREVERSECombine(N, DAG, Subtarget); 8825 case ISD::FP_TO_SINT: 8826 case ISD::FP_TO_UINT: 8827 return performFP_TO_INTCombine(N, DCI, Subtarget); 8828 case ISD::FP_TO_SINT_SAT: 8829 case ISD::FP_TO_UINT_SAT: 8830 return performFP_TO_INT_SATCombine(N, DCI, Subtarget); 8831 case ISD::FCOPYSIGN: { 8832 EVT VT = N->getValueType(0); 8833 if (!VT.isVector()) 8834 break; 8835 // There is a form of VFSGNJ which injects the negated sign of its second 8836 // operand. Try and bubble any FNEG up after the extend/round to produce 8837 // this optimized pattern. Avoid modifying cases where FP_ROUND and 8838 // TRUNC=1. 8839 SDValue In2 = N->getOperand(1); 8840 // Avoid cases where the extend/round has multiple uses, as duplicating 8841 // those is typically more expensive than removing a fneg. 8842 if (!In2.hasOneUse()) 8843 break; 8844 if (In2.getOpcode() != ISD::FP_EXTEND && 8845 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 8846 break; 8847 In2 = In2.getOperand(0); 8848 if (In2.getOpcode() != ISD::FNEG) 8849 break; 8850 SDLoc DL(N); 8851 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 8852 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 8853 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 8854 } 8855 case ISD::MGATHER: 8856 case ISD::MSCATTER: 8857 case ISD::VP_GATHER: 8858 case ISD::VP_SCATTER: { 8859 if (!DCI.isBeforeLegalize()) 8860 break; 8861 SDValue Index, ScaleOp; 8862 bool IsIndexScaled = false; 8863 bool IsIndexSigned = false; 8864 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 8865 Index = VPGSN->getIndex(); 8866 ScaleOp = VPGSN->getScale(); 8867 IsIndexScaled = VPGSN->isIndexScaled(); 8868 IsIndexSigned = VPGSN->isIndexSigned(); 8869 } else { 8870 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 8871 Index = MGSN->getIndex(); 8872 ScaleOp = MGSN->getScale(); 8873 IsIndexScaled = MGSN->isIndexScaled(); 8874 IsIndexSigned = MGSN->isIndexSigned(); 8875 } 8876 EVT IndexVT = Index.getValueType(); 8877 MVT XLenVT = Subtarget.getXLenVT(); 8878 // RISCV indexed loads only support the "unsigned unscaled" addressing 8879 // mode, so anything else must be manually legalized. 8880 bool NeedsIdxLegalization = 8881 IsIndexScaled || 8882 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 8883 if (!NeedsIdxLegalization) 8884 break; 8885 8886 SDLoc DL(N); 8887 8888 // Any index legalization should first promote to XLenVT, so we don't lose 8889 // bits when scaling. This may create an illegal index type so we let 8890 // LLVM's legalization take care of the splitting. 8891 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 8892 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 8893 IndexVT = IndexVT.changeVectorElementType(XLenVT); 8894 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 8895 DL, IndexVT, Index); 8896 } 8897 8898 if (IsIndexScaled) { 8899 // Manually scale the indices. 8900 // TODO: Sanitize the scale operand here? 8901 // TODO: For VP nodes, should we use VP_SHL here? 8902 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 8903 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 8904 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 8905 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 8906 ScaleOp = DAG.getTargetConstant(1, DL, ScaleOp.getValueType()); 8907 } 8908 8909 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_SCALED; 8910 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 8911 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 8912 {VPGN->getChain(), VPGN->getBasePtr(), Index, 8913 ScaleOp, VPGN->getMask(), 8914 VPGN->getVectorLength()}, 8915 VPGN->getMemOperand(), NewIndexTy); 8916 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 8917 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 8918 {VPSN->getChain(), VPSN->getValue(), 8919 VPSN->getBasePtr(), Index, ScaleOp, 8920 VPSN->getMask(), VPSN->getVectorLength()}, 8921 VPSN->getMemOperand(), NewIndexTy); 8922 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 8923 return DAG.getMaskedGather( 8924 N->getVTList(), MGN->getMemoryVT(), DL, 8925 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 8926 MGN->getBasePtr(), Index, ScaleOp}, 8927 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 8928 const auto *MSN = cast<MaskedScatterSDNode>(N); 8929 return DAG.getMaskedScatter( 8930 N->getVTList(), MSN->getMemoryVT(), DL, 8931 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 8932 Index, ScaleOp}, 8933 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 8934 } 8935 case RISCVISD::SRA_VL: 8936 case RISCVISD::SRL_VL: 8937 case RISCVISD::SHL_VL: { 8938 SDValue ShAmt = N->getOperand(1); 8939 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8940 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8941 SDLoc DL(N); 8942 SDValue VL = N->getOperand(3); 8943 EVT VT = N->getValueType(0); 8944 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 8945 ShAmt.getOperand(1), VL); 8946 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 8947 N->getOperand(2), N->getOperand(3)); 8948 } 8949 break; 8950 } 8951 case ISD::SRA: 8952 case ISD::SRL: 8953 case ISD::SHL: { 8954 SDValue ShAmt = N->getOperand(1); 8955 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8956 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8957 SDLoc DL(N); 8958 EVT VT = N->getValueType(0); 8959 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 8960 ShAmt.getOperand(1), 8961 DAG.getRegister(RISCV::X0, Subtarget.getXLenVT())); 8962 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 8963 } 8964 break; 8965 } 8966 case RISCVISD::ADD_VL: 8967 if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false)) 8968 return V; 8969 return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true); 8970 case RISCVISD::SUB_VL: 8971 return combineADDSUB_VLToVWADDSUB_VL(N, DAG); 8972 case RISCVISD::VWADD_W_VL: 8973 case RISCVISD::VWADDU_W_VL: 8974 case RISCVISD::VWSUB_W_VL: 8975 case RISCVISD::VWSUBU_W_VL: 8976 return combineVWADD_W_VL_VWSUB_W_VL(N, DAG); 8977 case RISCVISD::MUL_VL: 8978 if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false)) 8979 return V; 8980 // Mul is commutative. 8981 return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true); 8982 case ISD::STORE: { 8983 auto *Store = cast<StoreSDNode>(N); 8984 SDValue Val = Store->getValue(); 8985 // Combine store of vmv.x.s to vse with VL of 1. 8986 // FIXME: Support FP. 8987 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 8988 SDValue Src = Val.getOperand(0); 8989 EVT VecVT = Src.getValueType(); 8990 EVT MemVT = Store->getMemoryVT(); 8991 // The memory VT and the element type must match. 8992 if (VecVT.getVectorElementType() == MemVT) { 8993 SDLoc DL(N); 8994 MVT MaskVT = getMaskTypeFor(VecVT); 8995 return DAG.getStoreVP( 8996 Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(), 8997 DAG.getConstant(1, DL, MaskVT), 8998 DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT, 8999 Store->getMemOperand(), Store->getAddressingMode(), 9000 Store->isTruncatingStore(), /*IsCompress*/ false); 9001 } 9002 } 9003 9004 break; 9005 } 9006 case ISD::SPLAT_VECTOR: { 9007 EVT VT = N->getValueType(0); 9008 // Only perform this combine on legal MVT types. 9009 if (!isTypeLegal(VT)) 9010 break; 9011 if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N, 9012 DAG, Subtarget)) 9013 return Gather; 9014 break; 9015 } 9016 case RISCVISD::VMV_V_X_VL: { 9017 // Tail agnostic VMV.V.X only demands the vector element bitwidth from the 9018 // scalar input. 9019 unsigned ScalarSize = N->getOperand(1).getValueSizeInBits(); 9020 unsigned EltWidth = N->getValueType(0).getScalarSizeInBits(); 9021 if (ScalarSize > EltWidth && N->getOperand(0).isUndef()) 9022 if (SimplifyDemandedLowBitsHelper(1, EltWidth)) 9023 return SDValue(N, 0); 9024 9025 break; 9026 } 9027 case ISD::INTRINSIC_WO_CHAIN: { 9028 unsigned IntNo = N->getConstantOperandVal(0); 9029 switch (IntNo) { 9030 // By default we do not combine any intrinsic. 9031 default: 9032 return SDValue(); 9033 case Intrinsic::riscv_vcpop: 9034 case Intrinsic::riscv_vcpop_mask: 9035 case Intrinsic::riscv_vfirst: 9036 case Intrinsic::riscv_vfirst_mask: { 9037 SDValue VL = N->getOperand(2); 9038 if (IntNo == Intrinsic::riscv_vcpop_mask || 9039 IntNo == Intrinsic::riscv_vfirst_mask) 9040 VL = N->getOperand(3); 9041 if (!isNullConstant(VL)) 9042 return SDValue(); 9043 // If VL is 0, vcpop -> li 0, vfirst -> li -1. 9044 SDLoc DL(N); 9045 EVT VT = N->getValueType(0); 9046 if (IntNo == Intrinsic::riscv_vfirst || 9047 IntNo == Intrinsic::riscv_vfirst_mask) 9048 return DAG.getConstant(-1, DL, VT); 9049 return DAG.getConstant(0, DL, VT); 9050 } 9051 } 9052 } 9053 case ISD::BITCAST: { 9054 assert(Subtarget.useRVVForFixedLengthVectors()); 9055 SDValue N0 = N->getOperand(0); 9056 EVT VT = N->getValueType(0); 9057 EVT SrcVT = N0.getValueType(); 9058 // If this is a bitcast between a MVT::v4i1/v2i1/v1i1 and an illegal integer 9059 // type, widen both sides to avoid a trip through memory. 9060 if ((SrcVT == MVT::v1i1 || SrcVT == MVT::v2i1 || SrcVT == MVT::v4i1) && 9061 VT.isScalarInteger()) { 9062 unsigned NumConcats = 8 / SrcVT.getVectorNumElements(); 9063 SmallVector<SDValue, 4> Ops(NumConcats, DAG.getUNDEF(SrcVT)); 9064 Ops[0] = N0; 9065 SDLoc DL(N); 9066 N0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i1, Ops); 9067 N0 = DAG.getBitcast(MVT::i8, N0); 9068 return DAG.getNode(ISD::TRUNCATE, DL, VT, N0); 9069 } 9070 9071 return SDValue(); 9072 } 9073 } 9074 9075 return SDValue(); 9076 } 9077 9078 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 9079 const SDNode *N, CombineLevel Level) const { 9080 // The following folds are only desirable if `(OP _, c1 << c2)` can be 9081 // materialised in fewer instructions than `(OP _, c1)`: 9082 // 9083 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 9084 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 9085 SDValue N0 = N->getOperand(0); 9086 EVT Ty = N0.getValueType(); 9087 if (Ty.isScalarInteger() && 9088 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 9089 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 9090 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9091 if (C1 && C2) { 9092 const APInt &C1Int = C1->getAPIntValue(); 9093 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 9094 9095 // We can materialise `c1 << c2` into an add immediate, so it's "free", 9096 // and the combine should happen, to potentially allow further combines 9097 // later. 9098 if (ShiftedC1Int.getMinSignedBits() <= 64 && 9099 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 9100 return true; 9101 9102 // We can materialise `c1` in an add immediate, so it's "free", and the 9103 // combine should be prevented. 9104 if (C1Int.getMinSignedBits() <= 64 && 9105 isLegalAddImmediate(C1Int.getSExtValue())) 9106 return false; 9107 9108 // Neither constant will fit into an immediate, so find materialisation 9109 // costs. 9110 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 9111 Subtarget.getFeatureBits(), 9112 /*CompressionCost*/true); 9113 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 9114 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 9115 /*CompressionCost*/true); 9116 9117 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 9118 // combine should be prevented. 9119 if (C1Cost < ShiftedC1Cost) 9120 return false; 9121 } 9122 } 9123 return true; 9124 } 9125 9126 bool RISCVTargetLowering::targetShrinkDemandedConstant( 9127 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 9128 TargetLoweringOpt &TLO) const { 9129 // Delay this optimization as late as possible. 9130 if (!TLO.LegalOps) 9131 return false; 9132 9133 EVT VT = Op.getValueType(); 9134 if (VT.isVector()) 9135 return false; 9136 9137 // Only handle AND for now. 9138 if (Op.getOpcode() != ISD::AND) 9139 return false; 9140 9141 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 9142 if (!C) 9143 return false; 9144 9145 const APInt &Mask = C->getAPIntValue(); 9146 9147 // Clear all non-demanded bits initially. 9148 APInt ShrunkMask = Mask & DemandedBits; 9149 9150 // Try to make a smaller immediate by setting undemanded bits. 9151 9152 APInt ExpandedMask = Mask | ~DemandedBits; 9153 9154 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 9155 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 9156 }; 9157 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 9158 if (NewMask == Mask) 9159 return true; 9160 SDLoc DL(Op); 9161 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 9162 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 9163 return TLO.CombineTo(Op, NewOp); 9164 }; 9165 9166 // If the shrunk mask fits in sign extended 12 bits, let the target 9167 // independent code apply it. 9168 if (ShrunkMask.isSignedIntN(12)) 9169 return false; 9170 9171 // Preserve (and X, 0xffff) when zext.h is supported. 9172 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 9173 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 9174 if (IsLegalMask(NewMask)) 9175 return UseMask(NewMask); 9176 } 9177 9178 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 9179 if (VT == MVT::i64) { 9180 APInt NewMask = APInt(64, 0xffffffff); 9181 if (IsLegalMask(NewMask)) 9182 return UseMask(NewMask); 9183 } 9184 9185 // For the remaining optimizations, we need to be able to make a negative 9186 // number through a combination of mask and undemanded bits. 9187 if (!ExpandedMask.isNegative()) 9188 return false; 9189 9190 // What is the fewest number of bits we need to represent the negative number. 9191 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 9192 9193 // Try to make a 12 bit negative immediate. If that fails try to make a 32 9194 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 9195 APInt NewMask = ShrunkMask; 9196 if (MinSignedBits <= 12) 9197 NewMask.setBitsFrom(11); 9198 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 9199 NewMask.setBitsFrom(31); 9200 else 9201 return false; 9202 9203 // Check that our new mask is a subset of the demanded mask. 9204 assert(IsLegalMask(NewMask)); 9205 return UseMask(NewMask); 9206 } 9207 9208 static uint64_t computeGREVOrGORC(uint64_t x, unsigned ShAmt, bool IsGORC) { 9209 static const uint64_t GREVMasks[] = { 9210 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 9211 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 9212 9213 for (unsigned Stage = 0; Stage != 6; ++Stage) { 9214 unsigned Shift = 1 << Stage; 9215 if (ShAmt & Shift) { 9216 uint64_t Mask = GREVMasks[Stage]; 9217 uint64_t Res = ((x & Mask) << Shift) | ((x >> Shift) & Mask); 9218 if (IsGORC) 9219 Res |= x; 9220 x = Res; 9221 } 9222 } 9223 9224 return x; 9225 } 9226 9227 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 9228 KnownBits &Known, 9229 const APInt &DemandedElts, 9230 const SelectionDAG &DAG, 9231 unsigned Depth) const { 9232 unsigned BitWidth = Known.getBitWidth(); 9233 unsigned Opc = Op.getOpcode(); 9234 assert((Opc >= ISD::BUILTIN_OP_END || 9235 Opc == ISD::INTRINSIC_WO_CHAIN || 9236 Opc == ISD::INTRINSIC_W_CHAIN || 9237 Opc == ISD::INTRINSIC_VOID) && 9238 "Should use MaskedValueIsZero if you don't know whether Op" 9239 " is a target node!"); 9240 9241 Known.resetAll(); 9242 switch (Opc) { 9243 default: break; 9244 case RISCVISD::SELECT_CC: { 9245 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 9246 // If we don't know any bits, early out. 9247 if (Known.isUnknown()) 9248 break; 9249 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 9250 9251 // Only known if known in both the LHS and RHS. 9252 Known = KnownBits::commonBits(Known, Known2); 9253 break; 9254 } 9255 case RISCVISD::REMUW: { 9256 KnownBits Known2; 9257 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 9258 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 9259 // We only care about the lower 32 bits. 9260 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 9261 // Restore the original width by sign extending. 