1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicsRISCV.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "riscv-lower"
45 
46 STATISTIC(NumTailCalls, "Number of tail calls");
47 
48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
49                                          const RISCVSubtarget &STI)
50     : TargetLowering(TM), Subtarget(STI) {
51 
52   if (Subtarget.isRV32E())
53     report_fatal_error("Codegen not yet implemented for RV32E");
54 
55   RISCVABI::ABI ABI = Subtarget.getTargetABI();
56   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
57 
58   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
59       !Subtarget.hasStdExtF()) {
60     errs() << "Hard-float 'f' ABI can't be used for a target that "
61                 "doesn't support the F instruction set extension (ignoring "
62                           "target-abi)\n";
63     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
64   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
65              !Subtarget.hasStdExtD()) {
66     errs() << "Hard-float 'd' ABI can't be used for a target that "
67               "doesn't support the D instruction set extension (ignoring "
68               "target-abi)\n";
69     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
70   }
71 
72   switch (ABI) {
73   default:
74     report_fatal_error("Don't know how to lower this ABI");
75   case RISCVABI::ABI_ILP32:
76   case RISCVABI::ABI_ILP32F:
77   case RISCVABI::ABI_ILP32D:
78   case RISCVABI::ABI_LP64:
79   case RISCVABI::ABI_LP64F:
80   case RISCVABI::ABI_LP64D:
81     break;
82   }
83 
84   MVT XLenVT = Subtarget.getXLenVT();
85 
86   // Set up the register classes.
87   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
88 
89   if (Subtarget.hasStdExtZfh())
90     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
91   if (Subtarget.hasStdExtF())
92     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
93   if (Subtarget.hasStdExtD())
94     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
95 
96   static const MVT::SimpleValueType BoolVecVTs[] = {
97       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
98       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
99   static const MVT::SimpleValueType IntVecVTs[] = {
100       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
101       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
102       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
103       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
104       MVT::nxv4i64, MVT::nxv8i64};
105   static const MVT::SimpleValueType F16VecVTs[] = {
106       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
107       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
108   static const MVT::SimpleValueType F32VecVTs[] = {
109       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
110   static const MVT::SimpleValueType F64VecVTs[] = {
111       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
112 
113   if (Subtarget.hasVInstructions()) {
114     auto addRegClassForRVV = [this](MVT VT) {
115       unsigned Size = VT.getSizeInBits().getKnownMinValue();
116       assert(Size <= 512 && isPowerOf2_32(Size));
117       const TargetRegisterClass *RC;
118       if (Size <= 64)
119         RC = &RISCV::VRRegClass;
120       else if (Size == 128)
121         RC = &RISCV::VRM2RegClass;
122       else if (Size == 256)
123         RC = &RISCV::VRM4RegClass;
124       else
125         RC = &RISCV::VRM8RegClass;
126 
127       addRegisterClass(VT, RC);
128     };
129 
130     for (MVT VT : BoolVecVTs)
131       addRegClassForRVV(VT);
132     for (MVT VT : IntVecVTs) {
133       if (VT.getVectorElementType() == MVT::i64 &&
134           !Subtarget.hasVInstructionsI64())
135         continue;
136       addRegClassForRVV(VT);
137     }
138 
139     if (Subtarget.hasVInstructionsF16())
140       for (MVT VT : F16VecVTs)
141         addRegClassForRVV(VT);
142 
143     if (Subtarget.hasVInstructionsF32())
144       for (MVT VT : F32VecVTs)
145         addRegClassForRVV(VT);
146 
147     if (Subtarget.hasVInstructionsF64())
148       for (MVT VT : F64VecVTs)
149         addRegClassForRVV(VT);
150 
151     if (Subtarget.useRVVForFixedLengthVectors()) {
152       auto addRegClassForFixedVectors = [this](MVT VT) {
153         MVT ContainerVT = getContainerForFixedLengthVector(VT);
154         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
155         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
156         addRegisterClass(VT, TRI.getRegClass(RCID));
157       };
158       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
159         if (useRVVForFixedLengthVectorVT(VT))
160           addRegClassForFixedVectors(VT);
161 
162       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
163         if (useRVVForFixedLengthVectorVT(VT))
164           addRegClassForFixedVectors(VT);
165     }
166   }
167 
168   // Compute derived properties from the register classes.
169   computeRegisterProperties(STI.getRegisterInfo());
170 
171   setStackPointerRegisterToSaveRestore(RISCV::X2);
172 
173   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
174     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
175 
176   // TODO: add all necessary setOperationAction calls.
177   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
178 
179   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
180   setOperationAction(ISD::BR_CC, XLenVT, Expand);
181   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
182   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
183 
184   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
185   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
186 
187   setOperationAction(ISD::VASTART, MVT::Other, Custom);
188   setOperationAction(ISD::VAARG, MVT::Other, Expand);
189   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
190   setOperationAction(ISD::VAEND, MVT::Other, Expand);
191 
192   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
193   if (!Subtarget.hasStdExtZbb()) {
194     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
195     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
196   }
197 
198   if (Subtarget.is64Bit()) {
199     setOperationAction(ISD::ADD, MVT::i32, Custom);
200     setOperationAction(ISD::SUB, MVT::i32, Custom);
201     setOperationAction(ISD::SHL, MVT::i32, Custom);
202     setOperationAction(ISD::SRA, MVT::i32, Custom);
203     setOperationAction(ISD::SRL, MVT::i32, Custom);
204 
205     setOperationAction(ISD::UADDO, MVT::i32, Custom);
206     setOperationAction(ISD::USUBO, MVT::i32, Custom);
207     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
208     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
209   } else {
210     setLibcallName(RTLIB::SHL_I128, nullptr);
211     setLibcallName(RTLIB::SRL_I128, nullptr);
212     setLibcallName(RTLIB::SRA_I128, nullptr);
213     setLibcallName(RTLIB::MUL_I128, nullptr);
214     setLibcallName(RTLIB::MULO_I64, nullptr);
215   }
216 
217   if (!Subtarget.hasStdExtM()) {
218     setOperationAction(ISD::MUL, XLenVT, Expand);
219     setOperationAction(ISD::MULHS, XLenVT, Expand);
220     setOperationAction(ISD::MULHU, XLenVT, Expand);
221     setOperationAction(ISD::SDIV, XLenVT, Expand);
222     setOperationAction(ISD::UDIV, XLenVT, Expand);
223     setOperationAction(ISD::SREM, XLenVT, Expand);
224     setOperationAction(ISD::UREM, XLenVT, Expand);
225   } else {
226     if (Subtarget.is64Bit()) {
227       setOperationAction(ISD::MUL, MVT::i32, Custom);
228       setOperationAction(ISD::MUL, MVT::i128, Custom);
229 
230       setOperationAction(ISD::SDIV, MVT::i8, Custom);
231       setOperationAction(ISD::UDIV, MVT::i8, Custom);
232       setOperationAction(ISD::UREM, MVT::i8, Custom);
233       setOperationAction(ISD::SDIV, MVT::i16, Custom);
234       setOperationAction(ISD::UDIV, MVT::i16, Custom);
235       setOperationAction(ISD::UREM, MVT::i16, Custom);
236       setOperationAction(ISD::SDIV, MVT::i32, Custom);
237       setOperationAction(ISD::UDIV, MVT::i32, Custom);
238       setOperationAction(ISD::UREM, MVT::i32, Custom);
239     } else {
240       setOperationAction(ISD::MUL, MVT::i64, Custom);
241     }
242   }
243 
244   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
245   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
246   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
247   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
248 
249   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
250   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
251   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
252 
253   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
254       Subtarget.hasStdExtZbkb()) {
255     if (Subtarget.is64Bit()) {
256       setOperationAction(ISD::ROTL, MVT::i32, Custom);
257       setOperationAction(ISD::ROTR, MVT::i32, Custom);
258     }
259   } else {
260     setOperationAction(ISD::ROTL, XLenVT, Expand);
261     setOperationAction(ISD::ROTR, XLenVT, Expand);
262   }
263 
264   if (Subtarget.hasStdExtZbp()) {
265     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
266     // more combining.
267     setOperationAction(ISD::BITREVERSE, XLenVT,   Custom);
268     setOperationAction(ISD::BSWAP,      XLenVT,   Custom);
269     setOperationAction(ISD::BITREVERSE, MVT::i8,  Custom);
270     // BSWAP i8 doesn't exist.
271     setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
272     setOperationAction(ISD::BSWAP,      MVT::i16, Custom);
273 
274     if (Subtarget.is64Bit()) {
275       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
276       setOperationAction(ISD::BSWAP,      MVT::i32, Custom);
277     }
278   } else {
279     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
280     // pattern match it directly in isel.
281     setOperationAction(ISD::BSWAP, XLenVT,
282                        (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())
283                            ? Legal
284                            : Expand);
285     // Zbkb can use rev8+brev8 to implement bitreverse.
286     setOperationAction(ISD::BITREVERSE, XLenVT,
287                        Subtarget.hasStdExtZbkb() ? Custom : Expand);
288   }
289 
290   if (Subtarget.hasStdExtZbb()) {
291     setOperationAction(ISD::SMIN, XLenVT, Legal);
292     setOperationAction(ISD::SMAX, XLenVT, Legal);
293     setOperationAction(ISD::UMIN, XLenVT, Legal);
294     setOperationAction(ISD::UMAX, XLenVT, Legal);
295 
296     if (Subtarget.is64Bit()) {
297       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
298       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
299       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
300       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
301     }
302   } else {
303     setOperationAction(ISD::CTTZ, XLenVT, Expand);
304     setOperationAction(ISD::CTLZ, XLenVT, Expand);
305     setOperationAction(ISD::CTPOP, XLenVT, Expand);
306   }
307 
308   if (Subtarget.hasStdExtZbt()) {
309     setOperationAction(ISD::FSHL, XLenVT, Custom);
310     setOperationAction(ISD::FSHR, XLenVT, Custom);
311     setOperationAction(ISD::SELECT, XLenVT, Legal);
312 
313     if (Subtarget.is64Bit()) {
314       setOperationAction(ISD::FSHL, MVT::i32, Custom);
315       setOperationAction(ISD::FSHR, MVT::i32, Custom);
316     }
317   } else {
318     setOperationAction(ISD::SELECT, XLenVT, Custom);
319   }
320 
321   static constexpr ISD::NodeType FPLegalNodeTypes[] = {
322       ISD::FMINNUM,        ISD::FMAXNUM,       ISD::LRINT,
323       ISD::LLRINT,         ISD::LROUND,        ISD::LLROUND,
324       ISD::STRICT_LRINT,   ISD::STRICT_LLRINT, ISD::STRICT_LROUND,
325       ISD::STRICT_LLROUND, ISD::STRICT_FMA,    ISD::STRICT_FADD,
326       ISD::STRICT_FSUB,    ISD::STRICT_FMUL,   ISD::STRICT_FDIV,
327       ISD::STRICT_FSQRT,   ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS};
328 
329   static const ISD::CondCode FPCCToExpand[] = {
330       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
331       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
332       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
333 
334   static const ISD::NodeType FPOpToExpand[] = {
335       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
336       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
337 
338   if (Subtarget.hasStdExtZfh())
339     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
340 
341   if (Subtarget.hasStdExtZfh()) {
342     for (auto NT : FPLegalNodeTypes)
343       setOperationAction(NT, MVT::f16, Legal);
344     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
345     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
346     for (auto CC : FPCCToExpand)
347       setCondCodeAction(CC, MVT::f16, Expand);
348     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
349     setOperationAction(ISD::SELECT, MVT::f16, Custom);
350     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
351 
352     setOperationAction(ISD::FREM,       MVT::f16, Promote);
353     setOperationAction(ISD::FCEIL,      MVT::f16, Promote);
354     setOperationAction(ISD::FFLOOR,     MVT::f16, Promote);
355     setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
356     setOperationAction(ISD::FRINT,      MVT::f16, Promote);
357     setOperationAction(ISD::FROUND,     MVT::f16, Promote);
358     setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote);
359     setOperationAction(ISD::FTRUNC,     MVT::f16, Promote);
360     setOperationAction(ISD::FPOW,       MVT::f16, Promote);
361     setOperationAction(ISD::FPOWI,      MVT::f16, Promote);
362     setOperationAction(ISD::FCOS,       MVT::f16, Promote);
363     setOperationAction(ISD::FSIN,       MVT::f16, Promote);
364     setOperationAction(ISD::FSINCOS,    MVT::f16, Promote);
365     setOperationAction(ISD::FEXP,       MVT::f16, Promote);
366     setOperationAction(ISD::FEXP2,      MVT::f16, Promote);
367     setOperationAction(ISD::FLOG,       MVT::f16, Promote);
368     setOperationAction(ISD::FLOG2,      MVT::f16, Promote);
369     setOperationAction(ISD::FLOG10,     MVT::f16, Promote);
370 
371     // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
372     // complete support for all operations in LegalizeDAG.
373 
374     // We need to custom promote this.
375     if (Subtarget.is64Bit())
376       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
377   }
378 
379   if (Subtarget.hasStdExtF()) {
380     for (auto NT : FPLegalNodeTypes)
381       setOperationAction(NT, MVT::f32, Legal);
382     for (auto CC : FPCCToExpand)
383       setCondCodeAction(CC, MVT::f32, Expand);
384     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
385     setOperationAction(ISD::SELECT, MVT::f32, Custom);
386     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
387     for (auto Op : FPOpToExpand)
388       setOperationAction(Op, MVT::f32, Expand);
389     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
390     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
391   }
392 
393   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
394     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
395 
396   if (Subtarget.hasStdExtD()) {
397     for (auto NT : FPLegalNodeTypes)
398       setOperationAction(NT, MVT::f64, Legal);
399     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
400     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
401     for (auto CC : FPCCToExpand)
402       setCondCodeAction(CC, MVT::f64, Expand);
403     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
404     setOperationAction(ISD::SELECT, MVT::f64, Custom);
405     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
406     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
407     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
408     for (auto Op : FPOpToExpand)
409       setOperationAction(Op, MVT::f64, Expand);
410     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
411     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
412   }
413 
414   if (Subtarget.is64Bit()) {
415     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
416     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
417     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
418     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
419   }
420 
421   if (Subtarget.hasStdExtF()) {
422     setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom);
423     setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom);
424 
425     setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal);
426     setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal);
427     setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal);
428     setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal);
429 
430     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
431     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
432   }
433 
434   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
435   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
436   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
437   setOperationAction(ISD::JumpTable, XLenVT, Custom);
438 
439   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
440 
441   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
442   // Unfortunately this can't be determined just from the ISA naming string.
443   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
444                      Subtarget.is64Bit() ? Legal : Custom);
445 
446   setOperationAction(ISD::TRAP, MVT::Other, Legal);
447   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
448   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
449   if (Subtarget.is64Bit())
450     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
451 
452   if (Subtarget.hasStdExtA()) {
453     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
454     setMinCmpXchgSizeInBits(32);
455   } else {
456     setMaxAtomicSizeInBitsSupported(0);
457   }
458 
459   setBooleanContents(ZeroOrOneBooleanContent);
460 
461   if (Subtarget.hasVInstructions()) {
462     setBooleanVectorContents(ZeroOrOneBooleanContent);
463 
464     setOperationAction(ISD::VSCALE, XLenVT, Custom);
465 
466     // RVV intrinsics may have illegal operands.
467     // We also need to custom legalize vmv.x.s.
468     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
469     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
470     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
471     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
472     if (Subtarget.is64Bit()) {
473       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
474     } else {
475       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
476       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
477     }
478 
479     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
480     setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
481 
482     static const unsigned IntegerVPOps[] = {
483         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
484         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
485         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
486         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
487         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
488         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
489         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
490         ISD::VP_MERGE,       ISD::VP_SELECT};
491 
492     static const unsigned FloatingPointVPOps[] = {
493         ISD::VP_FADD,        ISD::VP_FSUB,        ISD::VP_FMUL,
494         ISD::VP_FDIV,        ISD::VP_FNEG,        ISD::VP_FMA,
495         ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, ISD::VP_REDUCE_FMIN,
496         ISD::VP_REDUCE_FMAX, ISD::VP_MERGE,       ISD::VP_SELECT};
497 
498     if (!Subtarget.is64Bit()) {
499       // We must custom-lower certain vXi64 operations on RV32 due to the vector
500       // element type being illegal.
501       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
502       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
503 
504       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
505       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
506       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
507       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
508       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
509       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
510       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
511       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
512 
513       setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom);
514       setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom);
515       setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom);
516       setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom);
517       setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom);
518       setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom);
519       setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom);
520       setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom);
521     }
522 
523     for (MVT VT : BoolVecVTs) {
524       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
525 
526       // Mask VTs are custom-expanded into a series of standard nodes
527       setOperationAction(ISD::TRUNCATE, VT, Custom);
528       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
529       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
530       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
531 
532       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
533       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
534 
535       setOperationAction(ISD::SELECT, VT, Custom);
536       setOperationAction(ISD::SELECT_CC, VT, Expand);
537       setOperationAction(ISD::VSELECT, VT, Expand);
538       setOperationAction(ISD::VP_MERGE, VT, Expand);
539       setOperationAction(ISD::VP_SELECT, VT, Expand);
540 
541       setOperationAction(ISD::VP_AND, VT, Custom);
542       setOperationAction(ISD::VP_OR, VT, Custom);
543       setOperationAction(ISD::VP_XOR, VT, Custom);
544 
545       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
546       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
547       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
548 
549       setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
550       setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
551       setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
552 
553       // RVV has native int->float & float->int conversions where the
554       // element type sizes are within one power-of-two of each other. Any
555       // wider distances between type sizes have to be lowered as sequences
556       // which progressively narrow the gap in stages.
557       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
558       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
559       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
560       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
561 
562       // Expand all extending loads to types larger than this, and truncating
563       // stores from types larger than this.
564       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
565         setTruncStoreAction(OtherVT, VT, Expand);
566         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
567         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
568         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
569       }
570     }
571 
572     for (MVT VT : IntVecVTs) {
573       if (VT.getVectorElementType() == MVT::i64 &&
574           !Subtarget.hasVInstructionsI64())
575         continue;
576 
577       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
578       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
579 
580       // Vectors implement MULHS/MULHU.
581       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
582       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
583 
584       // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
585       if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) {
586         setOperationAction(ISD::MULHU, VT, Expand);
587         setOperationAction(ISD::MULHS, VT, Expand);
588       }
589 
590       setOperationAction(ISD::SMIN, VT, Legal);
591       setOperationAction(ISD::SMAX, VT, Legal);
592       setOperationAction(ISD::UMIN, VT, Legal);
593       setOperationAction(ISD::UMAX, VT, Legal);
594 
595       setOperationAction(ISD::ROTL, VT, Expand);
596       setOperationAction(ISD::ROTR, VT, Expand);
597 
598       setOperationAction(ISD::CTTZ, VT, Expand);
599       setOperationAction(ISD::CTLZ, VT, Expand);
600       setOperationAction(ISD::CTPOP, VT, Expand);
601 
602       setOperationAction(ISD::BSWAP, VT, Expand);
603 
604       // Custom-lower extensions and truncations from/to mask types.
605       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
606       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
607       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
608 
609       // RVV has native int->float & float->int conversions where the
610       // element type sizes are within one power-of-two of each other. Any
611       // wider distances between type sizes have to be lowered as sequences
612       // which progressively narrow the gap in stages.
613       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
614       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
615       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
616       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
617 
618       setOperationAction(ISD::SADDSAT, VT, Legal);
619       setOperationAction(ISD::UADDSAT, VT, Legal);
620       setOperationAction(ISD::SSUBSAT, VT, Legal);
621       setOperationAction(ISD::USUBSAT, VT, Legal);
622 
623       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
624       // nodes which truncate by one power of two at a time.
625       setOperationAction(ISD::TRUNCATE, VT, Custom);
626 
627       // Custom-lower insert/extract operations to simplify patterns.
628       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
629       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
630 
631       // Custom-lower reduction operations to set up the corresponding custom
632       // nodes' operands.
633       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
634       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
635       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
636       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
637       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
638       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
639       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
640       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
641 
642       for (unsigned VPOpc : IntegerVPOps)
643         setOperationAction(VPOpc, VT, Custom);
644 
645       setOperationAction(ISD::LOAD, VT, Custom);
646       setOperationAction(ISD::STORE, VT, Custom);
647 
648       setOperationAction(ISD::MLOAD, VT, Custom);
649       setOperationAction(ISD::MSTORE, VT, Custom);
650       setOperationAction(ISD::MGATHER, VT, Custom);
651       setOperationAction(ISD::MSCATTER, VT, Custom);
652 
653       setOperationAction(ISD::VP_LOAD, VT, Custom);
654       setOperationAction(ISD::VP_STORE, VT, Custom);
655       setOperationAction(ISD::VP_GATHER, VT, Custom);
656       setOperationAction(ISD::VP_SCATTER, VT, Custom);
657 
658       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
659       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
660       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
661 
662       setOperationAction(ISD::SELECT, VT, Custom);
663       setOperationAction(ISD::SELECT_CC, VT, Expand);
664 
665       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
666       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
667 
668       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
669         setTruncStoreAction(VT, OtherVT, Expand);
670         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
671         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
672         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
673       }
674 
675       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
676       // type that can represent the value exactly.
677       if (VT.getVectorElementType() != MVT::i64) {
678         MVT FloatEltVT =
679             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
680         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
681         if (isTypeLegal(FloatVT)) {
682           setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
683           setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
684         }
685       }
686     }
687 
688     // Expand various CCs to best match the RVV ISA, which natively supports UNE
689     // but no other unordered comparisons, and supports all ordered comparisons
690     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
691     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
692     // and we pattern-match those back to the "original", swapping operands once
693     // more. This way we catch both operations and both "vf" and "fv" forms with
694     // fewer patterns.
695     static const ISD::CondCode VFPCCToExpand[] = {
696         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
697         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
698         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
699     };
700 
701     // Sets common operation actions on RVV floating-point vector types.
702     const auto SetCommonVFPActions = [&](MVT VT) {
703       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
704       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
705       // sizes are within one power-of-two of each other. Therefore conversions
706       // between vXf16 and vXf64 must be lowered as sequences which convert via
707       // vXf32.
708       setOperationAction(ISD::FP_ROUND, VT, Custom);
709       setOperationAction(ISD::FP_EXTEND, VT, Custom);
710       // Custom-lower insert/extract operations to simplify patterns.
711       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
712       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
713       // Expand various condition codes (explained above).
714       for (auto CC : VFPCCToExpand)
715         setCondCodeAction(CC, VT, Expand);
716 
717       setOperationAction(ISD::FMINNUM, VT, Legal);
718       setOperationAction(ISD::FMAXNUM, VT, Legal);
719 
720       setOperationAction(ISD::FTRUNC, VT, Custom);
721       setOperationAction(ISD::FCEIL, VT, Custom);
722       setOperationAction(ISD::FFLOOR, VT, Custom);
723       setOperationAction(ISD::FROUND, VT, Custom);
724 
725       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
726       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
727       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
728       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
729 
730       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
731 
732       setOperationAction(ISD::LOAD, VT, Custom);
733       setOperationAction(ISD::STORE, VT, Custom);
734 
735       setOperationAction(ISD::MLOAD, VT, Custom);
736       setOperationAction(ISD::MSTORE, VT, Custom);
737       setOperationAction(ISD::MGATHER, VT, Custom);
738       setOperationAction(ISD::MSCATTER, VT, Custom);
739 
740       setOperationAction(ISD::VP_LOAD, VT, Custom);
741       setOperationAction(ISD::VP_STORE, VT, Custom);
742       setOperationAction(ISD::VP_GATHER, VT, Custom);
743       setOperationAction(ISD::VP_SCATTER, VT, Custom);
744 
745       setOperationAction(ISD::SELECT, VT, Custom);
746       setOperationAction(ISD::SELECT_CC, VT, Expand);
747 
748       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
749       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
750       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
751 
752       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
753 
754       for (unsigned VPOpc : FloatingPointVPOps)
755         setOperationAction(VPOpc, VT, Custom);
756     };
757 
758     // Sets common extload/truncstore actions on RVV floating-point vector
759     // types.
760     const auto SetCommonVFPExtLoadTruncStoreActions =
761         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
762           for (auto SmallVT : SmallerVTs) {
763             setTruncStoreAction(VT, SmallVT, Expand);
764             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
765           }
766         };
767 
768     if (Subtarget.hasVInstructionsF16())
769       for (MVT VT : F16VecVTs)
770         SetCommonVFPActions(VT);
771 
772     for (MVT VT : F32VecVTs) {
773       if (Subtarget.hasVInstructionsF32())
774         SetCommonVFPActions(VT);
775       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
776     }
777 
778     for (MVT VT : F64VecVTs) {
779       if (Subtarget.hasVInstructionsF64())
780         SetCommonVFPActions(VT);
781       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
782       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
783     }
784 
785     if (Subtarget.useRVVForFixedLengthVectors()) {
786       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
787         if (!useRVVForFixedLengthVectorVT(VT))
788           continue;
789 
790         // By default everything must be expanded.
791         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
792           setOperationAction(Op, VT, Expand);
793         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
794           setTruncStoreAction(VT, OtherVT, Expand);
795           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
796           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
797           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
798         }
799 
800         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
801         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
802         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
803 
804         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
805         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
806 
807         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
808         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
809 
810         setOperationAction(ISD::LOAD, VT, Custom);
811         setOperationAction(ISD::STORE, VT, Custom);
812 
813         setOperationAction(ISD::SETCC, VT, Custom);
814 
815         setOperationAction(ISD::SELECT, VT, Custom);
816 
817         setOperationAction(ISD::TRUNCATE, VT, Custom);
818 
819         setOperationAction(ISD::BITCAST, VT, Custom);
820 
821         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
822         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
823         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
824 
825         setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
826         setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
827         setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
828 
829         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
830         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
831         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
832         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
833 
834         // Operations below are different for between masks and other vectors.
835         if (VT.getVectorElementType() == MVT::i1) {
836           setOperationAction(ISD::VP_AND, VT, Custom);
837           setOperationAction(ISD::VP_OR, VT, Custom);
838           setOperationAction(ISD::VP_XOR, VT, Custom);
839           setOperationAction(ISD::AND, VT, Custom);
840           setOperationAction(ISD::OR, VT, Custom);
841           setOperationAction(ISD::XOR, VT, Custom);
842           continue;
843         }
844 
845         // Use SPLAT_VECTOR to prevent type legalization from destroying the
846         // splats when type legalizing i64 scalar on RV32.
847         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
848         // improvements first.
849         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
850           setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
851           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
852         }
853 
854         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
855         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
856 
857         setOperationAction(ISD::MLOAD, VT, Custom);
858         setOperationAction(ISD::MSTORE, VT, Custom);
859         setOperationAction(ISD::MGATHER, VT, Custom);
860         setOperationAction(ISD::MSCATTER, VT, Custom);
861 
862         setOperationAction(ISD::VP_LOAD, VT, Custom);
863         setOperationAction(ISD::VP_STORE, VT, Custom);
864         setOperationAction(ISD::VP_GATHER, VT, Custom);
865         setOperationAction(ISD::VP_SCATTER, VT, Custom);
866 
867         setOperationAction(ISD::ADD, VT, Custom);
868         setOperationAction(ISD::MUL, VT, Custom);
869         setOperationAction(ISD::SUB, VT, Custom);
870         setOperationAction(ISD::AND, VT, Custom);
871         setOperationAction(ISD::OR, VT, Custom);
872         setOperationAction(ISD::XOR, VT, Custom);
873         setOperationAction(ISD::SDIV, VT, Custom);
874         setOperationAction(ISD::SREM, VT, Custom);
875         setOperationAction(ISD::UDIV, VT, Custom);
876         setOperationAction(ISD::UREM, VT, Custom);
877         setOperationAction(ISD::SHL, VT, Custom);
878         setOperationAction(ISD::SRA, VT, Custom);
879         setOperationAction(ISD::SRL, VT, Custom);
880 
881         setOperationAction(ISD::SMIN, VT, Custom);
882         setOperationAction(ISD::SMAX, VT, Custom);
883         setOperationAction(ISD::UMIN, VT, Custom);
884         setOperationAction(ISD::UMAX, VT, Custom);
885         setOperationAction(ISD::ABS,  VT, Custom);
886 
887         // vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
888         if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) {
889           setOperationAction(ISD::MULHS, VT, Custom);
890           setOperationAction(ISD::MULHU, VT, Custom);
891         }
892 
893         setOperationAction(ISD::SADDSAT, VT, Custom);
894         setOperationAction(ISD::UADDSAT, VT, Custom);
895         setOperationAction(ISD::SSUBSAT, VT, Custom);
896         setOperationAction(ISD::USUBSAT, VT, Custom);
897 
898         setOperationAction(ISD::VSELECT, VT, Custom);
899         setOperationAction(ISD::SELECT_CC, VT, Expand);
900 
901         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
902         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
903         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
904 
905         // Custom-lower reduction operations to set up the corresponding custom
906         // nodes' operands.
907         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
908         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
909         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
910         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
911         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
912 
913         for (unsigned VPOpc : IntegerVPOps)
914           setOperationAction(VPOpc, VT, Custom);
915 
916         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
917         // type that can represent the value exactly.
918         if (VT.getVectorElementType() != MVT::i64) {
919           MVT FloatEltVT =
920               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
921           EVT FloatVT =
922               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
923           if (isTypeLegal(FloatVT)) {
924             setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
925             setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
926           }
927         }
928       }
929 
930       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
931         if (!useRVVForFixedLengthVectorVT(VT))
932           continue;
933 
934         // By default everything must be expanded.
935         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
936           setOperationAction(Op, VT, Expand);
937         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
938           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
939           setTruncStoreAction(VT, OtherVT, Expand);
940         }
941 
942         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
943         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
944         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
945 
946         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
947         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
948         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
949         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
950         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
951 
952         setOperationAction(ISD::LOAD, VT, Custom);
953         setOperationAction(ISD::STORE, VT, Custom);
954         setOperationAction(ISD::MLOAD, VT, Custom);
955         setOperationAction(ISD::MSTORE, VT, Custom);
956         setOperationAction(ISD::MGATHER, VT, Custom);
957         setOperationAction(ISD::MSCATTER, VT, Custom);
958 
959         setOperationAction(ISD::VP_LOAD, VT, Custom);
960         setOperationAction(ISD::VP_STORE, VT, Custom);
961         setOperationAction(ISD::VP_GATHER, VT, Custom);
962         setOperationAction(ISD::VP_SCATTER, VT, Custom);
963 
964         setOperationAction(ISD::FADD, VT, Custom);
965         setOperationAction(ISD::FSUB, VT, Custom);
966         setOperationAction(ISD::FMUL, VT, Custom);
967         setOperationAction(ISD::FDIV, VT, Custom);
968         setOperationAction(ISD::FNEG, VT, Custom);
969         setOperationAction(ISD::FABS, VT, Custom);
970         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
971         setOperationAction(ISD::FSQRT, VT, Custom);
972         setOperationAction(ISD::FMA, VT, Custom);
973         setOperationAction(ISD::FMINNUM, VT, Custom);
974         setOperationAction(ISD::FMAXNUM, VT, Custom);
975 
976         setOperationAction(ISD::FP_ROUND, VT, Custom);
977         setOperationAction(ISD::FP_EXTEND, VT, Custom);
978 
979         setOperationAction(ISD::FTRUNC, VT, Custom);
980         setOperationAction(ISD::FCEIL, VT, Custom);
981         setOperationAction(ISD::FFLOOR, VT, Custom);
982         setOperationAction(ISD::FROUND, VT, Custom);
983 
984         for (auto CC : VFPCCToExpand)
985           setCondCodeAction(CC, VT, Expand);
986 
987         setOperationAction(ISD::VSELECT, VT, Custom);
988         setOperationAction(ISD::SELECT, VT, Custom);
989         setOperationAction(ISD::SELECT_CC, VT, Expand);
990 
991         setOperationAction(ISD::BITCAST, VT, Custom);
992 
993         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
994         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
995         setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
996         setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
997 
998         for (unsigned VPOpc : FloatingPointVPOps)
999           setOperationAction(VPOpc, VT, Custom);
1000       }
1001 
1002       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
1003       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
1004       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
1005       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
1006       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1007       if (Subtarget.hasStdExtZfh())
1008         setOperationAction(ISD::BITCAST, MVT::f16, Custom);
1009       if (Subtarget.hasStdExtF())
1010         setOperationAction(ISD::BITCAST, MVT::f32, Custom);
1011       if (Subtarget.hasStdExtD())
1012         setOperationAction(ISD::BITCAST, MVT::f64, Custom);
1013     }
1014   }
1015 
1016   // Function alignments.
1017   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
1018   setMinFunctionAlignment(FunctionAlignment);
1019   setPrefFunctionAlignment(FunctionAlignment);
1020 
1021   setMinimumJumpTableEntries(5);
1022 
1023   // Jumps are expensive, compared to logic
1024   setJumpIsExpensive();
1025 
1026   setTargetDAGCombine(ISD::ADD);
1027   setTargetDAGCombine(ISD::SUB);
1028   setTargetDAGCombine(ISD::AND);
1029   setTargetDAGCombine(ISD::OR);
1030   setTargetDAGCombine(ISD::XOR);
1031   setTargetDAGCombine(ISD::ROTL);
1032   setTargetDAGCombine(ISD::ROTR);
1033   setTargetDAGCombine(ISD::ANY_EXTEND);
1034   if (Subtarget.hasStdExtZfh())
1035     setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1036   if (Subtarget.hasStdExtF()) {
1037     setTargetDAGCombine(ISD::ZERO_EXTEND);
1038     setTargetDAGCombine(ISD::FP_TO_SINT);
1039     setTargetDAGCombine(ISD::FP_TO_UINT);
1040     setTargetDAGCombine(ISD::FP_TO_SINT_SAT);
1041     setTargetDAGCombine(ISD::FP_TO_UINT_SAT);
1042   }
1043   if (Subtarget.hasVInstructions()) {
1044     setTargetDAGCombine(ISD::FCOPYSIGN);
1045     setTargetDAGCombine(ISD::MGATHER);
1046     setTargetDAGCombine(ISD::MSCATTER);
1047     setTargetDAGCombine(ISD::VP_GATHER);
1048     setTargetDAGCombine(ISD::VP_SCATTER);
1049     setTargetDAGCombine(ISD::SRA);
1050     setTargetDAGCombine(ISD::SRL);
1051     setTargetDAGCombine(ISD::SHL);
1052     setTargetDAGCombine(ISD::STORE);
1053     setTargetDAGCombine(ISD::SPLAT_VECTOR);
1054   }
1055 
1056   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
1057   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
1058 }
1059 
1060 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
1061                                             LLVMContext &Context,
1062                                             EVT VT) const {
1063   if (!VT.isVector())
1064     return getPointerTy(DL);
1065   if (Subtarget.hasVInstructions() &&
1066       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
1067     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
1068   return VT.changeVectorElementTypeToInteger();
1069 }
1070 
1071 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
1072   return Subtarget.getXLenVT();
1073 }
1074 
1075 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1076                                              const CallInst &I,
1077                                              MachineFunction &MF,
1078                                              unsigned Intrinsic) const {
1079   auto &DL = I.getModule()->getDataLayout();
1080   switch (Intrinsic) {
1081   default:
1082     return false;
1083   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
1084   case Intrinsic::riscv_masked_atomicrmw_add_i32:
1085   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
1086   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
1087   case Intrinsic::riscv_masked_atomicrmw_max_i32:
1088   case Intrinsic::riscv_masked_atomicrmw_min_i32:
1089   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
1090   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
1091   case Intrinsic::riscv_masked_cmpxchg_i32:
1092     Info.opc = ISD::INTRINSIC_W_CHAIN;
1093     Info.memVT = MVT::i32;
1094     Info.ptrVal = I.getArgOperand(0);
1095     Info.offset = 0;
1096     Info.align = Align(4);
1097     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1098                  MachineMemOperand::MOVolatile;
1099     return true;
1100   case Intrinsic::riscv_masked_strided_load:
1101     Info.opc = ISD::INTRINSIC_W_CHAIN;
1102     Info.ptrVal = I.getArgOperand(1);
1103     Info.memVT = getValueType(DL, I.getType()->getScalarType());
1104     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
1105     Info.size = MemoryLocation::UnknownSize;
1106     Info.flags |= MachineMemOperand::MOLoad;
1107     return true;
1108   case Intrinsic::riscv_masked_strided_store:
1109     Info.opc = ISD::INTRINSIC_VOID;
1110     Info.ptrVal = I.getArgOperand(1);
1111     Info.memVT =
1112         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
1113     Info.align = Align(
1114         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
1115         8);
1116     Info.size = MemoryLocation::UnknownSize;
1117     Info.flags |= MachineMemOperand::MOStore;
1118     return true;
1119   }
1120 }
1121 
1122 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1123                                                 const AddrMode &AM, Type *Ty,
1124                                                 unsigned AS,
1125                                                 Instruction *I) const {
1126   // No global is ever allowed as a base.
1127   if (AM.BaseGV)
1128     return false;
1129 
1130   // Require a 12-bit signed offset.
1131   if (!isInt<12>(AM.BaseOffs))
1132     return false;
1133 
1134   switch (AM.Scale) {
1135   case 0: // "r+i" or just "i", depending on HasBaseReg.
1136     break;
1137   case 1:
1138     if (!AM.HasBaseReg) // allow "r+i".
1139       break;
1140     return false; // disallow "r+r" or "r+r+i".
1141   default:
1142     return false;
1143   }
1144 
1145   return true;
1146 }
1147 
1148 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1149   return isInt<12>(Imm);
1150 }
1151 
1152 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1153   return isInt<12>(Imm);
1154 }
1155 
1156 // On RV32, 64-bit integers are split into their high and low parts and held
1157 // in two different registers, so the trunc is free since the low register can
1158 // just be used.
1159 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1160   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1161     return false;
1162   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1163   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1164   return (SrcBits == 64 && DestBits == 32);
1165 }
1166 
1167 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1168   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1169       !SrcVT.isInteger() || !DstVT.isInteger())
1170     return false;
1171   unsigned SrcBits = SrcVT.getSizeInBits();
1172   unsigned DestBits = DstVT.getSizeInBits();
1173   return (SrcBits == 64 && DestBits == 32);
1174 }
1175 
1176 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1177   // Zexts are free if they can be combined with a load.
1178   // Don't advertise i32->i64 zextload as being free for RV64. It interacts
1179   // poorly with type legalization of compares preferring sext.
1180   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1181     EVT MemVT = LD->getMemoryVT();
1182     if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1183         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1184          LD->getExtensionType() == ISD::ZEXTLOAD))
1185       return true;
1186   }
1187 
1188   return TargetLowering::isZExtFree(Val, VT2);
1189 }
1190 
1191 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1192   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1193 }
1194 
1195 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1196   return Subtarget.hasStdExtZbb();
1197 }
1198 
1199 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1200   return Subtarget.hasStdExtZbb();
1201 }
1202 
1203 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1204   EVT VT = Y.getValueType();
1205 
1206   // FIXME: Support vectors once we have tests.
1207   if (VT.isVector())
1208     return false;
1209 
1210   return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
1211           Subtarget.hasStdExtZbkb()) &&
1212          !isa<ConstantSDNode>(Y);
1213 }
1214 
1215 /// Check if sinking \p I's operands to I's basic block is profitable, because
1216 /// the operands can be folded into a target instruction, e.g.
1217 /// splats of scalars can fold into vector instructions.
1218 bool RISCVTargetLowering::shouldSinkOperands(
1219     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1220   using namespace llvm::PatternMatch;
1221 
1222   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1223     return false;
1224 
1225   auto IsSinker = [&](Instruction *I, int Operand) {
1226     switch (I->getOpcode()) {
1227     case Instruction::Add:
1228     case Instruction::Sub:
1229     case Instruction::Mul:
1230     case Instruction::And:
1231     case Instruction::Or:
1232     case Instruction::Xor:
1233     case Instruction::FAdd:
1234     case Instruction::FSub:
1235     case Instruction::FMul:
1236     case Instruction::FDiv:
1237     case Instruction::ICmp:
1238     case Instruction::FCmp:
1239       return true;
1240     case Instruction::Shl:
1241     case Instruction::LShr:
1242     case Instruction::AShr:
1243     case Instruction::UDiv:
1244     case Instruction::SDiv:
1245     case Instruction::URem:
1246     case Instruction::SRem:
1247       return Operand == 1;
1248     case Instruction::Call:
1249       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1250         switch (II->getIntrinsicID()) {
1251         case Intrinsic::fma:
1252         case Intrinsic::vp_fma:
1253           return Operand == 0 || Operand == 1;
1254         // FIXME: Our patterns can only match vx/vf instructions when the splat
1255         // it on the RHS, because TableGen doesn't recognize our VP operations
1256         // as commutative.
1257         case Intrinsic::vp_add:
1258         case Intrinsic::vp_mul:
1259         case Intrinsic::vp_and:
1260         case Intrinsic::vp_or:
1261         case Intrinsic::vp_xor:
1262         case Intrinsic::vp_fadd:
1263         case Intrinsic::vp_fmul:
1264         case Intrinsic::vp_shl:
1265         case Intrinsic::vp_lshr:
1266         case Intrinsic::vp_ashr:
1267         case Intrinsic::vp_udiv:
1268         case Intrinsic::vp_sdiv:
1269         case Intrinsic::vp_urem:
1270         case Intrinsic::vp_srem:
1271           return Operand == 1;
1272         // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have
1273         // explicit patterns for both LHS and RHS (as 'vr' versions).
1274         case Intrinsic::vp_sub:
1275         case Intrinsic::vp_fsub:
1276         case Intrinsic::vp_fdiv:
1277           return Operand == 0 || Operand == 1;
1278         default:
1279           return false;
1280         }
1281       }
1282       return false;
1283     default:
1284       return false;
1285     }
1286   };
1287 
1288   for (auto OpIdx : enumerate(I->operands())) {
1289     if (!IsSinker(I, OpIdx.index()))
1290       continue;
1291 
1292     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1293     // Make sure we are not already sinking this operand
1294     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1295       continue;
1296 
1297     // We are looking for a splat that can be sunk.
1298     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1299                              m_Undef(), m_ZeroMask())))
1300       continue;
1301 
1302     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1303     // and vector registers
1304     for (Use &U : Op->uses()) {
1305       Instruction *Insn = cast<Instruction>(U.getUser());
1306       if (!IsSinker(Insn, U.getOperandNo()))
1307         return false;
1308     }
1309 
1310     Ops.push_back(&Op->getOperandUse(0));
1311     Ops.push_back(&OpIdx.value());
1312   }
1313   return true;
1314 }
1315 
1316 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1317                                        bool ForCodeSize) const {
1318   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1319   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1320     return false;
1321   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1322     return false;
1323   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1324     return false;
1325   return Imm.isZero();
1326 }
1327 
1328 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1329   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1330          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1331          (VT == MVT::f64 && Subtarget.hasStdExtD());
1332 }
1333 
1334 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1335                                                       CallingConv::ID CC,
1336                                                       EVT VT) const {
1337   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1338   // We might still end up using a GPR but that will be decided based on ABI.
1339   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1340   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1341     return MVT::f32;
1342 
1343   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1344 }
1345 
1346 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1347                                                            CallingConv::ID CC,
1348                                                            EVT VT) const {
1349   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1350   // We might still end up using a GPR but that will be decided based on ABI.
1351   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1352   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1353     return 1;
1354 
1355   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1356 }
1357 
1358 // Changes the condition code and swaps operands if necessary, so the SetCC
1359 // operation matches one of the comparisons supported directly by branches
1360 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1361 // with 1/-1.
1362 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1363                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1364   // Convert X > -1 to X >= 0.
1365   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1366     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1367     CC = ISD::SETGE;
1368     return;
1369   }
1370   // Convert X < 1 to 0 >= X.
