1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "RISCV.h" 16 #include "RISCVMachineFunctionInfo.h" 17 #include "RISCVRegisterInfo.h" 18 #include "RISCVSubtarget.h" 19 #include "RISCVTargetMachine.h" 20 #include "Utils/RISCVMatInt.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IntrinsicsRISCV.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/raw_ostream.h" 37 38 using namespace llvm; 39 40 #define DEBUG_TYPE "riscv-lower" 41 42 STATISTIC(NumTailCalls, "Number of tail calls"); 43 44 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 45 const RISCVSubtarget &STI) 46 : TargetLowering(TM), Subtarget(STI) { 47 48 if (Subtarget.isRV32E()) 49 report_fatal_error("Codegen not yet implemented for RV32E"); 50 51 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 52 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 53 54 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 55 !Subtarget.hasStdExtF()) { 56 errs() << "Hard-float 'f' ABI can't be used for a target that " 57 "doesn't support the F instruction set extension (ignoring " 58 "target-abi)\n"; 59 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 60 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 61 !Subtarget.hasStdExtD()) { 62 errs() << "Hard-float 'd' ABI can't be used for a target that " 63 "doesn't support the D instruction set extension (ignoring " 64 "target-abi)\n"; 65 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 66 } 67 68 switch (ABI) { 69 default: 70 report_fatal_error("Don't know how to lower this ABI"); 71 case RISCVABI::ABI_ILP32: 72 case RISCVABI::ABI_ILP32F: 73 case RISCVABI::ABI_ILP32D: 74 case RISCVABI::ABI_LP64: 75 case RISCVABI::ABI_LP64F: 76 case RISCVABI::ABI_LP64D: 77 break; 78 } 79 80 MVT XLenVT = Subtarget.getXLenVT(); 81 82 // Set up the register classes. 83 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 84 85 if (Subtarget.hasStdExtF()) 86 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 87 if (Subtarget.hasStdExtD()) 88 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 89 90 // Compute derived properties from the register classes. 91 computeRegisterProperties(STI.getRegisterInfo()); 92 93 setStackPointerRegisterToSaveRestore(RISCV::X2); 94 95 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 96 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 97 98 // TODO: add all necessary setOperationAction calls. 99 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 100 101 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 102 setOperationAction(ISD::BR_CC, XLenVT, Expand); 103 setOperationAction(ISD::SELECT, XLenVT, Custom); 104 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 105 106 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 107 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 108 109 setOperationAction(ISD::VASTART, MVT::Other, Custom); 110 setOperationAction(ISD::VAARG, MVT::Other, Expand); 111 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 112 setOperationAction(ISD::VAEND, MVT::Other, Expand); 113 114 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 115 if (!Subtarget.hasStdExtZbb()) { 116 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 117 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 118 } 119 120 if (Subtarget.is64Bit()) { 121 setOperationAction(ISD::ADD, MVT::i32, Custom); 122 setOperationAction(ISD::SUB, MVT::i32, Custom); 123 setOperationAction(ISD::SHL, MVT::i32, Custom); 124 setOperationAction(ISD::SRA, MVT::i32, Custom); 125 setOperationAction(ISD::SRL, MVT::i32, Custom); 126 } 127 128 if (!Subtarget.hasStdExtM()) { 129 setOperationAction(ISD::MUL, XLenVT, Expand); 130 setOperationAction(ISD::MULHS, XLenVT, Expand); 131 setOperationAction(ISD::MULHU, XLenVT, Expand); 132 setOperationAction(ISD::SDIV, XLenVT, Expand); 133 setOperationAction(ISD::UDIV, XLenVT, Expand); 134 setOperationAction(ISD::SREM, XLenVT, Expand); 135 setOperationAction(ISD::UREM, XLenVT, Expand); 136 } 137 138 if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) { 139 setOperationAction(ISD::MUL, MVT::i32, Custom); 140 setOperationAction(ISD::SDIV, MVT::i32, Custom); 141 setOperationAction(ISD::UDIV, MVT::i32, Custom); 142 setOperationAction(ISD::UREM, MVT::i32, Custom); 143 } 144 145 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 146 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 147 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 148 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 149 150 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 151 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 152 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 153 154 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 155 if (Subtarget.is64Bit()) { 156 setOperationAction(ISD::ROTL, MVT::i32, Custom); 157 setOperationAction(ISD::ROTR, MVT::i32, Custom); 158 } 159 } else { 160 setOperationAction(ISD::ROTL, XLenVT, Expand); 161 setOperationAction(ISD::ROTR, XLenVT, Expand); 162 } 163 164 if (Subtarget.hasStdExtZbp()) { 165 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 166 setOperationAction(ISD::BSWAP, XLenVT, Custom); 167 168 if (Subtarget.is64Bit()) { 169 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 170 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 171 } 172 } else { 173 setOperationAction(ISD::BSWAP, XLenVT, Expand); 174 } 175 176 if (Subtarget.hasStdExtZbb()) { 177 setOperationAction(ISD::SMIN, XLenVT, Legal); 178 setOperationAction(ISD::SMAX, XLenVT, Legal); 179 setOperationAction(ISD::UMIN, XLenVT, Legal); 180 setOperationAction(ISD::UMAX, XLenVT, Legal); 181 } else { 182 setOperationAction(ISD::CTTZ, XLenVT, Expand); 183 setOperationAction(ISD::CTLZ, XLenVT, Expand); 184 setOperationAction(ISD::CTPOP, XLenVT, Expand); 185 } 186 187 if (Subtarget.hasStdExtZbt()) { 188 setOperationAction(ISD::FSHL, XLenVT, Legal); 189 setOperationAction(ISD::FSHR, XLenVT, Legal); 190 191 if (Subtarget.is64Bit()) { 192 setOperationAction(ISD::FSHL, MVT::i32, Custom); 193 setOperationAction(ISD::FSHR, MVT::i32, Custom); 194 } 195 } 196 197 ISD::CondCode FPCCToExtend[] = { 198 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 199 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 200 ISD::SETGE, ISD::SETNE}; 201 202 ISD::NodeType FPOpToExtend[] = { 203 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 204 ISD::FP_TO_FP16}; 205 206 if (Subtarget.hasStdExtF()) { 207 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 208 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 209 for (auto CC : FPCCToExtend) 210 setCondCodeAction(CC, MVT::f32, Expand); 211 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 212 setOperationAction(ISD::SELECT, MVT::f32, Custom); 213 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 214 for (auto Op : FPOpToExtend) 215 setOperationAction(Op, MVT::f32, Expand); 216 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 217 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 218 } 219 220 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 221 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 222 223 if (Subtarget.hasStdExtD()) { 224 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 225 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 226 for (auto CC : FPCCToExtend) 227 setCondCodeAction(CC, MVT::f64, Expand); 228 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 229 setOperationAction(ISD::SELECT, MVT::f64, Custom); 230 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 231 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 232 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 233 for (auto Op : FPOpToExtend) 234 setOperationAction(Op, MVT::f64, Expand); 235 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 236 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 237 } 238 239 if (Subtarget.is64Bit()) { 240 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 241 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 242 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 243 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 244 } 245 246 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 247 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 248 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 249 250 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 251 252 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 253 // Unfortunately this can't be determined just from the ISA naming string. 254 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 255 Subtarget.is64Bit() ? Legal : Custom); 256 257 setOperationAction(ISD::TRAP, MVT::Other, Legal); 258 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 259 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 260 261 if (Subtarget.hasStdExtA()) { 262 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 263 setMinCmpXchgSizeInBits(32); 264 } else { 265 setMaxAtomicSizeInBitsSupported(0); 266 } 267 268 setBooleanContents(ZeroOrOneBooleanContent); 269 270 // Function alignments. 271 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 272 setMinFunctionAlignment(FunctionAlignment); 273 setPrefFunctionAlignment(FunctionAlignment); 274 275 // Effectively disable jump table generation. 276 setMinimumJumpTableEntries(INT_MAX); 277 278 // Jumps are expensive, compared to logic 279 setJumpIsExpensive(); 280 281 // We can use any register for comparisons 282 setHasMultipleConditionRegisters(); 283 284 if (Subtarget.hasStdExtZbp()) { 285 setTargetDAGCombine(ISD::OR); 286 } 287 } 288 289 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, 290 EVT VT) const { 291 if (!VT.isVector()) 292 return getPointerTy(DL); 293 return VT.changeVectorElementTypeToInteger(); 294 } 295 296 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 297 const CallInst &I, 298 MachineFunction &MF, 299 unsigned Intrinsic) const { 300 switch (Intrinsic) { 301 default: 302 return false; 303 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 304 case Intrinsic::riscv_masked_atomicrmw_add_i32: 305 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 306 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 307 case Intrinsic::riscv_masked_atomicrmw_max_i32: 308 case Intrinsic::riscv_masked_atomicrmw_min_i32: 309 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 310 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 311 case Intrinsic::riscv_masked_cmpxchg_i32: 312 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 313 Info.opc = ISD::INTRINSIC_W_CHAIN; 314 Info.memVT = MVT::getVT(PtrTy->getElementType()); 315 Info.ptrVal = I.getArgOperand(0); 316 Info.offset = 0; 317 Info.align = Align(4); 318 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 319 MachineMemOperand::MOVolatile; 320 return true; 321 } 322 } 323 324 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 325 const AddrMode &AM, Type *Ty, 326 unsigned AS, 327 Instruction *I) const { 328 // No global is ever allowed as a base. 329 if (AM.BaseGV) 330 return false; 331 332 // Require a 12-bit signed offset. 333 if (!isInt<12>(AM.BaseOffs)) 334 return false; 335 336 switch (AM.Scale) { 337 case 0: // "r+i" or just "i", depending on HasBaseReg. 338 break; 339 case 1: 340 if (!AM.HasBaseReg) // allow "r+i". 341 break; 342 return false; // disallow "r+r" or "r+r+i". 343 default: 344 return false; 345 } 346 347 return true; 348 } 349 350 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 351 return isInt<12>(Imm); 352 } 353 354 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 355 return isInt<12>(Imm); 356 } 357 358 // On RV32, 64-bit integers are split into their high and low parts and held 359 // in two different registers, so the trunc is free since the low register can 360 // just be used. 361 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 362 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 363 return false; 364 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 365 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 366 return (SrcBits == 64 && DestBits == 32); 367 } 368 369 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 370 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 371 !SrcVT.isInteger() || !DstVT.isInteger()) 372 return false; 373 unsigned SrcBits = SrcVT.getSizeInBits(); 374 unsigned DestBits = DstVT.getSizeInBits(); 375 return (SrcBits == 64 && DestBits == 32); 376 } 377 378 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 379 // Zexts are free if they can be combined with a load. 380 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 381 EVT MemVT = LD->getMemoryVT(); 382 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 383 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 384 (LD->getExtensionType() == ISD::NON_EXTLOAD || 385 LD->getExtensionType() == ISD::ZEXTLOAD)) 386 return true; 387 } 388 389 return TargetLowering::isZExtFree(Val, VT2); 390 } 391 392 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 393 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 394 } 395 396 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 397 return Subtarget.hasStdExtZbb(); 398 } 399 400 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 401 return Subtarget.hasStdExtZbb(); 402 } 403 404 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 405 bool ForCodeSize) const { 406 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 407 return false; 408 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 409 return false; 410 if (Imm.isNegZero()) 411 return false; 412 return Imm.isZero(); 413 } 414 415 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 416 return (VT == MVT::f32 && Subtarget.hasStdExtF()) || 417 (VT == MVT::f64 && Subtarget.hasStdExtD()); 418 } 419 420 // Changes the condition code and swaps operands if necessary, so the SetCC 421 // operation matches one of the comparisons supported directly in the RISC-V 422 // ISA. 423 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { 424 switch (CC) { 425 default: 426 break; 427 case ISD::SETGT: 428 case ISD::SETLE: 429 case ISD::SETUGT: 430 case ISD::SETULE: 431 CC = ISD::getSetCCSwappedOperands(CC); 432 std::swap(LHS, RHS); 433 break; 434 } 435 } 436 437 // Return the RISC-V branch opcode that matches the given DAG integer 438 // condition code. The CondCode must be one of those supported by the RISC-V 439 // ISA (see normaliseSetCC). 440 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 441 switch (CC) { 442 default: 443 llvm_unreachable("Unsupported CondCode"); 444 case ISD::SETEQ: 445 return RISCV::BEQ; 446 case ISD::SETNE: 447 return RISCV::BNE; 448 case ISD::SETLT: 449 return RISCV::BLT; 450 case ISD::SETGE: 451 return RISCV::BGE; 452 case ISD::SETULT: 453 return RISCV::BLTU; 454 case ISD::SETUGE: 455 return RISCV::BGEU; 456 } 457 } 458 459 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 460 SelectionDAG &DAG) const { 461 switch (Op.getOpcode()) { 462 default: 463 report_fatal_error("unimplemented operand"); 464 case ISD::GlobalAddress: 465 return lowerGlobalAddress(Op, DAG); 466 case ISD::BlockAddress: 467 return lowerBlockAddress(Op, DAG); 468 case ISD::ConstantPool: 469 return lowerConstantPool(Op, DAG); 470 case ISD::GlobalTLSAddress: 471 return lowerGlobalTLSAddress(Op, DAG); 472 case ISD::SELECT: 473 return lowerSELECT(Op, DAG); 474 case ISD::VASTART: 475 return lowerVASTART(Op, DAG); 476 case ISD::FRAMEADDR: 477 return lowerFRAMEADDR(Op, DAG); 478 case ISD::RETURNADDR: 479 return lowerRETURNADDR(Op, DAG); 480 case ISD::SHL_PARTS: 481 return lowerShiftLeftParts(Op, DAG); 482 case ISD::SRA_PARTS: 483 return lowerShiftRightParts(Op, DAG, true); 484 case ISD::SRL_PARTS: 485 return lowerShiftRightParts(Op, DAG, false); 486 case ISD::BITCAST: { 487 assert(Subtarget.is64Bit() && Subtarget.hasStdExtF() && 488 "Unexpected custom legalisation"); 489 SDLoc DL(Op); 490 SDValue Op0 = Op.getOperand(0); 491 if (Op.getValueType() != MVT::f32 || Op0.getValueType() != MVT::i32) 492 return SDValue(); 493 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 494 SDValue FPConv = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 495 return FPConv; 496 } 497 case ISD::INTRINSIC_WO_CHAIN: 498 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 499 case ISD::BSWAP: 500 case ISD::BITREVERSE: { 501 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 502 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 503 MVT VT = Op.getSimpleValueType(); 504 SDLoc DL(Op); 505 // Start with the maximum immediate value which is the bitwidth - 1. 