9262 Known = Known.sext(BitWidth); 9263 break; 9264 } 9265 case RISCVISD::DIVUW: { 9266 KnownBits Known2; 9267 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 9268 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 9269 // We only care about the lower 32 bits. 9270 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 9271 // Restore the original width by sign extending. 9272 Known = Known.sext(BitWidth); 9273 break; 9274 } 9275 case RISCVISD::CTZW: { 9276 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 9277 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 9278 unsigned LowBits = Log2_32(PossibleTZ) + 1; 9279 Known.Zero.setBitsFrom(LowBits); 9280 break; 9281 } 9282 case RISCVISD::CLZW: { 9283 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 9284 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 9285 unsigned LowBits = Log2_32(PossibleLZ) + 1; 9286 Known.Zero.setBitsFrom(LowBits); 9287 break; 9288 } 9289 case RISCVISD::GREV: 9290 case RISCVISD::GORC: { 9291 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 9292 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 9293 unsigned ShAmt = C->getZExtValue() & (Known.getBitWidth() - 1); 9294 bool IsGORC = Op.getOpcode() == RISCVISD::GORC; 9295 // To compute zeros, we need to invert the value and invert it back after. 9296 Known.Zero = 9297 ~computeGREVOrGORC(~Known.Zero.getZExtValue(), ShAmt, IsGORC); 9298 Known.One = computeGREVOrGORC(Known.One.getZExtValue(), ShAmt, IsGORC); 9299 } 9300 break; 9301 } 9302 case RISCVISD::READ_VLENB: { 9303 // If we know the minimum VLen from Zvl extensions, we can use that to 9304 // determine the trailing zeros of VLENB. 9305 // FIXME: Limit to 128 bit vectors until we have more testing. 9306 unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8; 9307 if (MinVLenB > 0) 9308 Known.Zero.setLowBits(Log2_32(MinVLenB)); 9309 // We assume VLENB is no more than 65536 / 8 bytes. 9310 Known.Zero.setBitsFrom(14); 9311 break; 9312 } 9313 case ISD::INTRINSIC_W_CHAIN: 9314 case ISD::INTRINSIC_WO_CHAIN: { 9315 unsigned IntNo = 9316 Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1); 9317 switch (IntNo) { 9318 default: 9319 // We can't do anything for most intrinsics. 9320 break; 9321 case Intrinsic::riscv_vsetvli: 9322 case Intrinsic::riscv_vsetvlimax: 9323 case Intrinsic::riscv_vsetvli_opt: 9324 case Intrinsic::riscv_vsetvlimax_opt: 9325 // Assume that VL output is positive and would fit in an int32_t. 9326 // TODO: VLEN might be capped at 16 bits in a future V spec update. 9327 if (BitWidth >= 32) 9328 Known.Zero.setBitsFrom(31); 9329 break; 9330 } 9331 break; 9332 } 9333 } 9334 } 9335 9336 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 9337 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 9338 unsigned Depth) const { 9339 switch (Op.getOpcode()) { 9340 default: 9341 break; 9342 case RISCVISD::SELECT_CC: { 9343 unsigned Tmp = 9344 DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 9345 if (Tmp == 1) return 1; // Early out. 9346 unsigned Tmp2 = 9347 DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 9348 return std::min(Tmp, Tmp2); 9349 } 9350 case RISCVISD::SLLW: 9351 case RISCVISD::SRAW: 9352 case RISCVISD::SRLW: 9353 case RISCVISD::DIVW: 9354 case RISCVISD::DIVUW: 9355 case RISCVISD::REMUW: 9356 case RISCVISD::ROLW: 9357 case RISCVISD::RORW: 9358 case RISCVISD::GREVW: 9359 case RISCVISD::GORCW: 9360 case RISCVISD::FSLW: 9361 case RISCVISD::FSRW: 9362 case RISCVISD::SHFLW: 9363 case RISCVISD::UNSHFLW: 9364 case RISCVISD::BCOMPRESSW: 9365 case RISCVISD::BDECOMPRESSW: 9366 case RISCVISD::BFPW: 9367 case RISCVISD::FCVT_W_RV64: 9368 case RISCVISD::FCVT_WU_RV64: 9369 case RISCVISD::STRICT_FCVT_W_RV64: 9370 case RISCVISD::STRICT_FCVT_WU_RV64: 9371 // TODO: As the result is sign-extended, this is conservatively correct. A 9372 // more precise answer could be calculated for SRAW depending on known 9373 // bits in the shift amount. 9374 return 33; 9375 case RISCVISD::SHFL: 9376 case RISCVISD::UNSHFL: { 9377 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 9378 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 9379 // will stay within the upper 32 bits. If there were more than 32 sign bits 9380 // before there will be at least 33 sign bits after. 9381 if (Op.getValueType() == MVT::i64 && 9382 isa<ConstantSDNode>(Op.getOperand(1)) && 9383 (Op.getConstantOperandVal(1) & 0x10) == 0) { 9384 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 9385 if (Tmp > 32) 9386 return 33; 9387 } 9388 break; 9389 } 9390 case RISCVISD::VMV_X_S: { 9391 // The number of sign bits of the scalar result is computed by obtaining the 9392 // element type of the input vector operand, subtracting its width from the 9393 // XLEN, and then adding one (sign bit within the element type). If the 9394 // element type is wider than XLen, the least-significant XLEN bits are 9395 // taken. 9396 unsigned XLen = Subtarget.getXLen(); 9397 unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits(); 9398 if (EltBits <= XLen) 9399 return XLen - EltBits + 1; 9400 break; 9401 } 9402 } 9403 9404 return 1; 9405 } 9406 9407 const Constant * 9408 RISCVTargetLowering::getTargetConstantFromLoad(LoadSDNode *Ld) const { 9409 assert(Ld && "Unexpected null LoadSDNode"); 9410 if (!ISD::isNormalLoad(Ld)) 9411 return nullptr; 9412 9413 SDValue Ptr = Ld->getBasePtr(); 9414 9415 // Only constant pools with no offset are supported. 9416 auto GetSupportedConstantPool = [](SDValue Ptr) -> ConstantPoolSDNode * { 9417 auto *CNode = dyn_cast<ConstantPoolSDNode>(Ptr); 9418 if (!CNode || CNode->isMachineConstantPoolEntry() || 9419 CNode->getOffset() != 0) 9420 return nullptr; 9421 9422 return CNode; 9423 }; 9424 9425 // Simple case, LLA. 9426 if (Ptr.getOpcode() == RISCVISD::LLA) { 9427 auto *CNode = GetSupportedConstantPool(Ptr); 9428 if (!CNode || CNode->getTargetFlags() != 0) 9429 return nullptr; 9430 9431 return CNode->getConstVal(); 9432 } 9433 9434 // Look for a HI and ADD_LO pair. 9435 if (Ptr.getOpcode() != RISCVISD::ADD_LO || 9436 Ptr.getOperand(0).getOpcode() != RISCVISD::HI) 9437 return nullptr; 9438 9439 auto *CNodeLo = GetSupportedConstantPool(Ptr.getOperand(1)); 9440 auto *CNodeHi = GetSupportedConstantPool(Ptr.getOperand(0).getOperand(0)); 9441 9442 if (!CNodeLo || CNodeLo->getTargetFlags() != RISCVII::MO_LO || 9443 !CNodeHi || CNodeHi->getTargetFlags() != RISCVII::MO_HI) 9444 return nullptr; 9445 9446 if (CNodeLo->getConstVal() != CNodeHi->getConstVal()) 9447 return nullptr; 9448 9449 return CNodeLo->getConstVal(); 9450 } 9451 9452 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 9453 MachineBasicBlock *BB) { 9454 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 9455 9456 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 9457 // Should the count have wrapped while it was being read, we need to try 9458 // again. 9459 // ... 9460 // read: 9461 // rdcycleh x3 # load high word of cycle 9462 // rdcycle x2 # load low word of cycle 9463 // rdcycleh x4 # load high word of cycle 9464 // bne x3, x4, read # check if high word reads match, otherwise try again 9465 // ... 9466 9467 MachineFunction &MF = *BB->getParent(); 9468 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9469 MachineFunction::iterator It = ++BB->getIterator(); 9470 9471 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 9472 MF.insert(It, LoopMBB); 9473 9474 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 9475 MF.insert(It, DoneMBB); 9476 9477 // Transfer the remainder of BB and its successor edges to DoneMBB. 9478 DoneMBB->splice(DoneMBB->begin(), BB, 9479 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9480 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 9481 9482 BB->addSuccessor(LoopMBB); 9483 9484 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9485 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9486 Register LoReg = MI.getOperand(0).getReg(); 9487 Register HiReg = MI.getOperand(1).getReg(); 9488 DebugLoc DL = MI.getDebugLoc(); 9489 9490 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 9491 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 9492 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 9493 .addReg(RISCV::X0); 9494 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 9495 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 9496 .addReg(RISCV::X0); 9497 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 9498 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 9499 .addReg(RISCV::X0); 9500 9501 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 9502 .addReg(HiReg) 9503 .addReg(ReadAgainReg) 9504 .addMBB(LoopMBB); 9505 9506 LoopMBB->addSuccessor(LoopMBB); 9507 LoopMBB->addSuccessor(DoneMBB); 9508 9509 MI.eraseFromParent(); 9510 9511 return DoneMBB; 9512 } 9513 9514 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 9515 MachineBasicBlock *BB) { 9516 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 9517 9518 MachineFunction &MF = *BB->getParent(); 9519 DebugLoc DL = MI.getDebugLoc(); 9520 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 9521 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 9522 Register LoReg = MI.getOperand(0).getReg(); 9523 Register HiReg = MI.getOperand(1).getReg(); 9524 Register SrcReg = MI.getOperand(2).getReg(); 9525 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 9526 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 9527 9528 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 9529 RI); 9530 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 9531 MachineMemOperand *MMOLo = 9532 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 9533 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 9534 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 9535 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 9536 .addFrameIndex(FI) 9537 .addImm(0) 9538 .addMemOperand(MMOLo); 9539 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 9540 .addFrameIndex(FI) 9541 .addImm(4) 9542 .addMemOperand(MMOHi); 9543 MI.eraseFromParent(); // The pseudo instruction is gone now. 9544 return BB; 9545 } 9546 9547 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 9548 MachineBasicBlock *BB) { 9549 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 9550 "Unexpected instruction"); 9551 9552 MachineFunction &MF = *BB->getParent(); 9553 DebugLoc DL = MI.getDebugLoc(); 9554 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 9555 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 9556 Register DstReg = MI.getOperand(0).getReg(); 9557 Register LoReg = MI.getOperand(1).getReg(); 9558 Register HiReg = MI.getOperand(2).getReg(); 9559 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 9560 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 9561 9562 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 9563 MachineMemOperand *MMOLo = 9564 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 9565 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 9566 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 9567 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 9568 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 9569 .addFrameIndex(FI) 9570 .addImm(0) 9571 .addMemOperand(MMOLo); 9572 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 9573 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 9574 .addFrameIndex(FI) 9575 .addImm(4) 9576 .addMemOperand(MMOHi); 9577 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 9578 MI.eraseFromParent(); // The pseudo instruction is gone now. 9579 return BB; 9580 } 9581 9582 static bool isSelectPseudo(MachineInstr &MI) { 9583 switch (MI.getOpcode()) { 9584 default: 9585 return false; 9586 case RISCV::Select_GPR_Using_CC_GPR: 9587 case RISCV::Select_FPR16_Using_CC_GPR: 9588 case RISCV::Select_FPR32_Using_CC_GPR: 9589 case RISCV::Select_FPR64_Using_CC_GPR: 9590 return true; 9591 } 9592 } 9593 9594 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB, 9595 unsigned RelOpcode, unsigned EqOpcode, 9596 const RISCVSubtarget &Subtarget) { 9597 DebugLoc DL = MI.getDebugLoc(); 9598 Register DstReg = MI.getOperand(0).getReg(); 9599 Register Src1Reg = MI.getOperand(1).getReg(); 9600 Register Src2Reg = MI.getOperand(2).getReg(); 9601 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 9602 Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass); 9603 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 9604 9605 // Save the current FFLAGS. 9606 BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags); 9607 9608 auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg) 9609 .addReg(Src1Reg) 9610 .addReg(Src2Reg); 9611 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 9612 MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); 9613 9614 // Restore the FFLAGS. 9615 BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) 9616 .addReg(SavedFFlags, RegState::Kill); 9617 9618 // Issue a dummy FEQ opcode to raise exception for signaling NaNs. 9619 auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0) 9620 .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill())) 9621 .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill())); 9622 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 9623 MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept); 9624 9625 // Erase the pseudoinstruction. 9626 MI.eraseFromParent(); 9627 return BB; 9628 } 9629 9630 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 9631 MachineBasicBlock *BB, 9632 const RISCVSubtarget &Subtarget) { 9633 // To "insert" Select_* instructions, we actually have to insert the triangle 9634 // control-flow pattern. The incoming instructions know the destination vreg 9635 // to set, the condition code register to branch on, the true/false values to 9636 // select between, and the condcode to use to select the appropriate branch. 9637 // 9638 // We produce the following control flow: 9639 // HeadMBB 9640 // | \ 9641 // | IfFalseMBB 9642 // | / 9643 // TailMBB 9644 // 9645 // When we find a sequence of selects we attempt to optimize their emission 9646 // by sharing the control flow. Currently we only handle cases where we have 9647 // multiple selects with the exact same condition (same LHS, RHS and CC). 9648 // The selects may be interleaved with other instructions if the other 9649 // instructions meet some requirements we deem safe: 9650 // - They are debug instructions. Otherwise, 9651 // - They do not have side-effects, do not access memory and their inputs do 9652 // not depend on the results of the select pseudo-instructions. 9653 // The TrueV/FalseV operands of the selects cannot depend on the result of 9654 // previous selects in the sequence. 9655 // These conditions could be further relaxed. See the X86 target for a 9656 // related approach and more information. 