1371   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1372     RHS = LHS;
1373     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1374     CC = ISD::SETGE;
1375     return;
1376   }
1377 
1378   switch (CC) {
1379   default:
1380     break;
1381   case ISD::SETGT:
1382   case ISD::SETLE:
1383   case ISD::SETUGT:
1384   case ISD::SETULE:
1385     CC = ISD::getSetCCSwappedOperands(CC);
1386     std::swap(LHS, RHS);
1387     break;
1388   }
1389 }
1390 
1391 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1392   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1393   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1394   if (VT.getVectorElementType() == MVT::i1)
1395     KnownSize *= 8;
1396 
1397   switch (KnownSize) {
1398   default:
1399     llvm_unreachable("Invalid LMUL.");
1400   case 8:
1401     return RISCVII::VLMUL::LMUL_F8;
1402   case 16:
1403     return RISCVII::VLMUL::LMUL_F4;
1404   case 32:
1405     return RISCVII::VLMUL::LMUL_F2;
1406   case 64:
1407     return RISCVII::VLMUL::LMUL_1;
1408   case 128:
1409     return RISCVII::VLMUL::LMUL_2;
1410   case 256:
1411     return RISCVII::VLMUL::LMUL_4;
1412   case 512:
1413     return RISCVII::VLMUL::LMUL_8;
1414   }
1415 }
1416 
1417 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1418   switch (LMul) {
1419   default:
1420     llvm_unreachable("Invalid LMUL.");
1421   case RISCVII::VLMUL::LMUL_F8:
1422   case RISCVII::VLMUL::LMUL_F4:
1423   case RISCVII::VLMUL::LMUL_F2:
1424   case RISCVII::VLMUL::LMUL_1:
1425     return RISCV::VRRegClassID;
1426   case RISCVII::VLMUL::LMUL_2:
1427     return RISCV::VRM2RegClassID;
1428   case RISCVII::VLMUL::LMUL_4:
1429     return RISCV::VRM4RegClassID;
1430   case RISCVII::VLMUL::LMUL_8:
1431     return RISCV::VRM8RegClassID;
1432   }
1433 }
1434 
1435 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1436   RISCVII::VLMUL LMUL = getLMUL(VT);
1437   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1438       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1439       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1440       LMUL == RISCVII::VLMUL::LMUL_1) {
1441     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1442                   "Unexpected subreg numbering");
1443     return RISCV::sub_vrm1_0 + Index;
1444   }
1445   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1446     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1447                   "Unexpected subreg numbering");
1448     return RISCV::sub_vrm2_0 + Index;
1449   }
1450   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1451     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1452                   "Unexpected subreg numbering");
1453     return RISCV::sub_vrm4_0 + Index;
1454   }
1455   llvm_unreachable("Invalid vector type.");
1456 }
1457 
1458 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1459   if (VT.getVectorElementType() == MVT::i1)
1460     return RISCV::VRRegClassID;
1461   return getRegClassIDForLMUL(getLMUL(VT));
1462 }
1463 
1464 // Attempt to decompose a subvector insert/extract between VecVT and
1465 // SubVecVT via subregister indices. Returns the subregister index that
1466 // can perform the subvector insert/extract with the given element index, as
1467 // well as the index corresponding to any leftover subvectors that must be
1468 // further inserted/extracted within the register class for SubVecVT.
1469 std::pair<unsigned, unsigned>
1470 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1471     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1472     const RISCVRegisterInfo *TRI) {
1473   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1474                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1475                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1476                 "Register classes not ordered");
1477   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1478   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1479   // Try to compose a subregister index that takes us from the incoming
1480   // LMUL>1 register class down to the outgoing one. At each step we half
1481   // the LMUL:
1482   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1483   // Note that this is not guaranteed to find a subregister index, such as
1484   // when we are extracting from one VR type to another.
1485   unsigned SubRegIdx = RISCV::NoSubRegister;
1486   for (const unsigned RCID :
1487        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1488     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1489       VecVT = VecVT.getHalfNumVectorElementsVT();
1490       bool IsHi =
1491           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1492       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1493                                             getSubregIndexByMVT(VecVT, IsHi));
1494       if (IsHi)
1495         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1496     }
1497   return {SubRegIdx, InsertExtractIdx};
1498 }
1499 
1500 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1501 // stores for those types.
1502 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1503   return !Subtarget.useRVVForFixedLengthVectors() ||
1504          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1505 }
1506 
1507 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1508   if (ScalarTy->isPointerTy())
1509     return true;
1510 
1511   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1512       ScalarTy->isIntegerTy(32))
1513     return true;
1514 
1515   if (ScalarTy->isIntegerTy(64))
1516     return Subtarget.hasVInstructionsI64();
1517 
1518   if (ScalarTy->isHalfTy())
1519     return Subtarget.hasVInstructionsF16();
1520   if (ScalarTy->isFloatTy())
1521     return Subtarget.hasVInstructionsF32();
1522   if (ScalarTy->isDoubleTy())
1523     return Subtarget.hasVInstructionsF64();
1524 
1525   return false;
1526 }
1527 
1528 static SDValue getVLOperand(SDValue Op) {
1529   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1530           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
1531          "Unexpected opcode");
1532   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
1533   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
1534   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
1535       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
1536   if (!II)
1537     return SDValue();
1538   return Op.getOperand(II->VLOperand + 1 + HasChain);
1539 }
1540 
1541 static bool useRVVForFixedLengthVectorVT(MVT VT,
1542                                          const RISCVSubtarget &Subtarget) {
1543   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1544   if (!Subtarget.useRVVForFixedLengthVectors())
1545     return false;
1546 
1547   // We only support a set of vector types with a consistent maximum fixed size
1548   // across all supported vector element types to avoid legalization issues.
1549   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1550   // fixed-length vector type we support is 1024 bytes.
1551   if (VT.getFixedSizeInBits() > 1024 * 8)
1552     return false;
1553 
1554   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1555 
1556   MVT EltVT = VT.getVectorElementType();
1557 
1558   // Don't use RVV for vectors we cannot scalarize if required.
1559   switch (EltVT.SimpleTy) {
1560   // i1 is supported but has different rules.
1561   default:
1562     return false;
1563   case MVT::i1:
1564     // Masks can only use a single register.
1565     if (VT.getVectorNumElements() > MinVLen)
1566       return false;
1567     MinVLen /= 8;
1568     break;
1569   case MVT::i8:
1570   case MVT::i16:
1571   case MVT::i32:
1572     break;
1573   case MVT::i64:
1574     if (!Subtarget.hasVInstructionsI64())
1575       return false;
1576     break;
1577   case MVT::f16:
1578     if (!Subtarget.hasVInstructionsF16())
1579       return false;
1580     break;
1581   case MVT::f32:
1582     if (!Subtarget.hasVInstructionsF32())
1583       return false;
1584     break;
1585   case MVT::f64:
1586     if (!Subtarget.hasVInstructionsF64())
1587       return false;
1588     break;
1589   }
1590 
1591   // Reject elements larger than ELEN.
1592   if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors())
1593     return false;
1594 
1595   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1596   // Don't use RVV for types that don't fit.
1597   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1598     return false;
1599 
1600   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1601   // the base fixed length RVV support in place.
1602   if (!VT.isPow2VectorType())
1603     return false;
1604 
1605   return true;
1606 }
1607 
1608 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1609   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1610 }
1611 
1612 // Return the largest legal scalable vector type that matches VT's element type.
1613 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1614                                             const RISCVSubtarget &Subtarget) {
1615   // This may be called before legal types are setup.
1616   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1617           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1618          "Expected legal fixed length vector!");
1619 
1620   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1621   unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors();
1622 
1623   MVT EltVT = VT.getVectorElementType();
1624   switch (EltVT.SimpleTy) {
1625   default:
1626     llvm_unreachable("unexpected element type for RVV container");
1627   case MVT::i1:
1628   case MVT::i8:
1629   case MVT::i16:
1630   case MVT::i32:
1631   case MVT::i64:
1632   case MVT::f16:
1633   case MVT::f32:
1634   case MVT::f64: {
1635     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1636     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1637     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1638     unsigned NumElts =
1639         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1640     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1641     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1642     return MVT::getScalableVectorVT(EltVT, NumElts);
1643   }
1644   }
1645 }
1646 
1647 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1648                                             const RISCVSubtarget &Subtarget) {
1649   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1650                                           Subtarget);
1651 }
1652 
1653 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1654   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1655 }
1656 
1657 // Grow V to consume an entire RVV register.
1658 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1659                                        const RISCVSubtarget &Subtarget) {
1660   assert(VT.isScalableVector() &&
1661          "Expected to convert into a scalable vector!");
1662   assert(V.getValueType().isFixedLengthVector() &&
1663          "Expected a fixed length vector operand!");
1664   SDLoc DL(V);
1665   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1666   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1667 }
1668 
1669 // Shrink V so it's just big enough to maintain a VT's worth of data.
1670 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1671                                          const RISCVSubtarget &Subtarget) {
1672   assert(VT.isFixedLengthVector() &&
1673          "Expected to convert into a fixed length vector!");
1674   assert(V.getValueType().isScalableVector() &&
1675          "Expected a scalable vector operand!");
1676   SDLoc DL(V);
1677   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1678   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1679 }
1680 
1681 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1682 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1683 // the vector type that it is contained in.
1684 static std::pair<SDValue, SDValue>
1685 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1686                 const RISCVSubtarget &Subtarget) {
1687   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1688   MVT XLenVT = Subtarget.getXLenVT();
1689   SDValue VL = VecVT.isFixedLengthVector()
1690                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1691                    : DAG.getRegister(RISCV::X0, XLenVT);
1692   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1693   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1694   return {Mask, VL};
1695 }
1696 
1697 // As above but assuming the given type is a scalable vector type.
1698 static std::pair<SDValue, SDValue>
1699 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1700                         const RISCVSubtarget &Subtarget) {
1701   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1702   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1703 }
1704 
1705 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1706 // of either is (currently) supported. This can get us into an infinite loop
1707 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1708 // as a ..., etc.
1709 // Until either (or both) of these can reliably lower any node, reporting that
1710 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1711 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1712 // which is not desirable.
1713 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1714     EVT VT, unsigned DefinedValues) const {
1715   return false;
1716 }
1717 
1718 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
1719                                   const RISCVSubtarget &Subtarget) {
1720   // RISCV FP-to-int conversions saturate to the destination register size, but
1721   // don't produce 0 for nan. We can use a conversion instruction and fix the
1722   // nan case with a compare and a select.
1723   SDValue Src = Op.getOperand(0);
1724 
1725   EVT DstVT = Op.getValueType();
1726   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1727 
1728   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1729   unsigned Opc;
1730   if (SatVT == DstVT)
1731     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
1732   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1733     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
1734   else
1735     return SDValue();
1736   // FIXME: Support other SatVTs by clamping before or after the conversion.
1737 
1738   SDLoc DL(Op);
1739   SDValue FpToInt = DAG.getNode(
1740       Opc, DL, DstVT, Src,
1741       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
1742 
1743   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1744   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1745 }
1746 
1747 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1748 // and back. Taking care to avoid converting values that are nan or already
1749 // correct.
1750 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1751 // have FRM dependencies modeled yet.
1752 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1753   MVT VT = Op.getSimpleValueType();
1754   assert(VT.isVector() && "Unexpected type");
1755 
1756   SDLoc DL(Op);
1757 
1758   // Freeze the source since we are increasing the number of uses.
1759   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1760 
1761   // Truncate to integer and convert back to FP.
1762   MVT IntVT = VT.changeVectorElementTypeToInteger();
1763   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1764   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1765 
1766   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1767 
1768   if (Op.getOpcode() == ISD::FCEIL) {
1769     // If the truncated value is the greater than or equal to the original
1770     // value, we've computed the ceil. Otherwise, we went the wrong way and
1771     // need to increase by 1.
1772     // FIXME: This should use a masked operation. Handle here or in isel?
1773     SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1774                                  DAG.getConstantFP(1.0, DL, VT));
1775     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1776     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1777   } else if (Op.getOpcode() == ISD::FFLOOR) {
1778     // If the truncated value is the less than or equal to the original value,
1779     // we've computed the floor. Otherwise, we went the wrong way and need to
1780     // decrease by 1.
1781     // FIXME: This should use a masked operation. Handle here or in isel?
1782     SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1783                                  DAG.getConstantFP(1.0, DL, VT));
1784     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1785     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1786   }
1787 
1788   // Restore the original sign so that -0.0 is preserved.
1789   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1790 
1791   // Determine the largest integer that can be represented exactly. This and
1792   // values larger than it don't have any fractional bits so don't need to
1793   // be converted.
1794   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1795   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1796   APFloat MaxVal = APFloat(FltSem);
1797   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1798                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1799   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1800 
1801   // If abs(Src) was larger than MaxVal or nan, keep it.
1802   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1803   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1804   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1805 }
1806 
1807 // ISD::FROUND is defined to round to nearest with ties rounding away from 0.
1808 // This mode isn't supported in vector hardware on RISCV. But as long as we
1809 // aren't compiling with trapping math, we can emulate this with
1810 // floor(X + copysign(nextafter(0.5, 0.0), X)).
1811 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM
1812 // dependencies modeled yet.
1813 // FIXME: Use masked operations to avoid final merge.
1814 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) {
1815   MVT VT = Op.getSimpleValueType();
1816   assert(VT.isVector() && "Unexpected type");
1817 
1818   SDLoc DL(Op);
1819 
1820   // Freeze the source since we are increasing the number of uses.
1821   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1822 
1823   // We do the conversion on the absolute value and fix the sign at the end.
1824   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1825 
1826   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1827   bool Ignored;
1828   APFloat Point5Pred = APFloat(0.5f);
1829   Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored);
1830   Point5Pred.next(/*nextDown*/ true);
1831 
1832   // Add the adjustment.
1833   SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs,
1834                                DAG.getConstantFP(Point5Pred, DL, VT));
1835 
1836   // Truncate to integer and convert back to fp.
1837   MVT IntVT = VT.changeVectorElementTypeToInteger();
1838   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust);
1839   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1840 
1841   // Restore the original sign.
1842   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1843 
1844   // Determine the largest integer that can be represented exactly. This and
1845   // values larger than it don't have any fractional bits so don't need to
1846   // be converted.
1847   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1848   APFloat MaxVal = APFloat(FltSem);
1849   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1850                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1851   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1852 
1853   // If abs(Src) was larger than MaxVal or nan, keep it.
1854   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1855   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1856   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1857 }
1858 
1859 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG,
1860                                  const RISCVSubtarget &Subtarget) {
1861   MVT VT = Op.getSimpleValueType();
1862   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1863 
1864   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1865 
1866   SDLoc DL(Op);
1867   SDValue Mask, VL;
1868   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1869 
1870   unsigned Opc =
1871       VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1872   SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
1873                               Op.getOperand(0), VL);
1874   return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1875 }
1876 
1877 struct VIDSequence {
1878   int64_t StepNumerator;
1879   unsigned StepDenominator;
1880   int64_t Addend;
1881 };
1882 
1883 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1884 // to the (non-zero) step S and start value X. This can be then lowered as the
1885 // RVV sequence (VID * S) + X, for example.
1886 // The step S is represented as an integer numerator divided by a positive
1887 // denominator. Note that the implementation currently only identifies
1888 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1889 // cannot detect 2/3, for example.
1890 // Note that this method will also match potentially unappealing index
1891 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1892 // determine whether this is worth generating code for.
1893 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1894   unsigned NumElts = Op.getNumOperands();
1895   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1896   if (!Op.getValueType().isInteger())
1897     return None;
1898 
1899   Optional<unsigned> SeqStepDenom;
1900   Optional<int64_t> SeqStepNum, SeqAddend;
1901   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1902   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1903   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1904     // Assume undef elements match the sequence; we just have to be careful
1905     // when interpolating across them.
1906     if (Op.getOperand(Idx).isUndef())
1907       continue;
1908     // The BUILD_VECTOR must be all constants.
1909     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1910       return None;
1911 
1912     uint64_t Val = Op.getConstantOperandVal(Idx) &
1913                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1914 
1915     if (PrevElt) {
1916       // Calculate the step since the last non-undef element, and ensure
1917       // it's consistent across the entire sequence.
1918       unsigned IdxDiff = Idx - PrevElt->second;
1919       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1920 
1921       // A zero-value value difference means that we're somewhere in the middle
1922       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1923       // step change before evaluating the sequence.
1924       if (ValDiff != 0) {
1925         int64_t Remainder = ValDiff % IdxDiff;
1926         // Normalize the step if it's greater than 1.
1927         if (Remainder != ValDiff) {
1928           // The difference must cleanly divide the element span.
1929           if (Remainder != 0)
1930             return None;
1931           ValDiff /= IdxDiff;
1932           IdxDiff = 1;
1933         }
1934 
1935         if (!SeqStepNum)
1936           SeqStepNum = ValDiff;
1937         else if (ValDiff != SeqStepNum)
1938           return None;
1939 
1940         if (!SeqStepDenom)
1941           SeqStepDenom = IdxDiff;
1942         else if (IdxDiff != *SeqStepDenom)
1943           return None;
1944       }
1945     }
1946 
1947     // Record and/or check any addend.
1948     if (SeqStepNum && SeqStepDenom) {
1949       uint64_t ExpectedVal =
1950           (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1951       int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1952       if (!SeqAddend)
1953         SeqAddend = Addend;
1954       else if (SeqAddend != Addend)
1955         return None;
1956     }
1957 
1958     // Record this non-undef element for later.
1959     if (!PrevElt || PrevElt->first != Val)
1960       PrevElt = std::make_pair(Val, Idx);
1961   }
1962   // We need to have logged both a step and an addend for this to count as
1963   // a legal index sequence.
1964   if (!SeqStepNum || !SeqStepDenom || !SeqAddend)
1965     return None;
1966 
1967   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1968 }
1969 
1970 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT
1971 // and lower it as a VRGATHER_VX_VL from the source vector.
1972 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL,
1973                                   SelectionDAG &DAG,
1974                                   const RISCVSubtarget &Subtarget) {
1975   if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1976     return SDValue();
1977   SDValue Vec = SplatVal.getOperand(0);
1978   // Only perform this optimization on vectors of the same size for simplicity.
1979   if (Vec.getValueType() != VT)
1980     return SDValue();
1981   SDValue Idx = SplatVal.getOperand(1);
1982   // The index must be a legal type.
1983   if (Idx.getValueType() != Subtarget.getXLenVT())
1984     return SDValue();
1985 
1986   MVT ContainerVT = VT;
1987   if (VT.isFixedLengthVector()) {
1988     ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1989     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
1990   }
1991 
1992   SDValue Mask, VL;
1993   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1994 
1995   SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec,
1996                                Idx, Mask, VL);
1997 
1998   if (!VT.isFixedLengthVector())
1999     return Gather;
2000 
2001   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2002 }
2003 
2004 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
2005                                  const RISCVSubtarget &Subtarget) {
2006   MVT VT = Op.getSimpleValueType();
2007   assert(VT.isFixedLengthVector() && "Unexpected vector!");
2008 
2009   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2010 
2011   SDLoc DL(Op);
2012   SDValue Mask, VL;
2013   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2014 
2015   MVT XLenVT = Subtarget.getXLenVT();
2016   unsigned NumElts = Op.getNumOperands();
2017 
2018   if (VT.getVectorElementType() == MVT::i1) {
2019     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
2020       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
2021       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
2022     }
2023 
2024     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
2025       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
2026       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
2027     }
2028 
2029     // Lower constant mask BUILD_VECTORs via an integer vector type, in
2030     // scalar integer chunks whose bit-width depends on the number of mask
2031     // bits and XLEN.
2032     // First, determine the most appropriate scalar integer type to use. This
2033     // is at most XLenVT, but may be shrunk to a smaller vector element type
2034     // according to the size of the final vector - use i8 chunks rather than
2035     // XLenVT if we're producing a v8i1. This results in more consistent
2036     // codegen across RV32 and RV64.
2037     unsigned NumViaIntegerBits =
2038         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
2039     NumViaIntegerBits = std::min(NumViaIntegerBits,
2040                                  Subtarget.getMaxELENForFixedLengthVectors());
2041     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
2042       // If we have to use more than one INSERT_VECTOR_ELT then this
2043       // optimization is likely to increase code size; avoid peforming it in
2044       // such a case. We can use a load from a constant pool in this case.
2045       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
2046         return SDValue();
2047       // Now we can create our integer vector type. Note that it may be larger
2048       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
2049       MVT IntegerViaVecVT =
2050           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
2051                            divideCeil(NumElts, NumViaIntegerBits));
2052 
2053       uint64_t Bits = 0;
2054       unsigned BitPos = 0, IntegerEltIdx = 0;
2055       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
2056 
2057       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
2058         // Once we accumulate enough bits to fill our scalar type, insert into
2059         // our vector and clear our accumulated data.
2060         if (I != 0 && I % NumViaIntegerBits == 0) {
2061           if (NumViaIntegerBits <= 32)
2062             Bits = SignExtend64(Bits, 32);
2063           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2064           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
2065                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2066           Bits = 0;
2067           BitPos = 0;
2068           IntegerEltIdx++;
2069         }
2070         SDValue V = Op.getOperand(I);
2071         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
2072         Bits |= ((uint64_t)BitValue << BitPos);
2073       }
2074 
2075       // Insert the (remaining) scalar value into position in our integer
2076       // vector type.
2077       if (NumViaIntegerBits <= 32)
2078         Bits = SignExtend64(Bits, 32);
2079       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2080       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
2081                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2082 
2083       if (NumElts < NumViaIntegerBits) {
2084         // If we're producing a smaller vector than our minimum legal integer
2085         // type, bitcast to the equivalent (known-legal) mask type, and extract
2086         // our final mask.
2087         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
2088         Vec = DAG.getBitcast(MVT::v8i1, Vec);
2089         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
2090                           DAG.getConstant(0, DL, XLenVT));
2091       } else {
2092         // Else we must have produced an integer type with the same size as the
2093         // mask type; bitcast for the final result.
2094         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
2095         Vec = DAG.getBitcast(VT, Vec);
2096       }
2097 
2098       return Vec;
2099     }
2100 
2101     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
2102     // vector type, we have a legal equivalently-sized i8 type, so we can use
2103     // that.
2104     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
2105     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
2106 
2107     SDValue WideVec;
2108     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2109       // For a splat, perform a scalar truncate before creating the wider
2110       // vector.
2111       assert(Splat.getValueType() == XLenVT &&
2112              "Unexpected type for i1 splat value");
2113       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
2114                           DAG.getConstant(1, DL, XLenVT));
2115       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
2116     } else {
2117       SmallVector<SDValue, 8> Ops(Op->op_values());
2118       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
2119       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
2120       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
2121     }
2122 
2123     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
2124   }
2125 
2126   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2127     if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget))
2128       return Gather;
2129     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2130                                         : RISCVISD::VMV_V_X_VL;
2131     Splat =
2132         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL);
2133     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2134   }
2135 
2136   // Try and match index sequences, which we can lower to the vid instruction
2137   // with optional modifications. An all-undef vector is matched by
2138   // getSplatValue, above.
2139   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2140     int64_t StepNumerator = SimpleVID->StepNumerator;
2141     unsigned StepDenominator = SimpleVID->StepDenominator;
2142     int64_t Addend = SimpleVID->Addend;
2143 
2144     assert(StepNumerator != 0 && "Invalid step");
2145     bool Negate = false;
2146     int64_t SplatStepVal = StepNumerator;
2147     unsigned StepOpcode = ISD::MUL;
2148     if (StepNumerator != 1) {
2149       if (isPowerOf2_64(std::abs(StepNumerator))) {
2150         Negate = StepNumerator < 0;
2151         StepOpcode = ISD::SHL;
2152         SplatStepVal = Log2_64(std::abs(StepNumerator));
2153       }
2154     }
2155 
2156     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2157     // threshold since it's the immediate value many RVV instructions accept.
2158     // There is no vmul.vi instruction so ensure multiply constant can fit in
2159     // a single addi instruction.
2160     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2161          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2162         isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) {
2163       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2164       // Convert right out of the scalable type so we can use standard ISD
2165       // nodes for the rest of the computation. If we used scalable types with
2166       // these, we'd lose the fixed-length vector info and generate worse
2167       // vsetvli code.
2168       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2169       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2170           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2171         SDValue SplatStep = DAG.getSplatVector(
2172             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2173         VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2174       }
2175       if (StepDenominator != 1) {
2176         SDValue SplatStep = DAG.getSplatVector(
2177             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2178         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2179       }
2180       if (Addend != 0 || Negate) {
2181         SDValue SplatAddend =
2182             DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2183         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2184       }
2185       return VID;
2186     }
2187   }
2188 
2189   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2190   // when re-interpreted as a vector with a larger element type. For example,
2191   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2192   // could be instead splat as
2193   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2194   // TODO: This optimization could also work on non-constant splats, but it
2195   // would require bit-manipulation instructions to construct the splat value.
2196   SmallVector<SDValue> Sequence;
2197   unsigned EltBitSize = VT.getScalarSizeInBits();
2198   const auto *BV = cast<BuildVectorSDNode>(Op);
2199   if (VT.isInteger() && EltBitSize < 64 &&
2200       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2201       BV->getRepeatedSequence(Sequence) &&
2202       (Sequence.size() * EltBitSize) <= 64) {
2203     unsigned SeqLen = Sequence.size();
2204     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2205     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2206     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2207             ViaIntVT == MVT::i64) &&
2208            "Unexpected sequence type");
2209 
2210     unsigned EltIdx = 0;
2211     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2212     uint64_t SplatValue = 0;
2213     // Construct the amalgamated value which can be splatted as this larger
2214     // vector type.
2215     for (const auto &SeqV : Sequence) {
2216       if (!SeqV.isUndef())
2217         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2218                        << (EltIdx * EltBitSize));
2219       EltIdx++;
2220     }
2221 
2222     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2223     // achieve better constant materializion.
2224     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2225       SplatValue = SignExtend64(SplatValue, 32);
2226 
2227     // Since we can't introduce illegal i64 types at this stage, we can only
2228     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2229     // way we can use RVV instructions to splat.
2230     assert((ViaIntVT.bitsLE(XLenVT) ||
2231             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2232            "Unexpected bitcast sequence");
2233     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2234       SDValue ViaVL =
2235           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2236       MVT ViaContainerVT =
2237           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2238       SDValue Splat =
2239           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2240                       DAG.getUNDEF(ViaContainerVT),
2241                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2242       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2243       return DAG.getBitcast(VT, Splat);
2244     }
2245   }
2246 
2247   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2248   // which constitute a large proportion of the elements. In such cases we can
2249   // splat a vector with the dominant element and make up the shortfall with
2250   // INSERT_VECTOR_ELTs.
2251   // Note that this includes vectors of 2 elements by association. The
2252   // upper-most element is the "dominant" one, allowing us to use a splat to
2253   // "insert" the upper element, and an insert of the lower element at position
2254   // 0, which improves codegen.
2255   SDValue DominantValue;
2256   unsigned MostCommonCount = 0;
2257   DenseMap<SDValue, unsigned> ValueCounts;
2258   unsigned NumUndefElts =
2259       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2260 
2261   // Track the number of scalar loads we know we'd be inserting, estimated as
2262   // any non-zero floating-point constant. Other kinds of element are either
2263   // already in registers or are materialized on demand. The threshold at which
2264   // a vector load is more desirable than several scalar materializion and
2265   // vector-insertion instructions is not known.
2266   unsigned NumScalarLoads = 0;
2267 
2268   for (SDValue V : Op->op_values()) {
2269     if (V.isUndef())
2270       continue;
2271 
2272     ValueCounts.insert(std::make_pair(V, 0));
2273     unsigned &Count = ValueCounts[V];
2274 
2275     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2276       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2277 
2278     // Is this value dominant? In case of a tie, prefer the highest element as
2279     // it's cheaper to insert near the beginning of a vector than it is at the
2280     // end.
2281     if (++Count >= MostCommonCount) {
2282       DominantValue = V;
2283       MostCommonCount = Count;
2284     }
2285   }
2286 
2287   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2288   unsigned NumDefElts = NumElts - NumUndefElts;
2289   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2290 
2291   // Don't perform this optimization when optimizing for size, since
2292   // materializing elements and inserting them tends to cause code bloat.
2293   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2294       ((MostCommonCount > DominantValueCountThreshold) ||
2295        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2296     // Start by splatting the most common element.
2297     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2298 
2299     DenseSet<SDValue> Processed{DominantValue};
2300     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2301     for (const auto &OpIdx : enumerate(Op->ops())) {
2302       const SDValue &V = OpIdx.value();
2303       if (V.isUndef() || !Processed.insert(V).second)
2304         continue;
2305       if (ValueCounts[V] == 1) {
2306         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2307                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2308       } else {
2309         // Blend in all instances of this value using a VSELECT, using a
2310         // mask where each bit signals whether that element is the one
2311         // we're after.
2312         SmallVector<SDValue> Ops;
2313         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2314           return DAG.getConstant(V == V1, DL, XLenVT);
2315         });
2316         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2317                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2318                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2319       }
2320     }
2321 
2322     return Vec;
2323   }
2324 
2325   return SDValue();
2326 }
2327 
2328 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2329                                    SDValue Lo, SDValue Hi, SDValue VL,
2330                                    SelectionDAG &DAG) {
2331   bool HasPassthru = Passthru && !Passthru.isUndef();
2332   if (!HasPassthru && !Passthru)
2333     Passthru = DAG.getUNDEF(VT);
2334   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2335     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2336     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2337     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2338     // node in order to try and match RVV vector/scalar instructions.
2339     if ((LoC >> 31) == HiC)
2340       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
2341 
2342     // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use
2343     // vmv.v.x whose EEW = 32 to lower it.
2344     auto *Const = dyn_cast<ConstantSDNode>(VL);
2345     if (LoC == HiC && Const && Const->isAllOnesValue()) {
2346       MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
2347       // TODO: if vl <= min(VLMAX), we can also do this. But we could not
2348       // access the subtarget here now.
2349       auto InterVec = DAG.getNode(
2350           RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo,
2351                                   DAG.getRegister(RISCV::X0, MVT::i32));
2352       return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
2353     }
2354   }
2355 
2356   // Fall back to a stack store and stride x0 vector load.
2357   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo,
2358                      Hi, VL);
2359 }
2360 
2361 // Called by type legalization to handle splat of i64 on RV32.
2362 // FIXME: We can optimize this when the type has sign or zero bits in one
2363 // of the halves.
2364 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2365                                    SDValue Scalar, SDValue VL,
2366                                    SelectionDAG &DAG) {
2367   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2368   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2369                            DAG.getConstant(0, DL, MVT::i32));
2370   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2371                            DAG.getConstant(1, DL, MVT::i32));
2372   return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG);
2373 }
2374 
2375 // This function lowers a splat of a scalar operand Splat with the vector
2376 // length VL. It ensures the final sequence is type legal, which is useful when
2377 // lowering a splat after type legalization.
2378 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL,
2379                                 MVT VT, SDLoc DL, SelectionDAG &DAG,
2380                                 const RISCVSubtarget &Subtarget) {
2381   bool HasPassthru = Passthru && !Passthru.isUndef();
2382   if (!HasPassthru && !Passthru)
2383     Passthru = DAG.getUNDEF(VT);
2384   if (VT.isFloatingPoint()) {
2385     // If VL is 1, we could use vfmv.s.f.
2386     if (isOneConstant(VL))
2387       return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL);
2388     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL);
2389   }
2390 
2391   MVT XLenVT = Subtarget.getXLenVT();
2392 
2393   // Simplest case is that the operand needs to be promoted to XLenVT.
2394   if (Scalar.getValueType().bitsLE(XLenVT)) {
2395     // If the operand is a constant, sign extend to increase our chances
2396     // of being able to use a .vi instruction. ANY_EXTEND would become a
2397     // a zero extend and the simm5 check in isel would fail.
2398     // FIXME: Should we ignore the upper bits in isel instead?
2399     unsigned ExtOpc =
2400         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2401     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2402     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
2403     // If VL is 1 and the scalar value won't benefit from immediate, we could
2404     // use vmv.s.x.
2405     if (isOneConstant(VL) &&
2406         (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
2407       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL);
2408     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
2409   }
2410 
2411   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2412          "Unexpected scalar for splat lowering!");
2413 
2414   if (isOneConstant(VL) && isNullConstant(Scalar))
2415     return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru,
2416                        DAG.getConstant(0, DL, XLenVT), VL);
2417 
2418   // Otherwise use the more complicated splatting algorithm.
2419   return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG);
2420 }
2421 
2422 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources,
2423                                 const RISCVSubtarget &Subtarget) {
2424   // We need to be able to widen elements to the next larger integer type.
2425   if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors())
2426     return false;
2427 
2428   int Size = Mask.size();
2429   assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
2430 
2431   int Srcs[] = {-1, -1};
2432   for (int i = 0; i != Size; ++i) {
2433     // Ignore undef elements.
2434     if (Mask[i] < 0)
2435       continue;
2436 
2437     // Is this an even or odd element.
2438     int Pol = i % 2;
2439 
2440     // Ensure we consistently use the same source for this element polarity.
2441     int Src = Mask[i] / Size;
2442     if (Srcs[Pol] < 0)
2443       Srcs[Pol] = Src;
2444     if (Srcs[Pol] != Src)
2445       return false;
2446 
2447     // Make sure the element within the source is appropriate for this element
2448     // in the destination.
2449     int Elt = Mask[i] % Size;
2450     if (Elt != i / 2)
2451       return false;
2452   }
2453 
2454   // We need to find a source for each polarity and they can't be the same.
2455   if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1])
2456     return false;
2457 
2458   // Swap the sources if the second source was in the even polarity.
2459   SwapSources = Srcs[0] > Srcs[1];
2460 
2461   return true;
2462 }
2463 
2464 /// Match shuffles that concatenate two vectors, rotate the concatenation,
2465 /// and then extract the original number of elements from the rotated result.
2466 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The
2467 /// returned rotation amount is for a rotate right, where elements move from
2468 /// higher elements to lower elements. \p LoSrc indicates the first source
2469 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector
2470 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be
2471 /// 0 or 1 if a rotation is found.
2472 ///
2473 /// NOTE: We talk about rotate to the right which matches how bit shift and
2474 /// rotate instructions are described where LSBs are on the right, but LLVM IR
2475 /// and the table below write vectors with the lowest elements on the left.
2476 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) {
2477   int Size = Mask.size();
2478 
2479   // We need to detect various ways of spelling a rotation:
2480   //   [11, 12, 13, 14, 15,  0,  1,  2]
2481   //   [-1, 12, 13, 14, -1, -1,  1, -1]
2482   //   [-1, -1, -1, -1, -1, -1,  1,  2]
2483   //   [ 3,  4,  5,  6,  7,  8,  9, 10]
2484   //   [-1,  4,  5,  6, -1, -1,  9, -1]
2485   //   [-1,  4,  5,  6, -1, -1, -1, -1]
2486   int Rotation = 0;
2487   LoSrc = -1;
2488   HiSrc = -1;
2489   for (int i = 0; i != Size; ++i) {
2490     int M = Mask[i];
2491     if (M < 0)
2492       continue;
2493 
2494     // Determine where a rotate vector would have started.
2495     int StartIdx = i - (M % Size);
2496     // The identity rotation isn't interesting, stop.
2497     if (StartIdx == 0)
2498       return -1;
2499 
2500     // If we found the tail of a vector the rotation must be the missing
2501     // front. If we found the head of a vector, it must be how much of the
2502     // head.
2503     int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
2504 
2505     if (Rotation == 0)
2506       Rotation = CandidateRotation;
2507     else if (Rotation != CandidateRotation)
2508       // The rotations don't match, so we can't match this mask.
2509       return -1;
2510 
2511     // Compute which value this mask is pointing at.
2512     int MaskSrc = M < Size ? 0 : 1;
2513 
2514     // Compute which of the two target values this index should be assigned to.
2515     // This reflects whether the high elements are remaining or the low elemnts
2516     // are remaining.
2517     int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc;
2518 
2519     // Either set up this value if we've not encountered it before, or check
2520     // that it remains consistent.
2521     if (TargetSrc < 0)
2522       TargetSrc = MaskSrc;
2523     else if (TargetSrc != MaskSrc)
2524       // This may be a rotation, but it pulls from the inputs in some
2525       // unsupported interleaving.
2526       return -1;
2527   }
2528 
2529   // Check that we successfully analyzed the mask, and normalize the results.
2530   assert(Rotation != 0 && "Failed to locate a viable rotation!");
2531   assert((LoSrc >= 0 || HiSrc >= 0) &&
2532          "Failed to find a rotated input vector!");
2533 
2534   return Rotation;
2535 }
2536 
2537 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2538                                    const RISCVSubtarget &Subtarget) {
2539   SDValue V1 = Op.getOperand(0);
2540   SDValue V2 = Op.getOperand(1);
2541   SDLoc DL(Op);
2542   MVT XLenVT = Subtarget.getXLenVT();
2543   MVT VT = Op.getSimpleValueType();
2544   unsigned NumElts = VT.getVectorNumElements();
2545   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2546 
2547   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2548 
2549   SDValue TrueMask, VL;
2550   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2551 
2552   if (SVN->isSplat()) {
2553     const int Lane = SVN->getSplatIndex();
2554     if (Lane >= 0) {
2555       MVT SVT = VT.getVectorElementType();
2556 
2557       // Turn splatted vector load into a strided load with an X0 stride.
2558       SDValue V = V1;
2559       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2560       // with undef.
2561       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2562       int Offset = Lane;
2563       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2564         int OpElements =
2565             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2566         V = V.getOperand(Offset / OpElements);
2567         Offset %= OpElements;
2568       }
2569 
2570       // We need to ensure the load isn't atomic or volatile.
2571       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2572         auto *Ld = cast<LoadSDNode>(V);
2573         Offset *= SVT.getStoreSize();
2574         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2575                                                    TypeSize::Fixed(Offset), DL);
2576 
2577         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2578         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2579           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2580           SDValue IntID =
2581               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2582           SDValue Ops[] = {Ld->getChain(),
2583                            IntID,
2584                            DAG.getUNDEF(ContainerVT),
2585                            NewAddr,
2586                            DAG.getRegister(RISCV::X0, XLenVT),
2587                            VL};
2588           SDValue NewLoad = DAG.getMemIntrinsicNode(
2589               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2590               DAG.getMachineFunction().getMachineMemOperand(
2591                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2592           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2593           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2594         }
2595 
2596         // Otherwise use a scalar load and splat. This will give the best
2597         // opportunity to fold a splat into the operation. ISel can turn it into
2598         // the x0 strided load if we aren't able to fold away the select.
2599         if (SVT.isFloatingPoint())
2600           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2601                           Ld->getPointerInfo().getWithOffset(Offset),
2602                           Ld->getOriginalAlign(),
2603                           Ld->getMemOperand()->getFlags());
2604         else
2605           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2606                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2607                              Ld->getOriginalAlign(),
2608                              Ld->getMemOperand()->getFlags());
2609         DAG.makeEquivalentMemoryOrdering(Ld, V);
2610 
2611         unsigned Opc =
2612             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2613         SDValue Splat =
2614             DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL);
2615         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2616       }
2617 
2618       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2619       assert(Lane < (int)NumElts && "Unexpected lane!");
2620       SDValue Gather =
2621           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
2622                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
2623       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2624     }
2625   }
2626 
2627   ArrayRef<int> Mask = SVN->getMask();
2628 
2629   // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may
2630   // be undef which can be handled with a single SLIDEDOWN/UP.
2631   int LoSrc, HiSrc;
2632   int Rotation = isElementRotate(LoSrc, HiSrc, Mask);
2633   if (Rotation > 0) {
2634     SDValue LoV, HiV;
2635     if (LoSrc >= 0) {
2636       LoV = LoSrc == 0 ? V1 : V2;
2637       LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget);
2638     }
2639     if (HiSrc >= 0) {
2640       HiV = HiSrc == 0 ? V1 : V2;
2641       HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget);
2642     }
2643 
2644     // We found a rotation. We need to slide HiV down by Rotation. Then we need
2645     // to slide LoV up by (NumElts - Rotation).
2646     unsigned InvRotate = NumElts - Rotation;
2647 
2648     SDValue Res = DAG.getUNDEF(ContainerVT);
2649     if (HiV) {
2650       // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN.
2651       // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it
2652       // causes multiple vsetvlis in some test cases such as lowering
2653       // reduce.mul
2654       SDValue DownVL = VL;
2655       if (LoV)
2656         DownVL = DAG.getConstant(InvRotate, DL, XLenVT);
2657       Res =
2658           DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV,
2659                       DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL);
2660     }
2661     if (LoV)
2662       Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV,
2663                         DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL);
2664 
2665     return convertFromScalableVector(VT, Res, DAG, Subtarget);
2666   }
2667 
2668   // Detect an interleave shuffle and lower to
2669   // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
2670   bool SwapSources;
2671   if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) {
2672     // Swap sources if needed.
2673     if (SwapSources)
2674       std::swap(V1, V2);
2675 
2676     // Extract the lower half of the vectors.
2677     MVT HalfVT = VT.getHalfNumVectorElementsVT();
2678     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
2679                      DAG.getConstant(0, DL, XLenVT));
2680     V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2,
2681                      DAG.getConstant(0, DL, XLenVT));
2682 
2683     // Double the element width and halve the number of elements in an int type.
2684     unsigned EltBits = VT.getScalarSizeInBits();
2685     MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
2686     MVT WideIntVT =
2687         MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2);
2688     // Convert this to a scalable vector. We need to base this on the
2689     // destination size to ensure there's always a type with a smaller LMUL.
2690     MVT WideIntContainerVT =
2691         getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget);
2692 
2693     // Convert sources to scalable vectors with the same element count as the
2694     // larger type.
2695     MVT HalfContainerVT = MVT::getVectorVT(
2696         VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount());
2697     V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget);
2698     V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget);
2699 
2700     // Cast sources to integer.
2701     MVT IntEltVT = MVT::getIntegerVT(EltBits);
2702     MVT IntHalfVT =
2703         MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount());
2704     V1 = DAG.getBitcast(IntHalfVT, V1);
2705     V2 = DAG.getBitcast(IntHalfVT, V2);
2706 
2707     // Freeze V2 since we use it twice and we need to be sure that the add and
2708     // multiply see the same value.
2709     V2 = DAG.getFreeze(V2);
2710 
2711     // Recreate TrueMask using the widened type's element count.
2712     MVT MaskVT =
2713         MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount());
2714     TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
2715 
2716     // Widen V1 and V2 with 0s and add one copy of V2 to V1.
2717     SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1,
2718                               V2, TrueMask, VL);
2719     // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer.
2720     SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT,
2721                                      DAG.getUNDEF(IntHalfVT),
2722                                      DAG.getAllOnesConstant(DL, XLenVT));
2723     SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT,
2724                                    V2, Multiplier, TrueMask, VL);
2725     // Add the new copies to our previous addition giving us 2^eltbits copies of
2726     // V2. This is equivalent to shifting V2 left by eltbits. This should
2727     // combine with the vwmulu.vv above to form vwmaccu.vv.
2728     Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul,
2729                       TrueMask, VL);
2730     // Cast back to ContainerVT. We need to re-create a new ContainerVT in case
2731     // WideIntContainerVT is a larger fractional LMUL than implied by the fixed
2732     // vector VT.
2733     ContainerVT =
2734         MVT::getVectorVT(VT.getVectorElementType(),
2735                          WideIntContainerVT.getVectorElementCount() * 2);
2736     Add = DAG.getBitcast(ContainerVT, Add);
2737     return convertFromScalableVector(VT, Add, DAG, Subtarget);
2738   }
2739 
2740   // Detect shuffles which can be re-expressed as vector selects; these are
2741   // shuffles in which each element in the destination is taken from an element
2742   // at the corresponding index in either source vectors.