506 unsigned Imm = VT.getSizeInBits() - 1; 507 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 508 if (Op.getOpcode() == ISD::BSWAP) 509 Imm &= ~0x7U; 510 return DAG.getNode(RISCVISD::GREVI, DL, VT, Op.getOperand(0), 511 DAG.getTargetConstant(Imm, DL, Subtarget.getXLenVT())); 512 } 513 } 514 } 515 516 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 517 SelectionDAG &DAG, unsigned Flags) { 518 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 519 } 520 521 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 522 SelectionDAG &DAG, unsigned Flags) { 523 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 524 Flags); 525 } 526 527 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 528 SelectionDAG &DAG, unsigned Flags) { 529 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 530 N->getOffset(), Flags); 531 } 532 533 template <class NodeTy> 534 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 535 bool IsLocal) const { 536 SDLoc DL(N); 537 EVT Ty = getPointerTy(DAG.getDataLayout()); 538 539 if (isPositionIndependent()) { 540 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 541 if (IsLocal) 542 // Use PC-relative addressing to access the symbol. This generates the 543 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 544 // %pcrel_lo(auipc)). 545 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 546 547 // Use PC-relative addressing to access the GOT for this symbol, then load 548 // the address from the GOT. This generates the pattern (PseudoLA sym), 549 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 550 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 551 } 552 553 switch (getTargetMachine().getCodeModel()) { 554 default: 555 report_fatal_error("Unsupported code model for lowering"); 556 case CodeModel::Small: { 557 // Generate a sequence for accessing addresses within the first 2 GiB of 558 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 559 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 560 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 561 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 562 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 563 } 564 case CodeModel::Medium: { 565 // Generate a sequence for accessing addresses within any 2GiB range within 566 // the address space. This generates the pattern (PseudoLLA sym), which 567 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 568 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 569 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 570 } 571 } 572 } 573 574 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 575 SelectionDAG &DAG) const { 576 SDLoc DL(Op); 577 EVT Ty = Op.getValueType(); 578 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 579 int64_t Offset = N->getOffset(); 580 MVT XLenVT = Subtarget.getXLenVT(); 581 582 const GlobalValue *GV = N->getGlobal(); 583 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 584 SDValue Addr = getAddr(N, DAG, IsLocal); 585 586 // In order to maximise the opportunity for common subexpression elimination, 587 // emit a separate ADD node for the global address offset instead of folding 588 // it in the global address node. Later peephole optimisations may choose to 589 // fold it back in when profitable. 590 if (Offset != 0) 591 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 592 DAG.getConstant(Offset, DL, XLenVT)); 593 return Addr; 594 } 595 596 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 597 SelectionDAG &DAG) const { 598 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 599 600 return getAddr(N, DAG); 601 } 602 603 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 604 SelectionDAG &DAG) const { 605 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 606 607 return getAddr(N, DAG); 608 } 609 610 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 611 SelectionDAG &DAG, 612 bool UseGOT) const { 613 SDLoc DL(N); 614 EVT Ty = getPointerTy(DAG.getDataLayout()); 615 const GlobalValue *GV = N->getGlobal(); 616 MVT XLenVT = Subtarget.getXLenVT(); 617 618 if (UseGOT) { 619 // Use PC-relative addressing to access the GOT for this TLS symbol, then 620 // load the address from the GOT and add the thread pointer. This generates 621 // the pattern (PseudoLA_TLS_IE sym), which expands to 622 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 623 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 624 SDValue Load = 625 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 626 627 // Add the thread pointer. 628 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 629 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 630 } 631 632 // Generate a sequence for accessing the address relative to the thread 633 // pointer, with the appropriate adjustment for the thread pointer offset. 634 // This generates the pattern 635 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 636 SDValue AddrHi = 637 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 638 SDValue AddrAdd = 639 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 640 SDValue AddrLo = 641 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 642 643 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 644 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 645 SDValue MNAdd = SDValue( 646 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 647 0); 648 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 649 } 650 651 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 652 SelectionDAG &DAG) const { 653 SDLoc DL(N); 654 EVT Ty = getPointerTy(DAG.getDataLayout()); 655 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 656 const GlobalValue *GV = N->getGlobal(); 657 658 // Use a PC-relative addressing mode to access the global dynamic GOT address. 659 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 660 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 661 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 662 SDValue Load = 663 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 664 665 // Prepare argument list to generate call. 666 ArgListTy Args; 667 ArgListEntry Entry; 668 Entry.Node = Load; 669 Entry.Ty = CallTy; 670 Args.push_back(Entry); 671 672 // Setup call to __tls_get_addr. 673 TargetLowering::CallLoweringInfo CLI(DAG); 674 CLI.setDebugLoc(DL) 675 .setChain(DAG.getEntryNode()) 676 .setLibCallee(CallingConv::C, CallTy, 677 DAG.getExternalSymbol("__tls_get_addr", Ty), 678 std::move(Args)); 679 680 return LowerCallTo(CLI).first; 681 } 682 683 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 684 SelectionDAG &DAG) const { 685 SDLoc DL(Op); 686 EVT Ty = Op.getValueType(); 687 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 688 int64_t Offset = N->getOffset(); 689 MVT XLenVT = Subtarget.getXLenVT(); 690 691 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 692 693 if (DAG.getMachineFunction().getFunction().getCallingConv() == 694 CallingConv::GHC) 695 report_fatal_error("In GHC calling convention TLS is not supported"); 696 697 SDValue Addr; 698 switch (Model) { 699 case TLSModel::LocalExec: 700 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 701 break; 702 case TLSModel::InitialExec: 703 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 704 break; 705 case TLSModel::LocalDynamic: 706 case TLSModel::GeneralDynamic: 707 Addr = getDynamicTLSAddr(N, DAG); 708 break; 709 } 710 711 // In order to maximise the opportunity for common subexpression elimination, 712 // emit a separate ADD node for the global address offset instead of folding 713 // it in the global address node. Later peephole optimisations may choose to 714 // fold it back in when profitable. 715 if (Offset != 0) 716 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 717 DAG.getConstant(Offset, DL, XLenVT)); 718 return Addr; 719 } 720 721 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 722 SDValue CondV = Op.getOperand(0); 723 SDValue TrueV = Op.getOperand(1); 724 SDValue FalseV = Op.getOperand(2); 725 SDLoc DL(Op); 726 MVT XLenVT = Subtarget.getXLenVT(); 727 728 // If the result type is XLenVT and CondV is the output of a SETCC node 729 // which also operated on XLenVT inputs, then merge the SETCC node into the 730 // lowered RISCVISD::SELECT_CC to take advantage of the integer 731 // compare+branch instructions. i.e.: 732 // (select (setcc lhs, rhs, cc), truev, falsev) 733 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 734 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 735 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 736 SDValue LHS = CondV.getOperand(0); 737 SDValue RHS = CondV.getOperand(1); 738 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 739 ISD::CondCode CCVal = CC->get(); 740 741 normaliseSetCC(LHS, RHS, CCVal); 742 743 SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); 744 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 745 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 746 } 747 748 // Otherwise: 749 // (select condv, truev, falsev) 750 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 751 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 752 SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); 753 754 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 755 756 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 757 } 758 759 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 760 MachineFunction &MF = DAG.getMachineFunction(); 761 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 762 763 SDLoc DL(Op); 764 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 765 getPointerTy(MF.getDataLayout())); 766 767 // vastart just stores the address of the VarArgsFrameIndex slot into the 768 // memory location argument. 769 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 770 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 771 MachinePointerInfo(SV)); 772 } 773 774 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 775 SelectionDAG &DAG) const { 776 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 777 MachineFunction &MF = DAG.getMachineFunction(); 778 MachineFrameInfo &MFI = MF.getFrameInfo(); 779 MFI.setFrameAddressIsTaken(true); 780 Register FrameReg = RI.getFrameRegister(MF); 781 int XLenInBytes = Subtarget.getXLen() / 8; 782 783 EVT VT = Op.getValueType(); 784 SDLoc DL(Op); 785 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 786 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 787 while (Depth--) { 788 int Offset = -(XLenInBytes * 2); 789 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 790 DAG.getIntPtrConstant(Offset, DL)); 791 FrameAddr = 792 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 793 } 794 return FrameAddr; 795 } 796 797 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 798 SelectionDAG &DAG) const { 799 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 800 MachineFunction &MF = DAG.getMachineFunction(); 801 MachineFrameInfo &MFI = MF.getFrameInfo(); 802 MFI.setReturnAddressIsTaken(true); 803 MVT XLenVT = Subtarget.getXLenVT(); 804 int XLenInBytes = Subtarget.getXLen() / 8; 805 806 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 807 return SDValue(); 808 809 EVT VT = Op.getValueType(); 810 SDLoc DL(Op); 811 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 812 if (Depth) { 813 int Off = -XLenInBytes; 814 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 815 SDValue Offset = DAG.getConstant(Off, DL, VT); 816 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 817 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 818 MachinePointerInfo()); 819 } 820 821 // Return the value of the return address register, marking it an implicit 822 // live-in. 823 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 824 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 825 } 826 827 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 828 SelectionDAG &DAG) const { 829 SDLoc DL(Op); 830 SDValue Lo = Op.getOperand(0); 831 SDValue Hi = Op.getOperand(1); 832 SDValue Shamt = Op.getOperand(2); 833 EVT VT = Lo.getValueType(); 834 835 // if Shamt-XLEN < 0: // Shamt < XLEN 836 // Lo = Lo << Shamt 837 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 838 // else: 839 // Lo = 0 840 // Hi = Lo << (Shamt-XLEN) 841 842 SDValue Zero = DAG.getConstant(0, DL, VT); 843 SDValue One = DAG.getConstant(1, DL, VT); 844 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 845 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 846 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 847 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 848 849 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 850 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 851 SDValue ShiftRightLo = 852 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 853 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 854 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 855 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 856 857 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 858 859 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 860 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 861 862 SDValue Parts[2] = {Lo, Hi}; 863 return DAG.getMergeValues(Parts, DL); 864 } 865 866 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 867 bool IsSRA) const { 868 SDLoc DL(Op); 869 SDValue Lo = Op.getOperand(0); 870 SDValue Hi = Op.getOperand(1); 871 SDValue Shamt = Op.getOperand(2); 872 EVT VT = Lo.getValueType(); 873 874 // SRA expansion: 875 // if Shamt-XLEN < 0: // Shamt < XLEN 876 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 877 // Hi = Hi >>s Shamt 878 // else: 879 // Lo = Hi >>s (Shamt-XLEN); 880 // Hi = Hi >>s (XLEN-1) 881 // 882 // SRL expansion: 883 // if Shamt-XLEN < 0: // Shamt < XLEN 884 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 885 // Hi = Hi >>u Shamt 886 // else: 887 // Lo = Hi >>u (Shamt-XLEN); 888 // Hi = 0; 889 890 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 891 892 SDValue Zero = DAG.getConstant(0, DL, VT); 893 SDValue One = DAG.getConstant(1, DL, VT); 894 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 895 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 896 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 897 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 898 899 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 900 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 901 SDValue ShiftLeftHi = 902 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 903 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 904 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 905 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 906 SDValue HiFalse = 907 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 908 909 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 910 911 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 912 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 913 914 SDValue Parts[2] = {Lo, Hi}; 915 return DAG.getMergeValues(Parts, DL); 916 } 917 918 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 919 SelectionDAG &DAG) const { 920 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 921 SDLoc DL(Op); 922 switch (IntNo) { 923 default: 924 return SDValue(); // Don't custom lower most intrinsics. 