9657 Register LHS = MI.getOperand(1).getReg(); 9658 Register RHS = MI.getOperand(2).getReg(); 9659 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 9660 9661 SmallVector<MachineInstr *, 4> SelectDebugValues; 9662 SmallSet<Register, 4> SelectDests; 9663 SelectDests.insert(MI.getOperand(0).getReg()); 9664 9665 MachineInstr *LastSelectPseudo = &MI; 9666 9667 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 9668 SequenceMBBI != E; ++SequenceMBBI) { 9669 if (SequenceMBBI->isDebugInstr()) 9670 continue; 9671 if (isSelectPseudo(*SequenceMBBI)) { 9672 if (SequenceMBBI->getOperand(1).getReg() != LHS || 9673 SequenceMBBI->getOperand(2).getReg() != RHS || 9674 SequenceMBBI->getOperand(3).getImm() != CC || 9675 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 9676 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 9677 break; 9678 LastSelectPseudo = &*SequenceMBBI; 9679 SequenceMBBI->collectDebugValues(SelectDebugValues); 9680 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 9681 } else { 9682 if (SequenceMBBI->hasUnmodeledSideEffects() || 9683 SequenceMBBI->mayLoadOrStore()) 9684 break; 9685 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 9686 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 9687 })) 9688 break; 9689 } 9690 } 9691 9692 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 9693 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9694 DebugLoc DL = MI.getDebugLoc(); 9695 MachineFunction::iterator I = ++BB->getIterator(); 9696 9697 MachineBasicBlock *HeadMBB = BB; 9698 MachineFunction *F = BB->getParent(); 9699 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 9700 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 9701 9702 F->insert(I, IfFalseMBB); 9703 F->insert(I, TailMBB); 9704 9705 // Transfer debug instructions associated with the selects to TailMBB. 9706 for (MachineInstr *DebugInstr : SelectDebugValues) { 9707 TailMBB->push_back(DebugInstr->removeFromParent()); 9708 } 9709 9710 // Move all instructions after the sequence to TailMBB. 9711 TailMBB->splice(TailMBB->end(), HeadMBB, 9712 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 9713 // Update machine-CFG edges by transferring all successors of the current 9714 // block to the new block which will contain the Phi nodes for the selects. 9715 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 9716 // Set the successors for HeadMBB. 9717 HeadMBB->addSuccessor(IfFalseMBB); 9718 HeadMBB->addSuccessor(TailMBB); 9719 9720 // Insert appropriate branch. 9721 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 9722 .addReg(LHS) 9723 .addReg(RHS) 9724 .addMBB(TailMBB); 9725 9726 // IfFalseMBB just falls through to TailMBB. 9727 IfFalseMBB->addSuccessor(TailMBB); 9728 9729 // Create PHIs for all of the select pseudo-instructions. 9730 auto SelectMBBI = MI.getIterator(); 9731 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 9732 auto InsertionPoint = TailMBB->begin(); 9733 while (SelectMBBI != SelectEnd) { 9734 auto Next = std::next(SelectMBBI); 9735 if (isSelectPseudo(*SelectMBBI)) { 9736 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 9737 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 9738 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 9739 .addReg(SelectMBBI->getOperand(4).getReg()) 9740 .addMBB(HeadMBB) 9741 .addReg(SelectMBBI->getOperand(5).getReg()) 9742 .addMBB(IfFalseMBB); 9743 SelectMBBI->eraseFromParent(); 9744 } 9745 SelectMBBI = Next; 9746 } 9747 9748 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 9749 return TailMBB; 9750 } 9751 9752 MachineBasicBlock * 9753 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 9754 MachineBasicBlock *BB) const { 9755 switch (MI.getOpcode()) { 9756 default: 9757 llvm_unreachable("Unexpected instr type to insert"); 9758 case RISCV::ReadCycleWide: 9759 assert(!Subtarget.is64Bit() && 9760 "ReadCycleWrite is only to be used on riscv32"); 9761 return emitReadCycleWidePseudo(MI, BB); 9762 case RISCV::Select_GPR_Using_CC_GPR: 9763 case RISCV::Select_FPR16_Using_CC_GPR: 9764 case RISCV::Select_FPR32_Using_CC_GPR: 9765 case RISCV::Select_FPR64_Using_CC_GPR: 9766 return emitSelectPseudo(MI, BB, Subtarget); 9767 case RISCV::BuildPairF64Pseudo: 9768 return emitBuildPairF64Pseudo(MI, BB); 9769 case RISCV::SplitF64Pseudo: 9770 return emitSplitF64Pseudo(MI, BB); 9771 case RISCV::PseudoQuietFLE_H: 9772 return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget); 9773 case RISCV::PseudoQuietFLT_H: 9774 return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget); 9775 case RISCV::PseudoQuietFLE_S: 9776 return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget); 9777 case RISCV::PseudoQuietFLT_S: 9778 return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget); 9779 case RISCV::PseudoQuietFLE_D: 9780 return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget); 9781 case RISCV::PseudoQuietFLT_D: 9782 return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget); 9783 } 9784 } 9785 9786 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 9787 SDNode *Node) const { 9788 // Add FRM dependency to any instructions with dynamic rounding mode. 9789 unsigned Opc = MI.getOpcode(); 9790 auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); 9791 if (Idx < 0) 9792 return; 9793 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) 9794 return; 9795 // If the instruction already reads FRM, don't add another read. 9796 if (MI.readsRegister(RISCV::FRM)) 9797 return; 9798 MI.addOperand( 9799 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); 9800 } 9801 9802 // Calling Convention Implementation. 9803 // The expectations for frontend ABI lowering vary from target to target. 9804 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 9805 // details, but this is a longer term goal. For now, we simply try to keep the 9806 // role of the frontend as simple and well-defined as possible. The rules can 9807 // be summarised as: 9808 // * Never split up large scalar arguments. We handle them here. 9809 // * If a hardfloat calling convention is being used, and the struct may be 9810 // passed in a pair of registers (fp+fp, int+fp), and both registers are 9811 // available, then pass as two separate arguments. If either the GPRs or FPRs 9812 // are exhausted, then pass according to the rule below. 9813 // * If a struct could never be passed in registers or directly in a stack 9814 // slot (as it is larger than 2*XLEN and the floating point rules don't 9815 // apply), then pass it using a pointer with the byval attribute. 9816 // * If a struct is less than 2*XLEN, then coerce to either a two-element 9817 // word-sized array or a 2*XLEN scalar (depending on alignment). 9818 // * The frontend can determine whether a struct is returned by reference or 9819 // not based on its size and fields. If it will be returned by reference, the 9820 // frontend must modify the prototype so a pointer with the sret annotation is 9821 // passed as the first argument. This is not necessary for large scalar 9822 // returns. 9823 // * Struct return values and varargs should be coerced to structs containing 9824 // register-size fields in the same situations they would be for fixed 9825 // arguments. 9826 9827 static const MCPhysReg ArgGPRs[] = { 9828 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 9829 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 9830 }; 9831 static const MCPhysReg ArgFPR16s[] = { 9832 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 9833 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 9834 }; 9835 static const MCPhysReg ArgFPR32s[] = { 9836 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 9837 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 9838 }; 9839 static const MCPhysReg ArgFPR64s[] = { 9840 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 9841 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 9842 }; 9843 // This is an interim calling convention and it may be changed in the future. 9844 static const MCPhysReg ArgVRs[] = { 9845 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 9846 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 9847 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 9848 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 9849 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 9850 RISCV::V20M2, RISCV::V22M2}; 9851 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 9852 RISCV::V20M4}; 9853 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 9854 9855 // Pass a 2*XLEN argument that has been split into two XLEN values through 9856 // registers or the stack as necessary. 9857 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 9858 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 9859 MVT ValVT2, MVT LocVT2, 9860 ISD::ArgFlagsTy ArgFlags2) { 9861 unsigned XLenInBytes = XLen / 8; 9862 if (Register Reg = State.AllocateReg(ArgGPRs)) { 9863 // At least one half can be passed via register. 9864 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 9865 VA1.getLocVT(), CCValAssign::Full)); 9866 } else { 9867 // Both halves must be passed on the stack, with proper alignment. 9868 Align StackAlign = 9869 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 9870 State.addLoc( 9871 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 9872 State.AllocateStack(XLenInBytes, StackAlign), 9873 VA1.getLocVT(), CCValAssign::Full)); 9874 State.addLoc(CCValAssign::getMem( 9875 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 9876 LocVT2, CCValAssign::Full)); 9877 return false; 9878 } 9879 9880 if (Register Reg = State.AllocateReg(ArgGPRs)) { 9881 // The second half can also be passed via register. 9882 State.addLoc( 9883 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 9884 } else { 9885 // The second half is passed via the stack, without additional alignment. 9886 State.addLoc(CCValAssign::getMem( 9887 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 9888 LocVT2, CCValAssign::Full)); 9889 } 9890 9891 return false; 9892 } 9893 9894 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 9895 Optional<unsigned> FirstMaskArgument, 9896 CCState &State, const RISCVTargetLowering &TLI) { 9897 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 9898 if (RC == &RISCV::VRRegClass) { 9899 // Assign the first mask argument to V0. 9900 // This is an interim calling convention and it may be changed in the 9901 // future. 9902 if (FirstMaskArgument && ValNo == *FirstMaskArgument) 9903 return State.AllocateReg(RISCV::V0); 9904 return State.AllocateReg(ArgVRs); 9905 } 9906 if (RC == &RISCV::VRM2RegClass) 9907 return State.AllocateReg(ArgVRM2s); 9908 if (RC == &RISCV::VRM4RegClass) 9909 return State.AllocateReg(ArgVRM4s); 9910 if (RC == &RISCV::VRM8RegClass) 9911 return State.AllocateReg(ArgVRM8s); 9912 llvm_unreachable("Unhandled register class for ValueType"); 9913 } 9914 9915 // Implements the RISC-V calling convention. Returns true upon failure. 9916 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 9917 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 9918 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 9919 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 9920 Optional<unsigned> FirstMaskArgument) { 9921 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 9922 assert(XLen == 32 || XLen == 64); 9923 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 9924 9925 // Any return value split in to more than two values can't be returned 9926 // directly. Vectors are returned via the available vector registers. 9927 if (!LocVT.isVector() && IsRet && ValNo > 1) 9928 return true; 9929 9930 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 9931 // variadic argument, or if no F16/F32 argument registers are available. 9932 bool UseGPRForF16_F32 = true; 9933 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 9934 // variadic argument, or if no F64 argument registers are available. 9935 bool UseGPRForF64 = true; 9936 9937 switch (ABI) { 9938 default: 9939 llvm_unreachable("Unexpected ABI"); 9940 case RISCVABI::ABI_ILP32: 9941 case RISCVABI::ABI_LP64: 9942 break; 9943 case RISCVABI::ABI_ILP32F: 9944 case RISCVABI::ABI_LP64F: 9945 UseGPRForF16_F32 = !IsFixed; 9946 break; 9947 case RISCVABI::ABI_ILP32D: 9948 case RISCVABI::ABI_LP64D: 9949 UseGPRForF16_F32 = !IsFixed; 9950 UseGPRForF64 = !IsFixed; 9951 break; 9952 } 9953 9954 // FPR16, FPR32, and FPR64 alias each other. 9955 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 9956 UseGPRForF16_F32 = true; 9957 UseGPRForF64 = true; 9958 } 9959 9960 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 9961 // similar local variables rather than directly checking against the target 9962 // ABI. 9963 9964 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 9965 LocVT = XLenVT; 9966 LocInfo = CCValAssign::BCvt; 9967 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 9968 LocVT = MVT::i64; 9969 LocInfo = CCValAssign::BCvt; 9970 } 9971 9972 // If this is a variadic argument, the RISC-V calling convention requires 9973 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 9974 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 9975 // be used regardless of whether the original argument was split during 9976 // legalisation or not. The argument will not be passed by registers if the 9977 // original type is larger than 2*XLEN, so the register alignment rule does 9978 // not apply. 9979 unsigned TwoXLenInBytes = (2 * XLen) / 8; 9980 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 9981 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 9982 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 9983 // Skip 'odd' register if necessary. 9984 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 9985 State.AllocateReg(ArgGPRs); 9986 } 9987 9988 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 9989 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 9990 State.getPendingArgFlags(); 9991 9992 assert(PendingLocs.size() == PendingArgFlags.size() && 9993 "PendingLocs and PendingArgFlags out of sync"); 9994 9995 // Handle passing f64 on RV32D with a soft float ABI or when floating point 9996 // registers are exhausted. 9997 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 9998 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 9999 "Can't lower f64 if it is split"); 10000 // Depending on available argument GPRS, f64 may be passed in a pair of 10001 // GPRs, split between a GPR and the stack, or passed completely on the 10002 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 10003 // cases. 10004 Register Reg = State.AllocateReg(ArgGPRs); 10005 LocVT = MVT::i32; 10006 if (!Reg) { 10007 unsigned StackOffset = State.AllocateStack(8, Align(8)); 10008 State.addLoc( 10009 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 10010 return false; 10011 } 10012 if (!State.AllocateReg(ArgGPRs)) 10013 State.AllocateStack(4, Align(4)); 10014 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10015 return false; 10016 } 10017 10018 // Fixed-length vectors are located in the corresponding scalable-vector 10019 // container types. 10020 if (ValVT.isFixedLengthVector()) 10021 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 10022 10023 // Split arguments might be passed indirectly, so keep track of the pending 10024 // values. Split vectors are passed via a mix of registers and indirectly, so 10025 // treat them as we would any other argument. 10026 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 10027 LocVT = XLenVT; 10028 LocInfo = CCValAssign::Indirect; 10029 PendingLocs.push_back( 10030 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 10031 PendingArgFlags.push_back(ArgFlags); 10032 if (!ArgFlags.isSplitEnd()) { 10033 return false; 10034 } 10035 } 10036 10037 // If the split argument only had two elements, it should be passed directly 10038 // in registers or on the stack. 10039 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 10040 PendingLocs.size() <= 2) { 10041 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 10042 // Apply the normal calling convention rules to the first half of the 10043 // split argument. 