2743   bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) {
2744     int MaskIndex = MaskIdx.value();
2745     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2746   });
2747 
2748   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2749 
2750   SmallVector<SDValue> MaskVals;
2751   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2752   // merged with a second vrgather.
2753   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2754 
2755   // By default we preserve the original operand order, and use a mask to
2756   // select LHS as true and RHS as false. However, since RVV vector selects may
2757   // feature splats but only on the LHS, we may choose to invert our mask and
2758   // instead select between RHS and LHS.
2759   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2760   bool InvertMask = IsSelect == SwapOps;
2761 
2762   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2763   // half.
2764   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2765 
2766   // Now construct the mask that will be used by the vselect or blended
2767   // vrgather operation. For vrgathers, construct the appropriate indices into
2768   // each vector.
2769   for (int MaskIndex : Mask) {
2770     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2771     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2772     if (!IsSelect) {
2773       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2774       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2775                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2776                                      : DAG.getUNDEF(XLenVT));
2777       GatherIndicesRHS.push_back(
2778           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2779                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2780       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2781         ++LHSIndexCounts[MaskIndex];
2782       if (!IsLHSOrUndefIndex)
2783         ++RHSIndexCounts[MaskIndex - NumElts];
2784     }
2785   }
2786 
2787   if (SwapOps) {
2788     std::swap(V1, V2);
2789     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2790   }
2791 
2792   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2793   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2794   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2795 
2796   if (IsSelect)
2797     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2798 
2799   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2800     // On such a large vector we're unable to use i8 as the index type.
2801     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2802     // may involve vector splitting if we're already at LMUL=8, or our
2803     // user-supplied maximum fixed-length LMUL.
2804     return SDValue();
2805   }
2806 
2807   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2808   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2809   MVT IndexVT = VT.changeTypeToInteger();
2810   // Since we can't introduce illegal index types at this stage, use i16 and
2811   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2812   // than XLenVT.
2813   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2814     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2815     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2816   }
2817 
2818   MVT IndexContainerVT =
2819       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2820 
2821   SDValue Gather;
2822   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2823   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2824   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2825     Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG,
2826                               Subtarget);
2827   } else {
2828     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2829     // If only one index is used, we can use a "splat" vrgather.
2830     // TODO: We can splat the most-common index and fix-up any stragglers, if
2831     // that's beneficial.
2832     if (LHSIndexCounts.size() == 1) {
2833       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2834       Gather =
2835           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2836                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2837     } else {
2838       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2839       LHSIndices =
2840           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2841 
2842       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2843                            TrueMask, VL);
2844     }
2845   }
2846 
2847   // If a second vector operand is used by this shuffle, blend it in with an
2848   // additional vrgather.
2849   if (!V2.isUndef()) {
2850     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2851     // If only one index is used, we can use a "splat" vrgather.
2852     // TODO: We can splat the most-common index and fix-up any stragglers, if
2853     // that's beneficial.
2854     if (RHSIndexCounts.size() == 1) {
2855       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2856       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2857                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2858     } else {
2859       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2860       RHSIndices =
2861           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2862       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2863                        VL);
2864     }
2865 
2866     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2867     SelectMask =
2868         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2869 
2870     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2871                          Gather, VL);
2872   }
2873 
2874   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2875 }
2876 
2877 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
2878   // Support splats for any type. These should type legalize well.
2879   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
2880     return true;
2881 
2882   // Only support legal VTs for other shuffles for now.
2883   if (!isTypeLegal(VT))
2884     return false;
2885 
2886   MVT SVT = VT.getSimpleVT();
2887 
2888   bool SwapSources;
2889   int LoSrc, HiSrc;
2890   return (isElementRotate(LoSrc, HiSrc, M) > 0) ||
2891          isInterleaveShuffle(M, SVT, SwapSources, Subtarget);
2892 }
2893 
2894 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
2895                                      SDLoc DL, SelectionDAG &DAG,
2896                                      const RISCVSubtarget &Subtarget) {
2897   if (VT.isScalableVector())
2898     return DAG.getFPExtendOrRound(Op, DL, VT);
2899   assert(VT.isFixedLengthVector() &&
2900          "Unexpected value type for RVV FP extend/round lowering");
2901   SDValue Mask, VL;
2902   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2903   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
2904                         ? RISCVISD::FP_EXTEND_VL
2905                         : RISCVISD::FP_ROUND_VL;
2906   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
2907 }
2908 
2909 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2910 // the exponent.
2911 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2912   MVT VT = Op.getSimpleValueType();
2913   unsigned EltSize = VT.getScalarSizeInBits();
2914   SDValue Src = Op.getOperand(0);
2915   SDLoc DL(Op);
2916 
2917   // We need a FP type that can represent the value.
2918   // TODO: Use f16 for i8 when possible?
2919   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2920   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2921 
2922   // Legal types should have been checked in the RISCVTargetLowering
2923   // constructor.
2924   // TODO: Splitting may make sense in some cases.
2925   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2926          "Expected legal float type!");
2927 
2928   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2929   // The trailing zero count is equal to log2 of this single bit value.
2930   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2931     SDValue Neg =
2932         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2933     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2934   }
2935 
2936   // We have a legal FP type, convert to it.
2937   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2938   // Bitcast to integer and shift the exponent to the LSB.
2939   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2940   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2941   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2942   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2943                               DAG.getConstant(ShiftAmt, DL, IntVT));
2944   // Truncate back to original type to allow vnsrl.
2945   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2946   // The exponent contains log2 of the value in biased form.
2947   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2948 
2949   // For trailing zeros, we just need to subtract the bias.
2950   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2951     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2952                        DAG.getConstant(ExponentBias, DL, VT));
2953 
2954   // For leading zeros, we need to remove the bias and convert from log2 to
2955   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2956   unsigned Adjust = ExponentBias + (EltSize - 1);
2957   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2958 }
2959 
2960 // While RVV has alignment restrictions, we should always be able to load as a
2961 // legal equivalently-sized byte-typed vector instead. This method is
2962 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2963 // the load is already correctly-aligned, it returns SDValue().
2964 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2965                                                     SelectionDAG &DAG) const {
2966   auto *Load = cast<LoadSDNode>(Op);
2967   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2968 
2969   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2970                                      Load->getMemoryVT(),
2971                                      *Load->getMemOperand()))
2972     return SDValue();
2973 
2974   SDLoc DL(Op);
2975   MVT VT = Op.getSimpleValueType();
2976   unsigned EltSizeBits = VT.getScalarSizeInBits();
2977   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2978          "Unexpected unaligned RVV load type");
2979   MVT NewVT =
2980       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2981   assert(NewVT.isValid() &&
2982          "Expecting equally-sized RVV vector types to be legal");
2983   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2984                           Load->getPointerInfo(), Load->getOriginalAlign(),
2985                           Load->getMemOperand()->getFlags());
2986   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2987 }
2988 
2989 // While RVV has alignment restrictions, we should always be able to store as a
2990 // legal equivalently-sized byte-typed vector instead. This method is
2991 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
2992 // returns SDValue() if the store is already correctly aligned.
2993 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
2994                                                      SelectionDAG &DAG) const {
2995   auto *Store = cast<StoreSDNode>(Op);
2996   assert(Store && Store->getValue().getValueType().isVector() &&
2997          "Expected vector store");
2998 
2999   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
3000                                      Store->getMemoryVT(),
3001                                      *Store->getMemOperand()))
3002     return SDValue();
3003 
3004   SDLoc DL(Op);
3005   SDValue StoredVal = Store->getValue();
3006   MVT VT = StoredVal.getSimpleValueType();
3007   unsigned EltSizeBits = VT.getScalarSizeInBits();
3008   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
3009          "Unexpected unaligned RVV store type");
3010   MVT NewVT =
3011       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
3012   assert(NewVT.isValid() &&
3013          "Expecting equally-sized RVV vector types to be legal");
3014   StoredVal = DAG.getBitcast(NewVT, StoredVal);
3015   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
3016                       Store->getPointerInfo(), Store->getOriginalAlign(),
3017                       Store->getMemOperand()->getFlags());
3018 }
3019 
3020 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
3021                                             SelectionDAG &DAG) const {
3022   switch (Op.getOpcode()) {
3023   default:
3024     report_fatal_error("unimplemented operand");
3025   case ISD::GlobalAddress:
3026     return lowerGlobalAddress(Op, DAG);
3027   case ISD::BlockAddress:
3028     return lowerBlockAddress(Op, DAG);
3029   case ISD::ConstantPool:
3030     return lowerConstantPool(Op, DAG);
3031   case ISD::JumpTable:
3032     return lowerJumpTable(Op, DAG);
3033   case ISD::GlobalTLSAddress:
3034     return lowerGlobalTLSAddress(Op, DAG);
3035   case ISD::SELECT:
3036     return lowerSELECT(Op, DAG);
3037   case ISD::BRCOND:
3038     return lowerBRCOND(Op, DAG);
3039   case ISD::VASTART:
3040     return lowerVASTART(Op, DAG);
3041   case ISD::FRAMEADDR:
3042     return lowerFRAMEADDR(Op, DAG);
3043   case ISD::RETURNADDR:
3044     return lowerRETURNADDR(Op, DAG);
3045   case ISD::SHL_PARTS:
3046     return lowerShiftLeftParts(Op, DAG);
3047   case ISD::SRA_PARTS:
3048     return lowerShiftRightParts(Op, DAG, true);
3049   case ISD::SRL_PARTS:
3050     return lowerShiftRightParts(Op, DAG, false);
3051   case ISD::BITCAST: {
3052     SDLoc DL(Op);
3053     EVT VT = Op.getValueType();
3054     SDValue Op0 = Op.getOperand(0);
3055     EVT Op0VT = Op0.getValueType();
3056     MVT XLenVT = Subtarget.getXLenVT();
3057     if (VT.isFixedLengthVector()) {
3058       // We can handle fixed length vector bitcasts with a simple replacement
3059       // in isel.
3060       if (Op0VT.isFixedLengthVector())
3061         return Op;
3062       // When bitcasting from scalar to fixed-length vector, insert the scalar
3063       // into a one-element vector of the result type, and perform a vector
3064       // bitcast.
3065       if (!Op0VT.isVector()) {
3066         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
3067         if (!isTypeLegal(BVT))
3068           return SDValue();
3069         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
3070                                               DAG.getUNDEF(BVT), Op0,
3071                                               DAG.getConstant(0, DL, XLenVT)));
3072       }
3073       return SDValue();
3074     }
3075     // Custom-legalize bitcasts from fixed-length vector types to scalar types
3076     // thus: bitcast the vector to a one-element vector type whose element type
3077     // is the same as the result type, and extract the first element.
3078     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
3079       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
3080       if (!isTypeLegal(BVT))
3081         return SDValue();
3082       SDValue BVec = DAG.getBitcast(BVT, Op0);
3083       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
3084                          DAG.getConstant(0, DL, XLenVT));
3085     }
3086     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
3087       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
3088       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
3089       return FPConv;
3090     }
3091     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
3092         Subtarget.hasStdExtF()) {
3093       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
3094       SDValue FPConv =
3095           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
3096       return FPConv;
3097     }
3098     return SDValue();
3099   }
3100   case ISD::INTRINSIC_WO_CHAIN:
3101     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3102   case ISD::INTRINSIC_W_CHAIN:
3103     return LowerINTRINSIC_W_CHAIN(Op, DAG);
3104   case ISD::INTRINSIC_VOID:
3105     return LowerINTRINSIC_VOID(Op, DAG);
3106   case ISD::BSWAP:
3107   case ISD::BITREVERSE: {
3108     MVT VT = Op.getSimpleValueType();
3109     SDLoc DL(Op);
3110     if (Subtarget.hasStdExtZbp()) {
3111       // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
3112       // Start with the maximum immediate value which is the bitwidth - 1.
3113       unsigned Imm = VT.getSizeInBits() - 1;
3114       // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
3115       if (Op.getOpcode() == ISD::BSWAP)
3116         Imm &= ~0x7U;
3117       return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
3118                          DAG.getConstant(Imm, DL, VT));
3119     }
3120     assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
3121     assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
3122     // Expand bitreverse to a bswap(rev8) followed by brev8.
3123     SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
3124     // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized
3125     // as brev8 by an isel pattern.
3126     return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap,
3127                        DAG.getConstant(7, DL, VT));
3128   }
3129   case ISD::FSHL:
3130   case ISD::FSHR: {
3131     MVT VT = Op.getSimpleValueType();
3132     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
3133     SDLoc DL(Op);
3134     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
3135     // use log(XLen) bits. Mask the shift amount accordingly to prevent
3136     // accidentally setting the extra bit.
3137     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
3138     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
3139                                 DAG.getConstant(ShAmtWidth, DL, VT));
3140     // fshl and fshr concatenate their operands in the same order. fsr and fsl
3141     // instruction use different orders. fshl will return its first operand for
3142     // shift of zero, fshr will return its second operand. fsl and fsr both
3143     // return rs1 so the ISD nodes need to have different operand orders.
3144     // Shift amount is in rs2.
3145     SDValue Op0 = Op.getOperand(0);
3146     SDValue Op1 = Op.getOperand(1);
3147     unsigned Opc = RISCVISD::FSL;
3148     if (Op.getOpcode() == ISD::FSHR) {
3149       std::swap(Op0, Op1);
3150       Opc = RISCVISD::FSR;
3151     }
3152     return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt);
3153   }
3154   case ISD::TRUNCATE: {
3155     SDLoc DL(Op);
3156     MVT VT = Op.getSimpleValueType();
3157     // Only custom-lower vector truncates
3158     if (!VT.isVector())
3159       return Op;
3160 
3161     // Truncates to mask types are handled differently
3162     if (VT.getVectorElementType() == MVT::i1)
3163       return lowerVectorMaskTrunc(Op, DAG);
3164 
3165     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
3166     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
3167     // truncate by one power of two at a time.
3168     MVT DstEltVT = VT.getVectorElementType();
3169 
3170     SDValue Src = Op.getOperand(0);
3171     MVT SrcVT = Src.getSimpleValueType();
3172     MVT SrcEltVT = SrcVT.getVectorElementType();
3173 
3174     assert(DstEltVT.bitsLT(SrcEltVT) &&
3175            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
3176            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
3177            "Unexpected vector truncate lowering");
3178 
3179     MVT ContainerVT = SrcVT;
3180     if (SrcVT.isFixedLengthVector()) {
3181       ContainerVT = getContainerForFixedLengthVector(SrcVT);
3182       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3183     }
3184 
3185     SDValue Result = Src;
3186     SDValue Mask, VL;
3187     std::tie(Mask, VL) =
3188         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
3189     LLVMContext &Context = *DAG.getContext();
3190     const ElementCount Count = ContainerVT.getVectorElementCount();
3191     do {
3192       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
3193       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
3194       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
3195                            Mask, VL);
3196     } while (SrcEltVT != DstEltVT);
3197 
3198     if (SrcVT.isFixedLengthVector())
3199       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
3200 
3201     return Result;
3202   }
3203   case ISD::ANY_EXTEND:
3204   case ISD::ZERO_EXTEND:
3205     if (Op.getOperand(0).getValueType().isVector() &&
3206         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3207       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
3208     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
3209   case ISD::SIGN_EXTEND:
3210     if (Op.getOperand(0).getValueType().isVector() &&
3211         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3212       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
3213     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
3214   case ISD::SPLAT_VECTOR_PARTS:
3215     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
3216   case ISD::INSERT_VECTOR_ELT:
3217     return lowerINSERT_VECTOR_ELT(Op, DAG);
3218   case ISD::EXTRACT_VECTOR_ELT:
3219     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3220   case ISD::VSCALE: {
3221     MVT VT = Op.getSimpleValueType();
3222     SDLoc DL(Op);
3223     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
3224     // We define our scalable vector types for lmul=1 to use a 64 bit known
3225     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
3226     // vscale as VLENB / 8.
3227     static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
3228     if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock)
3229       report_fatal_error("Support for VLEN==32 is incomplete.");
3230     if (isa<ConstantSDNode>(Op.getOperand(0))) {
3231       // We assume VLENB is a multiple of 8. We manually choose the best shift
3232       // here because SimplifyDemandedBits isn't always able to simplify it.
3233       uint64_t Val = Op.getConstantOperandVal(0);
3234       if (isPowerOf2_64(Val)) {
3235         uint64_t Log2 = Log2_64(Val);
3236         if (Log2 < 3)
3237           return DAG.getNode(ISD::SRL, DL, VT, VLENB,
3238                              DAG.getConstant(3 - Log2, DL, VT));
3239         if (Log2 > 3)
3240           return DAG.getNode(ISD::SHL, DL, VT, VLENB,
3241                              DAG.getConstant(Log2 - 3, DL, VT));
3242         return VLENB;
3243       }
3244       // If the multiplier is a multiple of 8, scale it down to avoid needing
3245       // to shift the VLENB value.
3246       if ((Val % 8) == 0)
3247         return DAG.getNode(ISD::MUL, DL, VT, VLENB,
3248                            DAG.getConstant(Val / 8, DL, VT));
3249     }
3250 
3251     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
3252                                  DAG.getConstant(3, DL, VT));
3253     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
3254   }
3255   case ISD::FPOWI: {
3256     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
3257     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
3258     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
3259         Op.getOperand(1).getValueType() == MVT::i32) {
3260       SDLoc DL(Op);
3261       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
3262       SDValue Powi =
3263           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
3264       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
3265                          DAG.getIntPtrConstant(0, DL));
3266     }
3267     return SDValue();
3268   }
3269   case ISD::FP_EXTEND: {
3270     // RVV can only do fp_extend to types double the size as the source. We
3271     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
3272     // via f32.
3273     SDLoc DL(Op);
3274     MVT VT = Op.getSimpleValueType();
3275     SDValue Src = Op.getOperand(0);
3276     MVT SrcVT = Src.getSimpleValueType();
3277 
3278     // Prepare any fixed-length vector operands.
3279     MVT ContainerVT = VT;
3280     if (SrcVT.isFixedLengthVector()) {
3281       ContainerVT = getContainerForFixedLengthVector(VT);
3282       MVT SrcContainerVT =
3283           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
3284       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3285     }
3286 
3287     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
3288         SrcVT.getVectorElementType() != MVT::f16) {
3289       // For scalable vectors, we only need to close the gap between
3290       // vXf16->vXf64.
3291       if (!VT.isFixedLengthVector())
3292         return Op;
3293       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
3294       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
3295       return convertFromScalableVector(VT, Src, DAG, Subtarget);
3296     }
3297 
3298     MVT InterVT = VT.changeVectorElementType(MVT::f32);
3299     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
3300     SDValue IntermediateExtend = getRVVFPExtendOrRound(
3301         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
3302 
3303     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
3304                                            DL, DAG, Subtarget);
3305     if (VT.isFixedLengthVector())
3306       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
3307     return Extend;
3308   }
3309   case ISD::FP_ROUND: {
3310     // RVV can only do fp_round to types half the size as the source. We
3311     // custom-lower f64->f16 rounds via RVV's round-to-odd float
3312     // conversion instruction.
3313     SDLoc DL(Op);
3314     MVT VT = Op.getSimpleValueType();
3315     SDValue Src = Op.getOperand(0);
3316     MVT SrcVT = Src.getSimpleValueType();
3317 
3318     // Prepare any fixed-length vector operands.
3319     MVT ContainerVT = VT;
3320     if (VT.isFixedLengthVector()) {
3321       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3322       ContainerVT =
3323           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3324       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3325     }
3326 
3327     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
3328         SrcVT.getVectorElementType() != MVT::f64) {
3329       // For scalable vectors, we only need to close the gap between
3330       // vXf64<->vXf16.
3331       if (!VT.isFixedLengthVector())
3332         return Op;
3333       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
3334       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
3335       return convertFromScalableVector(VT, Src, DAG, Subtarget);
3336     }
3337 
3338     SDValue Mask, VL;
3339     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3340 
3341     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
3342     SDValue IntermediateRound =
3343         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
3344     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
3345                                           DL, DAG, Subtarget);
3346 
3347     if (VT.isFixedLengthVector())
3348       return convertFromScalableVector(VT, Round, DAG, Subtarget);
3349     return Round;
3350   }
3351   case ISD::FP_TO_SINT:
3352   case ISD::FP_TO_UINT:
3353   case ISD::SINT_TO_FP:
3354   case ISD::UINT_TO_FP: {
3355     // RVV can only do fp<->int conversions to types half/double the size as
3356     // the source. We custom-lower any conversions that do two hops into
3357     // sequences.
3358     MVT VT = Op.getSimpleValueType();
3359     if (!VT.isVector())
3360       return Op;
3361     SDLoc DL(Op);
3362     SDValue Src = Op.getOperand(0);
3363     MVT EltVT = VT.getVectorElementType();
3364     MVT SrcVT = Src.getSimpleValueType();
3365     MVT SrcEltVT = SrcVT.getVectorElementType();
3366     unsigned EltSize = EltVT.getSizeInBits();
3367     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
3368     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
3369            "Unexpected vector element types");
3370 
3371     bool IsInt2FP = SrcEltVT.isInteger();
3372     // Widening conversions
3373     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
3374       if (IsInt2FP) {
3375         // Do a regular integer sign/zero extension then convert to float.
3376         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
3377                                       VT.getVectorElementCount());
3378         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
3379                                  ? ISD::ZERO_EXTEND
3380                                  : ISD::SIGN_EXTEND;
3381         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
3382         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
3383       }
3384       // FP2Int
3385       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
3386       // Do one doubling fp_extend then complete the operation by converting
3387       // to int.
3388       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3389       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
3390       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
3391     }
3392 
3393     // Narrowing conversions
3394     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
3395       if (IsInt2FP) {
3396         // One narrowing int_to_fp, then an fp_round.
3397         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
3398         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3399         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
3400         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
3401       }
3402       // FP2Int
3403       // One narrowing fp_to_int, then truncate the integer. If the float isn't
3404       // representable by the integer, the result is poison.
3405       MVT IVecVT =
3406           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
3407                            VT.getVectorElementCount());
3408       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
3409       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
3410     }
3411 
3412     // Scalable vectors can exit here. Patterns will handle equally-sized
3413     // conversions halving/doubling ones.
3414     if (!VT.isFixedLengthVector())
3415       return Op;
3416 
3417     // For fixed-length vectors we lower to a custom "VL" node.
3418     unsigned RVVOpc = 0;
3419     switch (Op.getOpcode()) {
3420     default:
3421       llvm_unreachable("Impossible opcode");
3422     case ISD::FP_TO_SINT:
3423       RVVOpc = RISCVISD::FP_TO_SINT_VL;
3424       break;
3425     case ISD::FP_TO_UINT:
3426       RVVOpc = RISCVISD::FP_TO_UINT_VL;
3427       break;
3428     case ISD::SINT_TO_FP:
3429       RVVOpc = RISCVISD::SINT_TO_FP_VL;
3430       break;
3431     case ISD::UINT_TO_FP:
3432       RVVOpc = RISCVISD::UINT_TO_FP_VL;
3433       break;
3434     }
3435 
3436     MVT ContainerVT, SrcContainerVT;
3437     // Derive the reference container type from the larger vector type.
3438     if (SrcEltSize > EltSize) {
3439       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3440       ContainerVT =
3441           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3442     } else {
3443       ContainerVT = getContainerForFixedLengthVector(VT);
3444       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
3445     }
3446 
3447     SDValue Mask, VL;
3448     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3449 
3450     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3451     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3452     return convertFromScalableVector(VT, Src, DAG, Subtarget);
3453   }
3454   case ISD::FP_TO_SINT_SAT:
3455   case ISD::FP_TO_UINT_SAT:
3456     return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
3457   case ISD::FTRUNC:
3458   case ISD::FCEIL:
3459   case ISD::FFLOOR:
3460     return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3461   case ISD::FROUND:
3462     return lowerFROUND(Op, DAG);
3463   case ISD::VECREDUCE_ADD:
3464   case ISD::VECREDUCE_UMAX:
3465   case ISD::VECREDUCE_SMAX:
3466   case ISD::VECREDUCE_UMIN:
3467   case ISD::VECREDUCE_SMIN:
3468     return lowerVECREDUCE(Op, DAG);
3469   case ISD::VECREDUCE_AND:
3470   case ISD::VECREDUCE_OR:
3471   case ISD::VECREDUCE_XOR:
3472     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3473       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3474     return lowerVECREDUCE(Op, DAG);
3475   case ISD::VECREDUCE_FADD:
3476   case ISD::VECREDUCE_SEQ_FADD:
3477   case ISD::VECREDUCE_FMIN:
3478   case ISD::VECREDUCE_FMAX:
3479     return lowerFPVECREDUCE(Op, DAG);
3480   case ISD::VP_REDUCE_ADD:
3481   case ISD::VP_REDUCE_UMAX:
3482   case ISD::VP_REDUCE_SMAX:
3483   case ISD::VP_REDUCE_UMIN:
3484   case ISD::VP_REDUCE_SMIN:
3485   case ISD::VP_REDUCE_FADD:
3486   case ISD::VP_REDUCE_SEQ_FADD:
3487   case ISD::VP_REDUCE_FMIN:
3488   case ISD::VP_REDUCE_FMAX:
3489     return lowerVPREDUCE(Op, DAG);
3490   case ISD::VP_REDUCE_AND:
3491   case ISD::VP_REDUCE_OR:
3492   case ISD::VP_REDUCE_XOR:
3493     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3494       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3495     return lowerVPREDUCE(Op, DAG);
3496   case ISD::INSERT_SUBVECTOR:
3497     return lowerINSERT_SUBVECTOR(Op, DAG);
3498   case ISD::EXTRACT_SUBVECTOR:
3499     return lowerEXTRACT_SUBVECTOR(Op, DAG);
3500   case ISD::STEP_VECTOR:
3501     return lowerSTEP_VECTOR(Op, DAG);
3502   case ISD::VECTOR_REVERSE:
3503     return lowerVECTOR_REVERSE(Op, DAG);
3504   case ISD::BUILD_VECTOR:
3505     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3506   case ISD::SPLAT_VECTOR:
3507     if (Op.getValueType().getVectorElementType() == MVT::i1)
3508       return lowerVectorMaskSplat(Op, DAG);
3509     return lowerSPLAT_VECTOR(Op, DAG, Subtarget);
3510   case ISD::VECTOR_SHUFFLE:
3511     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3512   case ISD::CONCAT_VECTORS: {
3513     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3514     // better than going through the stack, as the default expansion does.
3515     SDLoc DL(Op);
3516     MVT VT = Op.getSimpleValueType();
3517     unsigned NumOpElts =
3518         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3519     SDValue Vec = DAG.getUNDEF(VT);
3520     for (const auto &OpIdx : enumerate(Op->ops())) {
3521       SDValue SubVec = OpIdx.value();
3522       // Don't insert undef subvectors.
3523       if (SubVec.isUndef())
3524         continue;
3525       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
3526                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3527     }
3528     return Vec;
3529   }
3530   case ISD::LOAD:
3531     if (auto V = expandUnalignedRVVLoad(Op, DAG))
3532       return V;
3533     if (Op.getValueType().isFixedLengthVector())
3534       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3535     return Op;
3536   case ISD::STORE:
3537     if (auto V = expandUnalignedRVVStore(Op, DAG))
3538       return V;
3539     if (Op.getOperand(1).getValueType().isFixedLengthVector())
3540       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3541     return Op;
3542   case ISD::MLOAD:
3543   case ISD::VP_LOAD:
3544     return lowerMaskedLoad(Op, DAG);
3545   case ISD::MSTORE:
3546   case ISD::VP_STORE:
3547     return lowerMaskedStore(Op, DAG);
3548   case ISD::SETCC:
3549     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3550   case ISD::ADD:
3551     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3552   case ISD::SUB:
3553     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3554   case ISD::MUL:
3555     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3556   case ISD::MULHS:
3557     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3558   case ISD::MULHU:
3559     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3560   case ISD::AND:
3561     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3562                                               RISCVISD::AND_VL);
3563   case ISD::OR:
3564     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3565                                               RISCVISD::OR_VL);
3566   case ISD::XOR:
3567     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3568                                               RISCVISD::XOR_VL);
3569   case ISD::SDIV:
3570     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3571   case ISD::SREM:
3572     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3573   case ISD::UDIV:
3574     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3575   case ISD::UREM:
3576     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3577   case ISD::SHL:
3578   case ISD::SRA:
3579   case ISD::SRL:
3580     if (Op.getSimpleValueType().isFixedLengthVector())
3581       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3582     // This can be called for an i32 shift amount that needs to be promoted.
3583     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3584            "Unexpected custom legalisation");
3585     return SDValue();
3586   case ISD::SADDSAT:
3587     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3588   case ISD::UADDSAT:
3589     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3590   case ISD::SSUBSAT:
3591     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3592   case ISD::USUBSAT:
3593     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3594   case ISD::FADD:
3595     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3596   case ISD::FSUB:
3597     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3598   case ISD::FMUL:
3599     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3600   case ISD::FDIV:
3601     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3602   case ISD::FNEG:
3603     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3604   case ISD::FABS:
3605     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3606   case ISD::FSQRT:
3607     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3608   case ISD::FMA:
3609     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
3610   case ISD::SMIN:
3611     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3612   case ISD::SMAX:
3613     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3614   case ISD::UMIN:
3615     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3616   case ISD::UMAX:
3617     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3618   case ISD::FMINNUM:
3619     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3620   case ISD::FMAXNUM:
3621     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3622   case ISD::ABS:
3623     return lowerABS(Op, DAG);
3624   case ISD::CTLZ_ZERO_UNDEF:
3625   case ISD::CTTZ_ZERO_UNDEF:
3626     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3627   case ISD::VSELECT:
3628     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3629   case ISD::FCOPYSIGN:
3630     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3631   case ISD::MGATHER:
3632   case ISD::VP_GATHER:
3633     return lowerMaskedGather(Op, DAG);
3634   case ISD::MSCATTER:
3635   case ISD::VP_SCATTER:
3636     return lowerMaskedScatter(Op, DAG);
3637   case ISD::FLT_ROUNDS_:
3638     return lowerGET_ROUNDING(Op, DAG);
3639   case ISD::SET_ROUNDING:
3640     return lowerSET_ROUNDING(Op, DAG);
3641   case ISD::VP_SELECT:
3642     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3643   case ISD::VP_MERGE:
3644     return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL);
3645   case ISD::VP_ADD:
3646     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3647   case ISD::VP_SUB:
3648     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3649   case ISD::VP_MUL:
3650     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3651   case ISD::VP_SDIV:
3652     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3653   case ISD::VP_UDIV:
3654     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3655   case ISD::VP_SREM:
3656     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3657   case ISD::VP_UREM:
3658     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3659   case ISD::VP_AND:
3660     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3661   case ISD::VP_OR:
3662     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3663   case ISD::VP_XOR:
3664     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3665   case ISD::VP_ASHR:
3666     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3667   case ISD::VP_LSHR:
3668     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3669   case ISD::VP_SHL:
3670     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3671   case ISD::VP_FADD:
3672     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3673   case ISD::VP_FSUB:
3674     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3675   case ISD::VP_FMUL:
3676     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3677   case ISD::VP_FDIV:
3678     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3679   case ISD::VP_FNEG:
3680     return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL);
3681   case ISD::VP_FMA:
3682     return lowerVPOp(Op, DAG, RISCVISD::FMA_VL);
3683   }
3684 }
3685 
3686 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3687                              SelectionDAG &DAG, unsigned Flags) {
3688   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3689 }
3690 
3691 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3692                              SelectionDAG &DAG, unsigned Flags) {
3693   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3694                                    Flags);
3695 }
3696 
3697 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3698                              SelectionDAG &DAG, unsigned Flags) {
3699   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3700                                    N->getOffset(), Flags);
3701 }
3702 
3703 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3704                              SelectionDAG &DAG, unsigned Flags) {
3705   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3706 }
3707 
3708 template <class NodeTy>
3709 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3710                                      bool IsLocal) const {
3711   SDLoc DL(N);
3712   EVT Ty = getPointerTy(DAG.getDataLayout());
3713 
3714   if (isPositionIndependent()) {
3715     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3716     if (IsLocal)
3717       // Use PC-relative addressing to access the symbol. This generates the
3718       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3719       // %pcrel_lo(auipc)).
3720       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3721 
3722     // Use PC-relative addressing to access the GOT for this symbol, then load
3723     // the address from the GOT. This generates the pattern (PseudoLA sym),
3724     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3725     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
3726   }
3727 
3728   switch (getTargetMachine().getCodeModel()) {
3729   default:
3730     report_fatal_error("Unsupported code model for lowering");
3731   case CodeModel::Small: {
3732     // Generate a sequence for accessing addresses within the first 2 GiB of
3733     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3734     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3735     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3736     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3737     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
3738   }
3739   case CodeModel::Medium: {
3740     // Generate a sequence for accessing addresses within any 2GiB range within
3741     // the address space. This generates the pattern (PseudoLLA sym), which
3742     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3743     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3744     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3745   }
3746   }
3747 }
3748 
3749 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3750                                                 SelectionDAG &DAG) const {
3751   SDLoc DL(Op);
3752   EVT Ty = Op.getValueType();
3753   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3754   int64_t Offset = N->getOffset();
3755   MVT XLenVT = Subtarget.getXLenVT();
3756 
3757   const GlobalValue *GV = N->getGlobal();
3758   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3759   SDValue Addr = getAddr(N, DAG, IsLocal);
3760 
3761   // In order to maximise the opportunity for common subexpression elimination,
3762   // emit a separate ADD node for the global address offset instead of folding
3763   // it in the global address node. Later peephole optimisations may choose to
3764   // fold it back in when profitable.
3765   if (Offset != 0)
3766     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3767                        DAG.getConstant(Offset, DL, XLenVT));
3768   return Addr;
3769 }
3770 
3771 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3772                                                SelectionDAG &DAG) const {
3773   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3774 
3775   return getAddr(N, DAG);
3776 }
3777 
3778 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3779                                                SelectionDAG &DAG) const {
3780   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3781 
3782   return getAddr(N, DAG);
3783 }
3784 
3785 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3786                                             SelectionDAG &DAG) const {
3787   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3788 
3789   return getAddr(N, DAG);
3790 }
3791 
3792 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3793                                               SelectionDAG &DAG,
3794                                               bool UseGOT) const {
3795   SDLoc DL(N);
3796   EVT Ty = getPointerTy(DAG.getDataLayout());
3797   const GlobalValue *GV = N->getGlobal();
3798   MVT XLenVT = Subtarget.getXLenVT();
3799 
3800   if (UseGOT) {
3801     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3802     // load the address from the GOT and add the thread pointer. This generates
3803     // the pattern (PseudoLA_TLS_IE sym), which expands to
3804     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3805     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3806     SDValue Load =
3807         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
3808 
3809     // Add the thread pointer.
3810     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3811     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3812   }
3813 
3814   // Generate a sequence for accessing the address relative to the thread
3815   // pointer, with the appropriate adjustment for the thread pointer offset.
3816   // This generates the pattern
3817   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3818   SDValue AddrHi =
3819       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3820   SDValue AddrAdd =
3821       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3822   SDValue AddrLo =
3823       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3824 
3825   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3826   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3827   SDValue MNAdd = SDValue(
3828       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
3829       0);
3830   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
3831 }
3832 
3833 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3834                                                SelectionDAG &DAG) const {
3835   SDLoc DL(N);
3836   EVT Ty = getPointerTy(DAG.getDataLayout());
3837   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3838   const GlobalValue *GV = N->getGlobal();
3839 
3840   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3841   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3842   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3843   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3844   SDValue Load =
3845       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
3846 
3847   // Prepare argument list to generate call.
3848   ArgListTy Args;
3849   ArgListEntry Entry;
3850   Entry.Node = Load;
3851   Entry.Ty = CallTy;
3852   Args.push_back(Entry);
3853 
3854   // Setup call to __tls_get_addr.
3855   TargetLowering::CallLoweringInfo CLI(DAG);
3856   CLI.setDebugLoc(DL)
3857       .setChain(DAG.getEntryNode())
3858       .setLibCallee(CallingConv::C, CallTy,
3859                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3860                     std::move(Args));
3861 
3862   return LowerCallTo(CLI).first;
3863 }
3864 
3865 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3866                                                    SelectionDAG &DAG) const {
3867   SDLoc DL(Op);
3868   EVT Ty = Op.getValueType();
3869   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3870   int64_t Offset = N->getOffset();
3871   MVT XLenVT = Subtarget.getXLenVT();
3872 
3873   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3874 
3875   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3876       CallingConv::GHC)
3877     report_fatal_error("In GHC calling convention TLS is not supported");
3878 
3879   SDValue Addr;
3880   switch (Model) {
3881   case TLSModel::LocalExec:
3882     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3883     break;
3884   case TLSModel::InitialExec:
3885     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3886     break;
3887   case TLSModel::LocalDynamic:
3888   case TLSModel::GeneralDynamic:
3889     Addr = getDynamicTLSAddr(N, DAG);
3890     break;
3891   }
3892 
3893   // In order to maximise the opportunity for common subexpression elimination,
3894   // emit a separate ADD node for the global address offset instead of folding
3895   // it in the global address node. Later peephole optimisations may choose to
3896   // fold it back in when profitable.
3897   if (Offset != 0)
3898     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3899                        DAG.getConstant(Offset, DL, XLenVT));
3900   return Addr;
3901 }
3902 
3903 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3904   SDValue CondV = Op.getOperand(0);
3905   SDValue TrueV = Op.getOperand(1);
3906   SDValue FalseV = Op.getOperand(2);
3907   SDLoc DL(Op);
3908   MVT VT = Op.getSimpleValueType();
3909   MVT XLenVT = Subtarget.getXLenVT();
3910 
3911   // Lower vector SELECTs to VSELECTs by splatting the condition.
3912   if (VT.isVector()) {
3913     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3914     SDValue CondSplat = VT.isScalableVector()
3915                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3916                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3917     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3918   }
3919 
3920   // If the result type is XLenVT and CondV is the output of a SETCC node
3921   // which also operated on XLenVT inputs, then merge the SETCC node into the
3922   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3923   // compare+branch instructions. i.e.:
3924   // (select (setcc lhs, rhs, cc), truev, falsev)
3925   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3926   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3927       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3928     SDValue LHS = CondV.getOperand(0);
3929     SDValue RHS = CondV.getOperand(1);
3930     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3931     ISD::CondCode CCVal = CC->get();
3932 
3933     // Special case for a select of 2 constants that have a diffence of 1.
3934     // Normally this is done by DAGCombine, but if the select is introduced by
3935     // type legalization or op legalization, we miss it. Restricting to SETLT
3936     // case for now because that is what signed saturating add/sub need.
3937     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3938     // but we would probably want to swap the true/false values if the condition
3939     // is SETGE/SETLE to avoid an XORI.
3940     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3941         CCVal == ISD::SETLT) {
3942       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3943       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3944       if (TrueVal - 1 == FalseVal)
3945         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3946       if (TrueVal + 1 == FalseVal)
3947         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3948     }
3949 
3950     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3951 
3952     SDValue TargetCC = DAG.getCondCode(CCVal);
3953     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3954     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3955   }
3956 
3957   // Otherwise:
3958   // (select condv, truev, falsev)
3959   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3960   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3961   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3962 
3963   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3964 
3965   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3966 }
3967 
3968 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3969   SDValue CondV = Op.getOperand(1);
3970   SDLoc DL(Op);
3971   MVT XLenVT = Subtarget.getXLenVT();
3972 
3973   if (CondV.getOpcode() == ISD::SETCC &&
3974       CondV.getOperand(0).getValueType() == XLenVT) {
3975     SDValue LHS = CondV.getOperand(0);
3976     SDValue RHS = CondV.getOperand(1);
3977     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3978 
3979     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3980 
3981     SDValue TargetCC = DAG.getCondCode(CCVal);
3982     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3983                        LHS, RHS, TargetCC, Op.getOperand(2));
3984   }
3985 
3986   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3987                      CondV, DAG.getConstant(0, DL, XLenVT),
3988                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
3989 }
3990 
3991 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3992   MachineFunction &MF = DAG.getMachineFunction();
3993   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
3994 
3995   SDLoc DL(Op);
3996   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3997                                  getPointerTy(MF.getDataLayout()));
3998 
3999   // vastart just stores the address of the VarArgsFrameIndex slot into the
4000   // memory location argument.
4001   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4002   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
4003                       MachinePointerInfo(SV));
4004 }
4005 
4006 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
4007                                             SelectionDAG &DAG) const {
4008   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
4009   MachineFunction &MF = DAG.getMachineFunction();
4010   MachineFrameInfo &MFI = MF.getFrameInfo();
4011   MFI.setFrameAddressIsTaken(true);
4012   Register FrameReg = RI.getFrameRegister(MF);
4013   int XLenInBytes = Subtarget.getXLen() / 8;
4014 
4015   EVT VT = Op.getValueType();
4016   SDLoc DL(Op);
4017   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
4018   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4019   while (Depth--) {
4020     int Offset = -(XLenInBytes * 2);
4021     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
4022                               DAG.getIntPtrConstant(Offset, DL));
4023     FrameAddr =
4024         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
4025   }
4026   return FrameAddr;
4027 }
4028 
4029 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
4030                                              SelectionDAG &DAG) const {
4031   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
4032   MachineFunction &MF = DAG.getMachineFunction();
4033   MachineFrameInfo &MFI = MF.getFrameInfo();
4034   MFI.setReturnAddressIsTaken(true);
4035   MVT XLenVT = Subtarget.getXLenVT();
4036   int XLenInBytes = Subtarget.getXLen() / 8;
4037 
4038   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
4039     return SDValue();
4040 
4041   EVT VT = Op.getValueType();
4042   SDLoc DL(Op);
4043   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4044   if (Depth) {
4045     int Off = -XLenInBytes;
4046     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
4047     SDValue Offset = DAG.getConstant(Off, DL, VT);
4048     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4049                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4050                        MachinePointerInfo());
4051   }
4052 
4053   // Return the value of the return address register, marking it an implicit
4054   // live-in.
4055   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
4056   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
4057 }
4058 
4059 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
4060                                                  SelectionDAG &DAG) const {
4061   SDLoc DL(Op);
4062   SDValue Lo = Op.getOperand(0);
4063   SDValue Hi = Op.getOperand(1);
4064   SDValue Shamt = Op.getOperand(2);
4065   EVT VT = Lo.getValueType();
4066 
4067   // if Shamt-XLEN < 0: // Shamt < XLEN
4068   //   Lo = Lo << Shamt
4069   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt))
4070   // else:
4071   //   Lo = 0
4072   //   Hi = Lo << (Shamt-XLEN)
4073 
4074   SDValue Zero = DAG.getConstant(0, DL, VT);
4075   SDValue One = DAG.getConstant(1, DL, VT);
4076   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4077   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4078   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4079   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4080 
4081   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
4082   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
4083   SDValue ShiftRightLo =
4084       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
4085   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
4086   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
4087   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
4088 
4089   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4090 
4091   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
4092   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4093 
4094   SDValue Parts[2] = {Lo, Hi};
4095   return DAG.getMergeValues(Parts, DL);
4096 }
4097 
4098 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
4099                                                   bool IsSRA) const {
4100   SDLoc DL(Op);
4101   SDValue Lo = Op.getOperand(0);
4102   SDValue Hi = Op.getOperand(1);
4103   SDValue Shamt = Op.getOperand(2);
4104   EVT VT = Lo.getValueType();
4105 
4106   // SRA expansion:
4107   //   if Shamt-XLEN < 0: // Shamt < XLEN
4108   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4109   //     Hi = Hi >>s Shamt
4110   //   else:
4111   //     Lo = Hi >>s (Shamt-XLEN);
4112   //     Hi = Hi >>s (XLEN-1)
4113   //
4114   // SRL expansion:
4115   //   if Shamt-XLEN < 0: // Shamt < XLEN
4116   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4117   //     Hi = Hi >>u Shamt
4118   //   else:
4119   //     Lo = Hi >>u (Shamt-XLEN);
4120   //     Hi = 0;
4121 
4122   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
4123 
4124   SDValue Zero = DAG.getConstant(0, DL, VT);
4125   SDValue One = DAG.getConstant(1, DL, VT);
4126   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4127   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4128   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4129   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4130 
4131   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
4132   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
4133   SDValue ShiftLeftHi =
4134       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
4135   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
4136   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
4137   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
4138   SDValue HiFalse =
4139       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
4140 
4141   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4142 
4143   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
4144   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4145 
4146   SDValue Parts[2] = {Lo, Hi};
4147   return DAG.getMergeValues(Parts, DL);
4148 }
4149 
4150 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
4151 // legal equivalently-sized i8 type, so we can use that as a go-between.