925 case Intrinsic::thread_pointer: { 926 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 927 return DAG.getRegister(RISCV::X4, PtrVT); 928 } 929 } 930 } 931 932 // Returns the opcode of the target-specific SDNode that implements the 32-bit 933 // form of the given Opcode. 934 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 935 switch (Opcode) { 936 default: 937 llvm_unreachable("Unexpected opcode"); 938 case ISD::SHL: 939 return RISCVISD::SLLW; 940 case ISD::SRA: 941 return RISCVISD::SRAW; 942 case ISD::SRL: 943 return RISCVISD::SRLW; 944 case ISD::SDIV: 945 return RISCVISD::DIVW; 946 case ISD::UDIV: 947 return RISCVISD::DIVUW; 948 case ISD::UREM: 949 return RISCVISD::REMUW; 950 case ISD::ROTL: 951 return RISCVISD::ROLW; 952 case ISD::ROTR: 953 return RISCVISD::RORW; 954 case RISCVISD::GREVI: 955 return RISCVISD::GREVIW; 956 case RISCVISD::GORCI: 957 return RISCVISD::GORCIW; 958 } 959 } 960 961 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 962 // Because i32 isn't a legal type for RV64, these operations would otherwise 963 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 964 // later one because the fact the operation was originally of type i32 is 965 // lost. 966 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG) { 967 SDLoc DL(N); 968 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 969 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 970 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 971 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 972 // ReplaceNodeResults requires we maintain the same type for the return value. 973 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 974 } 975 976 // Converts the given 32-bit operation to a i64 operation with signed extension 977 // semantic to reduce the signed extension instructions. 978 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 979 SDLoc DL(N); 980 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 981 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 982 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 983 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 984 DAG.getValueType(MVT::i32)); 985 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 986 } 987 988 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 989 SmallVectorImpl<SDValue> &Results, 990 SelectionDAG &DAG) const { 991 SDLoc DL(N); 992 switch (N->getOpcode()) { 993 default: 994 llvm_unreachable("Don't know how to custom type legalize this operation!"); 995 case ISD::STRICT_FP_TO_SINT: 996 case ISD::STRICT_FP_TO_UINT: 997 case ISD::FP_TO_SINT: 998 case ISD::FP_TO_UINT: { 999 bool IsStrict = N->isStrictFPOpcode(); 1000 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1001 "Unexpected custom legalisation"); 1002 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 1003 // If the FP type needs to be softened, emit a library call using the 'si' 1004 // version. If we left it to default legalization we'd end up with 'di'. If 1005 // the FP type doesn't need to be softened just let generic type 1006 // legalization promote the result type. 1007 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 1008 TargetLowering::TypeSoftenFloat) 1009 return; 1010 RTLIB::Libcall LC; 1011 if (N->getOpcode() == ISD::FP_TO_SINT || 1012 N->getOpcode() == ISD::STRICT_FP_TO_SINT) 1013 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 1014 else 1015 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 1016 MakeLibCallOptions CallOptions; 1017 EVT OpVT = Op0.getValueType(); 1018 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 1019 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 1020 SDValue Result; 1021 std::tie(Result, Chain) = 1022 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 1023 Results.push_back(Result); 1024 if (IsStrict) 1025 Results.push_back(Chain); 1026 break; 1027 } 1028 case ISD::READCYCLECOUNTER: { 1029 assert(!Subtarget.is64Bit() && 1030 "READCYCLECOUNTER only has custom type legalization on riscv32"); 1031 1032 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 1033 SDValue RCW = 1034 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 1035 1036 Results.push_back( 1037 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 1038 Results.push_back(RCW.getValue(2)); 1039 break; 1040 } 1041 case ISD::ADD: 1042 case ISD::SUB: 1043 case ISD::MUL: 1044 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1045 "Unexpected custom legalisation"); 1046 if (N->getOperand(1).getOpcode() == ISD::Constant) 1047 return; 1048 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 1049 break; 1050 case ISD::SHL: 1051 case ISD::SRA: 1052 case ISD::SRL: 1053 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1054 "Unexpected custom legalisation"); 1055 if (N->getOperand(1).getOpcode() == ISD::Constant) 1056 return; 1057 Results.push_back(customLegalizeToWOp(N, DAG)); 1058 break; 1059 case ISD::ROTL: 1060 case ISD::ROTR: 1061 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1062 "Unexpected custom legalisation"); 1063 Results.push_back(customLegalizeToWOp(N, DAG)); 1064 break; 1065 case ISD::SDIV: 1066 case ISD::UDIV: 1067 case ISD::UREM: 1068 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1069 Subtarget.hasStdExtM() && "Unexpected custom legalisation"); 1070 if (N->getOperand(0).getOpcode() == ISD::Constant || 1071 N->getOperand(1).getOpcode() == ISD::Constant) 1072 return; 1073 Results.push_back(customLegalizeToWOp(N, DAG)); 1074 break; 1075 case ISD::BITCAST: { 1076 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1077 Subtarget.hasStdExtF() && "Unexpected custom legalisation"); 1078 SDValue Op0 = N->getOperand(0); 1079 if (Op0.getValueType() != MVT::f32) 1080 return; 1081 SDValue FPConv = 1082 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 1083 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 1084 break; 1085 } 1086 case RISCVISD::GREVI: 1087 case RISCVISD::GORCI: { 1088 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1089 "Unexpected custom legalisation"); 1090 // This is similar to customLegalizeToWOp, except that we pass the second 1091 // operand (a TargetConstant) straight through: it is already of type 1092 // XLenVT. 1093 SDLoc DL(N); 1094 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 1095 SDValue NewOp0 = 1096 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1097 SDValue NewRes = 1098 DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, N->getOperand(1)); 1099 // ReplaceNodeResults requires we maintain the same type for the return 1100 // value. 1101 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 1102 break; 1103 } 1104 case ISD::BSWAP: 1105 case ISD::BITREVERSE: { 1106 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1107 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 1108 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 1109 N->getOperand(0)); 1110 unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24; 1111 SDValue GREVIW = DAG.getNode(RISCVISD::GREVIW, DL, MVT::i64, NewOp0, 1112 DAG.getTargetConstant(Imm, DL, 1113 Subtarget.getXLenVT())); 1114 // ReplaceNodeResults requires we maintain the same type for the return 1115 // value. 1116 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW)); 1117 break; 1118 } 1119 case ISD::FSHL: 1120 case ISD::FSHR: { 1121 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1122 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 1123 SDValue NewOp0 = 1124 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1125 SDValue NewOp1 = 1126 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 1127 SDValue NewOp2 = 1128 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 1129 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 1130 // Mask the shift amount to 5 bits. 1131 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 1132 DAG.getConstant(0x1f, DL, MVT::i64)); 1133 unsigned Opc = 1134 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 1135 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 1136 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 1137 break; 1138 } 1139 } 1140 } 1141 1142 // A structure to hold one of the bit-manipulation patterns below. Together, a 1143 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 1144 // (or (and (shl x, 1), 0xAAAAAAAA), 1145 // (and (srl x, 1), 0x55555555)) 1146 struct RISCVBitmanipPat { 1147 SDValue Op; 1148 unsigned ShAmt; 1149 bool IsSHL; 1150 1151 bool formsPairWith(const RISCVBitmanipPat &Other) const { 1152 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 1153 } 1154 }; 1155 1156 // Matches any of the following bit-manipulation patterns: 1157 // (and (shl x, 1), (0x55555555 << 1)) 1158 // (and (srl x, 1), 0x55555555) 1159 // (shl (and x, 0x55555555), 1) 1160 // (srl (and x, (0x55555555 << 1)), 1) 1161 // where the shift amount and mask may vary thus: 1162 // [1] = 0x55555555 / 0xAAAAAAAA 1163 // [2] = 0x33333333 / 0xCCCCCCCC 1164 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 1165 // [8] = 0x00FF00FF / 0xFF00FF00 1166 // [16] = 0x0000FFFF / 0xFFFFFFFF 1167 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 1168 static Optional<RISCVBitmanipPat> matchRISCVBitmanipPat(SDValue Op) { 1169 Optional<uint64_t> Mask; 1170 // Optionally consume a mask around the shift operation. 1171 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 1172 Mask = Op.getConstantOperandVal(1); 1173 Op = Op.getOperand(0); 1174 } 1175 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 1176 return None; 1177 bool IsSHL = Op.getOpcode() == ISD::SHL; 1178 1179 if (!isa<ConstantSDNode>(Op.getOperand(1))) 1180 return None; 1181 auto ShAmt = Op.getConstantOperandVal(1); 1182 1183 if (!isPowerOf2_64(ShAmt)) 1184 return None; 1185 1186 // These are the unshifted masks which we use to match bit-manipulation 1187 // patterns. They may be shifted left in certain circumstances. 1188 static const uint64_t BitmanipMasks[] = { 1189 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 1190 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL, 1191 }; 1192 1193 unsigned MaskIdx = Log2_64(ShAmt); 1194 if (MaskIdx >= array_lengthof(BitmanipMasks)) 1195 return None; 1196 1197 auto Src = Op.getOperand(0); 1198 1199 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 1200 auto ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 1201 1202 // The expected mask is shifted left when the AND is found around SHL 1203 // patterns. 1204 // ((x >> 1) & 0x55555555) 1205 // ((x << 1) & 0xAAAAAAAA) 1206 bool SHLExpMask = IsSHL; 1207 1208 if (!Mask) { 1209 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 1210 // the mask is all ones: consume that now. 1211 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 1212 Mask = Src.getConstantOperandVal(1); 1213 Src = Src.getOperand(0); 1214 // The expected mask is now in fact shifted left for SRL, so reverse the 1215 // decision. 1216 // ((x & 0xAAAAAAAA) >> 1) 1217 // ((x & 0x55555555) << 1) 1218 SHLExpMask = !SHLExpMask; 1219 } else { 1220 // Use a default shifted mask of all-ones if there's no AND, truncated 1221 // down to the expected width. This simplifies the logic later on. 1222 Mask = maskTrailingOnes<uint64_t>(Width); 1223 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 1224 } 1225 } 1226 1227 if (SHLExpMask) 1228 ExpMask <<= ShAmt; 1229 1230 if (Mask != ExpMask) 1231 return None; 1232 1233 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 1234 } 1235 1236 // Match the following pattern as a GREVI(W) operation 1237 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 1238 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 1239 const RISCVSubtarget &Subtarget) { 1240 EVT VT = Op.getValueType(); 1241 1242 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 1243 auto LHS = matchRISCVBitmanipPat(Op.getOperand(0)); 1244 auto RHS = matchRISCVBitmanipPat(Op.getOperand(1)); 1245 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 1246 SDLoc DL(Op); 1247 return DAG.getNode( 1248 RISCVISD::GREVI, DL, VT, LHS->Op, 1249 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 1250 } 1251 } 1252 return SDValue(); 1253 } 1254 1255 // Matches any the following pattern as a GORCI(W) operation 1256 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 1257 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 1258 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 1259 // Note that with the variant of 3., 1260 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 1261 // the inner pattern will first be matched as GREVI and then the outer 1262 // pattern will be matched to GORC via the first rule above. 1263 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 1264 const RISCVSubtarget &Subtarget) { 1265 EVT VT = Op.getValueType(); 1266 1267 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 1268 SDLoc DL(Op); 1269 SDValue Op0 = Op.getOperand(0); 1270 SDValue Op1 = Op.getOperand(1); 1271 1272 // Check for either commutable permutation of (or (GREVI x, shamt), x) 1273 for (const auto &OpPair : 1274 {std::make_pair(Op0, Op1), std::make_pair(Op1, Op0)}) { 1275 if (OpPair.first.getOpcode() == RISCVISD::GREVI && 1276 OpPair.first.getOperand(0) == OpPair.second && 1277 isPowerOf2_32(OpPair.first.getConstantOperandVal(1))) 1278 return DAG.getNode(RISCVISD::GORCI, DL, VT, OpPair.second, 1279 OpPair.first.getOperand(1)); 1280 } 1281 1282 // OR is commutable so canonicalize its OR operand to the left 1283 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 1284 std::swap(Op0, Op1); 1285 if (Op0.getOpcode() != ISD::OR) 1286 return SDValue(); 1287 SDValue OrOp0 = Op0.getOperand(0); 1288 SDValue OrOp1 = Op0.getOperand(1); 1289 auto LHS = matchRISCVBitmanipPat(OrOp0); 1290 // OR is commutable so swap the operands and try again: x might have been 1291 // on the left 1292 if (!LHS) { 1293 std::swap(OrOp0, OrOp1); 1294 LHS = matchRISCVBitmanipPat(OrOp0); 1295 } 1296 auto RHS = matchRISCVBitmanipPat(Op1); 1297 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 1298 return DAG.getNode( 1299 RISCVISD::GORCI, DL, VT, LHS->Op, 1300 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 1301 } 1302 } 1303 return SDValue(); 1304 } 1305 1306 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 1307 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 1308 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 1309 // not undo itself, but they are redundant. 1310 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 1311 unsigned ShAmt1 = N->getConstantOperandVal(1); 1312 SDValue Src = N->getOperand(0); 1313 1314 if (Src.getOpcode() != N->getOpcode()) 1315 return SDValue(); 1316 1317 unsigned ShAmt2 = Src.getConstantOperandVal(1); 1318 Src = Src.getOperand(0); 1319 1320 unsigned CombinedShAmt; 1321 if (N->getOpcode() == RISCVISD::GORCI || N->getOpcode() == RISCVISD::GORCIW) 1322 CombinedShAmt = ShAmt1 | ShAmt2; 1323 else 1324 CombinedShAmt = ShAmt1 ^ ShAmt2; 1325 1326 if (CombinedShAmt == 0) 1327 return Src; 1328 1329 SDLoc DL(N); 1330 return DAG.getNode(N->getOpcode(), DL, N->getValueType(0), Src, 1331 DAG.getTargetConstant(CombinedShAmt, DL, 1332 N->getOperand(1).getValueType())); 1333 } 1334 1335 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 1336 DAGCombinerInfo &DCI) const { 1337 SelectionDAG &DAG = DCI.DAG; 1338 1339 switch (N->getOpcode()) { 1340 default: 1341 break; 1342 case RISCVISD::SplitF64: { 1343 SDValue Op0 = N->getOperand(0); 1344 // If the input to SplitF64 is just BuildPairF64 then the operation is 1345 // redundant. Instead, use BuildPairF64's operands directly. 1346 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 1347 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 1348 1349 SDLoc DL(N); 1350 1351 // It's cheaper to materialise two 32-bit integers than to load a double 1352 // from the constant pool and transfer it to integer registers through the 1353 // stack. 