10044 CCValAssign VA = PendingLocs[0]; 10045 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 10046 PendingLocs.clear(); 10047 PendingArgFlags.clear(); 10048 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 10049 ArgFlags); 10050 } 10051 10052 // Allocate to a register if possible, or else a stack slot. 10053 Register Reg; 10054 unsigned StoreSizeBytes = XLen / 8; 10055 Align StackAlign = Align(XLen / 8); 10056 10057 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 10058 Reg = State.AllocateReg(ArgFPR16s); 10059 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 10060 Reg = State.AllocateReg(ArgFPR32s); 10061 else if (ValVT == MVT::f64 && !UseGPRForF64) 10062 Reg = State.AllocateReg(ArgFPR64s); 10063 else if (ValVT.isVector()) { 10064 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 10065 if (!Reg) { 10066 // For return values, the vector must be passed fully via registers or 10067 // via the stack. 10068 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 10069 // but we're using all of them. 10070 if (IsRet) 10071 return true; 10072 // Try using a GPR to pass the address 10073 if ((Reg = State.AllocateReg(ArgGPRs))) { 10074 LocVT = XLenVT; 10075 LocInfo = CCValAssign::Indirect; 10076 } else if (ValVT.isScalableVector()) { 10077 LocVT = XLenVT; 10078 LocInfo = CCValAssign::Indirect; 10079 } else { 10080 // Pass fixed-length vectors on the stack. 10081 LocVT = ValVT; 10082 StoreSizeBytes = ValVT.getStoreSize(); 10083 // Align vectors to their element sizes, being careful for vXi1 10084 // vectors. 10085 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 10086 } 10087 } 10088 } else { 10089 Reg = State.AllocateReg(ArgGPRs); 10090 } 10091 10092 unsigned StackOffset = 10093 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 10094 10095 // If we reach this point and PendingLocs is non-empty, we must be at the 10096 // end of a split argument that must be passed indirectly. 10097 if (!PendingLocs.empty()) { 10098 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 10099 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 10100 10101 for (auto &It : PendingLocs) { 10102 if (Reg) 10103 It.convertToReg(Reg); 10104 else 10105 It.convertToMem(StackOffset); 10106 State.addLoc(It); 10107 } 10108 PendingLocs.clear(); 10109 PendingArgFlags.clear(); 10110 return false; 10111 } 10112 10113 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 10114 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 10115 "Expected an XLenVT or vector types at this stage"); 10116 10117 if (Reg) { 10118 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10119 return false; 10120 } 10121 10122 // When a floating-point value is passed on the stack, no bit-conversion is 10123 // needed. 10124 if (ValVT.isFloatingPoint()) { 10125 LocVT = ValVT; 10126 LocInfo = CCValAssign::Full; 10127 } 10128 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 10129 return false; 10130 } 10131 10132 template <typename ArgTy> 10133 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 10134 for (const auto &ArgIdx : enumerate(Args)) { 10135 MVT ArgVT = ArgIdx.value().VT; 10136 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 10137 return ArgIdx.index(); 10138 } 10139 return None; 10140 } 10141 10142 void RISCVTargetLowering::analyzeInputArgs( 10143 MachineFunction &MF, CCState &CCInfo, 10144 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 10145 RISCVCCAssignFn Fn) const { 10146 unsigned NumArgs = Ins.size(); 10147 FunctionType *FType = MF.getFunction().getFunctionType(); 10148 10149 Optional<unsigned> FirstMaskArgument; 10150 if (Subtarget.hasVInstructions()) 10151 FirstMaskArgument = preAssignMask(Ins); 10152 10153 for (unsigned i = 0; i != NumArgs; ++i) { 10154 MVT ArgVT = Ins[i].VT; 10155 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 10156 10157 Type *ArgTy = nullptr; 10158 if (IsRet) 10159 ArgTy = FType->getReturnType(); 10160 else if (Ins[i].isOrigArg()) 10161 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 10162 10163 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 10164 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 10165 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 10166 FirstMaskArgument)) { 10167 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 10168 << EVT(ArgVT).getEVTString() << '\n'); 10169 llvm_unreachable(nullptr); 10170 } 10171 } 10172 } 10173 10174 void RISCVTargetLowering::analyzeOutputArgs( 10175 MachineFunction &MF, CCState &CCInfo, 10176 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 10177 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 10178 unsigned NumArgs = Outs.size(); 10179 10180 Optional<unsigned> FirstMaskArgument; 10181 if (Subtarget.hasVInstructions()) 10182 FirstMaskArgument = preAssignMask(Outs); 10183 10184 for (unsigned i = 0; i != NumArgs; i++) { 10185 MVT ArgVT = Outs[i].VT; 10186 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 10187 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 10188 10189 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 10190 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 10191 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 10192 FirstMaskArgument)) { 10193 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 10194 << EVT(ArgVT).getEVTString() << "\n"); 10195 llvm_unreachable(nullptr); 10196 } 10197 } 10198 } 10199 10200 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 10201 // values. 10202 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 10203 const CCValAssign &VA, const SDLoc &DL, 10204 const RISCVSubtarget &Subtarget) { 10205 switch (VA.getLocInfo()) { 10206 default: 10207 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 10208 case CCValAssign::Full: 10209 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 10210 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 10211 break; 10212 case CCValAssign::BCvt: 10213 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 10214 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 10215 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 10216 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 10217 else 10218 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 10219 break; 10220 } 10221 return Val; 10222 } 10223 10224 // The caller is responsible for loading the full value if the argument is 10225 // passed with CCValAssign::Indirect. 10226 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 10227 const CCValAssign &VA, const SDLoc &DL, 10228 const RISCVTargetLowering &TLI) { 10229 MachineFunction &MF = DAG.getMachineFunction(); 10230 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 10231 EVT LocVT = VA.getLocVT(); 10232 SDValue Val; 10233 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 10234 Register VReg = RegInfo.createVirtualRegister(RC); 10235 RegInfo.addLiveIn(VA.getLocReg(), VReg); 10236 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 10237 10238 if (VA.getLocInfo() == CCValAssign::Indirect) 10239 return Val; 10240 10241 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 10242 } 10243 10244 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 10245 const CCValAssign &VA, const SDLoc &DL, 10246 const RISCVSubtarget &Subtarget) { 10247 EVT LocVT = VA.getLocVT(); 10248 10249 switch (VA.getLocInfo()) { 10250 default: 10251 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 10252 case CCValAssign::Full: 10253 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 10254 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 10255 break; 10256 case CCValAssign::BCvt: 10257 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 10258 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 10259 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 10260 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 10261 else 10262 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 10263 break; 10264 } 10265 return Val; 10266 } 10267 10268 // The caller is responsible for loading the full value if the argument is 10269 // passed with CCValAssign::Indirect. 10270 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 10271 const CCValAssign &VA, const SDLoc &DL) { 10272 MachineFunction &MF = DAG.getMachineFunction(); 10273 MachineFrameInfo &MFI = MF.getFrameInfo(); 10274 EVT LocVT = VA.getLocVT(); 10275 EVT ValVT = VA.getValVT(); 10276 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 10277 if (ValVT.isScalableVector()) { 10278 // When the value is a scalable vector, we save the pointer which points to 10279 // the scalable vector value in the stack. The ValVT will be the pointer 10280 // type, instead of the scalable vector type. 10281 ValVT = LocVT; 10282 } 10283 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 10284 /*IsImmutable=*/true); 10285 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 10286 SDValue Val; 10287 10288 ISD::LoadExtType ExtType; 10289 switch (VA.getLocInfo()) { 10290 default: 10291 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 10292 case CCValAssign::Full: 10293 case CCValAssign::Indirect: 10294 case CCValAssign::BCvt: 10295 ExtType = ISD::NON_EXTLOAD; 10296 break; 10297 } 10298 Val = DAG.getExtLoad( 10299 ExtType, DL, LocVT, Chain, FIN, 10300 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 10301 return Val; 10302 } 10303 10304 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 10305 const CCValAssign &VA, const SDLoc &DL) { 10306 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 10307 "Unexpected VA"); 10308 MachineFunction &MF = DAG.getMachineFunction(); 10309 MachineFrameInfo &MFI = MF.getFrameInfo(); 10310 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 10311 10312 if (VA.isMemLoc()) { 10313 // f64 is passed on the stack. 10314 int FI = 10315 MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true); 10316 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 10317 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 10318 MachinePointerInfo::getFixedStack(MF, FI)); 10319 } 10320 10321 assert(VA.isRegLoc() && "Expected register VA assignment"); 10322 10323 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 10324 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 10325 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 10326 SDValue Hi; 10327 if (VA.getLocReg() == RISCV::X17) { 10328 // Second half of f64 is passed on the stack. 10329 int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true); 10330 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 10331 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 10332 MachinePointerInfo::getFixedStack(MF, FI)); 10333 } else { 10334 // Second half of f64 is passed in another GPR. 10335 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 10336 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 10337 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 10338 } 10339 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 10340 } 10341 10342 // FastCC has less than 1% performance improvement for some particular 10343 // benchmark. But theoretically, it may has benenfit for some cases. 10344 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 10345 unsigned ValNo, MVT ValVT, MVT LocVT, 10346 CCValAssign::LocInfo LocInfo, 10347 ISD::ArgFlagsTy ArgFlags, CCState &State, 10348 bool IsFixed, bool IsRet, Type *OrigTy, 10349 const RISCVTargetLowering &TLI, 10350 Optional<unsigned> FirstMaskArgument) { 10351 10352 // X5 and X6 might be used for save-restore libcall. 10353 static const MCPhysReg GPRList[] = { 10354 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 10355 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 10356 RISCV::X29, RISCV::X30, RISCV::X31}; 10357 10358 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 10359 if (unsigned Reg = State.AllocateReg(GPRList)) { 10360 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10361 return false; 10362 } 10363 } 10364 10365 if (LocVT == MVT::f16) { 10366 static const MCPhysReg FPR16List[] = { 10367 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 10368 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 10369 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 10370 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 10371 if (unsigned Reg = State.AllocateReg(FPR16List)) { 10372 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10373 return false; 10374 } 10375 } 10376 10377 if (LocVT == MVT::f32) { 10378 static const MCPhysReg FPR32List[] = { 10379 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 10380 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 10381 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 10382 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 10383 if (unsigned Reg = State.AllocateReg(FPR32List)) { 10384 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10385 return false; 10386 } 10387 } 10388 10389 if (LocVT == MVT::f64) { 10390 static const MCPhysReg FPR64List[] = { 10391 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 10392 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 10393 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 10394 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 10395 if (unsigned Reg = State.AllocateReg(FPR64List)) { 10396 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10397 return false; 10398 } 10399 } 10400 10401 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 10402 unsigned Offset4 = State.AllocateStack(4, Align(4)); 10403 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 10404 return false; 10405 } 10406 10407 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 10408 unsigned Offset5 = State.AllocateStack(8, Align(8)); 10409 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 10410 return false; 10411 } 10412 10413 if (LocVT.isVector()) { 10414 if (unsigned Reg = 10415 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 10416 // Fixed-length vectors are located in the corresponding scalable-vector 10417 // container types. 10418 if (ValVT.isFixedLengthVector()) 10419 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 10420 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10421 } else { 10422 // Try and pass the address via a "fast" GPR. 10423 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 10424 LocInfo = CCValAssign::Indirect; 10425 LocVT = TLI.getSubtarget().getXLenVT(); 10426 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 10427 } else if (ValVT.isFixedLengthVector()) { 10428 auto StackAlign = 10429 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 10430 unsigned StackOffset = 10431 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 10432 State.addLoc( 10433 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 10434 } else { 10435 // Can't pass scalable vectors on the stack. 10436 return true; 10437 } 10438 } 10439 10440 return false; 10441 } 10442 10443 return true; // CC didn't match. 