4152 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
4153                                                   SelectionDAG &DAG) const {
4154   SDLoc DL(Op);
4155   MVT VT = Op.getSimpleValueType();
4156   SDValue SplatVal = Op.getOperand(0);
4157   // All-zeros or all-ones splats are handled specially.
4158   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
4159     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4160     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
4161   }
4162   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
4163     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4164     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
4165   }
4166   MVT XLenVT = Subtarget.getXLenVT();
4167   assert(SplatVal.getValueType() == XLenVT &&
4168          "Unexpected type for i1 splat value");
4169   MVT InterVT = VT.changeVectorElementType(MVT::i8);
4170   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
4171                          DAG.getConstant(1, DL, XLenVT));
4172   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
4173   SDValue Zero = DAG.getConstant(0, DL, InterVT);
4174   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
4175 }
4176 
4177 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
4178 // illegal (currently only vXi64 RV32).
4179 // FIXME: We could also catch non-constant sign-extended i32 values and lower
4180 // them to VMV_V_X_VL.
4181 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
4182                                                      SelectionDAG &DAG) const {
4183   SDLoc DL(Op);
4184   MVT VecVT = Op.getSimpleValueType();
4185   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
4186          "Unexpected SPLAT_VECTOR_PARTS lowering");
4187 
4188   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
4189   SDValue Lo = Op.getOperand(0);
4190   SDValue Hi = Op.getOperand(1);
4191 
4192   if (VecVT.isFixedLengthVector()) {
4193     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4194     SDLoc DL(Op);
4195     SDValue Mask, VL;
4196     std::tie(Mask, VL) =
4197         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4198 
4199     SDValue Res =
4200         splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG);
4201     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
4202   }
4203 
4204   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
4205     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
4206     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
4207     // If Hi constant is all the same sign bit as Lo, lower this as a custom
4208     // node in order to try and match RVV vector/scalar instructions.
4209     if ((LoC >> 31) == HiC)
4210       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4211                          Lo, DAG.getRegister(RISCV::X0, MVT::i32));
4212   }
4213 
4214   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
4215   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
4216       isa<ConstantSDNode>(Hi.getOperand(1)) &&
4217       Hi.getConstantOperandVal(1) == 31)
4218     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo,
4219                        DAG.getRegister(RISCV::X0, MVT::i32));
4220 
4221   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
4222   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT,
4223                      DAG.getUNDEF(VecVT), Lo, Hi,
4224                      DAG.getRegister(RISCV::X0, MVT::i32));
4225 }
4226 
4227 // Custom-lower extensions from mask vectors by using a vselect either with 1
4228 // for zero/any-extension or -1 for sign-extension:
4229 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
4230 // Note that any-extension is lowered identically to zero-extension.
4231 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
4232                                                 int64_t ExtTrueVal) const {
4233   SDLoc DL(Op);
4234   MVT VecVT = Op.getSimpleValueType();
4235   SDValue Src = Op.getOperand(0);
4236   // Only custom-lower extensions from mask types
4237   assert(Src.getValueType().isVector() &&
4238          Src.getValueType().getVectorElementType() == MVT::i1);
4239 
4240   MVT XLenVT = Subtarget.getXLenVT();
4241   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
4242   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
4243 
4244   if (VecVT.isScalableVector()) {
4245     // Be careful not to introduce illegal scalar types at this stage, and be
4246     // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
4247     // illegal and must be expanded. Since we know that the constants are
4248     // sign-extended 32-bit values, we use VMV_V_X_VL directly.
4249     bool IsRV32E64 =
4250         !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
4251 
4252     if (!IsRV32E64) {
4253       SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
4254       SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
4255     } else {
4256       SplatZero =
4257           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4258                       SplatZero, DAG.getRegister(RISCV::X0, XLenVT));
4259       SplatTrueVal =
4260           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4261                       SplatTrueVal, DAG.getRegister(RISCV::X0, XLenVT));
4262     }
4263 
4264     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
4265   }
4266 
4267   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4268   MVT I1ContainerVT =
4269       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4270 
4271   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
4272 
4273   SDValue Mask, VL;
4274   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4275 
4276   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4277                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4278   SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4279                              DAG.getUNDEF(ContainerVT), SplatTrueVal, VL);
4280   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
4281                                SplatTrueVal, SplatZero, VL);
4282 
4283   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
4284 }
4285 
4286 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
4287     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
4288   MVT ExtVT = Op.getSimpleValueType();
4289   // Only custom-lower extensions from fixed-length vector types.
4290   if (!ExtVT.isFixedLengthVector())
4291     return Op;
4292   MVT VT = Op.getOperand(0).getSimpleValueType();
4293   // Grab the canonical container type for the extended type. Infer the smaller
4294   // type from that to ensure the same number of vector elements, as we know
4295   // the LMUL will be sufficient to hold the smaller type.
4296   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
4297   // Get the extended container type manually to ensure the same number of
4298   // vector elements between source and dest.
4299   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4300                                      ContainerExtVT.getVectorElementCount());
4301 
4302   SDValue Op1 =
4303       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4304 
4305   SDLoc DL(Op);
4306   SDValue Mask, VL;
4307   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4308 
4309   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
4310 
4311   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
4312 }
4313 
4314 // Custom-lower truncations from vectors to mask vectors by using a mask and a
4315 // setcc operation:
4316 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
4317 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
4318                                                   SelectionDAG &DAG) const {
4319   SDLoc DL(Op);
4320   EVT MaskVT = Op.getValueType();
4321   // Only expect to custom-lower truncations to mask types
4322   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
4323          "Unexpected type for vector mask lowering");
4324   SDValue Src = Op.getOperand(0);
4325   MVT VecVT = Src.getSimpleValueType();
4326 
4327   // If this is a fixed vector, we need to convert it to a scalable vector.
4328   MVT ContainerVT = VecVT;
4329   if (VecVT.isFixedLengthVector()) {
4330     ContainerVT = getContainerForFixedLengthVector(VecVT);
4331     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4332   }
4333 
4334   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
4335   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
4336 
4337   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4338                          DAG.getUNDEF(ContainerVT), SplatOne);
4339   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4340                           DAG.getUNDEF(ContainerVT), SplatZero);
4341 
4342   if (VecVT.isScalableVector()) {
4343     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
4344     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
4345   }
4346 
4347   SDValue Mask, VL;
4348   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4349 
4350   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
4351   SDValue Trunc =
4352       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
4353   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
4354                       DAG.getCondCode(ISD::SETNE), Mask, VL);
4355   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
4356 }
4357 
4358 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
4359 // first position of a vector, and that vector is slid up to the insert index.
4360 // By limiting the active vector length to index+1 and merging with the
4361 // original vector (with an undisturbed tail policy for elements >= VL), we
4362 // achieve the desired result of leaving all elements untouched except the one
4363 // at VL-1, which is replaced with the desired value.
4364 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4365                                                     SelectionDAG &DAG) const {
4366   SDLoc DL(Op);
4367   MVT VecVT = Op.getSimpleValueType();
4368   SDValue Vec = Op.getOperand(0);
4369   SDValue Val = Op.getOperand(1);
4370   SDValue Idx = Op.getOperand(2);
4371 
4372   if (VecVT.getVectorElementType() == MVT::i1) {
4373     // FIXME: For now we just promote to an i8 vector and insert into that,
4374     // but this is probably not optimal.
4375     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4376     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4377     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
4378     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
4379   }
4380 
4381   MVT ContainerVT = VecVT;
4382   // If the operand is a fixed-length vector, convert to a scalable one.
4383   if (VecVT.isFixedLengthVector()) {
4384     ContainerVT = getContainerForFixedLengthVector(VecVT);
4385     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4386   }
4387 
4388   MVT XLenVT = Subtarget.getXLenVT();
4389 
4390   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4391   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
4392   // Even i64-element vectors on RV32 can be lowered without scalar
4393   // legalization if the most-significant 32 bits of the value are not affected
4394   // by the sign-extension of the lower 32 bits.
4395   // TODO: We could also catch sign extensions of a 32-bit value.
4396   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
4397     const auto *CVal = cast<ConstantSDNode>(Val);
4398     if (isInt<32>(CVal->getSExtValue())) {
4399       IsLegalInsert = true;
4400       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4401     }
4402   }
4403 
4404   SDValue Mask, VL;
4405   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4406 
4407   SDValue ValInVec;
4408 
4409   if (IsLegalInsert) {
4410     unsigned Opc =
4411         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
4412     if (isNullConstant(Idx)) {
4413       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
4414       if (!VecVT.isFixedLengthVector())
4415         return Vec;
4416       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
4417     }
4418     ValInVec =
4419         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
4420   } else {
4421     // On RV32, i64-element vectors must be specially handled to place the
4422     // value at element 0, by using two vslide1up instructions in sequence on
4423     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
4424     // this.
4425     SDValue One = DAG.getConstant(1, DL, XLenVT);
4426     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
4427     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
4428     MVT I32ContainerVT =
4429         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
4430     SDValue I32Mask =
4431         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
4432     // Limit the active VL to two.
4433     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
4434     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
4435     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
4436     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT,
4437                            DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL);
4438     // First slide in the hi value, then the lo in underneath it.
4439     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4440                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi,
4441                            I32Mask, InsertI64VL);
4442     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4443                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo,
4444                            I32Mask, InsertI64VL);
4445     // Bitcast back to the right container type.
4446     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
4447   }
4448 
4449   // Now that the value is in a vector, slide it into position.
4450   SDValue InsertVL =
4451       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
4452   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4453                                 ValInVec, Idx, Mask, InsertVL);
4454   if (!VecVT.isFixedLengthVector())
4455     return Slideup;
4456   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4457 }
4458 
4459 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
4460 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
4461 // types this is done using VMV_X_S to allow us to glean information about the
4462 // sign bits of the result.
4463 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4464                                                      SelectionDAG &DAG) const {
4465   SDLoc DL(Op);
4466   SDValue Idx = Op.getOperand(1);
4467   SDValue Vec = Op.getOperand(0);
4468   EVT EltVT = Op.getValueType();
4469   MVT VecVT = Vec.getSimpleValueType();
4470   MVT XLenVT = Subtarget.getXLenVT();
4471 
4472   if (VecVT.getVectorElementType() == MVT::i1) {
4473     if (VecVT.isFixedLengthVector()) {
4474       unsigned NumElts = VecVT.getVectorNumElements();
4475       if (NumElts >= 8) {
4476         MVT WideEltVT;
4477         unsigned WidenVecLen;
4478         SDValue ExtractElementIdx;
4479         SDValue ExtractBitIdx;
4480         unsigned MaxEEW = Subtarget.getMaxELENForFixedLengthVectors();
4481         MVT LargestEltVT = MVT::getIntegerVT(
4482             std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
4483         if (NumElts <= LargestEltVT.getSizeInBits()) {
4484           assert(isPowerOf2_32(NumElts) &&
4485                  "the number of elements should be power of 2");
4486           WideEltVT = MVT::getIntegerVT(NumElts);
4487           WidenVecLen = 1;
4488           ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
4489           ExtractBitIdx = Idx;
4490         } else {
4491           WideEltVT = LargestEltVT;
4492           WidenVecLen = NumElts / WideEltVT.getSizeInBits();
4493           // extract element index = index / element width
4494           ExtractElementIdx = DAG.getNode(
4495               ISD::SRL, DL, XLenVT, Idx,
4496               DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
4497           // mask bit index = index % element width
4498           ExtractBitIdx = DAG.getNode(
4499               ISD::AND, DL, XLenVT, Idx,
4500               DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
4501         }
4502         MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
4503         Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
4504         SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
4505                                          Vec, ExtractElementIdx);
4506         // Extract the bit from GPR.
4507         SDValue ShiftRight =
4508             DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
4509         return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
4510                            DAG.getConstant(1, DL, XLenVT));
4511       }
4512     }
4513     // Otherwise, promote to an i8 vector and extract from that.
4514     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4515     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4516     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4517   }
4518 
4519   // If this is a fixed vector, we need to convert it to a scalable vector.
4520   MVT ContainerVT = VecVT;
4521   if (VecVT.isFixedLengthVector()) {
4522     ContainerVT = getContainerForFixedLengthVector(VecVT);
4523     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4524   }
4525 
4526   // If the index is 0, the vector is already in the right position.
4527   if (!isNullConstant(Idx)) {
4528     // Use a VL of 1 to avoid processing more elements than we need.
4529     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4530     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4531     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4532     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4533                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4534   }
4535 
4536   if (!EltVT.isInteger()) {
4537     // Floating-point extracts are handled in TableGen.
4538     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4539                        DAG.getConstant(0, DL, XLenVT));
4540   }
4541 
4542   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4543   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4544 }
4545 
4546 // Some RVV intrinsics may claim that they want an integer operand to be
4547 // promoted or expanded.
4548 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG,
4549                                           const RISCVSubtarget &Subtarget) {
4550   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4551           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4552          "Unexpected opcode");
4553 
4554   if (!Subtarget.hasVInstructions())
4555     return SDValue();
4556 
4557   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4558   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4559   SDLoc DL(Op);
4560 
4561   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4562       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4563   if (!II || !II->hasSplatOperand())
4564     return SDValue();
4565 
4566   unsigned SplatOp = II->SplatOperand + 1 + HasChain;
4567   assert(SplatOp < Op.getNumOperands());
4568 
4569   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4570   SDValue &ScalarOp = Operands[SplatOp];
4571   MVT OpVT = ScalarOp.getSimpleValueType();
4572   MVT XLenVT = Subtarget.getXLenVT();
4573 
4574   // If this isn't a scalar, or its type is XLenVT we're done.
4575   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4576     return SDValue();
4577 
4578   // Simplest case is that the operand needs to be promoted to XLenVT.
4579   if (OpVT.bitsLT(XLenVT)) {
4580     // If the operand is a constant, sign extend to increase our chances
4581     // of being able to use a .vi instruction. ANY_EXTEND would become a
4582     // a zero extend and the simm5 check in isel would fail.
4583     // FIXME: Should we ignore the upper bits in isel instead?
4584     unsigned ExtOpc =
4585         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4586     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4587     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4588   }
4589 
4590   // Use the previous operand to get the vXi64 VT. The result might be a mask
4591   // VT for compares. Using the previous operand assumes that the previous
4592   // operand will never have a smaller element size than a scalar operand and
4593   // that a widening operation never uses SEW=64.
4594   // NOTE: If this fails the below assert, we can probably just find the
4595   // element count from any operand or result and use it to construct the VT.
4596   assert(II->SplatOperand > 0 && "Unexpected splat operand!");
4597   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4598 
4599   // The more complex case is when the scalar is larger than XLenVT.
4600   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4601          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4602 
4603   // If this is a sign-extended 32-bit constant, we can truncate it and rely
4604   // on the instruction to sign-extend since SEW>XLEN.
4605   if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
4606     if (isInt<32>(CVal->getSExtValue())) {
4607       ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4608       return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4609     }
4610   }
4611 
4612   // We need to convert the scalar to a splat vector.
4613   // FIXME: Can we implicitly truncate the scalar if it is known to
4614   // be sign extended?
4615   SDValue VL = getVLOperand(Op);
4616   assert(VL.getValueType() == XLenVT);
4617   ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG);
4618   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4619 }
4620 
4621 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4622                                                      SelectionDAG &DAG) const {
4623   unsigned IntNo = Op.getConstantOperandVal(0);
4624   SDLoc DL(Op);
4625   MVT XLenVT = Subtarget.getXLenVT();
4626 
4627   switch (IntNo) {
4628   default:
4629     break; // Don't custom lower most intrinsics.
4630   case Intrinsic::thread_pointer: {
4631     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4632     return DAG.getRegister(RISCV::X4, PtrVT);
4633   }
4634   case Intrinsic::riscv_orc_b:
4635   case Intrinsic::riscv_brev8: {
4636     // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8.
4637     unsigned Opc =
4638         IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC;
4639     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4640                        DAG.getConstant(7, DL, XLenVT));
4641   }
4642   case Intrinsic::riscv_grev:
4643   case Intrinsic::riscv_gorc: {
4644     unsigned Opc =
4645         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4646     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4647   }
4648   case Intrinsic::riscv_zip:
4649   case Intrinsic::riscv_unzip: {
4650     // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip.
4651     // For i32 the immdiate is 15. For i64 the immediate is 31.
4652     unsigned Opc =
4653         IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4654     unsigned BitWidth = Op.getValueSizeInBits();
4655     assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width");
4656     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4657                        DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT));
4658   }
4659   case Intrinsic::riscv_shfl:
4660   case Intrinsic::riscv_unshfl: {
4661     unsigned Opc =
4662         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4663     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4664   }
4665   case Intrinsic::riscv_bcompress:
4666   case Intrinsic::riscv_bdecompress: {
4667     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4668                                                        : RISCVISD::BDECOMPRESS;
4669     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4670   }
4671   case Intrinsic::riscv_bfp:
4672     return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1),
4673                        Op.getOperand(2));
4674   case Intrinsic::riscv_fsl:
4675     return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1),
4676                        Op.getOperand(2), Op.getOperand(3));
4677   case Intrinsic::riscv_fsr:
4678     return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1),
4679                        Op.getOperand(2), Op.getOperand(3));
4680   case Intrinsic::riscv_vmv_x_s:
4681     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4682     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4683                        Op.getOperand(1));
4684   case Intrinsic::riscv_vmv_v_x:
4685     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4686                             Op.getOperand(3), Op.getSimpleValueType(), DL, DAG,
4687                             Subtarget);
4688   case Intrinsic::riscv_vfmv_v_f:
4689     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4690                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4691   case Intrinsic::riscv_vmv_s_x: {
4692     SDValue Scalar = Op.getOperand(2);
4693 
4694     if (Scalar.getValueType().bitsLE(XLenVT)) {
4695       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4696       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4697                          Op.getOperand(1), Scalar, Op.getOperand(3));
4698     }
4699 
4700     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4701 
4702     // This is an i64 value that lives in two scalar registers. We have to
4703     // insert this in a convoluted way. First we build vXi64 splat containing
4704     // the/ two values that we assemble using some bit math. Next we'll use
4705     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4706     // to merge element 0 from our splat into the source vector.
4707     // FIXME: This is probably not the best way to do this, but it is
4708     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4709     // point.
4710     //   sw lo, (a0)
4711     //   sw hi, 4(a0)
4712     //   vlse vX, (a0)
4713     //
4714     //   vid.v      vVid
4715     //   vmseq.vx   mMask, vVid, 0
4716     //   vmerge.vvm vDest, vSrc, vVal, mMask
4717     MVT VT = Op.getSimpleValueType();
4718     SDValue Vec = Op.getOperand(1);
4719     SDValue VL = getVLOperand(Op);
4720 
4721     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG);
4722     if (Op.getOperand(1).isUndef())
4723       return SplattedVal;
4724     SDValue SplattedIdx =
4725         DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
4726                     DAG.getConstant(0, DL, MVT::i32), VL);
4727 
4728     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
4729     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4730     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4731     SDValue SelectCond =
4732         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4733                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4734     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4735                        Vec, VL);
4736   }
4737   case Intrinsic::riscv_vslide1up:
4738   case Intrinsic::riscv_vslide1down:
4739   case Intrinsic::riscv_vslide1up_mask:
4740   case Intrinsic::riscv_vslide1down_mask: {
4741     // We need to special case these when the scalar is larger than XLen.
4742     unsigned NumOps = Op.getNumOperands();
4743     bool IsMasked = NumOps == 7;
4744     SDValue Scalar = Op.getOperand(3);
4745     if (Scalar.getValueType().bitsLE(XLenVT))
4746       break;
4747 
4748     // Splatting a sign extended constant is fine.
4749     if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar))
4750       if (isInt<32>(CVal->getSExtValue()))
4751         break;
4752 
4753     MVT VT = Op.getSimpleValueType();
4754     assert(VT.getVectorElementType() == MVT::i64 &&
4755            Scalar.getValueType() == MVT::i64 && "Unexpected VTs");
4756 
4757     // Convert the vector source to the equivalent nxvXi32 vector.
4758     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4759     SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(2));
4760 
4761     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
4762                                    DAG.getConstant(0, DL, XLenVT));
4763     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
4764                                    DAG.getConstant(1, DL, XLenVT));
4765 
4766     // Double the VL since we halved SEW.
4767     SDValue VL = getVLOperand(Op);
4768     SDValue I32VL =
4769         DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4770 
4771     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
4772     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL);
4773 
4774     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4775     // instructions.
4776     SDValue Passthru = DAG.getBitcast(I32VT, Op.getOperand(1));
4777     if (!IsMasked) {
4778       if (IntNo == Intrinsic::riscv_vslide1up) {
4779         Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4780                           ScalarHi, I32Mask, I32VL);
4781         Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4782                           ScalarLo, I32Mask, I32VL);
4783       } else {
4784         Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4785                           ScalarLo, I32Mask, I32VL);
4786         Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4787                           ScalarHi, I32Mask, I32VL);
4788       }
4789     } else {
4790       // TODO Those VSLIDE1 could be TAMA because we use vmerge to select
4791       // maskedoff
4792       SDValue Undef = DAG.getUNDEF(I32VT);
4793       if (IntNo == Intrinsic::riscv_vslide1up_mask) {
4794         Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Undef, Vec,
4795                           ScalarHi, I32Mask, I32VL);
4796         Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Undef, Vec,
4797                           ScalarLo, I32Mask, I32VL);
4798       } else {
4799         Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Undef, Vec,
4800                           ScalarLo, I32Mask, I32VL);
4801         Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Undef, Vec,
4802                           ScalarHi, I32Mask, I32VL);
4803       }
4804     }
4805 
4806     // Convert back to nxvXi64.
4807     Vec = DAG.getBitcast(VT, Vec);
4808 
4809     if (!IsMasked)
4810       return Vec;
4811     // Apply mask after the operation.
4812     SDValue Mask = Op.getOperand(NumOps - 3);
4813     SDValue MaskedOff = Op.getOperand(1);
4814     // Assume Policy operand is the last operand.
4815     uint64_t Policy = Op.getConstantOperandVal(NumOps - 1);
4816     // We don't need to select maskedoff if it's undef.
4817     if (MaskedOff.isUndef())
4818       return Vec;
4819     // TAMU
4820     if (Policy == RISCVII::TAIL_AGNOSTIC)
4821       return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff,
4822                          VL);
4823     // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma.
4824     // It's fine because vmerge does not care mask policy.
4825     return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff, VL);
4826   }
4827   }
4828 
4829   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
4830 }
4831 
4832 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4833                                                     SelectionDAG &DAG) const {
4834   unsigned IntNo = Op.getConstantOperandVal(1);
4835   switch (IntNo) {
4836   default:
4837     break;
4838   case Intrinsic::riscv_masked_strided_load: {
4839     SDLoc DL(Op);
4840     MVT XLenVT = Subtarget.getXLenVT();
4841 
4842     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4843     // the selection of the masked intrinsics doesn't do this for us.
4844     SDValue Mask = Op.getOperand(5);
4845     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4846 
4847     MVT VT = Op->getSimpleValueType(0);
4848     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4849 
4850     SDValue PassThru = Op.getOperand(2);
4851     if (!IsUnmasked) {
4852       MVT MaskVT =
4853           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4854       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4855       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4856     }
4857 
4858     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4859 
4860     SDValue IntID = DAG.getTargetConstant(
4861         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4862         XLenVT);
4863 
4864     auto *Load = cast<MemIntrinsicSDNode>(Op);
4865     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4866     if (IsUnmasked)
4867       Ops.push_back(DAG.getUNDEF(ContainerVT));
4868     else
4869       Ops.push_back(PassThru);
4870     Ops.push_back(Op.getOperand(3)); // Ptr
4871     Ops.push_back(Op.getOperand(4)); // Stride
4872     if (!IsUnmasked)
4873       Ops.push_back(Mask);
4874     Ops.push_back(VL);
4875     if (!IsUnmasked) {
4876       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4877       Ops.push_back(Policy);
4878     }
4879 
4880     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4881     SDValue Result =
4882         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4883                                 Load->getMemoryVT(), Load->getMemOperand());
4884     SDValue Chain = Result.getValue(1);
4885     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4886     return DAG.getMergeValues({Result, Chain}, DL);
4887   }
4888   }
4889 
4890   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
4891 }
4892 
4893 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4894                                                  SelectionDAG &DAG) const {
4895   unsigned IntNo = Op.getConstantOperandVal(1);
4896   switch (IntNo) {
4897   default:
4898     break;
4899   case Intrinsic::riscv_masked_strided_store: {
4900     SDLoc DL(Op);
4901     MVT XLenVT = Subtarget.getXLenVT();
4902 
4903     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4904     // the selection of the masked intrinsics doesn't do this for us.
4905     SDValue Mask = Op.getOperand(5);
4906     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4907 
4908     SDValue Val = Op.getOperand(2);
4909     MVT VT = Val.getSimpleValueType();
4910     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4911 
4912     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4913     if (!IsUnmasked) {
4914       MVT MaskVT =
4915           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4916       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4917     }
4918 
4919     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4920 
4921     SDValue IntID = DAG.getTargetConstant(
4922         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
4923         XLenVT);
4924 
4925     auto *Store = cast<MemIntrinsicSDNode>(Op);
4926     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
4927     Ops.push_back(Val);
4928     Ops.push_back(Op.getOperand(3)); // Ptr
4929     Ops.push_back(Op.getOperand(4)); // Stride
4930     if (!IsUnmasked)
4931       Ops.push_back(Mask);
4932     Ops.push_back(VL);
4933 
4934     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
4935                                    Ops, Store->getMemoryVT(),
4936                                    Store->getMemOperand());
4937   }
4938   }
4939 
4940   return SDValue();
4941 }
4942 
4943 static MVT getLMUL1VT(MVT VT) {
4944   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
4945          "Unexpected vector MVT");
4946   return MVT::getScalableVectorVT(
4947       VT.getVectorElementType(),
4948       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
4949 }
4950 
4951 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
4952   switch (ISDOpcode) {
4953   default:
4954     llvm_unreachable("Unhandled reduction");
4955   case ISD::VECREDUCE_ADD:
4956     return RISCVISD::VECREDUCE_ADD_VL;
4957   case ISD::VECREDUCE_UMAX:
4958     return RISCVISD::VECREDUCE_UMAX_VL;
4959   case ISD::VECREDUCE_SMAX:
4960     return RISCVISD::VECREDUCE_SMAX_VL;
4961   case ISD::VECREDUCE_UMIN:
4962     return RISCVISD::VECREDUCE_UMIN_VL;
4963   case ISD::VECREDUCE_SMIN:
4964     return RISCVISD::VECREDUCE_SMIN_VL;
4965   case ISD::VECREDUCE_AND:
4966     return RISCVISD::VECREDUCE_AND_VL;
4967   case ISD::VECREDUCE_OR:
4968     return RISCVISD::VECREDUCE_OR_VL;
4969   case ISD::VECREDUCE_XOR:
4970     return RISCVISD::VECREDUCE_XOR_VL;
4971   }
4972 }
4973 
4974 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
4975                                                          SelectionDAG &DAG,
4976                                                          bool IsVP) const {
4977   SDLoc DL(Op);
4978   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
4979   MVT VecVT = Vec.getSimpleValueType();
4980   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
4981           Op.getOpcode() == ISD::VECREDUCE_OR ||
4982           Op.getOpcode() == ISD::VECREDUCE_XOR ||
4983           Op.getOpcode() == ISD::VP_REDUCE_AND ||
4984           Op.getOpcode() == ISD::VP_REDUCE_OR ||
4985           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
4986          "Unexpected reduction lowering");
4987 
4988   MVT XLenVT = Subtarget.getXLenVT();
4989   assert(Op.getValueType() == XLenVT &&
4990          "Expected reduction output to be legalized to XLenVT");
4991 
4992   MVT ContainerVT = VecVT;
4993   if (VecVT.isFixedLengthVector()) {
4994     ContainerVT = getContainerForFixedLengthVector(VecVT);
4995     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4996   }
4997 
4998   SDValue Mask, VL;
4999   if (IsVP) {
5000     Mask = Op.getOperand(2);
5001     VL = Op.getOperand(3);
5002   } else {
5003     std::tie(Mask, VL) =
5004         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5005   }
5006 
5007   unsigned BaseOpc;
5008   ISD::CondCode CC;
5009   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
5010 
5011   switch (Op.getOpcode()) {
5012   default:
5013     llvm_unreachable("Unhandled reduction");
5014   case ISD::VECREDUCE_AND:
5015   case ISD::VP_REDUCE_AND: {
5016     // vcpop ~x == 0
5017     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
5018     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
5019     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5020     CC = ISD::SETEQ;
5021     BaseOpc = ISD::AND;
5022     break;
5023   }
5024   case ISD::VECREDUCE_OR:
5025   case ISD::VP_REDUCE_OR:
5026     // vcpop x != 0
5027     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5028     CC = ISD::SETNE;
5029     BaseOpc = ISD::OR;
5030     break;
5031   case ISD::VECREDUCE_XOR:
5032   case ISD::VP_REDUCE_XOR: {
5033     // ((vcpop x) & 1) != 0
5034     SDValue One = DAG.getConstant(1, DL, XLenVT);
5035     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5036     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
5037     CC = ISD::SETNE;
5038     BaseOpc = ISD::XOR;
5039     break;
5040   }
5041   }
5042 
5043   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
5044 
5045   if (!IsVP)
5046     return SetCC;
5047 
5048   // Now include the start value in the operation.
5049   // Note that we must return the start value when no elements are operated
5050   // upon. The vcpop instructions we've emitted in each case above will return
5051   // 0 for an inactive vector, and so we've already received the neutral value:
5052   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
5053   // can simply include the start value.
5054   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
5055 }
5056 
5057 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
5058                                             SelectionDAG &DAG) const {
5059   SDLoc DL(Op);
5060   SDValue Vec = Op.getOperand(0);
5061   EVT VecEVT = Vec.getValueType();
5062 
5063   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
5064 
5065   // Due to ordering in legalize types we may have a vector type that needs to
5066   // be split. Do that manually so we can get down to a legal type.
5067   while (getTypeAction(*DAG.getContext(), VecEVT) ==
5068          TargetLowering::TypeSplitVector) {
5069     SDValue Lo, Hi;
5070     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
5071     VecEVT = Lo.getValueType();
5072     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
5073   }
5074 
5075   // TODO: The type may need to be widened rather than split. Or widened before
5076   // it can be split.
5077   if (!isTypeLegal(VecEVT))
5078     return SDValue();
5079 
5080   MVT VecVT = VecEVT.getSimpleVT();
5081   MVT VecEltVT = VecVT.getVectorElementType();
5082   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
5083 
5084   MVT ContainerVT = VecVT;
5085   if (VecVT.isFixedLengthVector()) {
5086     ContainerVT = getContainerForFixedLengthVector(VecVT);
5087     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5088   }
5089 
5090   MVT M1VT = getLMUL1VT(ContainerVT);
5091   MVT XLenVT = Subtarget.getXLenVT();
5092 
5093   SDValue Mask, VL;
5094   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5095 
5096   SDValue NeutralElem =
5097       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
5098   SDValue IdentitySplat =
5099       lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT),
5100                        M1VT, DL, DAG, Subtarget);
5101   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
5102                                   IdentitySplat, Mask, VL);
5103   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5104                              DAG.getConstant(0, DL, XLenVT));
5105   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5106 }
5107 
5108 // Given a reduction op, this function returns the matching reduction opcode,
5109 // the vector SDValue and the scalar SDValue required to lower this to a
5110 // RISCVISD node.
5111 static std::tuple<unsigned, SDValue, SDValue>
5112 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
5113   SDLoc DL(Op);
5114   auto Flags = Op->getFlags();
5115   unsigned Opcode = Op.getOpcode();
5116   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
5117   switch (Opcode) {
5118   default:
5119     llvm_unreachable("Unhandled reduction");
5120   case ISD::VECREDUCE_FADD: {
5121     // Use positive zero if we can. It is cheaper to materialize.
5122     SDValue Zero =
5123         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
5124     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
5125   }
5126   case ISD::VECREDUCE_SEQ_FADD:
5127     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
5128                            Op.getOperand(0));
5129   case ISD::VECREDUCE_FMIN:
5130     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
5131                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5132   case ISD::VECREDUCE_FMAX:
5133     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
5134                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5135   }
5136 }
5137 
5138 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
5139                                               SelectionDAG &DAG) const {
5140   SDLoc DL(Op);
5141   MVT VecEltVT = Op.getSimpleValueType();
5142 
5143   unsigned RVVOpcode;
5144   SDValue VectorVal, ScalarVal;
5145   std::tie(RVVOpcode, VectorVal, ScalarVal) =
5146       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
5147   MVT VecVT = VectorVal.getSimpleValueType();
5148 
5149   MVT ContainerVT = VecVT;
5150   if (VecVT.isFixedLengthVector()) {
5151     ContainerVT = getContainerForFixedLengthVector(VecVT);
5152     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
5153   }
5154 
5155   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
5156   MVT XLenVT = Subtarget.getXLenVT();
5157 
5158   SDValue Mask, VL;
5159   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5160 
5161   SDValue ScalarSplat =
5162       lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT),
5163                        M1VT, DL, DAG, Subtarget);
5164   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
5165                                   VectorVal, ScalarSplat, Mask, VL);
5166   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5167                      DAG.getConstant(0, DL, XLenVT));
5168 }
5169 
5170 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
5171   switch (ISDOpcode) {
5172   default:
5173     llvm_unreachable("Unhandled reduction");
5174   case ISD::VP_REDUCE_ADD:
5175     return RISCVISD::VECREDUCE_ADD_VL;
5176   case ISD::VP_REDUCE_UMAX:
5177     return RISCVISD::VECREDUCE_UMAX_VL;
5178   case ISD::VP_REDUCE_SMAX:
5179     return RISCVISD::VECREDUCE_SMAX_VL;
5180   case ISD::VP_REDUCE_UMIN:
5181     return RISCVISD::VECREDUCE_UMIN_VL;
5182   case ISD::VP_REDUCE_SMIN:
5183     return RISCVISD::VECREDUCE_SMIN_VL;
5184   case ISD::VP_REDUCE_AND:
5185     return RISCVISD::VECREDUCE_AND_VL;
5186   case ISD::VP_REDUCE_OR:
5187     return RISCVISD::VECREDUCE_OR_VL;
5188   case ISD::VP_REDUCE_XOR:
5189     return RISCVISD::VECREDUCE_XOR_VL;
5190   case ISD::VP_REDUCE_FADD:
5191     return RISCVISD::VECREDUCE_FADD_VL;
5192   case ISD::VP_REDUCE_SEQ_FADD:
5193     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
5194   case ISD::VP_REDUCE_FMAX:
5195     return RISCVISD::VECREDUCE_FMAX_VL;
5196   case ISD::VP_REDUCE_FMIN:
5197     return RISCVISD::VECREDUCE_FMIN_VL;
5198   }
5199 }
5200 
5201 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
5202                                            SelectionDAG &DAG) const {
5203   SDLoc DL(Op);
5204   SDValue Vec = Op.getOperand(1);
5205   EVT VecEVT = Vec.getValueType();
5206 
5207   // TODO: The type may need to be widened rather than split. Or widened before
5208   // it can be split.
5209   if (!isTypeLegal(VecEVT))
5210     return SDValue();
5211 
5212   MVT VecVT = VecEVT.getSimpleVT();
5213   MVT VecEltVT = VecVT.getVectorElementType();
5214   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
5215 
5216   MVT ContainerVT = VecVT;
5217   if (VecVT.isFixedLengthVector()) {
5218     ContainerVT = getContainerForFixedLengthVector(VecVT);
5219     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5220   }
5221 
5222   SDValue VL = Op.getOperand(3);
5223   SDValue Mask = Op.getOperand(2);
5224 
5225   MVT M1VT = getLMUL1VT(ContainerVT);
5226   MVT XLenVT = Subtarget.getXLenVT();
5227   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
5228 
5229   SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0),
5230                                         DAG.getConstant(1, DL, XLenVT), M1VT,
5231                                         DL, DAG, Subtarget);
5232   SDValue Reduction =
5233       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
5234   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
5235                              DAG.getConstant(0, DL, XLenVT));
5236   if (!VecVT.isInteger())
5237     return Elt0;
5238   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5239 }
5240 
5241 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5242                                                    SelectionDAG &DAG) const {
5243   SDValue Vec = Op.getOperand(0);
5244   SDValue SubVec = Op.getOperand(1);
5245   MVT VecVT = Vec.getSimpleValueType();
5246   MVT SubVecVT = SubVec.getSimpleValueType();
5247 
5248   SDLoc DL(Op);
5249   MVT XLenVT = Subtarget.getXLenVT();
5250   unsigned OrigIdx = Op.getConstantOperandVal(2);
5251   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5252 
5253   // We don't have the ability to slide mask vectors up indexed by their i1
5254   // elements; the smallest we can do is i8. Often we are able to bitcast to
5255   // equivalent i8 vectors. Note that when inserting a fixed-length vector
5256   // into a scalable one, we might not necessarily have enough scalable
5257   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
5258   if (SubVecVT.getVectorElementType() == MVT::i1 &&
5259       (OrigIdx != 0 || !Vec.isUndef())) {
5260     if (VecVT.getVectorMinNumElements() >= 8 &&
5261         SubVecVT.getVectorMinNumElements() >= 8) {
5262       assert(OrigIdx % 8 == 0 && "Invalid index");
5263       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5264              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5265              "Unexpected mask vector lowering");
5266       OrigIdx /= 8;
5267       SubVecVT =
5268           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5269                            SubVecVT.isScalableVector());
5270       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5271                                VecVT.isScalableVector());
5272       Vec = DAG.getBitcast(VecVT, Vec);
5273       SubVec = DAG.getBitcast(SubVecVT, SubVec);
5274     } else {
5275       // We can't slide this mask vector up indexed by its i1 elements.
5276       // This poses a problem when we wish to insert a scalable vector which
5277       // can't be re-expressed as a larger type. Just choose the slow path and
5278       // extend to a larger type, then truncate back down.
5279       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5280       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5281       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5282       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
5283       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
5284                         Op.getOperand(2));
5285       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
5286       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
5287     }
5288   }
5289 
5290   // If the subvector vector is a fixed-length type, we cannot use subregister
5291   // manipulation to simplify the codegen; we don't know which register of a
5292   // LMUL group contains the specific subvector as we only know the minimum
5293   // register size. Therefore we must slide the vector group up the full
5294   // amount.
5295   if (SubVecVT.isFixedLengthVector()) {
5296     if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
5297       return Op;
5298     MVT ContainerVT = VecVT;
5299     if (VecVT.isFixedLengthVector()) {
5300       ContainerVT = getContainerForFixedLengthVector(VecVT);
5301       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5302     }
5303     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
5304                          DAG.getUNDEF(ContainerVT), SubVec,
5305                          DAG.getConstant(0, DL, XLenVT));
5306     if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
5307       SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
5308       return DAG.getBitcast(Op.getValueType(), SubVec);
5309     }
5310     SDValue Mask =
5311         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5312     // Set the vector length to only the number of elements we care about. Note
5313     // that for slideup this includes the offset.
5314     SDValue VL =
5315         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
5316     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5317     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
5318                                   SubVec, SlideupAmt, Mask, VL);
5319     if (VecVT.isFixedLengthVector())
5320       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
5321     return DAG.getBitcast(Op.getValueType(), Slideup);
5322   }
5323 
5324   unsigned SubRegIdx, RemIdx;
5325   std::tie(SubRegIdx, RemIdx) =
5326       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5327           VecVT, SubVecVT, OrigIdx, TRI);
5328 
5329   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
5330   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
5331                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
5332                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
5333 
5334   // 1. If the Idx has been completely eliminated and this subvector's size is
5335   // a vector register or a multiple thereof, or the surrounding elements are
5336   // undef, then this is a subvector insert which naturally aligns to a vector
5337   // register. These can easily be handled using subregister manipulation.
5338   // 2. If the subvector is smaller than a vector register, then the insertion
5339   // must preserve the undisturbed elements of the register. We do this by
5340   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
5341   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
5342   // subvector within the vector register, and an INSERT_SUBVECTOR of that
5343   // LMUL=1 type back into the larger vector (resolving to another subregister
5344   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
5345   // to avoid allocating a large register group to hold our subvector.
5346   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
5347     return Op;
5348 
5349   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
5350   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
5351   // (in our case undisturbed). This means we can set up a subvector insertion
5352   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
5353   // size of the subvector.
5354   MVT InterSubVT = VecVT;
5355   SDValue AlignedExtract = Vec;
5356   unsigned AlignedIdx = OrigIdx - RemIdx;
5357   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5358     InterSubVT = getLMUL1VT(VecVT);
5359     // Extract a subvector equal to the nearest full vector register type. This
5360     // should resolve to a EXTRACT_SUBREG instruction.
5361     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5362                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
5363   }
5364 
5365   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5366   // For scalable vectors this must be further multiplied by vscale.
5367   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
5368 
5369   SDValue Mask, VL;
5370   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5371 
5372   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
5373   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
5374   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
5375   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
5376 
5377   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
5378                        DAG.getUNDEF(InterSubVT), SubVec,
5379                        DAG.getConstant(0, DL, XLenVT));
5380 
5381   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
5382                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
5383 
5384   // If required, insert this subvector back into the correct vector register.
5385   // This should resolve to an INSERT_SUBREG instruction.
5386   if (VecVT.bitsGT(InterSubVT))
5387     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
5388                           DAG.getConstant(AlignedIdx, DL, XLenVT));
5389 
5390   // We might have bitcast from a mask type: cast back to the original type if
5391   // required.
5392   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
5393 }
5394 
5395 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
5396                                                     SelectionDAG &DAG) const {
5397   SDValue Vec = Op.getOperand(0);
5398   MVT SubVecVT = Op.getSimpleValueType();
5399   MVT VecVT = Vec.getSimpleValueType();
5400 
5401   SDLoc DL(Op);
5402   MVT XLenVT = Subtarget.getXLenVT();
5403   unsigned OrigIdx = Op.getConstantOperandVal(1);
5404   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5405 
5406   // We don't have the ability to slide mask vectors down indexed by their i1
5407   // elements; the smallest we can do is i8. Often we are able to bitcast to
5408   // equivalent i8 vectors. Note that when extracting a fixed-length vector
5409   // from a scalable one, we might not necessarily have enough scalable
5410   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
5411   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
5412     if (VecVT.getVectorMinNumElements() >= 8 &&
5413         SubVecVT.getVectorMinNumElements() >= 8) {
5414       assert(OrigIdx % 8 == 0 && "Invalid index");
5415       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5416              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5417              "Unexpected mask vector lowering");
5418       OrigIdx /= 8;
5419       SubVecVT =
5420           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5421                            SubVecVT.isScalableVector());
5422       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5423                                VecVT.isScalableVector());
5424       Vec = DAG.getBitcast(VecVT, Vec);
5425     } else {
5426       // We can't slide this mask vector down, indexed by its i1 elements.
5427       // This poses a problem when we wish to extract a scalable vector which
5428       // can't be re-expressed as a larger type. Just choose the slow path and
5429       // extend to a larger type, then truncate back down.
5430       // TODO: We could probably improve this when extracting certain fixed
5431       // from fixed, where we can extract as i8 and shift the correct element
5432       // right to reach the desired subvector?
