1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicsRISCV.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "riscv-lower"
45 
46 STATISTIC(NumTailCalls, "Number of tail calls");
47 
48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
49                                          const RISCVSubtarget &STI)
50     : TargetLowering(TM), Subtarget(STI) {
51 
52   if (Subtarget.isRV32E())
53     report_fatal_error("Codegen not yet implemented for RV32E");
54 
55   RISCVABI::ABI ABI = Subtarget.getTargetABI();
56   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
57 
58   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
59       !Subtarget.hasStdExtF()) {
60     errs() << "Hard-float 'f' ABI can't be used for a target that "
61                 "doesn't support the F instruction set extension (ignoring "
62                           "target-abi)\n";
63     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
64   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
65              !Subtarget.hasStdExtD()) {
66     errs() << "Hard-float 'd' ABI can't be used for a target that "
67               "doesn't support the D instruction set extension (ignoring "
68               "target-abi)\n";
69     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
70   }
71 
72   switch (ABI) {
73   default:
74     report_fatal_error("Don't know how to lower this ABI");
75   case RISCVABI::ABI_ILP32:
76   case RISCVABI::ABI_ILP32F:
77   case RISCVABI::ABI_ILP32D:
78   case RISCVABI::ABI_LP64:
79   case RISCVABI::ABI_LP64F:
80   case RISCVABI::ABI_LP64D:
81     break;
82   }
83 
84   MVT XLenVT = Subtarget.getXLenVT();
85 
86   // Set up the register classes.
87   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
88 
89   if (Subtarget.hasStdExtZfh())
90     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
91   if (Subtarget.hasStdExtF())
92     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
93   if (Subtarget.hasStdExtD())
94     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
95 
96   static const MVT::SimpleValueType BoolVecVTs[] = {
97       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
98       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
99   static const MVT::SimpleValueType IntVecVTs[] = {
100       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
101       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
102       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
103       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
104       MVT::nxv4i64, MVT::nxv8i64};
105   static const MVT::SimpleValueType F16VecVTs[] = {
106       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
107       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
108   static const MVT::SimpleValueType F32VecVTs[] = {
109       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
110   static const MVT::SimpleValueType F64VecVTs[] = {
111       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
112 
113   if (Subtarget.hasVInstructions()) {
114     auto addRegClassForRVV = [this](MVT VT) {
115       unsigned Size = VT.getSizeInBits().getKnownMinValue();
116       assert(Size <= 512 && isPowerOf2_32(Size));
117       const TargetRegisterClass *RC;
118       if (Size <= 64)
119         RC = &RISCV::VRRegClass;
120       else if (Size == 128)
121         RC = &RISCV::VRM2RegClass;
122       else if (Size == 256)
123         RC = &RISCV::VRM4RegClass;
124       else
125         RC = &RISCV::VRM8RegClass;
126 
127       addRegisterClass(VT, RC);
128     };
129 
130     for (MVT VT : BoolVecVTs)
131       addRegClassForRVV(VT);
132     for (MVT VT : IntVecVTs) {
133       if (VT.getVectorElementType() == MVT::i64 &&
134           !Subtarget.hasVInstructionsI64())
135         continue;
136       addRegClassForRVV(VT);
137     }
138 
139     if (Subtarget.hasVInstructionsF16())
140       for (MVT VT : F16VecVTs)
141         addRegClassForRVV(VT);
142 
143     if (Subtarget.hasVInstructionsF32())
144       for (MVT VT : F32VecVTs)
145         addRegClassForRVV(VT);
146 
147     if (Subtarget.hasVInstructionsF64())
148       for (MVT VT : F64VecVTs)
149         addRegClassForRVV(VT);
150 
151     if (Subtarget.useRVVForFixedLengthVectors()) {
152       auto addRegClassForFixedVectors = [this](MVT VT) {
153         MVT ContainerVT = getContainerForFixedLengthVector(VT);
154         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
155         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
156         addRegisterClass(VT, TRI.getRegClass(RCID));
157       };
158       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
159         if (useRVVForFixedLengthVectorVT(VT))
160           addRegClassForFixedVectors(VT);
161 
162       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
163         if (useRVVForFixedLengthVectorVT(VT))
164           addRegClassForFixedVectors(VT);
165     }
166   }
167 
168   // Compute derived properties from the register classes.
169   computeRegisterProperties(STI.getRegisterInfo());
170 
171   setStackPointerRegisterToSaveRestore(RISCV::X2);
172 
173   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
174     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
175 
176   // TODO: add all necessary setOperationAction calls.
177   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
178 
179   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
180   setOperationAction(ISD::BR_CC, XLenVT, Expand);
181   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
182   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
183 
184   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
185   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
186 
187   setOperationAction(ISD::VASTART, MVT::Other, Custom);
188   setOperationAction(ISD::VAARG, MVT::Other, Expand);
189   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
190   setOperationAction(ISD::VAEND, MVT::Other, Expand);
191 
192   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
193   if (!Subtarget.hasStdExtZbb()) {
194     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
195     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
196   }
197 
198   if (Subtarget.is64Bit()) {
199     setOperationAction(ISD::ADD, MVT::i32, Custom);
200     setOperationAction(ISD::SUB, MVT::i32, Custom);
201     setOperationAction(ISD::SHL, MVT::i32, Custom);
202     setOperationAction(ISD::SRA, MVT::i32, Custom);
203     setOperationAction(ISD::SRL, MVT::i32, Custom);
204 
205     setOperationAction(ISD::UADDO, MVT::i32, Custom);
206     setOperationAction(ISD::USUBO, MVT::i32, Custom);
207     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
208     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
209   } else {
210     setLibcallName(RTLIB::SHL_I128, nullptr);
211     setLibcallName(RTLIB::SRL_I128, nullptr);
212     setLibcallName(RTLIB::SRA_I128, nullptr);
213     setLibcallName(RTLIB::MUL_I128, nullptr);
214     setLibcallName(RTLIB::MULO_I64, nullptr);
215   }
216 
217   if (!Subtarget.hasStdExtM()) {
218     setOperationAction(ISD::MUL, XLenVT, Expand);
219     setOperationAction(ISD::MULHS, XLenVT, Expand);
220     setOperationAction(ISD::MULHU, XLenVT, Expand);
221     setOperationAction(ISD::SDIV, XLenVT, Expand);
222     setOperationAction(ISD::UDIV, XLenVT, Expand);
223     setOperationAction(ISD::SREM, XLenVT, Expand);
224     setOperationAction(ISD::UREM, XLenVT, Expand);
225   } else {
226     if (Subtarget.is64Bit()) {
227       setOperationAction(ISD::MUL, MVT::i32, Custom);
228       setOperationAction(ISD::MUL, MVT::i128, Custom);
229 
230       setOperationAction(ISD::SDIV, MVT::i8, Custom);
231       setOperationAction(ISD::UDIV, MVT::i8, Custom);
232       setOperationAction(ISD::UREM, MVT::i8, Custom);
233       setOperationAction(ISD::SDIV, MVT::i16, Custom);
234       setOperationAction(ISD::UDIV, MVT::i16, Custom);
235       setOperationAction(ISD::UREM, MVT::i16, Custom);
236       setOperationAction(ISD::SDIV, MVT::i32, Custom);
237       setOperationAction(ISD::UDIV, MVT::i32, Custom);
238       setOperationAction(ISD::UREM, MVT::i32, Custom);
239     } else {
240       setOperationAction(ISD::MUL, MVT::i64, Custom);
241     }
242   }
243 
244   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
245   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
246   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
247   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
248 
249   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
250   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
251   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
252 
253   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
254       Subtarget.hasStdExtZbkb()) {
255     if (Subtarget.is64Bit()) {
256       setOperationAction(ISD::ROTL, MVT::i32, Custom);
257       setOperationAction(ISD::ROTR, MVT::i32, Custom);
258     }
259   } else {
260     setOperationAction(ISD::ROTL, XLenVT, Expand);
261     setOperationAction(ISD::ROTR, XLenVT, Expand);
262   }
263 
264   if (Subtarget.hasStdExtZbp()) {
265     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
266     // more combining.
267     setOperationAction(ISD::BITREVERSE, XLenVT,   Custom);
268     setOperationAction(ISD::BSWAP,      XLenVT,   Custom);
269     setOperationAction(ISD::BITREVERSE, MVT::i8,  Custom);
270     // BSWAP i8 doesn't exist.
271     setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
272     setOperationAction(ISD::BSWAP,      MVT::i16, Custom);
273 
274     if (Subtarget.is64Bit()) {
275       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
276       setOperationAction(ISD::BSWAP,      MVT::i32, Custom);
277     }
278   } else {
279     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
280     // pattern match it directly in isel.
281     setOperationAction(ISD::BSWAP, XLenVT,
282                        (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())
283                            ? Legal
284                            : Expand);
285     // Zbkb can use rev8+brev8 to implement bitreverse.
286     setOperationAction(ISD::BITREVERSE, XLenVT,
287                        Subtarget.hasStdExtZbkb() ? Custom : Expand);
288   }
289 
290   if (Subtarget.hasStdExtZbb()) {
291     setOperationAction(ISD::SMIN, XLenVT, Legal);
292     setOperationAction(ISD::SMAX, XLenVT, Legal);
293     setOperationAction(ISD::UMIN, XLenVT, Legal);
294     setOperationAction(ISD::UMAX, XLenVT, Legal);
295 
296     if (Subtarget.is64Bit()) {
297       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
298       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
299       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
300       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
301     }
302   } else {
303     setOperationAction(ISD::CTTZ, XLenVT, Expand);
304     setOperationAction(ISD::CTLZ, XLenVT, Expand);
305     setOperationAction(ISD::CTPOP, XLenVT, Expand);
306 
307     if (Subtarget.is64Bit())
308       setOperationAction(ISD::ABS, MVT::i32, Custom);
309   }
310 
311   if (Subtarget.hasStdExtZbt()) {
312     setOperationAction(ISD::FSHL, XLenVT, Custom);
313     setOperationAction(ISD::FSHR, XLenVT, Custom);
314     setOperationAction(ISD::SELECT, XLenVT, Legal);
315 
316     if (Subtarget.is64Bit()) {
317       setOperationAction(ISD::FSHL, MVT::i32, Custom);
318       setOperationAction(ISD::FSHR, MVT::i32, Custom);
319     }
320   } else {
321     setOperationAction(ISD::SELECT, XLenVT, Custom);
322   }
323 
324   static constexpr ISD::NodeType FPLegalNodeTypes[] = {
325       ISD::FMINNUM,        ISD::FMAXNUM,       ISD::LRINT,
326       ISD::LLRINT,         ISD::LROUND,        ISD::LLROUND,
327       ISD::STRICT_LRINT,   ISD::STRICT_LLRINT, ISD::STRICT_LROUND,
328       ISD::STRICT_LLROUND, ISD::STRICT_FMA,    ISD::STRICT_FADD,
329       ISD::STRICT_FSUB,    ISD::STRICT_FMUL,   ISD::STRICT_FDIV,
330       ISD::STRICT_FSQRT,   ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS};
331 
332   static const ISD::CondCode FPCCToExpand[] = {
333       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
334       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
335       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
336 
337   static const ISD::NodeType FPOpToExpand[] = {
338       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
339       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
340 
341   if (Subtarget.hasStdExtZfh())
342     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
343 
344   if (Subtarget.hasStdExtZfh()) {
345     for (auto NT : FPLegalNodeTypes)
346       setOperationAction(NT, MVT::f16, Legal);
347     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
348     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
349     for (auto CC : FPCCToExpand)
350       setCondCodeAction(CC, MVT::f16, Expand);
351     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
352     setOperationAction(ISD::SELECT, MVT::f16, Custom);
353     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
354 
355     setOperationAction(ISD::FREM,       MVT::f16, Promote);
356     setOperationAction(ISD::FCEIL,      MVT::f16, Promote);
357     setOperationAction(ISD::FFLOOR,     MVT::f16, Promote);
358     setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
359     setOperationAction(ISD::FRINT,      MVT::f16, Promote);
360     setOperationAction(ISD::FROUND,     MVT::f16, Promote);
361     setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote);
362     setOperationAction(ISD::FTRUNC,     MVT::f16, Promote);
363     setOperationAction(ISD::FPOW,       MVT::f16, Promote);
364     setOperationAction(ISD::FPOWI,      MVT::f16, Promote);
365     setOperationAction(ISD::FCOS,       MVT::f16, Promote);
366     setOperationAction(ISD::FSIN,       MVT::f16, Promote);
367     setOperationAction(ISD::FSINCOS,    MVT::f16, Promote);
368     setOperationAction(ISD::FEXP,       MVT::f16, Promote);
369     setOperationAction(ISD::FEXP2,      MVT::f16, Promote);
370     setOperationAction(ISD::FLOG,       MVT::f16, Promote);
371     setOperationAction(ISD::FLOG2,      MVT::f16, Promote);
372     setOperationAction(ISD::FLOG10,     MVT::f16, Promote);
373 
374     // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
375     // complete support for all operations in LegalizeDAG.
376 
377     // We need to custom promote this.
378     if (Subtarget.is64Bit())
379       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
380   }
381 
382   if (Subtarget.hasStdExtF()) {
383     for (auto NT : FPLegalNodeTypes)
384       setOperationAction(NT, MVT::f32, Legal);
385     for (auto CC : FPCCToExpand)
386       setCondCodeAction(CC, MVT::f32, Expand);
387     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
388     setOperationAction(ISD::SELECT, MVT::f32, Custom);
389     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
390     for (auto Op : FPOpToExpand)
391       setOperationAction(Op, MVT::f32, Expand);
392     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
393     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
394   }
395 
396   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
397     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
398 
399   if (Subtarget.hasStdExtD()) {
400     for (auto NT : FPLegalNodeTypes)
401       setOperationAction(NT, MVT::f64, Legal);
402     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
403     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
404     for (auto CC : FPCCToExpand)
405       setCondCodeAction(CC, MVT::f64, Expand);
406     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
407     setOperationAction(ISD::SELECT, MVT::f64, Custom);
408     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
409     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
410     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
411     for (auto Op : FPOpToExpand)
412       setOperationAction(Op, MVT::f64, Expand);
413     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
414     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
415   }
416 
417   if (Subtarget.is64Bit()) {
418     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
419     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
420     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
421     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
422   }
423 
424   if (Subtarget.hasStdExtF()) {
425     setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom);
426     setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom);
427 
428     setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal);
429     setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal);
430     setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal);
431     setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal);
432 
433     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
434     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
435   }
436 
437   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
438   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
439   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
440   setOperationAction(ISD::JumpTable, XLenVT, Custom);
441 
442   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
443 
444   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
445   // Unfortunately this can't be determined just from the ISA naming string.
446   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
447                      Subtarget.is64Bit() ? Legal : Custom);
448 
449   setOperationAction(ISD::TRAP, MVT::Other, Legal);
450   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
451   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
452   if (Subtarget.is64Bit())
453     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
454 
455   if (Subtarget.hasStdExtA()) {
456     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
457     setMinCmpXchgSizeInBits(32);
458   } else {
459     setMaxAtomicSizeInBitsSupported(0);
460   }
461 
462   setBooleanContents(ZeroOrOneBooleanContent);
463 
464   if (Subtarget.hasVInstructions()) {
465     setBooleanVectorContents(ZeroOrOneBooleanContent);
466 
467     setOperationAction(ISD::VSCALE, XLenVT, Custom);
468 
469     // RVV intrinsics may have illegal operands.
470     // We also need to custom legalize vmv.x.s.
471     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
472     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
473     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
474     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
475     if (Subtarget.is64Bit()) {
476       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
477     } else {
478       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
479       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
480     }
481 
482     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
483     setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
484 
485     static const unsigned IntegerVPOps[] = {
486         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
487         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
488         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
489         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
490         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
491         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
492         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
493         ISD::VP_MERGE,       ISD::VP_SELECT,      ISD::VP_FPTOSI,
494         ISD::VP_FPTOUI};
495 
496     static const unsigned FloatingPointVPOps[] = {
497         ISD::VP_FADD,        ISD::VP_FSUB,        ISD::VP_FMUL,
498         ISD::VP_FDIV,        ISD::VP_FNEG,        ISD::VP_FMA,
499         ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, ISD::VP_REDUCE_FMIN,
500         ISD::VP_REDUCE_FMAX, ISD::VP_MERGE,       ISD::VP_SELECT,
501         ISD::VP_SITOFP,      ISD::VP_UITOFP};
502 
503     if (!Subtarget.is64Bit()) {
504       // We must custom-lower certain vXi64 operations on RV32 due to the vector
505       // element type being illegal.
506       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
507       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
508 
509       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
510       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
511       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
512       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
513       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
514       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
515       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
516       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
517 
518       setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom);
519       setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom);
520       setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom);
521       setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom);
522       setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom);
523       setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom);
524       setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom);
525       setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom);
526     }
527 
528     for (MVT VT : BoolVecVTs) {
529       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
530 
531       // Mask VTs are custom-expanded into a series of standard nodes
532       setOperationAction(ISD::TRUNCATE, VT, Custom);
533       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
534       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
535       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
536 
537       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
538       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
539 
540       setOperationAction(ISD::SELECT, VT, Custom);
541       setOperationAction(ISD::SELECT_CC, VT, Expand);
542       setOperationAction(ISD::VSELECT, VT, Expand);
543       setOperationAction(ISD::VP_MERGE, VT, Expand);
544       setOperationAction(ISD::VP_SELECT, VT, Expand);
545 
546       setOperationAction(ISD::VP_AND, VT, Custom);
547       setOperationAction(ISD::VP_OR, VT, Custom);
548       setOperationAction(ISD::VP_XOR, VT, Custom);
549 
550       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
551       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
552       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
553 
554       setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
555       setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
556       setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
557 
558       // RVV has native int->float & float->int conversions where the
559       // element type sizes are within one power-of-two of each other. Any
560       // wider distances between type sizes have to be lowered as sequences
561       // which progressively narrow the gap in stages.
562       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
563       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
564       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
565       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
566 
567       // Expand all extending loads to types larger than this, and truncating
568       // stores from types larger than this.
569       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
570         setTruncStoreAction(OtherVT, VT, Expand);
571         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
572         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
573         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
574       }
575     }
576 
577     for (MVT VT : IntVecVTs) {
578       if (VT.getVectorElementType() == MVT::i64 &&
579           !Subtarget.hasVInstructionsI64())
580         continue;
581 
582       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
583       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
584 
585       // Vectors implement MULHS/MULHU.
586       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
587       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
588 
589       // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
590       if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) {
591         setOperationAction(ISD::MULHU, VT, Expand);
592         setOperationAction(ISD::MULHS, VT, Expand);
593       }
594 
595       setOperationAction(ISD::SMIN, VT, Legal);
596       setOperationAction(ISD::SMAX, VT, Legal);
597       setOperationAction(ISD::UMIN, VT, Legal);
598       setOperationAction(ISD::UMAX, VT, Legal);
599 
600       setOperationAction(ISD::ROTL, VT, Expand);
601       setOperationAction(ISD::ROTR, VT, Expand);
602 
603       setOperationAction(ISD::CTTZ, VT, Expand);
604       setOperationAction(ISD::CTLZ, VT, Expand);
605       setOperationAction(ISD::CTPOP, VT, Expand);
606 
607       setOperationAction(ISD::BSWAP, VT, Expand);
608 
609       // Custom-lower extensions and truncations from/to mask types.
610       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
611       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
612       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
613 
614       // RVV has native int->float & float->int conversions where the
615       // element type sizes are within one power-of-two of each other. Any
616       // wider distances between type sizes have to be lowered as sequences
617       // which progressively narrow the gap in stages.
618       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
619       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
620       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
621       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
622 
623       setOperationAction(ISD::SADDSAT, VT, Legal);
624       setOperationAction(ISD::UADDSAT, VT, Legal);
625       setOperationAction(ISD::SSUBSAT, VT, Legal);
626       setOperationAction(ISD::USUBSAT, VT, Legal);
627 
628       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
629       // nodes which truncate by one power of two at a time.
630       setOperationAction(ISD::TRUNCATE, VT, Custom);
631 
632       // Custom-lower insert/extract operations to simplify patterns.
633       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
634       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
635 
636       // Custom-lower reduction operations to set up the corresponding custom
637       // nodes' operands.
638       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
639       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
640       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
641       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
642       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
643       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
644       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
645       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
646 
647       for (unsigned VPOpc : IntegerVPOps)
648         setOperationAction(VPOpc, VT, Custom);
649 
650       setOperationAction(ISD::LOAD, VT, Custom);
651       setOperationAction(ISD::STORE, VT, Custom);
652 
653       setOperationAction(ISD::MLOAD, VT, Custom);
654       setOperationAction(ISD::MSTORE, VT, Custom);
655       setOperationAction(ISD::MGATHER, VT, Custom);
656       setOperationAction(ISD::MSCATTER, VT, Custom);
657 
658       setOperationAction(ISD::VP_LOAD, VT, Custom);
659       setOperationAction(ISD::VP_STORE, VT, Custom);
660       setOperationAction(ISD::VP_GATHER, VT, Custom);
661       setOperationAction(ISD::VP_SCATTER, VT, Custom);
662 
663       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
664       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
665       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
666 
667       setOperationAction(ISD::SELECT, VT, Custom);
668       setOperationAction(ISD::SELECT_CC, VT, Expand);
669 
670       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
671       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
672 
673       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
674         setTruncStoreAction(VT, OtherVT, Expand);
675         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
676         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
677         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
678       }
679 
680       // Splice
681       setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
682 
683       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
684       // type that can represent the value exactly.
685       if (VT.getVectorElementType() != MVT::i64) {
686         MVT FloatEltVT =
687             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
688         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
689         if (isTypeLegal(FloatVT)) {
690           setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
691           setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
692         }
693       }
694     }
695 
696     // Expand various CCs to best match the RVV ISA, which natively supports UNE
697     // but no other unordered comparisons, and supports all ordered comparisons
698     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
699     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
700     // and we pattern-match those back to the "original", swapping operands once
701     // more. This way we catch both operations and both "vf" and "fv" forms with
702     // fewer patterns.
703     static const ISD::CondCode VFPCCToExpand[] = {
704         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
705         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
706         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
707     };
708 
709     // Sets common operation actions on RVV floating-point vector types.
710     const auto SetCommonVFPActions = [&](MVT VT) {
711       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
712       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
713       // sizes are within one power-of-two of each other. Therefore conversions
714       // between vXf16 and vXf64 must be lowered as sequences which convert via
715       // vXf32.
716       setOperationAction(ISD::FP_ROUND, VT, Custom);
717       setOperationAction(ISD::FP_EXTEND, VT, Custom);
718       // Custom-lower insert/extract operations to simplify patterns.
719       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
720       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
721       // Expand various condition codes (explained above).
722       for (auto CC : VFPCCToExpand)
723         setCondCodeAction(CC, VT, Expand);
724 
725       setOperationAction(ISD::FMINNUM, VT, Legal);
726       setOperationAction(ISD::FMAXNUM, VT, Legal);
727 
728       setOperationAction(ISD::FTRUNC, VT, Custom);
729       setOperationAction(ISD::FCEIL, VT, Custom);
730       setOperationAction(ISD::FFLOOR, VT, Custom);
731       setOperationAction(ISD::FROUND, VT, Custom);
732 
733       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
734       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
735       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
736       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
737 
738       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
739 
740       setOperationAction(ISD::LOAD, VT, Custom);
741       setOperationAction(ISD::STORE, VT, Custom);
742 
743       setOperationAction(ISD::MLOAD, VT, Custom);
744       setOperationAction(ISD::MSTORE, VT, Custom);
745       setOperationAction(ISD::MGATHER, VT, Custom);
746       setOperationAction(ISD::MSCATTER, VT, Custom);
747 
748       setOperationAction(ISD::VP_LOAD, VT, Custom);
749       setOperationAction(ISD::VP_STORE, VT, Custom);
750       setOperationAction(ISD::VP_GATHER, VT, Custom);
751       setOperationAction(ISD::VP_SCATTER, VT, Custom);
752 
753       setOperationAction(ISD::SELECT, VT, Custom);
754       setOperationAction(ISD::SELECT_CC, VT, Expand);
755 
756       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
757       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
758       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
759 
760       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
761       setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
762 
763       for (unsigned VPOpc : FloatingPointVPOps)
764         setOperationAction(VPOpc, VT, Custom);
765     };
766 
767     // Sets common extload/truncstore actions on RVV floating-point vector
768     // types.
769     const auto SetCommonVFPExtLoadTruncStoreActions =
770         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
771           for (auto SmallVT : SmallerVTs) {
772             setTruncStoreAction(VT, SmallVT, Expand);
773             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
774           }
775         };
776 
777     if (Subtarget.hasVInstructionsF16())
778       for (MVT VT : F16VecVTs)
779         SetCommonVFPActions(VT);
780 
781     for (MVT VT : F32VecVTs) {
782       if (Subtarget.hasVInstructionsF32())
783         SetCommonVFPActions(VT);
784       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
785     }
786 
787     for (MVT VT : F64VecVTs) {
788       if (Subtarget.hasVInstructionsF64())
789         SetCommonVFPActions(VT);
790       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
791       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
792     }
793 
794     if (Subtarget.useRVVForFixedLengthVectors()) {
795       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
796         if (!useRVVForFixedLengthVectorVT(VT))
797           continue;
798 
799         // By default everything must be expanded.
800         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
801           setOperationAction(Op, VT, Expand);
802         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
803           setTruncStoreAction(VT, OtherVT, Expand);
804           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
805           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
806           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
807         }
808 
809         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
810         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
811         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
812 
813         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
814         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
815 
816         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
817         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
818 
819         setOperationAction(ISD::LOAD, VT, Custom);
820         setOperationAction(ISD::STORE, VT, Custom);
821 
822         setOperationAction(ISD::SETCC, VT, Custom);
823 
824         setOperationAction(ISD::SELECT, VT, Custom);
825 
826         setOperationAction(ISD::TRUNCATE, VT, Custom);
827 
828         setOperationAction(ISD::BITCAST, VT, Custom);
829 
830         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
831         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
832         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
833 
834         setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
835         setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
836         setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
837 
838         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
839         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
840         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
841         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
842 
843         // Operations below are different for between masks and other vectors.
844         if (VT.getVectorElementType() == MVT::i1) {
845           setOperationAction(ISD::VP_AND, VT, Custom);
846           setOperationAction(ISD::VP_OR, VT, Custom);
847           setOperationAction(ISD::VP_XOR, VT, Custom);
848           setOperationAction(ISD::AND, VT, Custom);
849           setOperationAction(ISD::OR, VT, Custom);
850           setOperationAction(ISD::XOR, VT, Custom);
851 
852           setOperationAction(ISD::VP_FPTOSI, VT, Custom);
853           setOperationAction(ISD::VP_FPTOUI, VT, Custom);
854           continue;
855         }
856 
857         // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to
858         // it before type legalization for i64 vectors on RV32. It will then be
859         // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle.
860         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
861         // improvements first.
862         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
863           setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
864           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
865         }
866 
867         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
868         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
869 
870         setOperationAction(ISD::MLOAD, VT, Custom);
871         setOperationAction(ISD::MSTORE, VT, Custom);
872         setOperationAction(ISD::MGATHER, VT, Custom);
873         setOperationAction(ISD::MSCATTER, VT, Custom);
874 
875         setOperationAction(ISD::VP_LOAD, VT, Custom);
876         setOperationAction(ISD::VP_STORE, VT, Custom);
877         setOperationAction(ISD::VP_GATHER, VT, Custom);
878         setOperationAction(ISD::VP_SCATTER, VT, Custom);
879 
880         setOperationAction(ISD::ADD, VT, Custom);
881         setOperationAction(ISD::MUL, VT, Custom);
882         setOperationAction(ISD::SUB, VT, Custom);
883         setOperationAction(ISD::AND, VT, Custom);
884         setOperationAction(ISD::OR, VT, Custom);
885         setOperationAction(ISD::XOR, VT, Custom);
886         setOperationAction(ISD::SDIV, VT, Custom);
887         setOperationAction(ISD::SREM, VT, Custom);
888         setOperationAction(ISD::UDIV, VT, Custom);
889         setOperationAction(ISD::UREM, VT, Custom);
890         setOperationAction(ISD::SHL, VT, Custom);
891         setOperationAction(ISD::SRA, VT, Custom);
892         setOperationAction(ISD::SRL, VT, Custom);
893 
894         setOperationAction(ISD::SMIN, VT, Custom);
895         setOperationAction(ISD::SMAX, VT, Custom);
896         setOperationAction(ISD::UMIN, VT, Custom);
897         setOperationAction(ISD::UMAX, VT, Custom);
898         setOperationAction(ISD::ABS,  VT, Custom);
899 
900         // vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
901         if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) {
902           setOperationAction(ISD::MULHS, VT, Custom);
903           setOperationAction(ISD::MULHU, VT, Custom);
904         }
905 
906         setOperationAction(ISD::SADDSAT, VT, Custom);
907         setOperationAction(ISD::UADDSAT, VT, Custom);
908         setOperationAction(ISD::SSUBSAT, VT, Custom);
909         setOperationAction(ISD::USUBSAT, VT, Custom);
910 
911         setOperationAction(ISD::VSELECT, VT, Custom);
912         setOperationAction(ISD::SELECT_CC, VT, Expand);
913 
914         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
915         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
916         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
917 
918         // Custom-lower reduction operations to set up the corresponding custom
919         // nodes' operands.
920         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
921         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
922         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
923         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
924         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
925 
926         for (unsigned VPOpc : IntegerVPOps)
927           setOperationAction(VPOpc, VT, Custom);
928 
929         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
930         // type that can represent the value exactly.
931         if (VT.getVectorElementType() != MVT::i64) {
932           MVT FloatEltVT =
933               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
934           EVT FloatVT =
935               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
936           if (isTypeLegal(FloatVT)) {
937             setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
938             setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
939           }
940         }
941       }
942 
943       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
944         if (!useRVVForFixedLengthVectorVT(VT))
945           continue;
946 
947         // By default everything must be expanded.
948         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
949           setOperationAction(Op, VT, Expand);
950         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
951           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
952           setTruncStoreAction(VT, OtherVT, Expand);
953         }
954 
955         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
956         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
957         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
958 
959         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
960         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
961         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
962         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
963         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
964 
965         setOperationAction(ISD::LOAD, VT, Custom);
966         setOperationAction(ISD::STORE, VT, Custom);
967         setOperationAction(ISD::MLOAD, VT, Custom);
968         setOperationAction(ISD::MSTORE, VT, Custom);
969         setOperationAction(ISD::MGATHER, VT, Custom);
970         setOperationAction(ISD::MSCATTER, VT, Custom);
971 
972         setOperationAction(ISD::VP_LOAD, VT, Custom);
973         setOperationAction(ISD::VP_STORE, VT, Custom);
974         setOperationAction(ISD::VP_GATHER, VT, Custom);
975         setOperationAction(ISD::VP_SCATTER, VT, Custom);
976 
977         setOperationAction(ISD::FADD, VT, Custom);
978         setOperationAction(ISD::FSUB, VT, Custom);
979         setOperationAction(ISD::FMUL, VT, Custom);
980         setOperationAction(ISD::FDIV, VT, Custom);
981         setOperationAction(ISD::FNEG, VT, Custom);
982         setOperationAction(ISD::FABS, VT, Custom);
983         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
984         setOperationAction(ISD::FSQRT, VT, Custom);
985         setOperationAction(ISD::FMA, VT, Custom);
986         setOperationAction(ISD::FMINNUM, VT, Custom);
987         setOperationAction(ISD::FMAXNUM, VT, Custom);
988 
989         setOperationAction(ISD::FP_ROUND, VT, Custom);
990         setOperationAction(ISD::FP_EXTEND, VT, Custom);
991 
992         setOperationAction(ISD::FTRUNC, VT, Custom);
993         setOperationAction(ISD::FCEIL, VT, Custom);
994         setOperationAction(ISD::FFLOOR, VT, Custom);
995         setOperationAction(ISD::FROUND, VT, Custom);
996 
997         for (auto CC : VFPCCToExpand)
998           setCondCodeAction(CC, VT, Expand);
999 
1000         setOperationAction(ISD::VSELECT, VT, Custom);
1001         setOperationAction(ISD::SELECT, VT, Custom);
1002         setOperationAction(ISD::SELECT_CC, VT, Expand);
1003 
1004         setOperationAction(ISD::BITCAST, VT, Custom);
1005 
1006         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
1007         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
1008         setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
1009         setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
1010 
1011         for (unsigned VPOpc : FloatingPointVPOps)
1012           setOperationAction(VPOpc, VT, Custom);
1013       }
1014 
1015       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
1016       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
1017       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
1018       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
1019       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1020       if (Subtarget.hasStdExtZfh())
1021         setOperationAction(ISD::BITCAST, MVT::f16, Custom);
1022       if (Subtarget.hasStdExtF())
1023         setOperationAction(ISD::BITCAST, MVT::f32, Custom);
1024       if (Subtarget.hasStdExtD())
1025         setOperationAction(ISD::BITCAST, MVT::f64, Custom);
1026     }
1027   }
1028 
1029   // Function alignments.
1030   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
1031   setMinFunctionAlignment(FunctionAlignment);
1032   setPrefFunctionAlignment(FunctionAlignment);
1033 
1034   setMinimumJumpTableEntries(5);
1035 
1036   // Jumps are expensive, compared to logic
1037   setJumpIsExpensive();
1038 
1039   setTargetDAGCombine({ISD::INTRINSIC_WO_CHAIN, ISD::ADD, ISD::SUB, ISD::AND,
1040                        ISD::OR, ISD::XOR});
1041 
1042   if (Subtarget.hasStdExtZbp())
1043     setTargetDAGCombine({ISD::ROTL, ISD::ROTR});
1044   if (Subtarget.hasStdExtZbkb())
1045     setTargetDAGCombine(ISD::BITREVERSE);
1046   if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb())
1047     setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1048   if (Subtarget.hasStdExtF())
1049     setTargetDAGCombine({ISD::ZERO_EXTEND, ISD::FP_TO_SINT, ISD::FP_TO_UINT,
1050                          ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT});
1051   if (Subtarget.hasVInstructions())
1052     setTargetDAGCombine({ISD::FCOPYSIGN, ISD::MGATHER, ISD::MSCATTER,
1053                          ISD::VP_GATHER, ISD::VP_SCATTER, ISD::SRA, ISD::SRL,
1054                          ISD::SHL, ISD::STORE, ISD::SPLAT_VECTOR});
1055 
1056   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
1057   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
1058 }
1059 
1060 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
1061                                             LLVMContext &Context,
1062                                             EVT VT) const {
1063   if (!VT.isVector())
1064     return getPointerTy(DL);
1065   if (Subtarget.hasVInstructions() &&
1066       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
1067     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
1068   return VT.changeVectorElementTypeToInteger();
1069 }
1070 
1071 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
1072   return Subtarget.getXLenVT();
1073 }
1074 
1075 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1076                                              const CallInst &I,
1077                                              MachineFunction &MF,
1078                                              unsigned Intrinsic) const {
1079   auto &DL = I.getModule()->getDataLayout();
1080   switch (Intrinsic) {
1081   default:
1082     return false;
1083   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
1084   case Intrinsic::riscv_masked_atomicrmw_add_i32:
1085   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
1086   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
1087   case Intrinsic::riscv_masked_atomicrmw_max_i32:
1088   case Intrinsic::riscv_masked_atomicrmw_min_i32:
1089   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
1090   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
1091   case Intrinsic::riscv_masked_cmpxchg_i32:
1092     Info.opc = ISD::INTRINSIC_W_CHAIN;
1093     Info.memVT = MVT::i32;
1094     Info.ptrVal = I.getArgOperand(0);
1095     Info.offset = 0;
1096     Info.align = Align(4);
1097     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1098                  MachineMemOperand::MOVolatile;
1099     return true;
1100   case Intrinsic::riscv_masked_strided_load:
1101     Info.opc = ISD::INTRINSIC_W_CHAIN;
1102     Info.ptrVal = I.getArgOperand(1);
1103     Info.memVT = getValueType(DL, I.getType()->getScalarType());
1104     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
1105     Info.size = MemoryLocation::UnknownSize;
1106     Info.flags |= MachineMemOperand::MOLoad;
1107     return true;
1108   case Intrinsic::riscv_masked_strided_store:
1109     Info.opc = ISD::INTRINSIC_VOID;
1110     Info.ptrVal = I.getArgOperand(1);
1111     Info.memVT =
1112         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
1113     Info.align = Align(
1114         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
1115         8);
1116     Info.size = MemoryLocation::UnknownSize;
1117     Info.flags |= MachineMemOperand::MOStore;
1118     return true;
1119   case Intrinsic::riscv_seg2_load:
1120   case Intrinsic::riscv_seg3_load:
1121   case Intrinsic::riscv_seg4_load:
1122   case Intrinsic::riscv_seg5_load:
1123   case Intrinsic::riscv_seg6_load:
1124   case Intrinsic::riscv_seg7_load:
1125   case Intrinsic::riscv_seg8_load:
1126     Info.opc = ISD::INTRINSIC_W_CHAIN;
1127     Info.ptrVal = I.getArgOperand(0);
1128     Info.memVT =
1129         getValueType(DL, I.getType()->getStructElementType(0)->getScalarType());
1130     Info.align =
1131         Align(DL.getTypeSizeInBits(
1132                   I.getType()->getStructElementType(0)->getScalarType()) /
1133               8);
1134     Info.size = MemoryLocation::UnknownSize;
1135     Info.flags |= MachineMemOperand::MOLoad;
1136     return true;
1137   }
1138 }
1139 
1140 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1141                                                 const AddrMode &AM, Type *Ty,
1142                                                 unsigned AS,
1143                                                 Instruction *I) const {
1144   // No global is ever allowed as a base.
1145   if (AM.BaseGV)
1146     return false;
1147 
1148   // Require a 12-bit signed offset.
1149   if (!isInt<12>(AM.BaseOffs))
1150     return false;
1151 
1152   switch (AM.Scale) {
1153   case 0: // "r+i" or just "i", depending on HasBaseReg.
1154     break;
1155   case 1:
1156     if (!AM.HasBaseReg) // allow "r+i".
1157       break;
1158     return false; // disallow "r+r" or "r+r+i".
1159   default:
1160     return false;
1161   }
1162 
1163   return true;
1164 }
1165 
1166 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1167   return isInt<12>(Imm);
1168 }
1169 
1170 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1171   return isInt<12>(Imm);
1172 }
1173 
1174 // On RV32, 64-bit integers are split into their high and low parts and held
1175 // in two different registers, so the trunc is free since the low register can
1176 // just be used.
1177 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1178   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1179     return false;
1180   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1181   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1182   return (SrcBits == 64 && DestBits == 32);
1183 }
1184 
1185 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1186   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1187       !SrcVT.isInteger() || !DstVT.isInteger())
1188     return false;
1189   unsigned SrcBits = SrcVT.getSizeInBits();
1190   unsigned DestBits = DstVT.getSizeInBits();
1191   return (SrcBits == 64 && DestBits == 32);
1192 }
1193 
1194 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1195   // Zexts are free if they can be combined with a load.
1196   // Don't advertise i32->i64 zextload as being free for RV64. It interacts
1197   // poorly with type legalization of compares preferring sext.
1198   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1199     EVT MemVT = LD->getMemoryVT();
1200     if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1201         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1202          LD->getExtensionType() == ISD::ZEXTLOAD))
1203       return true;
1204   }
1205 
1206   return TargetLowering::isZExtFree(Val, VT2);
1207 }
1208 
1209 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1210   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1211 }
1212 
1213 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1214   return Subtarget.hasStdExtZbb();
1215 }
1216 
1217 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1218   return Subtarget.hasStdExtZbb();
1219 }
1220 
1221 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1222   EVT VT = Y.getValueType();
1223 
1224   // FIXME: Support vectors once we have tests.
1225   if (VT.isVector())
1226     return false;
1227 
1228   return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
1229           Subtarget.hasStdExtZbkb()) &&
1230          !isa<ConstantSDNode>(Y);
1231 }
1232 
1233 bool RISCVTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
1234   // We can use ANDI+SEQZ/SNEZ as a bit test. Y contains the bit position.
1235   auto *C = dyn_cast<ConstantSDNode>(Y);
1236   return C && C->getAPIntValue().ule(10);
1237 }
1238 
1239 /// Check if sinking \p I's operands to I's basic block is profitable, because
1240 /// the operands can be folded into a target instruction, e.g.
1241 /// splats of scalars can fold into vector instructions.
1242 bool RISCVTargetLowering::shouldSinkOperands(
1243     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1244   using namespace llvm::PatternMatch;
1245 
1246   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1247     return false;
1248 
1249   auto IsSinker = [&](Instruction *I, int Operand) {
1250     switch (I->getOpcode()) {
1251     case Instruction::Add:
1252     case Instruction::Sub:
1253     case Instruction::Mul:
1254     case Instruction::And:
1255     case Instruction::Or:
1256     case Instruction::Xor:
1257     case Instruction::FAdd:
1258     case Instruction::FSub:
1259     case Instruction::FMul:
1260     case Instruction::FDiv:
1261     case Instruction::ICmp:
1262     case Instruction::FCmp:
1263       return true;
1264     case Instruction::Shl:
1265     case Instruction::LShr:
1266     case Instruction::AShr:
1267     case Instruction::UDiv:
1268     case Instruction::SDiv:
1269     case Instruction::URem:
1270     case Instruction::SRem:
1271       return Operand == 1;
1272     case Instruction::Call:
1273       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1274         switch (II->getIntrinsicID()) {
1275         case Intrinsic::fma:
1276         case Intrinsic::vp_fma:
1277           return Operand == 0 || Operand == 1;
1278         // FIXME: Our patterns can only match vx/vf instructions when the splat
1279         // it on the RHS, because TableGen doesn't recognize our VP operations
1280         // as commutative.
1281         case Intrinsic::vp_add:
1282         case Intrinsic::vp_mul:
1283         case Intrinsic::vp_and:
1284         case Intrinsic::vp_or:
1285         case Intrinsic::vp_xor:
1286         case Intrinsic::vp_fadd:
1287         case Intrinsic::vp_fmul:
1288         case Intrinsic::vp_shl:
1289         case Intrinsic::vp_lshr:
1290         case Intrinsic::vp_ashr:
1291         case Intrinsic::vp_udiv:
1292         case Intrinsic::vp_sdiv:
1293         case Intrinsic::vp_urem:
1294         case Intrinsic::vp_srem:
1295           return Operand == 1;
1296         // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have
1297         // explicit patterns for both LHS and RHS (as 'vr' versions).
1298         case Intrinsic::vp_sub:
1299         case Intrinsic::vp_fsub:
1300         case Intrinsic::vp_fdiv:
1301           return Operand == 0 || Operand == 1;
1302         default:
1303           return false;
1304         }
1305       }
1306       return false;
1307     default:
1308       return false;
1309     }
1310   };
1311 
1312   for (auto OpIdx : enumerate(I->operands())) {
1313     if (!IsSinker(I, OpIdx.index()))
1314       continue;
1315 
1316     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1317     // Make sure we are not already sinking this operand
1318     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1319       continue;
1320 
1321     // We are looking for a splat that can be sunk.
1322     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1323                              m_Undef(), m_ZeroMask())))
1324       continue;
1325 
1326     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1327     // and vector registers
1328     for (Use &U : Op->uses()) {
1329       Instruction *Insn = cast<Instruction>(U.getUser());
1330       if (!IsSinker(Insn, U.getOperandNo()))
1331         return false;
1332     }
1333 
1334     Ops.push_back(&Op->getOperandUse(0));
1335     Ops.push_back(&OpIdx.value());
1336   }
1337   return true;
1338 }
1339 
1340 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1341                                        bool ForCodeSize) const {
1342   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1343   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1344     return false;
1345   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1346     return false;
1347   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1348     return false;
1349   return Imm.isZero();
1350 }
1351 
1352 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1353   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1354          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1355          (VT == MVT::f64 && Subtarget.hasStdExtD());
1356 }
1357 
1358 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1359                                                       CallingConv::ID CC,
1360                                                       EVT VT) const {
1361   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1362   // We might still end up using a GPR but that will be decided based on ABI.
1363   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1364   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1365     return MVT::f32;
1366 
1367   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1368 }
1369 
1370 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1371                                                            CallingConv::ID CC,
1372                                                            EVT VT) const {
1373   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1374   // We might still end up using a GPR but that will be decided based on ABI.
1375   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1376   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1377     return 1;
1378 
1379   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1380 }
1381 
1382 // Changes the condition code and swaps operands if necessary, so the SetCC
1383 // operation matches one of the comparisons supported directly by branches
1384 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1385 // with 1/-1.
1386 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1387                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1388   // Convert X > -1 to X >= 0.
1389   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1390     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1391     CC = ISD::SETGE;
1392     return;
1393   }
1394   // Convert X < 1 to 0 >= X.
1395   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1396     RHS = LHS;
1397     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1398     CC = ISD::SETGE;
1399     return;
1400   }
1401 
1402   switch (CC) {
1403   default:
1404     break;
1405   case ISD::SETGT:
1406   case ISD::SETLE:
1407   case ISD::SETUGT:
1408   case ISD::SETULE:
1409     CC = ISD::getSetCCSwappedOperands(CC);
1410     std::swap(LHS, RHS);
1411     break;
1412   }
1413 }
1414 
1415 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1416   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1417   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1418   if (VT.getVectorElementType() == MVT::i1)
1419     KnownSize *= 8;
1420 
1421   switch (KnownSize) {
1422   default:
1423     llvm_unreachable("Invalid LMUL.");
1424   case 8:
1425     return RISCVII::VLMUL::LMUL_F8;
1426   case 16:
1427     return RISCVII::VLMUL::LMUL_F4;
1428   case 32:
1429     return RISCVII::VLMUL::LMUL_F2;
1430   case 64:
1431     return RISCVII::VLMUL::LMUL_1;
1432   case 128:
1433     return RISCVII::VLMUL::LMUL_2;
1434   case 256:
1435     return RISCVII::VLMUL::LMUL_4;
1436   case 512:
1437     return RISCVII::VLMUL::LMUL_8;
1438   }
1439 }
1440 
1441 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1442   switch (LMul) {
1443   default:
1444     llvm_unreachable("Invalid LMUL.");
1445   case RISCVII::VLMUL::LMUL_F8:
1446   case RISCVII::VLMUL::LMUL_F4:
1447   case RISCVII::VLMUL::LMUL_F2:
1448   case RISCVII::VLMUL::LMUL_1:
1449     return RISCV::VRRegClassID;
1450   case RISCVII::VLMUL::LMUL_2:
1451     return RISCV::VRM2RegClassID;
1452   case RISCVII::VLMUL::LMUL_4:
1453     return RISCV::VRM4RegClassID;
1454   case RISCVII::VLMUL::LMUL_8:
1455     return RISCV::VRM8RegClassID;
1456   }
1457 }
1458 
1459 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1460   RISCVII::VLMUL LMUL = getLMUL(VT);
1461   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1462       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1463       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1464       LMUL == RISCVII::VLMUL::LMUL_1) {
1465     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1466                   "Unexpected subreg numbering");
1467     return RISCV::sub_vrm1_0 + Index;
1468   }
1469   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1470     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1471                   "Unexpected subreg numbering");
1472     return RISCV::sub_vrm2_0 + Index;
1473   }
1474   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1475     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1476                   "Unexpected subreg numbering");
1477     return RISCV::sub_vrm4_0 + Index;
1478   }
1479   llvm_unreachable("Invalid vector type.");
1480 }
1481 
1482 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1483   if (VT.getVectorElementType() == MVT::i1)
1484     return RISCV::VRRegClassID;
1485   return getRegClassIDForLMUL(getLMUL(VT));
1486 }
1487 
1488 // Attempt to decompose a subvector insert/extract between VecVT and
1489 // SubVecVT via subregister indices. Returns the subregister index that
1490 // can perform the subvector insert/extract with the given element index, as
1491 // well as the index corresponding to any leftover subvectors that must be
1492 // further inserted/extracted within the register class for SubVecVT.