1354 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 1355 APInt V = C->getValueAPF().bitcastToAPInt(); 1356 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 1357 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 1358 return DCI.CombineTo(N, Lo, Hi); 1359 } 1360 1361 // This is a target-specific version of a DAGCombine performed in 1362 // DAGCombiner::visitBITCAST. It performs the equivalent of: 1363 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 1364 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 1365 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 1366 !Op0.getNode()->hasOneUse()) 1367 break; 1368 SDValue NewSplitF64 = 1369 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 1370 Op0.getOperand(0)); 1371 SDValue Lo = NewSplitF64.getValue(0); 1372 SDValue Hi = NewSplitF64.getValue(1); 1373 APInt SignBit = APInt::getSignMask(32); 1374 if (Op0.getOpcode() == ISD::FNEG) { 1375 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 1376 DAG.getConstant(SignBit, DL, MVT::i32)); 1377 return DCI.CombineTo(N, Lo, NewHi); 1378 } 1379 assert(Op0.getOpcode() == ISD::FABS); 1380 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 1381 DAG.getConstant(~SignBit, DL, MVT::i32)); 1382 return DCI.CombineTo(N, Lo, NewHi); 1383 } 1384 case RISCVISD::SLLW: 1385 case RISCVISD::SRAW: 1386 case RISCVISD::SRLW: 1387 case RISCVISD::ROLW: 1388 case RISCVISD::RORW: { 1389 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 1390 SDValue LHS = N->getOperand(0); 1391 SDValue RHS = N->getOperand(1); 1392 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 1393 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 1394 if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) || 1395 SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) { 1396 if (N->getOpcode() != ISD::DELETED_NODE) 1397 DCI.AddToWorklist(N); 1398 return SDValue(N, 0); 1399 } 1400 break; 1401 } 1402 case RISCVISD::FSLW: 1403 case RISCVISD::FSRW: { 1404 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 1405 // read. 1406 SDValue Op0 = N->getOperand(0); 1407 SDValue Op1 = N->getOperand(1); 1408 SDValue ShAmt = N->getOperand(2); 1409 APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 1410 APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6); 1411 if (SimplifyDemandedBits(Op0, OpMask, DCI) || 1412 SimplifyDemandedBits(Op1, OpMask, DCI) || 1413 SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 1414 if (N->getOpcode() != ISD::DELETED_NODE) 1415 DCI.AddToWorklist(N); 1416 return SDValue(N, 0); 1417 } 1418 break; 1419 } 1420 case RISCVISD::GREVIW: 1421 case RISCVISD::GORCIW: { 1422 // Only the lower 32 bits of the first operand are read 1423 SDValue Op0 = N->getOperand(0); 1424 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 1425 if (SimplifyDemandedBits(Op0, Mask, DCI)) { 1426 if (N->getOpcode() != ISD::DELETED_NODE) 1427 DCI.AddToWorklist(N); 1428 return SDValue(N, 0); 1429 } 1430 1431 return combineGREVI_GORCI(N, DCI.DAG); 1432 } 1433 case RISCVISD::FMV_X_ANYEXTW_RV64: { 1434 SDLoc DL(N); 1435 SDValue Op0 = N->getOperand(0); 1436 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 1437 // conversion is unnecessary and can be replaced with an ANY_EXTEND 1438 // of the FMV_W_X_RV64 operand. 1439 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 1440 assert(Op0.getOperand(0).getValueType() == MVT::i64 && 1441 "Unexpected value type!"); 1442 return Op0.getOperand(0); 1443 } 1444 1445 // This is a target-specific version of a DAGCombine performed in 1446 // DAGCombiner::visitBITCAST. It performs the equivalent of: 1447 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 1448 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 1449 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 1450 !Op0.getNode()->hasOneUse()) 1451 break; 1452 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 1453 Op0.getOperand(0)); 1454 APInt SignBit = APInt::getSignMask(32).sext(64); 1455 if (Op0.getOpcode() == ISD::FNEG) 1456 return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 1457 DAG.getConstant(SignBit, DL, MVT::i64)); 1458 1459 assert(Op0.getOpcode() == ISD::FABS); 1460 return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 1461 DAG.getConstant(~SignBit, DL, MVT::i64)); 1462 } 1463 case RISCVISD::GREVI: 1464 case RISCVISD::GORCI: 1465 return combineGREVI_GORCI(N, DCI.DAG); 1466 case ISD::OR: 1467 if (auto GREV = combineORToGREV(SDValue(N, 0), DCI.DAG, Subtarget)) 1468 return GREV; 1469 if (auto GORC = combineORToGORC(SDValue(N, 0), DCI.DAG, Subtarget)) 1470 return GORC; 1471 break; 1472 } 1473 1474 return SDValue(); 1475 } 1476 1477 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 1478 const SDNode *N, CombineLevel Level) const { 1479 // The following folds are only desirable if `(OP _, c1 << c2)` can be 1480 // materialised in fewer instructions than `(OP _, c1)`: 1481 // 1482 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 1483 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 1484 SDValue N0 = N->getOperand(0); 1485 EVT Ty = N0.getValueType(); 1486 if (Ty.isScalarInteger() && 1487 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 1488 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 1489 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 1490 if (C1 && C2) { 1491 APInt C1Int = C1->getAPIntValue(); 1492 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 1493 1494 // We can materialise `c1 << c2` into an add immediate, so it's "free", 1495 // and the combine should happen, to potentially allow further combines 1496 // later. 1497 if (ShiftedC1Int.getMinSignedBits() <= 64 && 1498 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 1499 return true; 1500 1501 // We can materialise `c1` in an add immediate, so it's "free", and the 1502 // combine should be prevented. 1503 if (C1Int.getMinSignedBits() <= 64 && 1504 isLegalAddImmediate(C1Int.getSExtValue())) 1505 return false; 1506 1507 // Neither constant will fit into an immediate, so find materialisation 1508 // costs. 1509 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 1510 Subtarget.is64Bit()); 1511 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 1512 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 1513 1514 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 1515 // combine should be prevented. 1516 if (C1Cost < ShiftedC1Cost) 1517 return false; 1518 } 1519 } 1520 return true; 1521 } 1522 1523 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 1524 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 1525 unsigned Depth) const { 1526 switch (Op.getOpcode()) { 1527 default: 1528 break; 1529 case RISCVISD::SLLW: 1530 case RISCVISD::SRAW: 1531 case RISCVISD::SRLW: 1532 case RISCVISD::DIVW: 1533 case RISCVISD::DIVUW: 1534 case RISCVISD::REMUW: 1535 case RISCVISD::ROLW: 1536 case RISCVISD::RORW: 1537 case RISCVISD::GREVIW: 1538 case RISCVISD::GORCIW: 1539 case RISCVISD::FSLW: 1540 case RISCVISD::FSRW: 1541 // TODO: As the result is sign-extended, this is conservatively correct. A 1542 // more precise answer could be calculated for SRAW depending on known 1543 // bits in the shift amount. 1544 return 33; 1545 } 1546 1547 return 1; 1548 } 1549 1550 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 1551 MachineBasicBlock *BB) { 1552 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 1553 1554 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 1555 // Should the count have wrapped while it was being read, we need to try 1556 // again. 1557 // ... 1558 // read: 1559 // rdcycleh x3 # load high word of cycle 1560 // rdcycle x2 # load low word of cycle 1561 // rdcycleh x4 # load high word of cycle 1562 // bne x3, x4, read # check if high word reads match, otherwise try again 1563 // ... 1564 1565 MachineFunction &MF = *BB->getParent(); 1566 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1567 MachineFunction::iterator It = ++BB->getIterator(); 1568 1569 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 1570 MF.insert(It, LoopMBB); 1571 1572 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 1573 MF.insert(It, DoneMBB); 1574 1575 // Transfer the remainder of BB and its successor edges to DoneMBB. 1576 DoneMBB->splice(DoneMBB->begin(), BB, 1577 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1578 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 1579 1580 BB->addSuccessor(LoopMBB); 1581 1582 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1583 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1584 Register LoReg = MI.getOperand(0).getReg(); 1585 Register HiReg = MI.getOperand(1).getReg(); 1586 DebugLoc DL = MI.getDebugLoc(); 1587 1588 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1589 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 1590 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 1591 .addReg(RISCV::X0); 1592 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 1593 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 1594 .addReg(RISCV::X0); 1595 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 1596 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 1597 .addReg(RISCV::X0); 1598 1599 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 1600 .addReg(HiReg) 1601 .addReg(ReadAgainReg) 1602 .addMBB(LoopMBB); 1603 1604 LoopMBB->addSuccessor(LoopMBB); 1605 LoopMBB->addSuccessor(DoneMBB); 1606 1607 MI.eraseFromParent(); 1608 1609 return DoneMBB; 1610 } 1611 1612 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 1613 MachineBasicBlock *BB) { 1614 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 1615 1616 MachineFunction &MF = *BB->getParent(); 1617 DebugLoc DL = MI.getDebugLoc(); 1618 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1619 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 1620 Register LoReg = MI.getOperand(0).getReg(); 1621 Register HiReg = MI.getOperand(1).getReg(); 1622 Register SrcReg = MI.getOperand(2).getReg(); 1623 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 1624 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 1625 1626 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 1627 RI); 1628 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 1629 MachineMemOperand *MMOLo = 1630 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 1631 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 1632 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 1633 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 1634 .addFrameIndex(FI) 1635 .addImm(0) 1636 .addMemOperand(MMOLo); 1637 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 1638 .addFrameIndex(FI) 1639 .addImm(4) 1640 .addMemOperand(MMOHi); 1641 MI.eraseFromParent(); // The pseudo instruction is gone now. 1642 return BB; 1643 } 1644 1645 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 1646 MachineBasicBlock *BB) { 1647 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 1648 "Unexpected instruction"); 1649 1650 MachineFunction &MF = *BB->getParent(); 1651 DebugLoc DL = MI.getDebugLoc(); 1652 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1653 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 1654 Register DstReg = MI.getOperand(0).getReg(); 1655 Register LoReg = MI.getOperand(1).getReg(); 1656 Register HiReg = MI.getOperand(2).getReg(); 1657 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 1658 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 1659 1660 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 1661 MachineMemOperand *MMOLo = 1662 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 1663 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 1664 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 1665 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 1666 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 1667 .addFrameIndex(FI) 1668 .addImm(0) 1669 .addMemOperand(MMOLo); 1670 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 1671 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 1672 .addFrameIndex(FI) 1673 .addImm(4) 1674 .addMemOperand(MMOHi); 1675 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 1676 MI.eraseFromParent(); // The pseudo instruction is gone now. 1677 return BB; 1678 } 1679 1680 static bool isSelectPseudo(MachineInstr &MI) { 1681 switch (MI.getOpcode()) { 1682 default: 1683 return false; 1684 case RISCV::Select_GPR_Using_CC_GPR: 1685 case RISCV::Select_FPR32_Using_CC_GPR: 1686 case RISCV::Select_FPR64_Using_CC_GPR: 1687 return true; 1688 } 1689 } 1690 1691 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 1692 MachineBasicBlock *BB) { 1693 // To "insert" Select_* instructions, we actually have to insert the triangle 1694 // control-flow pattern. The incoming instructions know the destination vreg 1695 // to set, the condition code register to branch on, the true/false values to 1696 // select between, and the condcode to use to select the appropriate branch. 1697 // 1698 // We produce the following control flow: 1699 // HeadMBB 1700 // | \ 1701 // | IfFalseMBB 1702 // | / 1703 // TailMBB 1704 // 1705 // When we find a sequence of selects we attempt to optimize their emission 1706 // by sharing the control flow. Currently we only handle cases where we have 1707 // multiple selects with the exact same condition (same LHS, RHS and CC). 1708 // The selects may be interleaved with other instructions if the other 1709 // instructions meet some requirements we deem safe: 1710 // - They are debug instructions. Otherwise, 1711 // - They do not have side-effects, do not access memory and their inputs do 1712 // not depend on the results of the select pseudo-instructions. 1713 // The TrueV/FalseV operands of the selects cannot depend on the result of 1714 // previous selects in the sequence. 1715 // These conditions could be further relaxed. See the X86 target for a 1716 // related approach and more information. 1717 Register LHS = MI.getOperand(1).getReg(); 1718 Register RHS = MI.getOperand(2).getReg(); 1719 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 1720 1721 SmallVector<MachineInstr *, 4> SelectDebugValues; 1722 SmallSet<Register, 4> SelectDests; 1723 SelectDests.insert(MI.getOperand(0).getReg()); 1724 1725 MachineInstr *LastSelectPseudo = &MI; 1726 1727 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 1728 SequenceMBBI != E; ++SequenceMBBI) { 1729 if (SequenceMBBI->isDebugInstr()) 1730 continue; 1731 else if (isSelectPseudo(*SequenceMBBI)) { 1732 if (SequenceMBBI->getOperand(1).getReg() != LHS || 1733 SequenceMBBI->getOperand(2).getReg() != RHS || 1734 SequenceMBBI->getOperand(3).getImm() != CC || 1735 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 1736 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 1737 break; 1738 LastSelectPseudo = &*SequenceMBBI; 1739 SequenceMBBI->collectDebugValues(SelectDebugValues); 1740 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 1741 } else { 1742 if (SequenceMBBI->hasUnmodeledSideEffects() || 1743 SequenceMBBI->mayLoadOrStore()) 1744 break; 1745 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 1746 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 1747 })) 1748 break; 1749 } 1750 } 1751 1752 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 1753 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1754 DebugLoc DL = MI.getDebugLoc(); 1755 MachineFunction::iterator I = ++BB->getIterator(); 1756 1757 MachineBasicBlock *HeadMBB = BB; 1758 MachineFunction *F = BB->getParent(); 1759 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 1760 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 1761 1762 F->insert(I, IfFalseMBB); 1763 F->insert(I, TailMBB); 1764 1765 // Transfer debug instructions associated with the selects to TailMBB. 1766 for (MachineInstr *DebugInstr : SelectDebugValues) { 1767 TailMBB->push_back(DebugInstr->removeFromParent()); 1768 } 1769 1770 // Move all instructions after the sequence to TailMBB. 