5433       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5434       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5435       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5436       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
5437                         Op.getOperand(1));
5438       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
5439       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
5440     }
5441   }
5442 
5443   // If the subvector vector is a fixed-length type, we cannot use subregister
5444   // manipulation to simplify the codegen; we don't know which register of a
5445   // LMUL group contains the specific subvector as we only know the minimum
5446   // register size. Therefore we must slide the vector group down the full
5447   // amount.
5448   if (SubVecVT.isFixedLengthVector()) {
5449     // With an index of 0 this is a cast-like subvector, which can be performed
5450     // with subregister operations.
5451     if (OrigIdx == 0)
5452       return Op;
5453     MVT ContainerVT = VecVT;
5454     if (VecVT.isFixedLengthVector()) {
5455       ContainerVT = getContainerForFixedLengthVector(VecVT);
5456       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5457     }
5458     SDValue Mask =
5459         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5460     // Set the vector length to only the number of elements we care about. This
5461     // avoids sliding down elements we're going to discard straight away.
5462     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
5463     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5464     SDValue Slidedown =
5465         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5466                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
5467     // Now we can use a cast-like subvector extract to get the result.
5468     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5469                             DAG.getConstant(0, DL, XLenVT));
5470     return DAG.getBitcast(Op.getValueType(), Slidedown);
5471   }
5472 
5473   unsigned SubRegIdx, RemIdx;
5474   std::tie(SubRegIdx, RemIdx) =
5475       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5476           VecVT, SubVecVT, OrigIdx, TRI);
5477 
5478   // If the Idx has been completely eliminated then this is a subvector extract
5479   // which naturally aligns to a vector register. These can easily be handled
5480   // using subregister manipulation.
5481   if (RemIdx == 0)
5482     return Op;
5483 
5484   // Else we must shift our vector register directly to extract the subvector.
5485   // Do this using VSLIDEDOWN.
5486 
5487   // If the vector type is an LMUL-group type, extract a subvector equal to the
5488   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
5489   // instruction.
5490   MVT InterSubVT = VecVT;
5491   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5492     InterSubVT = getLMUL1VT(VecVT);
5493     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5494                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
5495   }
5496 
5497   // Slide this vector register down by the desired number of elements in order
5498   // to place the desired subvector starting at element 0.
5499   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5500   // For scalable vectors this must be further multiplied by vscale.
5501   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
5502 
5503   SDValue Mask, VL;
5504   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
5505   SDValue Slidedown =
5506       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
5507                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
5508 
5509   // Now the vector is in the right position, extract our final subvector. This
5510   // should resolve to a COPY.
5511   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5512                           DAG.getConstant(0, DL, XLenVT));
5513 
5514   // We might have bitcast from a mask type: cast back to the original type if
5515   // required.
5516   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
5517 }
5518 
5519 // Lower step_vector to the vid instruction. Any non-identity step value must
5520 // be accounted for my manual expansion.
5521 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
5522                                               SelectionDAG &DAG) const {
5523   SDLoc DL(Op);
5524   MVT VT = Op.getSimpleValueType();
5525   MVT XLenVT = Subtarget.getXLenVT();
5526   SDValue Mask, VL;
5527   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
5528   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
5529   uint64_t StepValImm = Op.getConstantOperandVal(0);
5530   if (StepValImm != 1) {
5531     if (isPowerOf2_64(StepValImm)) {
5532       SDValue StepVal =
5533           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
5534                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
5535       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
5536     } else {
5537       SDValue StepVal = lowerScalarSplat(
5538           SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()),
5539           VL, VT, DL, DAG, Subtarget);
5540       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
5541     }
5542   }
5543   return StepVec;
5544 }
5545 
5546 // Implement vector_reverse using vrgather.vv with indices determined by
5547 // subtracting the id of each element from (VLMAX-1). This will convert
5548 // the indices like so:
5549 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
5550 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
5551 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
5552                                                  SelectionDAG &DAG) const {
5553   SDLoc DL(Op);
5554   MVT VecVT = Op.getSimpleValueType();
5555   unsigned EltSize = VecVT.getScalarSizeInBits();
5556   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
5557 
5558   unsigned MaxVLMAX = 0;
5559   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
5560   if (VectorBitsMax != 0)
5561     MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock;
5562 
5563   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
5564   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
5565 
5566   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
5567   // to use vrgatherei16.vv.
5568   // TODO: It's also possible to use vrgatherei16.vv for other types to
5569   // decrease register width for the index calculation.
5570   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
5571     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
5572     // Reverse each half, then reassemble them in reverse order.
5573     // NOTE: It's also possible that after splitting that VLMAX no longer
5574     // requires vrgatherei16.vv.
5575     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
5576       SDValue Lo, Hi;
5577       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5578       EVT LoVT, HiVT;
5579       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5580       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5581       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5582       // Reassemble the low and high pieces reversed.
5583       // FIXME: This is a CONCAT_VECTORS.
5584       SDValue Res =
5585           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5586                       DAG.getIntPtrConstant(0, DL));
5587       return DAG.getNode(
5588           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5589           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5590     }
5591 
5592     // Just promote the int type to i16 which will double the LMUL.
5593     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5594     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5595   }
5596 
5597   MVT XLenVT = Subtarget.getXLenVT();
5598   SDValue Mask, VL;
5599   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5600 
5601   // Calculate VLMAX-1 for the desired SEW.
5602   unsigned MinElts = VecVT.getVectorMinNumElements();
5603   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5604                               DAG.getConstant(MinElts, DL, XLenVT));
5605   SDValue VLMinus1 =
5606       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5607 
5608   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5609   bool IsRV32E64 =
5610       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5611   SDValue SplatVL;
5612   if (!IsRV32E64)
5613     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5614   else
5615     SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT),
5616                           VLMinus1, DAG.getRegister(RISCV::X0, XLenVT));
5617 
5618   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5619   SDValue Indices =
5620       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5621 
5622   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
5623 }
5624 
5625 SDValue
5626 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5627                                                      SelectionDAG &DAG) const {
5628   SDLoc DL(Op);
5629   auto *Load = cast<LoadSDNode>(Op);
5630 
5631   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5632                                         Load->getMemoryVT(),
5633                                         *Load->getMemOperand()) &&
5634          "Expecting a correctly-aligned load");
5635 
5636   MVT VT = Op.getSimpleValueType();
5637   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5638 
5639   SDValue VL =
5640       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5641 
5642   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5643   SDValue NewLoad = DAG.getMemIntrinsicNode(
5644       RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
5645       Load->getMemoryVT(), Load->getMemOperand());
5646 
5647   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5648   return DAG.getMergeValues({Result, Load->getChain()}, DL);
5649 }
5650 
5651 SDValue
5652 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5653                                                       SelectionDAG &DAG) const {
5654   SDLoc DL(Op);
5655   auto *Store = cast<StoreSDNode>(Op);
5656 
5657   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5658                                         Store->getMemoryVT(),
5659                                         *Store->getMemOperand()) &&
5660          "Expecting a correctly-aligned store");
5661 
5662   SDValue StoreVal = Store->getValue();
5663   MVT VT = StoreVal.getSimpleValueType();
5664 
5665   // If the size less than a byte, we need to pad with zeros to make a byte.
5666   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5667     VT = MVT::v8i1;
5668     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5669                            DAG.getConstant(0, DL, VT), StoreVal,
5670                            DAG.getIntPtrConstant(0, DL));
5671   }
5672 
5673   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5674 
5675   SDValue VL =
5676       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5677 
5678   SDValue NewValue =
5679       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5680   return DAG.getMemIntrinsicNode(
5681       RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
5682       {Store->getChain(), NewValue, Store->getBasePtr(), VL},
5683       Store->getMemoryVT(), Store->getMemOperand());
5684 }
5685 
5686 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5687                                              SelectionDAG &DAG) const {
5688   SDLoc DL(Op);
5689   MVT VT = Op.getSimpleValueType();
5690 
5691   const auto *MemSD = cast<MemSDNode>(Op);
5692   EVT MemVT = MemSD->getMemoryVT();
5693   MachineMemOperand *MMO = MemSD->getMemOperand();
5694   SDValue Chain = MemSD->getChain();
5695   SDValue BasePtr = MemSD->getBasePtr();
5696 
5697   SDValue Mask, PassThru, VL;
5698   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5699     Mask = VPLoad->getMask();
5700     PassThru = DAG.getUNDEF(VT);
5701     VL = VPLoad->getVectorLength();
5702   } else {
5703     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5704     Mask = MLoad->getMask();
5705     PassThru = MLoad->getPassThru();
5706   }
5707 
5708   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5709 
5710   MVT XLenVT = Subtarget.getXLenVT();
5711 
5712   MVT ContainerVT = VT;
5713   if (VT.isFixedLengthVector()) {
5714     ContainerVT = getContainerForFixedLengthVector(VT);
5715     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5716     if (!IsUnmasked) {
5717       MVT MaskVT =
5718           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5719       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5720     }
5721   }
5722 
5723   if (!VL)
5724     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5725 
5726   unsigned IntID =
5727       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5728   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5729   if (IsUnmasked)
5730     Ops.push_back(DAG.getUNDEF(ContainerVT));
5731   else
5732     Ops.push_back(PassThru);
5733   Ops.push_back(BasePtr);
5734   if (!IsUnmasked)
5735     Ops.push_back(Mask);
5736   Ops.push_back(VL);
5737   if (!IsUnmasked)
5738     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5739 
5740   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5741 
5742   SDValue Result =
5743       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5744   Chain = Result.getValue(1);
5745 
5746   if (VT.isFixedLengthVector())
5747     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5748 
5749   return DAG.getMergeValues({Result, Chain}, DL);
5750 }
5751 
5752 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5753                                               SelectionDAG &DAG) const {
5754   SDLoc DL(Op);
5755 
5756   const auto *MemSD = cast<MemSDNode>(Op);
5757   EVT MemVT = MemSD->getMemoryVT();
5758   MachineMemOperand *MMO = MemSD->getMemOperand();
5759   SDValue Chain = MemSD->getChain();
5760   SDValue BasePtr = MemSD->getBasePtr();
5761   SDValue Val, Mask, VL;
5762 
5763   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5764     Val = VPStore->getValue();
5765     Mask = VPStore->getMask();
5766     VL = VPStore->getVectorLength();
5767   } else {
5768     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5769     Val = MStore->getValue();
5770     Mask = MStore->getMask();
5771   }
5772 
5773   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5774 
5775   MVT VT = Val.getSimpleValueType();
5776   MVT XLenVT = Subtarget.getXLenVT();
5777 
5778   MVT ContainerVT = VT;
5779   if (VT.isFixedLengthVector()) {
5780     ContainerVT = getContainerForFixedLengthVector(VT);
5781 
5782     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5783     if (!IsUnmasked) {
5784       MVT MaskVT =
5785           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5786       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5787     }
5788   }
5789 
5790   if (!VL)
5791     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5792 
5793   unsigned IntID =
5794       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5795   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5796   Ops.push_back(Val);
5797   Ops.push_back(BasePtr);
5798   if (!IsUnmasked)
5799     Ops.push_back(Mask);
5800   Ops.push_back(VL);
5801 
5802   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5803                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5804 }
5805 
5806 SDValue
5807 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
5808                                                       SelectionDAG &DAG) const {
5809   MVT InVT = Op.getOperand(0).getSimpleValueType();
5810   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
5811 
5812   MVT VT = Op.getSimpleValueType();
5813 
5814   SDValue Op1 =
5815       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
5816   SDValue Op2 =
5817       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5818 
5819   SDLoc DL(Op);
5820   SDValue VL =
5821       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5822 
5823   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5824   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5825 
5826   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
5827                             Op.getOperand(2), Mask, VL);
5828 
5829   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
5830 }
5831 
5832 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
5833     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
5834   MVT VT = Op.getSimpleValueType();
5835 
5836   if (VT.getVectorElementType() == MVT::i1)
5837     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
5838 
5839   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
5840 }
5841 
5842 SDValue
5843 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
5844                                                       SelectionDAG &DAG) const {
5845   unsigned Opc;
5846   switch (Op.getOpcode()) {
5847   default: llvm_unreachable("Unexpected opcode!");
5848   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
5849   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
5850   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
5851   }
5852 
5853   return lowerToScalableOp(Op, DAG, Opc);
5854 }
5855 
5856 // Lower vector ABS to smax(X, sub(0, X)).
5857 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
5858   SDLoc DL(Op);
5859   MVT VT = Op.getSimpleValueType();
5860   SDValue X = Op.getOperand(0);
5861 
5862   assert(VT.isFixedLengthVector() && "Unexpected type");
5863 
5864   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5865   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
5866 
5867   SDValue Mask, VL;
5868   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5869 
5870   SDValue SplatZero = DAG.getNode(
5871       RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
5872       DAG.getConstant(0, DL, Subtarget.getXLenVT()));
5873   SDValue NegX =
5874       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
5875   SDValue Max =
5876       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
5877 
5878   return convertFromScalableVector(VT, Max, DAG, Subtarget);
5879 }
5880 
5881 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
5882     SDValue Op, SelectionDAG &DAG) const {
5883   SDLoc DL(Op);
5884   MVT VT = Op.getSimpleValueType();
5885   SDValue Mag = Op.getOperand(0);
5886   SDValue Sign = Op.getOperand(1);
5887   assert(Mag.getValueType() == Sign.getValueType() &&
5888          "Can only handle COPYSIGN with matching types.");
5889 
5890   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5891   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
5892   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
5893 
5894   SDValue Mask, VL;
5895   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5896 
5897   SDValue CopySign =
5898       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
5899 
5900   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
5901 }
5902 
5903 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
5904     SDValue Op, SelectionDAG &DAG) const {
5905   MVT VT = Op.getSimpleValueType();
5906   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5907 
5908   MVT I1ContainerVT =
5909       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5910 
5911   SDValue CC =
5912       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
5913   SDValue Op1 =
5914       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5915   SDValue Op2 =
5916       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
5917 
5918   SDLoc DL(Op);
5919   SDValue Mask, VL;
5920   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5921 
5922   SDValue Select =
5923       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
5924 
5925   return convertFromScalableVector(VT, Select, DAG, Subtarget);
5926 }
5927 
5928 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
5929                                                unsigned NewOpc,
5930                                                bool HasMask) const {
5931   MVT VT = Op.getSimpleValueType();
5932   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5933 
5934   // Create list of operands by converting existing ones to scalable types.
5935   SmallVector<SDValue, 6> Ops;
5936   for (const SDValue &V : Op->op_values()) {
5937     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5938 
5939     // Pass through non-vector operands.
5940     if (!V.getValueType().isVector()) {
5941       Ops.push_back(V);
5942       continue;
5943     }
5944 
5945     // "cast" fixed length vector to a scalable vector.
5946     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
5947            "Only fixed length vectors are supported!");
5948     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5949   }
5950 
5951   SDLoc DL(Op);
5952   SDValue Mask, VL;
5953   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5954   if (HasMask)
5955     Ops.push_back(Mask);
5956   Ops.push_back(VL);
5957 
5958   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
5959   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
5960 }
5961 
5962 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
5963 // * Operands of each node are assumed to be in the same order.
5964 // * The EVL operand is promoted from i32 to i64 on RV64.
5965 // * Fixed-length vectors are converted to their scalable-vector container
5966 //   types.
5967 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
5968                                        unsigned RISCVISDOpc) const {
5969   SDLoc DL(Op);
5970   MVT VT = Op.getSimpleValueType();
5971   SmallVector<SDValue, 4> Ops;
5972 
5973   for (const auto &OpIdx : enumerate(Op->ops())) {
5974     SDValue V = OpIdx.value();
5975     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5976     // Pass through operands which aren't fixed-length vectors.
5977     if (!V.getValueType().isFixedLengthVector()) {
5978       Ops.push_back(V);
5979       continue;
5980     }
5981     // "cast" fixed length vector to a scalable vector.
5982     MVT OpVT = V.getSimpleValueType();
5983     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
5984     assert(useRVVForFixedLengthVectorVT(OpVT) &&
5985            "Only fixed length vectors are supported!");
5986     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5987   }
5988 
5989   if (!VT.isFixedLengthVector())
5990     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
5991 
5992   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5993 
5994   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
5995 
5996   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
5997 }
5998 
5999 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
6000                                             unsigned MaskOpc,
6001                                             unsigned VecOpc) const {
6002   MVT VT = Op.getSimpleValueType();
6003   if (VT.getVectorElementType() != MVT::i1)
6004     return lowerVPOp(Op, DAG, VecOpc);
6005 
6006   // It is safe to drop mask parameter as masked-off elements are undef.
6007   SDValue Op1 = Op->getOperand(0);
6008   SDValue Op2 = Op->getOperand(1);
6009   SDValue VL = Op->getOperand(3);
6010 
6011   MVT ContainerVT = VT;
6012   const bool IsFixed = VT.isFixedLengthVector();
6013   if (IsFixed) {
6014     ContainerVT = getContainerForFixedLengthVector(VT);
6015     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6016     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6017   }
6018 
6019   SDLoc DL(Op);
6020   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
6021   if (!IsFixed)
6022     return Val;
6023   return convertFromScalableVector(VT, Val, DAG, Subtarget);
6024 }
6025 
6026 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
6027 // matched to a RVV indexed load. The RVV indexed load instructions only
6028 // support the "unsigned unscaled" addressing mode; indices are implicitly
6029 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6030 // signed or scaled indexing is extended to the XLEN value type and scaled
6031 // accordingly.
6032 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
6033                                                SelectionDAG &DAG) const {
6034   SDLoc DL(Op);
6035   MVT VT = Op.getSimpleValueType();
6036 
6037   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6038   EVT MemVT = MemSD->getMemoryVT();
6039   MachineMemOperand *MMO = MemSD->getMemOperand();
6040   SDValue Chain = MemSD->getChain();
6041   SDValue BasePtr = MemSD->getBasePtr();
6042 
6043   ISD::LoadExtType LoadExtType;
6044   SDValue Index, Mask, PassThru, VL;
6045 
6046   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
6047     Index = VPGN->getIndex();
6048     Mask = VPGN->getMask();
6049     PassThru = DAG.getUNDEF(VT);
6050     VL = VPGN->getVectorLength();
6051     // VP doesn't support extending loads.
6052     LoadExtType = ISD::NON_EXTLOAD;
6053   } else {
6054     // Else it must be a MGATHER.
6055     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
6056     Index = MGN->getIndex();
6057     Mask = MGN->getMask();
6058     PassThru = MGN->getPassThru();
6059     LoadExtType = MGN->getExtensionType();
6060   }
6061 
6062   MVT IndexVT = Index.getSimpleValueType();
6063   MVT XLenVT = Subtarget.getXLenVT();
6064 
6065   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6066          "Unexpected VTs!");
6067   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6068   // Targets have to explicitly opt-in for extending vector loads.
6069   assert(LoadExtType == ISD::NON_EXTLOAD &&
6070          "Unexpected extending MGATHER/VP_GATHER");
6071   (void)LoadExtType;
6072 
6073   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6074   // the selection of the masked intrinsics doesn't do this for us.
6075   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6076 
6077   MVT ContainerVT = VT;
6078   if (VT.isFixedLengthVector()) {
6079     // We need to use the larger of the result and index type to determine the
6080     // scalable type to use so we don't increase LMUL for any operand/result.
6081     if (VT.bitsGE(IndexVT)) {
6082       ContainerVT = getContainerForFixedLengthVector(VT);
6083       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6084                                  ContainerVT.getVectorElementCount());
6085     } else {
6086       IndexVT = getContainerForFixedLengthVector(IndexVT);
6087       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
6088                                      IndexVT.getVectorElementCount());
6089     }
6090 
6091     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6092 
6093     if (!IsUnmasked) {
6094       MVT MaskVT =
6095           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6096       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6097       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
6098     }
6099   }
6100 
6101   if (!VL)
6102     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6103 
6104   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6105     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6106     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6107                                    VL);
6108     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6109                         TrueMask, VL);
6110   }
6111 
6112   unsigned IntID =
6113       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
6114   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6115   if (IsUnmasked)
6116     Ops.push_back(DAG.getUNDEF(ContainerVT));
6117   else
6118     Ops.push_back(PassThru);
6119   Ops.push_back(BasePtr);
6120   Ops.push_back(Index);
6121   if (!IsUnmasked)
6122     Ops.push_back(Mask);
6123   Ops.push_back(VL);
6124   if (!IsUnmasked)
6125     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
6126 
6127   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
6128   SDValue Result =
6129       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
6130   Chain = Result.getValue(1);
6131 
6132   if (VT.isFixedLengthVector())
6133     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
6134 
6135   return DAG.getMergeValues({Result, Chain}, DL);
6136 }
6137 
6138 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
6139 // matched to a RVV indexed store. The RVV indexed store instructions only
6140 // support the "unsigned unscaled" addressing mode; indices are implicitly
6141 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6142 // signed or scaled indexing is extended to the XLEN value type and scaled
6143 // accordingly.
6144 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
6145                                                 SelectionDAG &DAG) const {
6146   SDLoc DL(Op);
6147   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6148   EVT MemVT = MemSD->getMemoryVT();
6149   MachineMemOperand *MMO = MemSD->getMemOperand();
6150   SDValue Chain = MemSD->getChain();
6151   SDValue BasePtr = MemSD->getBasePtr();
6152 
6153   bool IsTruncatingStore = false;
6154   SDValue Index, Mask, Val, VL;
6155 
6156   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
6157     Index = VPSN->getIndex();
6158     Mask = VPSN->getMask();
6159     Val = VPSN->getValue();
6160     VL = VPSN->getVectorLength();
6161     // VP doesn't support truncating stores.
6162     IsTruncatingStore = false;
6163   } else {
6164     // Else it must be a MSCATTER.
6165     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
6166     Index = MSN->getIndex();
6167     Mask = MSN->getMask();
6168     Val = MSN->getValue();
6169     IsTruncatingStore = MSN->isTruncatingStore();
6170   }
6171 
6172   MVT VT = Val.getSimpleValueType();
6173   MVT IndexVT = Index.getSimpleValueType();
6174   MVT XLenVT = Subtarget.getXLenVT();
6175 
6176   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6177          "Unexpected VTs!");
6178   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6179   // Targets have to explicitly opt-in for extending vector loads and
6180   // truncating vector stores.
6181   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
6182   (void)IsTruncatingStore;
6183 
6184   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6185   // the selection of the masked intrinsics doesn't do this for us.
6186   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6187 
6188   MVT ContainerVT = VT;
6189   if (VT.isFixedLengthVector()) {
6190     // We need to use the larger of the value and index type to determine the
6191     // scalable type to use so we don't increase LMUL for any operand/result.
6192     if (VT.bitsGE(IndexVT)) {
6193       ContainerVT = getContainerForFixedLengthVector(VT);
6194       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6195                                  ContainerVT.getVectorElementCount());
6196     } else {
6197       IndexVT = getContainerForFixedLengthVector(IndexVT);
6198       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
6199                                      IndexVT.getVectorElementCount());
6200     }
6201 
6202     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6203     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
6204 
6205     if (!IsUnmasked) {
6206       MVT MaskVT =
6207           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6208       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6209     }
6210   }
6211 
6212   if (!VL)
6213     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6214 
6215   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6216     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6217     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6218                                    VL);
6219     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6220                         TrueMask, VL);
6221   }
6222 
6223   unsigned IntID =
6224       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
6225   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6226   Ops.push_back(Val);
6227   Ops.push_back(BasePtr);
6228   Ops.push_back(Index);
6229   if (!IsUnmasked)
6230     Ops.push_back(Mask);
6231   Ops.push_back(VL);
6232 
6233   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
6234                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
6235 }
6236 
6237 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
6238                                                SelectionDAG &DAG) const {
6239   const MVT XLenVT = Subtarget.getXLenVT();
6240   SDLoc DL(Op);
6241   SDValue Chain = Op->getOperand(0);
6242   SDValue SysRegNo = DAG.getTargetConstant(
6243       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6244   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
6245   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
6246 
6247   // Encoding used for rounding mode in RISCV differs from that used in
6248   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
6249   // table, which consists of a sequence of 4-bit fields, each representing
6250   // corresponding FLT_ROUNDS mode.
6251   static const int Table =
6252       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
6253       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
6254       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
6255       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
6256       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
6257 
6258   SDValue Shift =
6259       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
6260   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6261                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6262   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6263                                DAG.getConstant(7, DL, XLenVT));
6264 
6265   return DAG.getMergeValues({Masked, Chain}, DL);
6266 }
6267 
6268 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
6269                                                SelectionDAG &DAG) const {
6270   const MVT XLenVT = Subtarget.getXLenVT();
6271   SDLoc DL(Op);
6272   SDValue Chain = Op->getOperand(0);
6273   SDValue RMValue = Op->getOperand(1);
6274   SDValue SysRegNo = DAG.getTargetConstant(
6275       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6276 
6277   // Encoding used for rounding mode in RISCV differs from that used in
6278   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
6279   // a table, which consists of a sequence of 4-bit fields, each representing
6280   // corresponding RISCV mode.
6281   static const unsigned Table =
6282       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
6283       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
6284       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
6285       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
6286       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
6287 
6288   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
6289                               DAG.getConstant(2, DL, XLenVT));
6290   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6291                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6292   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6293                         DAG.getConstant(0x7, DL, XLenVT));
6294   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
6295                      RMValue);
6296 }
6297 
6298 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) {
6299   switch (IntNo) {
6300   default:
6301     llvm_unreachable("Unexpected Intrinsic");
6302   case Intrinsic::riscv_grev:
6303     return RISCVISD::GREVW;
6304   case Intrinsic::riscv_gorc:
6305     return RISCVISD::GORCW;
6306   case Intrinsic::riscv_bcompress:
6307     return RISCVISD::BCOMPRESSW;
6308   case Intrinsic::riscv_bdecompress:
6309     return RISCVISD::BDECOMPRESSW;
6310   case Intrinsic::riscv_bfp:
6311     return RISCVISD::BFPW;
6312   case Intrinsic::riscv_fsl:
6313     return RISCVISD::FSLW;
6314   case Intrinsic::riscv_fsr:
6315     return RISCVISD::FSRW;
6316   }
6317 }
6318 
6319 // Converts the given intrinsic to a i64 operation with any extension.
6320 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG,
6321                                          unsigned IntNo) {
6322   SDLoc DL(N);
6323   RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo);
6324   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6325   SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6326   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2);
6327   // ReplaceNodeResults requires we maintain the same type for the return value.
6328   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6329 }
6330 
6331 // Returns the opcode of the target-specific SDNode that implements the 32-bit
6332 // form of the given Opcode.
6333 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
6334   switch (Opcode) {
6335   default:
6336     llvm_unreachable("Unexpected opcode");
6337   case ISD::SHL:
6338     return RISCVISD::SLLW;
6339   case ISD::SRA:
6340     return RISCVISD::SRAW;
6341   case ISD::SRL:
6342     return RISCVISD::SRLW;
6343   case ISD::SDIV:
6344     return RISCVISD::DIVW;
6345   case ISD::UDIV:
6346     return RISCVISD::DIVUW;
6347   case ISD::UREM:
6348     return RISCVISD::REMUW;
6349   case ISD::ROTL:
6350     return RISCVISD::ROLW;
6351   case ISD::ROTR:
6352     return RISCVISD::RORW;
6353   case RISCVISD::GREV:
6354     return RISCVISD::GREVW;
6355   case RISCVISD::GORC:
6356     return RISCVISD::GORCW;
6357   }
6358 }
6359 
6360 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
6361 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
6362 // otherwise be promoted to i64, making it difficult to select the
6363 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
6364 // type i8/i16/i32 is lost.
6365 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
6366                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
6367   SDLoc DL(N);
6368   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6369   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
6370   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
6371   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6372   // ReplaceNodeResults requires we maintain the same type for the return value.
6373   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6374 }
6375 
6376 // Converts the given 32-bit operation to a i64 operation with signed extension
6377 // semantic to reduce the signed extension instructions.
6378 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
6379   SDLoc DL(N);
6380   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6381   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6382   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
6383   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6384                                DAG.getValueType(MVT::i32));
6385   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
6386 }
6387 
6388 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
6389                                              SmallVectorImpl<SDValue> &Results,
6390                                              SelectionDAG &DAG) const {
6391   SDLoc DL(N);
6392   switch (N->getOpcode()) {
6393   default:
6394     llvm_unreachable("Don't know how to custom type legalize this operation!");
6395   case ISD::STRICT_FP_TO_SINT:
6396   case ISD::STRICT_FP_TO_UINT:
6397   case ISD::FP_TO_SINT:
6398   case ISD::FP_TO_UINT: {
6399     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6400            "Unexpected custom legalisation");
6401     bool IsStrict = N->isStrictFPOpcode();
6402     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
6403                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
6404     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
6405     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
6406         TargetLowering::TypeSoftenFloat) {
6407       if (!isTypeLegal(Op0.getValueType()))
6408         return;
6409       if (IsStrict) {
6410         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
6411                                 : RISCVISD::STRICT_FCVT_WU_RV64;
6412         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
6413         SDValue Res = DAG.getNode(
6414             Opc, DL, VTs, N->getOperand(0), Op0,
6415             DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6416         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6417         Results.push_back(Res.getValue(1));
6418         return;
6419       }
6420       unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
6421       SDValue Res =
6422           DAG.getNode(Opc, DL, MVT::i64, Op0,
6423                       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6424       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6425       return;
6426     }
6427     // If the FP type needs to be softened, emit a library call using the 'si'
6428     // version. If we left it to default legalization we'd end up with 'di'. If
6429     // the FP type doesn't need to be softened just let generic type
6430     // legalization promote the result type.
6431     RTLIB::Libcall LC;
6432     if (IsSigned)
6433       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
6434     else
6435       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
6436     MakeLibCallOptions CallOptions;
6437     EVT OpVT = Op0.getValueType();
6438     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
6439     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
6440     SDValue Result;
6441     std::tie(Result, Chain) =
6442         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
6443     Results.push_back(Result);
6444     if (IsStrict)
6445       Results.push_back(Chain);
6446     break;
6447   }
6448   case ISD::READCYCLECOUNTER: {
6449     assert(!Subtarget.is64Bit() &&
6450            "READCYCLECOUNTER only has custom type legalization on riscv32");
6451 
6452     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6453     SDValue RCW =
6454         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
6455 
6456     Results.push_back(
6457         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
6458     Results.push_back(RCW.getValue(2));
6459     break;
6460   }
6461   case ISD::MUL: {
6462     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
6463     unsigned XLen = Subtarget.getXLen();
6464     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
6465     if (Size > XLen) {
6466       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
6467       SDValue LHS = N->getOperand(0);
6468       SDValue RHS = N->getOperand(1);
6469       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
6470 
6471       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
6472       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
6473       // We need exactly one side to be unsigned.
6474       if (LHSIsU == RHSIsU)
6475         return;
6476 
6477       auto MakeMULPair = [&](SDValue S, SDValue U) {
6478         MVT XLenVT = Subtarget.getXLenVT();
6479         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
6480         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
6481         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
6482         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
6483         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
6484       };
6485 
6486       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
6487       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
6488 
6489       // The other operand should be signed, but still prefer MULH when
6490       // possible.
6491       if (RHSIsU && LHSIsS && !RHSIsS)
6492         Results.push_back(MakeMULPair(LHS, RHS));
6493       else if (LHSIsU && RHSIsS && !LHSIsS)
6494         Results.push_back(MakeMULPair(RHS, LHS));
6495 
6496       return;
6497     }
6498     LLVM_FALLTHROUGH;
6499   }
6500   case ISD::ADD:
6501   case ISD::SUB:
6502     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6503            "Unexpected custom legalisation");
6504     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
6505     break;
6506   case ISD::SHL:
6507   case ISD::SRA:
6508   case ISD::SRL:
6509     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6510            "Unexpected custom legalisation");
6511     if (N->getOperand(1).getOpcode() != ISD::Constant) {
6512       Results.push_back(customLegalizeToWOp(N, DAG));
6513       break;
6514     }
6515 
6516     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
6517     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
6518     // shift amount.
6519     if (N->getOpcode() == ISD::SHL) {
6520       SDLoc DL(N);
6521       SDValue NewOp0 =
6522           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6523       SDValue NewOp1 =
6524           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
6525       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
6526       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6527                                    DAG.getValueType(MVT::i32));
6528       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6529     }
6530 
6531     break;
6532   case ISD::ROTL:
6533   case ISD::ROTR:
6534     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6535            "Unexpected custom legalisation");
6536     Results.push_back(customLegalizeToWOp(N, DAG));
6537     break;
6538   case ISD::CTTZ:
6539   case ISD::CTTZ_ZERO_UNDEF:
6540   case ISD::CTLZ:
6541   case ISD::CTLZ_ZERO_UNDEF: {
6542     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6543            "Unexpected custom legalisation");
6544 
6545     SDValue NewOp0 =
6546         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6547     bool IsCTZ =
6548         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
6549     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
6550     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
6551     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6552     return;
6553   }
6554   case ISD::SDIV:
6555   case ISD::UDIV:
6556   case ISD::UREM: {
6557     MVT VT = N->getSimpleValueType(0);
6558     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
6559            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
6560            "Unexpected custom legalisation");
6561     // Don't promote division/remainder by constant since we should expand those
6562     // to multiply by magic constant.
6563     // FIXME: What if the expansion is disabled for minsize.
6564     if (N->getOperand(1).getOpcode() == ISD::Constant)
6565       return;
6566 
6567     // If the input is i32, use ANY_EXTEND since the W instructions don't read
6568     // the upper 32 bits. For other types we need to sign or zero extend
6569     // based on the opcode.
6570     unsigned ExtOpc = ISD::ANY_EXTEND;
6571     if (VT != MVT::i32)
6572       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
6573                                            : ISD::ZERO_EXTEND;
6574 
6575     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
6576     break;
6577   }
6578   case ISD::UADDO:
6579   case ISD::USUBO: {
6580     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6581            "Unexpected custom legalisation");
6582     bool IsAdd = N->getOpcode() == ISD::UADDO;
6583     // Create an ADDW or SUBW.
6584     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6585     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6586     SDValue Res =
6587         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
6588     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
6589                       DAG.getValueType(MVT::i32));
6590 
6591     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
6592     // Since the inputs are sign extended from i32, this is equivalent to
6593     // comparing the lower 32 bits.
6594     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6595     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
6596                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
6597 
6598     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6599     Results.push_back(Overflow);
6600     return;
6601   }
6602   case ISD::UADDSAT:
6603   case ISD::USUBSAT: {
6604     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6605            "Unexpected custom legalisation");
6606     if (Subtarget.hasStdExtZbb()) {
6607       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
6608       // sign extend allows overflow of the lower 32 bits to be detected on
6609       // the promoted size.
6610       SDValue LHS =
6611           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6612       SDValue RHS =
6613           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
6614       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
6615       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6616       return;
6617     }
6618 
6619     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
6620     // promotion for UADDO/USUBO.
6621     Results.push_back(expandAddSubSat(N, DAG));
6622     return;
6623   }
6624   case ISD::BITCAST: {
6625     EVT VT = N->getValueType(0);
6626     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
6627     SDValue Op0 = N->getOperand(0);
6628     EVT Op0VT = Op0.getValueType();
6629     MVT XLenVT = Subtarget.getXLenVT();
6630     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
6631       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
6632       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
6633     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
6634                Subtarget.hasStdExtF()) {
6635       SDValue FPConv =
6636           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
6637       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
6638     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
6639                isTypeLegal(Op0VT)) {
6640       // Custom-legalize bitcasts from fixed-length vector types to illegal
6641       // scalar types in order to improve codegen. Bitcast the vector to a
6642       // one-element vector type whose element type is the same as the result
6643       // type, and extract the first element.
6644       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
6645       if (isTypeLegal(BVT)) {
6646         SDValue BVec = DAG.getBitcast(BVT, Op0);
6647         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
6648                                       DAG.getConstant(0, DL, XLenVT)));
6649       }
6650     }
6651     break;
6652   }
6653   case RISCVISD::GREV:
6654   case RISCVISD::GORC: {
6655     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6656            "Unexpected custom legalisation");
6657     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6658     // This is similar to customLegalizeToWOp, except that we pass the second
6659     // operand (a TargetConstant) straight through: it is already of type
6660     // XLenVT.
6661     RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6662     SDValue NewOp0 =
6663         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6664     SDValue NewOp1 =
6665         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6666     SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6667     // ReplaceNodeResults requires we maintain the same type for the return
6668     // value.
6669     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6670     break;
6671   }
6672   case RISCVISD::SHFL: {
6673     // There is no SHFLIW instruction, but we can just promote the operation.
6674     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6675            "Unexpected custom legalisation");
6676     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6677     SDValue NewOp0 =
6678         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6679     SDValue NewOp1 =
6680         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6681     SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1);
6682     // ReplaceNodeResults requires we maintain the same type for the return
6683     // value.
6684     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6685     break;
6686   }
6687   case ISD::BSWAP:
6688   case ISD::BITREVERSE: {
6689     MVT VT = N->getSimpleValueType(0);
6690     MVT XLenVT = Subtarget.getXLenVT();
6691     assert((VT == MVT::i8 || VT == MVT::i16 ||
6692             (VT == MVT::i32 && Subtarget.is64Bit())) &&
6693            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
6694     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
6695     unsigned Imm = VT.getSizeInBits() - 1;
6696     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
6697     if (N->getOpcode() == ISD::BSWAP)
6698       Imm &= ~0x7U;
6699     unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV;
6700     SDValue GREVI =
6701         DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT));
6702     // ReplaceNodeResults requires we maintain the same type for the return
6703     // value.
6704     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
6705     break;
6706   }
6707   case ISD::FSHL:
6708   case ISD::FSHR: {
6709     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6710            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
6711     SDValue NewOp0 =
6712         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6713     SDValue NewOp1 =
6714         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6715     SDValue NewShAmt =
6716         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6717     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
6718     // Mask the shift amount to 5 bits to prevent accidentally setting bit 5.
6719     NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt,
6720                            DAG.getConstant(0x1f, DL, MVT::i64));
6721     // fshl and fshr concatenate their operands in the same order. fsrw and fslw
6722     // instruction use different orders. fshl will return its first operand for
6723     // shift of zero, fshr will return its second operand. fsl and fsr both
6724     // return rs1 so the ISD nodes need to have different operand orders.
6725     // Shift amount is in rs2.
6726     unsigned Opc = RISCVISD::FSLW;
6727     if (N->getOpcode() == ISD::FSHR) {
6728       std::swap(NewOp0, NewOp1);
6729       Opc = RISCVISD::FSRW;
6730     }
6731     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt);
6732     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
6733     break;
6734   }
6735   case ISD::EXTRACT_VECTOR_ELT: {
6736     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
6737     // type is illegal (currently only vXi64 RV32).
6738     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
6739     // transferred to the destination register. We issue two of these from the
6740     // upper- and lower- halves of the SEW-bit vector element, slid down to the
6741     // first element.
6742     SDValue Vec = N->getOperand(0);
6743     SDValue Idx = N->getOperand(1);
6744 
6745     // The vector type hasn't been legalized yet so we can't issue target
6746     // specific nodes if it needs legalization.
6747     // FIXME: We would manually legalize if it's important.
6748     if (!isTypeLegal(Vec.getValueType()))
6749       return;
6750 
6751     MVT VecVT = Vec.getSimpleValueType();
6752 
6753     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
6754            VecVT.getVectorElementType() == MVT::i64 &&
6755            "Unexpected EXTRACT_VECTOR_ELT legalization");
6756 
6757     // If this is a fixed vector, we need to convert it to a scalable vector.
6758     MVT ContainerVT = VecVT;
6759     if (VecVT.isFixedLengthVector()) {
6760       ContainerVT = getContainerForFixedLengthVector(VecVT);
6761       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
6762     }
6763 
6764     MVT XLenVT = Subtarget.getXLenVT();
6765 
6766     // Use a VL of 1 to avoid processing more elements than we need.
6767     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6768     SDValue VL = DAG.getConstant(1, DL, XLenVT);
6769     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6770 
6771     // Unless the index is known to be 0, we must slide the vector down to get
6772     // the desired element into index 0.
6773     if (!isNullConstant(Idx)) {
6774       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
6775                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
6776     }
6777 
6778     // Extract the lower XLEN bits of the correct vector element.
6779     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
6780 
6781     // To extract the upper XLEN bits of the vector element, shift the first
6782     // element right by 32 bits and re-extract the lower XLEN bits.
6783     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6784                                      DAG.getUNDEF(ContainerVT),
6785                                      DAG.getConstant(32, DL, XLenVT), VL);
6786     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
6787                                  ThirtyTwoV, Mask, VL);
6788 
6789     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
6790 
6791     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
6792     break;
6793   }
6794   case ISD::INTRINSIC_WO_CHAIN: {
6795     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
6796     switch (IntNo) {
6797     default:
6798       llvm_unreachable(
6799           "Don't know how to custom type legalize this intrinsic!");
6800     case Intrinsic::riscv_grev:
6801     case Intrinsic::riscv_gorc:
6802     case Intrinsic::riscv_bcompress:
6803     case Intrinsic::riscv_bdecompress:
6804     case Intrinsic::riscv_bfp: {
6805       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6806              "Unexpected custom legalisation");
6807       Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo));
6808       break;
6809     }
6810     case Intrinsic::riscv_fsl:
6811     case Intrinsic::riscv_fsr: {
6812       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6813              "Unexpected custom legalisation");
6814       SDValue NewOp1 =
6815           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6816       SDValue NewOp2 =
6817           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6818       SDValue NewOp3 =
6819           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3));
6820       unsigned Opc = getRISCVWOpcodeByIntr(IntNo);
6821       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3);
6822       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6823       break;
6824     }
6825     case Intrinsic::riscv_orc_b: {
6826       // Lower to the GORCI encoding for orc.b with the operand extended.
6827       SDValue NewOp =
6828           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6829       // If Zbp is enabled, use GORCIW which will sign extend the result.
6830       unsigned Opc =
6831           Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC;
6832       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp,
6833                                 DAG.getConstant(7, DL, MVT::i64));
6834       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6835       return;
6836     }
6837     case Intrinsic::riscv_shfl:
6838     case Intrinsic::riscv_unshfl: {
6839       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6840              "Unexpected custom legalisation");
6841       SDValue NewOp1 =
6842           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6843       SDValue NewOp2 =
6844           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6845       unsigned Opc =
6846           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
6847       // There is no (UN)SHFLIW. If the control word is a constant, we can use
6848       // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half
6849       // will be shuffled the same way as the lower 32 bit half, but the two
6850       // halves won't cross.
6851       if (isa<ConstantSDNode>(NewOp2)) {
6852         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
6853                              DAG.getConstant(0xf, DL, MVT::i64));
6854         Opc =
6855             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
6856       }
6857       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
6858       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6859       break;
6860     }
6861     case Intrinsic::riscv_vmv_x_s: {
6862       EVT VT = N->getValueType(0);
6863       MVT XLenVT = Subtarget.getXLenVT();
6864       if (VT.bitsLT(XLenVT)) {
6865         // Simple case just extract using vmv.x.s and truncate.
6866         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
6867                                       Subtarget.getXLenVT(), N->getOperand(1));
6868         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
6869         return;
6870       }
6871 
6872       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
6873              "Unexpected custom legalization");
6874 
6875       // We need to do the move in two steps.
6876       SDValue Vec = N->getOperand(1);
6877       MVT VecVT = Vec.getSimpleValueType();
6878 
6879       // First extract the lower XLEN bits of the element.
6880       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
6881 
6882       // To extract the upper XLEN bits of the vector element, shift the first
6883       // element right by 32 bits and re-extract the lower XLEN bits.