10444 } 10445 10446 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 10447 CCValAssign::LocInfo LocInfo, 10448 ISD::ArgFlagsTy ArgFlags, CCState &State) { 10449 10450 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 10451 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 10452 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 10453 static const MCPhysReg GPRList[] = { 10454 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 10455 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 10456 if (unsigned Reg = State.AllocateReg(GPRList)) { 10457 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10458 return false; 10459 } 10460 } 10461 10462 if (LocVT == MVT::f32) { 10463 // Pass in STG registers: F1, ..., F6 10464 // fs0 ... fs5 10465 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 10466 RISCV::F18_F, RISCV::F19_F, 10467 RISCV::F20_F, RISCV::F21_F}; 10468 if (unsigned Reg = State.AllocateReg(FPR32List)) { 10469 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10470 return false; 10471 } 10472 } 10473 10474 if (LocVT == MVT::f64) { 10475 // Pass in STG registers: D1, ..., D6 10476 // fs6 ... fs11 10477 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 10478 RISCV::F24_D, RISCV::F25_D, 10479 RISCV::F26_D, RISCV::F27_D}; 10480 if (unsigned Reg = State.AllocateReg(FPR64List)) { 10481 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10482 return false; 10483 } 10484 } 10485 10486 report_fatal_error("No registers left in GHC calling convention"); 10487 return true; 10488 } 10489 10490 // Transform physical registers into virtual registers. 10491 SDValue RISCVTargetLowering::LowerFormalArguments( 10492 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 10493 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 10494 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 10495 10496 MachineFunction &MF = DAG.getMachineFunction(); 10497 10498 switch (CallConv) { 10499 default: 10500 report_fatal_error("Unsupported calling convention"); 10501 case CallingConv::C: 10502 case CallingConv::Fast: 10503 break; 10504 case CallingConv::GHC: 10505 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 10506 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 10507 report_fatal_error( 10508 "GHC calling convention requires the F and D instruction set extensions"); 10509 } 10510 10511 const Function &Func = MF.getFunction(); 10512 if (Func.hasFnAttribute("interrupt")) { 10513 if (!Func.arg_empty()) 10514 report_fatal_error( 10515 "Functions with the interrupt attribute cannot have arguments!"); 10516 10517 StringRef Kind = 10518 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 10519 10520 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 10521 report_fatal_error( 10522 "Function interrupt attribute argument not supported!"); 10523 } 10524 10525 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10526 MVT XLenVT = Subtarget.getXLenVT(); 10527 unsigned XLenInBytes = Subtarget.getXLen() / 8; 10528 // Used with vargs to acumulate store chains. 10529 std::vector<SDValue> OutChains; 10530 10531 // Assign locations to all of the incoming arguments. 10532 SmallVector<CCValAssign, 16> ArgLocs; 10533 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 10534 10535 if (CallConv == CallingConv::GHC) 10536 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 10537 else 10538 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 10539 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 10540 : CC_RISCV); 10541 10542 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 10543 CCValAssign &VA = ArgLocs[i]; 10544 SDValue ArgValue; 10545 // Passing f64 on RV32D with a soft float ABI must be handled as a special 10546 // case. 10547 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 10548 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 10549 else if (VA.isRegLoc()) 10550 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 10551 else 10552 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 10553 10554 if (VA.getLocInfo() == CCValAssign::Indirect) { 10555 // If the original argument was split and passed by reference (e.g. i128 10556 // on RV32), we need to load all parts of it here (using the same 10557 // address). Vectors may be partly split to registers and partly to the 10558 // stack, in which case the base address is partly offset and subsequent 10559 // stores are relative to that. 10560 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 10561 MachinePointerInfo())); 10562 unsigned ArgIndex = Ins[i].OrigArgIndex; 10563 unsigned ArgPartOffset = Ins[i].PartOffset; 10564 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 10565 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 10566 CCValAssign &PartVA = ArgLocs[i + 1]; 10567 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 10568 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 10569 if (PartVA.getValVT().isScalableVector()) 10570 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 10571 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 10572 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 10573 MachinePointerInfo())); 10574 ++i; 10575 } 10576 continue; 10577 } 10578 InVals.push_back(ArgValue); 10579 } 10580 10581 if (IsVarArg) { 10582 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 10583 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 10584 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 10585 MachineFrameInfo &MFI = MF.getFrameInfo(); 10586 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 10587 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 10588 10589 // Offset of the first variable argument from stack pointer, and size of 10590 // the vararg save area. For now, the varargs save area is either zero or 10591 // large enough to hold a0-a7. 10592 int VaArgOffset, VarArgsSaveSize; 10593 10594 // If all registers are allocated, then all varargs must be passed on the 10595 // stack and we don't need to save any argregs. 10596 if (ArgRegs.size() == Idx) { 10597 VaArgOffset = CCInfo.getNextStackOffset(); 10598 VarArgsSaveSize = 0; 10599 } else { 10600 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 10601 VaArgOffset = -VarArgsSaveSize; 10602 } 10603 10604 // Record the frame index of the first variable argument 10605 // which is a value necessary to VASTART. 10606 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 10607 RVFI->setVarArgsFrameIndex(FI); 10608 10609 // If saving an odd number of registers then create an extra stack slot to 10610 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 10611 // offsets to even-numbered registered remain 2*XLEN-aligned. 10612 if (Idx % 2) { 10613 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 10614 VarArgsSaveSize += XLenInBytes; 10615 } 10616 10617 // Copy the integer registers that may have been used for passing varargs 10618 // to the vararg save area. 10619 for (unsigned I = Idx; I < ArgRegs.size(); 10620 ++I, VaArgOffset += XLenInBytes) { 10621 const Register Reg = RegInfo.createVirtualRegister(RC); 10622 RegInfo.addLiveIn(ArgRegs[I], Reg); 10623 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 10624 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 10625 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 10626 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 10627 MachinePointerInfo::getFixedStack(MF, FI)); 10628 cast<StoreSDNode>(Store.getNode()) 10629 ->getMemOperand() 10630 ->setValue((Value *)nullptr); 10631 OutChains.push_back(Store); 10632 } 10633 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 10634 } 10635 10636 // All stores are grouped in one node to allow the matching between 10637 // the size of Ins and InVals. This only happens for vararg functions. 10638 if (!OutChains.empty()) { 10639 OutChains.push_back(Chain); 10640 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 10641 } 10642 10643 return Chain; 10644 } 10645 10646 /// isEligibleForTailCallOptimization - Check whether the call is eligible 10647 /// for tail call optimization. 10648 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 10649 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 10650 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 10651 const SmallVector<CCValAssign, 16> &ArgLocs) const { 10652 10653 auto &Callee = CLI.Callee; 10654 auto CalleeCC = CLI.CallConv; 10655 auto &Outs = CLI.Outs; 10656 auto &Caller = MF.getFunction(); 10657 auto CallerCC = Caller.getCallingConv(); 10658 10659 // Exception-handling functions need a special set of instructions to 10660 // indicate a return to the hardware. Tail-calling another function would 10661 // probably break this. 10662 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 10663 // should be expanded as new function attributes are introduced. 10664 if (Caller.hasFnAttribute("interrupt")) 10665 return false; 10666 10667 // Do not tail call opt if the stack is used to pass parameters. 10668 if (CCInfo.getNextStackOffset() != 0) 10669 return false; 10670 10671 // Do not tail call opt if any parameters need to be passed indirectly. 10672 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 10673 // passed indirectly. So the address of the value will be passed in a 10674 // register, or if not available, then the address is put on the stack. In 10675 // order to pass indirectly, space on the stack often needs to be allocated 10676 // in order to store the value. In this case the CCInfo.getNextStackOffset() 10677 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 10678 // are passed CCValAssign::Indirect. 10679 for (auto &VA : ArgLocs) 10680 if (VA.getLocInfo() == CCValAssign::Indirect) 10681 return false; 10682 10683 // Do not tail call opt if either caller or callee uses struct return 10684 // semantics. 10685 auto IsCallerStructRet = Caller.hasStructRetAttr(); 10686 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 10687 if (IsCallerStructRet || IsCalleeStructRet) 10688 return false; 10689 10690 // Externally-defined functions with weak linkage should not be 10691 // tail-called. The behaviour of branch instructions in this situation (as 10692 // used for tail calls) is implementation-defined, so we cannot rely on the 10693 // linker replacing the tail call with a return. 10694 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 10695 const GlobalValue *GV = G->getGlobal(); 10696 if (GV->hasExternalWeakLinkage()) 10697 return false; 10698 } 10699 10700 // The callee has to preserve all registers the caller needs to preserve. 10701 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10702 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 10703 if (CalleeCC != CallerCC) { 10704 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 10705 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 10706 return false; 10707 } 10708 10709 // Byval parameters hand the function a pointer directly into the stack area 10710 // we want to reuse during a tail call. Working around this *is* possible 10711 // but less efficient and uglier in LowerCall. 10712 for (auto &Arg : Outs) 10713 if (Arg.Flags.isByVal()) 10714 return false; 10715 10716 return true; 10717 } 10718 10719 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 10720 return DAG.getDataLayout().getPrefTypeAlign( 10721 VT.getTypeForEVT(*DAG.getContext())); 10722 } 10723 10724 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 10725 // and output parameter nodes. 10726 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 10727 SmallVectorImpl<SDValue> &InVals) const { 10728 SelectionDAG &DAG = CLI.DAG; 10729 SDLoc &DL = CLI.DL; 10730 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 10731 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 10732 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 10733 SDValue Chain = CLI.Chain; 10734 SDValue Callee = CLI.Callee; 10735 bool &IsTailCall = CLI.IsTailCall; 10736 CallingConv::ID CallConv = CLI.CallConv; 10737 bool IsVarArg = CLI.IsVarArg; 10738 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10739 MVT XLenVT = Subtarget.getXLenVT(); 10740 10741 MachineFunction &MF = DAG.getMachineFunction(); 10742 10743 // Analyze the operands of the call, assigning locations to each operand. 10744 SmallVector<CCValAssign, 16> ArgLocs; 10745 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 10746 10747 if (CallConv == CallingConv::GHC) 10748 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 10749 else 10750 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 10751 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 10752 : CC_RISCV); 10753 10754 // Check if it's really possible to do a tail call. 10755 if (IsTailCall) 10756 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 10757 10758 if (IsTailCall) 10759 ++NumTailCalls; 10760 else if (CLI.CB && CLI.CB->isMustTailCall()) 10761 report_fatal_error("failed to perform tail call elimination on a call " 10762 "site marked musttail"); 10763 10764 // Get a count of how many bytes are to be pushed on the stack. 10765 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 10766 10767 // Create local copies for byval args 10768 SmallVector<SDValue, 8> ByValArgs; 10769 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 10770 ISD::ArgFlagsTy Flags = Outs[i].Flags; 10771 if (!Flags.isByVal()) 10772 continue; 10773 10774 SDValue Arg = OutVals[i]; 10775 unsigned Size = Flags.getByValSize(); 10776 Align Alignment = Flags.getNonZeroByValAlign(); 10777 10778 int FI = 10779 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 10780 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 10781 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 10782 10783 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 10784 /*IsVolatile=*/false, 10785 /*AlwaysInline=*/false, IsTailCall, 10786 MachinePointerInfo(), MachinePointerInfo()); 10787 ByValArgs.push_back(FIPtr); 10788 } 10789 10790 if (!IsTailCall) 10791 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 10792 10793 // Copy argument values to their designated locations. 10794 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 10795 SmallVector<SDValue, 8> MemOpChains; 10796 SDValue StackPtr; 10797 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 10798 CCValAssign &VA = ArgLocs[i]; 10799 SDValue ArgValue = OutVals[i]; 10800 ISD::ArgFlagsTy Flags = Outs[i].Flags; 10801 10802 // Handle passing f64 on RV32D with a soft float ABI as a special case. 10803 bool IsF64OnRV32DSoftABI = 10804 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 10805 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 10806 SDValue SplitF64 = DAG.getNode( 10807 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 10808 SDValue Lo = SplitF64.getValue(0); 10809 SDValue Hi = SplitF64.getValue(1); 10810 10811 Register RegLo = VA.getLocReg(); 10812 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 10813 10814 if (RegLo == RISCV::X17) { 10815 // Second half of f64 is passed on the stack. 10816 // Work out the address of the stack slot. 10817 if (!StackPtr.getNode()) 10818 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 10819 // Emit the store. 10820 MemOpChains.push_back( 10821 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 10822 } else { 10823 // Second half of f64 is passed in another GPR. 10824 assert(RegLo < RISCV::X31 && "Invalid register pair"); 10825 Register RegHigh = RegLo + 1; 10826 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 10827 } 10828 continue; 10829 } 10830 10831 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 10832 // as any other MemLoc. 10833 10834 // Promote the value if needed. 10835 // For now, only handle fully promoted and indirect arguments. 10836 if (VA.getLocInfo() == CCValAssign::Indirect) { 10837 // Store the argument in a stack slot and pass its address. 10838 Align StackAlign = 10839 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 10840 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 10841 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 10842 // If the original argument was split (e.g. i128), we need 10843 // to store the required parts of it here (and pass just one address). 