1493 std::pair<unsigned, unsigned>
1494 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1495     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1496     const RISCVRegisterInfo *TRI) {
1497   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1498                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1499                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1500                 "Register classes not ordered");
1501   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1502   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1503   // Try to compose a subregister index that takes us from the incoming
1504   // LMUL>1 register class down to the outgoing one. At each step we half
1505   // the LMUL:
1506   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1507   // Note that this is not guaranteed to find a subregister index, such as
1508   // when we are extracting from one VR type to another.
1509   unsigned SubRegIdx = RISCV::NoSubRegister;
1510   for (const unsigned RCID :
1511        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1512     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1513       VecVT = VecVT.getHalfNumVectorElementsVT();
1514       bool IsHi =
1515           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1516       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1517                                             getSubregIndexByMVT(VecVT, IsHi));
1518       if (IsHi)
1519         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1520     }
1521   return {SubRegIdx, InsertExtractIdx};
1522 }
1523 
1524 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1525 // stores for those types.
1526 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1527   return !Subtarget.useRVVForFixedLengthVectors() ||
1528          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1529 }
1530 
1531 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1532   if (ScalarTy->isPointerTy())
1533     return true;
1534 
1535   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1536       ScalarTy->isIntegerTy(32))
1537     return true;
1538 
1539   if (ScalarTy->isIntegerTy(64))
1540     return Subtarget.hasVInstructionsI64();
1541 
1542   if (ScalarTy->isHalfTy())
1543     return Subtarget.hasVInstructionsF16();
1544   if (ScalarTy->isFloatTy())
1545     return Subtarget.hasVInstructionsF32();
1546   if (ScalarTy->isDoubleTy())
1547     return Subtarget.hasVInstructionsF64();
1548 
1549   return false;
1550 }
1551 
1552 static SDValue getVLOperand(SDValue Op) {
1553   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1554           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
1555          "Unexpected opcode");
1556   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
1557   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
1558   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
1559       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
1560   if (!II)
1561     return SDValue();
1562   return Op.getOperand(II->VLOperand + 1 + HasChain);
1563 }
1564 
1565 static bool useRVVForFixedLengthVectorVT(MVT VT,
1566                                          const RISCVSubtarget &Subtarget) {
1567   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1568   if (!Subtarget.useRVVForFixedLengthVectors())
1569     return false;
1570 
1571   // We only support a set of vector types with a consistent maximum fixed size
1572   // across all supported vector element types to avoid legalization issues.
1573   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1574   // fixed-length vector type we support is 1024 bytes.
1575   if (VT.getFixedSizeInBits() > 1024 * 8)
1576     return false;
1577 
1578   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1579 
1580   MVT EltVT = VT.getVectorElementType();
1581 
1582   // Don't use RVV for vectors we cannot scalarize if required.
1583   switch (EltVT.SimpleTy) {
1584   // i1 is supported but has different rules.
1585   default:
1586     return false;
1587   case MVT::i1:
1588     // Masks can only use a single register.
1589     if (VT.getVectorNumElements() > MinVLen)
1590       return false;
1591     MinVLen /= 8;
1592     break;
1593   case MVT::i8:
1594   case MVT::i16:
1595   case MVT::i32:
1596     break;
1597   case MVT::i64:
1598     if (!Subtarget.hasVInstructionsI64())
1599       return false;
1600     break;
1601   case MVT::f16:
1602     if (!Subtarget.hasVInstructionsF16())
1603       return false;
1604     break;
1605   case MVT::f32:
1606     if (!Subtarget.hasVInstructionsF32())
1607       return false;
1608     break;
1609   case MVT::f64:
1610     if (!Subtarget.hasVInstructionsF64())
1611       return false;
1612     break;
1613   }
1614 
1615   // Reject elements larger than ELEN.
1616   if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors())
1617     return false;
1618 
1619   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1620   // Don't use RVV for types that don't fit.
1621   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1622     return false;
1623 
1624   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1625   // the base fixed length RVV support in place.
1626   if (!VT.isPow2VectorType())
1627     return false;
1628 
1629   return true;
1630 }
1631 
1632 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1633   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1634 }
1635 
1636 // Return the largest legal scalable vector type that matches VT's element type.
1637 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1638                                             const RISCVSubtarget &Subtarget) {
1639   // This may be called before legal types are setup.
1640   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1641           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1642          "Expected legal fixed length vector!");
1643 
1644   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1645   unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors();
1646 
1647   MVT EltVT = VT.getVectorElementType();
1648   switch (EltVT.SimpleTy) {
1649   default:
1650     llvm_unreachable("unexpected element type for RVV container");
1651   case MVT::i1:
1652   case MVT::i8:
1653   case MVT::i16:
1654   case MVT::i32:
1655   case MVT::i64:
1656   case MVT::f16:
1657   case MVT::f32:
1658   case MVT::f64: {
1659     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1660     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1661     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1662     unsigned NumElts =
1663         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1664     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1665     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1666     return MVT::getScalableVectorVT(EltVT, NumElts);
1667   }
1668   }
1669 }
1670 
1671 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1672                                             const RISCVSubtarget &Subtarget) {
1673   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1674                                           Subtarget);
1675 }
1676 
1677 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1678   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1679 }
1680 
1681 // Grow V to consume an entire RVV register.
1682 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1683                                        const RISCVSubtarget &Subtarget) {
1684   assert(VT.isScalableVector() &&
1685          "Expected to convert into a scalable vector!");
1686   assert(V.getValueType().isFixedLengthVector() &&
1687          "Expected a fixed length vector operand!");
1688   SDLoc DL(V);
1689   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1690   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1691 }
1692 
1693 // Shrink V so it's just big enough to maintain a VT's worth of data.
1694 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1695                                          const RISCVSubtarget &Subtarget) {
1696   assert(VT.isFixedLengthVector() &&
1697          "Expected to convert into a fixed length vector!");
1698   assert(V.getValueType().isScalableVector() &&
1699          "Expected a scalable vector operand!");
1700   SDLoc DL(V);
1701   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1702   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1703 }
1704 
1705 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1706 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1707 // the vector type that it is contained in.
1708 static std::pair<SDValue, SDValue>
1709 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1710                 const RISCVSubtarget &Subtarget) {
1711   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1712   MVT XLenVT = Subtarget.getXLenVT();
1713   SDValue VL = VecVT.isFixedLengthVector()
1714                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1715                    : DAG.getRegister(RISCV::X0, XLenVT);
1716   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1717   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1718   return {Mask, VL};
1719 }
1720 
1721 // As above but assuming the given type is a scalable vector type.
1722 static std::pair<SDValue, SDValue>
1723 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1724                         const RISCVSubtarget &Subtarget) {
1725   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1726   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1727 }
1728 
1729 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1730 // of either is (currently) supported. This can get us into an infinite loop
1731 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1732 // as a ..., etc.
1733 // Until either (or both) of these can reliably lower any node, reporting that
1734 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1735 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1736 // which is not desirable.
1737 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1738     EVT VT, unsigned DefinedValues) const {
1739   return false;
1740 }
1741 
1742 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
1743                                   const RISCVSubtarget &Subtarget) {
1744   // RISCV FP-to-int conversions saturate to the destination register size, but
1745   // don't produce 0 for nan. We can use a conversion instruction and fix the
1746   // nan case with a compare and a select.
1747   SDValue Src = Op.getOperand(0);
1748 
1749   EVT DstVT = Op.getValueType();
1750   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1751 
1752   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1753   unsigned Opc;
1754   if (SatVT == DstVT)
1755     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
1756   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1757     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
1758   else
1759     return SDValue();
1760   // FIXME: Support other SatVTs by clamping before or after the conversion.
1761 
1762   SDLoc DL(Op);
1763   SDValue FpToInt = DAG.getNode(
1764       Opc, DL, DstVT, Src,
1765       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
1766 
1767   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1768   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1769 }
1770 
1771 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1772 // and back. Taking care to avoid converting values that are nan or already
1773 // correct.
1774 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1775 // have FRM dependencies modeled yet.
1776 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1777   MVT VT = Op.getSimpleValueType();
1778   assert(VT.isVector() && "Unexpected type");
1779 
1780   SDLoc DL(Op);
1781 
1782   // Freeze the source since we are increasing the number of uses.
1783   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1784 
1785   // Truncate to integer and convert back to FP.
1786   MVT IntVT = VT.changeVectorElementTypeToInteger();
1787   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1788   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1789 
1790   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1791 
1792   if (Op.getOpcode() == ISD::FCEIL) {
1793     // If the truncated value is the greater than or equal to the original
1794     // value, we've computed the ceil. Otherwise, we went the wrong way and
1795     // need to increase by 1.
1796     // FIXME: This should use a masked operation. Handle here or in isel?
1797     SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1798                                  DAG.getConstantFP(1.0, DL, VT));
1799     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1800     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1801   } else if (Op.getOpcode() == ISD::FFLOOR) {
1802     // If the truncated value is the less than or equal to the original value,
1803     // we've computed the floor. Otherwise, we went the wrong way and need to
1804     // decrease by 1.
1805     // FIXME: This should use a masked operation. Handle here or in isel?
1806     SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1807                                  DAG.getConstantFP(1.0, DL, VT));
1808     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1809     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1810   }
1811 
1812   // Restore the original sign so that -0.0 is preserved.
1813   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1814 
1815   // Determine the largest integer that can be represented exactly. This and
1816   // values larger than it don't have any fractional bits so don't need to
1817   // be converted.
1818   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1819   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1820   APFloat MaxVal = APFloat(FltSem);
1821   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1822                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1823   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1824 
1825   // If abs(Src) was larger than MaxVal or nan, keep it.
1826   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1827   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1828   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1829 }
1830 
1831 // ISD::FROUND is defined to round to nearest with ties rounding away from 0.
1832 // This mode isn't supported in vector hardware on RISCV. But as long as we
1833 // aren't compiling with trapping math, we can emulate this with
1834 // floor(X + copysign(nextafter(0.5, 0.0), X)).
1835 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM
1836 // dependencies modeled yet.
1837 // FIXME: Use masked operations to avoid final merge.
1838 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) {
1839   MVT VT = Op.getSimpleValueType();
1840   assert(VT.isVector() && "Unexpected type");
1841 
1842   SDLoc DL(Op);
1843 
1844   // Freeze the source since we are increasing the number of uses.
1845   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1846 
1847   // We do the conversion on the absolute value and fix the sign at the end.
1848   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1849 
1850   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1851   bool Ignored;
1852   APFloat Point5Pred = APFloat(0.5f);
1853   Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored);
1854   Point5Pred.next(/*nextDown*/ true);
1855 
1856   // Add the adjustment.
1857   SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs,
1858                                DAG.getConstantFP(Point5Pred, DL, VT));
1859 
1860   // Truncate to integer and convert back to fp.
1861   MVT IntVT = VT.changeVectorElementTypeToInteger();
1862   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust);
1863   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1864 
1865   // Restore the original sign.
1866   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1867 
1868   // Determine the largest integer that can be represented exactly. This and
1869   // values larger than it don't have any fractional bits so don't need to
1870   // be converted.
1871   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1872   APFloat MaxVal = APFloat(FltSem);
1873   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1874                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1875   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1876 
1877   // If abs(Src) was larger than MaxVal or nan, keep it.
1878   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1879   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1880   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1881 }
1882 
1883 struct VIDSequence {
1884   int64_t StepNumerator;
1885   unsigned StepDenominator;
1886   int64_t Addend;
1887 };
1888 
1889 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1890 // to the (non-zero) step S and start value X. This can be then lowered as the
1891 // RVV sequence (VID * S) + X, for example.
1892 // The step S is represented as an integer numerator divided by a positive
1893 // denominator. Note that the implementation currently only identifies
1894 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1895 // cannot detect 2/3, for example.
1896 // Note that this method will also match potentially unappealing index
1897 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1898 // determine whether this is worth generating code for.
1899 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1900   unsigned NumElts = Op.getNumOperands();
1901   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1902   if (!Op.getValueType().isInteger())
1903     return None;
1904 
1905   Optional<unsigned> SeqStepDenom;
1906   Optional<int64_t> SeqStepNum, SeqAddend;
1907   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1908   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1909   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1910     // Assume undef elements match the sequence; we just have to be careful
1911     // when interpolating across them.
1912     if (Op.getOperand(Idx).isUndef())
1913       continue;
1914     // The BUILD_VECTOR must be all constants.
1915     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1916       return None;
1917 
1918     uint64_t Val = Op.getConstantOperandVal(Idx) &
1919                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1920 
1921     if (PrevElt) {
1922       // Calculate the step since the last non-undef element, and ensure
1923       // it's consistent across the entire sequence.
1924       unsigned IdxDiff = Idx - PrevElt->second;
1925       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1926 
1927       // A zero-value value difference means that we're somewhere in the middle
1928       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1929       // step change before evaluating the sequence.
1930       if (ValDiff != 0) {
1931         int64_t Remainder = ValDiff % IdxDiff;
1932         // Normalize the step if it's greater than 1.
1933         if (Remainder != ValDiff) {
1934           // The difference must cleanly divide the element span.
1935           if (Remainder != 0)
1936             return None;
1937           ValDiff /= IdxDiff;
1938           IdxDiff = 1;
1939         }
1940 
1941         if (!SeqStepNum)
1942           SeqStepNum = ValDiff;
1943         else if (ValDiff != SeqStepNum)
1944           return None;
1945 
1946         if (!SeqStepDenom)
1947           SeqStepDenom = IdxDiff;
1948         else if (IdxDiff != *SeqStepDenom)
1949           return None;
1950       }
1951     }
1952 
1953     // Record and/or check any addend.
1954     if (SeqStepNum && SeqStepDenom) {
1955       uint64_t ExpectedVal =
1956           (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1957       int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1958       if (!SeqAddend)
1959         SeqAddend = Addend;
1960       else if (SeqAddend != Addend)
1961         return None;
1962     }
1963 
1964     // Record this non-undef element for later.
1965     if (!PrevElt || PrevElt->first != Val)
1966       PrevElt = std::make_pair(Val, Idx);
1967   }
1968   // We need to have logged both a step and an addend for this to count as
1969   // a legal index sequence.
1970   if (!SeqStepNum || !SeqStepDenom || !SeqAddend)
1971     return None;
1972 
1973   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1974 }
1975 
1976 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT
1977 // and lower it as a VRGATHER_VX_VL from the source vector.
1978 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL,
1979                                   SelectionDAG &DAG,
1980                                   const RISCVSubtarget &Subtarget) {
1981   if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1982     return SDValue();
1983   SDValue Vec = SplatVal.getOperand(0);
1984   // Only perform this optimization on vectors of the same size for simplicity.
1985   if (Vec.getValueType() != VT)
1986     return SDValue();
1987   SDValue Idx = SplatVal.getOperand(1);
1988   // The index must be a legal type.
1989   if (Idx.getValueType() != Subtarget.getXLenVT())
1990     return SDValue();
1991 
1992   MVT ContainerVT = VT;
1993   if (VT.isFixedLengthVector()) {
1994     ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1995     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
1996   }
1997 
1998   SDValue Mask, VL;
1999   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2000 
2001   SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec,
2002                                Idx, Mask, VL);
2003 
2004   if (!VT.isFixedLengthVector())
2005     return Gather;
2006 
2007   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2008 }
2009 
2010 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
2011                                  const RISCVSubtarget &Subtarget) {
2012   MVT VT = Op.getSimpleValueType();
2013   assert(VT.isFixedLengthVector() && "Unexpected vector!");
2014 
2015   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2016 
2017   SDLoc DL(Op);
2018   SDValue Mask, VL;
2019   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2020 
2021   MVT XLenVT = Subtarget.getXLenVT();
2022   unsigned NumElts = Op.getNumOperands();
2023 
2024   if (VT.getVectorElementType() == MVT::i1) {
2025     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
2026       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
2027       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
2028     }
2029 
2030     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
2031       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
2032       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
2033     }
2034 
2035     // Lower constant mask BUILD_VECTORs via an integer vector type, in
2036     // scalar integer chunks whose bit-width depends on the number of mask
2037     // bits and XLEN.
2038     // First, determine the most appropriate scalar integer type to use. This
2039     // is at most XLenVT, but may be shrunk to a smaller vector element type
2040     // according to the size of the final vector - use i8 chunks rather than
2041     // XLenVT if we're producing a v8i1. This results in more consistent
2042     // codegen across RV32 and RV64.
2043     unsigned NumViaIntegerBits =
2044         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
2045     NumViaIntegerBits = std::min(NumViaIntegerBits,
2046                                  Subtarget.getMaxELENForFixedLengthVectors());
2047     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
2048       // If we have to use more than one INSERT_VECTOR_ELT then this
2049       // optimization is likely to increase code size; avoid peforming it in
2050       // such a case. We can use a load from a constant pool in this case.
2051       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
2052         return SDValue();
2053       // Now we can create our integer vector type. Note that it may be larger
2054       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
2055       MVT IntegerViaVecVT =
2056           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
2057                            divideCeil(NumElts, NumViaIntegerBits));
2058 
2059       uint64_t Bits = 0;
2060       unsigned BitPos = 0, IntegerEltIdx = 0;
2061       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
2062 
2063       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
2064         // Once we accumulate enough bits to fill our scalar type, insert into
2065         // our vector and clear our accumulated data.
2066         if (I != 0 && I % NumViaIntegerBits == 0) {
2067           if (NumViaIntegerBits <= 32)
2068             Bits = SignExtend64(Bits, 32);
2069           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2070           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
2071                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2072           Bits = 0;
2073           BitPos = 0;
2074           IntegerEltIdx++;
2075         }
2076         SDValue V = Op.getOperand(I);
2077         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
2078         Bits |= ((uint64_t)BitValue << BitPos);
2079       }
2080 
2081       // Insert the (remaining) scalar value into position in our integer
2082       // vector type.
2083       if (NumViaIntegerBits <= 32)
2084         Bits = SignExtend64(Bits, 32);
2085       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2086       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
2087                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2088 
2089       if (NumElts < NumViaIntegerBits) {
2090         // If we're producing a smaller vector than our minimum legal integer
2091         // type, bitcast to the equivalent (known-legal) mask type, and extract
2092         // our final mask.
2093         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
2094         Vec = DAG.getBitcast(MVT::v8i1, Vec);
2095         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
2096                           DAG.getConstant(0, DL, XLenVT));
2097       } else {
2098         // Else we must have produced an integer type with the same size as the
2099         // mask type; bitcast for the final result.
2100         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
2101         Vec = DAG.getBitcast(VT, Vec);
2102       }
2103 
2104       return Vec;
2105     }
2106 
2107     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
2108     // vector type, we have a legal equivalently-sized i8 type, so we can use
2109     // that.
2110     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
2111     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
2112 
2113     SDValue WideVec;
2114     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2115       // For a splat, perform a scalar truncate before creating the wider
2116       // vector.
2117       assert(Splat.getValueType() == XLenVT &&
2118              "Unexpected type for i1 splat value");
2119       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
2120                           DAG.getConstant(1, DL, XLenVT));
2121       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
2122     } else {
2123       SmallVector<SDValue, 8> Ops(Op->op_values());
2124       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
2125       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
2126       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
2127     }
2128 
2129     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
2130   }
2131 
2132   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2133     if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget))
2134       return Gather;
2135     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2136                                         : RISCVISD::VMV_V_X_VL;
2137     Splat =
2138         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL);
2139     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2140   }
2141 
2142   // Try and match index sequences, which we can lower to the vid instruction
2143   // with optional modifications. An all-undef vector is matched by
2144   // getSplatValue, above.
2145   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2146     int64_t StepNumerator = SimpleVID->StepNumerator;
2147     unsigned StepDenominator = SimpleVID->StepDenominator;
2148     int64_t Addend = SimpleVID->Addend;
2149 
2150     assert(StepNumerator != 0 && "Invalid step");
2151     bool Negate = false;
2152     int64_t SplatStepVal = StepNumerator;
2153     unsigned StepOpcode = ISD::MUL;
2154     if (StepNumerator != 1) {
2155       if (isPowerOf2_64(std::abs(StepNumerator))) {
2156         Negate = StepNumerator < 0;
2157         StepOpcode = ISD::SHL;
2158         SplatStepVal = Log2_64(std::abs(StepNumerator));
2159       }
2160     }
2161 
2162     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2163     // threshold since it's the immediate value many RVV instructions accept.
2164     // There is no vmul.vi instruction so ensure multiply constant can fit in
2165     // a single addi instruction.
2166     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2167          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2168         isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) {
2169       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2170       // Convert right out of the scalable type so we can use standard ISD
2171       // nodes for the rest of the computation. If we used scalable types with
2172       // these, we'd lose the fixed-length vector info and generate worse
2173       // vsetvli code.
2174       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2175       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2176           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2177         SDValue SplatStep = DAG.getSplatBuildVector(
2178             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2179         VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2180       }
2181       if (StepDenominator != 1) {
2182         SDValue SplatStep = DAG.getSplatBuildVector(
2183             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2184         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2185       }
2186       if (Addend != 0 || Negate) {
2187         SDValue SplatAddend = DAG.getSplatBuildVector(
2188             VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2189         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2190       }
2191       return VID;
2192     }
2193   }
2194 
2195   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2196   // when re-interpreted as a vector with a larger element type. For example,
2197   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2198   // could be instead splat as
2199   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2200   // TODO: This optimization could also work on non-constant splats, but it
2201   // would require bit-manipulation instructions to construct the splat value.
2202   SmallVector<SDValue> Sequence;
2203   unsigned EltBitSize = VT.getScalarSizeInBits();
2204   const auto *BV = cast<BuildVectorSDNode>(Op);
2205   if (VT.isInteger() && EltBitSize < 64 &&
2206       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2207       BV->getRepeatedSequence(Sequence) &&
2208       (Sequence.size() * EltBitSize) <= 64) {
2209     unsigned SeqLen = Sequence.size();
2210     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2211     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2212     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2213             ViaIntVT == MVT::i64) &&
2214            "Unexpected sequence type");
2215 
2216     unsigned EltIdx = 0;
2217     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2218     uint64_t SplatValue = 0;
2219     // Construct the amalgamated value which can be splatted as this larger
2220     // vector type.
2221     for (const auto &SeqV : Sequence) {
2222       if (!SeqV.isUndef())
2223         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2224                        << (EltIdx * EltBitSize));
2225       EltIdx++;
2226     }
2227 
2228     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2229     // achieve better constant materializion.
2230     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2231       SplatValue = SignExtend64(SplatValue, 32);
2232 
2233     // Since we can't introduce illegal i64 types at this stage, we can only
2234     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2235     // way we can use RVV instructions to splat.
2236     assert((ViaIntVT.bitsLE(XLenVT) ||
2237             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2238            "Unexpected bitcast sequence");
2239     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2240       SDValue ViaVL =
2241           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2242       MVT ViaContainerVT =
2243           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2244       SDValue Splat =
2245           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2246                       DAG.getUNDEF(ViaContainerVT),
2247                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2248       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2249       return DAG.getBitcast(VT, Splat);
2250     }
2251   }
2252 
2253   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2254   // which constitute a large proportion of the elements. In such cases we can
2255   // splat a vector with the dominant element and make up the shortfall with
2256   // INSERT_VECTOR_ELTs.
2257   // Note that this includes vectors of 2 elements by association. The
2258   // upper-most element is the "dominant" one, allowing us to use a splat to
2259   // "insert" the upper element, and an insert of the lower element at position
2260   // 0, which improves codegen.
2261   SDValue DominantValue;
2262   unsigned MostCommonCount = 0;
2263   DenseMap<SDValue, unsigned> ValueCounts;
2264   unsigned NumUndefElts =
2265       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2266 
2267   // Track the number of scalar loads we know we'd be inserting, estimated as
2268   // any non-zero floating-point constant. Other kinds of element are either
2269   // already in registers or are materialized on demand. The threshold at which
2270   // a vector load is more desirable than several scalar materializion and
2271   // vector-insertion instructions is not known.
2272   unsigned NumScalarLoads = 0;
2273 
2274   for (SDValue V : Op->op_values()) {
2275     if (V.isUndef())
2276       continue;
2277 
2278     ValueCounts.insert(std::make_pair(V, 0));
2279     unsigned &Count = ValueCounts[V];
2280 
2281     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2282       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2283 
2284     // Is this value dominant? In case of a tie, prefer the highest element as
2285     // it's cheaper to insert near the beginning of a vector than it is at the
2286     // end.
2287     if (++Count >= MostCommonCount) {
2288       DominantValue = V;
2289       MostCommonCount = Count;
2290     }
2291   }
2292 
2293   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2294   unsigned NumDefElts = NumElts - NumUndefElts;
2295   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2296 
2297   // Don't perform this optimization when optimizing for size, since
2298   // materializing elements and inserting them tends to cause code bloat.
2299   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2300       ((MostCommonCount > DominantValueCountThreshold) ||
2301        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2302     // Start by splatting the most common element.
2303     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2304 
2305     DenseSet<SDValue> Processed{DominantValue};
2306     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2307     for (const auto &OpIdx : enumerate(Op->ops())) {
2308       const SDValue &V = OpIdx.value();
2309       if (V.isUndef() || !Processed.insert(V).second)
2310         continue;
2311       if (ValueCounts[V] == 1) {
2312         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2313                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2314       } else {
2315         // Blend in all instances of this value using a VSELECT, using a
2316         // mask where each bit signals whether that element is the one
2317         // we're after.
2318         SmallVector<SDValue> Ops;
2319         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2320           return DAG.getConstant(V == V1, DL, XLenVT);
2321         });
2322         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2323                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2324                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2325       }
2326     }
2327 
2328     return Vec;
2329   }
2330 
2331   return SDValue();
2332 }
2333 
2334 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2335                                    SDValue Lo, SDValue Hi, SDValue VL,
2336                                    SelectionDAG &DAG) {
2337   if (!Passthru)
2338     Passthru = DAG.getUNDEF(VT);
2339   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2340     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2341     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2342     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2343     // node in order to try and match RVV vector/scalar instructions.
2344     if ((LoC >> 31) == HiC)
2345       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
2346 
2347     // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use
2348     // vmv.v.x whose EEW = 32 to lower it.
2349     auto *Const = dyn_cast<ConstantSDNode>(VL);
2350     if (LoC == HiC && Const && Const->isAllOnesValue()) {
2351       MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
2352       // TODO: if vl <= min(VLMAX), we can also do this. But we could not
2353       // access the subtarget here now.
2354       auto InterVec = DAG.getNode(
2355           RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo,
2356                                   DAG.getRegister(RISCV::X0, MVT::i32));
2357       return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
2358     }
2359   }
2360 
2361   // Fall back to a stack store and stride x0 vector load.
2362   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo,
2363                      Hi, VL);
2364 }
2365 
2366 // Called by type legalization to handle splat of i64 on RV32.
2367 // FIXME: We can optimize this when the type has sign or zero bits in one
2368 // of the halves.
2369 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2370                                    SDValue Scalar, SDValue VL,
2371                                    SelectionDAG &DAG) {
2372   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2373   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2374                            DAG.getConstant(0, DL, MVT::i32));
2375   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2376                            DAG.getConstant(1, DL, MVT::i32));
2377   return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG);
2378 }
2379 
2380 // This function lowers a splat of a scalar operand Splat with the vector
2381 // length VL. It ensures the final sequence is type legal, which is useful when
2382 // lowering a splat after type legalization.
2383 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL,
2384                                 MVT VT, SDLoc DL, SelectionDAG &DAG,
2385                                 const RISCVSubtarget &Subtarget) {
2386   bool HasPassthru = Passthru && !Passthru.isUndef();
2387   if (!HasPassthru && !Passthru)
2388     Passthru = DAG.getUNDEF(VT);
2389   if (VT.isFloatingPoint()) {
2390     // If VL is 1, we could use vfmv.s.f.
2391     if (isOneConstant(VL))
2392       return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL);
2393     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL);
2394   }
2395 
2396   MVT XLenVT = Subtarget.getXLenVT();
2397 
2398   // Simplest case is that the operand needs to be promoted to XLenVT.
2399   if (Scalar.getValueType().bitsLE(XLenVT)) {
2400     // If the operand is a constant, sign extend to increase our chances
2401     // of being able to use a .vi instruction. ANY_EXTEND would become a
2402     // a zero extend and the simm5 check in isel would fail.
2403     // FIXME: Should we ignore the upper bits in isel instead?
2404     unsigned ExtOpc =
2405         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2406     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2407     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
2408     // If VL is 1 and the scalar value won't benefit from immediate, we could
2409     // use vmv.s.x.
2410     if (isOneConstant(VL) &&
2411         (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
2412       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL);
2413     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
2414   }
2415 
2416   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2417          "Unexpected scalar for splat lowering!");
2418 
2419   if (isOneConstant(VL) && isNullConstant(Scalar))
2420     return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru,
2421                        DAG.getConstant(0, DL, XLenVT), VL);
2422 
2423   // Otherwise use the more complicated splatting algorithm.
2424   return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG);
2425 }
2426 
2427 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources,
2428                                 const RISCVSubtarget &Subtarget) {
2429   // We need to be able to widen elements to the next larger integer type.
2430   if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors())
2431     return false;
2432 
2433   int Size = Mask.size();
2434   assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
2435 
2436   int Srcs[] = {-1, -1};
2437   for (int i = 0; i != Size; ++i) {
2438     // Ignore undef elements.
2439     if (Mask[i] < 0)
2440       continue;
2441 
2442     // Is this an even or odd element.
2443     int Pol = i % 2;
2444 
2445     // Ensure we consistently use the same source for this element polarity.
2446     int Src = Mask[i] / Size;
2447     if (Srcs[Pol] < 0)
2448       Srcs[Pol] = Src;
2449     if (Srcs[Pol] != Src)
2450       return false;
2451 
2452     // Make sure the element within the source is appropriate for this element
2453     // in the destination.
2454     int Elt = Mask[i] % Size;
2455     if (Elt != i / 2)
2456       return false;
2457   }
2458 
2459   // We need to find a source for each polarity and they can't be the same.
2460   if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1])
2461     return false;
2462 
2463   // Swap the sources if the second source was in the even polarity.
2464   SwapSources = Srcs[0] > Srcs[1];
2465 
2466   return true;
2467 }
2468 
2469 /// Match shuffles that concatenate two vectors, rotate the concatenation,
2470 /// and then extract the original number of elements from the rotated result.
2471 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The
2472 /// returned rotation amount is for a rotate right, where elements move from
2473 /// higher elements to lower elements. \p LoSrc indicates the first source
2474 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector
2475 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be
2476 /// 0 or 1 if a rotation is found.
2477 ///
2478 /// NOTE: We talk about rotate to the right which matches how bit shift and
2479 /// rotate instructions are described where LSBs are on the right, but LLVM IR
2480 /// and the table below write vectors with the lowest elements on the left.
2481 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) {
2482   int Size = Mask.size();
2483 
2484   // We need to detect various ways of spelling a rotation:
2485   //   [11, 12, 13, 14, 15,  0,  1,  2]
2486   //   [-1, 12, 13, 14, -1, -1,  1, -1]
2487   //   [-1, -1, -1, -1, -1, -1,  1,  2]
2488   //   [ 3,  4,  5,  6,  7,  8,  9, 10]
2489   //   [-1,  4,  5,  6, -1, -1,  9, -1]
2490   //   [-1,  4,  5,  6, -1, -1, -1, -1]
2491   int Rotation = 0;
2492   LoSrc = -1;
2493   HiSrc = -1;
2494   for (int i = 0; i != Size; ++i) {
2495     int M = Mask[i];
2496     if (M < 0)
2497       continue;
2498 
2499     // Determine where a rotate vector would have started.
2500     int StartIdx = i - (M % Size);
2501     // The identity rotation isn't interesting, stop.
2502     if (StartIdx == 0)
2503       return -1;
2504 
2505     // If we found the tail of a vector the rotation must be the missing
2506     // front. If we found the head of a vector, it must be how much of the
2507     // head.
2508     int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
2509 
2510     if (Rotation == 0)
2511       Rotation = CandidateRotation;
2512     else if (Rotation != CandidateRotation)
2513       // The rotations don't match, so we can't match this mask.
2514       return -1;
2515 
2516     // Compute which value this mask is pointing at.
2517     int MaskSrc = M < Size ? 0 : 1;
2518 
2519     // Compute which of the two target values this index should be assigned to.
2520     // This reflects whether the high elements are remaining or the low elemnts
2521     // are remaining.
2522     int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc;
2523 
2524     // Either set up this value if we've not encountered it before, or check
2525     // that it remains consistent.
2526     if (TargetSrc < 0)
2527       TargetSrc = MaskSrc;
2528     else if (TargetSrc != MaskSrc)
2529       // This may be a rotation, but it pulls from the inputs in some
2530       // unsupported interleaving.
2531       return -1;
2532   }
2533 
2534   // Check that we successfully analyzed the mask, and normalize the results.
2535   assert(Rotation != 0 && "Failed to locate a viable rotation!");
2536   assert((LoSrc >= 0 || HiSrc >= 0) &&
2537          "Failed to find a rotated input vector!");
2538 
2539   return Rotation;
2540 }
2541 
2542 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2543                                    const RISCVSubtarget &Subtarget) {
2544   SDValue V1 = Op.getOperand(0);
2545   SDValue V2 = Op.getOperand(1);
2546   SDLoc DL(Op);
2547   MVT XLenVT = Subtarget.getXLenVT();
2548   MVT VT = Op.getSimpleValueType();
2549   unsigned NumElts = VT.getVectorNumElements();
2550   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2551 
2552   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2553 
2554   SDValue TrueMask, VL;
2555   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2556 
2557   if (SVN->isSplat()) {
2558     const int Lane = SVN->getSplatIndex();
2559     if (Lane >= 0) {
2560       MVT SVT = VT.getVectorElementType();
2561 
2562       // Turn splatted vector load into a strided load with an X0 stride.
2563       SDValue V = V1;
2564       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2565       // with undef.
2566       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2567       int Offset = Lane;
2568       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2569         int OpElements =
2570             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2571         V = V.getOperand(Offset / OpElements);
2572         Offset %= OpElements;
2573       }
2574 
2575       // We need to ensure the load isn't atomic or volatile.
2576       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2577         auto *Ld = cast<LoadSDNode>(V);
2578         Offset *= SVT.getStoreSize();
2579         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2580                                                    TypeSize::Fixed(Offset), DL);
2581 
2582         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2583         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2584           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2585           SDValue IntID =
2586               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2587           SDValue Ops[] = {Ld->getChain(),
2588                            IntID,
2589                            DAG.getUNDEF(ContainerVT),
2590                            NewAddr,
2591                            DAG.getRegister(RISCV::X0, XLenVT),
2592                            VL};
2593           SDValue NewLoad = DAG.getMemIntrinsicNode(
2594               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2595               DAG.getMachineFunction().getMachineMemOperand(
2596                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2597           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2598           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2599         }
2600 
2601         // Otherwise use a scalar load and splat. This will give the best
2602         // opportunity to fold a splat into the operation. ISel can turn it into
2603         // the x0 strided load if we aren't able to fold away the select.
2604         if (SVT.isFloatingPoint())
2605           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2606                           Ld->getPointerInfo().getWithOffset(Offset),
2607                           Ld->getOriginalAlign(),
2608                           Ld->getMemOperand()->getFlags());
2609         else
2610           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2611                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2612                              Ld->getOriginalAlign(),
2613                              Ld->getMemOperand()->getFlags());
2614         DAG.makeEquivalentMemoryOrdering(Ld, V);
2615 
2616         unsigned Opc =
2617             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2618         SDValue Splat =
2619             DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL);
2620         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2621       }
2622 
2623       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2624       assert(Lane < (int)NumElts && "Unexpected lane!");
2625       SDValue Gather =
2626           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
2627                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
2628       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2629     }
2630   }
2631 
2632   ArrayRef<int> Mask = SVN->getMask();
2633 
2634   // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may
2635   // be undef which can be handled with a single SLIDEDOWN/UP.
2636   int LoSrc, HiSrc;
2637   int Rotation = isElementRotate(LoSrc, HiSrc, Mask);
2638   if (Rotation > 0) {
2639     SDValue LoV, HiV;
2640     if (LoSrc >= 0) {
2641       LoV = LoSrc == 0 ? V1 : V2;
2642       LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget);
2643     }
2644     if (HiSrc >= 0) {
2645       HiV = HiSrc == 0 ? V1 : V2;
2646       HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget);
2647     }
2648 
2649     // We found a rotation. We need to slide HiV down by Rotation. Then we need
2650     // to slide LoV up by (NumElts - Rotation).
2651     unsigned InvRotate = NumElts - Rotation;
2652 
2653     SDValue Res = DAG.getUNDEF(ContainerVT);
2654     if (HiV) {
2655       // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN.
2656       // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it
2657       // causes multiple vsetvlis in some test cases such as lowering
2658       // reduce.mul
2659       SDValue DownVL = VL;
2660       if (LoV)
2661         DownVL = DAG.getConstant(InvRotate, DL, XLenVT);
2662       Res =
2663           DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV,
2664                       DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL);
2665     }
2666     if (LoV)
2667       Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV,
2668                         DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL);
2669 
2670     return convertFromScalableVector(VT, Res, DAG, Subtarget);
2671   }
2672 
2673   // Detect an interleave shuffle and lower to
2674   // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
2675   bool SwapSources;
2676   if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) {
2677     // Swap sources if needed.
2678     if (SwapSources)
2679       std::swap(V1, V2);
2680 
2681     // Extract the lower half of the vectors.
2682     MVT HalfVT = VT.getHalfNumVectorElementsVT();
2683     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
2684                      DAG.getConstant(0, DL, XLenVT));
2685     V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2,
2686                      DAG.getConstant(0, DL, XLenVT));
2687 
2688     // Double the element width and halve the number of elements in an int type.
2689     unsigned EltBits = VT.getScalarSizeInBits();
2690     MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
2691     MVT WideIntVT =
2692         MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2);
2693     // Convert this to a scalable vector. We need to base this on the
2694     // destination size to ensure there's always a type with a smaller LMUL.
2695     MVT WideIntContainerVT =
2696         getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget);
2697 
2698     // Convert sources to scalable vectors with the same element count as the
2699     // larger type.
2700     MVT HalfContainerVT = MVT::getVectorVT(
2701         VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount());
2702     V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget);
2703     V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget);
2704 
2705     // Cast sources to integer.
2706     MVT IntEltVT = MVT::getIntegerVT(EltBits);
2707     MVT IntHalfVT =
2708         MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount());
2709     V1 = DAG.getBitcast(IntHalfVT, V1);
2710     V2 = DAG.getBitcast(IntHalfVT, V2);
2711 
2712     // Freeze V2 since we use it twice and we need to be sure that the add and
2713     // multiply see the same value.
2714     V2 = DAG.getFreeze(V2);
2715 
2716     // Recreate TrueMask using the widened type's element count.
2717     MVT MaskVT =
2718         MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount());
2719     TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
2720 
2721     // Widen V1 and V2 with 0s and add one copy of V2 to V1.
2722     SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1,
2723                               V2, TrueMask, VL);
2724     // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer.
2725     SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT,
2726                                      DAG.getUNDEF(IntHalfVT),
2727                                      DAG.getAllOnesConstant(DL, XLenVT));
2728     SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT,
2729                                    V2, Multiplier, TrueMask, VL);
2730     // Add the new copies to our previous addition giving us 2^eltbits copies of
2731     // V2. This is equivalent to shifting V2 left by eltbits. This should
2732     // combine with the vwmulu.vv above to form vwmaccu.vv.
2733     Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul,
2734                       TrueMask, VL);
2735     // Cast back to ContainerVT. We need to re-create a new ContainerVT in case
2736     // WideIntContainerVT is a larger fractional LMUL than implied by the fixed
2737     // vector VT.
2738     ContainerVT =
2739         MVT::getVectorVT(VT.getVectorElementType(),
2740                          WideIntContainerVT.getVectorElementCount() * 2);
2741     Add = DAG.getBitcast(ContainerVT, Add);
2742     return convertFromScalableVector(VT, Add, DAG, Subtarget);
2743   }
2744 
2745   // Detect shuffles which can be re-expressed as vector selects; these are
2746   // shuffles in which each element in the destination is taken from an element
2747   // at the corresponding index in either source vectors.
2748   bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) {
2749     int MaskIndex = MaskIdx.value();
2750     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2751   });
2752 
2753   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2754 
2755   SmallVector<SDValue> MaskVals;
2756   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2757   // merged with a second vrgather.
2758   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2759 
2760   // By default we preserve the original operand order, and use a mask to
2761   // select LHS as true and RHS as false. However, since RVV vector selects may
2762   // feature splats but only on the LHS, we may choose to invert our mask and
2763   // instead select between RHS and LHS.
2764   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2765   bool InvertMask = IsSelect == SwapOps;
2766 
2767   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2768   // half.
2769   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2770 
2771   // Now construct the mask that will be used by the vselect or blended
2772   // vrgather operation. For vrgathers, construct the appropriate indices into
2773   // each vector.
2774   for (int MaskIndex : Mask) {
2775     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2776     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2777     if (!IsSelect) {
2778       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2779       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2780                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2781                                      : DAG.getUNDEF(XLenVT));
2782       GatherIndicesRHS.push_back(
2783           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2784                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2785       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2786         ++LHSIndexCounts[MaskIndex];
2787       if (!IsLHSOrUndefIndex)
2788         ++RHSIndexCounts[MaskIndex - NumElts];
2789     }
2790   }
2791 
2792   if (SwapOps) {
2793     std::swap(V1, V2);
2794     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2795   }
2796 
2797   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2798   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2799   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2800 
2801   if (IsSelect)
2802     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2803 
2804   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2805     // On such a large vector we're unable to use i8 as the index type.
2806     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2807     // may involve vector splitting if we're already at LMUL=8, or our
2808     // user-supplied maximum fixed-length LMUL.
2809     return SDValue();
2810   }
2811 
2812   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2813   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2814   MVT IndexVT = VT.changeTypeToInteger();
2815   // Since we can't introduce illegal index types at this stage, use i16 and
2816   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2817   // than XLenVT.
2818   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2819     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2820     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2821   }
2822 
2823   MVT IndexContainerVT =
2824       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2825 
2826   SDValue Gather;
2827   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2828   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2829   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2830     Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG,
2831                               Subtarget);
2832   } else {
2833     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2834     // If only one index is used, we can use a "splat" vrgather.
2835     // TODO: We can splat the most-common index and fix-up any stragglers, if
2836     // that's beneficial.
2837     if (LHSIndexCounts.size() == 1) {
2838       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2839       Gather =
2840           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2841                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2842     } else {
2843       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2844       LHSIndices =
2845           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2846 
2847       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2848                            TrueMask, VL);
2849     }
2850   }
2851 
2852   // If a second vector operand is used by this shuffle, blend it in with an
2853   // additional vrgather.
2854   if (!V2.isUndef()) {
2855     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2856     // If only one index is used, we can use a "splat" vrgather.
2857     // TODO: We can splat the most-common index and fix-up any stragglers, if
2858     // that's beneficial.
2859     if (RHSIndexCounts.size() == 1) {
2860       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2861       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2862                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2863     } else {
2864       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2865       RHSIndices =
2866           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2867       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2868                        VL);
2869     }
2870 
2871     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2872     SelectMask =
2873         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2874 
2875     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2876                          Gather, VL);
2877   }
2878 
2879   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2880 }
2881 
2882 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
2883   // Support splats for any type. These should type legalize well.
2884   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
2885     return true;
2886 
2887   // Only support legal VTs for other shuffles for now.
2888   if (!isTypeLegal(VT))
2889     return false;
2890 
2891   MVT SVT = VT.getSimpleVT();
2892 
2893   bool SwapSources;
2894   int LoSrc, HiSrc;
2895   return (isElementRotate(LoSrc, HiSrc, M) > 0) ||
2896          isInterleaveShuffle(M, SVT, SwapSources, Subtarget);
2897 }
2898 
2899 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
2900                                      SDLoc DL, SelectionDAG &DAG,
2901                                      const RISCVSubtarget &Subtarget) {
2902   if (VT.isScalableVector())
2903     return DAG.getFPExtendOrRound(Op, DL, VT);
2904   assert(VT.isFixedLengthVector() &&
2905          "Unexpected value type for RVV FP extend/round lowering");
2906   SDValue Mask, VL;
2907   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2908   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
2909                         ? RISCVISD::FP_EXTEND_VL
2910                         : RISCVISD::FP_ROUND_VL;
2911   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
2912 }
2913 
2914 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2915 // the exponent.
2916 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2917   MVT VT = Op.getSimpleValueType();
2918   unsigned EltSize = VT.getScalarSizeInBits();
2919   SDValue Src = Op.getOperand(0);
2920   SDLoc DL(Op);
2921 
2922   // We need a FP type that can represent the value.
2923   // TODO: Use f16 for i8 when possible?
2924   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2925   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2926 
2927   // Legal types should have been checked in the RISCVTargetLowering
2928   // constructor.
2929   // TODO: Splitting may make sense in some cases.
2930   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2931          "Expected legal float type!");
2932 
2933   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2934   // The trailing zero count is equal to log2 of this single bit value.
2935   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2936     SDValue Neg =
2937         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2938     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2939   }
2940 
2941   // We have a legal FP type, convert to it.
2942   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2943   // Bitcast to integer and shift the exponent to the LSB.
2944   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2945   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2946   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2947   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2948                               DAG.getConstant(ShiftAmt, DL, IntVT));
2949   // Truncate back to original type to allow vnsrl.
2950   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2951   // The exponent contains log2 of the value in biased form.
2952   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2953 
2954   // For trailing zeros, we just need to subtract the bias.
2955   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2956     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2957                        DAG.getConstant(ExponentBias, DL, VT));
2958 
2959   // For leading zeros, we need to remove the bias and convert from log2 to
2960   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2961   unsigned Adjust = ExponentBias + (EltSize - 1);
2962   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2963 }
2964 
2965 // While RVV has alignment restrictions, we should always be able to load as a
2966 // legal equivalently-sized byte-typed vector instead. This method is
2967 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2968 // the load is already correctly-aligned, it returns SDValue().
2969 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2970                                                     SelectionDAG &DAG) const {
2971   auto *Load = cast<LoadSDNode>(Op);
2972   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2973 
2974   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2975                                      Load->getMemoryVT(),
2976                                      *Load->getMemOperand()))
2977     return SDValue();
2978 
2979   SDLoc DL(Op);
2980   MVT VT = Op.getSimpleValueType();
2981   unsigned EltSizeBits = VT.getScalarSizeInBits();
2982   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2983          "Unexpected unaligned RVV load type");
2984   MVT NewVT =
2985       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2986   assert(NewVT.isValid() &&
2987          "Expecting equally-sized RVV vector types to be legal");
2988   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2989                           Load->getPointerInfo(), Load->getOriginalAlign(),
2990                           Load->getMemOperand()->getFlags());
2991   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2992 }
2993 
2994 // While RVV has alignment restrictions, we should always be able to store as a
2995 // legal equivalently-sized byte-typed vector instead. This method is
2996 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
2997 // returns SDValue() if the store is already correctly aligned.