6884       SDValue VL = DAG.getConstant(1, DL, XLenVT);
6885       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
6886       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6887       SDValue ThirtyTwoV =
6888           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
6889                       DAG.getConstant(32, DL, XLenVT), VL);
6890       SDValue LShr32 =
6891           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
6892       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
6893 
6894       Results.push_back(
6895           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
6896       break;
6897     }
6898     }
6899     break;
6900   }
6901   case ISD::VECREDUCE_ADD:
6902   case ISD::VECREDUCE_AND:
6903   case ISD::VECREDUCE_OR:
6904   case ISD::VECREDUCE_XOR:
6905   case ISD::VECREDUCE_SMAX:
6906   case ISD::VECREDUCE_UMAX:
6907   case ISD::VECREDUCE_SMIN:
6908   case ISD::VECREDUCE_UMIN:
6909     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
6910       Results.push_back(V);
6911     break;
6912   case ISD::VP_REDUCE_ADD:
6913   case ISD::VP_REDUCE_AND:
6914   case ISD::VP_REDUCE_OR:
6915   case ISD::VP_REDUCE_XOR:
6916   case ISD::VP_REDUCE_SMAX:
6917   case ISD::VP_REDUCE_UMAX:
6918   case ISD::VP_REDUCE_SMIN:
6919   case ISD::VP_REDUCE_UMIN:
6920     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
6921       Results.push_back(V);
6922     break;
6923   case ISD::FLT_ROUNDS_: {
6924     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
6925     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
6926     Results.push_back(Res.getValue(0));
6927     Results.push_back(Res.getValue(1));
6928     break;
6929   }
6930   }
6931 }
6932 
6933 // A structure to hold one of the bit-manipulation patterns below. Together, a
6934 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
6935 //   (or (and (shl x, 1), 0xAAAAAAAA),
6936 //       (and (srl x, 1), 0x55555555))
6937 struct RISCVBitmanipPat {
6938   SDValue Op;
6939   unsigned ShAmt;
6940   bool IsSHL;
6941 
6942   bool formsPairWith(const RISCVBitmanipPat &Other) const {
6943     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
6944   }
6945 };
6946 
6947 // Matches patterns of the form
6948 //   (and (shl x, C2), (C1 << C2))
6949 //   (and (srl x, C2), C1)
6950 //   (shl (and x, C1), C2)
6951 //   (srl (and x, (C1 << C2)), C2)
6952 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
6953 // The expected masks for each shift amount are specified in BitmanipMasks where
6954 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
6955 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
6956 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
6957 // XLen is 64.
6958 static Optional<RISCVBitmanipPat>
6959 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
6960   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
6961          "Unexpected number of masks");
6962   Optional<uint64_t> Mask;
6963   // Optionally consume a mask around the shift operation.
6964   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
6965     Mask = Op.getConstantOperandVal(1);
6966     Op = Op.getOperand(0);
6967   }
6968   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
6969     return None;
6970   bool IsSHL = Op.getOpcode() == ISD::SHL;
6971 
6972   if (!isa<ConstantSDNode>(Op.getOperand(1)))
6973     return None;
6974   uint64_t ShAmt = Op.getConstantOperandVal(1);
6975 
6976   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
6977   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
6978     return None;
6979   // If we don't have enough masks for 64 bit, then we must be trying to
6980   // match SHFL so we're only allowed to shift 1/4 of the width.
6981   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
6982     return None;
6983 
6984   SDValue Src = Op.getOperand(0);
6985 
6986   // The expected mask is shifted left when the AND is found around SHL
6987   // patterns.
6988   //   ((x >> 1) & 0x55555555)
6989   //   ((x << 1) & 0xAAAAAAAA)
6990   bool SHLExpMask = IsSHL;
6991 
6992   if (!Mask) {
6993     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
6994     // the mask is all ones: consume that now.
6995     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
6996       Mask = Src.getConstantOperandVal(1);
6997       Src = Src.getOperand(0);
6998       // The expected mask is now in fact shifted left for SRL, so reverse the
6999       // decision.
7000       //   ((x & 0xAAAAAAAA) >> 1)
7001       //   ((x & 0x55555555) << 1)
7002       SHLExpMask = !SHLExpMask;
7003     } else {
7004       // Use a default shifted mask of all-ones if there's no AND, truncated
7005       // down to the expected width. This simplifies the logic later on.
7006       Mask = maskTrailingOnes<uint64_t>(Width);
7007       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
7008     }
7009   }
7010 
7011   unsigned MaskIdx = Log2_32(ShAmt);
7012   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7013 
7014   if (SHLExpMask)
7015     ExpMask <<= ShAmt;
7016 
7017   if (Mask != ExpMask)
7018     return None;
7019 
7020   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
7021 }
7022 
7023 // Matches any of the following bit-manipulation patterns:
7024 //   (and (shl x, 1), (0x55555555 << 1))
7025 //   (and (srl x, 1), 0x55555555)
7026 //   (shl (and x, 0x55555555), 1)
7027 //   (srl (and x, (0x55555555 << 1)), 1)
7028 // where the shift amount and mask may vary thus:
7029 //   [1]  = 0x55555555 / 0xAAAAAAAA
7030 //   [2]  = 0x33333333 / 0xCCCCCCCC
7031 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
7032 //   [8]  = 0x00FF00FF / 0xFF00FF00
7033 //   [16] = 0x0000FFFF / 0xFFFFFFFF
7034 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
7035 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
7036   // These are the unshifted masks which we use to match bit-manipulation
7037   // patterns. They may be shifted left in certain circumstances.
7038   static const uint64_t BitmanipMasks[] = {
7039       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
7040       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
7041 
7042   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7043 }
7044 
7045 // Match the following pattern as a GREVI(W) operation
7046 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
7047 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
7048                                const RISCVSubtarget &Subtarget) {
7049   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7050   EVT VT = Op.getValueType();
7051 
7052   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7053     auto LHS = matchGREVIPat(Op.getOperand(0));
7054     auto RHS = matchGREVIPat(Op.getOperand(1));
7055     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
7056       SDLoc DL(Op);
7057       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
7058                          DAG.getConstant(LHS->ShAmt, DL, VT));
7059     }
7060   }
7061   return SDValue();
7062 }
7063 
7064 // Matches any the following pattern as a GORCI(W) operation
7065 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
7066 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
7067 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
7068 // Note that with the variant of 3.,
7069 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
7070 // the inner pattern will first be matched as GREVI and then the outer
7071 // pattern will be matched to GORC via the first rule above.
7072 // 4.  (or (rotl/rotr x, bitwidth/2), x)
7073 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
7074                                const RISCVSubtarget &Subtarget) {
7075   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7076   EVT VT = Op.getValueType();
7077 
7078   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7079     SDLoc DL(Op);
7080     SDValue Op0 = Op.getOperand(0);
7081     SDValue Op1 = Op.getOperand(1);
7082 
7083     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
7084       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
7085           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
7086           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
7087         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
7088       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
7089       if ((Reverse.getOpcode() == ISD::ROTL ||
7090            Reverse.getOpcode() == ISD::ROTR) &&
7091           Reverse.getOperand(0) == X &&
7092           isa<ConstantSDNode>(Reverse.getOperand(1))) {
7093         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
7094         if (RotAmt == (VT.getSizeInBits() / 2))
7095           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
7096                              DAG.getConstant(RotAmt, DL, VT));
7097       }
7098       return SDValue();
7099     };
7100 
7101     // Check for either commutable permutation of (or (GREVI x, shamt), x)
7102     if (SDValue V = MatchOROfReverse(Op0, Op1))
7103       return V;
7104     if (SDValue V = MatchOROfReverse(Op1, Op0))
7105       return V;
7106 
7107     // OR is commutable so canonicalize its OR operand to the left
7108     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
7109       std::swap(Op0, Op1);
7110     if (Op0.getOpcode() != ISD::OR)
7111       return SDValue();
7112     SDValue OrOp0 = Op0.getOperand(0);
7113     SDValue OrOp1 = Op0.getOperand(1);
7114     auto LHS = matchGREVIPat(OrOp0);
7115     // OR is commutable so swap the operands and try again: x might have been
7116     // on the left
7117     if (!LHS) {
7118       std::swap(OrOp0, OrOp1);
7119       LHS = matchGREVIPat(OrOp0);
7120     }
7121     auto RHS = matchGREVIPat(Op1);
7122     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
7123       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
7124                          DAG.getConstant(LHS->ShAmt, DL, VT));
7125     }
7126   }
7127   return SDValue();
7128 }
7129 
7130 // Matches any of the following bit-manipulation patterns:
7131 //   (and (shl x, 1), (0x22222222 << 1))
7132 //   (and (srl x, 1), 0x22222222)
7133 //   (shl (and x, 0x22222222), 1)
7134 //   (srl (and x, (0x22222222 << 1)), 1)
7135 // where the shift amount and mask may vary thus:
7136 //   [1]  = 0x22222222 / 0x44444444
7137 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
7138 //   [4]  = 0x00F000F0 / 0x0F000F00
7139 //   [8]  = 0x0000FF00 / 0x00FF0000
7140 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
7141 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
7142   // These are the unshifted masks which we use to match bit-manipulation
7143   // patterns. They may be shifted left in certain circumstances.
7144   static const uint64_t BitmanipMasks[] = {
7145       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
7146       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
7147 
7148   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7149 }
7150 
7151 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
7152 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
7153                                const RISCVSubtarget &Subtarget) {
7154   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7155   EVT VT = Op.getValueType();
7156 
7157   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
7158     return SDValue();
7159 
7160   SDValue Op0 = Op.getOperand(0);
7161   SDValue Op1 = Op.getOperand(1);
7162 
7163   // Or is commutable so canonicalize the second OR to the LHS.
7164   if (Op0.getOpcode() != ISD::OR)
7165     std::swap(Op0, Op1);
7166   if (Op0.getOpcode() != ISD::OR)
7167     return SDValue();
7168 
7169   // We found an inner OR, so our operands are the operands of the inner OR
7170   // and the other operand of the outer OR.
7171   SDValue A = Op0.getOperand(0);
7172   SDValue B = Op0.getOperand(1);
7173   SDValue C = Op1;
7174 
7175   auto Match1 = matchSHFLPat(A);
7176   auto Match2 = matchSHFLPat(B);
7177 
7178   // If neither matched, we failed.
7179   if (!Match1 && !Match2)
7180     return SDValue();
7181 
7182   // We had at least one match. if one failed, try the remaining C operand.
7183   if (!Match1) {
7184     std::swap(A, C);
7185     Match1 = matchSHFLPat(A);
7186     if (!Match1)
7187       return SDValue();
7188   } else if (!Match2) {
7189     std::swap(B, C);
7190     Match2 = matchSHFLPat(B);
7191     if (!Match2)
7192       return SDValue();
7193   }
7194   assert(Match1 && Match2);
7195 
7196   // Make sure our matches pair up.
7197   if (!Match1->formsPairWith(*Match2))
7198     return SDValue();
7199 
7200   // All the remains is to make sure C is an AND with the same input, that masks
7201   // out the bits that are being shuffled.
7202   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
7203       C.getOperand(0) != Match1->Op)
7204     return SDValue();
7205 
7206   uint64_t Mask = C.getConstantOperandVal(1);
7207 
7208   static const uint64_t BitmanipMasks[] = {
7209       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
7210       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
7211   };
7212 
7213   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7214   unsigned MaskIdx = Log2_32(Match1->ShAmt);
7215   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7216 
7217   if (Mask != ExpMask)
7218     return SDValue();
7219 
7220   SDLoc DL(Op);
7221   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
7222                      DAG.getConstant(Match1->ShAmt, DL, VT));
7223 }
7224 
7225 // Optimize (add (shl x, c0), (shl y, c1)) ->
7226 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
7227 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
7228                                   const RISCVSubtarget &Subtarget) {
7229   // Perform this optimization only in the zba extension.
7230   if (!Subtarget.hasStdExtZba())
7231     return SDValue();
7232 
7233   // Skip for vector types and larger types.
7234   EVT VT = N->getValueType(0);
7235   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7236     return SDValue();
7237 
7238   // The two operand nodes must be SHL and have no other use.
7239   SDValue N0 = N->getOperand(0);
7240   SDValue N1 = N->getOperand(1);
7241   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
7242       !N0->hasOneUse() || !N1->hasOneUse())
7243     return SDValue();
7244 
7245   // Check c0 and c1.
7246   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7247   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
7248   if (!N0C || !N1C)
7249     return SDValue();
7250   int64_t C0 = N0C->getSExtValue();
7251   int64_t C1 = N1C->getSExtValue();
7252   if (C0 <= 0 || C1 <= 0)
7253     return SDValue();
7254 
7255   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
7256   int64_t Bits = std::min(C0, C1);
7257   int64_t Diff = std::abs(C0 - C1);
7258   if (Diff != 1 && Diff != 2 && Diff != 3)
7259     return SDValue();
7260 
7261   // Build nodes.
7262   SDLoc DL(N);
7263   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
7264   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
7265   SDValue NA0 =
7266       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
7267   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
7268   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
7269 }
7270 
7271 // Combine
7272 // ROTR ((GREV x, 24), 16) -> (GREVI x, 8)
7273 // ROTL ((GREV x, 24), 16) -> (GREVI x, 8)
7274 // RORW ((GREVW x, 24), 16) -> (GREVIW x, 8)
7275 // ROLW ((GREVW x, 24), 16) -> (GREVIW x, 8)
7276 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG) {
7277   SDValue Src = N->getOperand(0);
7278   SDLoc DL(N);
7279   unsigned Opc;
7280 
7281   if ((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL) &&
7282       Src.getOpcode() == RISCVISD::GREV)
7283     Opc = RISCVISD::GREV;
7284   else if ((N->getOpcode() == RISCVISD::RORW ||
7285             N->getOpcode() == RISCVISD::ROLW) &&
7286            Src.getOpcode() == RISCVISD::GREVW)
7287     Opc = RISCVISD::GREVW;
7288   else
7289     return SDValue();
7290 
7291   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7292       !isa<ConstantSDNode>(Src.getOperand(1)))
7293     return SDValue();
7294 
7295   unsigned ShAmt1 = N->getConstantOperandVal(1);
7296   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7297   if (ShAmt1 != 16 && ShAmt2 != 24)
7298     return SDValue();
7299 
7300   Src = Src.getOperand(0);
7301   return DAG.getNode(Opc, DL, N->getValueType(0), Src,
7302                      DAG.getConstant(8, DL, N->getOperand(1).getValueType()));
7303 }
7304 
7305 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
7306 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
7307 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
7308 // not undo itself, but they are redundant.
7309 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
7310   SDValue Src = N->getOperand(0);
7311 
7312   if (Src.getOpcode() != N->getOpcode())
7313     return SDValue();
7314 
7315   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7316       !isa<ConstantSDNode>(Src.getOperand(1)))
7317     return SDValue();
7318 
7319   unsigned ShAmt1 = N->getConstantOperandVal(1);
7320   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7321   Src = Src.getOperand(0);
7322 
7323   unsigned CombinedShAmt;
7324   if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW)
7325     CombinedShAmt = ShAmt1 | ShAmt2;
7326   else
7327     CombinedShAmt = ShAmt1 ^ ShAmt2;
7328 
7329   if (CombinedShAmt == 0)
7330     return Src;
7331 
7332   SDLoc DL(N);
7333   return DAG.getNode(
7334       N->getOpcode(), DL, N->getValueType(0), Src,
7335       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7336 }
7337 
7338 // Combine a constant select operand into its use:
7339 //
7340 // (and (select cond, -1, c), x)
7341 //   -> (select cond, x, (and x, c))  [AllOnes=1]
7342 // (or  (select cond, 0, c), x)
7343 //   -> (select cond, x, (or x, c))  [AllOnes=0]
7344 // (xor (select cond, 0, c), x)
7345 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
7346 // (add (select cond, 0, c), x)
7347 //   -> (select cond, x, (add x, c))  [AllOnes=0]
7348 // (sub x, (select cond, 0, c))
7349 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
7350 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7351                                    SelectionDAG &DAG, bool AllOnes) {
7352   EVT VT = N->getValueType(0);
7353 
7354   // Skip vectors.
7355   if (VT.isVector())
7356     return SDValue();
7357 
7358   if ((Slct.getOpcode() != ISD::SELECT &&
7359        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
7360       !Slct.hasOneUse())
7361     return SDValue();
7362 
7363   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
7364     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
7365   };
7366 
7367   bool SwapSelectOps;
7368   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
7369   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
7370   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
7371   SDValue NonConstantVal;
7372   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
7373     SwapSelectOps = false;
7374     NonConstantVal = FalseVal;
7375   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
7376     SwapSelectOps = true;
7377     NonConstantVal = TrueVal;
7378   } else
7379     return SDValue();
7380 
7381   // Slct is now know to be the desired identity constant when CC is true.
7382   TrueVal = OtherOp;
7383   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
7384   // Unless SwapSelectOps says the condition should be false.
7385   if (SwapSelectOps)
7386     std::swap(TrueVal, FalseVal);
7387 
7388   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
7389     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
7390                        {Slct.getOperand(0), Slct.getOperand(1),
7391                         Slct.getOperand(2), TrueVal, FalseVal});
7392 
7393   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
7394                      {Slct.getOperand(0), TrueVal, FalseVal});
7395 }
7396 
7397 // Attempt combineSelectAndUse on each operand of a commutative operator N.
7398 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
7399                                               bool AllOnes) {
7400   SDValue N0 = N->getOperand(0);
7401   SDValue N1 = N->getOperand(1);
7402   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
7403     return Result;
7404   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
7405     return Result;
7406   return SDValue();
7407 }
7408 
7409 // Transform (add (mul x, c0), c1) ->
7410 //           (add (mul (add x, c1/c0), c0), c1%c0).
7411 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
7412 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
7413 // to an infinite loop in DAGCombine if transformed.
7414 // Or transform (add (mul x, c0), c1) ->
7415 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
7416 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
7417 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
7418 // lead to an infinite loop in DAGCombine if transformed.
7419 // Or transform (add (mul x, c0), c1) ->
7420 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
7421 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
7422 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
7423 // lead to an infinite loop in DAGCombine if transformed.
7424 // Or transform (add (mul x, c0), c1) ->
7425 //              (mul (add x, c1/c0), c0).
7426 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
7427 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
7428                                      const RISCVSubtarget &Subtarget) {
7429   // Skip for vector types and larger types.
7430   EVT VT = N->getValueType(0);
7431   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7432     return SDValue();
7433   // The first operand node must be a MUL and has no other use.
7434   SDValue N0 = N->getOperand(0);
7435   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
7436     return SDValue();
7437   // Check if c0 and c1 match above conditions.
7438   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7439   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
7440   if (!N0C || !N1C)
7441     return SDValue();
7442   // If N0C has multiple uses it's possible one of the cases in
7443   // DAGCombiner::isMulAddWithConstProfitable will be true, which would result
7444   // in an infinite loop.
7445   if (!N0C->hasOneUse())
7446     return SDValue();
7447   int64_t C0 = N0C->getSExtValue();
7448   int64_t C1 = N1C->getSExtValue();
7449   int64_t CA, CB;
7450   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
7451     return SDValue();
7452   // Search for proper CA (non-zero) and CB that both are simm12.
7453   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
7454       !isInt<12>(C0 * (C1 / C0))) {
7455     CA = C1 / C0;
7456     CB = C1 % C0;
7457   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
7458              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
7459     CA = C1 / C0 + 1;
7460     CB = C1 % C0 - C0;
7461   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
7462              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
7463     CA = C1 / C0 - 1;
7464     CB = C1 % C0 + C0;
7465   } else
7466     return SDValue();
7467   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
7468   SDLoc DL(N);
7469   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
7470                              DAG.getConstant(CA, DL, VT));
7471   SDValue New1 =
7472       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
7473   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
7474 }
7475 
7476 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
7477                                  const RISCVSubtarget &Subtarget) {
7478   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
7479     return V;
7480   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
7481     return V;
7482   // fold (add (select lhs, rhs, cc, 0, y), x) ->
7483   //      (select lhs, rhs, cc, x, (add x, y))
7484   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7485 }
7486 
7487 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
7488   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
7489   //      (select lhs, rhs, cc, x, (sub x, y))
7490   SDValue N0 = N->getOperand(0);
7491   SDValue N1 = N->getOperand(1);
7492   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
7493 }
7494 
7495 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) {
7496   // fold (and (select lhs, rhs, cc, -1, y), x) ->
7497   //      (select lhs, rhs, cc, x, (and x, y))
7498   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
7499 }
7500 
7501 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
7502                                 const RISCVSubtarget &Subtarget) {
7503   if (Subtarget.hasStdExtZbp()) {
7504     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
7505       return GREV;
7506     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
7507       return GORC;
7508     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
7509       return SHFL;
7510   }
7511 
7512   // fold (or (select cond, 0, y), x) ->
7513   //      (select cond, x, (or x, y))
7514   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7515 }
7516 
7517 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
7518   // fold (xor (select cond, 0, y), x) ->
7519   //      (select cond, x, (xor x, y))
7520   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7521 }
7522 
7523 static SDValue performSIGN_EXTEND_INREG(SDNode *N, SelectionDAG &DAG) {
7524   SDValue Src = N->getOperand(0);
7525 
7526   // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X)
7527   if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
7528       cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16))
7529     return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), N->getValueType(0),
7530                        Src.getOperand(0));
7531 
7532   return SDValue();
7533 }
7534 
7535 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND
7536 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free
7537 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be
7538 // removed during type legalization leaving an ADD/SUB/MUL use that won't use
7539 // ADDW/SUBW/MULW.
7540 static SDValue performANY_EXTENDCombine(SDNode *N,
7541                                         TargetLowering::DAGCombinerInfo &DCI,
7542                                         const RISCVSubtarget &Subtarget) {
7543   if (!Subtarget.is64Bit())
7544     return SDValue();
7545 
7546   SelectionDAG &DAG = DCI.DAG;
7547 
7548   SDValue Src = N->getOperand(0);
7549   EVT VT = N->getValueType(0);
7550   if (VT != MVT::i64 || Src.getValueType() != MVT::i32)
7551     return SDValue();
7552 
7553   // The opcode must be one that can implicitly sign_extend.
7554   // FIXME: Additional opcodes.
7555   switch (Src.getOpcode()) {
7556   default:
7557     return SDValue();
7558   case ISD::MUL:
7559     if (!Subtarget.hasStdExtM())
7560       return SDValue();
7561     LLVM_FALLTHROUGH;
7562   case ISD::ADD:
7563   case ISD::SUB:
7564     break;
7565   }
7566 
7567   // Only handle cases where the result is used by a CopyToReg. That likely
7568   // means the value is a liveout of the basic block. This helps prevent
7569   // infinite combine loops like PR51206.
7570   if (none_of(N->uses(),
7571               [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; }))
7572     return SDValue();
7573 
7574   SmallVector<SDNode *, 4> SetCCs;
7575   for (SDNode::use_iterator UI = Src.getNode()->use_begin(),
7576                             UE = Src.getNode()->use_end();
7577        UI != UE; ++UI) {
7578     SDNode *User = *UI;
7579     if (User == N)
7580       continue;
7581     if (UI.getUse().getResNo() != Src.getResNo())
7582       continue;
7583     // All i32 setccs are legalized by sign extending operands.
7584     if (User->getOpcode() == ISD::SETCC) {
7585       SetCCs.push_back(User);
7586       continue;
7587     }
7588     // We don't know if we can extend this user.
7589     break;
7590   }
7591 
7592   // If we don't have any SetCCs, this isn't worthwhile.
7593   if (SetCCs.empty())
7594     return SDValue();
7595 
7596   SDLoc DL(N);
7597   SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src);
7598   DCI.CombineTo(N, SExt);
7599 
7600   // Promote all the setccs.
7601   for (SDNode *SetCC : SetCCs) {
7602     SmallVector<SDValue, 4> Ops;
7603 
7604     for (unsigned j = 0; j != 2; ++j) {
7605       SDValue SOp = SetCC->getOperand(j);
7606       if (SOp == Src)
7607         Ops.push_back(SExt);
7608       else
7609         Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp));
7610     }
7611 
7612     Ops.push_back(SetCC->getOperand(2));
7613     DCI.CombineTo(SetCC,
7614                   DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
7615   }
7616   return SDValue(N, 0);
7617 }
7618 
7619 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to
7620 // vwadd(u).vv/vx or vwsub(u).vv/vx.
7621 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG,
7622                                              bool Commute = false) {
7623   assert((N->getOpcode() == RISCVISD::ADD_VL ||
7624           N->getOpcode() == RISCVISD::SUB_VL) &&
7625          "Unexpected opcode");
7626   bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL;
7627   SDValue Op0 = N->getOperand(0);
7628   SDValue Op1 = N->getOperand(1);
7629   if (Commute)
7630     std::swap(Op0, Op1);
7631 
7632   MVT VT = N->getSimpleValueType(0);
7633 
7634   // Determine the narrow size for a widening add/sub.
7635   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
7636   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
7637                                   VT.getVectorElementCount());
7638 
7639   SDValue Mask = N->getOperand(2);
7640   SDValue VL = N->getOperand(3);
7641 
7642   SDLoc DL(N);
7643 
7644   // If the RHS is a sext or zext, we can form a widening op.
7645   if ((Op1.getOpcode() == RISCVISD::VZEXT_VL ||
7646        Op1.getOpcode() == RISCVISD::VSEXT_VL) &&
7647       Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) {
7648     unsigned ExtOpc = Op1.getOpcode();
7649     Op1 = Op1.getOperand(0);
7650     // Re-introduce narrower extends if needed.
7651     if (Op1.getValueType() != NarrowVT)
7652       Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
7653 
7654     unsigned WOpc;
7655     if (ExtOpc == RISCVISD::VSEXT_VL)
7656       WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL;
7657     else
7658       WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL;
7659 
7660     return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL);
7661   }
7662 
7663   // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar
7664   // sext/zext?
7665 
7666   return SDValue();
7667 }
7668 
7669 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or
7670 // vwsub(u).vv/vx.
7671 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) {
7672   SDValue Op0 = N->getOperand(0);
7673   SDValue Op1 = N->getOperand(1);
7674   SDValue Mask = N->getOperand(2);
7675   SDValue VL = N->getOperand(3);
7676 
7677   MVT VT = N->getSimpleValueType(0);
7678   MVT NarrowVT = Op1.getSimpleValueType();
7679   unsigned NarrowSize = NarrowVT.getScalarSizeInBits();
7680 
7681   unsigned VOpc;
7682   switch (N->getOpcode()) {
7683   default: llvm_unreachable("Unexpected opcode");
7684   case RISCVISD::VWADD_W_VL:  VOpc = RISCVISD::VWADD_VL;  break;
7685   case RISCVISD::VWSUB_W_VL:  VOpc = RISCVISD::VWSUB_VL;  break;
7686   case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break;
7687   case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break;
7688   }
7689 
7690   bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL ||
7691                   N->getOpcode() == RISCVISD::VWSUB_W_VL;
7692 
7693   SDLoc DL(N);
7694 
7695   // If the LHS is a sext or zext, we can narrow this op to the same size as
7696   // the RHS.
7697   if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) ||
7698        (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) &&
7699       Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) {
7700     unsigned ExtOpc = Op0.getOpcode();
7701     Op0 = Op0.getOperand(0);
7702     // Re-introduce narrower extends if needed.
7703     if (Op0.getValueType() != NarrowVT)
7704       Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
7705     return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL);
7706   }
7707 
7708   bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL ||
7709                N->getOpcode() == RISCVISD::VWADDU_W_VL;
7710 
7711   // Look for splats on the left hand side of a vwadd(u).wv. We might be able
7712   // to commute and use a vwadd(u).vx instead.
7713   if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL &&
7714       Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) {
7715     Op0 = Op0.getOperand(1);
7716 
7717     // See if have enough sign bits or zero bits in the scalar to use a
7718     // widening add/sub by splatting to smaller element size.
7719     unsigned EltBits = VT.getScalarSizeInBits();
7720     unsigned ScalarBits = Op0.getValueSizeInBits();
7721     // Make sure we're getting all element bits from the scalar register.
7722     // FIXME: Support implicit sign extension of vmv.v.x?
7723     if (ScalarBits < EltBits)
7724       return SDValue();
7725 
7726     if (IsSigned) {
7727       if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize))
7728         return SDValue();
7729     } else {
7730       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
7731       if (!DAG.MaskedValueIsZero(Op0, Mask))
7732         return SDValue();
7733     }
7734 
7735     Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
7736                       DAG.getUNDEF(NarrowVT), Op0, VL);
7737     return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL);
7738   }
7739 
7740   return SDValue();
7741 }
7742 
7743 // Try to form VWMUL, VWMULU or VWMULSU.
7744 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op.
7745 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG,
7746                                        bool Commute) {
7747   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
7748   SDValue Op0 = N->getOperand(0);
7749   SDValue Op1 = N->getOperand(1);
7750   if (Commute)
7751     std::swap(Op0, Op1);
7752 
7753   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
7754   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
7755   bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL;
7756   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
7757     return SDValue();
7758 
7759   SDValue Mask = N->getOperand(2);
7760   SDValue VL = N->getOperand(3);
7761 
7762   // Make sure the mask and VL match.
7763   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
7764     return SDValue();
7765 
7766   MVT VT = N->getSimpleValueType(0);
7767 
7768   // Determine the narrow size for a widening multiply.
7769   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
7770   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
7771                                   VT.getVectorElementCount());
7772 
7773   SDLoc DL(N);
7774 
7775   // See if the other operand is the same opcode.
7776   if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) {
7777     if (!Op1.hasOneUse())
7778       return SDValue();
7779 
7780     // Make sure the mask and VL match.
7781     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
7782       return SDValue();
7783 
7784     Op1 = Op1.getOperand(0);
7785   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
7786     // The operand is a splat of a scalar.
7787 
7788     // The pasthru must be undef for tail agnostic
7789     if (!Op1.getOperand(0).isUndef())
7790       return SDValue();
7791     // The VL must be the same.
7792     if (Op1.getOperand(2) != VL)
7793       return SDValue();
7794 
7795     // Get the scalar value.
7796     Op1 = Op1.getOperand(1);
7797 
7798     // See if have enough sign bits or zero bits in the scalar to use a
7799     // widening multiply by splatting to smaller element size.
7800     unsigned EltBits = VT.getScalarSizeInBits();
7801     unsigned ScalarBits = Op1.getValueSizeInBits();
7802     // Make sure we're getting all element bits from the scalar register.
7803     // FIXME: Support implicit sign extension of vmv.v.x?
7804     if (ScalarBits < EltBits)
7805       return SDValue();
7806 
7807     // If the LHS is a sign extend, try to use vwmul.
7808     if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) {
7809       // Can use vwmul.
7810     } else {
7811       // Otherwise try to use vwmulu or vwmulsu.
7812       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
7813       if (DAG.MaskedValueIsZero(Op1, Mask))
7814         IsVWMULSU = IsSignExt;
7815       else
7816         return SDValue();
7817     }
7818 
7819     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
7820                       DAG.getUNDEF(NarrowVT), Op1, VL);
7821   } else
7822     return SDValue();
7823 
7824   Op0 = Op0.getOperand(0);
7825 
7826   // Re-introduce narrower extends if needed.
7827   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
7828   if (Op0.getValueType() != NarrowVT)
7829     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
7830   // vwmulsu requires second operand to be zero extended.
7831   ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc;
7832   if (Op1.getValueType() != NarrowVT)
7833     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
7834 
7835   unsigned WMulOpc = RISCVISD::VWMULSU_VL;
7836   if (!IsVWMULSU)
7837     WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
7838   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
7839 }
7840 
7841 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) {
7842   switch (Op.getOpcode()) {
7843   case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE;
7844   case ISD::FTRUNC:     return RISCVFPRndMode::RTZ;
7845   case ISD::FFLOOR:     return RISCVFPRndMode::RDN;
7846   case ISD::FCEIL:      return RISCVFPRndMode::RUP;
7847   case ISD::FROUND:     return RISCVFPRndMode::RMM;
7848   }
7849 
7850   return RISCVFPRndMode::Invalid;
7851 }
7852 
7853 // Fold
7854 //   (fp_to_int (froundeven X)) -> fcvt X, rne
7855 //   (fp_to_int (ftrunc X))     -> fcvt X, rtz
7856 //   (fp_to_int (ffloor X))     -> fcvt X, rdn
7857 //   (fp_to_int (fceil X))      -> fcvt X, rup
7858 //   (fp_to_int (fround X))     -> fcvt X, rmm
7859 static SDValue performFP_TO_INTCombine(SDNode *N,
7860                                        TargetLowering::DAGCombinerInfo &DCI,
7861                                        const RISCVSubtarget &Subtarget) {
7862   SelectionDAG &DAG = DCI.DAG;
7863   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7864   MVT XLenVT = Subtarget.getXLenVT();
7865 
7866   // Only handle XLen or i32 types. Other types narrower than XLen will
7867   // eventually be legalized to XLenVT.
7868   EVT VT = N->getValueType(0);
7869   if (VT != MVT::i32 && VT != XLenVT)
7870     return SDValue();
7871 
7872   SDValue Src = N->getOperand(0);
7873 
7874   // Ensure the FP type is also legal.
7875   if (!TLI.isTypeLegal(Src.getValueType()))
7876     return SDValue();
7877 
7878   // Don't do this for f16 with Zfhmin and not Zfh.
7879   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
7880     return SDValue();
7881 
7882   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
7883   if (FRM == RISCVFPRndMode::Invalid)
7884     return SDValue();
7885 
7886   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
7887 
7888   unsigned Opc;
7889   if (VT == XLenVT)
7890     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
7891   else
7892     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
7893 
7894   SDLoc DL(N);
7895   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
7896                                 DAG.getTargetConstant(FRM, DL, XLenVT));
7897   return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
7898 }
7899 
7900 // Fold
7901 //   (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
7902 //   (fp_to_int_sat (ftrunc X))     -> (select X == nan, 0, (fcvt X, rtz))
7903 //   (fp_to_int_sat (ffloor X))     -> (select X == nan, 0, (fcvt X, rdn))
7904 //   (fp_to_int_sat (fceil X))      -> (select X == nan, 0, (fcvt X, rup))
7905 //   (fp_to_int_sat (fround X))     -> (select X == nan, 0, (fcvt X, rmm))
7906 static SDValue performFP_TO_INT_SATCombine(SDNode *N,
7907                                        TargetLowering::DAGCombinerInfo &DCI,
7908                                        const RISCVSubtarget &Subtarget) {
7909   SelectionDAG &DAG = DCI.DAG;
7910   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7911   MVT XLenVT = Subtarget.getXLenVT();
7912 
7913   // Only handle XLen types. Other types narrower than XLen will eventually be
7914   // legalized to XLenVT.
7915   EVT DstVT = N->getValueType(0);
7916   if (DstVT != XLenVT)
7917     return SDValue();
7918 
7919   SDValue Src = N->getOperand(0);
7920 
7921   // Ensure the FP type is also legal.
7922   if (!TLI.isTypeLegal(Src.getValueType()))
7923     return SDValue();
7924 
7925   // Don't do this for f16 with Zfhmin and not Zfh.
7926   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
7927     return SDValue();
7928 
7929   EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
7930 
7931   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
7932   if (FRM == RISCVFPRndMode::Invalid)
7933     return SDValue();
7934 
7935   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
7936 
7937   unsigned Opc;
7938   if (SatVT == DstVT)
7939     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
7940   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
7941     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
7942   else
7943     return SDValue();
7944   // FIXME: Support other SatVTs by clamping before or after the conversion.
7945 
7946   Src = Src.getOperand(0);
7947 
7948   SDLoc DL(N);
7949   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
7950                                 DAG.getTargetConstant(FRM, DL, XLenVT));
7951 
7952   // RISCV FP-to-int conversions saturate to the destination register size, but
7953   // don't produce 0 for nan.
7954   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
7955   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
7956 }
7957 
7958 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
7959                                                DAGCombinerInfo &DCI) const {
7960   SelectionDAG &DAG = DCI.DAG;
7961 
7962   // Helper to call SimplifyDemandedBits on an operand of N where only some low
7963   // bits are demanded. N will be added to the Worklist if it was not deleted.
7964   // Caller should return SDValue(N, 0) if this returns true.
7965   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
7966     SDValue Op = N->getOperand(OpNo);
7967     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
7968     if (!SimplifyDemandedBits(Op, Mask, DCI))
7969       return false;
7970 
7971     if (N->getOpcode() != ISD::DELETED_NODE)
7972       DCI.AddToWorklist(N);
7973     return true;
7974   };
7975 
7976   switch (N->getOpcode()) {
7977   default:
7978     break;
7979   case RISCVISD::SplitF64: {
7980     SDValue Op0 = N->getOperand(0);
7981     // If the input to SplitF64 is just BuildPairF64 then the operation is
7982     // redundant. Instead, use BuildPairF64's operands directly.
7983     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
7984       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
7985 
7986     if (Op0->isUndef()) {
7987       SDValue Lo = DAG.getUNDEF(MVT::i32);
7988       SDValue Hi = DAG.getUNDEF(MVT::i32);
7989       return DCI.CombineTo(N, Lo, Hi);
7990     }
7991 
7992     SDLoc DL(N);
7993 
7994     // It's cheaper to materialise two 32-bit integers than to load a double
7995     // from the constant pool and transfer it to integer registers through the
7996     // stack.
7997     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
7998       APInt V = C->getValueAPF().bitcastToAPInt();
7999       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
8000       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
8001       return DCI.CombineTo(N, Lo, Hi);
8002     }
8003 
8004     // This is a target-specific version of a DAGCombine performed in
8005     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8006     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8007     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8008     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8009         !Op0.getNode()->hasOneUse())
8010       break;
8011     SDValue NewSplitF64 =
8012         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
8013                     Op0.getOperand(0));
8014     SDValue Lo = NewSplitF64.getValue(0);
8015     SDValue Hi = NewSplitF64.getValue(1);
8016     APInt SignBit = APInt::getSignMask(32);
8017     if (Op0.getOpcode() == ISD::FNEG) {
8018       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
8019                                   DAG.getConstant(SignBit, DL, MVT::i32));
8020       return DCI.CombineTo(N, Lo, NewHi);
8021     }
8022     assert(Op0.getOpcode() == ISD::FABS);
8023     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
8024                                 DAG.getConstant(~SignBit, DL, MVT::i32));
8025     return DCI.CombineTo(N, Lo, NewHi);
8026   }
8027   case RISCVISD::SLLW:
8028   case RISCVISD::SRAW:
8029   case RISCVISD::SRLW:
8030   case RISCVISD::ROLW:
8031   case RISCVISD::RORW: {
8032     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8033     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8034         SimplifyDemandedLowBitsHelper(1, 5))
8035       return SDValue(N, 0);
8036 
8037     return combineROTR_ROTL_RORW_ROLW(N, DAG);
8038   }
8039   case ISD::ROTR:
8040   case ISD::ROTL:
8041     return combineROTR_ROTL_RORW_ROLW(N, DAG);
8042   case RISCVISD::CLZW:
8043   case RISCVISD::CTZW: {
8044     // Only the lower 32 bits of the first operand are read
8045     if (SimplifyDemandedLowBitsHelper(0, 32))
8046       return SDValue(N, 0);
8047     break;
8048   }
8049   case RISCVISD::GREV:
8050   case RISCVISD::GORC: {
8051     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
8052     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8053     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8054     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
8055       return SDValue(N, 0);
8056 
8057     return combineGREVI_GORCI(N, DAG);
8058   }
8059   case RISCVISD::GREVW:
8060   case RISCVISD::GORCW: {
8061     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8062     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8063         SimplifyDemandedLowBitsHelper(1, 5))
8064       return SDValue(N, 0);
8065 
8066     return combineGREVI_GORCI(N, DAG);
8067   }
8068   case RISCVISD::SHFL:
8069   case RISCVISD::UNSHFL: {
8070     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
8071     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8072     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8073     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
8074       return SDValue(N, 0);
8075 
8076     break;
8077   }
8078   case RISCVISD::SHFLW:
8079   case RISCVISD::UNSHFLW: {
8080     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
8081     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8082         SimplifyDemandedLowBitsHelper(1, 4))
8083       return SDValue(N, 0);
8084 
8085     break;
8086   }
8087   case RISCVISD::BCOMPRESSW:
8088   case RISCVISD::BDECOMPRESSW: {
8089     // Only the lower 32 bits of LHS and RHS are read.
8090     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8091         SimplifyDemandedLowBitsHelper(1, 32))
8092       return SDValue(N, 0);
8093 
8094     break;
8095   }
8096   case RISCVISD::FMV_X_ANYEXTH:
8097   case RISCVISD::FMV_X_ANYEXTW_RV64: {
8098     SDLoc DL(N);
8099     SDValue Op0 = N->getOperand(0);
8100     MVT VT = N->getSimpleValueType(0);
8101     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
8102     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
8103     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
8104     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
8105          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
8106         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8107          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
8108       assert(Op0.getOperand(0).getValueType() == VT &&
8109              "Unexpected value type!");
8110       return Op0.getOperand(0);
8111     }
8112 
8113     // This is a target-specific version of a DAGCombine performed in
8114     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8115     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8116     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8117     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8118         !Op0.getNode()->hasOneUse())
8119       break;
8120     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
8121     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
8122     APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits());
8123     if (Op0.getOpcode() == ISD::FNEG)
8124       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
8125                          DAG.getConstant(SignBit, DL, VT));
8126 
8127     assert(Op0.getOpcode() == ISD::FABS);
8128     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
8129                        DAG.getConstant(~SignBit, DL, VT));
8130   }
8131   case ISD::ADD:
8132     return performADDCombine(N, DAG, Subtarget);
8133   case ISD::SUB:
8134     return performSUBCombine(N, DAG);
8135   case ISD::AND:
8136     return performANDCombine(N, DAG);
8137   case ISD::OR:
8138     return performORCombine(N, DAG, Subtarget);
8139   case ISD::XOR:
8140     return performXORCombine(N, DAG);
8141   case ISD::SIGN_EXTEND_INREG:
8142     return performSIGN_EXTEND_INREG(N, DAG);
8143   case ISD::ANY_EXTEND:
8144     return performANY_EXTENDCombine(N, DCI, Subtarget);
8145   case ISD::ZERO_EXTEND:
8146     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
8147     // type legalization. This is safe because fp_to_uint produces poison if
8148     // it overflows.
8149     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
8150       SDValue Src = N->getOperand(0);
8151       if (Src.getOpcode() == ISD::FP_TO_UINT &&
8152           isTypeLegal(Src.getOperand(0).getValueType()))
8153         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
8154                            Src.getOperand(0));
8155       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
8156           isTypeLegal(Src.getOperand(1).getValueType())) {
8157         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
8158         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
8159                                   Src.getOperand(0), Src.getOperand(1));
8160         DCI.CombineTo(N, Res);
8161         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
8162         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
8163         return SDValue(N, 0); // Return N so it doesn't get rechecked.
8164       }
8165     }
8166     return SDValue();
8167   case RISCVISD::SELECT_CC: {
8168     // Transform
8169     SDValue LHS = N->getOperand(0);
8170     SDValue RHS = N->getOperand(1);
8171     SDValue TrueV = N->getOperand(3);
8172     SDValue FalseV = N->getOperand(4);
8173 
8174     // If the True and False values are the same, we don't need a select_cc.
8175     if (TrueV == FalseV)
8176       return TrueV;
8177 
8178     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
8179     if (!ISD::isIntEqualitySetCC(CCVal))
8180       break;
8181 
8182     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
8183     //      (select_cc X, Y, lt, trueV, falseV)
8184     // Sometimes the setcc is introduced after select_cc has been formed.
8185     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8186         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8187       // If we're looking for eq 0 instead of ne 0, we need to invert the
8188       // condition.