10844 // Vectors may be partly split to registers and partly to the stack, in 10845 // which case the base address is partly offset and subsequent stores are 10846 // relative to that. 10847 unsigned ArgIndex = Outs[i].OrigArgIndex; 10848 unsigned ArgPartOffset = Outs[i].PartOffset; 10849 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 10850 // Calculate the total size to store. We don't have access to what we're 10851 // actually storing other than performing the loop and collecting the 10852 // info. 10853 SmallVector<std::pair<SDValue, SDValue>> Parts; 10854 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 10855 SDValue PartValue = OutVals[i + 1]; 10856 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 10857 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 10858 EVT PartVT = PartValue.getValueType(); 10859 if (PartVT.isScalableVector()) 10860 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 10861 StoredSize += PartVT.getStoreSize(); 10862 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 10863 Parts.push_back(std::make_pair(PartValue, Offset)); 10864 ++i; 10865 } 10866 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 10867 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 10868 MemOpChains.push_back( 10869 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 10870 MachinePointerInfo::getFixedStack(MF, FI))); 10871 for (const auto &Part : Parts) { 10872 SDValue PartValue = Part.first; 10873 SDValue PartOffset = Part.second; 10874 SDValue Address = 10875 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 10876 MemOpChains.push_back( 10877 DAG.getStore(Chain, DL, PartValue, Address, 10878 MachinePointerInfo::getFixedStack(MF, FI))); 10879 } 10880 ArgValue = SpillSlot; 10881 } else { 10882 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 10883 } 10884 10885 // Use local copy if it is a byval arg. 10886 if (Flags.isByVal()) 10887 ArgValue = ByValArgs[j++]; 10888 10889 if (VA.isRegLoc()) { 10890 // Queue up the argument copies and emit them at the end. 10891 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 10892 } else { 10893 assert(VA.isMemLoc() && "Argument not register or memory"); 10894 assert(!IsTailCall && "Tail call not allowed if stack is used " 10895 "for passing parameters"); 10896 10897 // Work out the address of the stack slot. 10898 if (!StackPtr.getNode()) 10899 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 10900 SDValue Address = 10901 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 10902 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 10903 10904 // Emit the store. 10905 MemOpChains.push_back( 10906 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 10907 } 10908 } 10909 10910 // Join the stores, which are independent of one another. 10911 if (!MemOpChains.empty()) 10912 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 10913 10914 SDValue Glue; 10915 10916 // Build a sequence of copy-to-reg nodes, chained and glued together. 10917 for (auto &Reg : RegsToPass) { 10918 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 10919 Glue = Chain.getValue(1); 10920 } 10921 10922 // Validate that none of the argument registers have been marked as 10923 // reserved, if so report an error. Do the same for the return address if this 10924 // is not a tailcall. 10925 validateCCReservedRegs(RegsToPass, MF); 10926 if (!IsTailCall && 10927 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 10928 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10929 MF.getFunction(), 10930 "Return address register required, but has been reserved."}); 10931 10932 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 10933 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 10934 // split it and then direct call can be matched by PseudoCALL. 10935 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 10936 const GlobalValue *GV = S->getGlobal(); 10937 10938 unsigned OpFlags = RISCVII::MO_CALL; 10939 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 10940 OpFlags = RISCVII::MO_PLT; 10941 10942 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 10943 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 10944 unsigned OpFlags = RISCVII::MO_CALL; 10945 10946 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 10947 nullptr)) 10948 OpFlags = RISCVII::MO_PLT; 10949 10950 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 10951 } 10952 10953 // The first call operand is the chain and the second is the target address. 10954 SmallVector<SDValue, 8> Ops; 10955 Ops.push_back(Chain); 10956 Ops.push_back(Callee); 10957 10958 // Add argument registers to the end of the list so that they are 10959 // known live into the call. 10960 for (auto &Reg : RegsToPass) 10961 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 10962 10963 if (!IsTailCall) { 10964 // Add a register mask operand representing the call-preserved registers. 10965 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10966 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 10967 assert(Mask && "Missing call preserved mask for calling convention"); 10968 Ops.push_back(DAG.getRegisterMask(Mask)); 10969 } 10970 10971 // Glue the call to the argument copies, if any. 10972 if (Glue.getNode()) 10973 Ops.push_back(Glue); 10974 10975 // Emit the call. 10976 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10977 10978 if (IsTailCall) { 10979 MF.getFrameInfo().setHasTailCall(); 10980 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 10981 } 10982 10983 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 10984 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 10985 Glue = Chain.getValue(1); 10986 10987 // Mark the end of the call, which is glued to the call itself. 10988 Chain = DAG.getCALLSEQ_END(Chain, 10989 DAG.getConstant(NumBytes, DL, PtrVT, true), 10990 DAG.getConstant(0, DL, PtrVT, true), 10991 Glue, DL); 10992 Glue = Chain.getValue(1); 10993 10994 // Assign locations to each value returned by this call. 10995 SmallVector<CCValAssign, 16> RVLocs; 10996 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 10997 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 10998 10999 // Copy all of the result registers out of their specified physreg. 11000 for (auto &VA : RVLocs) { 11001 // Copy the value out 11002 SDValue RetValue = 11003 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 11004 // Glue the RetValue to the end of the call sequence 11005 Chain = RetValue.getValue(1); 11006 Glue = RetValue.getValue(2); 11007 11008 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 11009 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 11010 SDValue RetValue2 = 11011 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 11012 Chain = RetValue2.getValue(1); 11013 Glue = RetValue2.getValue(2); 11014 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 11015 RetValue2); 11016 } 11017 11018 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 11019 11020 InVals.push_back(RetValue); 11021 } 11022 11023 return Chain; 11024 } 11025 11026 bool RISCVTargetLowering::CanLowerReturn( 11027 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 11028 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 11029 SmallVector<CCValAssign, 16> RVLocs; 11030 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 11031 11032 Optional<unsigned> FirstMaskArgument; 11033 if (Subtarget.hasVInstructions()) 11034 FirstMaskArgument = preAssignMask(Outs); 11035 11036 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 11037 MVT VT = Outs[i].VT; 11038 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 11039 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 11040 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 11041 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 11042 *this, FirstMaskArgument)) 11043 return false; 11044 } 11045 return true; 11046 } 11047 11048 SDValue 11049 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 11050 bool IsVarArg, 11051 const SmallVectorImpl<ISD::OutputArg> &Outs, 11052 const SmallVectorImpl<SDValue> &OutVals, 11053 const SDLoc &DL, SelectionDAG &DAG) const { 11054 const MachineFunction &MF = DAG.getMachineFunction(); 11055 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 11056 11057 // Stores the assignment of the return value to a location. 11058 SmallVector<CCValAssign, 16> RVLocs; 11059 11060 // Info about the registers and stack slot. 11061 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 11062 *DAG.getContext()); 11063 11064 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 11065 nullptr, CC_RISCV); 11066 11067 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 11068 report_fatal_error("GHC functions return void only"); 11069 11070 SDValue Glue; 11071 SmallVector<SDValue, 4> RetOps(1, Chain); 11072 11073 // Copy the result values into the output registers. 11074 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 11075 SDValue Val = OutVals[i]; 11076 CCValAssign &VA = RVLocs[i]; 11077 assert(VA.isRegLoc() && "Can only return in registers!"); 11078 11079 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 11080 // Handle returning f64 on RV32D with a soft float ABI. 11081 assert(VA.isRegLoc() && "Expected return via registers"); 11082 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 11083 DAG.getVTList(MVT::i32, MVT::i32), Val); 11084 SDValue Lo = SplitF64.getValue(0); 11085 SDValue Hi = SplitF64.getValue(1); 11086 Register RegLo = VA.getLocReg(); 11087 assert(RegLo < RISCV::X31 && "Invalid register pair"); 11088 Register RegHi = RegLo + 1; 11089 11090 if (STI.isRegisterReservedByUser(RegLo) || 11091 STI.isRegisterReservedByUser(RegHi)) 11092 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 11093 MF.getFunction(), 11094 "Return value register required, but has been reserved."}); 11095 11096 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 11097 Glue = Chain.getValue(1); 11098 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 11099 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 11100 Glue = Chain.getValue(1); 11101 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 11102 } else { 11103 // Handle a 'normal' return. 11104 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 11105 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 11106 11107 if (STI.isRegisterReservedByUser(VA.getLocReg())) 11108 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 11109 MF.getFunction(), 11110 "Return value register required, but has been reserved."}); 11111 11112 // Guarantee that all emitted copies are stuck together. 11113 Glue = Chain.getValue(1); 11114 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 11115 } 11116 } 11117 11118 RetOps[0] = Chain; // Update chain. 11119 11120 // Add the glue node if we have it. 11121 if (Glue.getNode()) { 11122 RetOps.push_back(Glue); 11123 } 11124 11125 unsigned RetOpc = RISCVISD::RET_FLAG; 11126 // Interrupt service routines use different return instructions. 11127 const Function &Func = DAG.getMachineFunction().getFunction(); 11128 if (Func.hasFnAttribute("interrupt")) { 11129 if (!Func.getReturnType()->isVoidTy()) 11130 report_fatal_error( 11131 "Functions with the interrupt attribute must have void return type!"); 11132 11133 MachineFunction &MF = DAG.getMachineFunction(); 11134 StringRef Kind = 11135 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 11136 11137 if (Kind == "user") 11138 RetOpc = RISCVISD::URET_FLAG; 11139 else if (Kind == "supervisor") 11140 RetOpc = RISCVISD::SRET_FLAG; 11141 else 11142 RetOpc = RISCVISD::MRET_FLAG; 11143 } 11144 11145 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 11146 } 11147 11148 void RISCVTargetLowering::validateCCReservedRegs( 11149 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 11150 MachineFunction &MF) const { 11151 const Function &F = MF.getFunction(); 11152 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 11153 11154 if (llvm::any_of(Regs, [&STI](auto Reg) { 11155 return STI.isRegisterReservedByUser(Reg.first); 11156 })) 11157 F.getContext().diagnose(DiagnosticInfoUnsupported{ 11158 F, "Argument register required, but has been reserved."}); 11159 } 11160 11161 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 11162 return CI->isTailCall(); 11163 } 11164 11165 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 11166 #define NODE_NAME_CASE(NODE) \ 11167 case RISCVISD::NODE: \ 11168 return "RISCVISD::" #NODE; 11169 // clang-format off 11170 switch ((RISCVISD::NodeType)Opcode) { 11171 case RISCVISD::FIRST_NUMBER: 11172 break; 11173 NODE_NAME_CASE(RET_FLAG) 11174 NODE_NAME_CASE(URET_FLAG) 11175 NODE_NAME_CASE(SRET_FLAG) 11176 NODE_NAME_CASE(MRET_FLAG) 11177 NODE_NAME_CASE(CALL) 11178 NODE_NAME_CASE(SELECT_CC) 11179 NODE_NAME_CASE(BR_CC) 11180 NODE_NAME_CASE(BuildPairF64) 11181 NODE_NAME_CASE(SplitF64) 11182 NODE_NAME_CASE(TAIL) 11183 NODE_NAME_CASE(ADD_LO) 11184 NODE_NAME_CASE(HI) 11185 NODE_NAME_CASE(LLA) 11186 NODE_NAME_CASE(ADD_TPREL) 11187 NODE_NAME_CASE(MULHSU) 11188 NODE_NAME_CASE(SLLW) 11189 NODE_NAME_CASE(SRAW) 11190 NODE_NAME_CASE(SRLW) 11191 NODE_NAME_CASE(DIVW) 11192 NODE_NAME_CASE(DIVUW) 11193 NODE_NAME_CASE(REMUW) 11194 NODE_NAME_CASE(ROLW) 11195 NODE_NAME_CASE(RORW) 11196 NODE_NAME_CASE(CLZW) 11197 NODE_NAME_CASE(CTZW) 11198 NODE_NAME_CASE(FSLW) 11199 NODE_NAME_CASE(FSRW) 11200 NODE_NAME_CASE(FSL) 11201 NODE_NAME_CASE(FSR) 11202 NODE_NAME_CASE(FMV_H_X) 11203 NODE_NAME_CASE(FMV_X_ANYEXTH) 11204 NODE_NAME_CASE(FMV_X_SIGNEXTH) 11205 NODE_NAME_CASE(FMV_W_X_RV64) 11206 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 11207 NODE_NAME_CASE(FCVT_X) 11208 NODE_NAME_CASE(FCVT_XU) 11209 NODE_NAME_CASE(FCVT_W_RV64) 11210 NODE_NAME_CASE(FCVT_WU_RV64) 11211 NODE_NAME_CASE(STRICT_FCVT_W_RV64) 11212 NODE_NAME_CASE(STRICT_FCVT_WU_RV64) 11213 NODE_NAME_CASE(READ_CYCLE_WIDE) 11214 NODE_NAME_CASE(GREV) 11215 NODE_NAME_CASE(GREVW) 11216 NODE_NAME_CASE(GORC) 11217 NODE_NAME_CASE(GORCW) 11218 NODE_NAME_CASE(SHFL) 11219 NODE_NAME_CASE(SHFLW) 11220 NODE_NAME_CASE(UNSHFL) 11221 NODE_NAME_CASE(UNSHFLW) 11222 NODE_NAME_CASE(BFP) 11223 NODE_NAME_CASE(BFPW) 11224 NODE_NAME_CASE(BCOMPRESS) 11225 NODE_NAME_CASE(BCOMPRESSW) 11226 NODE_NAME_CASE(BDECOMPRESS) 11227 NODE_NAME_CASE(BDECOMPRESSW) 11228 NODE_NAME_CASE(VMV_V_X_VL) 11229 NODE_NAME_CASE(VFMV_V_F_VL) 11230 NODE_NAME_CASE(VMV_X_S) 11231 NODE_NAME_CASE(VMV_S_X_VL) 11232 NODE_NAME_CASE(VFMV_S_F_VL) 11233 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 11234 NODE_NAME_CASE(READ_VLENB) 11235 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 11236 NODE_NAME_CASE(VSLIDEUP_VL) 11237 NODE_NAME_CASE(VSLIDE1UP_VL) 11238 NODE_NAME_CASE(VSLIDEDOWN_VL) 11239 NODE_NAME_CASE(VSLIDE1DOWN_VL) 11240 NODE_NAME_CASE(VID_VL) 11241 NODE_NAME_CASE(VFNCVT_ROD_VL) 11242 NODE_NAME_CASE(VECREDUCE_ADD_VL) 11243 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 11244 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 11245 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 11246 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 11247 NODE_NAME_CASE(VECREDUCE_AND_VL) 11248 NODE_NAME_CASE(VECREDUCE_OR_VL) 11249 NODE_NAME_CASE(VECREDUCE_XOR_VL) 11250 NODE_NAME_CASE(VECREDUCE_FADD_VL) 11251 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 11252 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 11253 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 11254 NODE_NAME_CASE(ADD_VL) 11255 NODE_NAME_CASE(AND_VL) 11256 NODE_NAME_CASE(MUL_VL) 11257 NODE_NAME_CASE(OR_VL) 11258 NODE_NAME_CASE(SDIV_VL) 11259 NODE_NAME_CASE(SHL_VL) 11260 NODE_NAME_CASE(SREM_VL) 11261 NODE_NAME_CASE(SRA_VL) 11262 NODE_NAME_CASE(SRL_VL) 11263 NODE_NAME_CASE(SUB_VL) 11264 NODE_NAME_CASE(UDIV_VL) 11265 NODE_NAME_CASE(UREM_VL) 11266 NODE_NAME_CASE(XOR_VL) 11267 NODE_NAME_CASE(SADDSAT_VL) 11268 NODE_NAME_CASE(UADDSAT_VL) 11269 NODE_NAME_CASE(SSUBSAT_VL) 11270 NODE_NAME_CASE(USUBSAT_VL) 11271 NODE_NAME_CASE(FADD_VL) 11272 NODE_NAME_CASE(FSUB_VL) 11273 NODE_NAME_CASE(FMUL_VL) 11274 NODE_NAME_CASE(FDIV_VL) 11275 NODE_NAME_CASE(FNEG_VL) 11276 NODE_NAME_CASE(FABS_VL) 11277 NODE_NAME_CASE(FSQRT_VL) 11278 NODE_NAME_CASE(FMA_VL) 11279 NODE_NAME_CASE(FCOPYSIGN_VL) 11280 NODE_NAME_CASE(SMIN_VL) 11281 NODE_NAME_CASE(SMAX_VL) 11282 NODE_NAME_CASE(UMIN_VL) 11283 NODE_NAME_CASE(UMAX_VL) 11284 NODE_NAME_CASE(FMINNUM_VL) 11285 NODE_NAME_CASE(FMAXNUM_VL) 11286 NODE_NAME_CASE(MULHS_VL) 11287 NODE_NAME_CASE(MULHU_VL) 11288 NODE_NAME_CASE(FP_TO_SINT_VL) 11289 NODE_NAME_CASE(FP_TO_UINT_VL) 11290 NODE_NAME_CASE(SINT_TO_FP_VL) 11291 NODE_NAME_CASE(UINT_TO_FP_VL) 11292 NODE_NAME_CASE(FP_EXTEND_VL) 11293 NODE_NAME_CASE(FP_ROUND_VL) 11294 NODE_NAME_CASE(VWMUL_VL) 11295 NODE_NAME_CASE(VWMULU_VL) 11296 NODE_NAME_CASE(VWMULSU_VL) 11297 NODE_NAME_CASE(VWADD_VL) 11298 NODE_NAME_CASE(VWADDU_VL) 11299 NODE_NAME_CASE(VWSUB_VL) 11300 NODE_NAME_CASE(VWSUBU_VL) 11301 NODE_NAME_CASE(VWADD_W_VL) 11302 NODE_NAME_CASE(VWADDU_W_VL) 11303 NODE_NAME_CASE(VWSUB_W_VL) 11304 NODE_NAME_CASE(VWSUBU_W_VL) 11305 NODE_NAME_CASE(SETCC_VL) 11306 NODE_NAME_CASE(VSELECT_VL) 11307 NODE_NAME_CASE(VP_MERGE_VL) 11308 NODE_NAME_CASE(VMAND_VL) 11309 NODE_NAME_CASE(VMOR_VL) 11310 NODE_NAME_CASE(VMXOR_VL) 11311 NODE_NAME_CASE(VMCLR_VL) 11312 NODE_NAME_CASE(VMSET_VL) 11313 NODE_NAME_CASE(VRGATHER_VX_VL) 11314 NODE_NAME_CASE(VRGATHER_VV_VL) 11315 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 11316 NODE_NAME_CASE(VSEXT_VL) 11317 NODE_NAME_CASE(VZEXT_VL) 11318 NODE_NAME_CASE(VCPOP_VL) 11319 NODE_NAME_CASE(READ_CSR) 11320 NODE_NAME_CASE(WRITE_CSR) 11321 NODE_NAME_CASE(SWAP_CSR) 11322 } 11323 // clang-format on 11324 return nullptr; 11325 #undef NODE_NAME_CASE 11326 } 11327 11328 /// getConstraintType - Given a constraint letter, return the type of 11329 /// constraint it is for this target. 