2998 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
2999                                                      SelectionDAG &DAG) const {
3000   auto *Store = cast<StoreSDNode>(Op);
3001   assert(Store && Store->getValue().getValueType().isVector() &&
3002          "Expected vector store");
3003 
3004   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
3005                                      Store->getMemoryVT(),
3006                                      *Store->getMemOperand()))
3007     return SDValue();
3008 
3009   SDLoc DL(Op);
3010   SDValue StoredVal = Store->getValue();
3011   MVT VT = StoredVal.getSimpleValueType();
3012   unsigned EltSizeBits = VT.getScalarSizeInBits();
3013   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
3014          "Unexpected unaligned RVV store type");
3015   MVT NewVT =
3016       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
3017   assert(NewVT.isValid() &&
3018          "Expecting equally-sized RVV vector types to be legal");
3019   StoredVal = DAG.getBitcast(NewVT, StoredVal);
3020   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
3021                       Store->getPointerInfo(), Store->getOriginalAlign(),
3022                       Store->getMemOperand()->getFlags());
3023 }
3024 
3025 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
3026                                             SelectionDAG &DAG) const {
3027   switch (Op.getOpcode()) {
3028   default:
3029     report_fatal_error("unimplemented operand");
3030   case ISD::GlobalAddress:
3031     return lowerGlobalAddress(Op, DAG);
3032   case ISD::BlockAddress:
3033     return lowerBlockAddress(Op, DAG);
3034   case ISD::ConstantPool:
3035     return lowerConstantPool(Op, DAG);
3036   case ISD::JumpTable:
3037     return lowerJumpTable(Op, DAG);
3038   case ISD::GlobalTLSAddress:
3039     return lowerGlobalTLSAddress(Op, DAG);
3040   case ISD::SELECT:
3041     return lowerSELECT(Op, DAG);
3042   case ISD::BRCOND:
3043     return lowerBRCOND(Op, DAG);
3044   case ISD::VASTART:
3045     return lowerVASTART(Op, DAG);
3046   case ISD::FRAMEADDR:
3047     return lowerFRAMEADDR(Op, DAG);
3048   case ISD::RETURNADDR:
3049     return lowerRETURNADDR(Op, DAG);
3050   case ISD::SHL_PARTS:
3051     return lowerShiftLeftParts(Op, DAG);
3052   case ISD::SRA_PARTS:
3053     return lowerShiftRightParts(Op, DAG, true);
3054   case ISD::SRL_PARTS:
3055     return lowerShiftRightParts(Op, DAG, false);
3056   case ISD::BITCAST: {
3057     SDLoc DL(Op);
3058     EVT VT = Op.getValueType();
3059     SDValue Op0 = Op.getOperand(0);
3060     EVT Op0VT = Op0.getValueType();
3061     MVT XLenVT = Subtarget.getXLenVT();
3062     if (VT.isFixedLengthVector()) {
3063       // We can handle fixed length vector bitcasts with a simple replacement
3064       // in isel.
3065       if (Op0VT.isFixedLengthVector())
3066         return Op;
3067       // When bitcasting from scalar to fixed-length vector, insert the scalar
3068       // into a one-element vector of the result type, and perform a vector
3069       // bitcast.
3070       if (!Op0VT.isVector()) {
3071         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
3072         if (!isTypeLegal(BVT))
3073           return SDValue();
3074         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
3075                                               DAG.getUNDEF(BVT), Op0,
3076                                               DAG.getConstant(0, DL, XLenVT)));
3077       }
3078       return SDValue();
3079     }
3080     // Custom-legalize bitcasts from fixed-length vector types to scalar types
3081     // thus: bitcast the vector to a one-element vector type whose element type
3082     // is the same as the result type, and extract the first element.
3083     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
3084       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
3085       if (!isTypeLegal(BVT))
3086         return SDValue();
3087       SDValue BVec = DAG.getBitcast(BVT, Op0);
3088       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
3089                          DAG.getConstant(0, DL, XLenVT));
3090     }
3091     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
3092       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
3093       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
3094       return FPConv;
3095     }
3096     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
3097         Subtarget.hasStdExtF()) {
3098       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
3099       SDValue FPConv =
3100           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
3101       return FPConv;
3102     }
3103     return SDValue();
3104   }
3105   case ISD::INTRINSIC_WO_CHAIN:
3106     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3107   case ISD::INTRINSIC_W_CHAIN:
3108     return LowerINTRINSIC_W_CHAIN(Op, DAG);
3109   case ISD::INTRINSIC_VOID:
3110     return LowerINTRINSIC_VOID(Op, DAG);
3111   case ISD::BSWAP:
3112   case ISD::BITREVERSE: {
3113     MVT VT = Op.getSimpleValueType();
3114     SDLoc DL(Op);
3115     if (Subtarget.hasStdExtZbp()) {
3116       // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
3117       // Start with the maximum immediate value which is the bitwidth - 1.
3118       unsigned Imm = VT.getSizeInBits() - 1;
3119       // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
3120       if (Op.getOpcode() == ISD::BSWAP)
3121         Imm &= ~0x7U;
3122       return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
3123                          DAG.getConstant(Imm, DL, VT));
3124     }
3125     assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
3126     assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
3127     // Expand bitreverse to a bswap(rev8) followed by brev8.
3128     SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
3129     // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized
3130     // as brev8 by an isel pattern.
3131     return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap,
3132                        DAG.getConstant(7, DL, VT));
3133   }
3134   case ISD::FSHL:
3135   case ISD::FSHR: {
3136     MVT VT = Op.getSimpleValueType();
3137     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
3138     SDLoc DL(Op);
3139     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
3140     // use log(XLen) bits. Mask the shift amount accordingly to prevent
3141     // accidentally setting the extra bit.
3142     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
3143     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
3144                                 DAG.getConstant(ShAmtWidth, DL, VT));
3145     // fshl and fshr concatenate their operands in the same order. fsr and fsl
3146     // instruction use different orders. fshl will return its first operand for
3147     // shift of zero, fshr will return its second operand. fsl and fsr both
3148     // return rs1 so the ISD nodes need to have different operand orders.
3149     // Shift amount is in rs2.
3150     SDValue Op0 = Op.getOperand(0);
3151     SDValue Op1 = Op.getOperand(1);
3152     unsigned Opc = RISCVISD::FSL;
3153     if (Op.getOpcode() == ISD::FSHR) {
3154       std::swap(Op0, Op1);
3155       Opc = RISCVISD::FSR;
3156     }
3157     return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt);
3158   }
3159   case ISD::TRUNCATE: {
3160     SDLoc DL(Op);
3161     MVT VT = Op.getSimpleValueType();
3162     // Only custom-lower vector truncates
3163     if (!VT.isVector())
3164       return Op;
3165 
3166     // Truncates to mask types are handled differently
3167     if (VT.getVectorElementType() == MVT::i1)
3168       return lowerVectorMaskTrunc(Op, DAG);
3169 
3170     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
3171     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
3172     // truncate by one power of two at a time.
3173     MVT DstEltVT = VT.getVectorElementType();
3174 
3175     SDValue Src = Op.getOperand(0);
3176     MVT SrcVT = Src.getSimpleValueType();
3177     MVT SrcEltVT = SrcVT.getVectorElementType();
3178 
3179     assert(DstEltVT.bitsLT(SrcEltVT) &&
3180            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
3181            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
3182            "Unexpected vector truncate lowering");
3183 
3184     MVT ContainerVT = SrcVT;
3185     if (SrcVT.isFixedLengthVector()) {
3186       ContainerVT = getContainerForFixedLengthVector(SrcVT);
3187       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3188     }
3189 
3190     SDValue Result = Src;
3191     SDValue Mask, VL;
3192     std::tie(Mask, VL) =
3193         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
3194     LLVMContext &Context = *DAG.getContext();
3195     const ElementCount Count = ContainerVT.getVectorElementCount();
3196     do {
3197       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
3198       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
3199       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
3200                            Mask, VL);
3201     } while (SrcEltVT != DstEltVT);
3202 
3203     if (SrcVT.isFixedLengthVector())
3204       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
3205 
3206     return Result;
3207   }
3208   case ISD::ANY_EXTEND:
3209   case ISD::ZERO_EXTEND:
3210     if (Op.getOperand(0).getValueType().isVector() &&
3211         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3212       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
3213     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
3214   case ISD::SIGN_EXTEND:
3215     if (Op.getOperand(0).getValueType().isVector() &&
3216         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3217       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
3218     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
3219   case ISD::SPLAT_VECTOR_PARTS:
3220     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
3221   case ISD::INSERT_VECTOR_ELT:
3222     return lowerINSERT_VECTOR_ELT(Op, DAG);
3223   case ISD::EXTRACT_VECTOR_ELT:
3224     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3225   case ISD::VSCALE: {
3226     MVT VT = Op.getSimpleValueType();
3227     SDLoc DL(Op);
3228     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
3229     // We define our scalable vector types for lmul=1 to use a 64 bit known
3230     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
3231     // vscale as VLENB / 8.
3232     static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
3233     if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock)
3234       report_fatal_error("Support for VLEN==32 is incomplete.");
3235     if (isa<ConstantSDNode>(Op.getOperand(0))) {
3236       // We assume VLENB is a multiple of 8. We manually choose the best shift
3237       // here because SimplifyDemandedBits isn't always able to simplify it.
3238       uint64_t Val = Op.getConstantOperandVal(0);
3239       if (isPowerOf2_64(Val)) {
3240         uint64_t Log2 = Log2_64(Val);
3241         if (Log2 < 3)
3242           return DAG.getNode(ISD::SRL, DL, VT, VLENB,
3243                              DAG.getConstant(3 - Log2, DL, VT));
3244         if (Log2 > 3)
3245           return DAG.getNode(ISD::SHL, DL, VT, VLENB,
3246                              DAG.getConstant(Log2 - 3, DL, VT));
3247         return VLENB;
3248       }
3249       // If the multiplier is a multiple of 8, scale it down to avoid needing
3250       // to shift the VLENB value.
3251       if ((Val % 8) == 0)
3252         return DAG.getNode(ISD::MUL, DL, VT, VLENB,
3253                            DAG.getConstant(Val / 8, DL, VT));
3254     }
3255 
3256     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
3257                                  DAG.getConstant(3, DL, VT));
3258     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
3259   }
3260   case ISD::FPOWI: {
3261     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
3262     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
3263     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
3264         Op.getOperand(1).getValueType() == MVT::i32) {
3265       SDLoc DL(Op);
3266       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
3267       SDValue Powi =
3268           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
3269       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
3270                          DAG.getIntPtrConstant(0, DL));
3271     }
3272     return SDValue();
3273   }
3274   case ISD::FP_EXTEND: {
3275     // RVV can only do fp_extend to types double the size as the source. We
3276     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
3277     // via f32.
3278     SDLoc DL(Op);
3279     MVT VT = Op.getSimpleValueType();
3280     SDValue Src = Op.getOperand(0);
3281     MVT SrcVT = Src.getSimpleValueType();
3282 
3283     // Prepare any fixed-length vector operands.
3284     MVT ContainerVT = VT;
3285     if (SrcVT.isFixedLengthVector()) {
3286       ContainerVT = getContainerForFixedLengthVector(VT);
3287       MVT SrcContainerVT =
3288           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
3289       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3290     }
3291 
3292     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
3293         SrcVT.getVectorElementType() != MVT::f16) {
3294       // For scalable vectors, we only need to close the gap between
3295       // vXf16->vXf64.
3296       if (!VT.isFixedLengthVector())
3297         return Op;
3298       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
3299       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
3300       return convertFromScalableVector(VT, Src, DAG, Subtarget);
3301     }
3302 
3303     MVT InterVT = VT.changeVectorElementType(MVT::f32);
3304     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
3305     SDValue IntermediateExtend = getRVVFPExtendOrRound(
3306         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
3307 
3308     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
3309                                            DL, DAG, Subtarget);
3310     if (VT.isFixedLengthVector())
3311       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
3312     return Extend;
3313   }
3314   case ISD::FP_ROUND: {
3315     // RVV can only do fp_round to types half the size as the source. We
3316     // custom-lower f64->f16 rounds via RVV's round-to-odd float
3317     // conversion instruction.
3318     SDLoc DL(Op);
3319     MVT VT = Op.getSimpleValueType();
3320     SDValue Src = Op.getOperand(0);
3321     MVT SrcVT = Src.getSimpleValueType();
3322 
3323     // Prepare any fixed-length vector operands.
3324     MVT ContainerVT = VT;
3325     if (VT.isFixedLengthVector()) {
3326       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3327       ContainerVT =
3328           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3329       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3330     }
3331 
3332     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
3333         SrcVT.getVectorElementType() != MVT::f64) {
3334       // For scalable vectors, we only need to close the gap between
3335       // vXf64<->vXf16.
3336       if (!VT.isFixedLengthVector())
3337         return Op;
3338       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
3339       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
3340       return convertFromScalableVector(VT, Src, DAG, Subtarget);
3341     }
3342 
3343     SDValue Mask, VL;
3344     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3345 
3346     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
3347     SDValue IntermediateRound =
3348         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
3349     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
3350                                           DL, DAG, Subtarget);
3351 
3352     if (VT.isFixedLengthVector())
3353       return convertFromScalableVector(VT, Round, DAG, Subtarget);
3354     return Round;
3355   }
3356   case ISD::FP_TO_SINT:
3357   case ISD::FP_TO_UINT:
3358   case ISD::SINT_TO_FP:
3359   case ISD::UINT_TO_FP: {
3360     // RVV can only do fp<->int conversions to types half/double the size as
3361     // the source. We custom-lower any conversions that do two hops into
3362     // sequences.
3363     MVT VT = Op.getSimpleValueType();
3364     if (!VT.isVector())
3365       return Op;
3366     SDLoc DL(Op);
3367     SDValue Src = Op.getOperand(0);
3368     MVT EltVT = VT.getVectorElementType();
3369     MVT SrcVT = Src.getSimpleValueType();
3370     MVT SrcEltVT = SrcVT.getVectorElementType();
3371     unsigned EltSize = EltVT.getSizeInBits();
3372     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
3373     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
3374            "Unexpected vector element types");
3375 
3376     bool IsInt2FP = SrcEltVT.isInteger();
3377     // Widening conversions
3378     if (EltSize > (2 * SrcEltSize)) {
3379       if (IsInt2FP) {
3380         // Do a regular integer sign/zero extension then convert to float.
3381         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize),
3382                                       VT.getVectorElementCount());
3383         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
3384                                  ? ISD::ZERO_EXTEND
3385                                  : ISD::SIGN_EXTEND;
3386         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
3387         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
3388       }
3389       // FP2Int
3390       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
3391       // Do one doubling fp_extend then complete the operation by converting
3392       // to int.
3393       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3394       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
3395       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
3396     }
3397 
3398     // Narrowing conversions
3399     if (SrcEltSize > (2 * EltSize)) {
3400       if (IsInt2FP) {
3401         // One narrowing int_to_fp, then an fp_round.
3402         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
3403         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3404         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
3405         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
3406       }
3407       // FP2Int
3408       // One narrowing fp_to_int, then truncate the integer. If the float isn't
3409       // representable by the integer, the result is poison.
3410       MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
3411                                     VT.getVectorElementCount());
3412       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
3413       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
3414     }
3415 
3416     // Scalable vectors can exit here. Patterns will handle equally-sized
3417     // conversions halving/doubling ones.
3418     if (!VT.isFixedLengthVector())
3419       return Op;
3420 
3421     // For fixed-length vectors we lower to a custom "VL" node.
3422     unsigned RVVOpc = 0;
3423     switch (Op.getOpcode()) {
3424     default:
3425       llvm_unreachable("Impossible opcode");
3426     case ISD::FP_TO_SINT:
3427       RVVOpc = RISCVISD::FP_TO_SINT_VL;
3428       break;
3429     case ISD::FP_TO_UINT:
3430       RVVOpc = RISCVISD::FP_TO_UINT_VL;
3431       break;
3432     case ISD::SINT_TO_FP:
3433       RVVOpc = RISCVISD::SINT_TO_FP_VL;
3434       break;
3435     case ISD::UINT_TO_FP:
3436       RVVOpc = RISCVISD::UINT_TO_FP_VL;
3437       break;
3438     }
3439 
3440     MVT ContainerVT, SrcContainerVT;
3441     // Derive the reference container type from the larger vector type.
3442     if (SrcEltSize > EltSize) {
3443       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3444       ContainerVT =
3445           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3446     } else {
3447       ContainerVT = getContainerForFixedLengthVector(VT);
3448       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
3449     }
3450 
3451     SDValue Mask, VL;
3452     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3453 
3454     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3455     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3456     return convertFromScalableVector(VT, Src, DAG, Subtarget);
3457   }
3458   case ISD::FP_TO_SINT_SAT:
3459   case ISD::FP_TO_UINT_SAT:
3460     return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
3461   case ISD::FTRUNC:
3462   case ISD::FCEIL:
3463   case ISD::FFLOOR:
3464     return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3465   case ISD::FROUND:
3466     return lowerFROUND(Op, DAG);
3467   case ISD::VECREDUCE_ADD:
3468   case ISD::VECREDUCE_UMAX:
3469   case ISD::VECREDUCE_SMAX:
3470   case ISD::VECREDUCE_UMIN:
3471   case ISD::VECREDUCE_SMIN:
3472     return lowerVECREDUCE(Op, DAG);
3473   case ISD::VECREDUCE_AND:
3474   case ISD::VECREDUCE_OR:
3475   case ISD::VECREDUCE_XOR:
3476     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3477       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3478     return lowerVECREDUCE(Op, DAG);
3479   case ISD::VECREDUCE_FADD:
3480   case ISD::VECREDUCE_SEQ_FADD:
3481   case ISD::VECREDUCE_FMIN:
3482   case ISD::VECREDUCE_FMAX:
3483     return lowerFPVECREDUCE(Op, DAG);
3484   case ISD::VP_REDUCE_ADD:
3485   case ISD::VP_REDUCE_UMAX:
3486   case ISD::VP_REDUCE_SMAX:
3487   case ISD::VP_REDUCE_UMIN:
3488   case ISD::VP_REDUCE_SMIN:
3489   case ISD::VP_REDUCE_FADD:
3490   case ISD::VP_REDUCE_SEQ_FADD:
3491   case ISD::VP_REDUCE_FMIN:
3492   case ISD::VP_REDUCE_FMAX:
3493     return lowerVPREDUCE(Op, DAG);
3494   case ISD::VP_REDUCE_AND:
3495   case ISD::VP_REDUCE_OR:
3496   case ISD::VP_REDUCE_XOR:
3497     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3498       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3499     return lowerVPREDUCE(Op, DAG);
3500   case ISD::INSERT_SUBVECTOR:
3501     return lowerINSERT_SUBVECTOR(Op, DAG);
3502   case ISD::EXTRACT_SUBVECTOR:
3503     return lowerEXTRACT_SUBVECTOR(Op, DAG);
3504   case ISD::STEP_VECTOR:
3505     return lowerSTEP_VECTOR(Op, DAG);
3506   case ISD::VECTOR_REVERSE:
3507     return lowerVECTOR_REVERSE(Op, DAG);
3508   case ISD::VECTOR_SPLICE:
3509     return lowerVECTOR_SPLICE(Op, DAG);
3510   case ISD::BUILD_VECTOR:
3511     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3512   case ISD::SPLAT_VECTOR:
3513     if (Op.getValueType().getVectorElementType() == MVT::i1)
3514       return lowerVectorMaskSplat(Op, DAG);
3515     return SDValue();
3516   case ISD::VECTOR_SHUFFLE:
3517     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3518   case ISD::CONCAT_VECTORS: {
3519     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3520     // better than going through the stack, as the default expansion does.
3521     SDLoc DL(Op);
3522     MVT VT = Op.getSimpleValueType();
3523     unsigned NumOpElts =
3524         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3525     SDValue Vec = DAG.getUNDEF(VT);
3526     for (const auto &OpIdx : enumerate(Op->ops())) {
3527       SDValue SubVec = OpIdx.value();
3528       // Don't insert undef subvectors.
3529       if (SubVec.isUndef())
3530         continue;
3531       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
3532                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3533     }
3534     return Vec;
3535   }
3536   case ISD::LOAD:
3537     if (auto V = expandUnalignedRVVLoad(Op, DAG))
3538       return V;
3539     if (Op.getValueType().isFixedLengthVector())
3540       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3541     return Op;
3542   case ISD::STORE:
3543     if (auto V = expandUnalignedRVVStore(Op, DAG))
3544       return V;
3545     if (Op.getOperand(1).getValueType().isFixedLengthVector())
3546       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3547     return Op;
3548   case ISD::MLOAD:
3549   case ISD::VP_LOAD:
3550     return lowerMaskedLoad(Op, DAG);
3551   case ISD::MSTORE:
3552   case ISD::VP_STORE:
3553     return lowerMaskedStore(Op, DAG);
3554   case ISD::SETCC:
3555     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3556   case ISD::ADD:
3557     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3558   case ISD::SUB:
3559     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3560   case ISD::MUL:
3561     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3562   case ISD::MULHS:
3563     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3564   case ISD::MULHU:
3565     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3566   case ISD::AND:
3567     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3568                                               RISCVISD::AND_VL);
3569   case ISD::OR:
3570     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3571                                               RISCVISD::OR_VL);
3572   case ISD::XOR:
3573     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3574                                               RISCVISD::XOR_VL);
3575   case ISD::SDIV:
3576     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3577   case ISD::SREM:
3578     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3579   case ISD::UDIV:
3580     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3581   case ISD::UREM:
3582     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3583   case ISD::SHL:
3584   case ISD::SRA:
3585   case ISD::SRL:
3586     if (Op.getSimpleValueType().isFixedLengthVector())
3587       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3588     // This can be called for an i32 shift amount that needs to be promoted.
3589     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3590            "Unexpected custom legalisation");
3591     return SDValue();
3592   case ISD::SADDSAT:
3593     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3594   case ISD::UADDSAT:
3595     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3596   case ISD::SSUBSAT:
3597     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3598   case ISD::USUBSAT:
3599     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3600   case ISD::FADD:
3601     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3602   case ISD::FSUB:
3603     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3604   case ISD::FMUL:
3605     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3606   case ISD::FDIV:
3607     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3608   case ISD::FNEG:
3609     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3610   case ISD::FABS:
3611     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3612   case ISD::FSQRT:
3613     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3614   case ISD::FMA:
3615     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
3616   case ISD::SMIN:
3617     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3618   case ISD::SMAX:
3619     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3620   case ISD::UMIN:
3621     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3622   case ISD::UMAX:
3623     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3624   case ISD::FMINNUM:
3625     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3626   case ISD::FMAXNUM:
3627     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3628   case ISD::ABS:
3629     return lowerABS(Op, DAG);
3630   case ISD::CTLZ_ZERO_UNDEF:
3631   case ISD::CTTZ_ZERO_UNDEF:
3632     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3633   case ISD::VSELECT:
3634     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3635   case ISD::FCOPYSIGN:
3636     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3637   case ISD::MGATHER:
3638   case ISD::VP_GATHER:
3639     return lowerMaskedGather(Op, DAG);
3640   case ISD::MSCATTER:
3641   case ISD::VP_SCATTER:
3642     return lowerMaskedScatter(Op, DAG);
3643   case ISD::FLT_ROUNDS_:
3644     return lowerGET_ROUNDING(Op, DAG);
3645   case ISD::SET_ROUNDING:
3646     return lowerSET_ROUNDING(Op, DAG);
3647   case ISD::VP_SELECT:
3648     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3649   case ISD::VP_MERGE:
3650     return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL);
3651   case ISD::VP_ADD:
3652     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3653   case ISD::VP_SUB:
3654     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3655   case ISD::VP_MUL:
3656     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3657   case ISD::VP_SDIV:
3658     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3659   case ISD::VP_UDIV:
3660     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3661   case ISD::VP_SREM:
3662     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3663   case ISD::VP_UREM:
3664     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3665   case ISD::VP_AND:
3666     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3667   case ISD::VP_OR:
3668     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3669   case ISD::VP_XOR:
3670     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3671   case ISD::VP_ASHR:
3672     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3673   case ISD::VP_LSHR:
3674     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3675   case ISD::VP_SHL:
3676     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3677   case ISD::VP_FADD:
3678     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3679   case ISD::VP_FSUB:
3680     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3681   case ISD::VP_FMUL:
3682     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3683   case ISD::VP_FDIV:
3684     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3685   case ISD::VP_FNEG:
3686     return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL);
3687   case ISD::VP_FMA:
3688     return lowerVPOp(Op, DAG, RISCVISD::FMA_VL);
3689   case ISD::VP_FPTOSI:
3690     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_SINT_VL);
3691   case ISD::VP_FPTOUI:
3692     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_UINT_VL);
3693   case ISD::VP_SITOFP:
3694     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::SINT_TO_FP_VL);
3695   case ISD::VP_UITOFP:
3696     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::UINT_TO_FP_VL);
3697   }
3698 }
3699 
3700 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3701                              SelectionDAG &DAG, unsigned Flags) {
3702   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3703 }
3704 
3705 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3706                              SelectionDAG &DAG, unsigned Flags) {
3707   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3708                                    Flags);
3709 }
3710 
3711 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3712                              SelectionDAG &DAG, unsigned Flags) {
3713   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3714                                    N->getOffset(), Flags);
3715 }
3716 
3717 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3718                              SelectionDAG &DAG, unsigned Flags) {
3719   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3720 }
3721 
3722 template <class NodeTy>
3723 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3724                                      bool IsLocal) const {
3725   SDLoc DL(N);
3726   EVT Ty = getPointerTy(DAG.getDataLayout());
3727 
3728   if (isPositionIndependent()) {
3729     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3730     if (IsLocal)
3731       // Use PC-relative addressing to access the symbol. This generates the
3732       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3733       // %pcrel_lo(auipc)).
3734       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3735 
3736     // Use PC-relative addressing to access the GOT for this symbol, then load
3737     // the address from the GOT. This generates the pattern (PseudoLA sym),
3738     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3739     SDValue Load =
3740         SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
3741     MachineFunction &MF = DAG.getMachineFunction();
3742     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3743         MachinePointerInfo::getGOT(MF),
3744         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3745             MachineMemOperand::MOInvariant,
3746         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3747     DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
3748     return Load;
3749   }
3750 
3751   switch (getTargetMachine().getCodeModel()) {
3752   default:
3753     report_fatal_error("Unsupported code model for lowering");
3754   case CodeModel::Small: {
3755     // Generate a sequence for accessing addresses within the first 2 GiB of
3756     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3757     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3758     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3759     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3760     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
3761   }
3762   case CodeModel::Medium: {
3763     // Generate a sequence for accessing addresses within any 2GiB range within
3764     // the address space. This generates the pattern (PseudoLLA sym), which
3765     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3766     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3767     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3768   }
3769   }
3770 }
3771 
3772 template SDValue RISCVTargetLowering::getAddr<GlobalAddressSDNode>(
3773     GlobalAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3774 template SDValue RISCVTargetLowering::getAddr<BlockAddressSDNode>(
3775     BlockAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3776 template SDValue RISCVTargetLowering::getAddr<ConstantPoolSDNode>(
3777     ConstantPoolSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3778 template SDValue RISCVTargetLowering::getAddr<JumpTableSDNode>(
3779     JumpTableSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3780 
3781 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3782                                                 SelectionDAG &DAG) const {
3783   SDLoc DL(Op);
3784   EVT Ty = Op.getValueType();
3785   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3786   int64_t Offset = N->getOffset();
3787   MVT XLenVT = Subtarget.getXLenVT();
3788 
3789   const GlobalValue *GV = N->getGlobal();
3790   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3791   SDValue Addr = getAddr(N, DAG, IsLocal);
3792 
3793   // In order to maximise the opportunity for common subexpression elimination,
3794   // emit a separate ADD node for the global address offset instead of folding
3795   // it in the global address node. Later peephole optimisations may choose to
3796   // fold it back in when profitable.
3797   if (Offset != 0)
3798     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3799                        DAG.getConstant(Offset, DL, XLenVT));
3800   return Addr;
3801 }
3802 
3803 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3804                                                SelectionDAG &DAG) const {
3805   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3806 
3807   return getAddr(N, DAG);
3808 }
3809 
3810 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3811                                                SelectionDAG &DAG) const {
3812   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3813 
3814   return getAddr(N, DAG);
3815 }
3816 
3817 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3818                                             SelectionDAG &DAG) const {
3819   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3820 
3821   return getAddr(N, DAG);
3822 }
3823 
3824 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3825                                               SelectionDAG &DAG,
3826                                               bool UseGOT) const {
3827   SDLoc DL(N);
3828   EVT Ty = getPointerTy(DAG.getDataLayout());
3829   const GlobalValue *GV = N->getGlobal();
3830   MVT XLenVT = Subtarget.getXLenVT();
3831 
3832   if (UseGOT) {
3833     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3834     // load the address from the GOT and add the thread pointer. This generates
3835     // the pattern (PseudoLA_TLS_IE sym), which expands to
3836     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3837     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3838     SDValue Load =
3839         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
3840     MachineFunction &MF = DAG.getMachineFunction();
3841     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3842         MachinePointerInfo::getGOT(MF),
3843         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3844             MachineMemOperand::MOInvariant,
3845         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3846     DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
3847 
3848     // Add the thread pointer.
3849     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3850     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3851   }
3852 
3853   // Generate a sequence for accessing the address relative to the thread
3854   // pointer, with the appropriate adjustment for the thread pointer offset.
3855   // This generates the pattern
3856   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3857   SDValue AddrHi =
3858       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3859   SDValue AddrAdd =
3860       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3861   SDValue AddrLo =
3862       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3863 
3864   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3865   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3866   SDValue MNAdd = SDValue(
3867       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
3868       0);
3869   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
3870 }
3871 
3872 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3873                                                SelectionDAG &DAG) const {
3874   SDLoc DL(N);
3875   EVT Ty = getPointerTy(DAG.getDataLayout());
3876   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3877   const GlobalValue *GV = N->getGlobal();
3878 
3879   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3880   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3881   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3882   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3883   SDValue Load =
3884       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
3885 
3886   // Prepare argument list to generate call.
3887   ArgListTy Args;
3888   ArgListEntry Entry;
3889   Entry.Node = Load;
3890   Entry.Ty = CallTy;
3891   Args.push_back(Entry);
3892 
3893   // Setup call to __tls_get_addr.
3894   TargetLowering::CallLoweringInfo CLI(DAG);
3895   CLI.setDebugLoc(DL)
3896       .setChain(DAG.getEntryNode())
3897       .setLibCallee(CallingConv::C, CallTy,
3898                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3899                     std::move(Args));
3900 
3901   return LowerCallTo(CLI).first;
3902 }
3903 
3904 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3905                                                    SelectionDAG &DAG) const {
3906   SDLoc DL(Op);
3907   EVT Ty = Op.getValueType();
3908   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3909   int64_t Offset = N->getOffset();
3910   MVT XLenVT = Subtarget.getXLenVT();
3911 
3912   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3913 
3914   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3915       CallingConv::GHC)
3916     report_fatal_error("In GHC calling convention TLS is not supported");
3917 
3918   SDValue Addr;
3919   switch (Model) {
3920   case TLSModel::LocalExec:
3921     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3922     break;
3923   case TLSModel::InitialExec:
3924     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3925     break;
3926   case TLSModel::LocalDynamic:
3927   case TLSModel::GeneralDynamic:
3928     Addr = getDynamicTLSAddr(N, DAG);
3929     break;
3930   }
3931 
3932   // In order to maximise the opportunity for common subexpression elimination,
3933   // emit a separate ADD node for the global address offset instead of folding
3934   // it in the global address node. Later peephole optimisations may choose to
3935   // fold it back in when profitable.
3936   if (Offset != 0)
3937     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3938                        DAG.getConstant(Offset, DL, XLenVT));
3939   return Addr;
3940 }
3941 
3942 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3943   SDValue CondV = Op.getOperand(0);
3944   SDValue TrueV = Op.getOperand(1);
3945   SDValue FalseV = Op.getOperand(2);
3946   SDLoc DL(Op);
3947   MVT VT = Op.getSimpleValueType();
3948   MVT XLenVT = Subtarget.getXLenVT();
3949 
3950   // Lower vector SELECTs to VSELECTs by splatting the condition.
3951   if (VT.isVector()) {
3952     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3953     SDValue CondSplat = VT.isScalableVector()
3954                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3955                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3956     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3957   }
3958 
3959   // If the result type is XLenVT and CondV is the output of a SETCC node
3960   // which also operated on XLenVT inputs, then merge the SETCC node into the
3961   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3962   // compare+branch instructions. i.e.:
3963   // (select (setcc lhs, rhs, cc), truev, falsev)
3964   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3965   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3966       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3967     SDValue LHS = CondV.getOperand(0);
3968     SDValue RHS = CondV.getOperand(1);
3969     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3970     ISD::CondCode CCVal = CC->get();
3971 
3972     // Special case for a select of 2 constants that have a diffence of 1.
3973     // Normally this is done by DAGCombine, but if the select is introduced by
3974     // type legalization or op legalization, we miss it. Restricting to SETLT
3975     // case for now because that is what signed saturating add/sub need.
3976     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3977     // but we would probably want to swap the true/false values if the condition
3978     // is SETGE/SETLE to avoid an XORI.
3979     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3980         CCVal == ISD::SETLT) {
3981       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3982       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3983       if (TrueVal - 1 == FalseVal)
3984         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3985       if (TrueVal + 1 == FalseVal)
3986         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3987     }
3988 
3989     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3990 
3991     SDValue TargetCC = DAG.getCondCode(CCVal);
3992     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3993     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3994   }
3995 
3996   // Otherwise:
3997   // (select condv, truev, falsev)
3998   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3999   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4000   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
4001 
4002   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
4003 
4004   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
4005 }
4006 
4007 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
4008   SDValue CondV = Op.getOperand(1);
4009   SDLoc DL(Op);
4010   MVT XLenVT = Subtarget.getXLenVT();
4011 
4012   if (CondV.getOpcode() == ISD::SETCC &&
4013       CondV.getOperand(0).getValueType() == XLenVT) {
4014     SDValue LHS = CondV.getOperand(0);
4015     SDValue RHS = CondV.getOperand(1);
4016     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
4017 
4018     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
4019 
4020     SDValue TargetCC = DAG.getCondCode(CCVal);
4021     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
4022                        LHS, RHS, TargetCC, Op.getOperand(2));
4023   }
4024 
4025   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
4026                      CondV, DAG.getConstant(0, DL, XLenVT),
4027                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
4028 }
4029 
4030 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
4031   MachineFunction &MF = DAG.getMachineFunction();
4032   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
4033 
4034   SDLoc DL(Op);
4035   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
4036                                  getPointerTy(MF.getDataLayout()));
4037 
4038   // vastart just stores the address of the VarArgsFrameIndex slot into the
4039   // memory location argument.
4040   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4041   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
4042                       MachinePointerInfo(SV));
4043 }
4044 
4045 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
4046                                             SelectionDAG &DAG) const {
4047   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
4048   MachineFunction &MF = DAG.getMachineFunction();
4049   MachineFrameInfo &MFI = MF.getFrameInfo();
4050   MFI.setFrameAddressIsTaken(true);
4051   Register FrameReg = RI.getFrameRegister(MF);
4052   int XLenInBytes = Subtarget.getXLen() / 8;
4053 
4054   EVT VT = Op.getValueType();
4055   SDLoc DL(Op);
4056   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
4057   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4058   while (Depth--) {
4059     int Offset = -(XLenInBytes * 2);
4060     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
4061                               DAG.getIntPtrConstant(Offset, DL));
4062     FrameAddr =
4063         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
4064   }
4065   return FrameAddr;
4066 }
4067 
4068 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
4069                                              SelectionDAG &DAG) const {
4070   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
4071   MachineFunction &MF = DAG.getMachineFunction();
4072   MachineFrameInfo &MFI = MF.getFrameInfo();
4073   MFI.setReturnAddressIsTaken(true);
4074   MVT XLenVT = Subtarget.getXLenVT();
4075   int XLenInBytes = Subtarget.getXLen() / 8;
4076 
4077   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
4078     return SDValue();
4079 
4080   EVT VT = Op.getValueType();
4081   SDLoc DL(Op);
4082   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4083   if (Depth) {
4084     int Off = -XLenInBytes;
4085     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
4086     SDValue Offset = DAG.getConstant(Off, DL, VT);
4087     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4088                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4089                        MachinePointerInfo());
4090   }
4091 
4092   // Return the value of the return address register, marking it an implicit
4093   // live-in.
4094   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
4095   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
4096 }
4097 
4098 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
4099                                                  SelectionDAG &DAG) const {
4100   SDLoc DL(Op);
4101   SDValue Lo = Op.getOperand(0);
4102   SDValue Hi = Op.getOperand(1);
4103   SDValue Shamt = Op.getOperand(2);
4104   EVT VT = Lo.getValueType();
4105 
4106   // if Shamt-XLEN < 0: // Shamt < XLEN
4107   //   Lo = Lo << Shamt
4108   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt))
4109   // else:
4110   //   Lo = 0
4111   //   Hi = Lo << (Shamt-XLEN)
4112 
4113   SDValue Zero = DAG.getConstant(0, DL, VT);
4114   SDValue One = DAG.getConstant(1, DL, VT);
4115   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4116   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4117   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4118   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4119 
4120   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
4121   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
4122   SDValue ShiftRightLo =
4123       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
4124   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
4125   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
4126   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
4127 
4128   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4129 
4130   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
4131   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4132 
4133   SDValue Parts[2] = {Lo, Hi};
4134   return DAG.getMergeValues(Parts, DL);
4135 }
4136 
4137 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
4138                                                   bool IsSRA) const {
4139   SDLoc DL(Op);
4140   SDValue Lo = Op.getOperand(0);
4141   SDValue Hi = Op.getOperand(1);
4142   SDValue Shamt = Op.getOperand(2);
4143   EVT VT = Lo.getValueType();
4144 
4145   // SRA expansion:
4146   //   if Shamt-XLEN < 0: // Shamt < XLEN
4147   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4148   //     Hi = Hi >>s Shamt
4149   //   else:
4150   //     Lo = Hi >>s (Shamt-XLEN);
4151   //     Hi = Hi >>s (XLEN-1)
4152   //
4153   // SRL expansion:
4154   //   if Shamt-XLEN < 0: // Shamt < XLEN
4155   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4156   //     Hi = Hi >>u Shamt
4157   //   else:
4158   //     Lo = Hi >>u (Shamt-XLEN);
4159   //     Hi = 0;
4160 
4161   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
4162 
4163   SDValue Zero = DAG.getConstant(0, DL, VT);
4164   SDValue One = DAG.getConstant(1, DL, VT);
4165   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4166   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4167   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4168   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4169 
4170   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
4171   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
4172   SDValue ShiftLeftHi =
4173       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
4174   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
4175   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
4176   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
4177   SDValue HiFalse =
4178       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
4179 
4180   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4181 
4182   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
4183   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4184 
4185   SDValue Parts[2] = {Lo, Hi};
4186   return DAG.getMergeValues(Parts, DL);
4187 }
4188 
4189 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
4190 // legal equivalently-sized i8 type, so we can use that as a go-between.
4191 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
4192                                                   SelectionDAG &DAG) const {
4193   SDLoc DL(Op);
4194   MVT VT = Op.getSimpleValueType();
4195   SDValue SplatVal = Op.getOperand(0);
4196   // All-zeros or all-ones splats are handled specially.
4197   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
4198     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4199     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
4200   }
4201   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
4202     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4203     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
4204   }
4205   MVT XLenVT = Subtarget.getXLenVT();
4206   assert(SplatVal.getValueType() == XLenVT &&
4207          "Unexpected type for i1 splat value");
4208   MVT InterVT = VT.changeVectorElementType(MVT::i8);
4209   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
4210                          DAG.getConstant(1, DL, XLenVT));
4211   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
4212   SDValue Zero = DAG.getConstant(0, DL, InterVT);
4213   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
4214 }
4215 
4216 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
4217 // illegal (currently only vXi64 RV32).
4218 // FIXME: We could also catch non-constant sign-extended i32 values and lower
4219 // them to VMV_V_X_VL.
4220 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
4221                                                      SelectionDAG &DAG) const {
4222   SDLoc DL(Op);
4223   MVT VecVT = Op.getSimpleValueType();
4224   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
4225          "Unexpected SPLAT_VECTOR_PARTS lowering");
4226 
4227   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
4228   SDValue Lo = Op.getOperand(0);
4229   SDValue Hi = Op.getOperand(1);
4230 
4231   if (VecVT.isFixedLengthVector()) {
4232     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4233     SDLoc DL(Op);
4234     SDValue Mask, VL;
4235     std::tie(Mask, VL) =
4236         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4237 
4238     SDValue Res =
4239         splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG);
4240     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
4241   }
4242 
4243   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
4244     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
4245     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
4246     // If Hi constant is all the same sign bit as Lo, lower this as a custom
4247     // node in order to try and match RVV vector/scalar instructions.
4248     if ((LoC >> 31) == HiC)
4249       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4250                          Lo, DAG.getRegister(RISCV::X0, MVT::i32));
4251   }
4252 
4253   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
4254   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
4255       isa<ConstantSDNode>(Hi.getOperand(1)) &&
4256       Hi.getConstantOperandVal(1) == 31)
4257     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo,
4258                        DAG.getRegister(RISCV::X0, MVT::i32));
4259 
4260   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
4261   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT,
4262                      DAG.getUNDEF(VecVT), Lo, Hi,
4263                      DAG.getRegister(RISCV::X0, MVT::i32));
4264 }
4265 
4266 // Custom-lower extensions from mask vectors by using a vselect either with 1
4267 // for zero/any-extension or -1 for sign-extension:
4268 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
4269 // Note that any-extension is lowered identically to zero-extension.
4270 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
4271                                                 int64_t ExtTrueVal) const {
4272   SDLoc DL(Op);
4273   MVT VecVT = Op.getSimpleValueType();
4274   SDValue Src = Op.getOperand(0);
4275   // Only custom-lower extensions from mask types
4276   assert(Src.getValueType().isVector() &&
4277          Src.getValueType().getVectorElementType() == MVT::i1);
4278 
4279   if (VecVT.isScalableVector()) {
4280     SDValue SplatZero = DAG.getConstant(0, DL, VecVT);
4281     SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT);
4282     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
4283   }
4284 
4285   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4286   MVT I1ContainerVT =
4287       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4288 
4289   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
4290 
4291   SDValue Mask, VL;
4292   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4293 
4294   MVT XLenVT = Subtarget.getXLenVT();
4295   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
4296   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
4297 
4298   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4299                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4300   SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4301                              DAG.getUNDEF(ContainerVT), SplatTrueVal, VL);
4302   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
4303                                SplatTrueVal, SplatZero, VL);
4304 
4305   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
4306 }
4307 
4308 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
4309     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
4310   MVT ExtVT = Op.getSimpleValueType();
4311   // Only custom-lower extensions from fixed-length vector types.
4312   if (!ExtVT.isFixedLengthVector())
4313     return Op;
4314   MVT VT = Op.getOperand(0).getSimpleValueType();
4315   // Grab the canonical container type for the extended type. Infer the smaller
4316   // type from that to ensure the same number of vector elements, as we know
4317   // the LMUL will be sufficient to hold the smaller type.
4318   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
4319   // Get the extended container type manually to ensure the same number of
4320   // vector elements between source and dest.
4321   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4322                                      ContainerExtVT.getVectorElementCount());
4323 
4324   SDValue Op1 =
4325       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4326 
4327   SDLoc DL(Op);
4328   SDValue Mask, VL;
4329   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4330 
4331   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
4332 
4333   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
4334 }
4335 
4336 // Custom-lower truncations from vectors to mask vectors by using a mask and a
4337 // setcc operation:
4338 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
4339 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
4340                                                   SelectionDAG &DAG) const {
4341   SDLoc DL(Op);
4342   EVT MaskVT = Op.getValueType();
4343   // Only expect to custom-lower truncations to mask types
4344   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
4345          "Unexpected type for vector mask lowering");
4346   SDValue Src = Op.getOperand(0);
4347   MVT VecVT = Src.getSimpleValueType();
4348 
4349   // If this is a fixed vector, we need to convert it to a scalable vector.
4350   MVT ContainerVT = VecVT;
4351   if (VecVT.isFixedLengthVector()) {
4352     ContainerVT = getContainerForFixedLengthVector(VecVT);
4353     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4354   }
4355 
4356   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
4357   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
4358 
4359   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4360                          DAG.getUNDEF(ContainerVT), SplatOne);
4361   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4362                           DAG.getUNDEF(ContainerVT), SplatZero);
4363 
4364   if (VecVT.isScalableVector()) {
4365     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
4366     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
4367   }
4368 
4369   SDValue Mask, VL;
4370   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4371 
4372   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
4373   SDValue Trunc =
4374       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
4375   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
4376                       DAG.getCondCode(ISD::SETNE), Mask, VL);
4377   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
4378 }
4379 
4380 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
4381 // first position of a vector, and that vector is slid up to the insert index.
4382 // By limiting the active vector length to index+1 and merging with the
4383 // original vector (with an undisturbed tail policy for elements >= VL), we
4384 // achieve the desired result of leaving all elements untouched except the one
4385 // at VL-1, which is replaced with the desired value.
4386 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4387                                                     SelectionDAG &DAG) const {
4388   SDLoc DL(Op);
4389   MVT VecVT = Op.getSimpleValueType();
4390   SDValue Vec = Op.getOperand(0);
4391   SDValue Val = Op.getOperand(1);
4392   SDValue Idx = Op.getOperand(2);
4393 
4394   if (VecVT.getVectorElementType() == MVT::i1) {
4395     // FIXME: For now we just promote to an i8 vector and insert into that,
4396     // but this is probably not optimal.
4397     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4398     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4399     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
4400     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
4401   }
4402 
4403   MVT ContainerVT = VecVT;
4404   // If the operand is a fixed-length vector, convert to a scalable one.
4405   if (VecVT.isFixedLengthVector()) {
4406     ContainerVT = getContainerForFixedLengthVector(VecVT);
4407     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4408   }
4409 
4410   MVT XLenVT = Subtarget.getXLenVT();
4411 
4412   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4413   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
4414   // Even i64-element vectors on RV32 can be lowered without scalar
4415   // legalization if the most-significant 32 bits of the value are not affected
4416   // by the sign-extension of the lower 32 bits.
4417   // TODO: We could also catch sign extensions of a 32-bit value.
4418   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
4419     const auto *CVal = cast<ConstantSDNode>(Val);
4420     if (isInt<32>(CVal->getSExtValue())) {
4421       IsLegalInsert = true;
4422       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4423     }
4424   }
4425 
4426   SDValue Mask, VL;
4427   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4428 
4429   SDValue ValInVec;
4430 
4431   if (IsLegalInsert) {
4432     unsigned Opc =
4433         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
4434     if (isNullConstant(Idx)) {
4435       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
4436       if (!VecVT.isFixedLengthVector())
4437         return Vec;
4438       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
4439     }
4440     ValInVec =
4441         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
4442   } else {
4443     // On RV32, i64-element vectors must be specially handled to place the
4444     // value at element 0, by using two vslide1up instructions in sequence on
4445     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
4446     // this.
4447     SDValue One = DAG.getConstant(1, DL, XLenVT);
4448     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
4449     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
4450     MVT I32ContainerVT =
4451         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
4452     SDValue I32Mask =
4453         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
4454     // Limit the active VL to two.
4455     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
4456     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
4457     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
4458     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT,
4459                            DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL);
4460     // First slide in the hi value, then the lo in underneath it.
4461     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4462                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi,
4463                            I32Mask, InsertI64VL);
4464     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4465                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo,
4466                            I32Mask, InsertI64VL);
4467     // Bitcast back to the right container type.
4468     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
4469   }
4470 
4471   // Now that the value is in a vector, slide it into position.
4472   SDValue InsertVL =
4473       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
4474   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4475                                 ValInVec, Idx, Mask, InsertVL);
4476   if (!VecVT.isFixedLengthVector())
4477     return Slideup;
4478   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4479 }
4480 
4481 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
4482 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
4483 // types this is done using VMV_X_S to allow us to glean information about the
4484 // sign bits of the result.