8189       bool Invert = CCVal == ISD::SETEQ;
8190       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8191       if (Invert)
8192         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8193 
8194       SDLoc DL(N);
8195       RHS = LHS.getOperand(1);
8196       LHS = LHS.getOperand(0);
8197       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8198 
8199       SDValue TargetCC = DAG.getCondCode(CCVal);
8200       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8201                          {LHS, RHS, TargetCC, TrueV, FalseV});
8202     }
8203 
8204     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
8205     //      (select_cc X, Y, eq/ne, trueV, falseV)
8206     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8207       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
8208                          {LHS.getOperand(0), LHS.getOperand(1),
8209                           N->getOperand(2), TrueV, FalseV});
8210     // (select_cc X, 1, setne, trueV, falseV) ->
8211     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
8212     // This can occur when legalizing some floating point comparisons.
8213     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8214     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8215       SDLoc DL(N);
8216       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8217       SDValue TargetCC = DAG.getCondCode(CCVal);
8218       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8219       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8220                          {LHS, RHS, TargetCC, TrueV, FalseV});
8221     }
8222 
8223     break;
8224   }
8225   case RISCVISD::BR_CC: {
8226     SDValue LHS = N->getOperand(1);
8227     SDValue RHS = N->getOperand(2);
8228     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
8229     if (!ISD::isIntEqualitySetCC(CCVal))
8230       break;
8231 
8232     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
8233     //      (br_cc X, Y, lt, dest)
8234     // Sometimes the setcc is introduced after br_cc has been formed.
8235     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8236         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8237       // If we're looking for eq 0 instead of ne 0, we need to invert the
8238       // condition.
8239       bool Invert = CCVal == ISD::SETEQ;
8240       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8241       if (Invert)
8242         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8243 
8244       SDLoc DL(N);
8245       RHS = LHS.getOperand(1);
8246       LHS = LHS.getOperand(0);
8247       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8248 
8249       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8250                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
8251                          N->getOperand(4));
8252     }
8253 
8254     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
8255     //      (br_cc X, Y, eq/ne, trueV, falseV)
8256     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8257       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
8258                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
8259                          N->getOperand(3), N->getOperand(4));
8260 
8261     // (br_cc X, 1, setne, br_cc) ->
8262     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
8263     // This can occur when legalizing some floating point comparisons.
8264     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8265     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8266       SDLoc DL(N);
8267       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8268       SDValue TargetCC = DAG.getCondCode(CCVal);
8269       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8270       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8271                          N->getOperand(0), LHS, RHS, TargetCC,
8272                          N->getOperand(4));
8273     }
8274     break;
8275   }
8276   case ISD::FP_TO_SINT:
8277   case ISD::FP_TO_UINT:
8278     return performFP_TO_INTCombine(N, DCI, Subtarget);
8279   case ISD::FP_TO_SINT_SAT:
8280   case ISD::FP_TO_UINT_SAT:
8281     return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
8282   case ISD::FCOPYSIGN: {
8283     EVT VT = N->getValueType(0);
8284     if (!VT.isVector())
8285       break;
8286     // There is a form of VFSGNJ which injects the negated sign of its second
8287     // operand. Try and bubble any FNEG up after the extend/round to produce
8288     // this optimized pattern. Avoid modifying cases where FP_ROUND and
8289     // TRUNC=1.
8290     SDValue In2 = N->getOperand(1);
8291     // Avoid cases where the extend/round has multiple uses, as duplicating
8292     // those is typically more expensive than removing a fneg.
8293     if (!In2.hasOneUse())
8294       break;
8295     if (In2.getOpcode() != ISD::FP_EXTEND &&
8296         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
8297       break;
8298     In2 = In2.getOperand(0);
8299     if (In2.getOpcode() != ISD::FNEG)
8300       break;
8301     SDLoc DL(N);
8302     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
8303     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
8304                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
8305   }
8306   case ISD::MGATHER:
8307   case ISD::MSCATTER:
8308   case ISD::VP_GATHER:
8309   case ISD::VP_SCATTER: {
8310     if (!DCI.isBeforeLegalize())
8311       break;
8312     SDValue Index, ScaleOp;
8313     bool IsIndexScaled = false;
8314     bool IsIndexSigned = false;
8315     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
8316       Index = VPGSN->getIndex();
8317       ScaleOp = VPGSN->getScale();
8318       IsIndexScaled = VPGSN->isIndexScaled();
8319       IsIndexSigned = VPGSN->isIndexSigned();
8320     } else {
8321       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
8322       Index = MGSN->getIndex();
8323       ScaleOp = MGSN->getScale();
8324       IsIndexScaled = MGSN->isIndexScaled();
8325       IsIndexSigned = MGSN->isIndexSigned();
8326     }
8327     EVT IndexVT = Index.getValueType();
8328     MVT XLenVT = Subtarget.getXLenVT();
8329     // RISCV indexed loads only support the "unsigned unscaled" addressing
8330     // mode, so anything else must be manually legalized.
8331     bool NeedsIdxLegalization =
8332         IsIndexScaled ||
8333         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
8334     if (!NeedsIdxLegalization)
8335       break;
8336 
8337     SDLoc DL(N);
8338 
8339     // Any index legalization should first promote to XLenVT, so we don't lose
8340     // bits when scaling. This may create an illegal index type so we let
8341     // LLVM's legalization take care of the splitting.
8342     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
8343     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
8344       IndexVT = IndexVT.changeVectorElementType(XLenVT);
8345       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
8346                           DL, IndexVT, Index);
8347     }
8348 
8349     unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
8350     if (IsIndexScaled && Scale != 1) {
8351       // Manually scale the indices by the element size.
8352       // TODO: Sanitize the scale operand here?
8353       // TODO: For VP nodes, should we use VP_SHL here?
8354       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
8355       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
8356       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
8357     }
8358 
8359     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
8360     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
8361       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
8362                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
8363                               VPGN->getScale(), VPGN->getMask(),
8364                               VPGN->getVectorLength()},
8365                              VPGN->getMemOperand(), NewIndexTy);
8366     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
8367       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
8368                               {VPSN->getChain(), VPSN->getValue(),
8369                                VPSN->getBasePtr(), Index, VPSN->getScale(),
8370                                VPSN->getMask(), VPSN->getVectorLength()},
8371                               VPSN->getMemOperand(), NewIndexTy);
8372     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
8373       return DAG.getMaskedGather(
8374           N->getVTList(), MGN->getMemoryVT(), DL,
8375           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
8376            MGN->getBasePtr(), Index, MGN->getScale()},
8377           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
8378     const auto *MSN = cast<MaskedScatterSDNode>(N);
8379     return DAG.getMaskedScatter(
8380         N->getVTList(), MSN->getMemoryVT(), DL,
8381         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
8382          Index, MSN->getScale()},
8383         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
8384   }
8385   case RISCVISD::SRA_VL:
8386   case RISCVISD::SRL_VL:
8387   case RISCVISD::SHL_VL: {
8388     SDValue ShAmt = N->getOperand(1);
8389     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8390       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8391       SDLoc DL(N);
8392       SDValue VL = N->getOperand(3);
8393       EVT VT = N->getValueType(0);
8394       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8395                           ShAmt.getOperand(1), VL);
8396       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
8397                          N->getOperand(2), N->getOperand(3));
8398     }
8399     break;
8400   }
8401   case ISD::SRA:
8402   case ISD::SRL:
8403   case ISD::SHL: {
8404     SDValue ShAmt = N->getOperand(1);
8405     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8406       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8407       SDLoc DL(N);
8408       EVT VT = N->getValueType(0);
8409       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8410                           ShAmt.getOperand(1),
8411                           DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()));
8412       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
8413     }
8414     break;
8415   }
8416   case RISCVISD::ADD_VL:
8417     if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false))
8418       return V;
8419     return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true);
8420   case RISCVISD::SUB_VL:
8421     return combineADDSUB_VLToVWADDSUB_VL(N, DAG);
8422   case RISCVISD::VWADD_W_VL:
8423   case RISCVISD::VWADDU_W_VL:
8424   case RISCVISD::VWSUB_W_VL:
8425   case RISCVISD::VWSUBU_W_VL:
8426     return combineVWADD_W_VL_VWSUB_W_VL(N, DAG);
8427   case RISCVISD::MUL_VL:
8428     if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false))
8429       return V;
8430     // Mul is commutative.
8431     return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true);
8432   case ISD::STORE: {
8433     auto *Store = cast<StoreSDNode>(N);
8434     SDValue Val = Store->getValue();
8435     // Combine store of vmv.x.s to vse with VL of 1.
8436     // FIXME: Support FP.
8437     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
8438       SDValue Src = Val.getOperand(0);
8439       EVT VecVT = Src.getValueType();
8440       EVT MemVT = Store->getMemoryVT();
8441       // The memory VT and the element type must match.
8442       if (VecVT.getVectorElementType() == MemVT) {
8443         SDLoc DL(N);
8444         MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
8445         return DAG.getStoreVP(
8446             Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
8447             DAG.getConstant(1, DL, MaskVT),
8448             DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
8449             Store->getMemOperand(), Store->getAddressingMode(),
8450             Store->isTruncatingStore(), /*IsCompress*/ false);
8451       }
8452     }
8453 
8454     break;
8455   }
8456   case ISD::SPLAT_VECTOR: {
8457     EVT VT = N->getValueType(0);
8458     // Only perform this combine on legal MVT types.
8459     if (!isTypeLegal(VT))
8460       break;
8461     if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N,
8462                                          DAG, Subtarget))
8463       return Gather;
8464     break;
8465   }
8466   case RISCVISD::VMV_V_X_VL: {
8467     // Tail agnostic VMV.V.X only demands the vector element bitwidth from the
8468     // scalar input.
8469     unsigned ScalarSize = N->getOperand(1).getValueSizeInBits();
8470     unsigned EltWidth = N->getValueType(0).getScalarSizeInBits();
8471     if (ScalarSize > EltWidth && N->getOperand(0).isUndef())
8472       if (SimplifyDemandedLowBitsHelper(1, EltWidth))
8473         return SDValue(N, 0);
8474 
8475     break;
8476   }
8477   }
8478 
8479   return SDValue();
8480 }
8481 
8482 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
8483     const SDNode *N, CombineLevel Level) const {
8484   // The following folds are only desirable if `(OP _, c1 << c2)` can be
8485   // materialised in fewer instructions than `(OP _, c1)`:
8486   //
8487   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
8488   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
8489   SDValue N0 = N->getOperand(0);
8490   EVT Ty = N0.getValueType();
8491   if (Ty.isScalarInteger() &&
8492       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
8493     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
8494     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
8495     if (C1 && C2) {
8496       const APInt &C1Int = C1->getAPIntValue();
8497       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
8498 
8499       // We can materialise `c1 << c2` into an add immediate, so it's "free",
8500       // and the combine should happen, to potentially allow further combines
8501       // later.
8502       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
8503           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
8504         return true;
8505 
8506       // We can materialise `c1` in an add immediate, so it's "free", and the
8507       // combine should be prevented.
8508       if (C1Int.getMinSignedBits() <= 64 &&
8509           isLegalAddImmediate(C1Int.getSExtValue()))
8510         return false;
8511 
8512       // Neither constant will fit into an immediate, so find materialisation
8513       // costs.
8514       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
8515                                               Subtarget.getFeatureBits(),
8516                                               /*CompressionCost*/true);
8517       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
8518           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
8519           /*CompressionCost*/true);
8520 
8521       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
8522       // combine should be prevented.
8523       if (C1Cost < ShiftedC1Cost)
8524         return false;
8525     }
8526   }
8527   return true;
8528 }
8529 
8530 bool RISCVTargetLowering::targetShrinkDemandedConstant(
8531     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
8532     TargetLoweringOpt &TLO) const {
8533   // Delay this optimization as late as possible.
8534   if (!TLO.LegalOps)
8535     return false;
8536 
8537   EVT VT = Op.getValueType();
8538   if (VT.isVector())
8539     return false;
8540 
8541   // Only handle AND for now.
8542   if (Op.getOpcode() != ISD::AND)
8543     return false;
8544 
8545   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8546   if (!C)
8547     return false;
8548 
8549   const APInt &Mask = C->getAPIntValue();
8550 
8551   // Clear all non-demanded bits initially.
8552   APInt ShrunkMask = Mask & DemandedBits;
8553 
8554   // Try to make a smaller immediate by setting undemanded bits.
8555 
8556   APInt ExpandedMask = Mask | ~DemandedBits;
8557 
8558   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
8559     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
8560   };
8561   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
8562     if (NewMask == Mask)
8563       return true;
8564     SDLoc DL(Op);
8565     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
8566     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
8567     return TLO.CombineTo(Op, NewOp);
8568   };
8569 
8570   // If the shrunk mask fits in sign extended 12 bits, let the target
8571   // independent code apply it.
8572   if (ShrunkMask.isSignedIntN(12))
8573     return false;
8574 
8575   // Preserve (and X, 0xffff) when zext.h is supported.
8576   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
8577     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
8578     if (IsLegalMask(NewMask))
8579       return UseMask(NewMask);
8580   }
8581 
8582   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
8583   if (VT == MVT::i64) {
8584     APInt NewMask = APInt(64, 0xffffffff);
8585     if (IsLegalMask(NewMask))
8586       return UseMask(NewMask);
8587   }
8588 
8589   // For the remaining optimizations, we need to be able to make a negative
8590   // number through a combination of mask and undemanded bits.
8591   if (!ExpandedMask.isNegative())
8592     return false;
8593 
8594   // What is the fewest number of bits we need to represent the negative number.
8595   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
8596 
8597   // Try to make a 12 bit negative immediate. If that fails try to make a 32
8598   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
8599   APInt NewMask = ShrunkMask;
8600   if (MinSignedBits <= 12)
8601     NewMask.setBitsFrom(11);
8602   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
8603     NewMask.setBitsFrom(31);
8604   else
8605     return false;
8606 
8607   // Check that our new mask is a subset of the demanded mask.
8608   assert(IsLegalMask(NewMask));
8609   return UseMask(NewMask);
8610 }
8611 
8612 static void computeGREV(APInt &Src, unsigned ShAmt) {
8613   ShAmt &= Src.getBitWidth() - 1;
8614   uint64_t x = Src.getZExtValue();
8615   if (ShAmt & 1)
8616     x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
8617   if (ShAmt & 2)
8618     x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
8619   if (ShAmt & 4)
8620     x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
8621   if (ShAmt & 8)
8622     x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8);
8623   if (ShAmt & 16)
8624     x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16);
8625   if (ShAmt & 32)
8626     x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32);
8627   Src = x;
8628 }
8629 
8630 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
8631                                                         KnownBits &Known,
8632                                                         const APInt &DemandedElts,
8633                                                         const SelectionDAG &DAG,
8634                                                         unsigned Depth) const {
8635   unsigned BitWidth = Known.getBitWidth();
8636   unsigned Opc = Op.getOpcode();
8637   assert((Opc >= ISD::BUILTIN_OP_END ||
8638           Opc == ISD::INTRINSIC_WO_CHAIN ||
8639           Opc == ISD::INTRINSIC_W_CHAIN ||
8640           Opc == ISD::INTRINSIC_VOID) &&
8641          "Should use MaskedValueIsZero if you don't know whether Op"
8642          " is a target node!");
8643 
8644   Known.resetAll();
8645   switch (Opc) {
8646   default: break;
8647   case RISCVISD::SELECT_CC: {
8648     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
8649     // If we don't know any bits, early out.
8650     if (Known.isUnknown())
8651       break;
8652     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
8653 
8654     // Only known if known in both the LHS and RHS.
8655     Known = KnownBits::commonBits(Known, Known2);
8656     break;
8657   }
8658   case RISCVISD::REMUW: {
8659     KnownBits Known2;
8660     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
8661     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
8662     // We only care about the lower 32 bits.
8663     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
8664     // Restore the original width by sign extending.
8665     Known = Known.sext(BitWidth);
8666     break;
8667   }
8668   case RISCVISD::DIVUW: {
8669     KnownBits Known2;
8670     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
8671     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
8672     // We only care about the lower 32 bits.
8673     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
8674     // Restore the original width by sign extending.
8675     Known = Known.sext(BitWidth);
8676     break;
8677   }
8678   case RISCVISD::CTZW: {
8679     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8680     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
8681     unsigned LowBits = Log2_32(PossibleTZ) + 1;
8682     Known.Zero.setBitsFrom(LowBits);
8683     break;
8684   }
8685   case RISCVISD::CLZW: {
8686     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8687     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
8688     unsigned LowBits = Log2_32(PossibleLZ) + 1;
8689     Known.Zero.setBitsFrom(LowBits);
8690     break;
8691   }
8692   case RISCVISD::GREV:
8693   case RISCVISD::GREVW: {
8694     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8695       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8696       if (Opc == RISCVISD::GREVW)
8697         Known = Known.trunc(32);
8698       unsigned ShAmt = C->getZExtValue();
8699       computeGREV(Known.Zero, ShAmt);
8700       computeGREV(Known.One, ShAmt);
8701       if (Opc == RISCVISD::GREVW)
8702         Known = Known.sext(BitWidth);
8703     }
8704     break;
8705   }
8706   case RISCVISD::READ_VLENB: {
8707     // If we know the minimum VLen from Zvl extensions, we can use that to
8708     // determine the trailing zeros of VLENB.
8709     // FIXME: Limit to 128 bit vectors until we have more testing.
8710     unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8;
8711     if (MinVLenB > 0)
8712       Known.Zero.setLowBits(Log2_32(MinVLenB));
8713     // We assume VLENB is no more than 65536 / 8 bytes.
8714     Known.Zero.setBitsFrom(14);
8715     break;
8716   }
8717   case ISD::INTRINSIC_W_CHAIN:
8718   case ISD::INTRINSIC_WO_CHAIN: {
8719     unsigned IntNo =
8720         Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
8721     switch (IntNo) {
8722     default:
8723       // We can't do anything for most intrinsics.
8724       break;
8725     case Intrinsic::riscv_vsetvli:
8726     case Intrinsic::riscv_vsetvlimax:
8727     case Intrinsic::riscv_vsetvli_opt:
8728     case Intrinsic::riscv_vsetvlimax_opt:
8729       // Assume that VL output is positive and would fit in an int32_t.
8730       // TODO: VLEN might be capped at 16 bits in a future V spec update.
8731       if (BitWidth >= 32)
8732         Known.Zero.setBitsFrom(31);
8733       break;
8734     }
8735     break;
8736   }
8737   }
8738 }
8739 
8740 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
8741     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
8742     unsigned Depth) const {
8743   switch (Op.getOpcode()) {
8744   default:
8745     break;
8746   case RISCVISD::SELECT_CC: {
8747     unsigned Tmp =
8748         DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
8749     if (Tmp == 1) return 1;  // Early out.
8750     unsigned Tmp2 =
8751         DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
8752     return std::min(Tmp, Tmp2);
8753   }
8754   case RISCVISD::SLLW:
8755   case RISCVISD::SRAW:
8756   case RISCVISD::SRLW:
8757   case RISCVISD::DIVW:
8758   case RISCVISD::DIVUW:
8759   case RISCVISD::REMUW:
8760   case RISCVISD::ROLW:
8761   case RISCVISD::RORW:
8762   case RISCVISD::GREVW:
8763   case RISCVISD::GORCW:
8764   case RISCVISD::FSLW:
8765   case RISCVISD::FSRW:
8766   case RISCVISD::SHFLW:
8767   case RISCVISD::UNSHFLW:
8768   case RISCVISD::BCOMPRESSW:
8769   case RISCVISD::BDECOMPRESSW:
8770   case RISCVISD::BFPW:
8771   case RISCVISD::FCVT_W_RV64:
8772   case RISCVISD::FCVT_WU_RV64:
8773   case RISCVISD::STRICT_FCVT_W_RV64:
8774   case RISCVISD::STRICT_FCVT_WU_RV64:
8775     // TODO: As the result is sign-extended, this is conservatively correct. A
8776     // more precise answer could be calculated for SRAW depending on known
8777     // bits in the shift amount.
8778     return 33;
8779   case RISCVISD::SHFL:
8780   case RISCVISD::UNSHFL: {
8781     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
8782     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
8783     // will stay within the upper 32 bits. If there were more than 32 sign bits
8784     // before there will be at least 33 sign bits after.
8785     if (Op.getValueType() == MVT::i64 &&
8786         isa<ConstantSDNode>(Op.getOperand(1)) &&
8787         (Op.getConstantOperandVal(1) & 0x10) == 0) {
8788       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
8789       if (Tmp > 32)
8790         return 33;
8791     }
8792     break;
8793   }
8794   case RISCVISD::VMV_X_S: {
8795     // The number of sign bits of the scalar result is computed by obtaining the
8796     // element type of the input vector operand, subtracting its width from the
8797     // XLEN, and then adding one (sign bit within the element type). If the
8798     // element type is wider than XLen, the least-significant XLEN bits are
8799     // taken.
8800     unsigned XLen = Subtarget.getXLen();
8801     unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits();
8802     if (EltBits <= XLen)
8803       return XLen - EltBits + 1;
8804     break;
8805   }
8806   }
8807 
8808   return 1;
8809 }
8810 
8811 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
8812                                                   MachineBasicBlock *BB) {
8813   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
8814 
8815   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
8816   // Should the count have wrapped while it was being read, we need to try
8817   // again.
8818   // ...
8819   // read:
8820   // rdcycleh x3 # load high word of cycle
8821   // rdcycle  x2 # load low word of cycle
8822   // rdcycleh x4 # load high word of cycle
8823   // bne x3, x4, read # check if high word reads match, otherwise try again
8824   // ...
8825 
8826   MachineFunction &MF = *BB->getParent();
8827   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8828   MachineFunction::iterator It = ++BB->getIterator();
8829 
8830   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
8831   MF.insert(It, LoopMBB);
8832 
8833   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
8834   MF.insert(It, DoneMBB);
8835 
8836   // Transfer the remainder of BB and its successor edges to DoneMBB.
8837   DoneMBB->splice(DoneMBB->begin(), BB,
8838                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
8839   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
8840 
8841   BB->addSuccessor(LoopMBB);
8842 
8843   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8844   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
8845   Register LoReg = MI.getOperand(0).getReg();
8846   Register HiReg = MI.getOperand(1).getReg();
8847   DebugLoc DL = MI.getDebugLoc();
8848 
8849   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
8850   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
8851       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
8852       .addReg(RISCV::X0);
8853   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
8854       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
8855       .addReg(RISCV::X0);
8856   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
8857       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
8858       .addReg(RISCV::X0);
8859 
8860   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
8861       .addReg(HiReg)
8862       .addReg(ReadAgainReg)
8863       .addMBB(LoopMBB);
8864 
8865   LoopMBB->addSuccessor(LoopMBB);
8866   LoopMBB->addSuccessor(DoneMBB);
8867 
8868   MI.eraseFromParent();
8869 
8870   return DoneMBB;
8871 }
8872 
8873 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
8874                                              MachineBasicBlock *BB) {
8875   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
8876 
8877   MachineFunction &MF = *BB->getParent();
8878   DebugLoc DL = MI.getDebugLoc();
8879   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
8880   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
8881   Register LoReg = MI.getOperand(0).getReg();
8882   Register HiReg = MI.getOperand(1).getReg();
8883   Register SrcReg = MI.getOperand(2).getReg();
8884   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
8885   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
8886 
8887   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
8888                           RI);
8889   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
8890   MachineMemOperand *MMOLo =
8891       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
8892   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
8893       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
8894   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
8895       .addFrameIndex(FI)
8896       .addImm(0)
8897       .addMemOperand(MMOLo);
8898   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
8899       .addFrameIndex(FI)
8900       .addImm(4)
8901       .addMemOperand(MMOHi);
8902   MI.eraseFromParent(); // The pseudo instruction is gone now.
8903   return BB;
8904 }
8905 
8906 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
8907                                                  MachineBasicBlock *BB) {
8908   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
8909          "Unexpected instruction");
8910 
8911   MachineFunction &MF = *BB->getParent();
8912   DebugLoc DL = MI.getDebugLoc();
8913   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
8914   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
8915   Register DstReg = MI.getOperand(0).getReg();
8916   Register LoReg = MI.getOperand(1).getReg();
8917   Register HiReg = MI.getOperand(2).getReg();
8918   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
8919   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
8920 
8921   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
8922   MachineMemOperand *MMOLo =
8923       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
8924   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
8925       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
8926   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
8927       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
8928       .addFrameIndex(FI)
8929       .addImm(0)
8930       .addMemOperand(MMOLo);
8931   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
8932       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
8933       .addFrameIndex(FI)
8934       .addImm(4)
8935       .addMemOperand(MMOHi);
8936   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
8937   MI.eraseFromParent(); // The pseudo instruction is gone now.
8938   return BB;
8939 }
8940 
8941 static bool isSelectPseudo(MachineInstr &MI) {
8942   switch (MI.getOpcode()) {
8943   default:
8944     return false;
8945   case RISCV::Select_GPR_Using_CC_GPR:
8946   case RISCV::Select_FPR16_Using_CC_GPR:
8947   case RISCV::Select_FPR32_Using_CC_GPR:
8948   case RISCV::Select_FPR64_Using_CC_GPR:
8949     return true;
8950   }
8951 }
8952 
8953 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
8954                                         unsigned RelOpcode, unsigned EqOpcode,
8955                                         const RISCVSubtarget &Subtarget) {
8956   DebugLoc DL = MI.getDebugLoc();
8957   Register DstReg = MI.getOperand(0).getReg();
8958   Register Src1Reg = MI.getOperand(1).getReg();
8959   Register Src2Reg = MI.getOperand(2).getReg();
8960   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
8961   Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
8962   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
8963 
8964   // Save the current FFLAGS.
8965   BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
8966 
8967   auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
8968                  .addReg(Src1Reg)
8969                  .addReg(Src2Reg);
8970   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
8971     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
8972 
8973   // Restore the FFLAGS.
8974   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
8975       .addReg(SavedFFlags, RegState::Kill);
8976 
8977   // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
8978   auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
8979                   .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
8980                   .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
8981   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
8982     MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
8983 
8984   // Erase the pseudoinstruction.
8985   MI.eraseFromParent();
8986   return BB;
8987 }
8988 
8989 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
8990                                            MachineBasicBlock *BB,
8991                                            const RISCVSubtarget &Subtarget) {
8992   // To "insert" Select_* instructions, we actually have to insert the triangle
8993   // control-flow pattern.  The incoming instructions know the destination vreg
8994   // to set, the condition code register to branch on, the true/false values to
8995   // select between, and the condcode to use to select the appropriate branch.
8996   //
8997   // We produce the following control flow:
8998   //     HeadMBB
8999   //     |  \
9000   //     |  IfFalseMBB
9001   //     | /
9002   //    TailMBB
9003   //
9004   // When we find a sequence of selects we attempt to optimize their emission
9005   // by sharing the control flow. Currently we only handle cases where we have
9006   // multiple selects with the exact same condition (same LHS, RHS and CC).
9007   // The selects may be interleaved with other instructions if the other
9008   // instructions meet some requirements we deem safe:
9009   // - They are debug instructions. Otherwise,
9010   // - They do not have side-effects, do not access memory and their inputs do
9011   //   not depend on the results of the select pseudo-instructions.
9012   // The TrueV/FalseV operands of the selects cannot depend on the result of
9013   // previous selects in the sequence.
9014   // These conditions could be further relaxed. See the X86 target for a
9015   // related approach and more information.
9016   Register LHS = MI.getOperand(1).getReg();
9017   Register RHS = MI.getOperand(2).getReg();
9018   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
9019 
9020   SmallVector<MachineInstr *, 4> SelectDebugValues;
9021   SmallSet<Register, 4> SelectDests;
9022   SelectDests.insert(MI.getOperand(0).getReg());
9023 
9024   MachineInstr *LastSelectPseudo = &MI;
9025 
9026   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
9027        SequenceMBBI != E; ++SequenceMBBI) {
9028     if (SequenceMBBI->isDebugInstr())
9029       continue;
9030     else if (isSelectPseudo(*SequenceMBBI)) {
9031       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
9032           SequenceMBBI->getOperand(2).getReg() != RHS ||
9033           SequenceMBBI->getOperand(3).getImm() != CC ||
9034           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
9035           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
9036         break;
9037       LastSelectPseudo = &*SequenceMBBI;
9038       SequenceMBBI->collectDebugValues(SelectDebugValues);
9039       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
9040     } else {
9041       if (SequenceMBBI->hasUnmodeledSideEffects() ||
9042           SequenceMBBI->mayLoadOrStore())
9043         break;
9044       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
9045             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
9046           }))
9047         break;
9048     }
9049   }
9050 
9051   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
9052   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9053   DebugLoc DL = MI.getDebugLoc();
9054   MachineFunction::iterator I = ++BB->getIterator();
9055 
9056   MachineBasicBlock *HeadMBB = BB;
9057   MachineFunction *F = BB->getParent();
9058   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
9059   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
9060 
9061   F->insert(I, IfFalseMBB);
9062   F->insert(I, TailMBB);
9063 
9064   // Transfer debug instructions associated with the selects to TailMBB.
9065   for (MachineInstr *DebugInstr : SelectDebugValues) {
9066     TailMBB->push_back(DebugInstr->removeFromParent());
9067   }
9068 
9069   // Move all instructions after the sequence to TailMBB.
9070   TailMBB->splice(TailMBB->end(), HeadMBB,
9071                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
9072   // Update machine-CFG edges by transferring all successors of the current
9073   // block to the new block which will contain the Phi nodes for the selects.
9074   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
9075   // Set the successors for HeadMBB.
9076   HeadMBB->addSuccessor(IfFalseMBB);
9077   HeadMBB->addSuccessor(TailMBB);
9078 
9079   // Insert appropriate branch.
9080   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
9081     .addReg(LHS)
9082     .addReg(RHS)
9083     .addMBB(TailMBB);
9084 
9085   // IfFalseMBB just falls through to TailMBB.
9086   IfFalseMBB->addSuccessor(TailMBB);
9087 
9088   // Create PHIs for all of the select pseudo-instructions.
9089   auto SelectMBBI = MI.getIterator();
9090   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
9091   auto InsertionPoint = TailMBB->begin();
9092   while (SelectMBBI != SelectEnd) {
9093     auto Next = std::next(SelectMBBI);
9094     if (isSelectPseudo(*SelectMBBI)) {
9095       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
9096       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
9097               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
9098           .addReg(SelectMBBI->getOperand(4).getReg())
9099           .addMBB(HeadMBB)
9100           .addReg(SelectMBBI->getOperand(5).getReg())
9101           .addMBB(IfFalseMBB);
9102       SelectMBBI->eraseFromParent();
9103     }
9104     SelectMBBI = Next;
9105   }
9106 
9107   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
9108   return TailMBB;
9109 }
9110 
9111 MachineBasicBlock *
9112 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9113                                                  MachineBasicBlock *BB) const {
9114   switch (MI.getOpcode()) {
9115   default:
9116     llvm_unreachable("Unexpected instr type to insert");
9117   case RISCV::ReadCycleWide:
9118     assert(!Subtarget.is64Bit() &&
9119            "ReadCycleWrite is only to be used on riscv32");
9120     return emitReadCycleWidePseudo(MI, BB);
9121   case RISCV::Select_GPR_Using_CC_GPR:
9122   case RISCV::Select_FPR16_Using_CC_GPR:
9123   case RISCV::Select_FPR32_Using_CC_GPR:
9124   case RISCV::Select_FPR64_Using_CC_GPR:
9125     return emitSelectPseudo(MI, BB, Subtarget);
9126   case RISCV::BuildPairF64Pseudo:
9127     return emitBuildPairF64Pseudo(MI, BB);
9128   case RISCV::SplitF64Pseudo:
9129     return emitSplitF64Pseudo(MI, BB);
9130   case RISCV::PseudoQuietFLE_H:
9131     return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
9132   case RISCV::PseudoQuietFLT_H:
9133     return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
9134   case RISCV::PseudoQuietFLE_S:
9135     return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
9136   case RISCV::PseudoQuietFLT_S:
9137     return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
9138   case RISCV::PseudoQuietFLE_D:
9139     return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
9140   case RISCV::PseudoQuietFLT_D:
9141     return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
9142   }
9143 }
9144 
9145 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
9146                                                         SDNode *Node) const {
9147   // Add FRM dependency to any instructions with dynamic rounding mode.
9148   unsigned Opc = MI.getOpcode();
9149   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
9150   if (Idx < 0)
9151     return;
9152   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
9153     return;
9154   // If the instruction already reads FRM, don't add another read.
9155   if (MI.readsRegister(RISCV::FRM))
9156     return;
9157   MI.addOperand(
9158       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
9159 }
9160 
9161 // Calling Convention Implementation.
9162 // The expectations for frontend ABI lowering vary from target to target.
9163 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
9164 // details, but this is a longer term goal. For now, we simply try to keep the
9165 // role of the frontend as simple and well-defined as possible. The rules can
9166 // be summarised as:
9167 // * Never split up large scalar arguments. We handle them here.
9168 // * If a hardfloat calling convention is being used, and the struct may be
9169 // passed in a pair of registers (fp+fp, int+fp), and both registers are
9170 // available, then pass as two separate arguments. If either the GPRs or FPRs
9171 // are exhausted, then pass according to the rule below.
9172 // * If a struct could never be passed in registers or directly in a stack
9173 // slot (as it is larger than 2*XLEN and the floating point rules don't
9174 // apply), then pass it using a pointer with the byval attribute.
9175 // * If a struct is less than 2*XLEN, then coerce to either a two-element
9176 // word-sized array or a 2*XLEN scalar (depending on alignment).
9177 // * The frontend can determine whether a struct is returned by reference or
9178 // not based on its size and fields. If it will be returned by reference, the
9179 // frontend must modify the prototype so a pointer with the sret annotation is
9180 // passed as the first argument. This is not necessary for large scalar
9181 // returns.
9182 // * Struct return values and varargs should be coerced to structs containing
9183 // register-size fields in the same situations they would be for fixed
9184 // arguments.
9185 
9186 static const MCPhysReg ArgGPRs[] = {
9187   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
9188   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
9189 };
9190 static const MCPhysReg ArgFPR16s[] = {
9191   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
9192   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
9193 };
9194 static const MCPhysReg ArgFPR32s[] = {
9195   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
9196   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
9197 };
9198 static const MCPhysReg ArgFPR64s[] = {
9199   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
9200   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
9201 };
9202 // This is an interim calling convention and it may be changed in the future.
9203 static const MCPhysReg ArgVRs[] = {
9204     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
9205     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
9206     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
9207 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
9208                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
9209                                      RISCV::V20M2, RISCV::V22M2};
9210 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
9211                                      RISCV::V20M4};
9212 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
9213 
9214 // Pass a 2*XLEN argument that has been split into two XLEN values through
9215 // registers or the stack as necessary.
9216 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
9217                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
9218                                 MVT ValVT2, MVT LocVT2,
9219                                 ISD::ArgFlagsTy ArgFlags2) {
9220   unsigned XLenInBytes = XLen / 8;
9221   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9222     // At least one half can be passed via register.
9223     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
9224                                      VA1.getLocVT(), CCValAssign::Full));
9225   } else {
9226     // Both halves must be passed on the stack, with proper alignment.
9227     Align StackAlign =
9228         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
9229     State.addLoc(
9230         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
9231                             State.AllocateStack(XLenInBytes, StackAlign),
9232                             VA1.getLocVT(), CCValAssign::Full));
9233     State.addLoc(CCValAssign::getMem(
9234         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9235         LocVT2, CCValAssign::Full));
9236     return false;
9237   }
9238 
9239   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9240     // The second half can also be passed via register.
9241     State.addLoc(
9242         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
9243   } else {
9244     // The second half is passed via the stack, without additional alignment.
9245     State.addLoc(CCValAssign::getMem(
9246         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9247         LocVT2, CCValAssign::Full));
9248   }
9249 
9250   return false;
9251 }
9252 
9253 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
9254                                Optional<unsigned> FirstMaskArgument,
9255                                CCState &State, const RISCVTargetLowering &TLI) {
9256   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
9257   if (RC == &RISCV::VRRegClass) {
9258     // Assign the first mask argument to V0.
9259     // This is an interim calling convention and it may be changed in the
9260     // future.
9261     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
9262       return State.AllocateReg(RISCV::V0);
9263     return State.AllocateReg(ArgVRs);
9264   }
9265   if (RC == &RISCV::VRM2RegClass)
9266     return State.AllocateReg(ArgVRM2s);
9267   if (RC == &RISCV::VRM4RegClass)
9268     return State.AllocateReg(ArgVRM4s);
9269   if (RC == &RISCV::VRM8RegClass)
9270     return State.AllocateReg(ArgVRM8s);
9271   llvm_unreachable("Unhandled register class for ValueType");
9272 }
9273 
9274 // Implements the RISC-V calling convention. Returns true upon failure.
9275 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
9276                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
9277                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
9278                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
9279                      Optional<unsigned> FirstMaskArgument) {
9280   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
9281   assert(XLen == 32 || XLen == 64);
9282   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
9283 
9284   // Any return value split in to more than two values can't be returned
9285   // directly. Vectors are returned via the available vector registers.
9286   if (!LocVT.isVector() && IsRet && ValNo > 1)
9287     return true;
9288 
9289   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
9290   // variadic argument, or if no F16/F32 argument registers are available.
9291   bool UseGPRForF16_F32 = true;
9292   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
9293   // variadic argument, or if no F64 argument registers are available.
9294   bool UseGPRForF64 = true;
9295 
9296   switch (ABI) {
9297   default:
9298     llvm_unreachable("Unexpected ABI");
9299   case RISCVABI::ABI_ILP32:
9300   case RISCVABI::ABI_LP64:
9301     break;
9302   case RISCVABI::ABI_ILP32F:
9303   case RISCVABI::ABI_LP64F:
9304     UseGPRForF16_F32 = !IsFixed;
9305     break;
9306   case RISCVABI::ABI_ILP32D:
9307   case RISCVABI::ABI_LP64D:
9308     UseGPRForF16_F32 = !IsFixed;
9309     UseGPRForF64 = !IsFixed;
9310     break;
9311   }
9312 
9313   // FPR16, FPR32, and FPR64 alias each other.
9314   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
9315     UseGPRForF16_F32 = true;
9316     UseGPRForF64 = true;
9317   }
9318 
9319   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
9320   // similar local variables rather than directly checking against the target
9321   // ABI.
9322 
9323   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
9324     LocVT = XLenVT;
9325     LocInfo = CCValAssign::BCvt;
9326   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
9327     LocVT = MVT::i64;
9328     LocInfo = CCValAssign::BCvt;
9329   }
9330 
9331   // If this is a variadic argument, the RISC-V calling convention requires
9332   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
9333   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
9334   // be used regardless of whether the original argument was split during
9335   // legalisation or not. The argument will not be passed by registers if the
9336   // original type is larger than 2*XLEN, so the register alignment rule does
9337   // not apply.
9338   unsigned TwoXLenInBytes = (2 * XLen) / 8;
9339   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
9340       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
9341     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
9342     // Skip 'odd' register if necessary.
9343     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
9344       State.AllocateReg(ArgGPRs);
9345   }
9346 
9347   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
9348   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
9349       State.getPendingArgFlags();
9350 
9351   assert(PendingLocs.size() == PendingArgFlags.size() &&
9352          "PendingLocs and PendingArgFlags out of sync");
9353 
9354   // Handle passing f64 on RV32D with a soft float ABI or when floating point
9355   // registers are exhausted.
9356   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
9357     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
9358            "Can't lower f64 if it is split");
9359     // Depending on available argument GPRS, f64 may be passed in a pair of
9360     // GPRs, split between a GPR and the stack, or passed completely on the
9361     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
9362     // cases.
9363     Register Reg = State.AllocateReg(ArgGPRs);
9364     LocVT = MVT::i32;
9365     if (!Reg) {
9366       unsigned StackOffset = State.AllocateStack(8, Align(8));
9367       State.addLoc(
9368           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9369       return false;
9370     }
9371     if (!State.AllocateReg(ArgGPRs))
9372       State.AllocateStack(4, Align(4));
9373     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9374     return false;
9375   }
9376 
9377   // Fixed-length vectors are located in the corresponding scalable-vector
9378   // container types.
9379   if (ValVT.isFixedLengthVector())
9380     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9381 
9382   // Split arguments might be passed indirectly, so keep track of the pending
9383   // values. Split vectors are passed via a mix of registers and indirectly, so
9384   // treat them as we would any other argument.
9385   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
9386     LocVT = XLenVT;
9387     LocInfo = CCValAssign::Indirect;
9388     PendingLocs.push_back(
9389         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
9390     PendingArgFlags.push_back(ArgFlags);
9391     if (!ArgFlags.isSplitEnd()) {
9392       return false;
9393     }
9394   }
9395 
9396   // If the split argument only had two elements, it should be passed directly
9397   // in registers or on the stack.
9398   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
9399       PendingLocs.size() <= 2) {
9400     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
9401     // Apply the normal calling convention rules to the first half of the
9402     // split argument.
9403     CCValAssign VA = PendingLocs[0];
9404     ISD::ArgFlagsTy AF = PendingArgFlags[0];
9405     PendingLocs.clear();
9406     PendingArgFlags.clear();
9407     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
9408                                ArgFlags);
9409   }
9410 
9411   // Allocate to a register if possible, or else a stack slot.
9412   Register Reg;
9413   unsigned StoreSizeBytes = XLen / 8;
9414   Align StackAlign = Align(XLen / 8);
9415 
9416   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
9417     Reg = State.AllocateReg(ArgFPR16s);
9418   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
9419     Reg = State.AllocateReg(ArgFPR32s);
9420   else if (ValVT == MVT::f64 && !UseGPRForF64)
9421     Reg = State.AllocateReg(ArgFPR64s);
9422   else if (ValVT.isVector()) {
9423     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
9424     if (!Reg) {
9425       // For return values, the vector must be passed fully via registers or
9426       // via the stack.
9427       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
9428       // but we're using all of them.
9429       if (IsRet)
9430         return true;
9431       // Try using a GPR to pass the address
9432       if ((Reg = State.AllocateReg(ArgGPRs))) {
9433         LocVT = XLenVT;
9434         LocInfo = CCValAssign::Indirect;
9435       } else if (ValVT.isScalableVector()) {
9436         LocVT = XLenVT;
9437         LocInfo = CCValAssign::Indirect;
9438       } else {
9439         // Pass fixed-length vectors on the stack.
9440         LocVT = ValVT;
9441         StoreSizeBytes = ValVT.getStoreSize();
9442         // Align vectors to their element sizes, being careful for vXi1
9443         // vectors.
9444         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9445       }
9446     }
9447   } else {
9448     Reg = State.AllocateReg(ArgGPRs);
9449   }
9450 
9451   unsigned StackOffset =
9452       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
9453 
9454   // If we reach this point and PendingLocs is non-empty, we must be at the
9455   // end of a split argument that must be passed indirectly.
9456   if (!PendingLocs.empty()) {
9457     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
9458     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
9459 
9460     for (auto &It : PendingLocs) {
9461       if (Reg)
9462         It.convertToReg(Reg);
9463       else
9464         It.convertToMem(StackOffset);
9465       State.addLoc(It);
9466     }
9467     PendingLocs.clear();
9468     PendingArgFlags.clear();
9469     return false;
9470   }
9471 
9472   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
9473           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
9474          "Expected an XLenVT or vector types at this stage");
9475 
9476   if (Reg) {
9477     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9478     return false;
9479   }
9480 
9481   // When a floating-point value is passed on the stack, no bit-conversion is
9482   // needed.