11330 RISCVTargetLowering::ConstraintType 11331 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 11332 if (Constraint.size() == 1) { 11333 switch (Constraint[0]) { 11334 default: 11335 break; 11336 case 'f': 11337 return C_RegisterClass; 11338 case 'I': 11339 case 'J': 11340 case 'K': 11341 return C_Immediate; 11342 case 'A': 11343 return C_Memory; 11344 case 'S': // A symbolic address 11345 return C_Other; 11346 } 11347 } else { 11348 if (Constraint == "vr" || Constraint == "vm") 11349 return C_RegisterClass; 11350 } 11351 return TargetLowering::getConstraintType(Constraint); 11352 } 11353 11354 std::pair<unsigned, const TargetRegisterClass *> 11355 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 11356 StringRef Constraint, 11357 MVT VT) const { 11358 // First, see if this is a constraint that directly corresponds to a 11359 // RISCV register class. 11360 if (Constraint.size() == 1) { 11361 switch (Constraint[0]) { 11362 case 'r': 11363 // TODO: Support fixed vectors up to XLen for P extension? 11364 if (VT.isVector()) 11365 break; 11366 return std::make_pair(0U, &RISCV::GPRRegClass); 11367 case 'f': 11368 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 11369 return std::make_pair(0U, &RISCV::FPR16RegClass); 11370 if (Subtarget.hasStdExtF() && VT == MVT::f32) 11371 return std::make_pair(0U, &RISCV::FPR32RegClass); 11372 if (Subtarget.hasStdExtD() && VT == MVT::f64) 11373 return std::make_pair(0U, &RISCV::FPR64RegClass); 11374 break; 11375 default: 11376 break; 11377 } 11378 } else if (Constraint == "vr") { 11379 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 11380 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 11381 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 11382 return std::make_pair(0U, RC); 11383 } 11384 } else if (Constraint == "vm") { 11385 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 11386 return std::make_pair(0U, &RISCV::VMV0RegClass); 11387 } 11388 11389 // Clang will correctly decode the usage of register name aliases into their 11390 // official names. However, other frontends like `rustc` do not. This allows 11391 // users of these frontends to use the ABI names for registers in LLVM-style 11392 // register constraints. 11393 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 11394 .Case("{zero}", RISCV::X0) 11395 .Case("{ra}", RISCV::X1) 11396 .Case("{sp}", RISCV::X2) 11397 .Case("{gp}", RISCV::X3) 11398 .Case("{tp}", RISCV::X4) 11399 .Case("{t0}", RISCV::X5) 11400 .Case("{t1}", RISCV::X6) 11401 .Case("{t2}", RISCV::X7) 11402 .Cases("{s0}", "{fp}", RISCV::X8) 11403 .Case("{s1}", RISCV::X9) 11404 .Case("{a0}", RISCV::X10) 11405 .Case("{a1}", RISCV::X11) 11406 .Case("{a2}", RISCV::X12) 11407 .Case("{a3}", RISCV::X13) 11408 .Case("{a4}", RISCV::X14) 11409 .Case("{a5}", RISCV::X15) 11410 .Case("{a6}", RISCV::X16) 11411 .Case("{a7}", RISCV::X17) 11412 .Case("{s2}", RISCV::X18) 11413 .Case("{s3}", RISCV::X19) 11414 .Case("{s4}", RISCV::X20) 11415 .Case("{s5}", RISCV::X21) 11416 .Case("{s6}", RISCV::X22) 11417 .Case("{s7}", RISCV::X23) 11418 .Case("{s8}", RISCV::X24) 11419 .Case("{s9}", RISCV::X25) 11420 .Case("{s10}", RISCV::X26) 11421 .Case("{s11}", RISCV::X27) 11422 .Case("{t3}", RISCV::X28) 11423 .Case("{t4}", RISCV::X29) 11424 .Case("{t5}", RISCV::X30) 11425 .Case("{t6}", RISCV::X31) 11426 .Default(RISCV::NoRegister); 11427 if (XRegFromAlias != RISCV::NoRegister) 11428 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 11429 11430 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 11431 // TableGen record rather than the AsmName to choose registers for InlineAsm 11432 // constraints, plus we want to match those names to the widest floating point 11433 // register type available, manually select floating point registers here. 11434 // 11435 // The second case is the ABI name of the register, so that frontends can also 11436 // use the ABI names in register constraint lists. 11437 if (Subtarget.hasStdExtF()) { 11438 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 11439 .Cases("{f0}", "{ft0}", RISCV::F0_F) 11440 .Cases("{f1}", "{ft1}", RISCV::F1_F) 11441 .Cases("{f2}", "{ft2}", RISCV::F2_F) 11442 .Cases("{f3}", "{ft3}", RISCV::F3_F) 11443 .Cases("{f4}", "{ft4}", RISCV::F4_F) 11444 .Cases("{f5}", "{ft5}", RISCV::F5_F) 11445 .Cases("{f6}", "{ft6}", RISCV::F6_F) 11446 .Cases("{f7}", "{ft7}", RISCV::F7_F) 11447 .Cases("{f8}", "{fs0}", RISCV::F8_F) 11448 .Cases("{f9}", "{fs1}", RISCV::F9_F) 11449 .Cases("{f10}", "{fa0}", RISCV::F10_F) 11450 .Cases("{f11}", "{fa1}", RISCV::F11_F) 11451 .Cases("{f12}", "{fa2}", RISCV::F12_F) 11452 .Cases("{f13}", "{fa3}", RISCV::F13_F) 11453 .Cases("{f14}", "{fa4}", RISCV::F14_F) 11454 .Cases("{f15}", "{fa5}", RISCV::F15_F) 11455 .Cases("{f16}", "{fa6}", RISCV::F16_F) 11456 .Cases("{f17}", "{fa7}", RISCV::F17_F) 11457 .Cases("{f18}", "{fs2}", RISCV::F18_F) 11458 .Cases("{f19}", "{fs3}", RISCV::F19_F) 11459 .Cases("{f20}", "{fs4}", RISCV::F20_F) 11460 .Cases("{f21}", "{fs5}", RISCV::F21_F) 11461 .Cases("{f22}", "{fs6}", RISCV::F22_F) 11462 .Cases("{f23}", "{fs7}", RISCV::F23_F) 11463 .Cases("{f24}", "{fs8}", RISCV::F24_F) 11464 .Cases("{f25}", "{fs9}", RISCV::F25_F) 11465 .Cases("{f26}", "{fs10}", RISCV::F26_F) 11466 .Cases("{f27}", "{fs11}", RISCV::F27_F) 11467 .Cases("{f28}", "{ft8}", RISCV::F28_F) 11468 .Cases("{f29}", "{ft9}", RISCV::F29_F) 11469 .Cases("{f30}", "{ft10}", RISCV::F30_F) 11470 .Cases("{f31}", "{ft11}", RISCV::F31_F) 11471 .Default(RISCV::NoRegister); 11472 if (FReg != RISCV::NoRegister) { 11473 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 11474 if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) { 11475 unsigned RegNo = FReg - RISCV::F0_F; 11476 unsigned DReg = RISCV::F0_D + RegNo; 11477 return std::make_pair(DReg, &RISCV::FPR64RegClass); 11478 } 11479 if (VT == MVT::f32 || VT == MVT::Other) 11480 return std::make_pair(FReg, &RISCV::FPR32RegClass); 11481 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) { 11482 unsigned RegNo = FReg - RISCV::F0_F; 11483 unsigned HReg = RISCV::F0_H + RegNo; 11484 return std::make_pair(HReg, &RISCV::FPR16RegClass); 11485 } 11486 } 11487 } 11488 11489 if (Subtarget.hasVInstructions()) { 11490 Register VReg = StringSwitch<Register>(Constraint.lower()) 11491 .Case("{v0}", RISCV::V0) 11492 .Case("{v1}", RISCV::V1) 11493 .Case("{v2}", RISCV::V2) 11494 .Case("{v3}", RISCV::V3) 11495 .Case("{v4}", RISCV::V4) 11496 .Case("{v5}", RISCV::V5) 11497 .Case("{v6}", RISCV::V6) 11498 .Case("{v7}", RISCV::V7) 11499 .Case("{v8}", RISCV::V8) 11500 .Case("{v9}", RISCV::V9) 11501 .Case("{v10}", RISCV::V10) 11502 .Case("{v11}", RISCV::V11) 11503 .Case("{v12}", RISCV::V12) 11504 .Case("{v13}", RISCV::V13) 11505 .Case("{v14}", RISCV::V14) 11506 .Case("{v15}", RISCV::V15) 11507 .Case("{v16}", RISCV::V16) 11508 .Case("{v17}", RISCV::V17) 11509 .Case("{v18}", RISCV::V18) 11510 .Case("{v19}", RISCV::V19) 11511 .Case("{v20}", RISCV::V20) 11512 .Case("{v21}", RISCV::V21) 11513 .Case("{v22}", RISCV::V22) 11514 .Case("{v23}", RISCV::V23) 11515 .Case("{v24}", RISCV::V24) 11516 .Case("{v25}", RISCV::V25) 11517 .Case("{v26}", RISCV::V26) 11518 .Case("{v27}", RISCV::V27) 11519 .Case("{v28}", RISCV::V28) 11520 .Case("{v29}", RISCV::V29) 11521 .Case("{v30}", RISCV::V30) 11522 .Case("{v31}", RISCV::V31) 11523 .Default(RISCV::NoRegister); 11524 if (VReg != RISCV::NoRegister) { 11525 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 11526 return std::make_pair(VReg, &RISCV::VMRegClass); 11527 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 11528 return std::make_pair(VReg, &RISCV::VRRegClass); 11529 for (const auto *RC : 11530 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 11531 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 11532 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 11533 return std::make_pair(VReg, RC); 11534 } 11535 } 11536 } 11537 } 11538 11539 std::pair<Register, const TargetRegisterClass *> Res = 11540 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 11541 11542 // If we picked one of the Zfinx register classes, remap it to the GPR class. 11543 // FIXME: When Zfinx is supported in CodeGen this will need to take the 11544 // Subtarget into account. 11545 if (Res.second == &RISCV::GPRF16RegClass || 11546 Res.second == &RISCV::GPRF32RegClass || 11547 Res.second == &RISCV::GPRF64RegClass) 11548 return std::make_pair(Res.first, &RISCV::GPRRegClass); 11549 11550 return Res; 11551 } 11552 11553 unsigned 11554 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 11555 // Currently only support length 1 constraints. 11556 if (ConstraintCode.size() == 1) { 11557 switch (ConstraintCode[0]) { 11558 case 'A': 11559 return InlineAsm::Constraint_A; 11560 default: 11561 break; 11562 } 11563 } 11564 11565 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 11566 } 11567 11568 void RISCVTargetLowering::LowerAsmOperandForConstraint( 11569 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 11570 SelectionDAG &DAG) const { 11571 // Currently only support length 1 constraints. 11572 if (Constraint.length() == 1) { 11573 switch (Constraint[0]) { 11574 case 'I': 11575 // Validate & create a 12-bit signed immediate operand. 11576 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 11577 uint64_t CVal = C->getSExtValue(); 11578 if (isInt<12>(CVal)) 11579 Ops.push_back( 11580 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 11581 } 11582 return; 11583 case 'J': 11584 // Validate & create an integer zero operand. 11585 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 11586 if (C->getZExtValue() == 0) 11587 Ops.push_back( 11588 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 11589 return; 11590 case 'K': 11591 // Validate & create a 5-bit unsigned immediate operand. 11592 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 11593 uint64_t CVal = C->getZExtValue(); 11594 if (isUInt<5>(CVal)) 11595 Ops.push_back( 11596 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 11597 } 11598 return; 11599 case 'S': 11600 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 11601 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 11602 GA->getValueType(0))); 11603 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 11604 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 11605 BA->getValueType(0))); 11606 } 11607 return; 11608 default: 11609 break; 11610 } 11611 } 11612 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 11613 } 11614 11615 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 11616 Instruction *Inst, 11617 AtomicOrdering Ord) const { 11618 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 11619 return Builder.CreateFence(Ord); 11620 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 11621 return Builder.CreateFence(AtomicOrdering::Release); 11622 return nullptr; 11623 } 11624 11625 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 11626 Instruction *Inst, 11627 AtomicOrdering Ord) const { 11628 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 11629 return Builder.CreateFence(AtomicOrdering::Acquire); 11630 return nullptr; 11631 } 11632 11633 TargetLowering::AtomicExpansionKind 11634 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 11635 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 11636 // point operations can't be used in an lr/sc sequence without breaking the 11637 // forward-progress guarantee. 11638 if (AI->isFloatingPointOperation()) 11639 return AtomicExpansionKind::CmpXChg; 11640 11641 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 11642 if (Size == 8 || Size == 16) 11643 return AtomicExpansionKind::MaskedIntrinsic; 11644 return AtomicExpansionKind::None; 11645 } 11646 11647 static Intrinsic::ID 11648 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 11649 if (XLen == 32) { 11650 switch (BinOp) { 11651 default: 11652 llvm_unreachable("Unexpected AtomicRMW BinOp"); 11653 case AtomicRMWInst::Xchg: 11654 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 11655 case AtomicRMWInst::Add: 11656 return Intrinsic::riscv_masked_atomicrmw_add_i32; 11657 case AtomicRMWInst::Sub: 11658 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 11659 case AtomicRMWInst::Nand: 11660 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 11661 case AtomicRMWInst::Max: 11662 return Intrinsic::riscv_masked_atomicrmw_max_i32; 11663 case AtomicRMWInst::Min: 11664 return Intrinsic::riscv_masked_atomicrmw_min_i32; 11665 case AtomicRMWInst::UMax: 11666 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 11667 case AtomicRMWInst::UMin: 11668 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 11669 } 11670 } 11671 11672 if (XLen == 64) { 11673 switch (BinOp) { 11674 default: 11675 llvm_unreachable("Unexpected AtomicRMW BinOp"); 11676 case AtomicRMWInst::Xchg: 11677 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 11678 case AtomicRMWInst::Add: 11679 return Intrinsic::riscv_masked_atomicrmw_add_i64; 11680 case AtomicRMWInst::Sub: 11681 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 11682 case AtomicRMWInst::Nand: 11683 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 11684 case AtomicRMWInst::Max: 11685 return Intrinsic::riscv_masked_atomicrmw_max_i64; 11686 case AtomicRMWInst::Min: 11687 return Intrinsic::riscv_masked_atomicrmw_min_i64; 11688 case AtomicRMWInst::UMax: 11689 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 11690 case AtomicRMWInst::UMin: 11691 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 11692 } 11693 } 11694 11695 llvm_unreachable("Unexpected XLen\n"); 11696 } 11697 11698 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 11699 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 11700 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 11701 unsigned XLen = Subtarget.getXLen(); 11702 Value *Ordering = 11703 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 11704 Type *Tys[] = {AlignedAddr->getType()}; 11705 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 11706 AI->getModule(), 11707 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 11708 11709 if (XLen == 64) { 11710 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 11711 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 11712 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 11713 } 11714 11715 Value *Result; 11716 11717 // Must pass the shift amount needed to sign extend the loaded value prior 11718 // to performing a signed comparison for min/max. ShiftAmt is the number of 11719 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 11720 // is the number of bits to left+right shift the value in order to 11721 // sign-extend. 