4485 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4486                                                      SelectionDAG &DAG) const {
4487   SDLoc DL(Op);
4488   SDValue Idx = Op.getOperand(1);
4489   SDValue Vec = Op.getOperand(0);
4490   EVT EltVT = Op.getValueType();
4491   MVT VecVT = Vec.getSimpleValueType();
4492   MVT XLenVT = Subtarget.getXLenVT();
4493 
4494   if (VecVT.getVectorElementType() == MVT::i1) {
4495     if (VecVT.isFixedLengthVector()) {
4496       unsigned NumElts = VecVT.getVectorNumElements();
4497       if (NumElts >= 8) {
4498         MVT WideEltVT;
4499         unsigned WidenVecLen;
4500         SDValue ExtractElementIdx;
4501         SDValue ExtractBitIdx;
4502         unsigned MaxEEW = Subtarget.getMaxELENForFixedLengthVectors();
4503         MVT LargestEltVT = MVT::getIntegerVT(
4504             std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
4505         if (NumElts <= LargestEltVT.getSizeInBits()) {
4506           assert(isPowerOf2_32(NumElts) &&
4507                  "the number of elements should be power of 2");
4508           WideEltVT = MVT::getIntegerVT(NumElts);
4509           WidenVecLen = 1;
4510           ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
4511           ExtractBitIdx = Idx;
4512         } else {
4513           WideEltVT = LargestEltVT;
4514           WidenVecLen = NumElts / WideEltVT.getSizeInBits();
4515           // extract element index = index / element width
4516           ExtractElementIdx = DAG.getNode(
4517               ISD::SRL, DL, XLenVT, Idx,
4518               DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
4519           // mask bit index = index % element width
4520           ExtractBitIdx = DAG.getNode(
4521               ISD::AND, DL, XLenVT, Idx,
4522               DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
4523         }
4524         MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
4525         Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
4526         SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
4527                                          Vec, ExtractElementIdx);
4528         // Extract the bit from GPR.
4529         SDValue ShiftRight =
4530             DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
4531         return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
4532                            DAG.getConstant(1, DL, XLenVT));
4533       }
4534     }
4535     // Otherwise, promote to an i8 vector and extract from that.
4536     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4537     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4538     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4539   }
4540 
4541   // If this is a fixed vector, we need to convert it to a scalable vector.
4542   MVT ContainerVT = VecVT;
4543   if (VecVT.isFixedLengthVector()) {
4544     ContainerVT = getContainerForFixedLengthVector(VecVT);
4545     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4546   }
4547 
4548   // If the index is 0, the vector is already in the right position.
4549   if (!isNullConstant(Idx)) {
4550     // Use a VL of 1 to avoid processing more elements than we need.
4551     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4552     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4553     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4554     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4555                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4556   }
4557 
4558   if (!EltVT.isInteger()) {
4559     // Floating-point extracts are handled in TableGen.
4560     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4561                        DAG.getConstant(0, DL, XLenVT));
4562   }
4563 
4564   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4565   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4566 }
4567 
4568 // Some RVV intrinsics may claim that they want an integer operand to be
4569 // promoted or expanded.
4570 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG,
4571                                            const RISCVSubtarget &Subtarget) {
4572   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4573           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4574          "Unexpected opcode");
4575 
4576   if (!Subtarget.hasVInstructions())
4577     return SDValue();
4578 
4579   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4580   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4581   SDLoc DL(Op);
4582 
4583   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4584       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4585   if (!II || !II->hasScalarOperand())
4586     return SDValue();
4587 
4588   unsigned SplatOp = II->ScalarOperand + 1 + HasChain;
4589   assert(SplatOp < Op.getNumOperands());
4590 
4591   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4592   SDValue &ScalarOp = Operands[SplatOp];
4593   MVT OpVT = ScalarOp.getSimpleValueType();
4594   MVT XLenVT = Subtarget.getXLenVT();
4595 
4596   // If this isn't a scalar, or its type is XLenVT we're done.
4597   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4598     return SDValue();
4599 
4600   // Simplest case is that the operand needs to be promoted to XLenVT.
4601   if (OpVT.bitsLT(XLenVT)) {
4602     // If the operand is a constant, sign extend to increase our chances
4603     // of being able to use a .vi instruction. ANY_EXTEND would become a
4604     // a zero extend and the simm5 check in isel would fail.
4605     // FIXME: Should we ignore the upper bits in isel instead?
4606     unsigned ExtOpc =
4607         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4608     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4609     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4610   }
4611 
4612   // Use the previous operand to get the vXi64 VT. The result might be a mask
4613   // VT for compares. Using the previous operand assumes that the previous
4614   // operand will never have a smaller element size than a scalar operand and
4615   // that a widening operation never uses SEW=64.
4616   // NOTE: If this fails the below assert, we can probably just find the
4617   // element count from any operand or result and use it to construct the VT.
4618   assert(II->ScalarOperand > 0 && "Unexpected splat operand!");
4619   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4620 
4621   // The more complex case is when the scalar is larger than XLenVT.
4622   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4623          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4624 
4625   // If this is a sign-extended 32-bit value, we can truncate it and rely on the
4626   // instruction to sign-extend since SEW>XLEN.
4627   if (DAG.ComputeNumSignBits(ScalarOp) > 32) {
4628     ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp);
4629     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4630   }
4631 
4632   switch (IntNo) {
4633   case Intrinsic::riscv_vslide1up:
4634   case Intrinsic::riscv_vslide1down:
4635   case Intrinsic::riscv_vslide1up_mask:
4636   case Intrinsic::riscv_vslide1down_mask: {
4637     // We need to special case these when the scalar is larger than XLen.
4638     unsigned NumOps = Op.getNumOperands();
4639     bool IsMasked = NumOps == 7;
4640 
4641     // Convert the vector source to the equivalent nxvXi32 vector.
4642     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4643     SDValue Vec = DAG.getBitcast(I32VT, Operands[2]);
4644 
4645     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4646                                    DAG.getConstant(0, DL, XLenVT));
4647     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4648                                    DAG.getConstant(1, DL, XLenVT));
4649 
4650     // Double the VL since we halved SEW.
4651     SDValue AVL = getVLOperand(Op);
4652     SDValue I32VL;
4653 
4654     // Optimize for constant AVL
4655     if (isa<ConstantSDNode>(AVL)) {
4656       unsigned EltSize = VT.getScalarSizeInBits();
4657       unsigned MinSize = VT.getSizeInBits().getKnownMinValue();
4658 
4659       unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
4660       unsigned MaxVLMAX =
4661           RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
4662 
4663       unsigned VectorBitsMin = Subtarget.getRealMinVLen();
4664       unsigned MinVLMAX =
4665           RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize);
4666 
4667       uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue();
4668       if (AVLInt <= MinVLMAX) {
4669         I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT);
4670       } else if (AVLInt >= 2 * MaxVLMAX) {
4671         // Just set vl to VLMAX in this situation
4672         RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT);
4673         SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4674         unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits());
4675         SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4676         SDValue SETVLMAX = DAG.getTargetConstant(
4677             Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32);
4678         I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW,
4679                             LMUL);
4680       } else {
4681         // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl
4682         // is related to the hardware implementation.
4683         // So let the following code handle
4684       }
4685     }
4686     if (!I32VL) {
4687       RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT);
4688       SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4689       unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits());
4690       SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4691       SDValue SETVL =
4692           DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32);
4693       // Using vsetvli instruction to get actually used length which related to
4694       // the hardware implementation
4695       SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL,
4696                                SEW, LMUL);
4697       I32VL =
4698           DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4699     }
4700 
4701     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
4702     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, I32VL);
4703 
4704     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4705     // instructions.
4706     SDValue Passthru;
4707     if (IsMasked)
4708       Passthru = DAG.getUNDEF(I32VT);
4709     else
4710       Passthru = DAG.getBitcast(I32VT, Operands[1]);
4711 
4712     if (IntNo == Intrinsic::riscv_vslide1up ||
4713         IntNo == Intrinsic::riscv_vslide1up_mask) {
4714       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4715                         ScalarHi, I32Mask, I32VL);
4716       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4717                         ScalarLo, I32Mask, I32VL);
4718     } else {
4719       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4720                         ScalarLo, I32Mask, I32VL);
4721       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4722                         ScalarHi, I32Mask, I32VL);
4723     }
4724 
4725     // Convert back to nxvXi64.
4726     Vec = DAG.getBitcast(VT, Vec);
4727 
4728     if (!IsMasked)
4729       return Vec;
4730     // Apply mask after the operation.
4731     SDValue Mask = Operands[NumOps - 3];
4732     SDValue MaskedOff = Operands[1];
4733     // Assume Policy operand is the last operand.
4734     uint64_t Policy =
4735         cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue();
4736     // We don't need to select maskedoff if it's undef.
4737     if (MaskedOff.isUndef())
4738       return Vec;
4739     // TAMU
4740     if (Policy == RISCVII::TAIL_AGNOSTIC)
4741       return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff,
4742                          AVL);
4743     // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma.
4744     // It's fine because vmerge does not care mask policy.
4745     return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff,
4746                        AVL);
4747   }
4748   }
4749 
4750   // We need to convert the scalar to a splat vector.
4751   SDValue VL = getVLOperand(Op);
4752   assert(VL.getValueType() == XLenVT);
4753   ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG);
4754   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4755 }
4756 
4757 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4758                                                      SelectionDAG &DAG) const {
4759   unsigned IntNo = Op.getConstantOperandVal(0);
4760   SDLoc DL(Op);
4761   MVT XLenVT = Subtarget.getXLenVT();
4762 
4763   switch (IntNo) {
4764   default:
4765     break; // Don't custom lower most intrinsics.
4766   case Intrinsic::thread_pointer: {
4767     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4768     return DAG.getRegister(RISCV::X4, PtrVT);
4769   }
4770   case Intrinsic::riscv_orc_b:
4771   case Intrinsic::riscv_brev8: {
4772     // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8.
4773     unsigned Opc =
4774         IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC;
4775     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4776                        DAG.getConstant(7, DL, XLenVT));
4777   }
4778   case Intrinsic::riscv_grev:
4779   case Intrinsic::riscv_gorc: {
4780     unsigned Opc =
4781         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4782     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4783   }
4784   case Intrinsic::riscv_zip:
4785   case Intrinsic::riscv_unzip: {
4786     // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip.
4787     // For i32 the immediate is 15. For i64 the immediate is 31.
4788     unsigned Opc =
4789         IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4790     unsigned BitWidth = Op.getValueSizeInBits();
4791     assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width");
4792     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4793                        DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT));
4794   }
4795   case Intrinsic::riscv_shfl:
4796   case Intrinsic::riscv_unshfl: {
4797     unsigned Opc =
4798         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4799     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4800   }
4801   case Intrinsic::riscv_bcompress:
4802   case Intrinsic::riscv_bdecompress: {
4803     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4804                                                        : RISCVISD::BDECOMPRESS;
4805     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4806   }
4807   case Intrinsic::riscv_bfp:
4808     return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1),
4809                        Op.getOperand(2));
4810   case Intrinsic::riscv_fsl:
4811     return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1),
4812                        Op.getOperand(2), Op.getOperand(3));
4813   case Intrinsic::riscv_fsr:
4814     return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1),
4815                        Op.getOperand(2), Op.getOperand(3));
4816   case Intrinsic::riscv_vmv_x_s:
4817     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4818     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4819                        Op.getOperand(1));
4820   case Intrinsic::riscv_vmv_v_x:
4821     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4822                             Op.getOperand(3), Op.getSimpleValueType(), DL, DAG,
4823                             Subtarget);
4824   case Intrinsic::riscv_vfmv_v_f:
4825     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4826                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4827   case Intrinsic::riscv_vmv_s_x: {
4828     SDValue Scalar = Op.getOperand(2);
4829 
4830     if (Scalar.getValueType().bitsLE(XLenVT)) {
4831       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4832       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4833                          Op.getOperand(1), Scalar, Op.getOperand(3));
4834     }
4835 
4836     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4837 
4838     // This is an i64 value that lives in two scalar registers. We have to
4839     // insert this in a convoluted way. First we build vXi64 splat containing
4840     // the two values that we assemble using some bit math. Next we'll use
4841     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4842     // to merge element 0 from our splat into the source vector.
4843     // FIXME: This is probably not the best way to do this, but it is
4844     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4845     // point.
4846     //   sw lo, (a0)
4847     //   sw hi, 4(a0)
4848     //   vlse vX, (a0)
4849     //
4850     //   vid.v      vVid
4851     //   vmseq.vx   mMask, vVid, 0
4852     //   vmerge.vvm vDest, vSrc, vVal, mMask
4853     MVT VT = Op.getSimpleValueType();
4854     SDValue Vec = Op.getOperand(1);
4855     SDValue VL = getVLOperand(Op);
4856 
4857     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG);
4858     if (Op.getOperand(1).isUndef())
4859       return SplattedVal;
4860     SDValue SplattedIdx =
4861         DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
4862                     DAG.getConstant(0, DL, MVT::i32), VL);
4863 
4864     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
4865     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4866     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4867     SDValue SelectCond =
4868         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4869                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4870     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4871                        Vec, VL);
4872   }
4873   }
4874 
4875   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4876 }
4877 
4878 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4879                                                     SelectionDAG &DAG) const {
4880   unsigned IntNo = Op.getConstantOperandVal(1);
4881   switch (IntNo) {
4882   default:
4883     break;
4884   case Intrinsic::riscv_masked_strided_load: {
4885     SDLoc DL(Op);
4886     MVT XLenVT = Subtarget.getXLenVT();
4887 
4888     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4889     // the selection of the masked intrinsics doesn't do this for us.
4890     SDValue Mask = Op.getOperand(5);
4891     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4892 
4893     MVT VT = Op->getSimpleValueType(0);
4894     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4895 
4896     SDValue PassThru = Op.getOperand(2);
4897     if (!IsUnmasked) {
4898       MVT MaskVT =
4899           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4900       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4901       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4902     }
4903 
4904     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4905 
4906     SDValue IntID = DAG.getTargetConstant(
4907         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4908         XLenVT);
4909 
4910     auto *Load = cast<MemIntrinsicSDNode>(Op);
4911     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4912     if (IsUnmasked)
4913       Ops.push_back(DAG.getUNDEF(ContainerVT));
4914     else
4915       Ops.push_back(PassThru);
4916     Ops.push_back(Op.getOperand(3)); // Ptr
4917     Ops.push_back(Op.getOperand(4)); // Stride
4918     if (!IsUnmasked)
4919       Ops.push_back(Mask);
4920     Ops.push_back(VL);
4921     if (!IsUnmasked) {
4922       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4923       Ops.push_back(Policy);
4924     }
4925 
4926     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4927     SDValue Result =
4928         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4929                                 Load->getMemoryVT(), Load->getMemOperand());
4930     SDValue Chain = Result.getValue(1);
4931     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4932     return DAG.getMergeValues({Result, Chain}, DL);
4933   }
4934   case Intrinsic::riscv_seg2_load:
4935   case Intrinsic::riscv_seg3_load:
4936   case Intrinsic::riscv_seg4_load:
4937   case Intrinsic::riscv_seg5_load:
4938   case Intrinsic::riscv_seg6_load:
4939   case Intrinsic::riscv_seg7_load:
4940   case Intrinsic::riscv_seg8_load: {
4941     SDLoc DL(Op);
4942     static const Intrinsic::ID VlsegInts[7] = {
4943         Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3,
4944         Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5,
4945         Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7,
4946         Intrinsic::riscv_vlseg8};
4947     unsigned NF = Op->getNumValues() - 1;
4948     assert(NF >= 2 && NF <= 8 && "Unexpected seg number");
4949     MVT XLenVT = Subtarget.getXLenVT();
4950     MVT VT = Op->getSimpleValueType(0);
4951     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4952 
4953     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4954     SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT);
4955     auto *Load = cast<MemIntrinsicSDNode>(Op);
4956     SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT);
4957     ContainerVTs.push_back(MVT::Other);
4958     SDVTList VTs = DAG.getVTList(ContainerVTs);
4959     SDValue Result =
4960         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs,
4961                                 {Load->getChain(), IntID, Op.getOperand(2), VL},
4962                                 Load->getMemoryVT(), Load->getMemOperand());
4963     SmallVector<SDValue, 9> Results;
4964     for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++)
4965       Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx),
4966                                                   DAG, Subtarget));
4967     Results.push_back(Result.getValue(NF));
4968     return DAG.getMergeValues(Results, DL);
4969   }
4970   }
4971 
4972   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4973 }
4974 
4975 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4976                                                  SelectionDAG &DAG) const {
4977   unsigned IntNo = Op.getConstantOperandVal(1);
4978   switch (IntNo) {
4979   default:
4980     break;
4981   case Intrinsic::riscv_masked_strided_store: {
4982     SDLoc DL(Op);
4983     MVT XLenVT = Subtarget.getXLenVT();
4984 
4985     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4986     // the selection of the masked intrinsics doesn't do this for us.
4987     SDValue Mask = Op.getOperand(5);
4988     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4989 
4990     SDValue Val = Op.getOperand(2);
4991     MVT VT = Val.getSimpleValueType();
4992     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4993 
4994     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4995     if (!IsUnmasked) {
4996       MVT MaskVT =
4997           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4998       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4999     }
5000 
5001     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5002 
5003     SDValue IntID = DAG.getTargetConstant(
5004         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
5005         XLenVT);
5006 
5007     auto *Store = cast<MemIntrinsicSDNode>(Op);
5008     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
5009     Ops.push_back(Val);
5010     Ops.push_back(Op.getOperand(3)); // Ptr
5011     Ops.push_back(Op.getOperand(4)); // Stride
5012     if (!IsUnmasked)
5013       Ops.push_back(Mask);
5014     Ops.push_back(VL);
5015 
5016     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
5017                                    Ops, Store->getMemoryVT(),
5018                                    Store->getMemOperand());
5019   }
5020   }
5021 
5022   return SDValue();
5023 }
5024 
5025 static MVT getLMUL1VT(MVT VT) {
5026   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
5027          "Unexpected vector MVT");
5028   return MVT::getScalableVectorVT(
5029       VT.getVectorElementType(),
5030       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
5031 }
5032 
5033 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
5034   switch (ISDOpcode) {
5035   default:
5036     llvm_unreachable("Unhandled reduction");
5037   case ISD::VECREDUCE_ADD:
5038     return RISCVISD::VECREDUCE_ADD_VL;
5039   case ISD::VECREDUCE_UMAX:
5040     return RISCVISD::VECREDUCE_UMAX_VL;
5041   case ISD::VECREDUCE_SMAX:
5042     return RISCVISD::VECREDUCE_SMAX_VL;
5043   case ISD::VECREDUCE_UMIN:
5044     return RISCVISD::VECREDUCE_UMIN_VL;
5045   case ISD::VECREDUCE_SMIN:
5046     return RISCVISD::VECREDUCE_SMIN_VL;
5047   case ISD::VECREDUCE_AND:
5048     return RISCVISD::VECREDUCE_AND_VL;
5049   case ISD::VECREDUCE_OR:
5050     return RISCVISD::VECREDUCE_OR_VL;
5051   case ISD::VECREDUCE_XOR:
5052     return RISCVISD::VECREDUCE_XOR_VL;
5053   }
5054 }
5055 
5056 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
5057                                                          SelectionDAG &DAG,
5058                                                          bool IsVP) const {
5059   SDLoc DL(Op);
5060   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
5061   MVT VecVT = Vec.getSimpleValueType();
5062   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
5063           Op.getOpcode() == ISD::VECREDUCE_OR ||
5064           Op.getOpcode() == ISD::VECREDUCE_XOR ||
5065           Op.getOpcode() == ISD::VP_REDUCE_AND ||
5066           Op.getOpcode() == ISD::VP_REDUCE_OR ||
5067           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
5068          "Unexpected reduction lowering");
5069 
5070   MVT XLenVT = Subtarget.getXLenVT();
5071   assert(Op.getValueType() == XLenVT &&
5072          "Expected reduction output to be legalized to XLenVT");
5073 
5074   MVT ContainerVT = VecVT;
5075   if (VecVT.isFixedLengthVector()) {
5076     ContainerVT = getContainerForFixedLengthVector(VecVT);
5077     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5078   }
5079 
5080   SDValue Mask, VL;
5081   if (IsVP) {
5082     Mask = Op.getOperand(2);
5083     VL = Op.getOperand(3);
5084   } else {
5085     std::tie(Mask, VL) =
5086         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5087   }
5088 
5089   unsigned BaseOpc;
5090   ISD::CondCode CC;
5091   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
5092 
5093   switch (Op.getOpcode()) {
5094   default:
5095     llvm_unreachable("Unhandled reduction");
5096   case ISD::VECREDUCE_AND:
5097   case ISD::VP_REDUCE_AND: {
5098     // vcpop ~x == 0
5099     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
5100     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
5101     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5102     CC = ISD::SETEQ;
5103     BaseOpc = ISD::AND;
5104     break;
5105   }
5106   case ISD::VECREDUCE_OR:
5107   case ISD::VP_REDUCE_OR:
5108     // vcpop x != 0
5109     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5110     CC = ISD::SETNE;
5111     BaseOpc = ISD::OR;
5112     break;
5113   case ISD::VECREDUCE_XOR:
5114   case ISD::VP_REDUCE_XOR: {
5115     // ((vcpop x) & 1) != 0
5116     SDValue One = DAG.getConstant(1, DL, XLenVT);
5117     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5118     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
5119     CC = ISD::SETNE;
5120     BaseOpc = ISD::XOR;
5121     break;
5122   }
5123   }
5124 
5125   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
5126 
5127   if (!IsVP)
5128     return SetCC;
5129 
5130   // Now include the start value in the operation.
5131   // Note that we must return the start value when no elements are operated
5132   // upon. The vcpop instructions we've emitted in each case above will return
5133   // 0 for an inactive vector, and so we've already received the neutral value:
5134   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
5135   // can simply include the start value.
5136   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
5137 }
5138 
5139 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
5140                                             SelectionDAG &DAG) const {
5141   SDLoc DL(Op);
5142   SDValue Vec = Op.getOperand(0);
5143   EVT VecEVT = Vec.getValueType();
5144 
5145   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
5146 
5147   // Due to ordering in legalize types we may have a vector type that needs to
5148   // be split. Do that manually so we can get down to a legal type.
5149   while (getTypeAction(*DAG.getContext(), VecEVT) ==
5150          TargetLowering::TypeSplitVector) {
5151     SDValue Lo, Hi;
5152     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
5153     VecEVT = Lo.getValueType();
5154     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
5155   }
5156 
5157   // TODO: The type may need to be widened rather than split. Or widened before
5158   // it can be split.
5159   if (!isTypeLegal(VecEVT))
5160     return SDValue();
5161 
5162   MVT VecVT = VecEVT.getSimpleVT();
5163   MVT VecEltVT = VecVT.getVectorElementType();
5164   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
5165 
5166   MVT ContainerVT = VecVT;
5167   if (VecVT.isFixedLengthVector()) {
5168     ContainerVT = getContainerForFixedLengthVector(VecVT);
5169     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5170   }
5171 
5172   MVT M1VT = getLMUL1VT(ContainerVT);
5173   MVT XLenVT = Subtarget.getXLenVT();
5174 
5175   SDValue Mask, VL;
5176   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5177 
5178   SDValue NeutralElem =
5179       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
5180   SDValue IdentitySplat =
5181       lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT),
5182                        M1VT, DL, DAG, Subtarget);
5183   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
5184                                   IdentitySplat, Mask, VL);
5185   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5186                              DAG.getConstant(0, DL, XLenVT));
5187   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5188 }
5189 
5190 // Given a reduction op, this function returns the matching reduction opcode,
5191 // the vector SDValue and the scalar SDValue required to lower this to a
5192 // RISCVISD node.
5193 static std::tuple<unsigned, SDValue, SDValue>
5194 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
5195   SDLoc DL(Op);
5196   auto Flags = Op->getFlags();
5197   unsigned Opcode = Op.getOpcode();
5198   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
5199   switch (Opcode) {
5200   default:
5201     llvm_unreachable("Unhandled reduction");
5202   case ISD::VECREDUCE_FADD: {
5203     // Use positive zero if we can. It is cheaper to materialize.
5204     SDValue Zero =
5205         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
5206     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
5207   }
5208   case ISD::VECREDUCE_SEQ_FADD:
5209     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
5210                            Op.getOperand(0));
5211   case ISD::VECREDUCE_FMIN:
5212     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
5213                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5214   case ISD::VECREDUCE_FMAX:
5215     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
5216                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5217   }
5218 }
5219 
5220 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
5221                                               SelectionDAG &DAG) const {
5222   SDLoc DL(Op);
5223   MVT VecEltVT = Op.getSimpleValueType();
5224 
5225   unsigned RVVOpcode;
5226   SDValue VectorVal, ScalarVal;
5227   std::tie(RVVOpcode, VectorVal, ScalarVal) =
5228       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
5229   MVT VecVT = VectorVal.getSimpleValueType();
5230 
5231   MVT ContainerVT = VecVT;
5232   if (VecVT.isFixedLengthVector()) {
5233     ContainerVT = getContainerForFixedLengthVector(VecVT);
5234     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
5235   }
5236 
5237   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
5238   MVT XLenVT = Subtarget.getXLenVT();
5239 
5240   SDValue Mask, VL;
5241   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5242 
5243   SDValue ScalarSplat =
5244       lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT),
5245                        M1VT, DL, DAG, Subtarget);
5246   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
5247                                   VectorVal, ScalarSplat, Mask, VL);
5248   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5249                      DAG.getConstant(0, DL, XLenVT));
5250 }
5251 
5252 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
5253   switch (ISDOpcode) {
5254   default:
5255     llvm_unreachable("Unhandled reduction");
5256   case ISD::VP_REDUCE_ADD:
5257     return RISCVISD::VECREDUCE_ADD_VL;
5258   case ISD::VP_REDUCE_UMAX:
5259     return RISCVISD::VECREDUCE_UMAX_VL;
5260   case ISD::VP_REDUCE_SMAX:
5261     return RISCVISD::VECREDUCE_SMAX_VL;
5262   case ISD::VP_REDUCE_UMIN:
5263     return RISCVISD::VECREDUCE_UMIN_VL;
5264   case ISD::VP_REDUCE_SMIN:
5265     return RISCVISD::VECREDUCE_SMIN_VL;
5266   case ISD::VP_REDUCE_AND:
5267     return RISCVISD::VECREDUCE_AND_VL;
5268   case ISD::VP_REDUCE_OR:
5269     return RISCVISD::VECREDUCE_OR_VL;
5270   case ISD::VP_REDUCE_XOR:
5271     return RISCVISD::VECREDUCE_XOR_VL;
5272   case ISD::VP_REDUCE_FADD:
5273     return RISCVISD::VECREDUCE_FADD_VL;
5274   case ISD::VP_REDUCE_SEQ_FADD:
5275     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
5276   case ISD::VP_REDUCE_FMAX:
5277     return RISCVISD::VECREDUCE_FMAX_VL;
5278   case ISD::VP_REDUCE_FMIN:
5279     return RISCVISD::VECREDUCE_FMIN_VL;
5280   }
5281 }
5282 
5283 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
5284                                            SelectionDAG &DAG) const {
5285   SDLoc DL(Op);
5286   SDValue Vec = Op.getOperand(1);
5287   EVT VecEVT = Vec.getValueType();
5288 
5289   // TODO: The type may need to be widened rather than split. Or widened before
5290   // it can be split.
5291   if (!isTypeLegal(VecEVT))
5292     return SDValue();
5293 
5294   MVT VecVT = VecEVT.getSimpleVT();
5295   MVT VecEltVT = VecVT.getVectorElementType();
5296   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
5297 
5298   MVT ContainerVT = VecVT;
5299   if (VecVT.isFixedLengthVector()) {
5300     ContainerVT = getContainerForFixedLengthVector(VecVT);
5301     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5302   }
5303 
5304   SDValue VL = Op.getOperand(3);
5305   SDValue Mask = Op.getOperand(2);
5306 
5307   MVT M1VT = getLMUL1VT(ContainerVT);
5308   MVT XLenVT = Subtarget.getXLenVT();
5309   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
5310 
5311   SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0),
5312                                         DAG.getConstant(1, DL, XLenVT), M1VT,
5313                                         DL, DAG, Subtarget);
5314   SDValue Reduction =
5315       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
5316   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
5317                              DAG.getConstant(0, DL, XLenVT));
5318   if (!VecVT.isInteger())
5319     return Elt0;
5320   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5321 }
5322 
5323 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5324                                                    SelectionDAG &DAG) const {
5325   SDValue Vec = Op.getOperand(0);
5326   SDValue SubVec = Op.getOperand(1);
5327   MVT VecVT = Vec.getSimpleValueType();
5328   MVT SubVecVT = SubVec.getSimpleValueType();
5329 
5330   SDLoc DL(Op);
5331   MVT XLenVT = Subtarget.getXLenVT();
5332   unsigned OrigIdx = Op.getConstantOperandVal(2);
5333   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5334 
5335   // We don't have the ability to slide mask vectors up indexed by their i1
5336   // elements; the smallest we can do is i8. Often we are able to bitcast to
5337   // equivalent i8 vectors. Note that when inserting a fixed-length vector
5338   // into a scalable one, we might not necessarily have enough scalable
5339   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
5340   if (SubVecVT.getVectorElementType() == MVT::i1 &&
5341       (OrigIdx != 0 || !Vec.isUndef())) {
5342     if (VecVT.getVectorMinNumElements() >= 8 &&
5343         SubVecVT.getVectorMinNumElements() >= 8) {
5344       assert(OrigIdx % 8 == 0 && "Invalid index");
5345       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5346              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5347              "Unexpected mask vector lowering");
5348       OrigIdx /= 8;
5349       SubVecVT =
5350           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5351                            SubVecVT.isScalableVector());
5352       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5353                                VecVT.isScalableVector());
5354       Vec = DAG.getBitcast(VecVT, Vec);
5355       SubVec = DAG.getBitcast(SubVecVT, SubVec);
5356     } else {
5357       // We can't slide this mask vector up indexed by its i1 elements.
5358       // This poses a problem when we wish to insert a scalable vector which
5359       // can't be re-expressed as a larger type. Just choose the slow path and
5360       // extend to a larger type, then truncate back down.
5361       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5362       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5363       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5364       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
5365       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
5366                         Op.getOperand(2));
5367       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
5368       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
5369     }
5370   }
5371 
5372   // If the subvector vector is a fixed-length type, we cannot use subregister
5373   // manipulation to simplify the codegen; we don't know which register of a
5374   // LMUL group contains the specific subvector as we only know the minimum
5375   // register size. Therefore we must slide the vector group up the full
5376   // amount.
5377   if (SubVecVT.isFixedLengthVector()) {
5378     if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
5379       return Op;
5380     MVT ContainerVT = VecVT;
5381     if (VecVT.isFixedLengthVector()) {
5382       ContainerVT = getContainerForFixedLengthVector(VecVT);
5383       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5384     }
5385     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
5386                          DAG.getUNDEF(ContainerVT), SubVec,
5387                          DAG.getConstant(0, DL, XLenVT));
5388     if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
5389       SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
5390       return DAG.getBitcast(Op.getValueType(), SubVec);
5391     }
5392     SDValue Mask =
5393         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5394     // Set the vector length to only the number of elements we care about. Note
5395     // that for slideup this includes the offset.
5396     SDValue VL =
5397         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
5398     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5399     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
5400                                   SubVec, SlideupAmt, Mask, VL);
5401     if (VecVT.isFixedLengthVector())
5402       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
5403     return DAG.getBitcast(Op.getValueType(), Slideup);
5404   }
5405 
5406   unsigned SubRegIdx, RemIdx;
5407   std::tie(SubRegIdx, RemIdx) =
5408       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5409           VecVT, SubVecVT, OrigIdx, TRI);
5410 
5411   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
5412   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
5413                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
5414                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
5415 
5416   // 1. If the Idx has been completely eliminated and this subvector's size is
5417   // a vector register or a multiple thereof, or the surrounding elements are
5418   // undef, then this is a subvector insert which naturally aligns to a vector
5419   // register. These can easily be handled using subregister manipulation.
5420   // 2. If the subvector is smaller than a vector register, then the insertion
5421   // must preserve the undisturbed elements of the register. We do this by
5422   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
5423   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
5424   // subvector within the vector register, and an INSERT_SUBVECTOR of that
5425   // LMUL=1 type back into the larger vector (resolving to another subregister
5426   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
5427   // to avoid allocating a large register group to hold our subvector.
5428   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
5429     return Op;
5430 
5431   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
5432   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
5433   // (in our case undisturbed). This means we can set up a subvector insertion
5434   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
5435   // size of the subvector.
5436   MVT InterSubVT = VecVT;
5437   SDValue AlignedExtract = Vec;
5438   unsigned AlignedIdx = OrigIdx - RemIdx;
5439   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5440     InterSubVT = getLMUL1VT(VecVT);
5441     // Extract a subvector equal to the nearest full vector register type. This
5442     // should resolve to a EXTRACT_SUBREG instruction.
5443     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5444                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
5445   }
5446 
5447   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5448   // For scalable vectors this must be further multiplied by vscale.
5449   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
5450 
5451   SDValue Mask, VL;
5452   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5453 
5454   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
5455   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
5456   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
5457   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
5458 
5459   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
5460                        DAG.getUNDEF(InterSubVT), SubVec,
5461                        DAG.getConstant(0, DL, XLenVT));
5462 
5463   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
5464                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
5465 
5466   // If required, insert this subvector back into the correct vector register.
5467   // This should resolve to an INSERT_SUBREG instruction.
5468   if (VecVT.bitsGT(InterSubVT))
5469     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
5470                           DAG.getConstant(AlignedIdx, DL, XLenVT));
5471 
5472   // We might have bitcast from a mask type: cast back to the original type if
5473   // required.
5474   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
5475 }
5476 
5477 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
5478                                                     SelectionDAG &DAG) const {
5479   SDValue Vec = Op.getOperand(0);
5480   MVT SubVecVT = Op.getSimpleValueType();
5481   MVT VecVT = Vec.getSimpleValueType();
5482 
5483   SDLoc DL(Op);
5484   MVT XLenVT = Subtarget.getXLenVT();
5485   unsigned OrigIdx = Op.getConstantOperandVal(1);
5486   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5487 
5488   // We don't have the ability to slide mask vectors down indexed by their i1
5489   // elements; the smallest we can do is i8. Often we are able to bitcast to
5490   // equivalent i8 vectors. Note that when extracting a fixed-length vector
5491   // from a scalable one, we might not necessarily have enough scalable
5492   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
5493   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
5494     if (VecVT.getVectorMinNumElements() >= 8 &&
5495         SubVecVT.getVectorMinNumElements() >= 8) {
5496       assert(OrigIdx % 8 == 0 && "Invalid index");
5497       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5498              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5499              "Unexpected mask vector lowering");
5500       OrigIdx /= 8;
5501       SubVecVT =
5502           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5503                            SubVecVT.isScalableVector());
5504       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5505                                VecVT.isScalableVector());
5506       Vec = DAG.getBitcast(VecVT, Vec);
5507     } else {
5508       // We can't slide this mask vector down, indexed by its i1 elements.
5509       // This poses a problem when we wish to extract a scalable vector which
5510       // can't be re-expressed as a larger type. Just choose the slow path and
5511       // extend to a larger type, then truncate back down.
5512       // TODO: We could probably improve this when extracting certain fixed
5513       // from fixed, where we can extract as i8 and shift the correct element
5514       // right to reach the desired subvector?
5515       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5516       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5517       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5518       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
5519                         Op.getOperand(1));
5520       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
5521       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
5522     }
5523   }
5524 
5525   // If the subvector vector is a fixed-length type, we cannot use subregister
5526   // manipulation to simplify the codegen; we don't know which register of a
5527   // LMUL group contains the specific subvector as we only know the minimum
5528   // register size. Therefore we must slide the vector group down the full
5529   // amount.
5530   if (SubVecVT.isFixedLengthVector()) {
5531     // With an index of 0 this is a cast-like subvector, which can be performed
5532     // with subregister operations.
5533     if (OrigIdx == 0)
5534       return Op;
5535     MVT ContainerVT = VecVT;
5536     if (VecVT.isFixedLengthVector()) {
5537       ContainerVT = getContainerForFixedLengthVector(VecVT);
5538       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5539     }
5540     SDValue Mask =
5541         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5542     // Set the vector length to only the number of elements we care about. This
5543     // avoids sliding down elements we're going to discard straight away.
5544     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
5545     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5546     SDValue Slidedown =
5547         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5548                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
5549     // Now we can use a cast-like subvector extract to get the result.
5550     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5551                             DAG.getConstant(0, DL, XLenVT));
5552     return DAG.getBitcast(Op.getValueType(), Slidedown);
5553   }
5554 
5555   unsigned SubRegIdx, RemIdx;
5556   std::tie(SubRegIdx, RemIdx) =
5557       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5558           VecVT, SubVecVT, OrigIdx, TRI);
5559 
5560   // If the Idx has been completely eliminated then this is a subvector extract
5561   // which naturally aligns to a vector register. These can easily be handled
5562   // using subregister manipulation.
5563   if (RemIdx == 0)
5564     return Op;
5565 
5566   // Else we must shift our vector register directly to extract the subvector.
5567   // Do this using VSLIDEDOWN.
5568 
5569   // If the vector type is an LMUL-group type, extract a subvector equal to the
5570   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
5571   // instruction.
5572   MVT InterSubVT = VecVT;
5573   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5574     InterSubVT = getLMUL1VT(VecVT);
5575     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5576                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
5577   }
5578 
5579   // Slide this vector register down by the desired number of elements in order
5580   // to place the desired subvector starting at element 0.
5581   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5582   // For scalable vectors this must be further multiplied by vscale.
5583   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
5584 
5585   SDValue Mask, VL;
5586   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
5587   SDValue Slidedown =
5588       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
5589                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
5590 
5591   // Now the vector is in the right position, extract our final subvector. This
5592   // should resolve to a COPY.
5593   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5594                           DAG.getConstant(0, DL, XLenVT));
5595 
5596   // We might have bitcast from a mask type: cast back to the original type if
5597   // required.
5598   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
5599 }
5600 
5601 // Lower step_vector to the vid instruction. Any non-identity step value must
5602 // be accounted for my manual expansion.
5603 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
5604                                               SelectionDAG &DAG) const {
5605   SDLoc DL(Op);
5606   MVT VT = Op.getSimpleValueType();
5607   MVT XLenVT = Subtarget.getXLenVT();
5608   SDValue Mask, VL;
5609   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
5610   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
5611   uint64_t StepValImm = Op.getConstantOperandVal(0);
5612   if (StepValImm != 1) {
5613     if (isPowerOf2_64(StepValImm)) {
5614       SDValue StepVal =
5615           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
5616                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
5617       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
5618     } else {
5619       SDValue StepVal = lowerScalarSplat(
5620           SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()),
5621           VL, VT, DL, DAG, Subtarget);
5622       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
5623     }
5624   }
5625   return StepVec;
5626 }
5627 
5628 // Implement vector_reverse using vrgather.vv with indices determined by
5629 // subtracting the id of each element from (VLMAX-1). This will convert
5630 // the indices like so:
5631 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
5632 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
5633 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
5634                                                  SelectionDAG &DAG) const {
5635   SDLoc DL(Op);
5636   MVT VecVT = Op.getSimpleValueType();
5637   unsigned EltSize = VecVT.getScalarSizeInBits();
5638   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
5639 
5640   unsigned MaxVLMAX = 0;
5641   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
5642   if (VectorBitsMax != 0)
5643     MaxVLMAX =
5644         RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
5645 
5646   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
5647   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
5648 
5649   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
5650   // to use vrgatherei16.vv.
5651   // TODO: It's also possible to use vrgatherei16.vv for other types to
5652   // decrease register width for the index calculation.
5653   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
5654     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
5655     // Reverse each half, then reassemble them in reverse order.
5656     // NOTE: It's also possible that after splitting that VLMAX no longer
5657     // requires vrgatherei16.vv.
5658     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
5659       SDValue Lo, Hi;
5660       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5661       EVT LoVT, HiVT;
5662       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5663       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5664       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5665       // Reassemble the low and high pieces reversed.
5666       // FIXME: This is a CONCAT_VECTORS.
5667       SDValue Res =
5668           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5669                       DAG.getIntPtrConstant(0, DL));
5670       return DAG.getNode(
5671           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5672           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5673     }
5674 
5675     // Just promote the int type to i16 which will double the LMUL.
5676     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5677     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5678   }
5679 
5680   MVT XLenVT = Subtarget.getXLenVT();
5681   SDValue Mask, VL;
5682   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5683 
5684   // Calculate VLMAX-1 for the desired SEW.
5685   unsigned MinElts = VecVT.getVectorMinNumElements();
5686   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5687                               DAG.getConstant(MinElts, DL, XLenVT));
5688   SDValue VLMinus1 =
5689       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5690 
5691   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5692   bool IsRV32E64 =
5693       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5694   SDValue SplatVL;
5695   if (!IsRV32E64)
5696     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5697   else
5698     SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT),
5699                           VLMinus1, DAG.getRegister(RISCV::X0, XLenVT));
5700 
5701   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5702   SDValue Indices =
5703       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5704 
5705   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
5706 }
5707 
5708 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op,
5709                                                 SelectionDAG &DAG) const {
5710   SDLoc DL(Op);
5711   SDValue V1 = Op.getOperand(0);
5712   SDValue V2 = Op.getOperand(1);
5713   MVT XLenVT = Subtarget.getXLenVT();
5714   MVT VecVT = Op.getSimpleValueType();
5715 
5716   unsigned MinElts = VecVT.getVectorMinNumElements();
5717   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5718                               DAG.getConstant(MinElts, DL, XLenVT));
5719 
5720   int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue();
5721   SDValue DownOffset, UpOffset;
5722   if (ImmValue >= 0) {
5723     // The operand is a TargetConstant, we need to rebuild it as a regular
5724     // constant.
5725     DownOffset = DAG.getConstant(ImmValue, DL, XLenVT);
5726     UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset);
5727   } else {
5728     // The operand is a TargetConstant, we need to rebuild it as a regular
5729     // constant rather than negating the original operand.
5730     UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT);
5731     DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset);
5732   }
5733 
5734   MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
5735   SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VLMax);
5736 
5737   SDValue SlideDown =
5738       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1,
5739                   DownOffset, TrueMask, UpOffset);
5740   return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset,
5741                      TrueMask,
5742                      DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT));
5743 }
5744 
5745 SDValue
5746 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5747                                                      SelectionDAG &DAG) const {
5748   SDLoc DL(Op);
5749   auto *Load = cast<LoadSDNode>(Op);
5750 
5751   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5752                                         Load->getMemoryVT(),
5753                                         *Load->getMemOperand()) &&
5754          "Expecting a correctly-aligned load");
5755 
5756   MVT VT = Op.getSimpleValueType();
5757   MVT XLenVT = Subtarget.getXLenVT();
5758   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5759 
5760   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5761 
5762   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5763   SDValue IntID = DAG.getTargetConstant(
5764       IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT);
5765   SmallVector<SDValue, 4> Ops{Load->getChain(), IntID};
5766   if (!IsMaskOp)
5767     Ops.push_back(DAG.getUNDEF(ContainerVT));
5768   Ops.push_back(Load->getBasePtr());
5769   Ops.push_back(VL);
5770   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5771   SDValue NewLoad =
5772       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
5773                               Load->getMemoryVT(), Load->getMemOperand());
5774 
5775   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5776   return DAG.getMergeValues({Result, Load->getChain()}, DL);
5777 }
5778 
5779 SDValue
5780 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5781                                                       SelectionDAG &DAG) const {
5782   SDLoc DL(Op);
5783   auto *Store = cast<StoreSDNode>(Op);
5784 
5785   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5786                                         Store->getMemoryVT(),
5787                                         *Store->getMemOperand()) &&
5788          "Expecting a correctly-aligned store");
5789 
5790   SDValue StoreVal = Store->getValue();
5791   MVT VT = StoreVal.getSimpleValueType();
5792   MVT XLenVT = Subtarget.getXLenVT();
5793 
5794   // If the size less than a byte, we need to pad with zeros to make a byte.
5795   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5796     VT = MVT::v8i1;
5797     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5798                            DAG.getConstant(0, DL, VT), StoreVal,
5799                            DAG.getIntPtrConstant(0, DL));
5800   }
5801 
5802   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5803 
5804   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5805 
5806   SDValue NewValue =
5807       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5808 
5809   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5810   SDValue IntID = DAG.getTargetConstant(
5811       IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT);
5812   return DAG.getMemIntrinsicNode(
5813       ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
5814       {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL},
5815       Store->getMemoryVT(), Store->getMemOperand());
5816 }
5817 
5818 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5819                                              SelectionDAG &DAG) const {
5820   SDLoc DL(Op);
5821   MVT VT = Op.getSimpleValueType();
5822 
5823   const auto *MemSD = cast<MemSDNode>(Op);
5824   EVT MemVT = MemSD->getMemoryVT();
5825   MachineMemOperand *MMO = MemSD->getMemOperand();
5826   SDValue Chain = MemSD->getChain();
5827   SDValue BasePtr = MemSD->getBasePtr();
5828 
5829   SDValue Mask, PassThru, VL;
5830   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5831     Mask = VPLoad->getMask();
5832     PassThru = DAG.getUNDEF(VT);
5833     VL = VPLoad->getVectorLength();
5834   } else {
5835     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5836     Mask = MLoad->getMask();
5837     PassThru = MLoad->getPassThru();
5838   }
5839 
5840   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5841 
5842   MVT XLenVT = Subtarget.getXLenVT();
5843 
5844   MVT ContainerVT = VT;
5845   if (VT.isFixedLengthVector()) {
5846     ContainerVT = getContainerForFixedLengthVector(VT);
5847     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5848     if (!IsUnmasked) {
5849       MVT MaskVT =
5850           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5851       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5852     }
5853   }
5854 
5855   if (!VL)
5856     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5857 
5858   unsigned IntID =
5859       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5860   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5861   if (IsUnmasked)
5862     Ops.push_back(DAG.getUNDEF(ContainerVT));
5863   else
5864     Ops.push_back(PassThru);
5865   Ops.push_back(BasePtr);
5866   if (!IsUnmasked)
5867     Ops.push_back(Mask);
5868   Ops.push_back(VL);
5869   if (!IsUnmasked)
5870     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5871 
5872   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5873 
5874   SDValue Result =
5875       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5876   Chain = Result.getValue(1);
5877 
5878   if (VT.isFixedLengthVector())
5879     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5880 
5881   return DAG.getMergeValues({Result, Chain}, DL);
5882 }
5883 
5884 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5885                                               SelectionDAG &DAG) const {
5886   SDLoc DL(Op);
5887 
5888   const auto *MemSD = cast<MemSDNode>(Op);
5889   EVT MemVT = MemSD->getMemoryVT();
5890   MachineMemOperand *MMO = MemSD->getMemOperand();
5891   SDValue Chain = MemSD->getChain();
5892   SDValue BasePtr = MemSD->getBasePtr();
5893   SDValue Val, Mask, VL;
5894 
5895   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5896     Val = VPStore->getValue();
5897     Mask = VPStore->getMask();
5898     VL = VPStore->getVectorLength();
5899   } else {
5900     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5901     Val = MStore->getValue();
5902     Mask = MStore->getMask();
5903   }
5904 
5905   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5906 
5907   MVT VT = Val.getSimpleValueType();
5908   MVT XLenVT = Subtarget.getXLenVT();
5909 
5910   MVT ContainerVT = VT;
5911   if (VT.isFixedLengthVector()) {
5912     ContainerVT = getContainerForFixedLengthVector(VT);
5913 
5914     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5915     if (!IsUnmasked) {
5916       MVT MaskVT =
5917           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5918       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5919     }
5920   }
5921 
5922   if (!VL)
5923     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5924 
5925   unsigned IntID =
5926       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5927   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5928   Ops.push_back(Val);
5929   Ops.push_back(BasePtr);
5930   if (!IsUnmasked)
5931     Ops.push_back(Mask);
5932   Ops.push_back(VL);
5933 
5934   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5935                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5936 }
5937 
5938 SDValue
5939 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
5940                                                       SelectionDAG &DAG) const {
5941   MVT InVT = Op.getOperand(0).getSimpleValueType();
5942   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
5943 
5944   MVT VT = Op.getSimpleValueType();
5945 
5946   SDValue Op1 =
5947       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
5948   SDValue Op2 =
5949       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5950 
5951   SDLoc DL(Op);
5952   SDValue VL =
5953       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5954 
5955   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5956   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5957 
5958   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
5959                             Op.getOperand(2), Mask, VL);
5960 
5961   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
5962 }
5963 
5964 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
5965     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
5966   MVT VT = Op.getSimpleValueType();
5967 
5968   if (VT.getVectorElementType() == MVT::i1)
5969     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
5970 
5971   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
5972 }
5973 
5974 SDValue
5975 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
5976                                                       SelectionDAG &DAG) const {
5977   unsigned Opc;
5978   switch (Op.getOpcode()) {
5979   default: llvm_unreachable("Unexpected opcode!");
5980   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
5981   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
5982   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
5983   }
5984 
5985   return lowerToScalableOp(Op, DAG, Opc);
5986 }
5987 
5988 // Lower vector ABS to smax(X, sub(0, X)).