1771 TailMBB->splice(TailMBB->end(), HeadMBB, 1772 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 1773 // Update machine-CFG edges by transferring all successors of the current 1774 // block to the new block which will contain the Phi nodes for the selects. 1775 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 1776 // Set the successors for HeadMBB. 1777 HeadMBB->addSuccessor(IfFalseMBB); 1778 HeadMBB->addSuccessor(TailMBB); 1779 1780 // Insert appropriate branch. 1781 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 1782 1783 BuildMI(HeadMBB, DL, TII.get(Opcode)) 1784 .addReg(LHS) 1785 .addReg(RHS) 1786 .addMBB(TailMBB); 1787 1788 // IfFalseMBB just falls through to TailMBB. 1789 IfFalseMBB->addSuccessor(TailMBB); 1790 1791 // Create PHIs for all of the select pseudo-instructions. 1792 auto SelectMBBI = MI.getIterator(); 1793 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 1794 auto InsertionPoint = TailMBB->begin(); 1795 while (SelectMBBI != SelectEnd) { 1796 auto Next = std::next(SelectMBBI); 1797 if (isSelectPseudo(*SelectMBBI)) { 1798 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 1799 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 1800 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 1801 .addReg(SelectMBBI->getOperand(4).getReg()) 1802 .addMBB(HeadMBB) 1803 .addReg(SelectMBBI->getOperand(5).getReg()) 1804 .addMBB(IfFalseMBB); 1805 SelectMBBI->eraseFromParent(); 1806 } 1807 SelectMBBI = Next; 1808 } 1809 1810 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 1811 return TailMBB; 1812 } 1813 1814 MachineBasicBlock * 1815 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 1816 MachineBasicBlock *BB) const { 1817 switch (MI.getOpcode()) { 1818 default: 1819 llvm_unreachable("Unexpected instr type to insert"); 1820 case RISCV::ReadCycleWide: 1821 assert(!Subtarget.is64Bit() && 1822 "ReadCycleWrite is only to be used on riscv32"); 1823 return emitReadCycleWidePseudo(MI, BB); 1824 case RISCV::Select_GPR_Using_CC_GPR: 1825 case RISCV::Select_FPR32_Using_CC_GPR: 1826 case RISCV::Select_FPR64_Using_CC_GPR: 1827 return emitSelectPseudo(MI, BB); 1828 case RISCV::BuildPairF64Pseudo: 1829 return emitBuildPairF64Pseudo(MI, BB); 1830 case RISCV::SplitF64Pseudo: 1831 return emitSplitF64Pseudo(MI, BB); 1832 } 1833 } 1834 1835 // Calling Convention Implementation. 1836 // The expectations for frontend ABI lowering vary from target to target. 1837 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 1838 // details, but this is a longer term goal. For now, we simply try to keep the 1839 // role of the frontend as simple and well-defined as possible. The rules can 1840 // be summarised as: 1841 // * Never split up large scalar arguments. We handle them here. 1842 // * If a hardfloat calling convention is being used, and the struct may be 1843 // passed in a pair of registers (fp+fp, int+fp), and both registers are 1844 // available, then pass as two separate arguments. If either the GPRs or FPRs 1845 // are exhausted, then pass according to the rule below. 1846 // * If a struct could never be passed in registers or directly in a stack 1847 // slot (as it is larger than 2*XLEN and the floating point rules don't 1848 // apply), then pass it using a pointer with the byval attribute. 1849 // * If a struct is less than 2*XLEN, then coerce to either a two-element 1850 // word-sized array or a 2*XLEN scalar (depending on alignment). 1851 // * The frontend can determine whether a struct is returned by reference or 1852 // not based on its size and fields. If it will be returned by reference, the 1853 // frontend must modify the prototype so a pointer with the sret annotation is 1854 // passed as the first argument. This is not necessary for large scalar 1855 // returns. 1856 // * Struct return values and varargs should be coerced to structs containing 1857 // register-size fields in the same situations they would be for fixed 1858 // arguments. 1859 1860 static const MCPhysReg ArgGPRs[] = { 1861 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 1862 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 1863 }; 1864 static const MCPhysReg ArgFPR32s[] = { 1865 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 1866 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 1867 }; 1868 static const MCPhysReg ArgFPR64s[] = { 1869 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 1870 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 1871 }; 1872 1873 // Pass a 2*XLEN argument that has been split into two XLEN values through 1874 // registers or the stack as necessary. 1875 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 1876 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 1877 MVT ValVT2, MVT LocVT2, 1878 ISD::ArgFlagsTy ArgFlags2) { 1879 unsigned XLenInBytes = XLen / 8; 1880 if (Register Reg = State.AllocateReg(ArgGPRs)) { 1881 // At least one half can be passed via register. 1882 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 1883 VA1.getLocVT(), CCValAssign::Full)); 1884 } else { 1885 // Both halves must be passed on the stack, with proper alignment. 1886 Align StackAlign = 1887 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 1888 State.addLoc( 1889 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 1890 State.AllocateStack(XLenInBytes, StackAlign), 1891 VA1.getLocVT(), CCValAssign::Full)); 1892 State.addLoc(CCValAssign::getMem( 1893 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 1894 LocVT2, CCValAssign::Full)); 1895 return false; 1896 } 1897 1898 if (Register Reg = State.AllocateReg(ArgGPRs)) { 1899 // The second half can also be passed via register. 1900 State.addLoc( 1901 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 1902 } else { 1903 // The second half is passed via the stack, without additional alignment. 1904 State.addLoc(CCValAssign::getMem( 1905 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 1906 LocVT2, CCValAssign::Full)); 1907 } 1908 1909 return false; 1910 } 1911 1912 // Implements the RISC-V calling convention. Returns true upon failure. 1913 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 1914 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 1915 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 1916 bool IsRet, Type *OrigTy) { 1917 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 1918 assert(XLen == 32 || XLen == 64); 1919 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 1920 1921 // Any return value split in to more than two values can't be returned 1922 // directly. 1923 if (IsRet && ValNo > 1) 1924 return true; 1925 1926 // UseGPRForF32 if targeting one of the soft-float ABIs, if passing a 1927 // variadic argument, or if no F32 argument registers are available. 1928 bool UseGPRForF32 = true; 1929 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 1930 // variadic argument, or if no F64 argument registers are available. 1931 bool UseGPRForF64 = true; 1932 1933 switch (ABI) { 1934 default: 1935 llvm_unreachable("Unexpected ABI"); 1936 case RISCVABI::ABI_ILP32: 1937 case RISCVABI::ABI_LP64: 1938 break; 1939 case RISCVABI::ABI_ILP32F: 1940 case RISCVABI::ABI_LP64F: 1941 UseGPRForF32 = !IsFixed; 1942 break; 1943 case RISCVABI::ABI_ILP32D: 1944 case RISCVABI::ABI_LP64D: 1945 UseGPRForF32 = !IsFixed; 1946 UseGPRForF64 = !IsFixed; 1947 break; 1948 } 1949 1950 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) 1951 UseGPRForF32 = true; 1952 if (State.getFirstUnallocated(ArgFPR64s) == array_lengthof(ArgFPR64s)) 1953 UseGPRForF64 = true; 1954 1955 // From this point on, rely on UseGPRForF32, UseGPRForF64 and similar local 1956 // variables rather than directly checking against the target ABI. 1957 1958 if (UseGPRForF32 && ValVT == MVT::f32) { 1959 LocVT = XLenVT; 1960 LocInfo = CCValAssign::BCvt; 1961 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 1962 LocVT = MVT::i64; 1963 LocInfo = CCValAssign::BCvt; 1964 } 1965 1966 // If this is a variadic argument, the RISC-V calling convention requires 1967 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 1968 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 1969 // be used regardless of whether the original argument was split during 1970 // legalisation or not. The argument will not be passed by registers if the 1971 // original type is larger than 2*XLEN, so the register alignment rule does 1972 // not apply. 1973 unsigned TwoXLenInBytes = (2 * XLen) / 8; 1974 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 1975 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 1976 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 1977 // Skip 'odd' register if necessary. 1978 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 1979 State.AllocateReg(ArgGPRs); 1980 } 1981 1982 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 1983 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 1984 State.getPendingArgFlags(); 1985 1986 assert(PendingLocs.size() == PendingArgFlags.size() && 1987 "PendingLocs and PendingArgFlags out of sync"); 1988 1989 // Handle passing f64 on RV32D with a soft float ABI or when floating point 1990 // registers are exhausted. 1991 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 1992 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 1993 "Can't lower f64 if it is split"); 1994 // Depending on available argument GPRS, f64 may be passed in a pair of 1995 // GPRs, split between a GPR and the stack, or passed completely on the 1996 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 1997 // cases. 1998 Register Reg = State.AllocateReg(ArgGPRs); 1999 LocVT = MVT::i32; 2000 if (!Reg) { 2001 unsigned StackOffset = State.AllocateStack(8, Align(8)); 2002 State.addLoc( 2003 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 2004 return false; 2005 } 2006 if (!State.AllocateReg(ArgGPRs)) 2007 State.AllocateStack(4, Align(4)); 2008 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2009 return false; 2010 } 2011 2012 // Split arguments might be passed indirectly, so keep track of the pending 2013 // values. 2014 if (ArgFlags.isSplit() || !PendingLocs.empty()) { 2015 LocVT = XLenVT; 2016 LocInfo = CCValAssign::Indirect; 2017 PendingLocs.push_back( 2018 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 2019 PendingArgFlags.push_back(ArgFlags); 2020 if (!ArgFlags.isSplitEnd()) { 2021 return false; 2022 } 2023 } 2024 2025 // If the split argument only had two elements, it should be passed directly 2026 // in registers or on the stack. 2027 if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 2028 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 2029 // Apply the normal calling convention rules to the first half of the 2030 // split argument. 2031 CCValAssign VA = PendingLocs[0]; 2032 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 2033 PendingLocs.clear(); 2034 PendingArgFlags.clear(); 2035 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 2036 ArgFlags); 2037 } 2038 2039 // Allocate to a register if possible, or else a stack slot. 2040 Register Reg; 2041 if (ValVT == MVT::f32 && !UseGPRForF32) 2042 Reg = State.AllocateReg(ArgFPR32s); 2043 else if (ValVT == MVT::f64 && !UseGPRForF64) 2044 Reg = State.AllocateReg(ArgFPR64s); 2045 else 2046 Reg = State.AllocateReg(ArgGPRs); 2047 unsigned StackOffset = 2048 Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8)); 2049 2050 // If we reach this point and PendingLocs is non-empty, we must be at the 2051 // end of a split argument that must be passed indirectly. 2052 if (!PendingLocs.empty()) { 2053 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 2054 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 2055 2056 for (auto &It : PendingLocs) { 2057 if (Reg) 2058 It.convertToReg(Reg); 2059 else 2060 It.convertToMem(StackOffset); 2061 State.addLoc(It); 2062 } 2063 PendingLocs.clear(); 2064 PendingArgFlags.clear(); 2065 return false; 2066 } 2067 2068 assert((!UseGPRForF32 || !UseGPRForF64 || LocVT == XLenVT) && 2069 "Expected an XLenVT at this stage"); 2070 2071 if (Reg) { 2072 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2073 return false; 2074 } 2075 2076 // When an f32 or f64 is passed on the stack, no bit-conversion is needed. 2077 if (ValVT == MVT::f32 || ValVT == MVT::f64) { 2078 LocVT = ValVT; 2079 LocInfo = CCValAssign::Full; 2080 } 2081 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 2082 return false; 2083 } 2084 2085 void RISCVTargetLowering::analyzeInputArgs( 2086 MachineFunction &MF, CCState &CCInfo, 2087 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 2088 unsigned NumArgs = Ins.size(); 2089 FunctionType *FType = MF.getFunction().getFunctionType(); 2090 2091 for (unsigned i = 0; i != NumArgs; ++i) { 2092 MVT ArgVT = Ins[i].VT; 2093 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 2094 2095 Type *ArgTy = nullptr; 2096 if (IsRet) 2097 ArgTy = FType->getReturnType(); 2098 else if (Ins[i].isOrigArg()) 2099 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 2100 2101 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 2102 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 2103 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy)) { 2104 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 2105 << EVT(ArgVT).getEVTString() << '\n'); 2106 llvm_unreachable(nullptr); 2107 } 2108 } 2109 } 2110 2111 void RISCVTargetLowering::analyzeOutputArgs( 2112 MachineFunction &MF, CCState &CCInfo, 2113 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 2114 CallLoweringInfo *CLI) const { 2115 unsigned NumArgs = Outs.size(); 2116 2117 for (unsigned i = 0; i != NumArgs; i++) { 2118 MVT ArgVT = Outs[i].VT; 2119 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 2120 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 2121 2122 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 2123 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 2124 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) { 2125 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 2126 << EVT(ArgVT).getEVTString() << "\n"); 2127 llvm_unreachable(nullptr); 2128 } 2129 } 2130 } 2131 2132 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 2133 // values. 2134 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 2135 const CCValAssign &VA, const SDLoc &DL) { 2136 switch (VA.getLocInfo()) { 2137 default: 2138 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 2139 case CCValAssign::Full: 2140 break; 2141 case CCValAssign::BCvt: 2142 if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) { 2143 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 2144 break; 2145 } 2146 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 2147 break; 2148 } 2149 return Val; 2150 } 2151 2152 // The caller is responsible for loading the full value if the argument is 2153 // passed with CCValAssign::Indirect. 2154 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 2155 const CCValAssign &VA, const SDLoc &DL) { 2156 MachineFunction &MF = DAG.getMachineFunction(); 2157 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 2158 EVT LocVT = VA.getLocVT(); 2159 SDValue Val; 2160 const TargetRegisterClass *RC; 2161 2162 switch (LocVT.getSimpleVT().SimpleTy) { 2163 default: 2164 llvm_unreachable("Unexpected register type"); 2165 case MVT::i32: 2166 case MVT::i64: 2167 RC = &RISCV::GPRRegClass; 2168 break; 2169 case MVT::f32: 2170 RC = &RISCV::FPR32RegClass; 2171 break; 2172 case MVT::f64: 2173 RC = &RISCV::FPR64RegClass; 2174 break; 2175 } 2176 2177 Register VReg = RegInfo.createVirtualRegister(RC); 2178 RegInfo.addLiveIn(VA.getLocReg(), VReg); 2179 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 2180 2181 if (VA.getLocInfo() == CCValAssign::Indirect) 2182 return Val; 2183 2184 return convertLocVTToValVT(DAG, Val, VA, DL); 2185 } 2186 2187 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 2188 const CCValAssign &VA, const SDLoc &DL) { 2189 EVT LocVT = VA.getLocVT(); 2190 2191 switch (VA.getLocInfo()) { 2192 default: 2193 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 2194 case CCValAssign::Full: 2195 break; 2196 case CCValAssign::BCvt: 2197 if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) { 2198 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 2199 break; 2200 } 2201 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 2202 break; 2203 } 2204 return Val; 2205 } 2206 2207 // The caller is responsible for loading the full value if the argument is 2208 // passed with CCValAssign::Indirect. 