11722 if (AI->getOperation() == AtomicRMWInst::Min || 11723 AI->getOperation() == AtomicRMWInst::Max) { 11724 const DataLayout &DL = AI->getModule()->getDataLayout(); 11725 unsigned ValWidth = 11726 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 11727 Value *SextShamt = 11728 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 11729 Result = Builder.CreateCall(LrwOpScwLoop, 11730 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 11731 } else { 11732 Result = 11733 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 11734 } 11735 11736 if (XLen == 64) 11737 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 11738 return Result; 11739 } 11740 11741 TargetLowering::AtomicExpansionKind 11742 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 11743 AtomicCmpXchgInst *CI) const { 11744 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 11745 if (Size == 8 || Size == 16) 11746 return AtomicExpansionKind::MaskedIntrinsic; 11747 return AtomicExpansionKind::None; 11748 } 11749 11750 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 11751 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 11752 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 11753 unsigned XLen = Subtarget.getXLen(); 11754 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 11755 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 11756 if (XLen == 64) { 11757 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 11758 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 11759 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 11760 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 11761 } 11762 Type *Tys[] = {AlignedAddr->getType()}; 11763 Function *MaskedCmpXchg = 11764 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 11765 Value *Result = Builder.CreateCall( 11766 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 11767 if (XLen == 64) 11768 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 11769 return Result; 11770 } 11771 11772 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT IndexVT, 11773 EVT DataVT) const { 11774 return false; 11775 } 11776 11777 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 11778 EVT VT) const { 11779 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 11780 return false; 11781 11782 switch (FPVT.getSimpleVT().SimpleTy) { 11783 case MVT::f16: 11784 return Subtarget.hasStdExtZfh(); 11785 case MVT::f32: 11786 return Subtarget.hasStdExtF(); 11787 case MVT::f64: 11788 return Subtarget.hasStdExtD(); 11789 default: 11790 return false; 11791 } 11792 } 11793 11794 unsigned RISCVTargetLowering::getJumpTableEncoding() const { 11795 // If we are using the small code model, we can reduce size of jump table 11796 // entry to 4 bytes. 11797 if (Subtarget.is64Bit() && !isPositionIndependent() && 11798 getTargetMachine().getCodeModel() == CodeModel::Small) { 11799 return MachineJumpTableInfo::EK_Custom32; 11800 } 11801 return TargetLowering::getJumpTableEncoding(); 11802 } 11803 11804 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry( 11805 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 11806 unsigned uid, MCContext &Ctx) const { 11807 assert(Subtarget.is64Bit() && !isPositionIndependent() && 11808 getTargetMachine().getCodeModel() == CodeModel::Small); 11809 return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 11810 } 11811 11812 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 11813 EVT VT) const { 11814 VT = VT.getScalarType(); 11815 11816 if (!VT.isSimple()) 11817 return false; 11818 11819 switch (VT.getSimpleVT().SimpleTy) { 11820 case MVT::f16: 11821 return Subtarget.hasStdExtZfh(); 11822 case MVT::f32: 11823 return Subtarget.hasStdExtF(); 11824 case MVT::f64: 11825 return Subtarget.hasStdExtD(); 11826 default: 11827 break; 11828 } 11829 11830 return false; 11831 } 11832 11833 Register RISCVTargetLowering::getExceptionPointerRegister( 11834 const Constant *PersonalityFn) const { 11835 return RISCV::X10; 11836 } 11837 11838 Register RISCVTargetLowering::getExceptionSelectorRegister( 11839 const Constant *PersonalityFn) const { 11840 return RISCV::X11; 11841 } 11842 11843 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 11844 // Return false to suppress the unnecessary extensions if the LibCall 11845 // arguments or return value is f32 type for LP64 ABI. 11846 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 11847 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 11848 return false; 11849 11850 return true; 11851 } 11852 11853 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 11854 if (Subtarget.is64Bit() && Type == MVT::i32) 11855 return true; 11856 11857 return IsSigned; 11858 } 11859 11860 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 11861 SDValue C) const { 11862 // Check integral scalar types. 11863 if (VT.isScalarInteger()) { 11864 // Omit the optimization if the sub target has the M extension and the data 11865 // size exceeds XLen. 11866 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 11867 return false; 11868 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 11869 // Break the MUL to a SLLI and an ADD/SUB. 11870 const APInt &Imm = ConstNode->getAPIntValue(); 11871 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 11872 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 11873 return true; 11874 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 11875 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 11876 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 11877 (Imm - 8).isPowerOf2())) 11878 return true; 11879 // Omit the following optimization if the sub target has the M extension 11880 // and the data size >= XLen. 11881 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 11882 return false; 11883 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 11884 // a pair of LUI/ADDI. 11885 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 11886 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 11887 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 11888 (1 - ImmS).isPowerOf2()) 11889 return true; 11890 } 11891 } 11892 } 11893 11894 return false; 11895 } 11896 11897 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode, 11898 SDValue ConstNode) const { 11899 // Let the DAGCombiner decide for vectors. 11900 EVT VT = AddNode.getValueType(); 11901 if (VT.isVector()) 11902 return true; 11903 11904 // Let the DAGCombiner decide for larger types. 11905 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 11906 return true; 11907 11908 // It is worse if c1 is simm12 while c1*c2 is not. 11909 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 11910 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 11911 const APInt &C1 = C1Node->getAPIntValue(); 11912 const APInt &C2 = C2Node->getAPIntValue(); 11913 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 11914 return false; 11915 11916 // Default to true and let the DAGCombiner decide. 11917 return true; 11918 } 11919 11920 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 11921 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 11922 bool *Fast) const { 11923 if (!VT.isVector()) { 11924 if (Fast) 11925 *Fast = false; 11926 return Subtarget.enableUnalignedScalarMem(); 11927 } 11928 11929 // All vector implementations must support element alignment 11930 EVT ElemVT = VT.getVectorElementType(); 11931 if (Alignment >= ElemVT.getStoreSize()) { 11932 if (Fast) 11933 *Fast = true; 11934 return true; 11935 } 11936 11937 return false; 11938 } 11939 11940 bool RISCVTargetLowering::splitValueIntoRegisterParts( 11941 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 11942 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 11943 bool IsABIRegCopy = CC.has_value(); 11944 EVT ValueVT = Val.getValueType(); 11945 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 11946 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 11947 // and cast to f32. 11948 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 11949 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 11950 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 11951 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 11952 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 11953 Parts[0] = Val; 11954 return true; 11955 } 11956 11957 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 11958 LLVMContext &Context = *DAG.getContext(); 11959 EVT ValueEltVT = ValueVT.getVectorElementType(); 11960 EVT PartEltVT = PartVT.getVectorElementType(); 11961 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 11962 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 11963 if (PartVTBitSize % ValueVTBitSize == 0) { 11964 assert(PartVTBitSize >= ValueVTBitSize); 11965 // If the element types are different, bitcast to the same element type of 11966 // PartVT first. 11967 // Give an example here, we want copy a <vscale x 1 x i8> value to 11968 // <vscale x 4 x i16>. 11969 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 11970 // subvector, then we can bitcast to <vscale x 4 x i16>. 11971 if (ValueEltVT != PartEltVT) { 11972 if (PartVTBitSize > ValueVTBitSize) { 11973 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 11974 assert(Count != 0 && "The number of element should not be zero."); 11975 EVT SameEltTypeVT = 11976 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 11977 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 11978 DAG.getUNDEF(SameEltTypeVT), Val, 11979 DAG.getVectorIdxConstant(0, DL)); 11980 } 11981 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 11982 } else { 11983 Val = 11984 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 11985 Val, DAG.getVectorIdxConstant(0, DL)); 11986 } 11987 Parts[0] = Val; 11988 return true; 11989 } 11990 } 11991 return false; 11992 } 11993 11994 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 11995 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 11996 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 11997 bool IsABIRegCopy = CC.has_value(); 11998 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 11999 SDValue Val = Parts[0]; 12000 12001 // Cast the f32 to i32, truncate to i16, and cast back to f16. 12002 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 12003 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 12004 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 12005 return Val; 12006 } 12007 12008 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 12009 LLVMContext &Context = *DAG.getContext(); 12010 SDValue Val = Parts[0]; 12011 EVT ValueEltVT = ValueVT.getVectorElementType(); 12012 EVT PartEltVT = PartVT.getVectorElementType(); 12013 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 12014 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 12015 if (PartVTBitSize % ValueVTBitSize == 0) { 12016 assert(PartVTBitSize >= ValueVTBitSize); 12017 EVT SameEltTypeVT = ValueVT; 12018 // If the element types are different, convert it to the same element type 12019 // of PartVT. 12020 // Give an example here, we want copy a <vscale x 1 x i8> value from 12021 // <vscale x 4 x i16>. 12022 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 12023 // then we can extract <vscale x 1 x i8>. 12024 if (ValueEltVT != PartEltVT) { 12025 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 12026 assert(Count != 0 && "The number of element should not be zero."); 12027 SameEltTypeVT = 12028 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 12029 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 12030 } 12031 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 12032 DAG.getVectorIdxConstant(0, DL)); 12033 return Val; 12034 } 12035 } 12036 return SDValue(); 12037 } 12038 12039 SDValue 12040 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 12041 SelectionDAG &DAG, 12042 SmallVectorImpl<SDNode *> &Created) const { 12043 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 12044 if (isIntDivCheap(N->getValueType(0), Attr)) 12045 return SDValue(N, 0); // Lower SDIV as SDIV 12046 12047 assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) && 12048 "Unexpected divisor!"); 12049 12050 // Conditional move is needed, so do the transformation iff Zbt is enabled. 12051 if (!Subtarget.hasStdExtZbt()) 12052 return SDValue(); 12053 12054 // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation. 12055 // Besides, more critical path instructions will be generated when dividing 12056 // by 2. So we keep using the original DAGs for these cases. 12057 unsigned Lg2 = Divisor.countTrailingZeros(); 12058 if (Lg2 == 1 || Lg2 >= 12) 12059 return SDValue(); 12060 12061 // fold (sdiv X, pow2) 12062 EVT VT = N->getValueType(0); 12063 if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64)) 12064 return SDValue(); 12065 12066 SDLoc DL(N); 12067 SDValue N0 = N->getOperand(0); 12068 SDValue Zero = DAG.getConstant(0, DL, VT); 12069 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); 12070 12071 // Add (N0 < 0) ? Pow2 - 1 : 0; 12072 SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT); 12073 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 12074 SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 12075 12076 Created.push_back(Cmp.getNode()); 12077 Created.push_back(Add.getNode()); 12078 Created.push_back(Sel.getNode()); 12079 12080 // Divide by pow2. 12081 SDValue SRA = 12082 DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT)); 12083 12084 // If we're dividing by a positive value, we're done. Otherwise, we must 12085 // negate the result. 12086 if (Divisor.isNonNegative()) 12087 return SRA; 12088 12089 Created.push_back(SRA.getNode()); 12090 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 12091 } 12092 12093 #define GET_REGISTER_MATCHER 12094 #include "RISCVGenAsmMatcher.inc" 12095 12096 Register 12097 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 12098 const MachineFunction &MF) const { 12099 Register Reg = MatchRegisterAltName(RegName); 12100 if (Reg == RISCV::NoRegister) 12101 Reg = MatchRegisterName(RegName); 12102 if (Reg == RISCV::NoRegister) 12103 report_fatal_error( 12104 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 12105 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 12106 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 12107 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 12108 StringRef(RegName) + "\".")); 12109 return Reg; 12110 } 12111 12112 namespace llvm { 12113 namespace RISCVVIntrinsicsTable { 12114 12115 #define GET_RISCVVIntrinsicsTable_IMPL 12116 #include "RISCVGenSearchableTables.inc" 12117 12118 } // namespace RISCVVIntrinsicsTable 12119 12120 } // namespace llvm 12121