5989 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
5990   SDLoc DL(Op);
5991   MVT VT = Op.getSimpleValueType();
5992   SDValue X = Op.getOperand(0);
5993 
5994   assert(VT.isFixedLengthVector() && "Unexpected type");
5995 
5996   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5997   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
5998 
5999   SDValue Mask, VL;
6000   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6001 
6002   SDValue SplatZero = DAG.getNode(
6003       RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
6004       DAG.getConstant(0, DL, Subtarget.getXLenVT()));
6005   SDValue NegX =
6006       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
6007   SDValue Max =
6008       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
6009 
6010   return convertFromScalableVector(VT, Max, DAG, Subtarget);
6011 }
6012 
6013 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
6014     SDValue Op, SelectionDAG &DAG) const {
6015   SDLoc DL(Op);
6016   MVT VT = Op.getSimpleValueType();
6017   SDValue Mag = Op.getOperand(0);
6018   SDValue Sign = Op.getOperand(1);
6019   assert(Mag.getValueType() == Sign.getValueType() &&
6020          "Can only handle COPYSIGN with matching types.");
6021 
6022   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6023   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
6024   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
6025 
6026   SDValue Mask, VL;
6027   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6028 
6029   SDValue CopySign =
6030       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
6031 
6032   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
6033 }
6034 
6035 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
6036     SDValue Op, SelectionDAG &DAG) const {
6037   MVT VT = Op.getSimpleValueType();
6038   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6039 
6040   MVT I1ContainerVT =
6041       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6042 
6043   SDValue CC =
6044       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
6045   SDValue Op1 =
6046       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
6047   SDValue Op2 =
6048       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
6049 
6050   SDLoc DL(Op);
6051   SDValue Mask, VL;
6052   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6053 
6054   SDValue Select =
6055       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
6056 
6057   return convertFromScalableVector(VT, Select, DAG, Subtarget);
6058 }
6059 
6060 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
6061                                                unsigned NewOpc,
6062                                                bool HasMask) const {
6063   MVT VT = Op.getSimpleValueType();
6064   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6065 
6066   // Create list of operands by converting existing ones to scalable types.
6067   SmallVector<SDValue, 6> Ops;
6068   for (const SDValue &V : Op->op_values()) {
6069     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6070 
6071     // Pass through non-vector operands.
6072     if (!V.getValueType().isVector()) {
6073       Ops.push_back(V);
6074       continue;
6075     }
6076 
6077     // "cast" fixed length vector to a scalable vector.
6078     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
6079            "Only fixed length vectors are supported!");
6080     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6081   }
6082 
6083   SDLoc DL(Op);
6084   SDValue Mask, VL;
6085   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6086   if (HasMask)
6087     Ops.push_back(Mask);
6088   Ops.push_back(VL);
6089 
6090   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
6091   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
6092 }
6093 
6094 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
6095 // * Operands of each node are assumed to be in the same order.
6096 // * The EVL operand is promoted from i32 to i64 on RV64.
6097 // * Fixed-length vectors are converted to their scalable-vector container
6098 //   types.
6099 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
6100                                        unsigned RISCVISDOpc) const {
6101   SDLoc DL(Op);
6102   MVT VT = Op.getSimpleValueType();
6103   SmallVector<SDValue, 4> Ops;
6104 
6105   for (const auto &OpIdx : enumerate(Op->ops())) {
6106     SDValue V = OpIdx.value();
6107     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6108     // Pass through operands which aren't fixed-length vectors.
6109     if (!V.getValueType().isFixedLengthVector()) {
6110       Ops.push_back(V);
6111       continue;
6112     }
6113     // "cast" fixed length vector to a scalable vector.
6114     MVT OpVT = V.getSimpleValueType();
6115     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
6116     assert(useRVVForFixedLengthVectorVT(OpVT) &&
6117            "Only fixed length vectors are supported!");
6118     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6119   }
6120 
6121   if (!VT.isFixedLengthVector())
6122     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
6123 
6124   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6125 
6126   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
6127 
6128   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
6129 }
6130 
6131 // Lower Floating-Point/Integer Type-Convert VP SDNodes
6132 SDValue RISCVTargetLowering::lowerVPFPIntConvOp(SDValue Op, SelectionDAG &DAG,
6133                                                 unsigned RISCVISDOpc) const {
6134   SDLoc DL(Op);
6135 
6136   SDValue Src = Op.getOperand(0);
6137   SDValue Mask = Op.getOperand(1);
6138   SDValue VL = Op.getOperand(2);
6139 
6140   MVT DstVT = Op.getSimpleValueType();
6141   MVT SrcVT = Src.getSimpleValueType();
6142   if (DstVT.isFixedLengthVector()) {
6143     DstVT = getContainerForFixedLengthVector(DstVT);
6144     SrcVT = getContainerForFixedLengthVector(SrcVT);
6145     Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
6146     MVT MaskVT = MVT::getVectorVT(MVT::i1, DstVT.getVectorElementCount());
6147     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6148   }
6149 
6150   unsigned RISCVISDExtOpc = (RISCVISDOpc == RISCVISD::SINT_TO_FP_VL ||
6151                              RISCVISDOpc == RISCVISD::FP_TO_SINT_VL)
6152                                 ? RISCVISD::VSEXT_VL
6153                                 : RISCVISD::VZEXT_VL;
6154 
6155   unsigned DstEltSize = DstVT.getScalarSizeInBits();
6156   unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
6157 
6158   SDValue Result;
6159   if (DstEltSize >= SrcEltSize) { // Single-width and widening conversion.
6160     if (SrcVT.isInteger()) {
6161       assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
6162 
6163       // Do we need to do any pre-widening before converting?
6164       if (SrcEltSize == 1) {
6165         MVT IntVT = DstVT.changeVectorElementTypeToInteger();
6166         MVT XLenVT = Subtarget.getXLenVT();
6167         SDValue Zero = DAG.getConstant(0, DL, XLenVT);
6168         SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
6169                                         DAG.getUNDEF(IntVT), Zero, VL);
6170         SDValue One = DAG.getConstant(
6171             RISCVISDExtOpc == RISCVISD::VZEXT_VL ? 1 : -1, DL, XLenVT);
6172         SDValue OneSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
6173                                        DAG.getUNDEF(IntVT), One, VL);
6174         Src = DAG.getNode(RISCVISD::VSELECT_VL, DL, IntVT, Src, OneSplat,
6175                           ZeroSplat, VL);
6176       } else if (DstEltSize > (2 * SrcEltSize)) {
6177         // Widen before converting.
6178         MVT IntVT = MVT::getVectorVT(MVT::getIntegerVT(DstEltSize / 2),
6179                                      DstVT.getVectorElementCount());
6180         Src = DAG.getNode(RISCVISDExtOpc, DL, IntVT, {Src, Mask, VL});
6181       }
6182 
6183       Result = DAG.getNode(RISCVISDOpc, DL, DstVT, {Src, Mask, VL});
6184     } else {
6185       assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
6186              "Wrong input/output vector types");
6187 
6188       // Convert f16 to f32 then convert f32 to i64.
6189       if (DstEltSize > (2 * SrcEltSize)) {
6190         assert(SrcVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
6191         MVT InterimFVT =
6192             MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
6193         Src = DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterimFVT,
6194                           {Src, Mask, VL});
6195       }
6196 
6197       Result = DAG.getNode(RISCVISDOpc, DL, DstVT, {Src, Mask, VL});
6198     }
6199   } else { // Narrowing + Conversion
6200     if (SrcVT.isInteger()) {
6201       assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
6202       // First do a narrowing convert to an FP type half the size, then round
6203       // the FP type to a small FP type if needed.
6204 
6205       MVT InterimFVT = DstVT;
6206       if (SrcEltSize > (2 * DstEltSize)) {
6207         assert(SrcEltSize == (4 * DstEltSize) && "Unexpected types!");
6208         assert(DstVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
6209         InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
6210       }
6211 
6212       Result = DAG.getNode(RISCVISDOpc, DL, InterimFVT, {Src, Mask, VL});
6213 
6214       if (InterimFVT != DstVT) {
6215         Src = Result;
6216         Result = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, DstVT, {Src, Mask, VL});
6217       }
6218     } else {
6219       assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
6220              "Wrong input/output vector types");
6221       // First do a narrowing conversion to an integer half the size, then
6222       // truncate if needed.
6223 
6224       // TODO: Handle mask vectors
6225       assert(DstVT.getVectorElementType() != MVT::i1 &&
6226              "Don't know how to handle masks yet!");
6227       MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
6228                                         DstVT.getVectorElementCount());
6229 
6230       Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, {Src, Mask, VL});
6231 
6232       while (InterimIVT != DstVT) {
6233         SrcEltSize /= 2;
6234         Src = Result;
6235         InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
6236                                       DstVT.getVectorElementCount());
6237         Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, InterimIVT,
6238                              {Src, Mask, VL});
6239       }
6240     }
6241   }
6242 
6243   MVT VT = Op.getSimpleValueType();
6244   if (!VT.isFixedLengthVector())
6245     return Result;
6246   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6247 }
6248 
6249 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
6250                                             unsigned MaskOpc,
6251                                             unsigned VecOpc) const {
6252   MVT VT = Op.getSimpleValueType();
6253   if (VT.getVectorElementType() != MVT::i1)
6254     return lowerVPOp(Op, DAG, VecOpc);
6255 
6256   // It is safe to drop mask parameter as masked-off elements are undef.
6257   SDValue Op1 = Op->getOperand(0);
6258   SDValue Op2 = Op->getOperand(1);
6259   SDValue VL = Op->getOperand(3);
6260 
6261   MVT ContainerVT = VT;
6262   const bool IsFixed = VT.isFixedLengthVector();
6263   if (IsFixed) {
6264     ContainerVT = getContainerForFixedLengthVector(VT);
6265     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6266     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6267   }
6268 
6269   SDLoc DL(Op);
6270   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
6271   if (!IsFixed)
6272     return Val;
6273   return convertFromScalableVector(VT, Val, DAG, Subtarget);
6274 }
6275 
6276 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
6277 // matched to a RVV indexed load. The RVV indexed load instructions only
6278 // support the "unsigned unscaled" addressing mode; indices are implicitly
6279 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6280 // signed or scaled indexing is extended to the XLEN value type and scaled
6281 // accordingly.
6282 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
6283                                                SelectionDAG &DAG) const {
6284   SDLoc DL(Op);
6285   MVT VT = Op.getSimpleValueType();
6286 
6287   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6288   EVT MemVT = MemSD->getMemoryVT();
6289   MachineMemOperand *MMO = MemSD->getMemOperand();
6290   SDValue Chain = MemSD->getChain();
6291   SDValue BasePtr = MemSD->getBasePtr();
6292 
6293   ISD::LoadExtType LoadExtType;
6294   SDValue Index, Mask, PassThru, VL;
6295 
6296   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
6297     Index = VPGN->getIndex();
6298     Mask = VPGN->getMask();
6299     PassThru = DAG.getUNDEF(VT);
6300     VL = VPGN->getVectorLength();
6301     // VP doesn't support extending loads.
6302     LoadExtType = ISD::NON_EXTLOAD;
6303   } else {
6304     // Else it must be a MGATHER.
6305     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
6306     Index = MGN->getIndex();
6307     Mask = MGN->getMask();
6308     PassThru = MGN->getPassThru();
6309     LoadExtType = MGN->getExtensionType();
6310   }
6311 
6312   MVT IndexVT = Index.getSimpleValueType();
6313   MVT XLenVT = Subtarget.getXLenVT();
6314 
6315   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6316          "Unexpected VTs!");
6317   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6318   // Targets have to explicitly opt-in for extending vector loads.
6319   assert(LoadExtType == ISD::NON_EXTLOAD &&
6320          "Unexpected extending MGATHER/VP_GATHER");
6321   (void)LoadExtType;
6322 
6323   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6324   // the selection of the masked intrinsics doesn't do this for us.
6325   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6326 
6327   MVT ContainerVT = VT;
6328   if (VT.isFixedLengthVector()) {
6329     // We need to use the larger of the result and index type to determine the
6330     // scalable type to use so we don't increase LMUL for any operand/result.
6331     if (VT.bitsGE(IndexVT)) {
6332       ContainerVT = getContainerForFixedLengthVector(VT);
6333       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6334                                  ContainerVT.getVectorElementCount());
6335     } else {
6336       IndexVT = getContainerForFixedLengthVector(IndexVT);
6337       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
6338                                      IndexVT.getVectorElementCount());
6339     }
6340 
6341     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6342 
6343     if (!IsUnmasked) {
6344       MVT MaskVT =
6345           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6346       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6347       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
6348     }
6349   }
6350 
6351   if (!VL)
6352     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6353 
6354   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6355     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6356     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6357                                    VL);
6358     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6359                         TrueMask, VL);
6360   }
6361 
6362   unsigned IntID =
6363       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
6364   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6365   if (IsUnmasked)
6366     Ops.push_back(DAG.getUNDEF(ContainerVT));
6367   else
6368     Ops.push_back(PassThru);
6369   Ops.push_back(BasePtr);
6370   Ops.push_back(Index);
6371   if (!IsUnmasked)
6372     Ops.push_back(Mask);
6373   Ops.push_back(VL);
6374   if (!IsUnmasked)
6375     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
6376 
6377   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
6378   SDValue Result =
6379       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
6380   Chain = Result.getValue(1);
6381 
6382   if (VT.isFixedLengthVector())
6383     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
6384 
6385   return DAG.getMergeValues({Result, Chain}, DL);
6386 }
6387 
6388 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
6389 // matched to a RVV indexed store. The RVV indexed store instructions only
6390 // support the "unsigned unscaled" addressing mode; indices are implicitly
6391 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6392 // signed or scaled indexing is extended to the XLEN value type and scaled
6393 // accordingly.
6394 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
6395                                                 SelectionDAG &DAG) const {
6396   SDLoc DL(Op);
6397   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6398   EVT MemVT = MemSD->getMemoryVT();
6399   MachineMemOperand *MMO = MemSD->getMemOperand();
6400   SDValue Chain = MemSD->getChain();
6401   SDValue BasePtr = MemSD->getBasePtr();
6402 
6403   bool IsTruncatingStore = false;
6404   SDValue Index, Mask, Val, VL;
6405 
6406   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
6407     Index = VPSN->getIndex();
6408     Mask = VPSN->getMask();
6409     Val = VPSN->getValue();
6410     VL = VPSN->getVectorLength();
6411     // VP doesn't support truncating stores.
6412     IsTruncatingStore = false;
6413   } else {
6414     // Else it must be a MSCATTER.
6415     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
6416     Index = MSN->getIndex();
6417     Mask = MSN->getMask();
6418     Val = MSN->getValue();
6419     IsTruncatingStore = MSN->isTruncatingStore();
6420   }
6421 
6422   MVT VT = Val.getSimpleValueType();
6423   MVT IndexVT = Index.getSimpleValueType();
6424   MVT XLenVT = Subtarget.getXLenVT();
6425 
6426   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6427          "Unexpected VTs!");
6428   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6429   // Targets have to explicitly opt-in for extending vector loads and
6430   // truncating vector stores.
6431   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
6432   (void)IsTruncatingStore;
6433 
6434   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6435   // the selection of the masked intrinsics doesn't do this for us.
6436   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6437 
6438   MVT ContainerVT = VT;
6439   if (VT.isFixedLengthVector()) {
6440     // We need to use the larger of the value and index type to determine the
6441     // scalable type to use so we don't increase LMUL for any operand/result.
6442     if (VT.bitsGE(IndexVT)) {
6443       ContainerVT = getContainerForFixedLengthVector(VT);
6444       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6445                                  ContainerVT.getVectorElementCount());
6446     } else {
6447       IndexVT = getContainerForFixedLengthVector(IndexVT);
6448       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
6449                                      IndexVT.getVectorElementCount());
6450     }
6451 
6452     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6453     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
6454 
6455     if (!IsUnmasked) {
6456       MVT MaskVT =
6457           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6458       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6459     }
6460   }
6461 
6462   if (!VL)
6463     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6464 
6465   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6466     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6467     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6468                                    VL);
6469     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6470                         TrueMask, VL);
6471   }
6472 
6473   unsigned IntID =
6474       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
6475   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6476   Ops.push_back(Val);
6477   Ops.push_back(BasePtr);
6478   Ops.push_back(Index);
6479   if (!IsUnmasked)
6480     Ops.push_back(Mask);
6481   Ops.push_back(VL);
6482 
6483   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
6484                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
6485 }
6486 
6487 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
6488                                                SelectionDAG &DAG) const {
6489   const MVT XLenVT = Subtarget.getXLenVT();
6490   SDLoc DL(Op);
6491   SDValue Chain = Op->getOperand(0);
6492   SDValue SysRegNo = DAG.getTargetConstant(
6493       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6494   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
6495   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
6496 
6497   // Encoding used for rounding mode in RISCV differs from that used in
6498   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
6499   // table, which consists of a sequence of 4-bit fields, each representing
6500   // corresponding FLT_ROUNDS mode.
6501   static const int Table =
6502       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
6503       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
6504       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
6505       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
6506       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
6507 
6508   SDValue Shift =
6509       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
6510   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6511                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6512   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6513                                DAG.getConstant(7, DL, XLenVT));
6514 
6515   return DAG.getMergeValues({Masked, Chain}, DL);
6516 }
6517 
6518 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
6519                                                SelectionDAG &DAG) const {
6520   const MVT XLenVT = Subtarget.getXLenVT();
6521   SDLoc DL(Op);
6522   SDValue Chain = Op->getOperand(0);
6523   SDValue RMValue = Op->getOperand(1);
6524   SDValue SysRegNo = DAG.getTargetConstant(
6525       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6526 
6527   // Encoding used for rounding mode in RISCV differs from that used in
6528   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
6529   // a table, which consists of a sequence of 4-bit fields, each representing
6530   // corresponding RISCV mode.
6531   static const unsigned Table =
6532       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
6533       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
6534       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
6535       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
6536       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
6537 
6538   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
6539                               DAG.getConstant(2, DL, XLenVT));
6540   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6541                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6542   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6543                         DAG.getConstant(0x7, DL, XLenVT));
6544   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
6545                      RMValue);
6546 }
6547 
6548 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) {
6549   switch (IntNo) {
6550   default:
6551     llvm_unreachable("Unexpected Intrinsic");
6552   case Intrinsic::riscv_bcompress:
6553     return RISCVISD::BCOMPRESSW;
6554   case Intrinsic::riscv_bdecompress:
6555     return RISCVISD::BDECOMPRESSW;
6556   case Intrinsic::riscv_bfp:
6557     return RISCVISD::BFPW;
6558   case Intrinsic::riscv_fsl:
6559     return RISCVISD::FSLW;
6560   case Intrinsic::riscv_fsr:
6561     return RISCVISD::FSRW;
6562   }
6563 }
6564 
6565 // Converts the given intrinsic to a i64 operation with any extension.
6566 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG,
6567                                          unsigned IntNo) {
6568   SDLoc DL(N);
6569   RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo);
6570   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6571   SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6572   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2);
6573   // ReplaceNodeResults requires we maintain the same type for the return value.
6574   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6575 }
6576 
6577 // Returns the opcode of the target-specific SDNode that implements the 32-bit
6578 // form of the given Opcode.
6579 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
6580   switch (Opcode) {
6581   default:
6582     llvm_unreachable("Unexpected opcode");
6583   case ISD::SHL:
6584     return RISCVISD::SLLW;
6585   case ISD::SRA:
6586     return RISCVISD::SRAW;
6587   case ISD::SRL:
6588     return RISCVISD::SRLW;
6589   case ISD::SDIV:
6590     return RISCVISD::DIVW;
6591   case ISD::UDIV:
6592     return RISCVISD::DIVUW;
6593   case ISD::UREM:
6594     return RISCVISD::REMUW;
6595   case ISD::ROTL:
6596     return RISCVISD::ROLW;
6597   case ISD::ROTR:
6598     return RISCVISD::RORW;
6599   }
6600 }
6601 
6602 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
6603 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
6604 // otherwise be promoted to i64, making it difficult to select the
6605 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
6606 // type i8/i16/i32 is lost.
6607 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
6608                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
6609   SDLoc DL(N);
6610   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6611   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
6612   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
6613   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6614   // ReplaceNodeResults requires we maintain the same type for the return value.
6615   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6616 }
6617 
6618 // Converts the given 32-bit operation to a i64 operation with signed extension
6619 // semantic to reduce the signed extension instructions.
6620 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
6621   SDLoc DL(N);
6622   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6623   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6624   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
6625   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6626                                DAG.getValueType(MVT::i32));
6627   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
6628 }
6629 
6630 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
6631                                              SmallVectorImpl<SDValue> &Results,
6632                                              SelectionDAG &DAG) const {
6633   SDLoc DL(N);
6634   switch (N->getOpcode()) {
6635   default:
6636     llvm_unreachable("Don't know how to custom type legalize this operation!");
6637   case ISD::STRICT_FP_TO_SINT:
6638   case ISD::STRICT_FP_TO_UINT:
6639   case ISD::FP_TO_SINT:
6640   case ISD::FP_TO_UINT: {
6641     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6642            "Unexpected custom legalisation");
6643     bool IsStrict = N->isStrictFPOpcode();
6644     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
6645                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
6646     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
6647     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
6648         TargetLowering::TypeSoftenFloat) {
6649       if (!isTypeLegal(Op0.getValueType()))
6650         return;
6651       if (IsStrict) {
6652         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
6653                                 : RISCVISD::STRICT_FCVT_WU_RV64;
6654         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
6655         SDValue Res = DAG.getNode(
6656             Opc, DL, VTs, N->getOperand(0), Op0,
6657             DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6658         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6659         Results.push_back(Res.getValue(1));
6660         return;
6661       }
6662       unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
6663       SDValue Res =
6664           DAG.getNode(Opc, DL, MVT::i64, Op0,
6665                       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6666       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6667       return;
6668     }
6669     // If the FP type needs to be softened, emit a library call using the 'si'
6670     // version. If we left it to default legalization we'd end up with 'di'. If
6671     // the FP type doesn't need to be softened just let generic type
6672     // legalization promote the result type.
6673     RTLIB::Libcall LC;
6674     if (IsSigned)
6675       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
6676     else
6677       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
6678     MakeLibCallOptions CallOptions;
6679     EVT OpVT = Op0.getValueType();
6680     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
6681     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
6682     SDValue Result;
6683     std::tie(Result, Chain) =
6684         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
6685     Results.push_back(Result);
6686     if (IsStrict)
6687       Results.push_back(Chain);
6688     break;
6689   }
6690   case ISD::READCYCLECOUNTER: {
6691     assert(!Subtarget.is64Bit() &&
6692            "READCYCLECOUNTER only has custom type legalization on riscv32");
6693 
6694     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6695     SDValue RCW =
6696         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
6697 
6698     Results.push_back(
6699         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
6700     Results.push_back(RCW.getValue(2));
6701     break;
6702   }
6703   case ISD::MUL: {
6704     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
6705     unsigned XLen = Subtarget.getXLen();
6706     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
6707     if (Size > XLen) {
6708       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
6709       SDValue LHS = N->getOperand(0);
6710       SDValue RHS = N->getOperand(1);
6711       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
6712 
6713       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
6714       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
6715       // We need exactly one side to be unsigned.
6716       if (LHSIsU == RHSIsU)
6717         return;
6718 
6719       auto MakeMULPair = [&](SDValue S, SDValue U) {
6720         MVT XLenVT = Subtarget.getXLenVT();
6721         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
6722         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
6723         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
6724         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
6725         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
6726       };
6727 
6728       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
6729       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
6730 
6731       // The other operand should be signed, but still prefer MULH when
6732       // possible.
6733       if (RHSIsU && LHSIsS && !RHSIsS)
6734         Results.push_back(MakeMULPair(LHS, RHS));
6735       else if (LHSIsU && RHSIsS && !LHSIsS)
6736         Results.push_back(MakeMULPair(RHS, LHS));
6737 
6738       return;
6739     }
6740     LLVM_FALLTHROUGH;
6741   }
6742   case ISD::ADD:
6743   case ISD::SUB:
6744     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6745            "Unexpected custom legalisation");
6746     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
6747     break;
6748   case ISD::SHL:
6749   case ISD::SRA:
6750   case ISD::SRL:
6751     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6752            "Unexpected custom legalisation");
6753     if (N->getOperand(1).getOpcode() != ISD::Constant) {
6754       Results.push_back(customLegalizeToWOp(N, DAG));
6755       break;
6756     }
6757 
6758     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
6759     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
6760     // shift amount.
6761     if (N->getOpcode() == ISD::SHL) {
6762       SDLoc DL(N);
6763       SDValue NewOp0 =
6764           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6765       SDValue NewOp1 =
6766           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
6767       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
6768       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6769                                    DAG.getValueType(MVT::i32));
6770       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6771     }
6772 
6773     break;
6774   case ISD::ROTL:
6775   case ISD::ROTR:
6776     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6777            "Unexpected custom legalisation");
6778     Results.push_back(customLegalizeToWOp(N, DAG));
6779     break;
6780   case ISD::CTTZ:
6781   case ISD::CTTZ_ZERO_UNDEF:
6782   case ISD::CTLZ:
6783   case ISD::CTLZ_ZERO_UNDEF: {
6784     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6785            "Unexpected custom legalisation");
6786 
6787     SDValue NewOp0 =
6788         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6789     bool IsCTZ =
6790         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
6791     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
6792     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
6793     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6794     return;
6795   }
6796   case ISD::SDIV:
6797   case ISD::UDIV:
6798   case ISD::UREM: {
6799     MVT VT = N->getSimpleValueType(0);
6800     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
6801            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
6802            "Unexpected custom legalisation");
6803     // Don't promote division/remainder by constant since we should expand those
6804     // to multiply by magic constant.
6805     // FIXME: What if the expansion is disabled for minsize.
6806     if (N->getOperand(1).getOpcode() == ISD::Constant)
6807       return;
6808 
6809     // If the input is i32, use ANY_EXTEND since the W instructions don't read
6810     // the upper 32 bits. For other types we need to sign or zero extend
6811     // based on the opcode.
6812     unsigned ExtOpc = ISD::ANY_EXTEND;
6813     if (VT != MVT::i32)
6814       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
6815                                            : ISD::ZERO_EXTEND;
6816 
6817     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
6818     break;
6819   }
6820   case ISD::UADDO:
6821   case ISD::USUBO: {
6822     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6823            "Unexpected custom legalisation");
6824     bool IsAdd = N->getOpcode() == ISD::UADDO;
6825     // Create an ADDW or SUBW.
6826     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6827     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6828     SDValue Res =
6829         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
6830     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
6831                       DAG.getValueType(MVT::i32));
6832 
6833     SDValue Overflow;
6834     if (IsAdd && isOneConstant(RHS)) {
6835       // Special case uaddo X, 1 overflowed if the addition result is 0.
6836       // FIXME: We can do this for any constant RHS by using (X + C) < C.
6837       Overflow = DAG.getSetCC(DL, N->getValueType(1), Res,
6838                               DAG.getConstant(0, DL, MVT::i64), ISD::SETEQ);
6839     } else {
6840       // Sign extend the LHS and perform an unsigned compare with the ADDW
6841       // result. Since the inputs are sign extended from i32, this is equivalent
6842       // to comparing the lower 32 bits.
6843       LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6844       Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
6845                               IsAdd ? ISD::SETULT : ISD::SETUGT);
6846     }
6847 
6848     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6849     Results.push_back(Overflow);
6850     return;
6851   }
6852   case ISD::UADDSAT:
6853   case ISD::USUBSAT: {
6854     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6855            "Unexpected custom legalisation");
6856     if (Subtarget.hasStdExtZbb()) {
6857       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
6858       // sign extend allows overflow of the lower 32 bits to be detected on
6859       // the promoted size.
6860       SDValue LHS =
6861           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6862       SDValue RHS =
6863           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
6864       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
6865       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6866       return;
6867     }
6868 
6869     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
6870     // promotion for UADDO/USUBO.
6871     Results.push_back(expandAddSubSat(N, DAG));
6872     return;
6873   }
6874   case ISD::ABS: {
6875     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6876            "Unexpected custom legalisation");
6877           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6878 
6879     // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y)
6880 
6881     SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6882 
6883     // Freeze the source so we can increase it's use count.
6884     Src = DAG.getFreeze(Src);
6885 
6886     // Copy sign bit to all bits using the sraiw pattern.
6887     SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src,
6888                                    DAG.getValueType(MVT::i32));
6889     SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill,
6890                            DAG.getConstant(31, DL, MVT::i64));
6891 
6892     SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill);
6893     NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill);
6894 
6895     // NOTE: The result is only required to be anyextended, but sext is
6896     // consistent with type legalization of sub.
6897     NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes,
6898                          DAG.getValueType(MVT::i32));
6899     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6900     return;
6901   }
6902   case ISD::BITCAST: {
6903     EVT VT = N->getValueType(0);
6904     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
6905     SDValue Op0 = N->getOperand(0);
6906     EVT Op0VT = Op0.getValueType();
6907     MVT XLenVT = Subtarget.getXLenVT();
6908     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
6909       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
6910       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
6911     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
6912                Subtarget.hasStdExtF()) {
6913       SDValue FPConv =
6914           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
6915       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
6916     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
6917                isTypeLegal(Op0VT)) {
6918       // Custom-legalize bitcasts from fixed-length vector types to illegal
6919       // scalar types in order to improve codegen. Bitcast the vector to a
6920       // one-element vector type whose element type is the same as the result
6921       // type, and extract the first element.
6922       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
6923       if (isTypeLegal(BVT)) {
6924         SDValue BVec = DAG.getBitcast(BVT, Op0);
6925         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
6926                                       DAG.getConstant(0, DL, XLenVT)));
6927       }
6928     }
6929     break;
6930   }
6931   case RISCVISD::GREV:
6932   case RISCVISD::GORC:
6933   case RISCVISD::SHFL: {
6934     MVT VT = N->getSimpleValueType(0);
6935     MVT XLenVT = Subtarget.getXLenVT();
6936     assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
6937            "Unexpected custom legalisation");
6938     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6939     assert((Subtarget.hasStdExtZbp() ||
6940             (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV &&
6941              N->getConstantOperandVal(1) == 7)) &&
6942            "Unexpected extension");
6943     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
6944     SDValue NewOp1 =
6945         DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1));
6946     SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1);
6947     // ReplaceNodeResults requires we maintain the same type for the return
6948     // value.
6949     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes));
6950     break;
6951   }
6952   case ISD::BSWAP:
6953   case ISD::BITREVERSE: {
6954     MVT VT = N->getSimpleValueType(0);
6955     MVT XLenVT = Subtarget.getXLenVT();
6956     assert((VT == MVT::i8 || VT == MVT::i16 ||
6957             (VT == MVT::i32 && Subtarget.is64Bit())) &&
6958            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
6959     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
6960     unsigned Imm = VT.getSizeInBits() - 1;
6961     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
6962     if (N->getOpcode() == ISD::BSWAP)
6963       Imm &= ~0x7U;
6964     SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0,
6965                                 DAG.getConstant(Imm, DL, XLenVT));
6966     // ReplaceNodeResults requires we maintain the same type for the return
6967     // value.
6968     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
6969     break;
6970   }
6971   case ISD::FSHL:
6972   case ISD::FSHR: {
6973     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6974            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
6975     SDValue NewOp0 =
6976         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6977     SDValue NewOp1 =
6978         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6979     SDValue NewShAmt =
6980         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6981     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
6982     // Mask the shift amount to 5 bits to prevent accidentally setting bit 5.
6983     NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt,
6984                            DAG.getConstant(0x1f, DL, MVT::i64));
6985     // fshl and fshr concatenate their operands in the same order. fsrw and fslw
6986     // instruction use different orders. fshl will return its first operand for
6987     // shift of zero, fshr will return its second operand. fsl and fsr both
6988     // return rs1 so the ISD nodes need to have different operand orders.
6989     // Shift amount is in rs2.
6990     unsigned Opc = RISCVISD::FSLW;
6991     if (N->getOpcode() == ISD::FSHR) {
6992       std::swap(NewOp0, NewOp1);
6993       Opc = RISCVISD::FSRW;
6994     }
6995     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt);
6996     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
6997     break;
6998   }
6999   case ISD::EXTRACT_VECTOR_ELT: {
7000     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
7001     // type is illegal (currently only vXi64 RV32).
7002     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
7003     // transferred to the destination register. We issue two of these from the
7004     // upper- and lower- halves of the SEW-bit vector element, slid down to the
7005     // first element.
7006     SDValue Vec = N->getOperand(0);
7007     SDValue Idx = N->getOperand(1);
7008 
7009     // The vector type hasn't been legalized yet so we can't issue target
7010     // specific nodes if it needs legalization.
7011     // FIXME: We would manually legalize if it's important.
7012     if (!isTypeLegal(Vec.getValueType()))
7013       return;
7014 
7015     MVT VecVT = Vec.getSimpleValueType();
7016 
7017     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
7018            VecVT.getVectorElementType() == MVT::i64 &&
7019            "Unexpected EXTRACT_VECTOR_ELT legalization");
7020 
7021     // If this is a fixed vector, we need to convert it to a scalable vector.
7022     MVT ContainerVT = VecVT;
7023     if (VecVT.isFixedLengthVector()) {
7024       ContainerVT = getContainerForFixedLengthVector(VecVT);
7025       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
7026     }
7027 
7028     MVT XLenVT = Subtarget.getXLenVT();
7029 
7030     // Use a VL of 1 to avoid processing more elements than we need.
7031     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
7032     SDValue VL = DAG.getConstant(1, DL, XLenVT);
7033     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
7034 
7035     // Unless the index is known to be 0, we must slide the vector down to get
7036     // the desired element into index 0.
7037     if (!isNullConstant(Idx)) {
7038       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
7039                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
7040     }
7041 
7042     // Extract the lower XLEN bits of the correct vector element.
7043     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7044 
7045     // To extract the upper XLEN bits of the vector element, shift the first
7046     // element right by 32 bits and re-extract the lower XLEN bits.
7047     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
7048                                      DAG.getUNDEF(ContainerVT),
7049                                      DAG.getConstant(32, DL, XLenVT), VL);
7050     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
7051                                  ThirtyTwoV, Mask, VL);
7052 
7053     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7054 
7055     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7056     break;
7057   }
7058   case ISD::INTRINSIC_WO_CHAIN: {
7059     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
7060     switch (IntNo) {
7061     default:
7062       llvm_unreachable(
7063           "Don't know how to custom type legalize this intrinsic!");
7064     case Intrinsic::riscv_grev:
7065     case Intrinsic::riscv_gorc: {
7066       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7067              "Unexpected custom legalisation");
7068       SDValue NewOp1 =
7069           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7070       SDValue NewOp2 =
7071           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7072       unsigned Opc =
7073           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
7074       // If the control is a constant, promote the node by clearing any extra
7075       // bits bits in the control. isel will form greviw/gorciw if the result is
7076       // sign extended.
7077       if (isa<ConstantSDNode>(NewOp2)) {
7078         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7079                              DAG.getConstant(0x1f, DL, MVT::i64));
7080         Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
7081       }
7082       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7083       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7084       break;
7085     }
7086     case Intrinsic::riscv_bcompress:
7087     case Intrinsic::riscv_bdecompress:
7088     case Intrinsic::riscv_bfp: {
7089       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7090              "Unexpected custom legalisation");
7091       Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo));
7092       break;
7093     }
7094     case Intrinsic::riscv_fsl:
7095     case Intrinsic::riscv_fsr: {
7096       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7097              "Unexpected custom legalisation");
7098       SDValue NewOp1 =
7099           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7100       SDValue NewOp2 =
7101           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7102       SDValue NewOp3 =
7103           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3));
7104       unsigned Opc = getRISCVWOpcodeByIntr(IntNo);
7105       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3);
7106       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7107       break;
7108     }
7109     case Intrinsic::riscv_orc_b: {
7110       // Lower to the GORCI encoding for orc.b with the operand extended.
7111       SDValue NewOp =
7112           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7113       SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp,
7114                                 DAG.getConstant(7, DL, MVT::i64));
7115       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7116       return;
7117     }
7118     case Intrinsic::riscv_shfl:
7119     case Intrinsic::riscv_unshfl: {
7120       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7121              "Unexpected custom legalisation");
7122       SDValue NewOp1 =
7123           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7124       SDValue NewOp2 =
7125           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7126       unsigned Opc =
7127           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
7128       // There is no (UN)SHFLIW. If the control word is a constant, we can use
7129       // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half
7130       // will be shuffled the same way as the lower 32 bit half, but the two
7131       // halves won't cross.
7132       if (isa<ConstantSDNode>(NewOp2)) {
7133         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7134                              DAG.getConstant(0xf, DL, MVT::i64));
7135         Opc =
7136             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
7137       }
7138       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7139       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7140       break;
7141     }
7142     case Intrinsic::riscv_vmv_x_s: {
7143       EVT VT = N->getValueType(0);
7144       MVT XLenVT = Subtarget.getXLenVT();
7145       if (VT.bitsLT(XLenVT)) {
7146         // Simple case just extract using vmv.x.s and truncate.
7147         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
7148                                       Subtarget.getXLenVT(), N->getOperand(1));
7149         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
7150         return;
7151       }
7152 
7153       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
7154              "Unexpected custom legalization");
7155 
7156       // We need to do the move in two steps.
7157       SDValue Vec = N->getOperand(1);
7158       MVT VecVT = Vec.getSimpleValueType();
7159 
7160       // First extract the lower XLEN bits of the element.
7161       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7162 
7163       // To extract the upper XLEN bits of the vector element, shift the first
7164       // element right by 32 bits and re-extract the lower XLEN bits.
7165       SDValue VL = DAG.getConstant(1, DL, XLenVT);
7166       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
7167       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
7168       SDValue ThirtyTwoV =
7169           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
7170                       DAG.getConstant(32, DL, XLenVT), VL);
7171       SDValue LShr32 =
7172           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
7173       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7174 
7175       Results.push_back(
7176           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7177       break;
7178     }
7179     }
7180     break;
7181   }
7182   case ISD::VECREDUCE_ADD:
7183   case ISD::VECREDUCE_AND:
7184   case ISD::VECREDUCE_OR:
7185   case ISD::VECREDUCE_XOR:
7186   case ISD::VECREDUCE_SMAX:
7187   case ISD::VECREDUCE_UMAX:
7188   case ISD::VECREDUCE_SMIN:
7189   case ISD::VECREDUCE_UMIN:
7190     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
7191       Results.push_back(V);
7192     break;
7193   case ISD::VP_REDUCE_ADD:
7194   case ISD::VP_REDUCE_AND:
7195   case ISD::VP_REDUCE_OR:
7196   case ISD::VP_REDUCE_XOR:
7197   case ISD::VP_REDUCE_SMAX:
7198   case ISD::VP_REDUCE_UMAX:
7199   case ISD::VP_REDUCE_SMIN:
7200   case ISD::VP_REDUCE_UMIN:
7201     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
7202       Results.push_back(V);
7203     break;
7204   case ISD::FLT_ROUNDS_: {
7205     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
7206     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
7207     Results.push_back(Res.getValue(0));
7208     Results.push_back(Res.getValue(1));
7209     break;
7210   }
7211   }
7212 }
7213 
7214 // A structure to hold one of the bit-manipulation patterns below. Together, a
7215 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
7216 //   (or (and (shl x, 1), 0xAAAAAAAA),
7217 //       (and (srl x, 1), 0x55555555))
7218 struct RISCVBitmanipPat {
7219   SDValue Op;
7220   unsigned ShAmt;
7221   bool IsSHL;
7222 
7223   bool formsPairWith(const RISCVBitmanipPat &Other) const {
7224     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
7225   }
7226 };
7227 
7228 // Matches patterns of the form
7229 //   (and (shl x, C2), (C1 << C2))
7230 //   (and (srl x, C2), C1)
7231 //   (shl (and x, C1), C2)
7232 //   (srl (and x, (C1 << C2)), C2)
7233 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
7234 // The expected masks for each shift amount are specified in BitmanipMasks where
7235 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
7236 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
7237 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
7238 // XLen is 64.
7239 static Optional<RISCVBitmanipPat>
7240 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
7241   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
7242          "Unexpected number of masks");
7243   Optional<uint64_t> Mask;
7244   // Optionally consume a mask around the shift operation.
7245   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
7246     Mask = Op.getConstantOperandVal(1);
7247     Op = Op.getOperand(0);
7248   }
7249   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
7250     return None;
7251   bool IsSHL = Op.getOpcode() == ISD::SHL;
7252 
7253   if (!isa<ConstantSDNode>(Op.getOperand(1)))
7254     return None;
7255   uint64_t ShAmt = Op.getConstantOperandVal(1);
7256 
7257   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7258   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
7259     return None;
7260   // If we don't have enough masks for 64 bit, then we must be trying to
7261   // match SHFL so we're only allowed to shift 1/4 of the width.
7262   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
7263     return None;
7264 
7265   SDValue Src = Op.getOperand(0);
7266 
7267   // The expected mask is shifted left when the AND is found around SHL
7268   // patterns.
7269   //   ((x >> 1) & 0x55555555)
7270   //   ((x << 1) & 0xAAAAAAAA)
7271   bool SHLExpMask = IsSHL;
7272 
7273   if (!Mask) {
7274     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
7275     // the mask is all ones: consume that now.
7276     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
7277       Mask = Src.getConstantOperandVal(1);
7278       Src = Src.getOperand(0);
7279       // The expected mask is now in fact shifted left for SRL, so reverse the
7280       // decision.
7281       //   ((x & 0xAAAAAAAA) >> 1)
7282       //   ((x & 0x55555555) << 1)
7283       SHLExpMask = !SHLExpMask;
7284     } else {
7285       // Use a default shifted mask of all-ones if there's no AND, truncated
7286       // down to the expected width. This simplifies the logic later on.
7287       Mask = maskTrailingOnes<uint64_t>(Width);
7288       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
7289     }
7290   }
7291 
7292   unsigned MaskIdx = Log2_32(ShAmt);
7293   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7294 
7295   if (SHLExpMask)
7296     ExpMask <<= ShAmt;
7297 
7298   if (Mask != ExpMask)
7299     return None;
7300 
7301   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
7302 }
7303 
7304 // Matches any of the following bit-manipulation patterns:
7305 //   (and (shl x, 1), (0x55555555 << 1))
7306 //   (and (srl x, 1), 0x55555555)
7307 //   (shl (and x, 0x55555555), 1)
7308 //   (srl (and x, (0x55555555 << 1)), 1)
7309 // where the shift amount and mask may vary thus:
7310 //   [1]  = 0x55555555 / 0xAAAAAAAA
7311 //   [2]  = 0x33333333 / 0xCCCCCCCC
7312 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
7313 //   [8]  = 0x00FF00FF / 0xFF00FF00
7314 //   [16] = 0x0000FFFF / 0xFFFFFFFF
7315 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
7316 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
7317   // These are the unshifted masks which we use to match bit-manipulation
7318   // patterns. They may be shifted left in certain circumstances.
7319   static const uint64_t BitmanipMasks[] = {
7320       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
7321       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
7322 
7323   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7324 }
7325 
7326 // Match the following pattern as a GREVI(W) operation
7327 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
7328 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
7329                                const RISCVSubtarget &Subtarget) {
7330   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7331   EVT VT = Op.getValueType();
7332 
7333   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7334     auto LHS = matchGREVIPat(Op.getOperand(0));
7335     auto RHS = matchGREVIPat(Op.getOperand(1));
7336     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
7337       SDLoc DL(Op);
7338       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
7339                          DAG.getConstant(LHS->ShAmt, DL, VT));
7340     }
7341   }
7342   return SDValue();
7343 }
7344 
7345 // Matches any the following pattern as a GORCI(W) operation
7346 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
7347 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
7348 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
7349 // Note that with the variant of 3.,
7350 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
7351 // the inner pattern will first be matched as GREVI and then the outer
7352 // pattern will be matched to GORC via the first rule above.
7353 // 4.  (or (rotl/rotr x, bitwidth/2), x)
7354 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
7355                                const RISCVSubtarget &Subtarget) {
7356   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7357   EVT VT = Op.getValueType();
7358 
7359   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7360     SDLoc DL(Op);
7361     SDValue Op0 = Op.getOperand(0);
7362     SDValue Op1 = Op.getOperand(1);
7363 
7364     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
7365       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
7366           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
7367           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
7368         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
7369       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
7370       if ((Reverse.getOpcode() == ISD::ROTL ||
7371            Reverse.getOpcode() == ISD::ROTR) &&
7372           Reverse.getOperand(0) == X &&
7373           isa<ConstantSDNode>(Reverse.getOperand(1))) {
7374         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
7375         if (RotAmt == (VT.getSizeInBits() / 2))
7376           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
7377                              DAG.getConstant(RotAmt, DL, VT));
7378       }
7379       return SDValue();
7380     };
7381 
7382     // Check for either commutable permutation of (or (GREVI x, shamt), x)
7383     if (SDValue V = MatchOROfReverse(Op0, Op1))
7384       return V;
7385     if (SDValue V = MatchOROfReverse(Op1, Op0))
7386       return V;
7387 
7388     // OR is commutable so canonicalize its OR operand to the left
7389     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
7390       std::swap(Op0, Op1);
7391     if (Op0.getOpcode() != ISD::OR)
7392       return SDValue();
7393     SDValue OrOp0 = Op0.getOperand(0);
7394     SDValue OrOp1 = Op0.getOperand(1);
7395     auto LHS = matchGREVIPat(OrOp0);
7396     // OR is commutable so swap the operands and try again: x might have been
7397     // on the left
7398     if (!LHS) {
7399       std::swap(OrOp0, OrOp1);
7400       LHS = matchGREVIPat(OrOp0);
7401     }
7402     auto RHS = matchGREVIPat(Op1);
7403     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
7404       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
7405                          DAG.getConstant(LHS->ShAmt, DL, VT));
7406     }
7407   }
7408   return SDValue();
7409 }
7410 
7411 // Matches any of the following bit-manipulation patterns:
7412 //   (and (shl x, 1), (0x22222222 << 1))
7413 //   (and (srl x, 1), 0x22222222)
7414 //   (shl (and x, 0x22222222), 1)
7415 //   (srl (and x, (0x22222222 << 1)), 1)
7416 // where the shift amount and mask may vary thus:
7417 //   [1]  = 0x22222222 / 0x44444444
7418 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
7419 //   [4]  = 0x00F000F0 / 0x0F000F00
7420 //   [8]  = 0x0000FF00 / 0x00FF0000
7421 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
7422 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
7423   // These are the unshifted masks which we use to match bit-manipulation
7424   // patterns. They may be shifted left in certain circumstances.
7425   static const uint64_t BitmanipMasks[] = {
7426       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
7427       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
7428 
7429   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7430 }
7431 
7432 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
7433 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
7434                                const RISCVSubtarget &Subtarget) {
7435   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7436   EVT VT = Op.getValueType();
7437 
7438   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
7439     return SDValue();
7440 
7441   SDValue Op0 = Op.getOperand(0);
7442   SDValue Op1 = Op.getOperand(1);
7443 
7444   // Or is commutable so canonicalize the second OR to the LHS.