2209 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 2210 const CCValAssign &VA, const SDLoc &DL) { 2211 MachineFunction &MF = DAG.getMachineFunction(); 2212 MachineFrameInfo &MFI = MF.getFrameInfo(); 2213 EVT LocVT = VA.getLocVT(); 2214 EVT ValVT = VA.getValVT(); 2215 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 2216 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 2217 VA.getLocMemOffset(), /*Immutable=*/true); 2218 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2219 SDValue Val; 2220 2221 ISD::LoadExtType ExtType; 2222 switch (VA.getLocInfo()) { 2223 default: 2224 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 2225 case CCValAssign::Full: 2226 case CCValAssign::Indirect: 2227 case CCValAssign::BCvt: 2228 ExtType = ISD::NON_EXTLOAD; 2229 break; 2230 } 2231 Val = DAG.getExtLoad( 2232 ExtType, DL, LocVT, Chain, FIN, 2233 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 2234 return Val; 2235 } 2236 2237 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 2238 const CCValAssign &VA, const SDLoc &DL) { 2239 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 2240 "Unexpected VA"); 2241 MachineFunction &MF = DAG.getMachineFunction(); 2242 MachineFrameInfo &MFI = MF.getFrameInfo(); 2243 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 2244 2245 if (VA.isMemLoc()) { 2246 // f64 is passed on the stack. 2247 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 2248 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 2249 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 2250 MachinePointerInfo::getFixedStack(MF, FI)); 2251 } 2252 2253 assert(VA.isRegLoc() && "Expected register VA assignment"); 2254 2255 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 2256 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 2257 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 2258 SDValue Hi; 2259 if (VA.getLocReg() == RISCV::X17) { 2260 // Second half of f64 is passed on the stack. 2261 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 2262 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 2263 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 2264 MachinePointerInfo::getFixedStack(MF, FI)); 2265 } else { 2266 // Second half of f64 is passed in another GPR. 2267 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 2268 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 2269 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 2270 } 2271 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 2272 } 2273 2274 // FastCC has less than 1% performance improvement for some particular 2275 // benchmark. But theoretically, it may has benenfit for some cases. 2276 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT, 2277 CCValAssign::LocInfo LocInfo, 2278 ISD::ArgFlagsTy ArgFlags, CCState &State) { 2279 2280 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 2281 // X5 and X6 might be used for save-restore libcall. 2282 static const MCPhysReg GPRList[] = { 2283 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 2284 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 2285 RISCV::X29, RISCV::X30, RISCV::X31}; 2286 if (unsigned Reg = State.AllocateReg(GPRList)) { 2287 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2288 return false; 2289 } 2290 } 2291 2292 if (LocVT == MVT::f32) { 2293 static const MCPhysReg FPR32List[] = { 2294 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 2295 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 2296 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 2297 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 2298 if (unsigned Reg = State.AllocateReg(FPR32List)) { 2299 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2300 return false; 2301 } 2302 } 2303 2304 if (LocVT == MVT::f64) { 2305 static const MCPhysReg FPR64List[] = { 2306 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 2307 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 2308 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 2309 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 2310 if (unsigned Reg = State.AllocateReg(FPR64List)) { 2311 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2312 return false; 2313 } 2314 } 2315 2316 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 2317 unsigned Offset4 = State.AllocateStack(4, Align(4)); 2318 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 2319 return false; 2320 } 2321 2322 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 2323 unsigned Offset5 = State.AllocateStack(8, Align(8)); 2324 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 2325 return false; 2326 } 2327 2328 return true; // CC didn't match. 2329 } 2330 2331 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 2332 CCValAssign::LocInfo LocInfo, 2333 ISD::ArgFlagsTy ArgFlags, CCState &State) { 2334 2335 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 2336 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 2337 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 2338 static const MCPhysReg GPRList[] = { 2339 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 2340 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 2341 if (unsigned Reg = State.AllocateReg(GPRList)) { 2342 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2343 return false; 2344 } 2345 } 2346 2347 if (LocVT == MVT::f32) { 2348 // Pass in STG registers: F1, ..., F6 2349 // fs0 ... fs5 2350 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 2351 RISCV::F18_F, RISCV::F19_F, 2352 RISCV::F20_F, RISCV::F21_F}; 2353 if (unsigned Reg = State.AllocateReg(FPR32List)) { 2354 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2355 return false; 2356 } 2357 } 2358 2359 if (LocVT == MVT::f64) { 2360 // Pass in STG registers: D1, ..., D6 2361 // fs6 ... fs11 2362 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 2363 RISCV::F24_D, RISCV::F25_D, 2364 RISCV::F26_D, RISCV::F27_D}; 2365 if (unsigned Reg = State.AllocateReg(FPR64List)) { 2366 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2367 return false; 2368 } 2369 } 2370 2371 report_fatal_error("No registers left in GHC calling convention"); 2372 return true; 2373 } 2374 2375 // Transform physical registers into virtual registers. 2376 SDValue RISCVTargetLowering::LowerFormalArguments( 2377 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 2378 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2379 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2380 2381 MachineFunction &MF = DAG.getMachineFunction(); 2382 2383 switch (CallConv) { 2384 default: 2385 report_fatal_error("Unsupported calling convention"); 2386 case CallingConv::C: 2387 case CallingConv::Fast: 2388 break; 2389 case CallingConv::GHC: 2390 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 2391 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 2392 report_fatal_error( 2393 "GHC calling convention requires the F and D instruction set extensions"); 2394 } 2395 2396 const Function &Func = MF.getFunction(); 2397 if (Func.hasFnAttribute("interrupt")) { 2398 if (!Func.arg_empty()) 2399 report_fatal_error( 2400 "Functions with the interrupt attribute cannot have arguments!"); 2401 2402 StringRef Kind = 2403 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 2404 2405 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 2406 report_fatal_error( 2407 "Function interrupt attribute argument not supported!"); 2408 } 2409 2410 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2411 MVT XLenVT = Subtarget.getXLenVT(); 2412 unsigned XLenInBytes = Subtarget.getXLen() / 8; 2413 // Used with vargs to acumulate store chains. 2414 std::vector<SDValue> OutChains; 2415 2416 // Assign locations to all of the incoming arguments. 2417 SmallVector<CCValAssign, 16> ArgLocs; 2418 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 2419 2420 if (CallConv == CallingConv::Fast) 2421 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC); 2422 else if (CallConv == CallingConv::GHC) 2423 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 2424 else 2425 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 2426 2427 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2428 CCValAssign &VA = ArgLocs[i]; 2429 SDValue ArgValue; 2430 // Passing f64 on RV32D with a soft float ABI must be handled as a special 2431 // case. 2432 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 2433 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 2434 else if (VA.isRegLoc()) 2435 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL); 2436 else 2437 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 2438 2439 if (VA.getLocInfo() == CCValAssign::Indirect) { 2440 // If the original argument was split and passed by reference (e.g. i128 2441 // on RV32), we need to load all parts of it here (using the same 2442 // address). 2443 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 2444 MachinePointerInfo())); 2445 unsigned ArgIndex = Ins[i].OrigArgIndex; 2446 assert(Ins[i].PartOffset == 0); 2447 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 2448 CCValAssign &PartVA = ArgLocs[i + 1]; 2449 unsigned PartOffset = Ins[i + 1].PartOffset; 2450 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 2451 DAG.getIntPtrConstant(PartOffset, DL)); 2452 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 2453 MachinePointerInfo())); 2454 ++i; 2455 } 2456 continue; 2457 } 2458 InVals.push_back(ArgValue); 2459 } 2460 2461 if (IsVarArg) { 2462 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 2463 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 2464 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 2465 MachineFrameInfo &MFI = MF.getFrameInfo(); 2466 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 2467 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 2468 2469 // Offset of the first variable argument from stack pointer, and size of 2470 // the vararg save area. For now, the varargs save area is either zero or 2471 // large enough to hold a0-a7. 2472 int VaArgOffset, VarArgsSaveSize; 2473 2474 // If all registers are allocated, then all varargs must be passed on the 2475 // stack and we don't need to save any argregs. 2476 if (ArgRegs.size() == Idx) { 2477 VaArgOffset = CCInfo.getNextStackOffset(); 2478 VarArgsSaveSize = 0; 2479 } else { 2480 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 2481 VaArgOffset = -VarArgsSaveSize; 2482 } 2483 2484 // Record the frame index of the first variable argument 2485 // which is a value necessary to VASTART. 2486 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 2487 RVFI->setVarArgsFrameIndex(FI); 2488 2489 // If saving an odd number of registers then create an extra stack slot to 2490 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 2491 // offsets to even-numbered registered remain 2*XLEN-aligned. 2492 if (Idx % 2) { 2493 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 2494 VarArgsSaveSize += XLenInBytes; 2495 } 2496 2497 // Copy the integer registers that may have been used for passing varargs 2498 // to the vararg save area. 2499 for (unsigned I = Idx; I < ArgRegs.size(); 2500 ++I, VaArgOffset += XLenInBytes) { 2501 const Register Reg = RegInfo.createVirtualRegister(RC); 2502 RegInfo.addLiveIn(ArgRegs[I], Reg); 2503 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 2504 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 2505 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2506 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 2507 MachinePointerInfo::getFixedStack(MF, FI)); 2508 cast<StoreSDNode>(Store.getNode()) 2509 ->getMemOperand() 2510 ->setValue((Value *)nullptr); 2511 OutChains.push_back(Store); 2512 } 2513 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 2514 } 2515 2516 // All stores are grouped in one node to allow the matching between 2517 // the size of Ins and InVals. This only happens for vararg functions. 2518 if (!OutChains.empty()) { 2519 OutChains.push_back(Chain); 2520 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 2521 } 2522 2523 return Chain; 2524 } 2525 2526 /// isEligibleForTailCallOptimization - Check whether the call is eligible 2527 /// for tail call optimization. 2528 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 2529 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 2530 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 2531 const SmallVector<CCValAssign, 16> &ArgLocs) const { 2532 2533 auto &Callee = CLI.Callee; 2534 auto CalleeCC = CLI.CallConv; 2535 auto &Outs = CLI.Outs; 2536 auto &Caller = MF.getFunction(); 2537 auto CallerCC = Caller.getCallingConv(); 2538 2539 // Exception-handling functions need a special set of instructions to 2540 // indicate a return to the hardware. Tail-calling another function would 2541 // probably break this. 2542 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 2543 // should be expanded as new function attributes are introduced. 2544 if (Caller.hasFnAttribute("interrupt")) 2545 return false; 2546 2547 // Do not tail call opt if the stack is used to pass parameters. 2548 if (CCInfo.getNextStackOffset() != 0) 2549 return false; 2550 2551 // Do not tail call opt if any parameters need to be passed indirectly. 2552 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 2553 // passed indirectly. So the address of the value will be passed in a 2554 // register, or if not available, then the address is put on the stack. In 2555 // order to pass indirectly, space on the stack often needs to be allocated 2556 // in order to store the value. In this case the CCInfo.getNextStackOffset() 2557 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 2558 // are passed CCValAssign::Indirect. 2559 for (auto &VA : ArgLocs) 2560 if (VA.getLocInfo() == CCValAssign::Indirect) 2561 return false; 2562 2563 // Do not tail call opt if either caller or callee uses struct return 2564 // semantics. 2565 auto IsCallerStructRet = Caller.hasStructRetAttr(); 2566 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 2567 if (IsCallerStructRet || IsCalleeStructRet) 2568 return false; 2569 2570 // Externally-defined functions with weak linkage should not be 2571 // tail-called. The behaviour of branch instructions in this situation (as 2572 // used for tail calls) is implementation-defined, so we cannot rely on the 2573 // linker replacing the tail call with a return. 2574 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 2575 const GlobalValue *GV = G->getGlobal(); 2576 if (GV->hasExternalWeakLinkage()) 2577 return false; 2578 } 2579 2580 // The callee has to preserve all registers the caller needs to preserve. 2581 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2582 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 2583 if (CalleeCC != CallerCC) { 2584 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 2585 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 2586 return false; 2587 } 2588 2589 // Byval parameters hand the function a pointer directly into the stack area 2590 // we want to reuse during a tail call. Working around this *is* possible 2591 // but less efficient and uglier in LowerCall. 