7445   if (Op0.getOpcode() != ISD::OR)
7446     std::swap(Op0, Op1);
7447   if (Op0.getOpcode() != ISD::OR)
7448     return SDValue();
7449 
7450   // We found an inner OR, so our operands are the operands of the inner OR
7451   // and the other operand of the outer OR.
7452   SDValue A = Op0.getOperand(0);
7453   SDValue B = Op0.getOperand(1);
7454   SDValue C = Op1;
7455 
7456   auto Match1 = matchSHFLPat(A);
7457   auto Match2 = matchSHFLPat(B);
7458 
7459   // If neither matched, we failed.
7460   if (!Match1 && !Match2)
7461     return SDValue();
7462 
7463   // We had at least one match. if one failed, try the remaining C operand.
7464   if (!Match1) {
7465     std::swap(A, C);
7466     Match1 = matchSHFLPat(A);
7467     if (!Match1)
7468       return SDValue();
7469   } else if (!Match2) {
7470     std::swap(B, C);
7471     Match2 = matchSHFLPat(B);
7472     if (!Match2)
7473       return SDValue();
7474   }
7475   assert(Match1 && Match2);
7476 
7477   // Make sure our matches pair up.
7478   if (!Match1->formsPairWith(*Match2))
7479     return SDValue();
7480 
7481   // All the remains is to make sure C is an AND with the same input, that masks
7482   // out the bits that are being shuffled.
7483   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
7484       C.getOperand(0) != Match1->Op)
7485     return SDValue();
7486 
7487   uint64_t Mask = C.getConstantOperandVal(1);
7488 
7489   static const uint64_t BitmanipMasks[] = {
7490       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
7491       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
7492   };
7493 
7494   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7495   unsigned MaskIdx = Log2_32(Match1->ShAmt);
7496   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7497 
7498   if (Mask != ExpMask)
7499     return SDValue();
7500 
7501   SDLoc DL(Op);
7502   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
7503                      DAG.getConstant(Match1->ShAmt, DL, VT));
7504 }
7505 
7506 // Optimize (add (shl x, c0), (shl y, c1)) ->
7507 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
7508 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
7509                                   const RISCVSubtarget &Subtarget) {
7510   // Perform this optimization only in the zba extension.
7511   if (!Subtarget.hasStdExtZba())
7512     return SDValue();
7513 
7514   // Skip for vector types and larger types.
7515   EVT VT = N->getValueType(0);
7516   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7517     return SDValue();
7518 
7519   // The two operand nodes must be SHL and have no other use.
7520   SDValue N0 = N->getOperand(0);
7521   SDValue N1 = N->getOperand(1);
7522   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
7523       !N0->hasOneUse() || !N1->hasOneUse())
7524     return SDValue();
7525 
7526   // Check c0 and c1.
7527   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7528   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
7529   if (!N0C || !N1C)
7530     return SDValue();
7531   int64_t C0 = N0C->getSExtValue();
7532   int64_t C1 = N1C->getSExtValue();
7533   if (C0 <= 0 || C1 <= 0)
7534     return SDValue();
7535 
7536   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
7537   int64_t Bits = std::min(C0, C1);
7538   int64_t Diff = std::abs(C0 - C1);
7539   if (Diff != 1 && Diff != 2 && Diff != 3)
7540     return SDValue();
7541 
7542   // Build nodes.
7543   SDLoc DL(N);
7544   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
7545   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
7546   SDValue NA0 =
7547       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
7548   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
7549   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
7550 }
7551 
7552 // Combine
7553 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7554 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7555 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7556 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7557 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7558 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7559 // The grev patterns represents BSWAP.
7560 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB
7561 // off the grev.
7562 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG,
7563                                           const RISCVSubtarget &Subtarget) {
7564   bool IsWInstruction =
7565       N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW;
7566   assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL ||
7567           IsWInstruction) &&
7568          "Unexpected opcode!");
7569   SDValue Src = N->getOperand(0);
7570   EVT VT = N->getValueType(0);
7571   SDLoc DL(N);
7572 
7573   if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV)
7574     return SDValue();
7575 
7576   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7577       !isa<ConstantSDNode>(Src.getOperand(1)))
7578     return SDValue();
7579 
7580   unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits();
7581   assert(isPowerOf2_32(BitWidth) && "Expected a power of 2");
7582 
7583   // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for
7584   // RORW/ROLW. And the grev should be the encoding for bswap for this width.
7585   unsigned ShAmt1 = N->getConstantOperandVal(1);
7586   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7587   if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8))
7588     return SDValue();
7589 
7590   Src = Src.getOperand(0);
7591 
7592   // Toggle bit the MSB of the shift.
7593   unsigned CombinedShAmt = ShAmt1 ^ ShAmt2;
7594   if (CombinedShAmt == 0)
7595     return Src;
7596 
7597   SDValue Res = DAG.getNode(
7598       RISCVISD::GREV, DL, VT, Src,
7599       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7600   if (!IsWInstruction)
7601     return Res;
7602 
7603   // Sign extend the result to match the behavior of the rotate. This will be
7604   // selected to GREVIW in isel.
7605   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res,
7606                      DAG.getValueType(MVT::i32));
7607 }
7608 
7609 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
7610 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
7611 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
7612 // not undo itself, but they are redundant.
7613 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
7614   bool IsGORC = N->getOpcode() == RISCVISD::GORC;
7615   assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode");
7616   SDValue Src = N->getOperand(0);
7617 
7618   if (Src.getOpcode() != N->getOpcode())
7619     return SDValue();
7620 
7621   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7622       !isa<ConstantSDNode>(Src.getOperand(1)))
7623     return SDValue();
7624 
7625   unsigned ShAmt1 = N->getConstantOperandVal(1);
7626   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7627   Src = Src.getOperand(0);
7628 
7629   unsigned CombinedShAmt;
7630   if (IsGORC)
7631     CombinedShAmt = ShAmt1 | ShAmt2;
7632   else
7633     CombinedShAmt = ShAmt1 ^ ShAmt2;
7634 
7635   if (CombinedShAmt == 0)
7636     return Src;
7637 
7638   SDLoc DL(N);
7639   return DAG.getNode(
7640       N->getOpcode(), DL, N->getValueType(0), Src,
7641       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7642 }
7643 
7644 // Combine a constant select operand into its use:
7645 //
7646 // (and (select cond, -1, c), x)
7647 //   -> (select cond, x, (and x, c))  [AllOnes=1]
7648 // (or  (select cond, 0, c), x)
7649 //   -> (select cond, x, (or x, c))  [AllOnes=0]
7650 // (xor (select cond, 0, c), x)
7651 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
7652 // (add (select cond, 0, c), x)
7653 //   -> (select cond, x, (add x, c))  [AllOnes=0]
7654 // (sub x, (select cond, 0, c))
7655 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
7656 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7657                                    SelectionDAG &DAG, bool AllOnes) {
7658   EVT VT = N->getValueType(0);
7659 
7660   // Skip vectors.
7661   if (VT.isVector())
7662     return SDValue();
7663 
7664   if ((Slct.getOpcode() != ISD::SELECT &&
7665        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
7666       !Slct.hasOneUse())
7667     return SDValue();
7668 
7669   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
7670     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
7671   };
7672 
7673   bool SwapSelectOps;
7674   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
7675   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
7676   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
7677   SDValue NonConstantVal;
7678   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
7679     SwapSelectOps = false;
7680     NonConstantVal = FalseVal;
7681   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
7682     SwapSelectOps = true;
7683     NonConstantVal = TrueVal;
7684   } else
7685     return SDValue();
7686 
7687   // Slct is now know to be the desired identity constant when CC is true.
7688   TrueVal = OtherOp;
7689   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
7690   // Unless SwapSelectOps says the condition should be false.
7691   if (SwapSelectOps)
7692     std::swap(TrueVal, FalseVal);
7693 
7694   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
7695     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
7696                        {Slct.getOperand(0), Slct.getOperand(1),
7697                         Slct.getOperand(2), TrueVal, FalseVal});
7698 
7699   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
7700                      {Slct.getOperand(0), TrueVal, FalseVal});
7701 }
7702 
7703 // Attempt combineSelectAndUse on each operand of a commutative operator N.
7704 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
7705                                               bool AllOnes) {
7706   SDValue N0 = N->getOperand(0);
7707   SDValue N1 = N->getOperand(1);
7708   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
7709     return Result;
7710   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
7711     return Result;
7712   return SDValue();
7713 }
7714 
7715 // Transform (add (mul x, c0), c1) ->
7716 //           (add (mul (add x, c1/c0), c0), c1%c0).
7717 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
7718 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
7719 // to an infinite loop in DAGCombine if transformed.
7720 // Or transform (add (mul x, c0), c1) ->
7721 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
7722 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
7723 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
7724 // lead to an infinite loop in DAGCombine if transformed.
7725 // Or transform (add (mul x, c0), c1) ->
7726 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
7727 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
7728 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
7729 // lead to an infinite loop in DAGCombine if transformed.
7730 // Or transform (add (mul x, c0), c1) ->
7731 //              (mul (add x, c1/c0), c0).
7732 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
7733 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
7734                                      const RISCVSubtarget &Subtarget) {
7735   // Skip for vector types and larger types.
7736   EVT VT = N->getValueType(0);
7737   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7738     return SDValue();
7739   // The first operand node must be a MUL and has no other use.
7740   SDValue N0 = N->getOperand(0);
7741   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
7742     return SDValue();
7743   // Check if c0 and c1 match above conditions.
7744   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7745   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
7746   if (!N0C || !N1C)
7747     return SDValue();
7748   // If N0C has multiple uses it's possible one of the cases in
7749   // DAGCombiner::isMulAddWithConstProfitable will be true, which would result
7750   // in an infinite loop.
7751   if (!N0C->hasOneUse())
7752     return SDValue();
7753   int64_t C0 = N0C->getSExtValue();
7754   int64_t C1 = N1C->getSExtValue();
7755   int64_t CA, CB;
7756   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
7757     return SDValue();
7758   // Search for proper CA (non-zero) and CB that both are simm12.
7759   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
7760       !isInt<12>(C0 * (C1 / C0))) {
7761     CA = C1 / C0;
7762     CB = C1 % C0;
7763   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
7764              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
7765     CA = C1 / C0 + 1;
7766     CB = C1 % C0 - C0;
7767   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
7768              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
7769     CA = C1 / C0 - 1;
7770     CB = C1 % C0 + C0;
7771   } else
7772     return SDValue();
7773   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
7774   SDLoc DL(N);
7775   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
7776                              DAG.getConstant(CA, DL, VT));
7777   SDValue New1 =
7778       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
7779   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
7780 }
7781 
7782 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
7783                                  const RISCVSubtarget &Subtarget) {
7784   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
7785     return V;
7786   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
7787     return V;
7788   // fold (add (select lhs, rhs, cc, 0, y), x) ->
7789   //      (select lhs, rhs, cc, x, (add x, y))
7790   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7791 }
7792 
7793 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
7794   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
7795   //      (select lhs, rhs, cc, x, (sub x, y))
7796   SDValue N0 = N->getOperand(0);
7797   SDValue N1 = N->getOperand(1);
7798   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
7799 }
7800 
7801 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) {
7802   // fold (and (select lhs, rhs, cc, -1, y), x) ->
7803   //      (select lhs, rhs, cc, x, (and x, y))
7804   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
7805 }
7806 
7807 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
7808                                 const RISCVSubtarget &Subtarget) {
7809   if (Subtarget.hasStdExtZbp()) {
7810     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
7811       return GREV;
7812     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
7813       return GORC;
7814     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
7815       return SHFL;
7816   }
7817 
7818   // fold (or (select cond, 0, y), x) ->
7819   //      (select cond, x, (or x, y))
7820   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7821 }
7822 
7823 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
7824   // fold (xor (select cond, 0, y), x) ->
7825   //      (select cond, x, (xor x, y))
7826   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7827 }
7828 
7829 static SDValue
7830 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
7831                                 const RISCVSubtarget &Subtarget) {
7832   SDValue Src = N->getOperand(0);
7833   EVT VT = N->getValueType(0);
7834 
7835   // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X)
7836   if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
7837       cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16))
7838     return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT,
7839                        Src.getOperand(0));
7840 
7841   // Fold (i64 (sext_inreg (abs X), i32)) ->
7842   // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits.
7843   // The (sext_inreg (neg X), i32) will be selected to negw by isel. This
7844   // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user
7845   // of the (i32 (abs X)) is a sext or setcc or something else that causes type
7846   // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have
7847   // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg
7848   // may get combined into an earlier operation so we need to use
7849   // ComputeNumSignBits.
7850   // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for
7851   // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so
7852   // we can't assume that X has 33 sign bits. We must check.
7853   if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() &&
7854       Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 &&
7855       cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 &&
7856       DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) {
7857     SDLoc DL(N);
7858     SDValue Freeze = DAG.getFreeze(Src.getOperand(0));
7859     SDValue Neg =
7860         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze);
7861     Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg,
7862                       DAG.getValueType(MVT::i32));
7863     return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg);
7864   }
7865 
7866   return SDValue();
7867 }
7868 
7869 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to
7870 // vwadd(u).vv/vx or vwsub(u).vv/vx.
7871 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG,
7872                                              bool Commute = false) {
7873   assert((N->getOpcode() == RISCVISD::ADD_VL ||
7874           N->getOpcode() == RISCVISD::SUB_VL) &&
7875          "Unexpected opcode");
7876   bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL;
7877   SDValue Op0 = N->getOperand(0);
7878   SDValue Op1 = N->getOperand(1);
7879   if (Commute)
7880     std::swap(Op0, Op1);
7881 
7882   MVT VT = N->getSimpleValueType(0);
7883 
7884   // Determine the narrow size for a widening add/sub.
7885   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
7886   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
7887                                   VT.getVectorElementCount());
7888 
7889   SDValue Mask = N->getOperand(2);
7890   SDValue VL = N->getOperand(3);
7891 
7892   SDLoc DL(N);
7893 
7894   // If the RHS is a sext or zext, we can form a widening op.
7895   if ((Op1.getOpcode() == RISCVISD::VZEXT_VL ||
7896        Op1.getOpcode() == RISCVISD::VSEXT_VL) &&
7897       Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) {
7898     unsigned ExtOpc = Op1.getOpcode();
7899     Op1 = Op1.getOperand(0);
7900     // Re-introduce narrower extends if needed.
7901     if (Op1.getValueType() != NarrowVT)
7902       Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
7903 
7904     unsigned WOpc;
7905     if (ExtOpc == RISCVISD::VSEXT_VL)
7906       WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL;
7907     else
7908       WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL;
7909 
7910     return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL);
7911   }
7912 
7913   // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar
7914   // sext/zext?
7915 
7916   return SDValue();
7917 }
7918 
7919 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or
7920 // vwsub(u).vv/vx.
7921 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) {
7922   SDValue Op0 = N->getOperand(0);
7923   SDValue Op1 = N->getOperand(1);
7924   SDValue Mask = N->getOperand(2);
7925   SDValue VL = N->getOperand(3);
7926 
7927   MVT VT = N->getSimpleValueType(0);
7928   MVT NarrowVT = Op1.getSimpleValueType();
7929   unsigned NarrowSize = NarrowVT.getScalarSizeInBits();
7930 
7931   unsigned VOpc;
7932   switch (N->getOpcode()) {
7933   default: llvm_unreachable("Unexpected opcode");
7934   case RISCVISD::VWADD_W_VL:  VOpc = RISCVISD::VWADD_VL;  break;
7935   case RISCVISD::VWSUB_W_VL:  VOpc = RISCVISD::VWSUB_VL;  break;
7936   case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break;
7937   case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break;
7938   }
7939 
7940   bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL ||
7941                   N->getOpcode() == RISCVISD::VWSUB_W_VL;
7942 
7943   SDLoc DL(N);
7944 
7945   // If the LHS is a sext or zext, we can narrow this op to the same size as
7946   // the RHS.
7947   if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) ||
7948        (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) &&
7949       Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) {
7950     unsigned ExtOpc = Op0.getOpcode();
7951     Op0 = Op0.getOperand(0);
7952     // Re-introduce narrower extends if needed.
7953     if (Op0.getValueType() != NarrowVT)
7954       Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
7955     return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL);
7956   }
7957 
7958   bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL ||
7959                N->getOpcode() == RISCVISD::VWADDU_W_VL;
7960 
7961   // Look for splats on the left hand side of a vwadd(u).wv. We might be able
7962   // to commute and use a vwadd(u).vx instead.
7963   if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL &&
7964       Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) {
7965     Op0 = Op0.getOperand(1);
7966 
7967     // See if have enough sign bits or zero bits in the scalar to use a
7968     // widening add/sub by splatting to smaller element size.
7969     unsigned EltBits = VT.getScalarSizeInBits();
7970     unsigned ScalarBits = Op0.getValueSizeInBits();
7971     // Make sure we're getting all element bits from the scalar register.
7972     // FIXME: Support implicit sign extension of vmv.v.x?
7973     if (ScalarBits < EltBits)
7974       return SDValue();
7975 
7976     if (IsSigned) {
7977       if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize))
7978         return SDValue();
7979     } else {
7980       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
7981       if (!DAG.MaskedValueIsZero(Op0, Mask))
7982         return SDValue();
7983     }
7984 
7985     Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
7986                       DAG.getUNDEF(NarrowVT), Op0, VL);
7987     return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL);
7988   }
7989 
7990   return SDValue();
7991 }
7992 
7993 // Try to form VWMUL, VWMULU or VWMULSU.
7994 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op.
7995 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG,
7996                                        bool Commute) {
7997   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
7998   SDValue Op0 = N->getOperand(0);
7999   SDValue Op1 = N->getOperand(1);
8000   if (Commute)
8001     std::swap(Op0, Op1);
8002 
8003   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
8004   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
8005   bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL;
8006   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
8007     return SDValue();
8008 
8009   SDValue Mask = N->getOperand(2);
8010   SDValue VL = N->getOperand(3);
8011 
8012   // Make sure the mask and VL match.
8013   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
8014     return SDValue();
8015 
8016   MVT VT = N->getSimpleValueType(0);
8017 
8018   // Determine the narrow size for a widening multiply.
8019   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
8020   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
8021                                   VT.getVectorElementCount());
8022 
8023   SDLoc DL(N);
8024 
8025   // See if the other operand is the same opcode.
8026   if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) {
8027     if (!Op1.hasOneUse())
8028       return SDValue();
8029 
8030     // Make sure the mask and VL match.
8031     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
8032       return SDValue();
8033 
8034     Op1 = Op1.getOperand(0);
8035   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
8036     // The operand is a splat of a scalar.
8037 
8038     // The pasthru must be undef for tail agnostic
8039     if (!Op1.getOperand(0).isUndef())
8040       return SDValue();
8041     // The VL must be the same.
8042     if (Op1.getOperand(2) != VL)
8043       return SDValue();
8044 
8045     // Get the scalar value.
8046     Op1 = Op1.getOperand(1);
8047 
8048     // See if have enough sign bits or zero bits in the scalar to use a
8049     // widening multiply by splatting to smaller element size.
8050     unsigned EltBits = VT.getScalarSizeInBits();
8051     unsigned ScalarBits = Op1.getValueSizeInBits();
8052     // Make sure we're getting all element bits from the scalar register.
8053     // FIXME: Support implicit sign extension of vmv.v.x?
8054     if (ScalarBits < EltBits)
8055       return SDValue();
8056 
8057     // If the LHS is a sign extend, try to use vwmul.
8058     if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) {
8059       // Can use vwmul.
8060     } else {
8061       // Otherwise try to use vwmulu or vwmulsu.
8062       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
8063       if (DAG.MaskedValueIsZero(Op1, Mask))
8064         IsVWMULSU = IsSignExt;
8065       else
8066         return SDValue();
8067     }
8068 
8069     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
8070                       DAG.getUNDEF(NarrowVT), Op1, VL);
8071   } else
8072     return SDValue();
8073 
8074   Op0 = Op0.getOperand(0);
8075 
8076   // Re-introduce narrower extends if needed.
8077   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
8078   if (Op0.getValueType() != NarrowVT)
8079     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
8080   // vwmulsu requires second operand to be zero extended.
8081   ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc;
8082   if (Op1.getValueType() != NarrowVT)
8083     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
8084 
8085   unsigned WMulOpc = RISCVISD::VWMULSU_VL;
8086   if (!IsVWMULSU)
8087     WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
8088   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
8089 }
8090 
8091 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) {
8092   switch (Op.getOpcode()) {
8093   case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE;
8094   case ISD::FTRUNC:     return RISCVFPRndMode::RTZ;
8095   case ISD::FFLOOR:     return RISCVFPRndMode::RDN;
8096   case ISD::FCEIL:      return RISCVFPRndMode::RUP;
8097   case ISD::FROUND:     return RISCVFPRndMode::RMM;
8098   }
8099 
8100   return RISCVFPRndMode::Invalid;
8101 }
8102 
8103 // Fold
8104 //   (fp_to_int (froundeven X)) -> fcvt X, rne
8105 //   (fp_to_int (ftrunc X))     -> fcvt X, rtz
8106 //   (fp_to_int (ffloor X))     -> fcvt X, rdn
8107 //   (fp_to_int (fceil X))      -> fcvt X, rup
8108 //   (fp_to_int (fround X))     -> fcvt X, rmm
8109 static SDValue performFP_TO_INTCombine(SDNode *N,
8110                                        TargetLowering::DAGCombinerInfo &DCI,
8111                                        const RISCVSubtarget &Subtarget) {
8112   SelectionDAG &DAG = DCI.DAG;
8113   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8114   MVT XLenVT = Subtarget.getXLenVT();
8115 
8116   // Only handle XLen or i32 types. Other types narrower than XLen will
8117   // eventually be legalized to XLenVT.
8118   EVT VT = N->getValueType(0);
8119   if (VT != MVT::i32 && VT != XLenVT)
8120     return SDValue();
8121 
8122   SDValue Src = N->getOperand(0);
8123 
8124   // Ensure the FP type is also legal.
8125   if (!TLI.isTypeLegal(Src.getValueType()))
8126     return SDValue();
8127 
8128   // Don't do this for f16 with Zfhmin and not Zfh.
8129   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8130     return SDValue();
8131 
8132   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8133   if (FRM == RISCVFPRndMode::Invalid)
8134     return SDValue();
8135 
8136   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
8137 
8138   unsigned Opc;
8139   if (VT == XLenVT)
8140     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8141   else
8142     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8143 
8144   SDLoc DL(N);
8145   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
8146                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8147   return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
8148 }
8149 
8150 // Fold
8151 //   (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
8152 //   (fp_to_int_sat (ftrunc X))     -> (select X == nan, 0, (fcvt X, rtz))
8153 //   (fp_to_int_sat (ffloor X))     -> (select X == nan, 0, (fcvt X, rdn))
8154 //   (fp_to_int_sat (fceil X))      -> (select X == nan, 0, (fcvt X, rup))
8155 //   (fp_to_int_sat (fround X))     -> (select X == nan, 0, (fcvt X, rmm))
8156 static SDValue performFP_TO_INT_SATCombine(SDNode *N,
8157                                        TargetLowering::DAGCombinerInfo &DCI,
8158                                        const RISCVSubtarget &Subtarget) {
8159   SelectionDAG &DAG = DCI.DAG;
8160   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8161   MVT XLenVT = Subtarget.getXLenVT();
8162 
8163   // Only handle XLen types. Other types narrower than XLen will eventually be
8164   // legalized to XLenVT.
8165   EVT DstVT = N->getValueType(0);
8166   if (DstVT != XLenVT)
8167     return SDValue();
8168 
8169   SDValue Src = N->getOperand(0);
8170 
8171   // Ensure the FP type is also legal.
8172   if (!TLI.isTypeLegal(Src.getValueType()))
8173     return SDValue();
8174 
8175   // Don't do this for f16 with Zfhmin and not Zfh.
8176   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8177     return SDValue();
8178 
8179   EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
8180 
8181   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8182   if (FRM == RISCVFPRndMode::Invalid)
8183     return SDValue();
8184 
8185   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
8186 
8187   unsigned Opc;
8188   if (SatVT == DstVT)
8189     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8190   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
8191     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8192   else
8193     return SDValue();
8194   // FIXME: Support other SatVTs by clamping before or after the conversion.
8195 
8196   Src = Src.getOperand(0);
8197 
8198   SDLoc DL(N);
8199   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
8200                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8201 
8202   // RISCV FP-to-int conversions saturate to the destination register size, but
8203   // don't produce 0 for nan.
8204   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
8205   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
8206 }
8207 
8208 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is
8209 // smaller than XLenVT.
8210 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG,
8211                                         const RISCVSubtarget &Subtarget) {
8212   assert(Subtarget.hasStdExtZbkb() && "Unexpected extension");
8213 
8214   SDValue Src = N->getOperand(0);
8215   if (Src.getOpcode() != ISD::BSWAP)
8216     return SDValue();
8217 
8218   EVT VT = N->getValueType(0);
8219   if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() ||
8220       !isPowerOf2_32(VT.getSizeInBits()))
8221     return SDValue();
8222 
8223   SDLoc DL(N);
8224   return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0),
8225                      DAG.getConstant(7, DL, VT));
8226 }
8227 
8228 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
8229                                                DAGCombinerInfo &DCI) const {
8230   SelectionDAG &DAG = DCI.DAG;
8231 
8232   // Helper to call SimplifyDemandedBits on an operand of N where only some low
8233   // bits are demanded. N will be added to the Worklist if it was not deleted.
8234   // Caller should return SDValue(N, 0) if this returns true.
8235   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
8236     SDValue Op = N->getOperand(OpNo);
8237     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
8238     if (!SimplifyDemandedBits(Op, Mask, DCI))
8239       return false;
8240 
8241     if (N->getOpcode() != ISD::DELETED_NODE)
8242       DCI.AddToWorklist(N);
8243     return true;
8244   };
8245 
8246   switch (N->getOpcode()) {
8247   default:
8248     break;
8249   case RISCVISD::SplitF64: {
8250     SDValue Op0 = N->getOperand(0);
8251     // If the input to SplitF64 is just BuildPairF64 then the operation is
8252     // redundant. Instead, use BuildPairF64's operands directly.
8253     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
8254       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
8255 
8256     if (Op0->isUndef()) {
8257       SDValue Lo = DAG.getUNDEF(MVT::i32);
8258       SDValue Hi = DAG.getUNDEF(MVT::i32);
8259       return DCI.CombineTo(N, Lo, Hi);
8260     }
8261 
8262     SDLoc DL(N);
8263 
8264     // It's cheaper to materialise two 32-bit integers than to load a double
8265     // from the constant pool and transfer it to integer registers through the
8266     // stack.
8267     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
8268       APInt V = C->getValueAPF().bitcastToAPInt();
8269       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
8270       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
8271       return DCI.CombineTo(N, Lo, Hi);
8272     }
8273 
8274     // This is a target-specific version of a DAGCombine performed in
8275     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8276     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8277     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8278     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8279         !Op0.getNode()->hasOneUse())
8280       break;
8281     SDValue NewSplitF64 =
8282         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
8283                     Op0.getOperand(0));
8284     SDValue Lo = NewSplitF64.getValue(0);
8285     SDValue Hi = NewSplitF64.getValue(1);
8286     APInt SignBit = APInt::getSignMask(32);
8287     if (Op0.getOpcode() == ISD::FNEG) {
8288       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
8289                                   DAG.getConstant(SignBit, DL, MVT::i32));
8290       return DCI.CombineTo(N, Lo, NewHi);
8291     }
8292     assert(Op0.getOpcode() == ISD::FABS);
8293     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
8294                                 DAG.getConstant(~SignBit, DL, MVT::i32));
8295     return DCI.CombineTo(N, Lo, NewHi);
8296   }
8297   case RISCVISD::SLLW:
8298   case RISCVISD::SRAW:
8299   case RISCVISD::SRLW: {
8300     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8301     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8302         SimplifyDemandedLowBitsHelper(1, 5))
8303       return SDValue(N, 0);
8304 
8305     break;
8306   }
8307   case ISD::ROTR:
8308   case ISD::ROTL:
8309   case RISCVISD::RORW:
8310   case RISCVISD::ROLW: {
8311     if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) {
8312       // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8313       if (SimplifyDemandedLowBitsHelper(0, 32) ||
8314           SimplifyDemandedLowBitsHelper(1, 5))
8315         return SDValue(N, 0);
8316     }
8317 
8318     return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget);
8319   }
8320   case RISCVISD::CLZW:
8321   case RISCVISD::CTZW: {
8322     // Only the lower 32 bits of the first operand are read
8323     if (SimplifyDemandedLowBitsHelper(0, 32))
8324       return SDValue(N, 0);
8325     break;
8326   }
8327   case RISCVISD::GREV:
8328   case RISCVISD::GORC: {
8329     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
8330     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8331     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8332     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
8333       return SDValue(N, 0);
8334 
8335     return combineGREVI_GORCI(N, DAG);
8336   }
8337   case RISCVISD::GREVW:
8338   case RISCVISD::GORCW: {
8339     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8340     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8341         SimplifyDemandedLowBitsHelper(1, 5))
8342       return SDValue(N, 0);
8343 
8344     break;
8345   }
8346   case RISCVISD::SHFL:
8347   case RISCVISD::UNSHFL: {
8348     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
8349     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8350     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8351     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
8352       return SDValue(N, 0);
8353 
8354     break;
8355   }
8356   case RISCVISD::SHFLW:
8357   case RISCVISD::UNSHFLW: {
8358     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
8359     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8360         SimplifyDemandedLowBitsHelper(1, 4))
8361       return SDValue(N, 0);
8362 
8363     break;
8364   }
8365   case RISCVISD::BCOMPRESSW:
8366   case RISCVISD::BDECOMPRESSW: {
8367     // Only the lower 32 bits of LHS and RHS are read.
8368     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8369         SimplifyDemandedLowBitsHelper(1, 32))
8370       return SDValue(N, 0);
8371 
8372     break;
8373   }
8374   case RISCVISD::FSR:
8375   case RISCVISD::FSL:
8376   case RISCVISD::FSRW:
8377   case RISCVISD::FSLW: {
8378     bool IsWInstruction =
8379         N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW;
8380     unsigned BitWidth =
8381         IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits();
8382     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8383     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
8384     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1))
8385       return SDValue(N, 0);
8386 
8387     break;
8388   }
8389   case RISCVISD::FMV_X_ANYEXTH:
8390   case RISCVISD::FMV_X_ANYEXTW_RV64: {
8391     SDLoc DL(N);
8392     SDValue Op0 = N->getOperand(0);
8393     MVT VT = N->getSimpleValueType(0);
8394     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
8395     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
8396     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
8397     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
8398          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
8399         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8400          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
8401       assert(Op0.getOperand(0).getValueType() == VT &&
8402              "Unexpected value type!");
8403       return Op0.getOperand(0);
8404     }
8405 
8406     // This is a target-specific version of a DAGCombine performed in
8407     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8408     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8409     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8410     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8411         !Op0.getNode()->hasOneUse())
8412       break;
8413     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
8414     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
8415     APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits());
8416     if (Op0.getOpcode() == ISD::FNEG)
8417       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
8418                          DAG.getConstant(SignBit, DL, VT));
8419 
8420     assert(Op0.getOpcode() == ISD::FABS);
8421     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
8422                        DAG.getConstant(~SignBit, DL, VT));
8423   }
8424   case ISD::ADD:
8425     return performADDCombine(N, DAG, Subtarget);
8426   case ISD::SUB:
8427     return performSUBCombine(N, DAG);
8428   case ISD::AND:
8429     return performANDCombine(N, DAG);
8430   case ISD::OR:
8431     return performORCombine(N, DAG, Subtarget);
8432   case ISD::XOR:
8433     return performXORCombine(N, DAG);
8434   case ISD::SIGN_EXTEND_INREG:
8435     return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
8436   case ISD::ZERO_EXTEND:
8437     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
8438     // type legalization. This is safe because fp_to_uint produces poison if
8439     // it overflows.
8440     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
8441       SDValue Src = N->getOperand(0);
8442       if (Src.getOpcode() == ISD::FP_TO_UINT &&
8443           isTypeLegal(Src.getOperand(0).getValueType()))
8444         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
8445                            Src.getOperand(0));
8446       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
8447           isTypeLegal(Src.getOperand(1).getValueType())) {
8448         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
8449         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
8450                                   Src.getOperand(0), Src.getOperand(1));
8451         DCI.CombineTo(N, Res);
8452         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
8453         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
8454         return SDValue(N, 0); // Return N so it doesn't get rechecked.
8455       }
8456     }
8457     return SDValue();
8458   case RISCVISD::SELECT_CC: {
8459     // Transform
8460     SDValue LHS = N->getOperand(0);
8461     SDValue RHS = N->getOperand(1);
8462     SDValue TrueV = N->getOperand(3);
8463     SDValue FalseV = N->getOperand(4);
8464 
8465     // If the True and False values are the same, we don't need a select_cc.
8466     if (TrueV == FalseV)
8467       return TrueV;
8468 
8469     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
8470     if (!ISD::isIntEqualitySetCC(CCVal))
8471       break;
8472 
8473     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
8474     //      (select_cc X, Y, lt, trueV, falseV)
8475     // Sometimes the setcc is introduced after select_cc has been formed.
8476     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8477         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8478       // If we're looking for eq 0 instead of ne 0, we need to invert the
8479       // condition.
8480       bool Invert = CCVal == ISD::SETEQ;
8481       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8482       if (Invert)
8483         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8484 
8485       SDLoc DL(N);
8486       RHS = LHS.getOperand(1);
8487       LHS = LHS.getOperand(0);
8488       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8489 
8490       SDValue TargetCC = DAG.getCondCode(CCVal);
8491       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8492                          {LHS, RHS, TargetCC, TrueV, FalseV});
8493     }
8494 
8495     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
8496     //      (select_cc X, Y, eq/ne, trueV, falseV)
8497     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8498       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
8499                          {LHS.getOperand(0), LHS.getOperand(1),
8500                           N->getOperand(2), TrueV, FalseV});
8501     // (select_cc X, 1, setne, trueV, falseV) ->
8502     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
8503     // This can occur when legalizing some floating point comparisons.
8504     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8505     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8506       SDLoc DL(N);
8507       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8508       SDValue TargetCC = DAG.getCondCode(CCVal);
8509       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8510       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8511                          {LHS, RHS, TargetCC, TrueV, FalseV});
8512     }
8513 
8514     break;
8515   }
8516   case RISCVISD::BR_CC: {
8517     SDValue LHS = N->getOperand(1);
8518     SDValue RHS = N->getOperand(2);
8519     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
8520     if (!ISD::isIntEqualitySetCC(CCVal))
8521       break;
8522 
8523     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
8524     //      (br_cc X, Y, lt, dest)
8525     // Sometimes the setcc is introduced after br_cc has been formed.
8526     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8527         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8528       // If we're looking for eq 0 instead of ne 0, we need to invert the
8529       // condition.
8530       bool Invert = CCVal == ISD::SETEQ;
8531       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8532       if (Invert)
8533         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8534 
8535       SDLoc DL(N);
8536       RHS = LHS.getOperand(1);
8537       LHS = LHS.getOperand(0);
8538       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8539 
8540       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8541                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
8542                          N->getOperand(4));
8543     }
8544 
8545     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
8546     //      (br_cc X, Y, eq/ne, trueV, falseV)
8547     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8548       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
8549                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
8550                          N->getOperand(3), N->getOperand(4));
8551 
8552     // (br_cc X, 1, setne, br_cc) ->
8553     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
8554     // This can occur when legalizing some floating point comparisons.
8555     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8556     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8557       SDLoc DL(N);
8558       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8559       SDValue TargetCC = DAG.getCondCode(CCVal);
8560       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8561       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8562                          N->getOperand(0), LHS, RHS, TargetCC,
8563                          N->getOperand(4));
8564     }
8565     break;
8566   }
8567   case ISD::BITREVERSE:
8568     return performBITREVERSECombine(N, DAG, Subtarget);
8569   case ISD::FP_TO_SINT:
8570   case ISD::FP_TO_UINT:
8571     return performFP_TO_INTCombine(N, DCI, Subtarget);
8572   case ISD::FP_TO_SINT_SAT:
8573   case ISD::FP_TO_UINT_SAT:
8574     return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
8575   case ISD::FCOPYSIGN: {
8576     EVT VT = N->getValueType(0);
8577     if (!VT.isVector())
8578       break;
8579     // There is a form of VFSGNJ which injects the negated sign of its second
8580     // operand. Try and bubble any FNEG up after the extend/round to produce
8581     // this optimized pattern. Avoid modifying cases where FP_ROUND and
8582     // TRUNC=1.
8583     SDValue In2 = N->getOperand(1);
8584     // Avoid cases where the extend/round has multiple uses, as duplicating
8585     // those is typically more expensive than removing a fneg.
8586     if (!In2.hasOneUse())
8587       break;
8588     if (In2.getOpcode() != ISD::FP_EXTEND &&
8589         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
8590       break;
8591     In2 = In2.getOperand(0);
8592     if (In2.getOpcode() != ISD::FNEG)
8593       break;
8594     SDLoc DL(N);
8595     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
8596     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
8597                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
8598   }
8599   case ISD::MGATHER:
8600   case ISD::MSCATTER:
8601   case ISD::VP_GATHER:
8602   case ISD::VP_SCATTER: {
8603     if (!DCI.isBeforeLegalize())
8604       break;
8605     SDValue Index, ScaleOp;
8606     bool IsIndexScaled = false;
8607     bool IsIndexSigned = false;
8608     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
8609       Index = VPGSN->getIndex();
8610       ScaleOp = VPGSN->getScale();
8611       IsIndexScaled = VPGSN->isIndexScaled();
8612       IsIndexSigned = VPGSN->isIndexSigned();
8613     } else {
8614       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
8615       Index = MGSN->getIndex();
8616       ScaleOp = MGSN->getScale();
8617       IsIndexScaled = MGSN->isIndexScaled();
8618       IsIndexSigned = MGSN->isIndexSigned();
8619     }
8620     EVT IndexVT = Index.getValueType();
8621     MVT XLenVT = Subtarget.getXLenVT();
8622     // RISCV indexed loads only support the "unsigned unscaled" addressing
8623     // mode, so anything else must be manually legalized.
8624     bool NeedsIdxLegalization =
8625         IsIndexScaled ||
8626         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
8627     if (!NeedsIdxLegalization)
8628       break;
8629 
8630     SDLoc DL(N);
8631 
8632     // Any index legalization should first promote to XLenVT, so we don't lose
8633     // bits when scaling. This may create an illegal index type so we let
8634     // LLVM's legalization take care of the splitting.
8635     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
8636     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
8637       IndexVT = IndexVT.changeVectorElementType(XLenVT);
8638       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
8639                           DL, IndexVT, Index);
8640     }
8641 
8642     unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
8643     if (IsIndexScaled && Scale != 1) {
8644       // Manually scale the indices by the element size.
8645       // TODO: Sanitize the scale operand here?
8646       // TODO: For VP nodes, should we use VP_SHL here?
8647       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
8648       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
8649       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
8650     }
8651 
8652     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
8653     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
8654       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
8655                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
8656                               VPGN->getScale(), VPGN->getMask(),
8657                               VPGN->getVectorLength()},
8658                              VPGN->getMemOperand(), NewIndexTy);
8659     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
8660       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
8661                               {VPSN->getChain(), VPSN->getValue(),
8662                                VPSN->getBasePtr(), Index, VPSN->getScale(),
8663                                VPSN->getMask(), VPSN->getVectorLength()},
8664                               VPSN->getMemOperand(), NewIndexTy);
8665     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
8666       return DAG.getMaskedGather(
8667           N->getVTList(), MGN->getMemoryVT(), DL,
8668           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
8669            MGN->getBasePtr(), Index, MGN->getScale()},
8670           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
8671     const auto *MSN = cast<MaskedScatterSDNode>(N);
8672     return DAG.getMaskedScatter(
8673         N->getVTList(), MSN->getMemoryVT(), DL,
8674         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
8675          Index, MSN->getScale()},
8676         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
8677   }
8678   case RISCVISD::SRA_VL:
8679   case RISCVISD::SRL_VL:
8680   case RISCVISD::SHL_VL: {
8681     SDValue ShAmt = N->getOperand(1);
8682     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8683       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8684       SDLoc DL(N);
8685       SDValue VL = N->getOperand(3);
8686       EVT VT = N->getValueType(0);
8687       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8688                           ShAmt.getOperand(1), VL);
8689       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
8690                          N->getOperand(2), N->getOperand(3));
8691     }
8692     break;
8693   }
8694   case ISD::SRA:
8695   case ISD::SRL:
8696   case ISD::SHL: {
8697     SDValue ShAmt = N->getOperand(1);
8698     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8699       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8700       SDLoc DL(N);
8701       EVT VT = N->getValueType(0);
8702       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8703                           ShAmt.getOperand(1),
8704                           DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()));
8705       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
8706     }
8707     break;
8708   }
8709   case RISCVISD::ADD_VL:
8710     if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false))
8711       return V;
8712     return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true);
8713   case RISCVISD::SUB_VL:
8714     return combineADDSUB_VLToVWADDSUB_VL(N, DAG);
8715   case RISCVISD::VWADD_W_VL:
8716   case RISCVISD::VWADDU_W_VL:
8717   case RISCVISD::VWSUB_W_VL:
8718   case RISCVISD::VWSUBU_W_VL:
8719     return combineVWADD_W_VL_VWSUB_W_VL(N, DAG);
8720   case RISCVISD::MUL_VL:
8721     if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false))
8722       return V;
8723     // Mul is commutative.
8724     return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true);
8725   case ISD::STORE: {
8726     auto *Store = cast<StoreSDNode>(N);
8727     SDValue Val = Store->getValue();
8728     // Combine store of vmv.x.s to vse with VL of 1.
8729     // FIXME: Support FP.
8730     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
8731       SDValue Src = Val.getOperand(0);
8732       EVT VecVT = Src.getValueType();
8733       EVT MemVT = Store->getMemoryVT();
8734       // The memory VT and the element type must match.
8735       if (VecVT.getVectorElementType() == MemVT) {
8736         SDLoc DL(N);
8737         MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
8738         return DAG.getStoreVP(
8739             Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
8740             DAG.getConstant(1, DL, MaskVT),
8741             DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
8742             Store->getMemOperand(), Store->getAddressingMode(),
8743             Store->isTruncatingStore(), /*IsCompress*/ false);
8744       }
8745     }
8746 
8747     break;
8748   }
8749   case ISD::SPLAT_VECTOR: {
8750     EVT VT = N->getValueType(0);
8751     // Only perform this combine on legal MVT types.
8752     if (!isTypeLegal(VT))
8753       break;
8754     if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N,
8755                                          DAG, Subtarget))
8756       return Gather;
8757     break;
8758   }
8759   case RISCVISD::VMV_V_X_VL: {
8760     // Tail agnostic VMV.V.X only demands the vector element bitwidth from the
8761     // scalar input.
8762     unsigned ScalarSize = N->getOperand(1).getValueSizeInBits();
8763     unsigned EltWidth = N->getValueType(0).getScalarSizeInBits();
8764     if (ScalarSize > EltWidth && N->getOperand(0).isUndef())
8765       if (SimplifyDemandedLowBitsHelper(1, EltWidth))
8766         return SDValue(N, 0);
8767 
8768     break;
8769   }
8770   case ISD::INTRINSIC_WO_CHAIN: {
8771     unsigned IntNo = N->getConstantOperandVal(0);
8772     switch (IntNo) {
8773       // By default we do not combine any intrinsic.
8774     default:
8775       return SDValue();
8776     case Intrinsic::riscv_vcpop:
8777     case Intrinsic::riscv_vcpop_mask:
8778     case Intrinsic::riscv_vfirst:
8779     case Intrinsic::riscv_vfirst_mask: {
8780       SDValue VL = N->getOperand(2);
8781       if (IntNo == Intrinsic::riscv_vcpop_mask ||
8782           IntNo == Intrinsic::riscv_vfirst_mask)
8783         VL = N->getOperand(3);
8784       if (!isNullConstant(VL))
8785         return SDValue();
8786       // If VL is 0, vcpop -> li 0, vfirst -> li -1.
8787       SDLoc DL(N);
8788       EVT VT = N->getValueType(0);
8789       if (IntNo == Intrinsic::riscv_vfirst ||
8790           IntNo == Intrinsic::riscv_vfirst_mask)
8791         return DAG.getConstant(-1, DL, VT);
8792       return DAG.getConstant(0, DL, VT);
8793     }
8794     }
8795   }
8796   }
8797 
8798   return SDValue();
8799 }
8800 
8801 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
8802     const SDNode *N, CombineLevel Level) const {
8803   // The following folds are only desirable if `(OP _, c1 << c2)` can be
8804   // materialised in fewer instructions than `(OP _, c1)`:
8805   //
8806   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
8807   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
8808   SDValue N0 = N->getOperand(0);
8809   EVT Ty = N0.getValueType();
8810   if (Ty.isScalarInteger() &&
8811       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
8812     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
8813     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
8814     if (C1 && C2) {
8815       const APInt &C1Int = C1->getAPIntValue();
8816       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
8817 
8818       // We can materialise `c1 << c2` into an add immediate, so it's "free",
8819       // and the combine should happen, to potentially allow further combines
8820       // later.
8821       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
8822           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
8823         return true;
8824 
8825       // We can materialise `c1` in an add immediate, so it's "free", and the
8826       // combine should be prevented.
8827       if (C1Int.getMinSignedBits() <= 64 &&
8828           isLegalAddImmediate(C1Int.getSExtValue()))
8829         return false;
8830 
8831       // Neither constant will fit into an immediate, so find materialisation
8832       // costs.
8833       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
8834                                               Subtarget.getFeatureBits(),
8835                                               /*CompressionCost*/true);
8836       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
8837           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
8838           /*CompressionCost*/true);
8839 
8840       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
8841       // combine should be prevented.
8842       if (C1Cost < ShiftedC1Cost)
8843         return false;
8844     }
8845   }
8846   return true;
8847 }
8848 
8849 bool RISCVTargetLowering::targetShrinkDemandedConstant(
8850     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
8851     TargetLoweringOpt &TLO) const {
8852   // Delay this optimization as late as possible.
8853   if (!TLO.LegalOps)
8854     return false;
8855 
8856   EVT VT = Op.getValueType();
8857   if (VT.isVector())
8858     return false;
8859 
8860   // Only handle AND for now.
8861   if (Op.getOpcode() != ISD::AND)
8862     return false;
8863 
8864   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8865   if (!C)
8866     return false;
8867 
8868   const APInt &Mask = C->getAPIntValue();
8869 
8870   // Clear all non-demanded bits initially.
8871   APInt ShrunkMask = Mask & DemandedBits;
8872 
8873   // Try to make a smaller immediate by setting undemanded bits.
8874 
8875   APInt ExpandedMask = Mask | ~DemandedBits;
8876 
8877   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
8878     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
8879   };
8880   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
8881     if (NewMask == Mask)
8882       return true;
8883     SDLoc DL(Op);
8884     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
8885     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
8886     return TLO.CombineTo(Op, NewOp);
8887   };
8888 
8889   // If the shrunk mask fits in sign extended 12 bits, let the target
8890   // independent code apply it.
8891   if (ShrunkMask.isSignedIntN(12))
8892     return false;
8893 
8894   // Preserve (and X, 0xffff) when zext.h is supported.
8895   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
8896     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
8897     if (IsLegalMask(NewMask))
8898       return UseMask(NewMask);
8899   }
8900 
8901   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
8902   if (VT == MVT::i64) {
8903     APInt NewMask = APInt(64, 0xffffffff);
8904     if (IsLegalMask(NewMask))
8905       return UseMask(NewMask);
8906   }
8907 
8908   // For the remaining optimizations, we need to be able to make a negative
8909   // number through a combination of mask and undemanded bits.
8910   if (!ExpandedMask.isNegative())
8911     return false;
8912 
8913   // What is the fewest number of bits we need to represent the negative number.
8914   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
8915 
8916   // Try to make a 12 bit negative immediate. If that fails try to make a 32
8917   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
8918   APInt NewMask = ShrunkMask;
8919   if (MinSignedBits <= 12)
8920     NewMask.setBitsFrom(11);
8921   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
8922     NewMask.setBitsFrom(31);
8923   else
8924     return false;
8925 
8926   // Check that our new mask is a subset of the demanded mask.
8927   assert(IsLegalMask(NewMask));
8928   return UseMask(NewMask);
8929 }
8930 
8931 static uint64_t computeGREVOrGORC(uint64_t x, unsigned ShAmt, bool IsGORC) {
8932   static const uint64_t GREVMasks[] = {
8933       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
8934       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
8935 
8936   for (unsigned Stage = 0; Stage != 6; ++Stage) {
8937     unsigned Shift = 1 << Stage;
8938     if (ShAmt & Shift) {
8939       uint64_t Mask = GREVMasks[Stage];
8940       uint64_t Res = ((x & Mask) << Shift) | ((x >> Shift) & Mask);
8941       if (IsGORC)
8942         Res |= x;
8943       x = Res;
8944     }
8945   }
8946 
8947   return x;
8948 }
8949 
8950 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
8951                                                         KnownBits &Known,
8952                                                         const APInt &DemandedElts,
8953                                                         const SelectionDAG &DAG,
8954                                                         unsigned Depth) const {
8955   unsigned BitWidth = Known.getBitWidth();
8956   unsigned Opc = Op.getOpcode();
8957   assert((Opc >= ISD::BUILTIN_OP_END ||
8958           Opc == ISD::INTRINSIC_WO_CHAIN ||
8959           Opc == ISD::INTRINSIC_W_CHAIN ||
8960           Opc == ISD::INTRINSIC_VOID) &&
8961          "Should use MaskedValueIsZero if you don't know whether Op"
8962          " is a target node!");
8963 
8964   Known.resetAll();
8965   switch (Opc) {
8966   default: break;
8967   case RISCVISD::SELECT_CC: {
8968     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
8969     // If we don't know any bits, early out.
8970     if (Known.isUnknown())
8971       break;
8972     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
8973 
8974     // Only known if known in both the LHS and RHS.
8975     Known = KnownBits::commonBits(Known, Known2);
8976     break;
8977   }
8978   case RISCVISD::REMUW: {
8979     KnownBits Known2;
8980     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
8981     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
8982     // We only care about the lower 32 bits.
8983     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
8984     // Restore the original width by sign extending.
8985     Known = Known.sext(BitWidth);
8986     break;
8987   }
8988   case RISCVISD::DIVUW: {
8989     KnownBits Known2;
8990     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
8991     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
8992     // We only care about the lower 32 bits.
8993     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
8994     // Restore the original width by sign extending.
8995     Known = Known.sext(BitWidth);
8996     break;
8997   }
8998   case RISCVISD::CTZW: {
8999     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9000     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
9001     unsigned LowBits = Log2_32(PossibleTZ) + 1;
9002     Known.Zero.setBitsFrom(LowBits);
9003     break;
9004   }
9005   case RISCVISD::CLZW: {
9006     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9007     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
9008     unsigned LowBits = Log2_32(PossibleLZ) + 1;
9009     Known.Zero.setBitsFrom(LowBits);
9010     break;
9011   }
9012   case RISCVISD::GREV:
9013   case RISCVISD::GORC: {
9014     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9015       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9016       unsigned ShAmt = C->getZExtValue() & (Known.getBitWidth() - 1);
9017       bool IsGORC = Op.getOpcode() == RISCVISD::GORC;
9018       // To compute zeros, we need to invert the value and invert it back after.
9019       Known.Zero =
9020           ~computeGREVOrGORC(~Known.Zero.getZExtValue(), ShAmt, IsGORC);
9021       Known.One = computeGREVOrGORC(Known.One.getZExtValue(), ShAmt, IsGORC);
9022     }
9023     break;
9024   }
9025   case RISCVISD::READ_VLENB: {
9026     // If we know the minimum VLen from Zvl extensions, we can use that to
9027     // determine the trailing zeros of VLENB.
9028     // FIXME: Limit to 128 bit vectors until we have more testing.
9029     unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8;
9030     if (MinVLenB > 0)
9031       Known.Zero.setLowBits(Log2_32(MinVLenB));
9032     // We assume VLENB is no more than 65536 / 8 bytes.
9033     Known.Zero.setBitsFrom(14);
9034     break;
9035   }
9036   case ISD::INTRINSIC_W_CHAIN:
9037   case ISD::INTRINSIC_WO_CHAIN: {
9038     unsigned IntNo =
9039         Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
9040     switch (IntNo) {
9041     default:
9042       // We can't do anything for most intrinsics.
9043       break;
9044     case Intrinsic::riscv_vsetvli:
9045     case Intrinsic::riscv_vsetvlimax:
9046     case Intrinsic::riscv_vsetvli_opt:
9047     case Intrinsic::riscv_vsetvlimax_opt:
9048       // Assume that VL output is positive and would fit in an int32_t.
9049       // TODO: VLEN might be capped at 16 bits in a future V spec update.
9050       if (BitWidth >= 32)
9051         Known.Zero.setBitsFrom(31);
9052       break;
9053     }
9054     break;
9055   }
9056   }
9057 }
9058 
9059 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
9060     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
9061     unsigned Depth) const {
9062   switch (Op.getOpcode()) {
9063   default:
9064     break;
9065   case RISCVISD::SELECT_CC: {
9066     unsigned Tmp =
9067         DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
9068     if (Tmp == 1) return 1;  // Early out.
9069     unsigned Tmp2 =
9070         DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
9071     return std::min(Tmp, Tmp2);
9072   }
9073   case RISCVISD::SLLW:
9074   case RISCVISD::SRAW:
9075   case RISCVISD::SRLW:
9076   case RISCVISD::DIVW:
9077   case RISCVISD::DIVUW:
9078   case RISCVISD::REMUW:
9079   case RISCVISD::ROLW:
9080   case RISCVISD::RORW:
9081   case RISCVISD::GREVW:
9082   case RISCVISD::GORCW:
9083   case RISCVISD::FSLW:
9084   case RISCVISD::FSRW:
9085   case RISCVISD::SHFLW:
9086   case RISCVISD::UNSHFLW:
9087   case RISCVISD::BCOMPRESSW:
9088   case RISCVISD::BDECOMPRESSW:
9089   case RISCVISD::BFPW:
9090   case RISCVISD::FCVT_W_RV64:
9091   case RISCVISD::FCVT_WU_RV64:
9092   case RISCVISD::STRICT_FCVT_W_RV64:
9093   case RISCVISD::STRICT_FCVT_WU_RV64:
9094     // TODO: As the result is sign-extended, this is conservatively correct. A
9095     // more precise answer could be calculated for SRAW depending on known
9096     // bits in the shift amount.
9097     return 33;
9098   case RISCVISD::SHFL:
9099   case RISCVISD::UNSHFL: {
9100     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
9101     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
9102     // will stay within the upper 32 bits. If there were more than 32 sign bits
9103     // before there will be at least 33 sign bits after.
9104     if (Op.getValueType() == MVT::i64 &&
9105         isa<ConstantSDNode>(Op.getOperand(1)) &&
9106         (Op.getConstantOperandVal(1) & 0x10) == 0) {
9107       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
9108       if (Tmp > 32)
9109         return 33;
9110     }
9111     break;
9112   }
9113   case RISCVISD::VMV_X_S: {
9114     // The number of sign bits of the scalar result is computed by obtaining the
9115     // element type of the input vector operand, subtracting its width from the
9116     // XLEN, and then adding one (sign bit within the element type). If the
9117     // element type is wider than XLen, the least-significant XLEN bits are
9118     // taken.
9119     unsigned XLen = Subtarget.getXLen();
9120     unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits();
9121     if (EltBits <= XLen)
9122       return XLen - EltBits + 1;
9123     break;
9124   }
9125   }
9126 
9127   return 1;
9128 }
9129 
9130 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
9131                                                   MachineBasicBlock *BB) {
9132   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
9133 
9134   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
9135   // Should the count have wrapped while it was being read, we need to try
9136   // again.
9137   // ...
9138   // read:
9139   // rdcycleh x3 # load high word of cycle
9140   // rdcycle  x2 # load low word of cycle
9141   // rdcycleh x4 # load high word of cycle
9142   // bne x3, x4, read # check if high word reads match, otherwise try again
9143   // ...
9144 
9145   MachineFunction &MF = *BB->getParent();
9146   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9147   MachineFunction::iterator It = ++BB->getIterator();
9148 
9149   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9150   MF.insert(It, LoopMBB);
9151 
9152   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9153   MF.insert(It, DoneMBB);
9154 
9155   // Transfer the remainder of BB and its successor edges to DoneMBB.
9156   DoneMBB->splice(DoneMBB->begin(), BB,
9157                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9158   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
9159 
9160   BB->addSuccessor(LoopMBB);
9161 
9162   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9163   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9164   Register LoReg = MI.getOperand(0).getReg();
9165   Register HiReg = MI.getOperand(1).getReg();
9166   DebugLoc DL = MI.getDebugLoc();
9167 
9168   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
9169   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
9170       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9171       .addReg(RISCV::X0);
9172   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
9173       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
9174       .addReg(RISCV::X0);
9175   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
9176       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9177       .addReg(RISCV::X0);
9178 
9179   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
9180       .addReg(HiReg)
9181       .addReg(ReadAgainReg)
9182       .addMBB(LoopMBB);
9183 
9184   LoopMBB->addSuccessor(LoopMBB);
9185   LoopMBB->addSuccessor(DoneMBB);
9186 
9187   MI.eraseFromParent();
9188 
9189   return DoneMBB;
9190 }
9191 
9192 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
9193                                              MachineBasicBlock *BB) {
9194   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
9195 
9196   MachineFunction &MF = *BB->getParent();
9197   DebugLoc DL = MI.getDebugLoc();
9198   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9199   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9200   Register LoReg = MI.getOperand(0).getReg();
9201   Register HiReg = MI.getOperand(1).getReg();
9202   Register SrcReg = MI.getOperand(2).getReg();
9203   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
9204   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9205 
9206   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
9207                           RI);
9208   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9209   MachineMemOperand *MMOLo =
9210       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
9211   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9212       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
9213   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
9214       .addFrameIndex(FI)
9215       .addImm(0)
9216       .addMemOperand(MMOLo);
9217   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
9218       .addFrameIndex(FI)
9219       .addImm(4)
9220       .addMemOperand(MMOHi);
9221   MI.eraseFromParent(); // The pseudo instruction is gone now.
9222   return BB;
9223 }
9224 
9225 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
9226                                                  MachineBasicBlock *BB) {
9227   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
9228          "Unexpected instruction");
9229 
9230   MachineFunction &MF = *BB->getParent();
9231   DebugLoc DL = MI.getDebugLoc();
9232   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9233   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9234   Register DstReg = MI.getOperand(0).getReg();
9235   Register LoReg = MI.getOperand(1).getReg();
9236   Register HiReg = MI.getOperand(2).getReg();
9237   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
9238   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9239 
9240   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9241   MachineMemOperand *MMOLo =
9242       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
9243   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9244       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
9245   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9246       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
9247       .addFrameIndex(FI)
9248       .addImm(0)
9249       .addMemOperand(MMOLo);
9250   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9251       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
9252       .addFrameIndex(FI)
9253       .addImm(4)
9254       .addMemOperand(MMOHi);
9255   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
9256   MI.eraseFromParent(); // The pseudo instruction is gone now.
9257   return BB;
9258 }
9259 
9260 static bool isSelectPseudo(MachineInstr &MI) {
9261   switch (MI.getOpcode()) {
9262   default:
9263     return false;
9264   case RISCV::Select_GPR_Using_CC_GPR:
9265   case RISCV::Select_FPR16_Using_CC_GPR:
9266   case RISCV::Select_FPR32_Using_CC_GPR:
9267   case RISCV::Select_FPR64_Using_CC_GPR:
9268     return true;
9269   }
9270 }
9271 
9272 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
9273                                         unsigned RelOpcode, unsigned EqOpcode,
9274                                         const RISCVSubtarget &Subtarget) {
9275   DebugLoc DL = MI.getDebugLoc();
9276   Register DstReg = MI.getOperand(0).getReg();
9277   Register Src1Reg = MI.getOperand(1).getReg();
9278   Register Src2Reg = MI.getOperand(2).getReg();
9279   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
9280   Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
9281   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
9282 
9283   // Save the current FFLAGS.
9284   BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
9285 
9286   auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
9287                  .addReg(Src1Reg)
9288                  .addReg(Src2Reg);
9289   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9290     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
9291 
9292   // Restore the FFLAGS.
9293   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
9294       .addReg(SavedFFlags, RegState::Kill);
9295 
9296   // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
9297   auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
9298                   .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
9299                   .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
9300   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9301     MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
9302 
9303   // Erase the pseudoinstruction.
9304   MI.eraseFromParent();
9305   return BB;
9306 }
9307 
9308 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
9309                                            MachineBasicBlock *BB,
9310                                            const RISCVSubtarget &Subtarget) {
9311   // To "insert" Select_* instructions, we actually have to insert the triangle
9312   // control-flow pattern.  The incoming instructions know the destination vreg
9313   // to set, the condition code register to branch on, the true/false values to
9314   // select between, and the condcode to use to select the appropriate branch.
9315   //
9316   // We produce the following control flow:
9317   //     HeadMBB
9318   //     |  \
9319   //     |  IfFalseMBB
9320   //     | /
9321   //    TailMBB
9322   //
9323   // When we find a sequence of selects we attempt to optimize their emission
9324   // by sharing the control flow. Currently we only handle cases where we have
9325   // multiple selects with the exact same condition (same LHS, RHS and CC).
9326   // The selects may be interleaved with other instructions if the other
9327   // instructions meet some requirements we deem safe:
9328   // - They are debug instructions. Otherwise,
9329   // - They do not have side-effects, do not access memory and their inputs do
9330   //   not depend on the results of the select pseudo-instructions.
9331   // The TrueV/FalseV operands of the selects cannot depend on the result of
9332   // previous selects in the sequence.
9333   // These conditions could be further relaxed. See the X86 target for a
9334   // related approach and more information.
9335   Register LHS = MI.getOperand(1).getReg();
9336   Register RHS = MI.getOperand(2).getReg();
9337   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
9338 
9339   SmallVector<MachineInstr *, 4> SelectDebugValues;
9340   SmallSet<Register, 4> SelectDests;
9341   SelectDests.insert(MI.getOperand(0).getReg());
9342 
9343   MachineInstr *LastSelectPseudo = &MI;
9344 
9345   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
9346        SequenceMBBI != E; ++SequenceMBBI) {
9347     if (SequenceMBBI->isDebugInstr())
9348       continue;
9349     else if (isSelectPseudo(*SequenceMBBI)) {
9350       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
9351           SequenceMBBI->getOperand(2).getReg() != RHS ||
9352           SequenceMBBI->getOperand(3).getImm() != CC ||
9353           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
9354           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
9355         break;
9356       LastSelectPseudo = &*SequenceMBBI;
9357       SequenceMBBI->collectDebugValues(SelectDebugValues);
9358       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
9359     } else {
9360       if (SequenceMBBI->hasUnmodeledSideEffects() ||
9361           SequenceMBBI->mayLoadOrStore())
9362         break;
9363       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
9364             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
9365           }))
9366         break;
9367     }
9368   }
9369 
9370   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
9371   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9372   DebugLoc DL = MI.getDebugLoc();
9373   MachineFunction::iterator I = ++BB->getIterator();
9374 
9375   MachineBasicBlock *HeadMBB = BB;
9376   MachineFunction *F = BB->getParent();
9377   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
9378   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
9379 
9380   F->insert(I, IfFalseMBB);
9381   F->insert(I, TailMBB);
9382 
9383   // Transfer debug instructions associated with the selects to TailMBB.
9384   for (MachineInstr *DebugInstr : SelectDebugValues) {
9385     TailMBB->push_back(DebugInstr->removeFromParent());
9386   }
9387 
9388   // Move all instructions after the sequence to TailMBB.
9389   TailMBB->splice(TailMBB->end(), HeadMBB,
9390                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
9391   // Update machine-CFG edges by transferring all successors of the current
9392   // block to the new block which will contain the Phi nodes for the selects.
9393   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
9394   // Set the successors for HeadMBB.
9395   HeadMBB->addSuccessor(IfFalseMBB);
9396   HeadMBB->addSuccessor(TailMBB);
9397 
9398   // Insert appropriate branch.
9399   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
9400     .addReg(LHS)
9401     .addReg(RHS)
9402     .addMBB(TailMBB);
9403 
9404   // IfFalseMBB just falls through to TailMBB.
9405   IfFalseMBB->addSuccessor(TailMBB);
9406 
9407   // Create PHIs for all of the select pseudo-instructions.
9408   auto SelectMBBI = MI.getIterator();
9409   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
9410   auto InsertionPoint = TailMBB->begin();
9411   while (SelectMBBI != SelectEnd) {
9412     auto Next = std::next(SelectMBBI);
9413     if (isSelectPseudo(*SelectMBBI)) {
9414       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
9415       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
9416               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
9417           .addReg(SelectMBBI->getOperand(4).getReg())
9418           .addMBB(HeadMBB)
9419           .addReg(SelectMBBI->getOperand(5).getReg())
9420           .addMBB(IfFalseMBB);
9421       SelectMBBI->eraseFromParent();
9422     }
9423     SelectMBBI = Next;
9424   }
9425 
9426   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
9427   return TailMBB;
9428 }
9429 
9430 MachineBasicBlock *
9431 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9432                                                  MachineBasicBlock *BB) const {
9433   switch (MI.getOpcode()) {
9434   default:
9435     llvm_unreachable("Unexpected instr type to insert");
9436   case RISCV::ReadCycleWide:
9437     assert(!Subtarget.is64Bit() &&
9438            "ReadCycleWrite is only to be used on riscv32");
9439     return emitReadCycleWidePseudo(MI, BB);
9440   case RISCV::Select_GPR_Using_CC_GPR:
9441   case RISCV::Select_FPR16_Using_CC_GPR:
9442   case RISCV::Select_FPR32_Using_CC_GPR:
9443   case RISCV::Select_FPR64_Using_CC_GPR:
9444     return emitSelectPseudo(MI, BB, Subtarget);
9445   case RISCV::BuildPairF64Pseudo:
9446     return emitBuildPairF64Pseudo(MI, BB);
9447   case RISCV::SplitF64Pseudo:
9448     return emitSplitF64Pseudo(MI, BB);
9449   case RISCV::PseudoQuietFLE_H:
9450     return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
9451   case RISCV::PseudoQuietFLT_H:
9452     return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
9453   case RISCV::PseudoQuietFLE_S:
9454     return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
9455   case RISCV::PseudoQuietFLT_S:
9456     return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
9457   case RISCV::PseudoQuietFLE_D:
9458     return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
9459   case RISCV::PseudoQuietFLT_D:
9460     return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
9461   }
9462 }
9463 
9464 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
9465                                                         SDNode *Node) const {
9466   // Add FRM dependency to any instructions with dynamic rounding mode.
9467   unsigned Opc = MI.getOpcode();
9468   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
9469   if (Idx < 0)
9470     return;
9471   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
9472     return;
9473   // If the instruction already reads FRM, don't add another read.
9474   if (MI.readsRegister(RISCV::FRM))
9475     return;
9476   MI.addOperand(
9477       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
9478 }
9479 
9480 // Calling Convention Implementation.
9481 // The expectations for frontend ABI lowering vary from target to target.
9482 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
9483 // details, but this is a longer term goal. For now, we simply try to keep the
9484 // role of the frontend as simple and well-defined as possible. The rules can
9485 // be summarised as:
9486 // * Never split up large scalar arguments. We handle them here.
9487 // * If a hardfloat calling convention is being used, and the struct may be
9488 // passed in a pair of registers (fp+fp, int+fp), and both registers are
9489 // available, then pass as two separate arguments. If either the GPRs or FPRs
9490 // are exhausted, then pass according to the rule below.
9491 // * If a struct could never be passed in registers or directly in a stack
9492 // slot (as it is larger than 2*XLEN and the floating point rules don't
9493 // apply), then pass it using a pointer with the byval attribute.
9494 // * If a struct is less than 2*XLEN, then coerce to either a two-element
9495 // word-sized array or a 2*XLEN scalar (depending on alignment).
9496 // * The frontend can determine whether a struct is returned by reference or
9497 // not based on its size and fields. If it will be returned by reference, the
9498 // frontend must modify the prototype so a pointer with the sret annotation is
9499 // passed as the first argument. This is not necessary for large scalar
9500 // returns.
9501 // * Struct return values and varargs should be coerced to structs containing
9502 // register-size fields in the same situations they would be for fixed
9503 // arguments.
9504 
9505 static const MCPhysReg ArgGPRs[] = {
9506   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
9507   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
9508 };
9509 static const MCPhysReg ArgFPR16s[] = {
9510   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
9511   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
9512 };
9513 static const MCPhysReg ArgFPR32s[] = {
9514   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
9515   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
9516 };
9517 static const MCPhysReg ArgFPR64s[] = {
9518   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
9519   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
9520 };
9521 // This is an interim calling convention and it may be changed in the future.
9522 static const MCPhysReg ArgVRs[] = {
9523     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
9524     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
9525     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
9526 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
9527                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
9528                                      RISCV::V20M2, RISCV::V22M2};
9529 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
9530                                      RISCV::V20M4};
9531 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
9532 
9533 // Pass a 2*XLEN argument that has been split into two XLEN values through
9534 // registers or the stack as necessary.
9535 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
9536                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
9537                                 MVT ValVT2, MVT LocVT2,
9538                                 ISD::ArgFlagsTy ArgFlags2) {
9539   unsigned XLenInBytes = XLen / 8;
9540   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9541     // At least one half can be passed via register.
9542     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
9543                                      VA1.getLocVT(), CCValAssign::Full));
9544   } else {
9545     // Both halves must be passed on the stack, with proper alignment.
9546     Align StackAlign =
9547         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
9548     State.addLoc(
9549         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
9550                             State.AllocateStack(XLenInBytes, StackAlign),
9551                             VA1.getLocVT(), CCValAssign::Full));
9552     State.addLoc(CCValAssign::getMem(
9553         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9554         LocVT2, CCValAssign::Full));
9555     return false;
9556   }
9557 
9558   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9559     // The second half can also be passed via register.
9560     State.addLoc(
9561         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
9562   } else {
9563     // The second half is passed via the stack, without additional alignment.
9564     State.addLoc(CCValAssign::getMem(
9565         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9566         LocVT2, CCValAssign::Full));
9567   }
9568 
9569   return false;
9570 }
9571 
9572 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
9573                                Optional<unsigned> FirstMaskArgument,
9574                                CCState &State, const RISCVTargetLowering &TLI) {
9575   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
9576   if (RC == &RISCV::VRRegClass) {
9577     // Assign the first mask argument to V0.
9578     // This is an interim calling convention and it may be changed in the
9579     // future.
9580     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
9581       return State.AllocateReg(RISCV::V0);
9582     return State.AllocateReg(ArgVRs);
9583   }
9584   if (RC == &RISCV::VRM2RegClass)
9585     return State.AllocateReg(ArgVRM2s);
9586   if (RC == &RISCV::VRM4RegClass)
9587     return State.AllocateReg(ArgVRM4s);
9588   if (RC == &RISCV::VRM8RegClass)
9589     return State.AllocateReg(ArgVRM8s);
9590   llvm_unreachable("Unhandled register class for ValueType");
9591 }
9592 
9593 // Implements the RISC-V calling convention. Returns true upon failure.
9594 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
9595                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
9596                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
9597                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
9598                      Optional<unsigned> FirstMaskArgument) {
9599   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
9600   assert(XLen == 32 || XLen == 64);
9601   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
9602 
9603   // Any return value split in to more than two values can't be returned
9604   // directly. Vectors are returned via the available vector registers.
9605   if (!LocVT.isVector() && IsRet && ValNo > 1)
9606     return true;
9607 
9608   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
9609   // variadic argument, or if no F16/F32 argument registers are available.
9610   bool UseGPRForF16_F32 = true;
9611   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
9612   // variadic argument, or if no F64 argument registers are available.
9613   bool UseGPRForF64 = true;
9614 
9615   switch (ABI) {
9616   default:
9617     llvm_unreachable("Unexpected ABI");
9618   case RISCVABI::ABI_ILP32:
9619   case RISCVABI::ABI_LP64:
9620     break;
9621   case RISCVABI::ABI_ILP32F:
9622   case RISCVABI::ABI_LP64F:
9623     UseGPRForF16_F32 = !IsFixed;
9624     break;
9625   case RISCVABI::ABI_ILP32D:
9626   case RISCVABI::ABI_LP64D:
9627     UseGPRForF16_F32 = !IsFixed;
9628     UseGPRForF64 = !IsFixed;
9629     break;
9630   }
9631 
9632   // FPR16, FPR32, and FPR64 alias each other.
9633   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
9634     UseGPRForF16_F32 = true;
9635     UseGPRForF64 = true;
9636   }
9637 
9638   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
9639   // similar local variables rather than directly checking against the target
9640   // ABI.
9641 
9642   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
9643     LocVT = XLenVT;
9644     LocInfo = CCValAssign::BCvt;
9645   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
9646     LocVT = MVT::i64;
9647     LocInfo = CCValAssign::BCvt;
9648   }
9649 
9650   // If this is a variadic argument, the RISC-V calling convention requires
9651   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
9652   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
9653   // be used regardless of whether the original argument was split during
9654   // legalisation or not. The argument will not be passed by registers if the
9655   // original type is larger than 2*XLEN, so the register alignment rule does
9656   // not apply.
9657   unsigned TwoXLenInBytes = (2 * XLen) / 8;
9658   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
9659       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
9660     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
9661     // Skip 'odd' register if necessary.
9662     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
9663       State.AllocateReg(ArgGPRs);
9664   }
9665 
9666   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
9667   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
9668       State.getPendingArgFlags();
9669 
9670   assert(PendingLocs.size() == PendingArgFlags.size() &&
9671          "PendingLocs and PendingArgFlags out of sync");
9672 
9673   // Handle passing f64 on RV32D with a soft float ABI or when floating point
9674   // registers are exhausted.
9675   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
9676     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
9677            "Can't lower f64 if it is split");
9678     // Depending on available argument GPRS, f64 may be passed in a pair of
9679     // GPRs, split between a GPR and the stack, or passed completely on the
9680     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
9681     // cases.
9682     Register Reg = State.AllocateReg(ArgGPRs);
9683     LocVT = MVT::i32;
9684     if (!Reg) {
9685       unsigned StackOffset = State.AllocateStack(8, Align(8));
9686       State.addLoc(
9687           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9688       return false;
9689     }
9690     if (!State.AllocateReg(ArgGPRs))
9691       State.AllocateStack(4, Align(4));
9692     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9693     return false;
9694   }
9695 
9696   // Fixed-length vectors are located in the corresponding scalable-vector
9697   // container types.
9698   if (ValVT.isFixedLengthVector())
9699     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9700 
9701   // Split arguments might be passed indirectly, so keep track of the pending
9702   // values. Split vectors are passed via a mix of registers and indirectly, so
9703   // treat them as we would any other argument.
9704   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
9705     LocVT = XLenVT;
9706     LocInfo = CCValAssign::Indirect;
9707     PendingLocs.push_back(
9708         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
9709     PendingArgFlags.push_back(ArgFlags);
9710     if (!ArgFlags.isSplitEnd()) {
9711       return false;
9712     }
9713   }
9714 
9715   // If the split argument only had two elements, it should be passed directly
9716   // in registers or on the stack.
9717   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
9718       PendingLocs.size() <= 2) {
9719     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
9720     // Apply the normal calling convention rules to the first half of the
9721     // split argument.
9722     CCValAssign VA = PendingLocs[0];
9723     ISD::ArgFlagsTy AF = PendingArgFlags[0];
9724     PendingLocs.clear();
9725     PendingArgFlags.clear();
9726     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
9727                                ArgFlags);
9728   }
9729 
9730   // Allocate to a register if possible, or else a stack slot.
9731   Register Reg;
9732   unsigned StoreSizeBytes = XLen / 8;
9733   Align StackAlign = Align(XLen / 8);
9734 
9735   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
9736     Reg = State.AllocateReg(ArgFPR16s);
9737   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
9738     Reg = State.AllocateReg(ArgFPR32s);
9739   else if (ValVT == MVT::f64 && !UseGPRForF64)
9740     Reg = State.AllocateReg(ArgFPR64s);
9741   else if (ValVT.isVector()) {
9742     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
9743     if (!Reg) {
9744       // For return values, the vector must be passed fully via registers or
9745       // via the stack.
9746       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
9747       // but we're using all of them.
9748       if (IsRet)
9749         return true;
9750       // Try using a GPR to pass the address
9751       if ((Reg = State.AllocateReg(ArgGPRs))) {
9752         LocVT = XLenVT;
9753         LocInfo = CCValAssign::Indirect;
9754       } else if (ValVT.isScalableVector()) {
9755         LocVT = XLenVT;
9756         LocInfo = CCValAssign::Indirect;
9757       } else {
9758         // Pass fixed-length vectors on the stack.
9759         LocVT = ValVT;
9760         StoreSizeBytes = ValVT.getStoreSize();
9761         // Align vectors to their element sizes, being careful for vXi1
9762         // vectors.
9763         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9764       }
9765     }
9766   } else {
9767     Reg = State.AllocateReg(ArgGPRs);
9768   }
9769 
9770   unsigned StackOffset =
9771       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
9772 
9773   // If we reach this point and PendingLocs is non-empty, we must be at the
9774   // end of a split argument that must be passed indirectly.
9775   if (!PendingLocs.empty()) {
9776     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
9777     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
9778 
9779     for (auto &It : PendingLocs) {
9780       if (Reg)
9781         It.convertToReg(Reg);
9782       else
9783         It.convertToMem(StackOffset);
9784       State.addLoc(It);
9785     }
9786     PendingLocs.clear();
9787     PendingArgFlags.clear();
9788     return false;
9789   }
9790 
9791   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
9792           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
9793          "Expected an XLenVT or vector types at this stage");
9794 
9795   if (Reg) {
9796     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9797     return false;
9798   }
9799 
9800   // When a floating-point value is passed on the stack, no bit-conversion is
9801   // needed.
9802   if (ValVT.isFloatingPoint()) {
9803     LocVT = ValVT;
9804     LocInfo = CCValAssign::Full;
9805   }
9806   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9807   return false;
9808 }
9809 
9810 template <typename ArgTy>
9811 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
9812   for (const auto &ArgIdx : enumerate(Args)) {
9813     MVT ArgVT = ArgIdx.value().VT;
9814     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
9815       return ArgIdx.index();
9816   }
9817   return None;
9818 }
9819 
9820 void RISCVTargetLowering::analyzeInputArgs(
9821     MachineFunction &MF, CCState &CCInfo,
9822     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
9823     RISCVCCAssignFn Fn) const {
9824   unsigned NumArgs = Ins.size();
9825   FunctionType *FType = MF.getFunction().getFunctionType();
9826 
9827   Optional<unsigned> FirstMaskArgument;
9828   if (Subtarget.hasVInstructions())
9829     FirstMaskArgument = preAssignMask(Ins);
9830 
9831   for (unsigned i = 0; i != NumArgs; ++i) {
9832     MVT ArgVT = Ins[i].VT;
9833     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
9834 
9835     Type *ArgTy = nullptr;
9836     if (IsRet)
9837       ArgTy = FType->getReturnType();
9838     else if (Ins[i].isOrigArg())
9839       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
9840 
9841     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9842     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
9843            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
9844            FirstMaskArgument)) {
9845       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
9846                         << EVT(ArgVT).getEVTString() << '\n');
9847       llvm_unreachable(nullptr);
9848     }
9849   }
9850 }
9851 
9852 void RISCVTargetLowering::analyzeOutputArgs(
9853     MachineFunction &MF, CCState &CCInfo,
9854     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
9855     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
9856   unsigned NumArgs = Outs.size();
9857 
9858   Optional<unsigned> FirstMaskArgument;
9859   if (Subtarget.hasVInstructions())
9860     FirstMaskArgument = preAssignMask(Outs);
9861 
9862   for (unsigned i = 0; i != NumArgs; i++) {
9863     MVT ArgVT = Outs[i].VT;
9864     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
9865     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
9866 
9867     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9868     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
9869            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
9870            FirstMaskArgument)) {
9871       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
9872                         << EVT(ArgVT).getEVTString() << "\n");
9873       llvm_unreachable(nullptr);
9874     }
9875   }
9876 }
9877 
9878 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
9879 // values.
9880 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
9881                                    const CCValAssign &VA, const SDLoc &DL,
9882                                    const RISCVSubtarget &Subtarget) {
9883   switch (VA.getLocInfo()) {
9884   default:
9885     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9886   case CCValAssign::Full:
9887     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
9888       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
9889     break;
9890   case CCValAssign::BCvt:
9891     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
9892       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
9893     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
9894       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
9895     else
9896       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
9897     break;
9898   }
9899   return Val;
9900 }
9901 
9902 // The caller is responsible for loading the full value if the argument is
9903 // passed with CCValAssign::Indirect.
9904 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
9905                                 const CCValAssign &VA, const SDLoc &DL,
9906                                 const RISCVTargetLowering &TLI) {
9907   MachineFunction &MF = DAG.getMachineFunction();
9908   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9909   EVT LocVT = VA.getLocVT();
9910   SDValue Val;
9911   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
9912   Register VReg = RegInfo.createVirtualRegister(RC);
9913   RegInfo.addLiveIn(VA.getLocReg(), VReg);
9914   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
9915 
9916   if (VA.getLocInfo() == CCValAssign::Indirect)
9917     return Val;
9918 
9919   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
9920 }
9921 
9922 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
9923                                    const CCValAssign &VA, const SDLoc &DL,
9924                                    const RISCVSubtarget &Subtarget) {
9925   EVT LocVT = VA.getLocVT();
9926 
9927   switch (VA.getLocInfo()) {
9928   default:
9929     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9930   case CCValAssign::Full:
9931     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
9932       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
9933     break;
9934   case CCValAssign::BCvt:
9935     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
9936       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
9937     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
9938       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
9939     else
9940       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
9941     break;
9942   }
9943   return Val;
9944 }
9945 
9946 // The caller is responsible for loading the full value if the argument is
9947 // passed with CCValAssign::Indirect.
9948 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
9949                                 const CCValAssign &VA, const SDLoc &DL) {
9950   MachineFunction &MF = DAG.getMachineFunction();
9951   MachineFrameInfo &MFI = MF.getFrameInfo();
9952   EVT LocVT = VA.getLocVT();
9953   EVT ValVT = VA.getValVT();
9954   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
9955   if (ValVT.isScalableVector()) {
9956     // When the value is a scalable vector, we save the pointer which points to
9957     // the scalable vector value in the stack. The ValVT will be the pointer
9958     // type, instead of the scalable vector type.
9959     ValVT = LocVT;
9960   }
9961   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
9962                                  /*IsImmutable=*/true);
9963   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
9964   SDValue Val;
9965 
9966   ISD::LoadExtType ExtType;
9967   switch (VA.getLocInfo()) {
9968   default:
9969     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9970   case CCValAssign::Full:
9971   case CCValAssign::Indirect:
9972   case CCValAssign::BCvt:
9973     ExtType = ISD::NON_EXTLOAD;
9974     break;
9975   }
9976   Val = DAG.getExtLoad(
9977       ExtType, DL, LocVT, Chain, FIN,
9978       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
9979   return Val;
9980 }
9981 
9982 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
9983                                        const CCValAssign &VA, const SDLoc &DL) {
9984   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
9985          "Unexpected VA");
9986   MachineFunction &MF = DAG.getMachineFunction();
9987   MachineFrameInfo &MFI = MF.getFrameInfo();
9988   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9989 
9990   if (VA.isMemLoc()) {
9991     // f64 is passed on the stack.
9992     int FI =
9993         MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
9994     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
9995     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
9996                        MachinePointerInfo::getFixedStack(MF, FI));
9997   }
9998 
9999   assert(VA.isRegLoc() && "Expected register VA assignment");
10000 
10001   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
10002   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
10003   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
10004   SDValue Hi;
10005   if (VA.getLocReg() == RISCV::X17) {
10006     // Second half of f64 is passed on the stack.
10007     int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
10008     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
10009     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
10010                      MachinePointerInfo::getFixedStack(MF, FI));
10011   } else {
10012     // Second half of f64 is passed in another GPR.
10013     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
10014     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
10015     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
10016   }
10017   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
10018 }
10019 
10020 // FastCC has less than 1% performance improvement for some particular
10021 // benchmark. But theoretically, it may has benenfit for some cases.
10022 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
10023                             unsigned ValNo, MVT ValVT, MVT LocVT,
10024                             CCValAssign::LocInfo LocInfo,
10025                             ISD::ArgFlagsTy ArgFlags, CCState &State,
10026                             bool IsFixed, bool IsRet, Type *OrigTy,
10027                             const RISCVTargetLowering &TLI,
10028                             Optional<unsigned> FirstMaskArgument) {
10029 
10030   // X5 and X6 might be used for save-restore libcall.
10031   static const MCPhysReg GPRList[] = {
10032       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
10033       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
10034       RISCV::X29, RISCV::X30, RISCV::X31};
10035 
10036   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10037     if (unsigned Reg = State.AllocateReg(GPRList)) {
10038       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10039       return false;
10040     }
10041   }
10042 
10043   if (LocVT == MVT::f16) {
10044     static const MCPhysReg FPR16List[] = {
10045         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
10046         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
10047         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
10048         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
10049     if (unsigned Reg = State.AllocateReg(FPR16List)) {
10050       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10051       return false;
10052     }
10053   }
10054 
10055   if (LocVT == MVT::f32) {
10056     static const MCPhysReg FPR32List[] = {
10057         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
10058         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
10059         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
10060         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
10061     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10062       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10063       return false;
10064     }
10065   }
10066 
10067   if (LocVT == MVT::f64) {
10068     static const MCPhysReg FPR64List[] = {
10069         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
10070         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
10071         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
10072         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
10073     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10074       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10075       return false;
10076     }
10077   }
10078 
10079   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
10080     unsigned Offset4 = State.AllocateStack(4, Align(4));
10081     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
10082     return false;
10083   }
10084 
10085   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
10086     unsigned Offset5 = State.AllocateStack(8, Align(8));
10087     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
10088     return false;
10089   }
10090 
10091   if (LocVT.isVector()) {
10092     if (unsigned Reg =
10093             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
10094       // Fixed-length vectors are located in the corresponding scalable-vector
10095       // container types.
10096       if (ValVT.isFixedLengthVector())
10097         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
10098       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10099     } else {
10100       // Try and pass the address via a "fast" GPR.
10101       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
10102         LocInfo = CCValAssign::Indirect;
10103         LocVT = TLI.getSubtarget().getXLenVT();
10104         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
10105       } else if (ValVT.isFixedLengthVector()) {
10106         auto StackAlign =
10107             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
10108         unsigned StackOffset =
10109             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
10110         State.addLoc(
10111             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10112       } else {
10113         // Can't pass scalable vectors on the stack.
10114         return true;
10115       }
10116     }
10117 
10118     return false;
10119   }
10120 
10121   return true; // CC didn't match.
10122 }
10123 
10124 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
10125                          CCValAssign::LocInfo LocInfo,
10126                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
10127 
10128   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10129     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
10130     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
10131     static const MCPhysReg GPRList[] = {
10132         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
10133         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
10134     if (unsigned Reg = State.AllocateReg(GPRList)) {
10135       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10136       return false;
10137     }
10138   }
10139 
10140   if (LocVT == MVT::f32) {
10141     // Pass in STG registers: F1, ..., F6
10142     //                        fs0 ... fs5
10143     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
10144                                           RISCV::F18_F, RISCV::F19_F,
10145                                           RISCV::F20_F, RISCV::F21_F};
10146     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10147       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10148       return false;
10149     }
10150   }
10151 
10152   if (LocVT == MVT::f64) {
10153     // Pass in STG registers: D1, ..., D6
10154     //                        fs6 ... fs11
10155     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
10156                                           RISCV::F24_D, RISCV::F25_D,
10157                                           RISCV::F26_D, RISCV::F27_D};
10158     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10159       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10160       return false;
10161     }
10162   }
10163 
10164   report_fatal_error("No registers left in GHC calling convention");
10165   return true;
10166 }
10167 
10168 // Transform physical registers into virtual registers.
10169 SDValue RISCVTargetLowering::LowerFormalArguments(
10170     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
10171     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
10172     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
10173 
10174   MachineFunction &MF = DAG.getMachineFunction();
10175 
10176   switch (CallConv) {
10177   default:
10178     report_fatal_error("Unsupported calling convention");
10179   case CallingConv::C:
10180   case CallingConv::Fast:
10181     break;
10182   case CallingConv::GHC:
10183     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
10184         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
10185       report_fatal_error(
10186         "GHC calling convention requires the F and D instruction set extensions");
10187   }
10188 
10189   const Function &Func = MF.getFunction();
10190   if (Func.hasFnAttribute("interrupt")) {
10191     if (!Func.arg_empty())
10192       report_fatal_error(
10193         "Functions with the interrupt attribute cannot have arguments!");
10194 
10195     StringRef Kind =
10196       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10197 
10198     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
10199       report_fatal_error(
10200         "Function interrupt attribute argument not supported!");
10201   }
10202 
10203   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10204   MVT XLenVT = Subtarget.getXLenVT();
10205   unsigned XLenInBytes = Subtarget.getXLen() / 8;
10206   // Used with vargs to acumulate store chains.
10207   std::vector<SDValue> OutChains;
10208 
10209   // Assign locations to all of the incoming arguments.
10210   SmallVector<CCValAssign, 16> ArgLocs;
10211   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10212 
10213   if (CallConv == CallingConv::GHC)
10214     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
10215   else
10216     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
10217                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10218                                                    : CC_RISCV);
10219 
10220   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
10221     CCValAssign &VA = ArgLocs[i];
10222     SDValue ArgValue;
10223     // Passing f64 on RV32D with a soft float ABI must be handled as a special
10224     // case.
10225     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
10226       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
10227     else if (VA.isRegLoc())
10228       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
10229     else
10230       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
10231 
10232     if (VA.getLocInfo() == CCValAssign::Indirect) {
10233       // If the original argument was split and passed by reference (e.g. i128
10234       // on RV32), we need to load all parts of it here (using the same
10235       // address). Vectors may be partly split to registers and partly to the
10236       // stack, in which case the base address is partly offset and subsequent
10237       // stores are relative to that.
10238       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
10239                                    MachinePointerInfo()));
10240       unsigned ArgIndex = Ins[i].OrigArgIndex;
10241       unsigned ArgPartOffset = Ins[i].PartOffset;
10242       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10243       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
10244         CCValAssign &PartVA = ArgLocs[i + 1];
10245         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
10246         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10247         if (PartVA.getValVT().isScalableVector())
10248           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10249         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
10250         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
10251                                      MachinePointerInfo()));
10252         ++i;
10253       }
10254       continue;
10255     }
10256     InVals.push_back(ArgValue);
10257   }
10258 
10259   if (IsVarArg) {
10260     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
10261     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
10262     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
10263     MachineFrameInfo &MFI = MF.getFrameInfo();
10264     MachineRegisterInfo &RegInfo = MF.getRegInfo();
10265     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
10266 
10267     // Offset of the first variable argument from stack pointer, and size of
10268     // the vararg save area. For now, the varargs save area is either zero or
10269     // large enough to hold a0-a7.
10270     int VaArgOffset, VarArgsSaveSize;
10271 
10272     // If all registers are allocated, then all varargs must be passed on the
10273     // stack and we don't need to save any argregs.
10274     if (ArgRegs.size() == Idx) {
10275       VaArgOffset = CCInfo.getNextStackOffset();
10276       VarArgsSaveSize = 0;
10277     } else {
10278       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
10279       VaArgOffset = -VarArgsSaveSize;
10280     }
10281 
10282     // Record the frame index of the first variable argument
10283     // which is a value necessary to VASTART.
10284     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10285     RVFI->setVarArgsFrameIndex(FI);
10286 
10287     // If saving an odd number of registers then create an extra stack slot to
10288     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
10289     // offsets to even-numbered registered remain 2*XLEN-aligned.
10290     if (Idx % 2) {
10291       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
10292       VarArgsSaveSize += XLenInBytes;
10293     }
10294 
10295     // Copy the integer registers that may have been used for passing varargs
10296     // to the vararg save area.
10297     for (unsigned I = Idx; I < ArgRegs.size();
10298          ++I, VaArgOffset += XLenInBytes) {
10299       const Register Reg = RegInfo.createVirtualRegister(RC);
10300       RegInfo.addLiveIn(ArgRegs[I], Reg);
10301       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
10302       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10303       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10304       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
10305                                    MachinePointerInfo::getFixedStack(MF, FI));
10306       cast<StoreSDNode>(Store.getNode())
10307           ->getMemOperand()
10308           ->setValue((Value *)nullptr);
10309       OutChains.push_back(Store);
10310     }
10311     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
10312   }
10313 
10314   // All stores are grouped in one node to allow the matching between
10315   // the size of Ins and InVals. This only happens for vararg functions.
10316   if (!OutChains.empty()) {
10317     OutChains.push_back(Chain);
10318     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
10319   }
10320 
10321   return Chain;
10322 }
10323 
10324 /// isEligibleForTailCallOptimization - Check whether the call is eligible
10325 /// for tail call optimization.
10326 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
10327 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
10328     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
10329     const SmallVector<CCValAssign, 16> &ArgLocs) const {
10330 
10331   auto &Callee = CLI.Callee;
10332   auto CalleeCC = CLI.CallConv;
10333   auto &Outs = CLI.Outs;
10334   auto &Caller = MF.getFunction();
10335   auto CallerCC = Caller.getCallingConv();
10336 
10337   // Exception-handling functions need a special set of instructions to
10338   // indicate a return to the hardware. Tail-calling another function would
10339   // probably break this.
10340   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
10341   // should be expanded as new function attributes are introduced.
10342   if (Caller.hasFnAttribute("interrupt"))
10343     return false;
10344 
10345   // Do not tail call opt if the stack is used to pass parameters.
10346   if (CCInfo.getNextStackOffset() != 0)
10347     return false;
10348 
10349   // Do not tail call opt if any parameters need to be passed indirectly.
10350   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
10351   // passed indirectly. So the address of the value will be passed in a
10352   // register, or if not available, then the address is put on the stack. In
10353   // order to pass indirectly, space on the stack often needs to be allocated
10354   // in order to store the value. In this case the CCInfo.getNextStackOffset()
10355   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
10356   // are passed CCValAssign::Indirect.
10357   for (auto &VA : ArgLocs)
10358     if (VA.getLocInfo() == CCValAssign::Indirect)
10359       return false;
10360 
10361   // Do not tail call opt if either caller or callee uses struct return
10362   // semantics.
10363   auto IsCallerStructRet = Caller.hasStructRetAttr();
10364   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
10365   if (IsCallerStructRet || IsCalleeStructRet)
10366     return false;
10367 
10368   // Externally-defined functions with weak linkage should not be
10369   // tail-called. The behaviour of branch instructions in this situation (as
10370   // used for tail calls) is implementation-defined, so we cannot rely on the
10371   // linker replacing the tail call with a return.
10372   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
10373     const GlobalValue *GV = G->getGlobal();
10374     if (GV->hasExternalWeakLinkage())
10375       return false;
10376   }
10377 
10378   // The callee has to preserve all registers the caller needs to preserve.
10379   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
10380   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
10381   if (CalleeCC != CallerCC) {
10382     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
10383     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
10384       return false;
10385   }
10386 
10387   // Byval parameters hand the function a pointer directly into the stack area
10388   // we want to reuse during a tail call. Working around this *is* possible
10389   // but less efficient and uglier in LowerCall.