2592 for (auto &Arg : Outs) 2593 if (Arg.Flags.isByVal()) 2594 return false; 2595 2596 return true; 2597 } 2598 2599 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 2600 // and output parameter nodes. 2601 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 2602 SmallVectorImpl<SDValue> &InVals) const { 2603 SelectionDAG &DAG = CLI.DAG; 2604 SDLoc &DL = CLI.DL; 2605 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 2606 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 2607 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 2608 SDValue Chain = CLI.Chain; 2609 SDValue Callee = CLI.Callee; 2610 bool &IsTailCall = CLI.IsTailCall; 2611 CallingConv::ID CallConv = CLI.CallConv; 2612 bool IsVarArg = CLI.IsVarArg; 2613 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2614 MVT XLenVT = Subtarget.getXLenVT(); 2615 2616 MachineFunction &MF = DAG.getMachineFunction(); 2617 2618 // Analyze the operands of the call, assigning locations to each operand. 2619 SmallVector<CCValAssign, 16> ArgLocs; 2620 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 2621 2622 if (CallConv == CallingConv::Fast) 2623 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC); 2624 else if (CallConv == CallingConv::GHC) 2625 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 2626 else 2627 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 2628 2629 // Check if it's really possible to do a tail call. 2630 if (IsTailCall) 2631 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 2632 2633 if (IsTailCall) 2634 ++NumTailCalls; 2635 else if (CLI.CB && CLI.CB->isMustTailCall()) 2636 report_fatal_error("failed to perform tail call elimination on a call " 2637 "site marked musttail"); 2638 2639 // Get a count of how many bytes are to be pushed on the stack. 2640 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 2641 2642 // Create local copies for byval args 2643 SmallVector<SDValue, 8> ByValArgs; 2644 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 2645 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2646 if (!Flags.isByVal()) 2647 continue; 2648 2649 SDValue Arg = OutVals[i]; 2650 unsigned Size = Flags.getByValSize(); 2651 Align Alignment = Flags.getNonZeroByValAlign(); 2652 2653 int FI = 2654 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 2655 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2656 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 2657 2658 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 2659 /*IsVolatile=*/false, 2660 /*AlwaysInline=*/false, IsTailCall, 2661 MachinePointerInfo(), MachinePointerInfo()); 2662 ByValArgs.push_back(FIPtr); 2663 } 2664 2665 if (!IsTailCall) 2666 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 2667 2668 // Copy argument values to their designated locations. 2669 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 2670 SmallVector<SDValue, 8> MemOpChains; 2671 SDValue StackPtr; 2672 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 2673 CCValAssign &VA = ArgLocs[i]; 2674 SDValue ArgValue = OutVals[i]; 2675 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2676 2677 // Handle passing f64 on RV32D with a soft float ABI as a special case. 2678 bool IsF64OnRV32DSoftABI = 2679 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 2680 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 2681 SDValue SplitF64 = DAG.getNode( 2682 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 2683 SDValue Lo = SplitF64.getValue(0); 2684 SDValue Hi = SplitF64.getValue(1); 2685 2686 Register RegLo = VA.getLocReg(); 2687 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 2688 2689 if (RegLo == RISCV::X17) { 2690 // Second half of f64 is passed on the stack. 2691 // Work out the address of the stack slot. 2692 if (!StackPtr.getNode()) 2693 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 2694 // Emit the store. 2695 MemOpChains.push_back( 2696 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 2697 } else { 2698 // Second half of f64 is passed in another GPR. 2699 assert(RegLo < RISCV::X31 && "Invalid register pair"); 2700 Register RegHigh = RegLo + 1; 2701 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 2702 } 2703 continue; 2704 } 2705 2706 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 2707 // as any other MemLoc. 2708 2709 // Promote the value if needed. 2710 // For now, only handle fully promoted and indirect arguments. 2711 if (VA.getLocInfo() == CCValAssign::Indirect) { 2712 // Store the argument in a stack slot and pass its address. 2713 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); 2714 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 2715 MemOpChains.push_back( 2716 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 2717 MachinePointerInfo::getFixedStack(MF, FI))); 2718 // If the original argument was split (e.g. i128), we need 2719 // to store all parts of it here (and pass just one address). 2720 unsigned ArgIndex = Outs[i].OrigArgIndex; 2721 assert(Outs[i].PartOffset == 0); 2722 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 2723 SDValue PartValue = OutVals[i + 1]; 2724 unsigned PartOffset = Outs[i + 1].PartOffset; 2725 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 2726 DAG.getIntPtrConstant(PartOffset, DL)); 2727 MemOpChains.push_back( 2728 DAG.getStore(Chain, DL, PartValue, Address, 2729 MachinePointerInfo::getFixedStack(MF, FI))); 2730 ++i; 2731 } 2732 ArgValue = SpillSlot; 2733 } else { 2734 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL); 2735 } 2736 2737 // Use local copy if it is a byval arg. 2738 if (Flags.isByVal()) 2739 ArgValue = ByValArgs[j++]; 2740 2741 if (VA.isRegLoc()) { 2742 // Queue up the argument copies and emit them at the end. 2743 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 2744 } else { 2745 assert(VA.isMemLoc() && "Argument not register or memory"); 2746 assert(!IsTailCall && "Tail call not allowed if stack is used " 2747 "for passing parameters"); 2748 2749 // Work out the address of the stack slot. 2750 if (!StackPtr.getNode()) 2751 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 2752 SDValue Address = 2753 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 2754 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 2755 2756 // Emit the store. 2757 MemOpChains.push_back( 2758 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 2759 } 2760 } 2761 2762 // Join the stores, which are independent of one another. 2763 if (!MemOpChains.empty()) 2764 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 2765 2766 SDValue Glue; 2767 2768 // Build a sequence of copy-to-reg nodes, chained and glued together. 2769 for (auto &Reg : RegsToPass) { 2770 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 2771 Glue = Chain.getValue(1); 2772 } 2773 2774 // Validate that none of the argument registers have been marked as 2775 // reserved, if so report an error. Do the same for the return address if this 2776 // is not a tailcall. 2777 validateCCReservedRegs(RegsToPass, MF); 2778 if (!IsTailCall && 2779 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 2780 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 2781 MF.getFunction(), 2782 "Return address register required, but has been reserved."}); 2783 2784 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 2785 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 2786 // split it and then direct call can be matched by PseudoCALL. 2787 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 2788 const GlobalValue *GV = S->getGlobal(); 2789 2790 unsigned OpFlags = RISCVII::MO_CALL; 2791 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 2792 OpFlags = RISCVII::MO_PLT; 2793 2794 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 2795 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 2796 unsigned OpFlags = RISCVII::MO_CALL; 2797 2798 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 2799 nullptr)) 2800 OpFlags = RISCVII::MO_PLT; 2801 2802 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 2803 } 2804 2805 // The first call operand is the chain and the second is the target address. 2806 SmallVector<SDValue, 8> Ops; 2807 Ops.push_back(Chain); 2808 Ops.push_back(Callee); 2809 2810 // Add argument registers to the end of the list so that they are 2811 // known live into the call. 2812 for (auto &Reg : RegsToPass) 2813 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 2814 2815 if (!IsTailCall) { 2816 // Add a register mask operand representing the call-preserved registers. 2817 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2818 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 2819 assert(Mask && "Missing call preserved mask for calling convention"); 2820 Ops.push_back(DAG.getRegisterMask(Mask)); 2821 } 2822 2823 // Glue the call to the argument copies, if any. 2824 if (Glue.getNode()) 2825 Ops.push_back(Glue); 2826 2827 // Emit the call. 2828 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2829 2830 if (IsTailCall) { 2831 MF.getFrameInfo().setHasTailCall(); 2832 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 2833 } 2834 2835 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 2836 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 2837 Glue = Chain.getValue(1); 2838 2839 // Mark the end of the call, which is glued to the call itself. 2840 Chain = DAG.getCALLSEQ_END(Chain, 2841 DAG.getConstant(NumBytes, DL, PtrVT, true), 2842 DAG.getConstant(0, DL, PtrVT, true), 2843 Glue, DL); 2844 Glue = Chain.getValue(1); 2845 2846 // Assign locations to each value returned by this call. 2847 SmallVector<CCValAssign, 16> RVLocs; 2848 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 2849 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 2850 2851 // Copy all of the result registers out of their specified physreg. 2852 for (auto &VA : RVLocs) { 2853 // Copy the value out 2854 SDValue RetValue = 2855 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 2856 // Glue the RetValue to the end of the call sequence 2857 Chain = RetValue.getValue(1); 2858 Glue = RetValue.getValue(2); 2859 2860 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 2861 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 2862 SDValue RetValue2 = 2863 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 2864 Chain = RetValue2.getValue(1); 2865 Glue = RetValue2.getValue(2); 2866 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 2867 RetValue2); 2868 } 2869 2870 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL); 2871 2872 InVals.push_back(RetValue); 2873 } 2874 2875 return Chain; 2876 } 2877 2878 bool RISCVTargetLowering::CanLowerReturn( 2879 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 2880 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 2881 SmallVector<CCValAssign, 16> RVLocs; 2882 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 2883 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 2884 MVT VT = Outs[i].VT; 2885 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 2886 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 2887 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 2888 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr)) 2889 return false; 2890 } 2891 return true; 2892 } 2893 2894 SDValue 2895 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 2896 bool IsVarArg, 2897 const SmallVectorImpl<ISD::OutputArg> &Outs, 2898 const SmallVectorImpl<SDValue> &OutVals, 2899 const SDLoc &DL, SelectionDAG &DAG) const { 2900 const MachineFunction &MF = DAG.getMachineFunction(); 2901 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 2902 2903 // Stores the assignment of the return value to a location. 2904 SmallVector<CCValAssign, 16> RVLocs; 2905 2906 // Info about the registers and stack slot. 2907 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 2908 *DAG.getContext()); 2909 2910 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 2911 nullptr); 2912 2913 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 2914 report_fatal_error("GHC functions return void only"); 2915 2916 SDValue Glue; 2917 SmallVector<SDValue, 4> RetOps(1, Chain); 2918 2919 // Copy the result values into the output registers. 2920 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 2921 SDValue Val = OutVals[i]; 2922 CCValAssign &VA = RVLocs[i]; 2923 assert(VA.isRegLoc() && "Can only return in registers!"); 2924 2925 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 2926 // Handle returning f64 on RV32D with a soft float ABI. 2927 assert(VA.isRegLoc() && "Expected return via registers"); 2928 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 2929 DAG.getVTList(MVT::i32, MVT::i32), Val); 2930 SDValue Lo = SplitF64.getValue(0); 2931 SDValue Hi = SplitF64.getValue(1); 2932 Register RegLo = VA.getLocReg(); 2933 assert(RegLo < RISCV::X31 && "Invalid register pair"); 2934 Register RegHi = RegLo + 1; 2935 2936 if (STI.isRegisterReservedByUser(RegLo) || 2937 STI.isRegisterReservedByUser(RegHi)) 2938 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 2939 MF.getFunction(), 2940 "Return value register required, but has been reserved."}); 2941 2942 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 2943 Glue = Chain.getValue(1); 2944 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 2945 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 2946 Glue = Chain.getValue(1); 2947 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 2948 } else { 2949 // Handle a 'normal' return. 2950 Val = convertValVTToLocVT(DAG, Val, VA, DL); 2951 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 2952 2953 if (STI.isRegisterReservedByUser(VA.getLocReg())) 2954 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 2955 MF.getFunction(), 2956 "Return value register required, but has been reserved."}); 2957 2958 // Guarantee that all emitted copies are stuck together. 2959 Glue = Chain.getValue(1); 2960 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2961 } 2962 } 2963 2964 RetOps[0] = Chain; // Update chain. 2965 2966 // Add the glue node if we have it. 2967 if (Glue.getNode()) { 2968 RetOps.push_back(Glue); 2969 } 2970 2971 // Interrupt service routines use different return instructions. 2972 const Function &Func = DAG.getMachineFunction().getFunction(); 2973 if (Func.hasFnAttribute("interrupt")) { 2974 if (!Func.getReturnType()->isVoidTy()) 2975 report_fatal_error( 2976 "Functions with the interrupt attribute must have void return type!"); 2977 2978 MachineFunction &MF = DAG.getMachineFunction(); 2979 StringRef Kind = 2980 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 2981 2982 unsigned RetOpc; 2983 if (Kind == "user") 2984 RetOpc = RISCVISD::URET_FLAG; 2985 else if (Kind == "supervisor") 2986 RetOpc = RISCVISD::SRET_FLAG; 2987 else 2988 RetOpc = RISCVISD::MRET_FLAG; 2989 2990 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 2991 } 2992 2993 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 2994 } 2995 2996 void RISCVTargetLowering::validateCCReservedRegs( 2997 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 2998 MachineFunction &MF) const { 2999 const Function &F = MF.getFunction(); 3000 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 3001 3002 if (std::any_of(std::begin(Regs), std::end(Regs), [&STI](auto Reg) { 3003 return STI.isRegisterReservedByUser(Reg.first); 3004 })) 3005 F.getContext().diagnose(DiagnosticInfoUnsupported{ 3006 F, "Argument register required, but has been reserved."