10390   for (auto &Arg : Outs)
10391     if (Arg.Flags.isByVal())
10392       return false;
10393 
10394   return true;
10395 }
10396 
10397 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
10398   return DAG.getDataLayout().getPrefTypeAlign(
10399       VT.getTypeForEVT(*DAG.getContext()));
10400 }
10401 
10402 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
10403 // and output parameter nodes.
10404 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
10405                                        SmallVectorImpl<SDValue> &InVals) const {
10406   SelectionDAG &DAG = CLI.DAG;
10407   SDLoc &DL = CLI.DL;
10408   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
10409   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
10410   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
10411   SDValue Chain = CLI.Chain;
10412   SDValue Callee = CLI.Callee;
10413   bool &IsTailCall = CLI.IsTailCall;
10414   CallingConv::ID CallConv = CLI.CallConv;
10415   bool IsVarArg = CLI.IsVarArg;
10416   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10417   MVT XLenVT = Subtarget.getXLenVT();
10418 
10419   MachineFunction &MF = DAG.getMachineFunction();
10420 
10421   // Analyze the operands of the call, assigning locations to each operand.
10422   SmallVector<CCValAssign, 16> ArgLocs;
10423   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10424 
10425   if (CallConv == CallingConv::GHC)
10426     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
10427   else
10428     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
10429                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10430                                                     : CC_RISCV);
10431 
10432   // Check if it's really possible to do a tail call.
10433   if (IsTailCall)
10434     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
10435 
10436   if (IsTailCall)
10437     ++NumTailCalls;
10438   else if (CLI.CB && CLI.CB->isMustTailCall())
10439     report_fatal_error("failed to perform tail call elimination on a call "
10440                        "site marked musttail");
10441 
10442   // Get a count of how many bytes are to be pushed on the stack.
10443   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
10444 
10445   // Create local copies for byval args
10446   SmallVector<SDValue, 8> ByValArgs;
10447   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10448     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10449     if (!Flags.isByVal())
10450       continue;
10451 
10452     SDValue Arg = OutVals[i];
10453     unsigned Size = Flags.getByValSize();
10454     Align Alignment = Flags.getNonZeroByValAlign();
10455 
10456     int FI =
10457         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
10458     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10459     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
10460 
10461     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
10462                           /*IsVolatile=*/false,
10463                           /*AlwaysInline=*/false, IsTailCall,
10464                           MachinePointerInfo(), MachinePointerInfo());
10465     ByValArgs.push_back(FIPtr);
10466   }
10467 
10468   if (!IsTailCall)
10469     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
10470 
10471   // Copy argument values to their designated locations.
10472   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
10473   SmallVector<SDValue, 8> MemOpChains;
10474   SDValue StackPtr;
10475   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
10476     CCValAssign &VA = ArgLocs[i];
10477     SDValue ArgValue = OutVals[i];
10478     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10479 
10480     // Handle passing f64 on RV32D with a soft float ABI as a special case.
10481     bool IsF64OnRV32DSoftABI =
10482         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
10483     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
10484       SDValue SplitF64 = DAG.getNode(
10485           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
10486       SDValue Lo = SplitF64.getValue(0);
10487       SDValue Hi = SplitF64.getValue(1);
10488 
10489       Register RegLo = VA.getLocReg();
10490       RegsToPass.push_back(std::make_pair(RegLo, Lo));
10491 
10492       if (RegLo == RISCV::X17) {
10493         // Second half of f64 is passed on the stack.
10494         // Work out the address of the stack slot.
10495         if (!StackPtr.getNode())
10496           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10497         // Emit the store.
10498         MemOpChains.push_back(
10499             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
10500       } else {
10501         // Second half of f64 is passed in another GPR.
10502         assert(RegLo < RISCV::X31 && "Invalid register pair");
10503         Register RegHigh = RegLo + 1;
10504         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
10505       }
10506       continue;
10507     }
10508 
10509     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
10510     // as any other MemLoc.
10511 
10512     // Promote the value if needed.
10513     // For now, only handle fully promoted and indirect arguments.
10514     if (VA.getLocInfo() == CCValAssign::Indirect) {
10515       // Store the argument in a stack slot and pass its address.
10516       Align StackAlign =
10517           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
10518                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
10519       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
10520       // If the original argument was split (e.g. i128), we need
10521       // to store the required parts of it here (and pass just one address).
10522       // Vectors may be partly split to registers and partly to the stack, in
10523       // which case the base address is partly offset and subsequent stores are
10524       // relative to that.
10525       unsigned ArgIndex = Outs[i].OrigArgIndex;
10526       unsigned ArgPartOffset = Outs[i].PartOffset;
10527       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10528       // Calculate the total size to store. We don't have access to what we're
10529       // actually storing other than performing the loop and collecting the
10530       // info.
10531       SmallVector<std::pair<SDValue, SDValue>> Parts;
10532       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
10533         SDValue PartValue = OutVals[i + 1];
10534         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
10535         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10536         EVT PartVT = PartValue.getValueType();
10537         if (PartVT.isScalableVector())
10538           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10539         StoredSize += PartVT.getStoreSize();
10540         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
10541         Parts.push_back(std::make_pair(PartValue, Offset));
10542         ++i;
10543       }
10544       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
10545       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
10546       MemOpChains.push_back(
10547           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
10548                        MachinePointerInfo::getFixedStack(MF, FI)));
10549       for (const auto &Part : Parts) {
10550         SDValue PartValue = Part.first;
10551         SDValue PartOffset = Part.second;
10552         SDValue Address =
10553             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
10554         MemOpChains.push_back(
10555             DAG.getStore(Chain, DL, PartValue, Address,
10556                          MachinePointerInfo::getFixedStack(MF, FI)));
10557       }
10558       ArgValue = SpillSlot;
10559     } else {
10560       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
10561     }
10562 
10563     // Use local copy if it is a byval arg.
10564     if (Flags.isByVal())
10565       ArgValue = ByValArgs[j++];
10566 
10567     if (VA.isRegLoc()) {
10568       // Queue up the argument copies and emit them at the end.
10569       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
10570     } else {
10571       assert(VA.isMemLoc() && "Argument not register or memory");
10572       assert(!IsTailCall && "Tail call not allowed if stack is used "
10573                             "for passing parameters");
10574 
10575       // Work out the address of the stack slot.
10576       if (!StackPtr.getNode())
10577         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10578       SDValue Address =
10579           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
10580                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
10581 
10582       // Emit the store.
10583       MemOpChains.push_back(
10584           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
10585     }
10586   }
10587 
10588   // Join the stores, which are independent of one another.
10589   if (!MemOpChains.empty())
10590     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
10591 
10592   SDValue Glue;
10593 
10594   // Build a sequence of copy-to-reg nodes, chained and glued together.
10595   for (auto &Reg : RegsToPass) {
10596     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
10597     Glue = Chain.getValue(1);
10598   }
10599 
10600   // Validate that none of the argument registers have been marked as
10601   // reserved, if so report an error. Do the same for the return address if this
10602   // is not a tailcall.
10603   validateCCReservedRegs(RegsToPass, MF);
10604   if (!IsTailCall &&
10605       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
10606     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10607         MF.getFunction(),
10608         "Return address register required, but has been reserved."});
10609 
10610   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
10611   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
10612   // split it and then direct call can be matched by PseudoCALL.
10613   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
10614     const GlobalValue *GV = S->getGlobal();
10615 
10616     unsigned OpFlags = RISCVII::MO_CALL;
10617     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
10618       OpFlags = RISCVII::MO_PLT;
10619 
10620     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
10621   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
10622     unsigned OpFlags = RISCVII::MO_CALL;
10623 
10624     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
10625                                                  nullptr))
10626       OpFlags = RISCVII::MO_PLT;
10627 
10628     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
10629   }
10630 
10631   // The first call operand is the chain and the second is the target address.
10632   SmallVector<SDValue, 8> Ops;
10633   Ops.push_back(Chain);
10634   Ops.push_back(Callee);
10635 
10636   // Add argument registers to the end of the list so that they are
10637   // known live into the call.
10638   for (auto &Reg : RegsToPass)
10639     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
10640 
10641   if (!IsTailCall) {
10642     // Add a register mask operand representing the call-preserved registers.
10643     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
10644     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
10645     assert(Mask && "Missing call preserved mask for calling convention");
10646     Ops.push_back(DAG.getRegisterMask(Mask));
10647   }
10648 
10649   // Glue the call to the argument copies, if any.
10650   if (Glue.getNode())
10651     Ops.push_back(Glue);
10652 
10653   // Emit the call.
10654   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10655 
10656   if (IsTailCall) {
10657     MF.getFrameInfo().setHasTailCall();
10658     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
10659   }
10660 
10661   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
10662   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
10663   Glue = Chain.getValue(1);
10664 
10665   // Mark the end of the call, which is glued to the call itself.
10666   Chain = DAG.getCALLSEQ_END(Chain,
10667                              DAG.getConstant(NumBytes, DL, PtrVT, true),
10668                              DAG.getConstant(0, DL, PtrVT, true),
10669                              Glue, DL);
10670   Glue = Chain.getValue(1);
10671 
10672   // Assign locations to each value returned by this call.
10673   SmallVector<CCValAssign, 16> RVLocs;
10674   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
10675   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
10676 
10677   // Copy all of the result registers out of their specified physreg.
10678   for (auto &VA : RVLocs) {
10679     // Copy the value out
10680     SDValue RetValue =
10681         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
10682     // Glue the RetValue to the end of the call sequence
10683     Chain = RetValue.getValue(1);
10684     Glue = RetValue.getValue(2);
10685 
10686     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10687       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
10688       SDValue RetValue2 =
10689           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
10690       Chain = RetValue2.getValue(1);
10691       Glue = RetValue2.getValue(2);
10692       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
10693                              RetValue2);
10694     }
10695 
10696     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
10697 
10698     InVals.push_back(RetValue);
10699   }
10700 
10701   return Chain;
10702 }
10703 
10704 bool RISCVTargetLowering::CanLowerReturn(
10705     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
10706     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
10707   SmallVector<CCValAssign, 16> RVLocs;
10708   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
10709 
10710   Optional<unsigned> FirstMaskArgument;
10711   if (Subtarget.hasVInstructions())
10712     FirstMaskArgument = preAssignMask(Outs);
10713 
10714   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10715     MVT VT = Outs[i].VT;
10716     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10717     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10718     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
10719                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
10720                  *this, FirstMaskArgument))
10721       return false;
10722   }
10723   return true;
10724 }
10725 
10726 SDValue
10727 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
10728                                  bool IsVarArg,
10729                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
10730                                  const SmallVectorImpl<SDValue> &OutVals,
10731                                  const SDLoc &DL, SelectionDAG &DAG) const {
10732   const MachineFunction &MF = DAG.getMachineFunction();
10733   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10734 
10735   // Stores the assignment of the return value to a location.
10736   SmallVector<CCValAssign, 16> RVLocs;
10737 
10738   // Info about the registers and stack slot.
10739   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
10740                  *DAG.getContext());
10741 
10742   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
10743                     nullptr, CC_RISCV);
10744 
10745   if (CallConv == CallingConv::GHC && !RVLocs.empty())
10746     report_fatal_error("GHC functions return void only");
10747 
10748   SDValue Glue;
10749   SmallVector<SDValue, 4> RetOps(1, Chain);
10750 
10751   // Copy the result values into the output registers.
10752   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
10753     SDValue Val = OutVals[i];
10754     CCValAssign &VA = RVLocs[i];
10755     assert(VA.isRegLoc() && "Can only return in registers!");
10756 
10757     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10758       // Handle returning f64 on RV32D with a soft float ABI.
10759       assert(VA.isRegLoc() && "Expected return via registers");
10760       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
10761                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
10762       SDValue Lo = SplitF64.getValue(0);
10763       SDValue Hi = SplitF64.getValue(1);
10764       Register RegLo = VA.getLocReg();
10765       assert(RegLo < RISCV::X31 && "Invalid register pair");
10766       Register RegHi = RegLo + 1;
10767 
10768       if (STI.isRegisterReservedByUser(RegLo) ||
10769           STI.isRegisterReservedByUser(RegHi))
10770         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10771             MF.getFunction(),
10772             "Return value register required, but has been reserved."});
10773 
10774       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
10775       Glue = Chain.getValue(1);
10776       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
10777       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
10778       Glue = Chain.getValue(1);
10779       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
10780     } else {
10781       // Handle a 'normal' return.
10782       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
10783       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
10784 
10785       if (STI.isRegisterReservedByUser(VA.getLocReg()))
10786         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10787             MF.getFunction(),
10788             "Return value register required, but has been reserved."});
10789 
10790       // Guarantee that all emitted copies are stuck together.
10791       Glue = Chain.getValue(1);
10792       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
10793     }
10794   }
10795 
10796   RetOps[0] = Chain; // Update chain.
10797 
10798   // Add the glue node if we have it.
10799   if (Glue.getNode()) {
10800     RetOps.push_back(Glue);
10801   }
10802 
10803   unsigned RetOpc = RISCVISD::RET_FLAG;
10804   // Interrupt service routines use different return instructions.
10805   const Function &Func = DAG.getMachineFunction().getFunction();
10806   if (Func.hasFnAttribute("interrupt")) {
10807     if (!Func.getReturnType()->isVoidTy())
10808       report_fatal_error(
10809           "Functions with the interrupt attribute must have void return type!");
10810 
10811     MachineFunction &MF = DAG.getMachineFunction();
10812     StringRef Kind =
10813       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10814 
10815     if (Kind == "user")
10816       RetOpc = RISCVISD::URET_FLAG;
10817     else if (Kind == "supervisor")
10818       RetOpc = RISCVISD::SRET_FLAG;
10819     else
10820       RetOpc = RISCVISD::MRET_FLAG;
10821   }
10822 
10823   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
10824 }
10825 
10826 void RISCVTargetLowering::validateCCReservedRegs(
10827     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
10828     MachineFunction &MF) const {
10829   const Function &F = MF.getFunction();
10830   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10831 
10832   if (llvm::any_of(Regs, [&STI](auto Reg) {
10833         return STI.isRegisterReservedByUser(Reg.first);
10834       }))
10835     F.getContext().diagnose(DiagnosticInfoUnsupported{
10836         F, "Argument register required, but has been reserved."});
10837 }
10838 
10839 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
10840   return CI->isTailCall();
10841 }
10842 
10843 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
10844 #define NODE_NAME_CASE(NODE)                                                   \
10845   case RISCVISD::NODE:                                                         \
10846     return "RISCVISD::" #NODE;
10847   // clang-format off
10848   switch ((RISCVISD::NodeType)Opcode) {
10849   case RISCVISD::FIRST_NUMBER:
10850     break;
10851   NODE_NAME_CASE(RET_FLAG)
10852   NODE_NAME_CASE(URET_FLAG)
10853   NODE_NAME_CASE(SRET_FLAG)
10854   NODE_NAME_CASE(MRET_FLAG)
10855   NODE_NAME_CASE(CALL)
10856   NODE_NAME_CASE(SELECT_CC)
10857   NODE_NAME_CASE(BR_CC)
10858   NODE_NAME_CASE(BuildPairF64)
10859   NODE_NAME_CASE(SplitF64)
10860   NODE_NAME_CASE(TAIL)
10861   NODE_NAME_CASE(MULHSU)
10862   NODE_NAME_CASE(SLLW)
10863   NODE_NAME_CASE(SRAW)
10864   NODE_NAME_CASE(SRLW)
10865   NODE_NAME_CASE(DIVW)
10866   NODE_NAME_CASE(DIVUW)
10867   NODE_NAME_CASE(REMUW)
10868   NODE_NAME_CASE(ROLW)
10869   NODE_NAME_CASE(RORW)
10870   NODE_NAME_CASE(CLZW)
10871   NODE_NAME_CASE(CTZW)
10872   NODE_NAME_CASE(FSLW)
10873   NODE_NAME_CASE(FSRW)
10874   NODE_NAME_CASE(FSL)
10875   NODE_NAME_CASE(FSR)
10876   NODE_NAME_CASE(FMV_H_X)
10877   NODE_NAME_CASE(FMV_X_ANYEXTH)
10878   NODE_NAME_CASE(FMV_X_SIGNEXTH)
10879   NODE_NAME_CASE(FMV_W_X_RV64)
10880   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
10881   NODE_NAME_CASE(FCVT_X)
10882   NODE_NAME_CASE(FCVT_XU)
10883   NODE_NAME_CASE(FCVT_W_RV64)
10884   NODE_NAME_CASE(FCVT_WU_RV64)
10885   NODE_NAME_CASE(STRICT_FCVT_W_RV64)
10886   NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
10887   NODE_NAME_CASE(READ_CYCLE_WIDE)
10888   NODE_NAME_CASE(GREV)
10889   NODE_NAME_CASE(GREVW)
10890   NODE_NAME_CASE(GORC)
10891   NODE_NAME_CASE(GORCW)
10892   NODE_NAME_CASE(SHFL)
10893   NODE_NAME_CASE(SHFLW)
10894   NODE_NAME_CASE(UNSHFL)
10895   NODE_NAME_CASE(UNSHFLW)
10896   NODE_NAME_CASE(BFP)
10897   NODE_NAME_CASE(BFPW)
10898   NODE_NAME_CASE(BCOMPRESS)
10899   NODE_NAME_CASE(BCOMPRESSW)
10900   NODE_NAME_CASE(BDECOMPRESS)
10901   NODE_NAME_CASE(BDECOMPRESSW)
10902   NODE_NAME_CASE(VMV_V_X_VL)
10903   NODE_NAME_CASE(VFMV_V_F_VL)
10904   NODE_NAME_CASE(VMV_X_S)
10905   NODE_NAME_CASE(VMV_S_X_VL)
10906   NODE_NAME_CASE(VFMV_S_F_VL)
10907   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
10908   NODE_NAME_CASE(READ_VLENB)
10909   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
10910   NODE_NAME_CASE(VSLIDEUP_VL)
10911   NODE_NAME_CASE(VSLIDE1UP_VL)
10912   NODE_NAME_CASE(VSLIDEDOWN_VL)
10913   NODE_NAME_CASE(VSLIDE1DOWN_VL)
10914   NODE_NAME_CASE(VID_VL)
10915   NODE_NAME_CASE(VFNCVT_ROD_VL)
10916   NODE_NAME_CASE(VECREDUCE_ADD_VL)
10917   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
10918   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
10919   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
10920   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
10921   NODE_NAME_CASE(VECREDUCE_AND_VL)
10922   NODE_NAME_CASE(VECREDUCE_OR_VL)
10923   NODE_NAME_CASE(VECREDUCE_XOR_VL)
10924   NODE_NAME_CASE(VECREDUCE_FADD_VL)
10925   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
10926   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
10927   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
10928   NODE_NAME_CASE(ADD_VL)
10929   NODE_NAME_CASE(AND_VL)
10930   NODE_NAME_CASE(MUL_VL)
10931   NODE_NAME_CASE(OR_VL)
10932   NODE_NAME_CASE(SDIV_VL)
10933   NODE_NAME_CASE(SHL_VL)
10934   NODE_NAME_CASE(SREM_VL)
10935   NODE_NAME_CASE(SRA_VL)
10936   NODE_NAME_CASE(SRL_VL)
10937   NODE_NAME_CASE(SUB_VL)
10938   NODE_NAME_CASE(UDIV_VL)
10939   NODE_NAME_CASE(UREM_VL)
10940   NODE_NAME_CASE(XOR_VL)
10941   NODE_NAME_CASE(SADDSAT_VL)
10942   NODE_NAME_CASE(UADDSAT_VL)
10943   NODE_NAME_CASE(SSUBSAT_VL)
10944   NODE_NAME_CASE(USUBSAT_VL)
10945   NODE_NAME_CASE(FADD_VL)
10946   NODE_NAME_CASE(FSUB_VL)
10947   NODE_NAME_CASE(FMUL_VL)
10948   NODE_NAME_CASE(FDIV_VL)
10949   NODE_NAME_CASE(FNEG_VL)
10950   NODE_NAME_CASE(FABS_VL)
10951   NODE_NAME_CASE(FSQRT_VL)
10952   NODE_NAME_CASE(FMA_VL)
10953   NODE_NAME_CASE(FCOPYSIGN_VL)
10954   NODE_NAME_CASE(SMIN_VL)
10955   NODE_NAME_CASE(SMAX_VL)
10956   NODE_NAME_CASE(UMIN_VL)
10957   NODE_NAME_CASE(UMAX_VL)
10958   NODE_NAME_CASE(FMINNUM_VL)
10959   NODE_NAME_CASE(FMAXNUM_VL)
10960   NODE_NAME_CASE(MULHS_VL)
10961   NODE_NAME_CASE(MULHU_VL)
10962   NODE_NAME_CASE(FP_TO_SINT_VL)
10963   NODE_NAME_CASE(FP_TO_UINT_VL)
10964   NODE_NAME_CASE(SINT_TO_FP_VL)
10965   NODE_NAME_CASE(UINT_TO_FP_VL)
10966   NODE_NAME_CASE(FP_EXTEND_VL)
10967   NODE_NAME_CASE(FP_ROUND_VL)
10968   NODE_NAME_CASE(VWMUL_VL)
10969   NODE_NAME_CASE(VWMULU_VL)
10970   NODE_NAME_CASE(VWMULSU_VL)
10971   NODE_NAME_CASE(VWADD_VL)
10972   NODE_NAME_CASE(VWADDU_VL)
10973   NODE_NAME_CASE(VWSUB_VL)
10974   NODE_NAME_CASE(VWSUBU_VL)
10975   NODE_NAME_CASE(VWADD_W_VL)
10976   NODE_NAME_CASE(VWADDU_W_VL)
10977   NODE_NAME_CASE(VWSUB_W_VL)
10978   NODE_NAME_CASE(VWSUBU_W_VL)
10979   NODE_NAME_CASE(SETCC_VL)
10980   NODE_NAME_CASE(VSELECT_VL)
10981   NODE_NAME_CASE(VP_MERGE_VL)
10982   NODE_NAME_CASE(VMAND_VL)
10983   NODE_NAME_CASE(VMOR_VL)
10984   NODE_NAME_CASE(VMXOR_VL)
10985   NODE_NAME_CASE(VMCLR_VL)
10986   NODE_NAME_CASE(VMSET_VL)
10987   NODE_NAME_CASE(VRGATHER_VX_VL)
10988   NODE_NAME_CASE(VRGATHER_VV_VL)
10989   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
10990   NODE_NAME_CASE(VSEXT_VL)
10991   NODE_NAME_CASE(VZEXT_VL)
10992   NODE_NAME_CASE(VCPOP_VL)
10993   NODE_NAME_CASE(READ_CSR)
10994   NODE_NAME_CASE(WRITE_CSR)
10995   NODE_NAME_CASE(SWAP_CSR)
10996   }
10997   // clang-format on
10998   return nullptr;
10999 #undef NODE_NAME_CASE
11000 }
11001 
11002 /// getConstraintType - Given a constraint letter, return the type of
11003 /// constraint it is for this target.
11004 RISCVTargetLowering::ConstraintType
11005 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
11006   if (Constraint.size() == 1) {
11007     switch (Constraint[0]) {
11008     default:
11009       break;
11010     case 'f':
11011       return C_RegisterClass;
11012     case 'I':
11013     case 'J':
11014     case 'K':
11015       return C_Immediate;
11016     case 'A':
11017       return C_Memory;
11018     case 'S': // A symbolic address
11019       return C_Other;
11020     }
11021   } else {
11022     if (Constraint == "vr" || Constraint == "vm")
11023       return C_RegisterClass;
11024   }
11025   return TargetLowering::getConstraintType(Constraint);
11026 }
11027 
11028 std::pair<unsigned, const TargetRegisterClass *>
11029 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
11030                                                   StringRef Constraint,
11031                                                   MVT VT) const {
11032   // First, see if this is a constraint that directly corresponds to a
11033   // RISCV register class.
11034   if (Constraint.size() == 1) {
11035     switch (Constraint[0]) {
11036     case 'r':
11037       // TODO: Support fixed vectors up to XLen for P extension?
11038       if (VT.isVector())
11039         break;
11040       return std::make_pair(0U, &RISCV::GPRRegClass);
11041     case 'f':
11042       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
11043         return std::make_pair(0U, &RISCV::FPR16RegClass);
11044       if (Subtarget.hasStdExtF() && VT == MVT::f32)
11045         return std::make_pair(0U, &RISCV::FPR32RegClass);
11046       if (Subtarget.hasStdExtD() && VT == MVT::f64)
11047         return std::make_pair(0U, &RISCV::FPR64RegClass);
11048       break;
11049     default:
11050       break;
11051     }
11052   } else if (Constraint == "vr") {
11053     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
11054                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11055       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
11056         return std::make_pair(0U, RC);
11057     }
11058   } else if (Constraint == "vm") {
11059     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
11060       return std::make_pair(0U, &RISCV::VMV0RegClass);
11061   }
11062 
11063   // Clang will correctly decode the usage of register name aliases into their
11064   // official names. However, other frontends like `rustc` do not. This allows
11065   // users of these frontends to use the ABI names for registers in LLVM-style
11066   // register constraints.
11067   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
11068                                .Case("{zero}", RISCV::X0)
11069                                .Case("{ra}", RISCV::X1)
11070                                .Case("{sp}", RISCV::X2)
11071                                .Case("{gp}", RISCV::X3)
11072                                .Case("{tp}", RISCV::X4)
11073                                .Case("{t0}", RISCV::X5)
11074                                .Case("{t1}", RISCV::X6)
11075                                .Case("{t2}", RISCV::X7)
11076                                .Cases("{s0}", "{fp}", RISCV::X8)
11077                                .Case("{s1}", RISCV::X9)
11078                                .Case("{a0}", RISCV::X10)
11079                                .Case("{a1}", RISCV::X11)
11080                                .Case("{a2}", RISCV::X12)
11081                                .Case("{a3}", RISCV::X13)
11082                                .Case("{a4}", RISCV::X14)
11083                                .Case("{a5}", RISCV::X15)
11084                                .Case("{a6}", RISCV::X16)
11085                                .Case("{a7}", RISCV::X17)
11086                                .Case("{s2}", RISCV::X18)
11087                                .Case("{s3}", RISCV::X19)
11088                                .Case("{s4}", RISCV::X20)
11089                                .Case("{s5}", RISCV::X21)
11090                                .Case("{s6}", RISCV::X22)
11091                                .Case("{s7}", RISCV::X23)
11092                                .Case("{s8}", RISCV::X24)
11093                                .Case("{s9}", RISCV::X25)
11094                                .Case("{s10}", RISCV::X26)
11095                                .Case("{s11}", RISCV::X27)
11096                                .Case("{t3}", RISCV::X28)
11097                                .Case("{t4}", RISCV::X29)
11098                                .Case("{t5}", RISCV::X30)
11099                                .Case("{t6}", RISCV::X31)
11100                                .Default(RISCV::NoRegister);
11101   if (XRegFromAlias != RISCV::NoRegister)
11102     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
11103 
11104   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
11105   // TableGen record rather than the AsmName to choose registers for InlineAsm
11106   // constraints, plus we want to match those names to the widest floating point
11107   // register type available, manually select floating point registers here.
11108   //
11109   // The second case is the ABI name of the register, so that frontends can also
11110   // use the ABI names in register constraint lists.
11111   if (Subtarget.hasStdExtF()) {
11112     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
11113                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
11114                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
11115                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
11116                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
11117                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
11118                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
11119                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
11120                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
11121                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
11122                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
11123                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
11124                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
11125                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
11126                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
11127                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
11128                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
11129                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
11130                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
11131                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
11132                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
11133                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
11134                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
11135                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
11136                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
11137                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
11138                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
11139                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
11140                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
11141                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
11142                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
11143                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
11144                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
11145                         .Default(RISCV::NoRegister);
11146     if (FReg != RISCV::NoRegister) {
11147       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
11148       if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
11149         unsigned RegNo = FReg - RISCV::F0_F;
11150         unsigned DReg = RISCV::F0_D + RegNo;
11151         return std::make_pair(DReg, &RISCV::FPR64RegClass);
11152       }
11153       if (VT == MVT::f32 || VT == MVT::Other)
11154         return std::make_pair(FReg, &RISCV::FPR32RegClass);
11155       if (Subtarget.hasStdExtZfh() && VT == MVT::f16) {
11156         unsigned RegNo = FReg - RISCV::F0_F;
11157         unsigned HReg = RISCV::F0_H + RegNo;
11158         return std::make_pair(HReg, &RISCV::FPR16RegClass);
11159       }
11160     }
11161   }
11162 
11163   if (Subtarget.hasVInstructions()) {
11164     Register VReg = StringSwitch<Register>(Constraint.lower())
11165                         .Case("{v0}", RISCV::V0)
11166                         .Case("{v1}", RISCV::V1)
11167                         .Case("{v2}", RISCV::V2)
11168                         .Case("{v3}", RISCV::V3)
11169                         .Case("{v4}", RISCV::V4)
11170                         .Case("{v5}", RISCV::V5)
11171                         .Case("{v6}", RISCV::V6)
11172                         .Case("{v7}", RISCV::V7)
11173                         .Case("{v8}", RISCV::V8)
11174                         .Case("{v9}", RISCV::V9)
11175                         .Case("{v10}", RISCV::V10)
11176                         .Case("{v11}", RISCV::V11)
11177                         .Case("{v12}", RISCV::V12)
11178                         .Case("{v13}", RISCV::V13)
11179                         .Case("{v14}", RISCV::V14)
11180                         .Case("{v15}", RISCV::V15)
11181                         .Case("{v16}", RISCV::V16)
11182                         .Case("{v17}", RISCV::V17)
11183                         .Case("{v18}", RISCV::V18)
11184                         .Case("{v19}", RISCV::V19)
11185                         .Case("{v20}", RISCV::V20)
11186                         .Case("{v21}", RISCV::V21)
11187                         .Case("{v22}", RISCV::V22)
11188                         .Case("{v23}", RISCV::V23)
11189                         .Case("{v24}", RISCV::V24)
11190                         .Case("{v25}", RISCV::V25)
11191                         .Case("{v26}", RISCV::V26)
11192                         .Case("{v27}", RISCV::V27)
11193                         .Case("{v28}", RISCV::V28)
11194                         .Case("{v29}", RISCV::V29)
11195                         .Case("{v30}", RISCV::V30)
11196                         .Case("{v31}", RISCV::V31)
11197                         .Default(RISCV::NoRegister);
11198     if (VReg != RISCV::NoRegister) {
11199       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
11200         return std::make_pair(VReg, &RISCV::VMRegClass);
11201       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
11202         return std::make_pair(VReg, &RISCV::VRRegClass);
11203       for (const auto *RC :
11204            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11205         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
11206           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
11207           return std::make_pair(VReg, RC);
11208         }
11209       }
11210     }
11211   }
11212 
11213   std::pair<Register, const TargetRegisterClass *> Res =
11214       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11215 
11216   // If we picked one of the Zfinx register classes, remap it to the GPR class.
11217   // FIXME: When Zfinx is supported in CodeGen this will need to take the
11218   // Subtarget into account.
11219   if (Res.second == &RISCV::GPRF16RegClass ||
11220       Res.second == &RISCV::GPRF32RegClass ||
11221       Res.second == &RISCV::GPRF64RegClass)
11222     return std::make_pair(Res.first, &RISCV::GPRRegClass);
11223 
11224   return Res;
11225 }
11226 
11227 unsigned
11228 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
11229   // Currently only support length 1 constraints.
11230   if (ConstraintCode.size() == 1) {
11231     switch (ConstraintCode[0]) {
11232     case 'A':
11233       return InlineAsm::Constraint_A;
11234     default:
11235       break;
11236     }
11237   }
11238 
11239   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
11240 }
11241 
11242 void RISCVTargetLowering::LowerAsmOperandForConstraint(
11243     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
11244     SelectionDAG &DAG) const {
11245   // Currently only support length 1 constraints.
11246   if (Constraint.length() == 1) {
11247     switch (Constraint[0]) {
11248     case 'I':
11249       // Validate & create a 12-bit signed immediate operand.
11250       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11251         uint64_t CVal = C->getSExtValue();
11252         if (isInt<12>(CVal))
11253           Ops.push_back(
11254               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11255       }
11256       return;
11257     case 'J':
11258       // Validate & create an integer zero operand.
11259       if (auto *C = dyn_cast<ConstantSDNode>(Op))
11260         if (C->getZExtValue() == 0)
11261           Ops.push_back(
11262               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
11263       return;
11264     case 'K':
11265       // Validate & create a 5-bit unsigned immediate operand.
11266       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11267         uint64_t CVal = C->getZExtValue();
11268         if (isUInt<5>(CVal))
11269           Ops.push_back(
11270               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11271       }
11272       return;
11273     case 'S':
11274       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
11275         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
11276                                                  GA->getValueType(0)));
11277       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
11278         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
11279                                                 BA->getValueType(0)));
11280       }
11281       return;
11282     default:
11283       break;
11284     }
11285   }
11286   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11287 }
11288 
11289 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
11290                                                    Instruction *Inst,
11291                                                    AtomicOrdering Ord) const {
11292   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
11293     return Builder.CreateFence(Ord);
11294   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
11295     return Builder.CreateFence(AtomicOrdering::Release);
11296   return nullptr;
11297 }
11298 
11299 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
11300                                                     Instruction *Inst,
11301                                                     AtomicOrdering Ord) const {
11302   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
11303     return Builder.CreateFence(AtomicOrdering::Acquire);
11304   return nullptr;
11305 }
11306 
11307 TargetLowering::AtomicExpansionKind
11308 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
11309   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
11310   // point operations can't be used in an lr/sc sequence without breaking the
11311   // forward-progress guarantee.
11312   if (AI->isFloatingPointOperation())
11313     return AtomicExpansionKind::CmpXChg;
11314 
11315   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
11316   if (Size == 8 || Size == 16)
11317     return AtomicExpansionKind::MaskedIntrinsic;
11318   return AtomicExpansionKind::None;
11319 }
11320 
11321 static Intrinsic::ID
11322 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
11323   if (XLen == 32) {
11324     switch (BinOp) {
11325     default:
11326       llvm_unreachable("Unexpected AtomicRMW BinOp");
11327     case AtomicRMWInst::Xchg:
11328       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
11329     case AtomicRMWInst::Add:
11330       return Intrinsic::riscv_masked_atomicrmw_add_i32;
11331     case AtomicRMWInst::Sub:
11332       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
11333     case AtomicRMWInst::Nand:
11334       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
11335     case AtomicRMWInst::Max:
11336       return Intrinsic::riscv_masked_atomicrmw_max_i32;
11337     case AtomicRMWInst::Min:
11338       return Intrinsic::riscv_masked_atomicrmw_min_i32;
11339     case AtomicRMWInst::UMax:
11340       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
11341     case AtomicRMWInst::UMin:
11342       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
11343     }
11344   }
11345 
11346   if (XLen == 64) {
11347     switch (BinOp) {
11348     default:
11349       llvm_unreachable("Unexpected AtomicRMW BinOp");
11350     case AtomicRMWInst::Xchg:
11351       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
11352     case AtomicRMWInst::Add:
11353       return Intrinsic::riscv_masked_atomicrmw_add_i64;
11354     case AtomicRMWInst::Sub:
11355       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
11356     case AtomicRMWInst::Nand:
11357       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
11358     case AtomicRMWInst::Max:
11359       return Intrinsic::riscv_masked_atomicrmw_max_i64;
11360     case AtomicRMWInst::Min:
11361       return Intrinsic::riscv_masked_atomicrmw_min_i64;
11362     case AtomicRMWInst::UMax:
11363       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
11364     case AtomicRMWInst::UMin:
11365       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
11366     }
11367   }
11368 
11369   llvm_unreachable("Unexpected XLen\n");
11370 }
11371 
11372 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
11373     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
11374     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
11375   unsigned XLen = Subtarget.getXLen();
11376   Value *Ordering =
11377       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
11378   Type *Tys[] = {AlignedAddr->getType()};
11379   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
11380       AI->getModule(),
11381       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
11382 
11383   if (XLen == 64) {
11384     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
11385     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11386     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
11387   }
11388 
11389   Value *Result;
11390 
11391   // Must pass the shift amount needed to sign extend the loaded value prior
11392   // to performing a signed comparison for min/max. ShiftAmt is the number of
11393   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
11394   // is the number of bits to left+right shift the value in order to
11395   // sign-extend.
11396   if (AI->getOperation() == AtomicRMWInst::Min ||
11397       AI->getOperation() == AtomicRMWInst::Max) {
11398     const DataLayout &DL = AI->getModule()->getDataLayout();
11399     unsigned ValWidth =
11400         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
11401     Value *SextShamt =
11402         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
11403     Result = Builder.CreateCall(LrwOpScwLoop,
11404                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
11405   } else {
11406     Result =
11407         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
11408   }
11409 
11410   if (XLen == 64)
11411     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11412   return Result;
11413 }
11414 
11415 TargetLowering::AtomicExpansionKind
11416 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
11417     AtomicCmpXchgInst *CI) const {
11418   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
11419   if (Size == 8 || Size == 16)
11420     return AtomicExpansionKind::MaskedIntrinsic;
11421   return AtomicExpansionKind::None;
11422 }
11423 
11424 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
11425     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
11426     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
11427   unsigned XLen = Subtarget.getXLen();
11428   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
11429   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
11430   if (XLen == 64) {
11431     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
11432     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
11433     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11434     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
11435   }
11436   Type *Tys[] = {AlignedAddr->getType()};
11437   Function *MaskedCmpXchg =
11438       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
11439   Value *Result = Builder.CreateCall(
11440       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
11441   if (XLen == 64)
11442     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11443   return Result;
11444 }
11445 
11446 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
11447   return false;
11448 }
11449 
11450 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
11451                                                EVT VT) const {
11452   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
11453     return false;
11454 
11455   switch (FPVT.getSimpleVT().SimpleTy) {
11456   case MVT::f16:
11457     return Subtarget.hasStdExtZfh();
11458   case MVT::f32:
11459     return Subtarget.hasStdExtF();
11460   case MVT::f64:
11461     return Subtarget.hasStdExtD();
11462   default:
11463     return false;
11464   }
11465 }
11466 
11467 unsigned RISCVTargetLowering::getJumpTableEncoding() const {
11468   // If we are using the small code model, we can reduce size of jump table
11469   // entry to 4 bytes.
11470   if (Subtarget.is64Bit() && !isPositionIndependent() &&
11471       getTargetMachine().getCodeModel() == CodeModel::Small) {
11472     return MachineJumpTableInfo::EK_Custom32;
11473   }
11474   return TargetLowering::getJumpTableEncoding();
11475 }
11476 
11477 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
11478     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
11479     unsigned uid, MCContext &Ctx) const {
11480   assert(Subtarget.is64Bit() && !isPositionIndependent() &&
11481          getTargetMachine().getCodeModel() == CodeModel::Small);
11482   return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
11483 }
11484 
11485 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
11486                                                      EVT VT) const {
11487   VT = VT.getScalarType();
11488 
11489   if (!VT.isSimple())
11490     return false;
11491 
11492   switch (VT.getSimpleVT().SimpleTy) {
11493   case MVT::f16:
11494     return Subtarget.hasStdExtZfh();
11495   case MVT::f32:
11496     return Subtarget.hasStdExtF();
11497   case MVT::f64:
11498     return Subtarget.hasStdExtD();
11499   default:
11500     break;
11501   }
11502 
11503   return false;
11504 }
11505 
11506 Register RISCVTargetLowering::getExceptionPointerRegister(
11507     const Constant *PersonalityFn) const {
11508   return RISCV::X10;
11509 }
11510 
11511 Register RISCVTargetLowering::getExceptionSelectorRegister(
11512     const Constant *PersonalityFn) const {
11513   return RISCV::X11;
11514 }
11515 
11516 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
11517   // Return false to suppress the unnecessary extensions if the LibCall
11518   // arguments or return value is f32 type for LP64 ABI.
11519   RISCVABI::ABI ABI = Subtarget.getTargetABI();
11520   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
11521     return false;
11522 
11523   return true;
11524 }
11525 
11526 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
11527   if (Subtarget.is64Bit() && Type == MVT::i32)
11528     return true;
11529 
11530   return IsSigned;
11531 }
11532 
11533 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
11534                                                  SDValue C) const {
11535   // Check integral scalar types.
11536   if (VT.isScalarInteger()) {
11537     // Omit the optimization if the sub target has the M extension and the data
11538     // size exceeds XLen.
11539     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
11540       return false;
11541     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
11542       // Break the MUL to a SLLI and an ADD/SUB.
11543       const APInt &Imm = ConstNode->getAPIntValue();
11544       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
11545           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
11546         return true;
11547       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
11548       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
11549           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
11550            (Imm - 8).isPowerOf2()))
11551         return true;
11552       // Omit the following optimization if the sub target has the M extension
11553       // and the data size >= XLen.
11554       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
11555         return false;
11556       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
11557       // a pair of LUI/ADDI.
11558       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
11559         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
11560         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
11561             (1 - ImmS).isPowerOf2())
11562         return true;
11563       }
11564     }
11565   }
11566 
11567   return false;
11568 }
11569 
11570 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
11571                                                       SDValue ConstNode) const {
11572   // Let the DAGCombiner decide for vectors.
11573   EVT VT = AddNode.getValueType();
11574   if (VT.isVector())
11575     return true;
11576 
11577   // Let the DAGCombiner decide for larger types.
11578   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
11579     return true;
11580 
11581   // It is worse if c1 is simm12 while c1*c2 is not.
11582   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
11583   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
11584   const APInt &C1 = C1Node->getAPIntValue();
11585   const APInt &C2 = C2Node->getAPIntValue();
11586   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
11587     return false;
11588 
11589   // Default to true and let the DAGCombiner decide.
11590   return true;
11591 }
11592 
11593 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
11594     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
11595     bool *Fast) const {
11596   if (!VT.isVector())
11597     return false;
11598 
11599   EVT ElemVT = VT.getVectorElementType();
11600   if (Alignment >= ElemVT.getStoreSize()) {
11601     if (Fast)
11602       *Fast = true;
11603     return true;
11604   }
11605 
11606   return false;
11607 }
11608 
11609 bool RISCVTargetLowering::splitValueIntoRegisterParts(
11610     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
11611     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
11612   bool IsABIRegCopy = CC.hasValue();
11613   EVT ValueVT = Val.getValueType();
11614   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11615     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
11616     // and cast to f32.
11617     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
11618     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
11619     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
11620                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
11621     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
11622     Parts[0] = Val;
11623     return true;
11624   }
11625 
11626   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11627     LLVMContext &Context = *DAG.getContext();
11628     EVT ValueEltVT = ValueVT.getVectorElementType();
11629     EVT PartEltVT = PartVT.getVectorElementType();
11630     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11631     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11632     if (PartVTBitSize % ValueVTBitSize == 0) {
11633       assert(PartVTBitSize >= ValueVTBitSize);
11634       // If the element types are different, bitcast to the same element type of
11635       // PartVT first.
11636       // Give an example here, we want copy a <vscale x 1 x i8> value to
11637       // <vscale x 4 x i16>.
11638       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
11639       // subvector, then we can bitcast to <vscale x 4 x i16>.
11640       if (ValueEltVT != PartEltVT) {
11641         if (PartVTBitSize > ValueVTBitSize) {
11642           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11643           assert(Count != 0 && "The number of element should not be zero.");
11644           EVT SameEltTypeVT =
11645               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11646           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
11647                             DAG.getUNDEF(SameEltTypeVT), Val,
11648                             DAG.getVectorIdxConstant(0, DL));
11649         }
11650         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
11651       } else {
11652         Val =
11653             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
11654                         Val, DAG.getVectorIdxConstant(0, DL));
11655       }
11656       Parts[0] = Val;
11657       return true;
11658     }
11659   }
11660   return false;
11661 }
11662 
11663 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
11664     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
11665     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
11666   bool IsABIRegCopy = CC.hasValue();
11667   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11668     SDValue Val = Parts[0];
11669 
11670     // Cast the f32 to i32, truncate to i16, and cast back to f16.
11671     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
11672     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
11673     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
11674     return Val;
11675   }
11676 
11677   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11678     LLVMContext &Context = *DAG.getContext();
11679     SDValue Val = Parts[0];
11680     EVT ValueEltVT = ValueVT.getVectorElementType();
11681     EVT PartEltVT = PartVT.getVectorElementType();
11682     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11683     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11684     if (PartVTBitSize % ValueVTBitSize == 0) {
11685       assert(PartVTBitSize >= ValueVTBitSize);
11686       EVT SameEltTypeVT = ValueVT;
11687       // If the element types are different, convert it to the same element type
11688       // of PartVT.
11689       // Give an example here, we want copy a <vscale x 1 x i8> value from
11690       // <vscale x 4 x i16>.
11691       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
11692       // then we can extract <vscale x 1 x i8>.
11693       if (ValueEltVT != PartEltVT) {
11694         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11695         assert(Count != 0 && "The number of element should not be zero.");
11696         SameEltTypeVT =
11697             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11698         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
11699       }
11700       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
11701                         DAG.getVectorIdxConstant(0, DL));
11702       return Val;
11703     }
11704   }
11705   return SDValue();
11706 }
11707 
11708 SDValue
11709 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
11710                                    SelectionDAG &DAG,
11711                                    SmallVectorImpl<SDNode *> &Created) const {
11712   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
11713   if (isIntDivCheap(N->getValueType(0), Attr))
11714     return SDValue(N, 0); // Lower SDIV as SDIV
11715 
11716   assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) &&
11717          "Unexpected divisor!");
11718 
11719   // Conditional move is needed, so do the transformation iff Zbt is enabled.
11720   if (!Subtarget.hasStdExtZbt())
11721     return SDValue();
11722 
11723   // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation.
11724   // Besides, more critical path instructions will be generated when dividing
11725   // by 2. So we keep using the original DAGs for these cases.
11726   unsigned Lg2 = Divisor.countTrailingZeros();
11727   if (Lg2 == 1 || Lg2 >= 12)
11728     return SDValue();
11729 
11730   // fold (sdiv X, pow2)
11731   EVT VT = N->getValueType(0);
11732   if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64))
11733     return SDValue();
11734 
11735   SDLoc DL(N);
11736   SDValue N0 = N->getOperand(0);
11737   SDValue Zero = DAG.getConstant(0, DL, VT);
11738   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
11739 
11740   // Add (N0 < 0) ? Pow2 - 1 : 0;
11741   SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT);
11742   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
11743   SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
11744 
11745   Created.push_back(Cmp.getNode());
11746   Created.push_back(Add.getNode());
11747   Created.push_back(Sel.getNode());
11748 
11749   // Divide by pow2.
11750   SDValue SRA =
11751       DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT));
11752 
11753   // If we're dividing by a positive value, we're done.  Otherwise, we must
11754   // negate the result.
11755   if (Divisor.isNonNegative())
11756     return SRA;
11757 
11758   Created.push_back(SRA.getNode());
11759   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
11760 }
11761 
11762 #define GET_REGISTER_MATCHER
11763 #include "RISCVGenAsmMatcher.inc"
11764 
11765 Register
11766 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
11767                                        const MachineFunction &MF) const {
11768   Register Reg = MatchRegisterAltName(RegName);
11769   if (Reg == RISCV::NoRegister)
11770     Reg = MatchRegisterName(RegName);
11771   if (Reg == RISCV::NoRegister)
11772     report_fatal_error(
11773         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
11774   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
11775   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
11776     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
11777                              StringRef(RegName) + "\"."));
11778   return Reg;
11779 }
11780 
11781 namespace llvm {
11782 namespace RISCVVIntrinsicsTable {
11783 
11784 #define GET_RISCVVIntrinsicsTable_IMPL
11785 #include "RISCVGenSearchableTables.inc"
11786 
11787 } // namespace RISCVVIntrinsicsTable
11788 
11789 } // namespace llvm
11790