}); 3007 } 3008 3009 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 3010 return CI->isTailCall(); 3011 } 3012 3013 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 3014 #define NODE_NAME_CASE(NODE) \ 3015 case RISCVISD::NODE: \ 3016 return "RISCVISD::" #NODE; 3017 // clang-format off 3018 switch ((RISCVISD::NodeType)Opcode) { 3019 case RISCVISD::FIRST_NUMBER: 3020 break; 3021 NODE_NAME_CASE(RET_FLAG) 3022 NODE_NAME_CASE(URET_FLAG) 3023 NODE_NAME_CASE(SRET_FLAG) 3024 NODE_NAME_CASE(MRET_FLAG) 3025 NODE_NAME_CASE(CALL) 3026 NODE_NAME_CASE(SELECT_CC) 3027 NODE_NAME_CASE(BuildPairF64) 3028 NODE_NAME_CASE(SplitF64) 3029 NODE_NAME_CASE(TAIL) 3030 NODE_NAME_CASE(SLLW) 3031 NODE_NAME_CASE(SRAW) 3032 NODE_NAME_CASE(SRLW) 3033 NODE_NAME_CASE(DIVW) 3034 NODE_NAME_CASE(DIVUW) 3035 NODE_NAME_CASE(REMUW) 3036 NODE_NAME_CASE(ROLW) 3037 NODE_NAME_CASE(RORW) 3038 NODE_NAME_CASE(FSLW) 3039 NODE_NAME_CASE(FSRW) 3040 NODE_NAME_CASE(FMV_W_X_RV64) 3041 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 3042 NODE_NAME_CASE(READ_CYCLE_WIDE) 3043 NODE_NAME_CASE(GREVI) 3044 NODE_NAME_CASE(GREVIW) 3045 NODE_NAME_CASE(GORCI) 3046 NODE_NAME_CASE(GORCIW) 3047 } 3048 // clang-format on 3049 return nullptr; 3050 #undef NODE_NAME_CASE 3051 } 3052 3053 /// getConstraintType - Given a constraint letter, return the type of 3054 /// constraint it is for this target. 3055 RISCVTargetLowering::ConstraintType 3056 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 3057 if (Constraint.size() == 1) { 3058 switch (Constraint[0]) { 3059 default: 3060 break; 3061 case 'f': 3062 return C_RegisterClass; 3063 case 'I': 3064 case 'J': 3065 case 'K': 3066 return C_Immediate; 3067 case 'A': 3068 return C_Memory; 3069 } 3070 } 3071 return TargetLowering::getConstraintType(Constraint); 3072 } 3073 3074 std::pair<unsigned, const TargetRegisterClass *> 3075 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 3076 StringRef Constraint, 3077 MVT VT) const { 3078 // First, see if this is a constraint that directly corresponds to a 3079 // RISCV register class. 3080 if (Constraint.size() == 1) { 3081 switch (Constraint[0]) { 3082 case 'r': 3083 return std::make_pair(0U, &RISCV::GPRRegClass); 3084 case 'f': 3085 if (Subtarget.hasStdExtF() && VT == MVT::f32) 3086 return std::make_pair(0U, &RISCV::FPR32RegClass); 3087 if (Subtarget.hasStdExtD() && VT == MVT::f64) 3088 return std::make_pair(0U, &RISCV::FPR64RegClass); 3089 break; 3090 default: 3091 break; 3092 } 3093 } 3094 3095 // Clang will correctly decode the usage of register name aliases into their 3096 // official names. However, other frontends like `rustc` do not. This allows 3097 // users of these frontends to use the ABI names for registers in LLVM-style 3098 // register constraints. 3099 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 3100 .Case("{zero}", RISCV::X0) 3101 .Case("{ra}", RISCV::X1) 3102 .Case("{sp}", RISCV::X2) 3103 .Case("{gp}", RISCV::X3) 3104 .Case("{tp}", RISCV::X4) 3105 .Case("{t0}", RISCV::X5) 3106 .Case("{t1}", RISCV::X6) 3107 .Case("{t2}", RISCV::X7) 3108 .Cases("{s0}", "{fp}", RISCV::X8) 3109 .Case("{s1}", RISCV::X9) 3110 .Case("{a0}", RISCV::X10) 3111 .Case("{a1}", RISCV::X11) 3112 .Case("{a2}", RISCV::X12) 3113 .Case("{a3}", RISCV::X13) 3114 .Case("{a4}", RISCV::X14) 3115 .Case("{a5}", RISCV::X15) 3116 .Case("{a6}", RISCV::X16) 3117 .Case("{a7}", RISCV::X17) 3118 .Case("{s2}", RISCV::X18) 3119 .Case("{s3}", RISCV::X19) 3120 .Case("{s4}", RISCV::X20) 3121 .Case("{s5}", RISCV::X21) 3122 .Case("{s6}", RISCV::X22) 3123 .Case("{s7}", RISCV::X23) 3124 .Case("{s8}", RISCV::X24) 3125 .Case("{s9}", RISCV::X25) 3126 .Case("{s10}", RISCV::X26) 3127 .Case("{s11}", RISCV::X27) 3128 .Case("{t3}", RISCV::X28) 3129 .Case("{t4}", RISCV::X29) 3130 .Case("{t5}", RISCV::X30) 3131 .Case("{t6}", RISCV::X31) 3132 .Default(RISCV::NoRegister); 3133 if (XRegFromAlias != RISCV::NoRegister) 3134 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 3135 3136 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 3137 // TableGen record rather than the AsmName to choose registers for InlineAsm 3138 // constraints, plus we want to match those names to the widest floating point 3139 // register type available, manually select floating point registers here. 3140 // 3141 // The second case is the ABI name of the register, so that frontends can also 3142 // use the ABI names in register constraint lists. 3143 if (Subtarget.hasStdExtF() || Subtarget.hasStdExtD()) { 3144 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 3145 .Cases("{f0}", "{ft0}", RISCV::F0_F) 3146 .Cases("{f1}", "{ft1}", RISCV::F1_F) 3147 .Cases("{f2}", "{ft2}", RISCV::F2_F) 3148 .Cases("{f3}", "{ft3}", RISCV::F3_F) 3149 .Cases("{f4}", "{ft4}", RISCV::F4_F) 3150 .Cases("{f5}", "{ft5}", RISCV::F5_F) 3151 .Cases("{f6}", "{ft6}", RISCV::F6_F) 3152 .Cases("{f7}", "{ft7}", RISCV::F7_F) 3153 .Cases("{f8}", "{fs0}", RISCV::F8_F) 3154 .Cases("{f9}", "{fs1}", RISCV::F9_F) 3155 .Cases("{f10}", "{fa0}", RISCV::F10_F) 3156 .Cases("{f11}", "{fa1}", RISCV::F11_F) 3157 .Cases("{f12}", "{fa2}", RISCV::F12_F) 3158 .Cases("{f13}", "{fa3}", RISCV::F13_F) 3159 .Cases("{f14}", "{fa4}", RISCV::F14_F) 3160 .Cases("{f15}", "{fa5}", RISCV::F15_F) 3161 .Cases("{f16}", "{fa6}", RISCV::F16_F) 3162 .Cases("{f17}", "{fa7}", RISCV::F17_F) 3163 .Cases("{f18}", "{fs2}", RISCV::F18_F) 3164 .Cases("{f19}", "{fs3}", RISCV::F19_F) 3165 .Cases("{f20}", "{fs4}", RISCV::F20_F) 3166 .Cases("{f21}", "{fs5}", RISCV::F21_F) 3167 .Cases("{f22}", "{fs6}", RISCV::F22_F) 3168 .Cases("{f23}", "{fs7}", RISCV::F23_F) 3169 .Cases("{f24}", "{fs8}", RISCV::F24_F) 3170 .Cases("{f25}", "{fs9}", RISCV::F25_F) 3171 .Cases("{f26}", "{fs10}", RISCV::F26_F) 3172 .Cases("{f27}", "{fs11}", RISCV::F27_F) 3173 .Cases("{f28}", "{ft8}", RISCV::F28_F) 3174 .Cases("{f29}", "{ft9}", RISCV::F29_F) 3175 .Cases("{f30}", "{ft10}", RISCV::F30_F) 3176 .Cases("{f31}", "{ft11}", RISCV::F31_F) 3177 .Default(RISCV::NoRegister); 3178 if (FReg != RISCV::NoRegister) { 3179 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 3180 if (Subtarget.hasStdExtD()) { 3181 unsigned RegNo = FReg - RISCV::F0_F; 3182 unsigned DReg = RISCV::F0_D + RegNo; 3183 return std::make_pair(DReg, &RISCV::FPR64RegClass); 3184 } 3185 return std::make_pair(FReg, &RISCV::FPR32RegClass); 3186 } 3187 } 3188 3189 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 3190 } 3191 3192 unsigned 3193 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 3194 // Currently only support length 1 constraints. 3195 if (ConstraintCode.size() == 1) { 3196 switch (ConstraintCode[0]) { 3197 case 'A': 3198 return InlineAsm::Constraint_A; 3199 default: 3200 break; 3201 } 3202 } 3203 3204 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 3205 } 3206 3207 void RISCVTargetLowering::LowerAsmOperandForConstraint( 3208 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 3209 SelectionDAG &DAG) const { 3210 // Currently only support length 1 constraints. 3211 if (Constraint.length() == 1) { 3212 switch (Constraint[0]) { 3213 case 'I': 3214 // Validate & create a 12-bit signed immediate operand. 3215 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3216 uint64_t CVal = C->getSExtValue(); 3217 if (isInt<12>(CVal)) 3218 Ops.push_back( 3219 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 3220 } 3221 return; 3222 case 'J': 3223 // Validate & create an integer zero operand. 3224 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 3225 if (C->getZExtValue() == 0) 3226 Ops.push_back( 3227 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 3228 return; 3229 case 'K': 3230 // Validate & create a 5-bit unsigned immediate operand. 3231 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3232 uint64_t CVal = C->getZExtValue(); 3233 if (isUInt<5>(CVal)) 3234 Ops.push_back( 3235 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 3236 } 3237 return; 3238 default: 3239 break; 3240 } 3241 } 3242 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 3243 } 3244 3245 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 3246 Instruction *Inst, 3247 AtomicOrdering Ord) const { 3248 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 3249 return Builder.CreateFence(Ord); 3250 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 3251 return Builder.CreateFence(AtomicOrdering::Release); 3252 return nullptr; 3253 } 3254 3255 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 3256 Instruction *Inst, 3257 AtomicOrdering Ord) const { 3258 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 3259 return Builder.CreateFence(AtomicOrdering::Acquire); 3260 return nullptr; 3261 } 3262 3263 TargetLowering::AtomicExpansionKind 3264 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 3265 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 3266 // point operations can't be used in an lr/sc sequence without breaking the 3267 // forward-progress guarantee. 3268 if (AI->isFloatingPointOperation()) 3269 return AtomicExpansionKind::CmpXChg; 3270 3271 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 3272 if (Size == 8 || Size == 16) 3273 return AtomicExpansionKind::MaskedIntrinsic; 3274 return AtomicExpansionKind::None; 3275 } 3276 3277 static Intrinsic::ID 3278 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 3279 if (XLen == 32) { 3280 switch (BinOp) { 3281 default: 3282 llvm_unreachable("Unexpected AtomicRMW BinOp"); 3283 case AtomicRMWInst::Xchg: 3284 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 3285 case AtomicRMWInst::Add: 3286 return Intrinsic::riscv_masked_atomicrmw_add_i32; 3287 case AtomicRMWInst::Sub: 3288 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 3289 case AtomicRMWInst::Nand: 3290 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 3291 case AtomicRMWInst::Max: 3292 return Intrinsic::riscv_masked_atomicrmw_max_i32; 3293 case AtomicRMWInst::Min: 3294 return Intrinsic::riscv_masked_atomicrmw_min_i32; 3295 case AtomicRMWInst::UMax: 3296 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 3297 case AtomicRMWInst::UMin: 3298 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 3299 } 3300 } 3301 3302 if (XLen == 64) { 3303 switch (BinOp) { 3304 default: 3305 llvm_unreachable("Unexpected AtomicRMW BinOp"); 3306 case AtomicRMWInst::Xchg: 3307 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 3308 case AtomicRMWInst::Add: 3309 return Intrinsic::riscv_masked_atomicrmw_add_i64; 3310 case AtomicRMWInst::Sub: 3311 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 3312 case AtomicRMWInst::Nand: 3313 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 3314 case AtomicRMWInst::Max: 3315 return Intrinsic::riscv_masked_atomicrmw_max_i64; 3316 case AtomicRMWInst::Min: 3317 return Intrinsic::riscv_masked_atomicrmw_min_i64; 3318 case AtomicRMWInst::UMax: 3319 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 3320 case AtomicRMWInst::UMin: 3321 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 3322 } 3323 } 3324 3325 llvm_unreachable("Unexpected XLen\n"); 3326 } 3327 3328 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 3329 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 3330 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 3331 unsigned XLen = Subtarget.getXLen(); 3332 Value *Ordering = 3333 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 3334 Type *Tys[] = {AlignedAddr->getType()}; 3335 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 3336 AI->getModule(), 3337 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 3338 3339 if (XLen == 64) { 3340 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 3341 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 3342 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 3343 } 3344 3345 Value *Result; 3346 3347 // Must pass the shift amount needed to sign extend the loaded value prior 3348 // to performing a signed comparison for min/max. ShiftAmt is the number of 3349 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 3350 // is the number of bits to left+right shift the value in order to 3351 // sign-extend. 3352 if (AI->getOperation() == AtomicRMWInst::Min || 3353 AI->getOperation() == AtomicRMWInst::Max) { 3354 const DataLayout &DL = AI->getModule()->getDataLayout(); 3355 unsigned ValWidth = 3356 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 3357 Value *SextShamt = 3358 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 3359 Result = Builder.CreateCall(LrwOpScwLoop, 3360 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 3361 } else { 3362 Result = 3363 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 3364 } 3365 3366 if (XLen == 64) 3367 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 3368 return Result; 3369 } 3370 3371 TargetLowering::AtomicExpansionKind 3372 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 3373 AtomicCmpXchgInst *CI) const { 3374 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 3375 if (Size == 8 || Size == 16) 3376 return AtomicExpansionKind::MaskedIntrinsic; 3377 return AtomicExpansionKind::None; 3378 } 3379 3380 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 3381 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 3382 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 3383 unsigned XLen = Subtarget.getXLen(); 3384 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 3385 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 3386 if (XLen == 64) { 3387 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 3388 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 3389 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 3390 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 3391 } 3392 Type *Tys[] = {AlignedAddr->getType()}; 3393 Function *MaskedCmpXchg = 3394 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 3395 Value *Result = Builder.CreateCall( 3396 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 3397 if (XLen == 64) 3398 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 3399 return Result; 3400 } 3401 3402 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 3403 EVT VT) const { 3404 VT = VT.getScalarType(); 3405 3406 if (!VT.isSimple()) 3407 return false; 3408 3409 switch (VT.getSimpleVT().SimpleTy) { 3410 case MVT::f32: 3411 return Subtarget.hasStdExtF(); 3412 case MVT::f64: 3413 return Subtarget.hasStdExtD(); 3414 default: 3415 break; 3416 } 3417 3418 return false; 3419 } 3420 3421 Register RISCVTargetLowering::getExceptionPointerRegister( 3422 const Constant *PersonalityFn) const { 3423 return RISCV::X10; 3424 } 3425 3426 Register RISCVTargetLowering::getExceptionSelectorRegister( 3427 const Constant *PersonalityFn) const { 3428 return RISCV::X11; 3429 } 3430 3431 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 3432 // Return false to suppress the unnecessary extensions if the LibCall 3433 // arguments or return value is f32 type for LP64 ABI. 3434 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 3435 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 3436 return false; 3437 3438 return true; 3439 } 3440 3441 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 3442 SDValue C) const { 3443 // Check integral scalar types. 3444 if (VT.isScalarInteger()) { 3445 // Do not perform the transformation on riscv32 with the M extension. 3446 if (!Subtarget.is64Bit() && Subtarget.hasStdExtM()) 3447 return false; 3448 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 3449 if (ConstNode->getAPIntValue().getBitWidth() > 8 * sizeof(int64_t)) 3450 return false; 3451 int64_t Imm = ConstNode->getSExtValue(); 3452 if (isPowerOf2_64(Imm + 1) || isPowerOf2_64(Imm - 1) || 3453 isPowerOf2_64(1 - Imm) || isPowerOf2_64(-1 - Imm)) 3454 return true; 3455 } 3456 } 3457 3458 return false; 3459 } 3460 3461 #define GET_REGISTER_MATCHER 3462 #include "RISCVGenAsmMatcher.inc" 3463 3464 Register 3465 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 3466 const MachineFunction &MF) const { 3467 Register Reg = MatchRegisterAltName(RegName); 3468 if (Reg == RISCV::NoRegister) 3469 Reg = MatchRegisterName(RegName); 3470 if (Reg == RISCV::NoRegister) 3471 report_fatal_error( 3472 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 3473 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 3474 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 3475 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 3476 StringRef(RegName) + "\".")); 3477 return Reg; 3478 } 3479