9483   if (ValVT.isFloatingPoint()) {
9484     LocVT = ValVT;
9485     LocInfo = CCValAssign::Full;
9486   }
9487   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9488   return false;
9489 }
9490 
9491 template <typename ArgTy>
9492 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
9493   for (const auto &ArgIdx : enumerate(Args)) {
9494     MVT ArgVT = ArgIdx.value().VT;
9495     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
9496       return ArgIdx.index();
9497   }
9498   return None;
9499 }
9500 
9501 void RISCVTargetLowering::analyzeInputArgs(
9502     MachineFunction &MF, CCState &CCInfo,
9503     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
9504     RISCVCCAssignFn Fn) const {
9505   unsigned NumArgs = Ins.size();
9506   FunctionType *FType = MF.getFunction().getFunctionType();
9507 
9508   Optional<unsigned> FirstMaskArgument;
9509   if (Subtarget.hasVInstructions())
9510     FirstMaskArgument = preAssignMask(Ins);
9511 
9512   for (unsigned i = 0; i != NumArgs; ++i) {
9513     MVT ArgVT = Ins[i].VT;
9514     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
9515 
9516     Type *ArgTy = nullptr;
9517     if (IsRet)
9518       ArgTy = FType->getReturnType();
9519     else if (Ins[i].isOrigArg())
9520       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
9521 
9522     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9523     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
9524            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
9525            FirstMaskArgument)) {
9526       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
9527                         << EVT(ArgVT).getEVTString() << '\n');
9528       llvm_unreachable(nullptr);
9529     }
9530   }
9531 }
9532 
9533 void RISCVTargetLowering::analyzeOutputArgs(
9534     MachineFunction &MF, CCState &CCInfo,
9535     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
9536     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
9537   unsigned NumArgs = Outs.size();
9538 
9539   Optional<unsigned> FirstMaskArgument;
9540   if (Subtarget.hasVInstructions())
9541     FirstMaskArgument = preAssignMask(Outs);
9542 
9543   for (unsigned i = 0; i != NumArgs; i++) {
9544     MVT ArgVT = Outs[i].VT;
9545     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
9546     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
9547 
9548     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9549     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
9550            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
9551            FirstMaskArgument)) {
9552       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
9553                         << EVT(ArgVT).getEVTString() << "\n");
9554       llvm_unreachable(nullptr);
9555     }
9556   }
9557 }
9558 
9559 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
9560 // values.
9561 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
9562                                    const CCValAssign &VA, const SDLoc &DL,
9563                                    const RISCVSubtarget &Subtarget) {
9564   switch (VA.getLocInfo()) {
9565   default:
9566     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9567   case CCValAssign::Full:
9568     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
9569       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
9570     break;
9571   case CCValAssign::BCvt:
9572     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
9573       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
9574     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
9575       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
9576     else
9577       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
9578     break;
9579   }
9580   return Val;
9581 }
9582 
9583 // The caller is responsible for loading the full value if the argument is
9584 // passed with CCValAssign::Indirect.
9585 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
9586                                 const CCValAssign &VA, const SDLoc &DL,
9587                                 const RISCVTargetLowering &TLI) {
9588   MachineFunction &MF = DAG.getMachineFunction();
9589   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9590   EVT LocVT = VA.getLocVT();
9591   SDValue Val;
9592   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
9593   Register VReg = RegInfo.createVirtualRegister(RC);
9594   RegInfo.addLiveIn(VA.getLocReg(), VReg);
9595   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
9596 
9597   if (VA.getLocInfo() == CCValAssign::Indirect)
9598     return Val;
9599 
9600   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
9601 }
9602 
9603 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
9604                                    const CCValAssign &VA, const SDLoc &DL,
9605                                    const RISCVSubtarget &Subtarget) {
9606   EVT LocVT = VA.getLocVT();
9607 
9608   switch (VA.getLocInfo()) {
9609   default:
9610     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9611   case CCValAssign::Full:
9612     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
9613       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
9614     break;
9615   case CCValAssign::BCvt:
9616     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
9617       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
9618     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
9619       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
9620     else
9621       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
9622     break;
9623   }
9624   return Val;
9625 }
9626 
9627 // The caller is responsible for loading the full value if the argument is
9628 // passed with CCValAssign::Indirect.
9629 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
9630                                 const CCValAssign &VA, const SDLoc &DL) {
9631   MachineFunction &MF = DAG.getMachineFunction();
9632   MachineFrameInfo &MFI = MF.getFrameInfo();
9633   EVT LocVT = VA.getLocVT();
9634   EVT ValVT = VA.getValVT();
9635   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
9636   if (ValVT.isScalableVector()) {
9637     // When the value is a scalable vector, we save the pointer which points to
9638     // the scalable vector value in the stack. The ValVT will be the pointer
9639     // type, instead of the scalable vector type.
9640     ValVT = LocVT;
9641   }
9642   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
9643                                  /*IsImmutable=*/true);
9644   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
9645   SDValue Val;
9646 
9647   ISD::LoadExtType ExtType;
9648   switch (VA.getLocInfo()) {
9649   default:
9650     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9651   case CCValAssign::Full:
9652   case CCValAssign::Indirect:
9653   case CCValAssign::BCvt:
9654     ExtType = ISD::NON_EXTLOAD;
9655     break;
9656   }
9657   Val = DAG.getExtLoad(
9658       ExtType, DL, LocVT, Chain, FIN,
9659       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
9660   return Val;
9661 }
9662 
9663 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
9664                                        const CCValAssign &VA, const SDLoc &DL) {
9665   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
9666          "Unexpected VA");
9667   MachineFunction &MF = DAG.getMachineFunction();
9668   MachineFrameInfo &MFI = MF.getFrameInfo();
9669   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9670 
9671   if (VA.isMemLoc()) {
9672     // f64 is passed on the stack.
9673     int FI =
9674         MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
9675     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
9676     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
9677                        MachinePointerInfo::getFixedStack(MF, FI));
9678   }
9679 
9680   assert(VA.isRegLoc() && "Expected register VA assignment");
9681 
9682   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9683   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
9684   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
9685   SDValue Hi;
9686   if (VA.getLocReg() == RISCV::X17) {
9687     // Second half of f64 is passed on the stack.
9688     int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
9689     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
9690     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
9691                      MachinePointerInfo::getFixedStack(MF, FI));
9692   } else {
9693     // Second half of f64 is passed in another GPR.
9694     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9695     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
9696     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
9697   }
9698   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
9699 }
9700 
9701 // FastCC has less than 1% performance improvement for some particular
9702 // benchmark. But theoretically, it may has benenfit for some cases.
9703 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
9704                             unsigned ValNo, MVT ValVT, MVT LocVT,
9705                             CCValAssign::LocInfo LocInfo,
9706                             ISD::ArgFlagsTy ArgFlags, CCState &State,
9707                             bool IsFixed, bool IsRet, Type *OrigTy,
9708                             const RISCVTargetLowering &TLI,
9709                             Optional<unsigned> FirstMaskArgument) {
9710 
9711   // X5 and X6 might be used for save-restore libcall.
9712   static const MCPhysReg GPRList[] = {
9713       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
9714       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
9715       RISCV::X29, RISCV::X30, RISCV::X31};
9716 
9717   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
9718     if (unsigned Reg = State.AllocateReg(GPRList)) {
9719       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9720       return false;
9721     }
9722   }
9723 
9724   if (LocVT == MVT::f16) {
9725     static const MCPhysReg FPR16List[] = {
9726         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
9727         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
9728         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
9729         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
9730     if (unsigned Reg = State.AllocateReg(FPR16List)) {
9731       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9732       return false;
9733     }
9734   }
9735 
9736   if (LocVT == MVT::f32) {
9737     static const MCPhysReg FPR32List[] = {
9738         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
9739         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
9740         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
9741         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
9742     if (unsigned Reg = State.AllocateReg(FPR32List)) {
9743       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9744       return false;
9745     }
9746   }
9747 
9748   if (LocVT == MVT::f64) {
9749     static const MCPhysReg FPR64List[] = {
9750         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
9751         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
9752         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
9753         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
9754     if (unsigned Reg = State.AllocateReg(FPR64List)) {
9755       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9756       return false;
9757     }
9758   }
9759 
9760   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
9761     unsigned Offset4 = State.AllocateStack(4, Align(4));
9762     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
9763     return false;
9764   }
9765 
9766   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
9767     unsigned Offset5 = State.AllocateStack(8, Align(8));
9768     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
9769     return false;
9770   }
9771 
9772   if (LocVT.isVector()) {
9773     if (unsigned Reg =
9774             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
9775       // Fixed-length vectors are located in the corresponding scalable-vector
9776       // container types.
9777       if (ValVT.isFixedLengthVector())
9778         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9779       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9780     } else {
9781       // Try and pass the address via a "fast" GPR.
9782       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
9783         LocInfo = CCValAssign::Indirect;
9784         LocVT = TLI.getSubtarget().getXLenVT();
9785         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
9786       } else if (ValVT.isFixedLengthVector()) {
9787         auto StackAlign =
9788             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9789         unsigned StackOffset =
9790             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
9791         State.addLoc(
9792             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9793       } else {
9794         // Can't pass scalable vectors on the stack.
9795         return true;
9796       }
9797     }
9798 
9799     return false;
9800   }
9801 
9802   return true; // CC didn't match.
9803 }
9804 
9805 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
9806                          CCValAssign::LocInfo LocInfo,
9807                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
9808 
9809   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
9810     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
9811     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
9812     static const MCPhysReg GPRList[] = {
9813         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
9814         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
9815     if (unsigned Reg = State.AllocateReg(GPRList)) {
9816       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9817       return false;
9818     }
9819   }
9820 
9821   if (LocVT == MVT::f32) {
9822     // Pass in STG registers: F1, ..., F6
9823     //                        fs0 ... fs5
9824     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
9825                                           RISCV::F18_F, RISCV::F19_F,
9826                                           RISCV::F20_F, RISCV::F21_F};
9827     if (unsigned Reg = State.AllocateReg(FPR32List)) {
9828       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9829       return false;
9830     }
9831   }
9832 
9833   if (LocVT == MVT::f64) {
9834     // Pass in STG registers: D1, ..., D6
9835     //                        fs6 ... fs11
9836     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
9837                                           RISCV::F24_D, RISCV::F25_D,
9838                                           RISCV::F26_D, RISCV::F27_D};
9839     if (unsigned Reg = State.AllocateReg(FPR64List)) {
9840       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9841       return false;
9842     }
9843   }
9844 
9845   report_fatal_error("No registers left in GHC calling convention");
9846   return true;
9847 }
9848 
9849 // Transform physical registers into virtual registers.
9850 SDValue RISCVTargetLowering::LowerFormalArguments(
9851     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
9852     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
9853     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
9854 
9855   MachineFunction &MF = DAG.getMachineFunction();
9856 
9857   switch (CallConv) {
9858   default:
9859     report_fatal_error("Unsupported calling convention");
9860   case CallingConv::C:
9861   case CallingConv::Fast:
9862     break;
9863   case CallingConv::GHC:
9864     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
9865         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
9866       report_fatal_error(
9867         "GHC calling convention requires the F and D instruction set extensions");
9868   }
9869 
9870   const Function &Func = MF.getFunction();
9871   if (Func.hasFnAttribute("interrupt")) {
9872     if (!Func.arg_empty())
9873       report_fatal_error(
9874         "Functions with the interrupt attribute cannot have arguments!");
9875 
9876     StringRef Kind =
9877       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
9878 
9879     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
9880       report_fatal_error(
9881         "Function interrupt attribute argument not supported!");
9882   }
9883 
9884   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9885   MVT XLenVT = Subtarget.getXLenVT();
9886   unsigned XLenInBytes = Subtarget.getXLen() / 8;
9887   // Used with vargs to acumulate store chains.
9888   std::vector<SDValue> OutChains;
9889 
9890   // Assign locations to all of the incoming arguments.
9891   SmallVector<CCValAssign, 16> ArgLocs;
9892   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
9893 
9894   if (CallConv == CallingConv::GHC)
9895     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
9896   else
9897     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
9898                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
9899                                                    : CC_RISCV);
9900 
9901   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
9902     CCValAssign &VA = ArgLocs[i];
9903     SDValue ArgValue;
9904     // Passing f64 on RV32D with a soft float ABI must be handled as a special
9905     // case.
9906     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
9907       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
9908     else if (VA.isRegLoc())
9909       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
9910     else
9911       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
9912 
9913     if (VA.getLocInfo() == CCValAssign::Indirect) {
9914       // If the original argument was split and passed by reference (e.g. i128
9915       // on RV32), we need to load all parts of it here (using the same
9916       // address). Vectors may be partly split to registers and partly to the
9917       // stack, in which case the base address is partly offset and subsequent
9918       // stores are relative to that.
9919       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
9920                                    MachinePointerInfo()));
9921       unsigned ArgIndex = Ins[i].OrigArgIndex;
9922       unsigned ArgPartOffset = Ins[i].PartOffset;
9923       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
9924       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
9925         CCValAssign &PartVA = ArgLocs[i + 1];
9926         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
9927         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
9928         if (PartVA.getValVT().isScalableVector())
9929           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
9930         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
9931         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
9932                                      MachinePointerInfo()));
9933         ++i;
9934       }
9935       continue;
9936     }
9937     InVals.push_back(ArgValue);
9938   }
9939 
9940   if (IsVarArg) {
9941     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
9942     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
9943     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
9944     MachineFrameInfo &MFI = MF.getFrameInfo();
9945     MachineRegisterInfo &RegInfo = MF.getRegInfo();
9946     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
9947 
9948     // Offset of the first variable argument from stack pointer, and size of
9949     // the vararg save area. For now, the varargs save area is either zero or
9950     // large enough to hold a0-a7.
9951     int VaArgOffset, VarArgsSaveSize;
9952 
9953     // If all registers are allocated, then all varargs must be passed on the
9954     // stack and we don't need to save any argregs.
9955     if (ArgRegs.size() == Idx) {
9956       VaArgOffset = CCInfo.getNextStackOffset();
9957       VarArgsSaveSize = 0;
9958     } else {
9959       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
9960       VaArgOffset = -VarArgsSaveSize;
9961     }
9962 
9963     // Record the frame index of the first variable argument
9964     // which is a value necessary to VASTART.
9965     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
9966     RVFI->setVarArgsFrameIndex(FI);
9967 
9968     // If saving an odd number of registers then create an extra stack slot to
9969     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
9970     // offsets to even-numbered registered remain 2*XLEN-aligned.
9971     if (Idx % 2) {
9972       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
9973       VarArgsSaveSize += XLenInBytes;
9974     }
9975 
9976     // Copy the integer registers that may have been used for passing varargs
9977     // to the vararg save area.
9978     for (unsigned I = Idx; I < ArgRegs.size();
9979          ++I, VaArgOffset += XLenInBytes) {
9980       const Register Reg = RegInfo.createVirtualRegister(RC);
9981       RegInfo.addLiveIn(ArgRegs[I], Reg);
9982       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
9983       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
9984       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
9985       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
9986                                    MachinePointerInfo::getFixedStack(MF, FI));
9987       cast<StoreSDNode>(Store.getNode())
9988           ->getMemOperand()
9989           ->setValue((Value *)nullptr);
9990       OutChains.push_back(Store);
9991     }
9992     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
9993   }
9994 
9995   // All stores are grouped in one node to allow the matching between
9996   // the size of Ins and InVals. This only happens for vararg functions.
9997   if (!OutChains.empty()) {
9998     OutChains.push_back(Chain);
9999     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
10000   }
10001 
10002   return Chain;
10003 }
10004 
10005 /// isEligibleForTailCallOptimization - Check whether the call is eligible
10006 /// for tail call optimization.
10007 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
10008 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
10009     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
10010     const SmallVector<CCValAssign, 16> &ArgLocs) const {
10011 
10012   auto &Callee = CLI.Callee;
10013   auto CalleeCC = CLI.CallConv;
10014   auto &Outs = CLI.Outs;
10015   auto &Caller = MF.getFunction();
10016   auto CallerCC = Caller.getCallingConv();
10017 
10018   // Exception-handling functions need a special set of instructions to
10019   // indicate a return to the hardware. Tail-calling another function would
10020   // probably break this.
10021   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
10022   // should be expanded as new function attributes are introduced.
10023   if (Caller.hasFnAttribute("interrupt"))
10024     return false;
10025 
10026   // Do not tail call opt if the stack is used to pass parameters.
10027   if (CCInfo.getNextStackOffset() != 0)
10028     return false;
10029 
10030   // Do not tail call opt if any parameters need to be passed indirectly.
10031   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
10032   // passed indirectly. So the address of the value will be passed in a
10033   // register, or if not available, then the address is put on the stack. In
10034   // order to pass indirectly, space on the stack often needs to be allocated
10035   // in order to store the value. In this case the CCInfo.getNextStackOffset()
10036   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
10037   // are passed CCValAssign::Indirect.
10038   for (auto &VA : ArgLocs)
10039     if (VA.getLocInfo() == CCValAssign::Indirect)
10040       return false;
10041 
10042   // Do not tail call opt if either caller or callee uses struct return
10043   // semantics.
10044   auto IsCallerStructRet = Caller.hasStructRetAttr();
10045   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
10046   if (IsCallerStructRet || IsCalleeStructRet)
10047     return false;
10048 
10049   // Externally-defined functions with weak linkage should not be
10050   // tail-called. The behaviour of branch instructions in this situation (as
10051   // used for tail calls) is implementation-defined, so we cannot rely on the
10052   // linker replacing the tail call with a return.
10053   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
10054     const GlobalValue *GV = G->getGlobal();
10055     if (GV->hasExternalWeakLinkage())
10056       return false;
10057   }
10058 
10059   // The callee has to preserve all registers the caller needs to preserve.
10060   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
10061   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
10062   if (CalleeCC != CallerCC) {
10063     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
10064     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
10065       return false;
10066   }
10067 
10068   // Byval parameters hand the function a pointer directly into the stack area
10069   // we want to reuse during a tail call. Working around this *is* possible
10070   // but less efficient and uglier in LowerCall.
10071   for (auto &Arg : Outs)
10072     if (Arg.Flags.isByVal())
10073       return false;
10074 
10075   return true;
10076 }
10077 
10078 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
10079   return DAG.getDataLayout().getPrefTypeAlign(
10080       VT.getTypeForEVT(*DAG.getContext()));
10081 }
10082 
10083 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
10084 // and output parameter nodes.
10085 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
10086                                        SmallVectorImpl<SDValue> &InVals) const {
10087   SelectionDAG &DAG = CLI.DAG;
10088   SDLoc &DL = CLI.DL;
10089   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
10090   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
10091   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
10092   SDValue Chain = CLI.Chain;
10093   SDValue Callee = CLI.Callee;
10094   bool &IsTailCall = CLI.IsTailCall;
10095   CallingConv::ID CallConv = CLI.CallConv;
10096   bool IsVarArg = CLI.IsVarArg;
10097   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10098   MVT XLenVT = Subtarget.getXLenVT();
10099 
10100   MachineFunction &MF = DAG.getMachineFunction();
10101 
10102   // Analyze the operands of the call, assigning locations to each operand.
10103   SmallVector<CCValAssign, 16> ArgLocs;
10104   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10105 
10106   if (CallConv == CallingConv::GHC)
10107     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
10108   else
10109     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
10110                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10111                                                     : CC_RISCV);
10112 
10113   // Check if it's really possible to do a tail call.
10114   if (IsTailCall)
10115     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
10116 
10117   if (IsTailCall)
10118     ++NumTailCalls;
10119   else if (CLI.CB && CLI.CB->isMustTailCall())
10120     report_fatal_error("failed to perform tail call elimination on a call "
10121                        "site marked musttail");
10122 
10123   // Get a count of how many bytes are to be pushed on the stack.
10124   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
10125 
10126   // Create local copies for byval args
10127   SmallVector<SDValue, 8> ByValArgs;
10128   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10129     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10130     if (!Flags.isByVal())
10131       continue;
10132 
10133     SDValue Arg = OutVals[i];
10134     unsigned Size = Flags.getByValSize();
10135     Align Alignment = Flags.getNonZeroByValAlign();
10136 
10137     int FI =
10138         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
10139     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10140     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
10141 
10142     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
10143                           /*IsVolatile=*/false,
10144                           /*AlwaysInline=*/false, IsTailCall,
10145                           MachinePointerInfo(), MachinePointerInfo());
10146     ByValArgs.push_back(FIPtr);
10147   }
10148 
10149   if (!IsTailCall)
10150     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
10151 
10152   // Copy argument values to their designated locations.
10153   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
10154   SmallVector<SDValue, 8> MemOpChains;
10155   SDValue StackPtr;
10156   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
10157     CCValAssign &VA = ArgLocs[i];
10158     SDValue ArgValue = OutVals[i];
10159     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10160 
10161     // Handle passing f64 on RV32D with a soft float ABI as a special case.
10162     bool IsF64OnRV32DSoftABI =
10163         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
10164     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
10165       SDValue SplitF64 = DAG.getNode(
10166           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
10167       SDValue Lo = SplitF64.getValue(0);
10168       SDValue Hi = SplitF64.getValue(1);
10169 
10170       Register RegLo = VA.getLocReg();
10171       RegsToPass.push_back(std::make_pair(RegLo, Lo));
10172 
10173       if (RegLo == RISCV::X17) {
10174         // Second half of f64 is passed on the stack.
10175         // Work out the address of the stack slot.
10176         if (!StackPtr.getNode())
10177           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10178         // Emit the store.
10179         MemOpChains.push_back(
10180             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
10181       } else {
10182         // Second half of f64 is passed in another GPR.
10183         assert(RegLo < RISCV::X31 && "Invalid register pair");
10184         Register RegHigh = RegLo + 1;
10185         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
10186       }
10187       continue;
10188     }
10189 
10190     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
10191     // as any other MemLoc.
10192 
10193     // Promote the value if needed.
10194     // For now, only handle fully promoted and indirect arguments.
10195     if (VA.getLocInfo() == CCValAssign::Indirect) {
10196       // Store the argument in a stack slot and pass its address.
10197       Align StackAlign =
10198           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
10199                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
10200       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
10201       // If the original argument was split (e.g. i128), we need
10202       // to store the required parts of it here (and pass just one address).
10203       // Vectors may be partly split to registers and partly to the stack, in
10204       // which case the base address is partly offset and subsequent stores are
10205       // relative to that.
10206       unsigned ArgIndex = Outs[i].OrigArgIndex;
10207       unsigned ArgPartOffset = Outs[i].PartOffset;
10208       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10209       // Calculate the total size to store. We don't have access to what we're
10210       // actually storing other than performing the loop and collecting the
10211       // info.
10212       SmallVector<std::pair<SDValue, SDValue>> Parts;
10213       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
10214         SDValue PartValue = OutVals[i + 1];
10215         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
10216         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10217         EVT PartVT = PartValue.getValueType();
10218         if (PartVT.isScalableVector())
10219           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10220         StoredSize += PartVT.getStoreSize();
10221         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
10222         Parts.push_back(std::make_pair(PartValue, Offset));
10223         ++i;
10224       }
10225       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
10226       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
10227       MemOpChains.push_back(
10228           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
10229                        MachinePointerInfo::getFixedStack(MF, FI)));
10230       for (const auto &Part : Parts) {
10231         SDValue PartValue = Part.first;
10232         SDValue PartOffset = Part.second;
10233         SDValue Address =
10234             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
10235         MemOpChains.push_back(
10236             DAG.getStore(Chain, DL, PartValue, Address,
10237                          MachinePointerInfo::getFixedStack(MF, FI)));
10238       }
10239       ArgValue = SpillSlot;
10240     } else {
10241       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
10242     }
10243 
10244     // Use local copy if it is a byval arg.
10245     if (Flags.isByVal())
10246       ArgValue = ByValArgs[j++];
10247 
10248     if (VA.isRegLoc()) {
10249       // Queue up the argument copies and emit them at the end.
10250       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
10251     } else {
10252       assert(VA.isMemLoc() && "Argument not register or memory");
10253       assert(!IsTailCall && "Tail call not allowed if stack is used "
10254                             "for passing parameters");
10255 
10256       // Work out the address of the stack slot.
10257       if (!StackPtr.getNode())
10258         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10259       SDValue Address =
10260           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
10261                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
10262 
10263       // Emit the store.
10264       MemOpChains.push_back(
10265           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
10266     }
10267   }
10268 
10269   // Join the stores, which are independent of one another.
10270   if (!MemOpChains.empty())
10271     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
10272 
10273   SDValue Glue;
10274 
10275   // Build a sequence of copy-to-reg nodes, chained and glued together.
10276   for (auto &Reg : RegsToPass) {
10277     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
10278     Glue = Chain.getValue(1);
10279   }
10280 
10281   // Validate that none of the argument registers have been marked as
10282   // reserved, if so report an error. Do the same for the return address if this
10283   // is not a tailcall.
10284   validateCCReservedRegs(RegsToPass, MF);
10285   if (!IsTailCall &&
10286       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
10287     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10288         MF.getFunction(),
10289         "Return address register required, but has been reserved."});
10290 
10291   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
10292   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
10293   // split it and then direct call can be matched by PseudoCALL.
10294   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
10295     const GlobalValue *GV = S->getGlobal();
10296 
10297     unsigned OpFlags = RISCVII::MO_CALL;
10298     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
10299       OpFlags = RISCVII::MO_PLT;
10300 
10301     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
10302   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
10303     unsigned OpFlags = RISCVII::MO_CALL;
10304 
10305     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
10306                                                  nullptr))
10307       OpFlags = RISCVII::MO_PLT;
10308 
10309     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
10310   }
10311 
10312   // The first call operand is the chain and the second is the target address.
10313   SmallVector<SDValue, 8> Ops;
10314   Ops.push_back(Chain);
10315   Ops.push_back(Callee);
10316 
10317   // Add argument registers to the end of the list so that they are
10318   // known live into the call.
10319   for (auto &Reg : RegsToPass)
10320     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
10321 
10322   if (!IsTailCall) {
10323     // Add a register mask operand representing the call-preserved registers.
10324     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
10325     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
10326     assert(Mask && "Missing call preserved mask for calling convention");
10327     Ops.push_back(DAG.getRegisterMask(Mask));
10328   }
10329 
10330   // Glue the call to the argument copies, if any.
10331   if (Glue.getNode())
10332     Ops.push_back(Glue);
10333 
10334   // Emit the call.
10335   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10336 
10337   if (IsTailCall) {
10338     MF.getFrameInfo().setHasTailCall();
10339     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
10340   }
10341 
10342   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
10343   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
10344   Glue = Chain.getValue(1);
10345 
10346   // Mark the end of the call, which is glued to the call itself.
10347   Chain = DAG.getCALLSEQ_END(Chain,
10348                              DAG.getConstant(NumBytes, DL, PtrVT, true),
10349                              DAG.getConstant(0, DL, PtrVT, true),
10350                              Glue, DL);
10351   Glue = Chain.getValue(1);
10352 
10353   // Assign locations to each value returned by this call.
10354   SmallVector<CCValAssign, 16> RVLocs;
10355   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
10356   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
10357 
10358   // Copy all of the result registers out of their specified physreg.
10359   for (auto &VA : RVLocs) {
10360     // Copy the value out
10361     SDValue RetValue =
10362         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
10363     // Glue the RetValue to the end of the call sequence
10364     Chain = RetValue.getValue(1);
10365     Glue = RetValue.getValue(2);
10366 
10367     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10368       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
10369       SDValue RetValue2 =
10370           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
10371       Chain = RetValue2.getValue(1);
10372       Glue = RetValue2.getValue(2);
10373       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
10374                              RetValue2);
10375     }
10376 
10377     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
10378 
10379     InVals.push_back(RetValue);
10380   }
10381 
10382   return Chain;
10383 }
10384 
10385 bool RISCVTargetLowering::CanLowerReturn(
10386     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
10387     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
10388   SmallVector<CCValAssign, 16> RVLocs;
10389   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
10390 
10391   Optional<unsigned> FirstMaskArgument;
10392   if (Subtarget.hasVInstructions())
10393     FirstMaskArgument = preAssignMask(Outs);
10394 
10395   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10396     MVT VT = Outs[i].VT;
10397     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10398     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10399     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
10400                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
10401                  *this, FirstMaskArgument))
10402       return false;
10403   }
10404   return true;
10405 }
10406 
10407 SDValue
10408 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
10409                                  bool IsVarArg,
10410                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
10411                                  const SmallVectorImpl<SDValue> &OutVals,
10412                                  const SDLoc &DL, SelectionDAG &DAG) const {
10413   const MachineFunction &MF = DAG.getMachineFunction();
10414   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10415 
10416   // Stores the assignment of the return value to a location.
10417   SmallVector<CCValAssign, 16> RVLocs;
10418 
10419   // Info about the registers and stack slot.
10420   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
10421                  *DAG.getContext());
10422 
10423   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
10424                     nullptr, CC_RISCV);
10425 
10426   if (CallConv == CallingConv::GHC && !RVLocs.empty())
10427     report_fatal_error("GHC functions return void only");
10428 
10429   SDValue Glue;
10430   SmallVector<SDValue, 4> RetOps(1, Chain);
10431 
10432   // Copy the result values into the output registers.
10433   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
10434     SDValue Val = OutVals[i];
10435     CCValAssign &VA = RVLocs[i];
10436     assert(VA.isRegLoc() && "Can only return in registers!");
10437 
10438     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10439       // Handle returning f64 on RV32D with a soft float ABI.
10440       assert(VA.isRegLoc() && "Expected return via registers");
10441       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
10442                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
10443       SDValue Lo = SplitF64.getValue(0);
10444       SDValue Hi = SplitF64.getValue(1);
10445       Register RegLo = VA.getLocReg();
10446       assert(RegLo < RISCV::X31 && "Invalid register pair");
10447       Register RegHi = RegLo + 1;
10448 
10449       if (STI.isRegisterReservedByUser(RegLo) ||
10450           STI.isRegisterReservedByUser(RegHi))
10451         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10452             MF.getFunction(),
10453             "Return value register required, but has been reserved."});
10454 
10455       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
10456       Glue = Chain.getValue(1);
10457       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
10458       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
10459       Glue = Chain.getValue(1);
10460       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
10461     } else {
10462       // Handle a 'normal' return.
10463       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
10464       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
10465 
10466       if (STI.isRegisterReservedByUser(VA.getLocReg()))
10467         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10468             MF.getFunction(),
10469             "Return value register required, but has been reserved."});
10470 
10471       // Guarantee that all emitted copies are stuck together.
10472       Glue = Chain.getValue(1);
10473       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
10474     }
10475   }
10476 
10477   RetOps[0] = Chain; // Update chain.
10478 
10479   // Add the glue node if we have it.
10480   if (Glue.getNode()) {
10481     RetOps.push_back(Glue);
10482   }
10483 
10484   unsigned RetOpc = RISCVISD::RET_FLAG;
10485   // Interrupt service routines use different return instructions.
10486   const Function &Func = DAG.getMachineFunction().getFunction();
10487   if (Func.hasFnAttribute("interrupt")) {
10488     if (!Func.getReturnType()->isVoidTy())
10489       report_fatal_error(
10490           "Functions with the interrupt attribute must have void return type!");
10491 
10492     MachineFunction &MF = DAG.getMachineFunction();
10493     StringRef Kind =
10494       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10495 
10496     if (Kind == "user")
10497       RetOpc = RISCVISD::URET_FLAG;
10498     else if (Kind == "supervisor")
10499       RetOpc = RISCVISD::SRET_FLAG;
10500     else
10501       RetOpc = RISCVISD::MRET_FLAG;
10502   }
10503 
10504   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
10505 }
10506 
10507 void RISCVTargetLowering::validateCCReservedRegs(
10508     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
10509     MachineFunction &MF) const {
10510   const Function &F = MF.getFunction();
10511   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10512 
10513   if (llvm::any_of(Regs, [&STI](auto Reg) {
10514         return STI.isRegisterReservedByUser(Reg.first);
10515       }))
10516     F.getContext().diagnose(DiagnosticInfoUnsupported{
10517         F, "Argument register required, but has been reserved."});
10518 }
10519 
10520 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
10521   return CI->isTailCall();
10522 }
10523 
10524 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
10525 #define NODE_NAME_CASE(NODE)                                                   \
10526   case RISCVISD::NODE:                                                         \
10527     return "RISCVISD::" #NODE;
10528   // clang-format off
10529   switch ((RISCVISD::NodeType)Opcode) {
10530   case RISCVISD::FIRST_NUMBER:
10531     break;
10532   NODE_NAME_CASE(RET_FLAG)
10533   NODE_NAME_CASE(URET_FLAG)
10534   NODE_NAME_CASE(SRET_FLAG)
10535   NODE_NAME_CASE(MRET_FLAG)
10536   NODE_NAME_CASE(CALL)
10537   NODE_NAME_CASE(SELECT_CC)
10538   NODE_NAME_CASE(BR_CC)
10539   NODE_NAME_CASE(BuildPairF64)
10540   NODE_NAME_CASE(SplitF64)
10541   NODE_NAME_CASE(TAIL)
10542   NODE_NAME_CASE(MULHSU)
10543   NODE_NAME_CASE(SLLW)
10544   NODE_NAME_CASE(SRAW)
10545   NODE_NAME_CASE(SRLW)
10546   NODE_NAME_CASE(DIVW)
10547   NODE_NAME_CASE(DIVUW)
10548   NODE_NAME_CASE(REMUW)
10549   NODE_NAME_CASE(ROLW)
10550   NODE_NAME_CASE(RORW)
10551   NODE_NAME_CASE(CLZW)
10552   NODE_NAME_CASE(CTZW)
10553   NODE_NAME_CASE(FSLW)
10554   NODE_NAME_CASE(FSRW)
10555   NODE_NAME_CASE(FSL)
10556   NODE_NAME_CASE(FSR)
10557   NODE_NAME_CASE(FMV_H_X)
10558   NODE_NAME_CASE(FMV_X_ANYEXTH)
10559   NODE_NAME_CASE(FMV_X_SIGNEXTH)
10560   NODE_NAME_CASE(FMV_W_X_RV64)
10561   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
10562   NODE_NAME_CASE(FCVT_X)
10563   NODE_NAME_CASE(FCVT_XU)
10564   NODE_NAME_CASE(FCVT_W_RV64)
10565   NODE_NAME_CASE(FCVT_WU_RV64)
10566   NODE_NAME_CASE(STRICT_FCVT_W_RV64)
10567   NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
10568   NODE_NAME_CASE(READ_CYCLE_WIDE)
10569   NODE_NAME_CASE(GREV)
10570   NODE_NAME_CASE(GREVW)
10571   NODE_NAME_CASE(GORC)
10572   NODE_NAME_CASE(GORCW)
10573   NODE_NAME_CASE(SHFL)
10574   NODE_NAME_CASE(SHFLW)
10575   NODE_NAME_CASE(UNSHFL)
10576   NODE_NAME_CASE(UNSHFLW)
10577   NODE_NAME_CASE(BFP)
10578   NODE_NAME_CASE(BFPW)
10579   NODE_NAME_CASE(BCOMPRESS)
10580   NODE_NAME_CASE(BCOMPRESSW)
10581   NODE_NAME_CASE(BDECOMPRESS)
10582   NODE_NAME_CASE(BDECOMPRESSW)
10583   NODE_NAME_CASE(VMV_V_X_VL)
10584   NODE_NAME_CASE(VFMV_V_F_VL)
10585   NODE_NAME_CASE(VMV_X_S)
10586   NODE_NAME_CASE(VMV_S_X_VL)
10587   NODE_NAME_CASE(VFMV_S_F_VL)
10588   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
10589   NODE_NAME_CASE(READ_VLENB)
10590   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
10591   NODE_NAME_CASE(VSLIDEUP_VL)
10592   NODE_NAME_CASE(VSLIDE1UP_VL)
10593   NODE_NAME_CASE(VSLIDEDOWN_VL)
10594   NODE_NAME_CASE(VSLIDE1DOWN_VL)
10595   NODE_NAME_CASE(VID_VL)
10596   NODE_NAME_CASE(VFNCVT_ROD_VL)
10597   NODE_NAME_CASE(VECREDUCE_ADD_VL)
10598   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
10599   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
10600   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
10601   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
10602   NODE_NAME_CASE(VECREDUCE_AND_VL)
10603   NODE_NAME_CASE(VECREDUCE_OR_VL)
10604   NODE_NAME_CASE(VECREDUCE_XOR_VL)
10605   NODE_NAME_CASE(VECREDUCE_FADD_VL)
10606   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
10607   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
10608   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
10609   NODE_NAME_CASE(ADD_VL)
10610   NODE_NAME_CASE(AND_VL)
10611   NODE_NAME_CASE(MUL_VL)
10612   NODE_NAME_CASE(OR_VL)
10613   NODE_NAME_CASE(SDIV_VL)
10614   NODE_NAME_CASE(SHL_VL)
10615   NODE_NAME_CASE(SREM_VL)
10616   NODE_NAME_CASE(SRA_VL)
10617   NODE_NAME_CASE(SRL_VL)
10618   NODE_NAME_CASE(SUB_VL)
10619   NODE_NAME_CASE(UDIV_VL)
10620   NODE_NAME_CASE(UREM_VL)
10621   NODE_NAME_CASE(XOR_VL)
10622   NODE_NAME_CASE(SADDSAT_VL)
10623   NODE_NAME_CASE(UADDSAT_VL)
10624   NODE_NAME_CASE(SSUBSAT_VL)
10625   NODE_NAME_CASE(USUBSAT_VL)
10626   NODE_NAME_CASE(FADD_VL)
10627   NODE_NAME_CASE(FSUB_VL)
10628   NODE_NAME_CASE(FMUL_VL)
10629   NODE_NAME_CASE(FDIV_VL)
10630   NODE_NAME_CASE(FNEG_VL)
10631   NODE_NAME_CASE(FABS_VL)
10632   NODE_NAME_CASE(FSQRT_VL)
10633   NODE_NAME_CASE(FMA_VL)
10634   NODE_NAME_CASE(FCOPYSIGN_VL)
10635   NODE_NAME_CASE(SMIN_VL)
10636   NODE_NAME_CASE(SMAX_VL)
10637   NODE_NAME_CASE(UMIN_VL)
10638   NODE_NAME_CASE(UMAX_VL)
10639   NODE_NAME_CASE(FMINNUM_VL)
10640   NODE_NAME_CASE(FMAXNUM_VL)
10641   NODE_NAME_CASE(MULHS_VL)
10642   NODE_NAME_CASE(MULHU_VL)
10643   NODE_NAME_CASE(FP_TO_SINT_VL)
10644   NODE_NAME_CASE(FP_TO_UINT_VL)
10645   NODE_NAME_CASE(SINT_TO_FP_VL)
10646   NODE_NAME_CASE(UINT_TO_FP_VL)
10647   NODE_NAME_CASE(FP_EXTEND_VL)
10648   NODE_NAME_CASE(FP_ROUND_VL)
10649   NODE_NAME_CASE(VWMUL_VL)
10650   NODE_NAME_CASE(VWMULU_VL)
10651   NODE_NAME_CASE(VWMULSU_VL)
10652   NODE_NAME_CASE(VWADD_VL)
10653   NODE_NAME_CASE(VWADDU_VL)
10654   NODE_NAME_CASE(VWSUB_VL)
10655   NODE_NAME_CASE(VWSUBU_VL)
10656   NODE_NAME_CASE(VWADD_W_VL)
10657   NODE_NAME_CASE(VWADDU_W_VL)
10658   NODE_NAME_CASE(VWSUB_W_VL)
10659   NODE_NAME_CASE(VWSUBU_W_VL)
10660   NODE_NAME_CASE(SETCC_VL)
10661   NODE_NAME_CASE(VSELECT_VL)
10662   NODE_NAME_CASE(VP_MERGE_VL)
10663   NODE_NAME_CASE(VMAND_VL)
10664   NODE_NAME_CASE(VMOR_VL)
10665   NODE_NAME_CASE(VMXOR_VL)
10666   NODE_NAME_CASE(VMCLR_VL)
10667   NODE_NAME_CASE(VMSET_VL)
10668   NODE_NAME_CASE(VRGATHER_VX_VL)
10669   NODE_NAME_CASE(VRGATHER_VV_VL)
10670   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
10671   NODE_NAME_CASE(VSEXT_VL)
10672   NODE_NAME_CASE(VZEXT_VL)
10673   NODE_NAME_CASE(VCPOP_VL)
10674   NODE_NAME_CASE(VLE_VL)
10675   NODE_NAME_CASE(VSE_VL)
10676   NODE_NAME_CASE(READ_CSR)
10677   NODE_NAME_CASE(WRITE_CSR)
10678   NODE_NAME_CASE(SWAP_CSR)
10679   }
10680   // clang-format on
10681   return nullptr;
10682 #undef NODE_NAME_CASE
10683 }
10684 
10685 /// getConstraintType - Given a constraint letter, return the type of
10686 /// constraint it is for this target.
10687 RISCVTargetLowering::ConstraintType
10688 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
10689   if (Constraint.size() == 1) {
10690     switch (Constraint[0]) {
10691     default:
10692       break;
10693     case 'f':
10694       return C_RegisterClass;
10695     case 'I':
10696     case 'J':
10697     case 'K':
10698       return C_Immediate;
10699     case 'A':
10700       return C_Memory;
10701     case 'S': // A symbolic address
10702       return C_Other;
10703     }
10704   } else {
10705     if (Constraint == "vr" || Constraint == "vm")
10706       return C_RegisterClass;
10707   }
10708   return TargetLowering::getConstraintType(Constraint);
10709 }
10710 
10711 std::pair<unsigned, const TargetRegisterClass *>
10712 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
10713                                                   StringRef Constraint,
10714                                                   MVT VT) const {
10715   // First, see if this is a constraint that directly corresponds to a
10716   // RISCV register class.
10717   if (Constraint.size() == 1) {
10718     switch (Constraint[0]) {
10719     case 'r':
10720       // TODO: Support fixed vectors up to XLen for P extension?
10721       if (VT.isVector())
10722         break;
10723       return std::make_pair(0U, &RISCV::GPRRegClass);
10724     case 'f':
10725       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
10726         return std::make_pair(0U, &RISCV::FPR16RegClass);
10727       if (Subtarget.hasStdExtF() && VT == MVT::f32)
10728         return std::make_pair(0U, &RISCV::FPR32RegClass);
10729       if (Subtarget.hasStdExtD() && VT == MVT::f64)
10730         return std::make_pair(0U, &RISCV::FPR64RegClass);
10731       break;
10732     default:
10733       break;
10734     }
10735   } else if (Constraint == "vr") {
10736     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
10737                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
10738       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
10739         return std::make_pair(0U, RC);
10740     }
10741   } else if (Constraint == "vm") {
10742     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
10743       return std::make_pair(0U, &RISCV::VMV0RegClass);
10744   }
10745 
10746   // Clang will correctly decode the usage of register name aliases into their
10747   // official names. However, other frontends like `rustc` do not. This allows
10748   // users of these frontends to use the ABI names for registers in LLVM-style
10749   // register constraints.
10750   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
10751                                .Case("{zero}", RISCV::X0)
10752                                .Case("{ra}", RISCV::X1)
10753                                .Case("{sp}", RISCV::X2)
10754                                .Case("{gp}", RISCV::X3)
10755                                .Case("{tp}", RISCV::X4)
10756                                .Case("{t0}", RISCV::X5)
10757                                .Case("{t1}", RISCV::X6)
10758                                .Case("{t2}", RISCV::X7)
10759                                .Cases("{s0}", "{fp}", RISCV::X8)
10760                                .Case("{s1}", RISCV::X9)
10761                                .Case("{a0}", RISCV::X10)
10762                                .Case("{a1}", RISCV::X11)
10763                                .Case("{a2}", RISCV::X12)
10764                                .Case("{a3}", RISCV::X13)
10765                                .Case("{a4}", RISCV::X14)
10766                                .Case("{a5}", RISCV::X15)
10767                                .Case("{a6}", RISCV::X16)
10768                                .Case("{a7}", RISCV::X17)
10769                                .Case("{s2}", RISCV::X18)
10770                                .Case("{s3}", RISCV::X19)
10771                                .Case("{s4}", RISCV::X20)
10772                                .Case("{s5}", RISCV::X21)
10773                                .Case("{s6}", RISCV::X22)
10774                                .Case("{s7}", RISCV::X23)
10775                                .Case("{s8}", RISCV::X24)
10776                                .Case("{s9}", RISCV::X25)
10777                                .Case("{s10}", RISCV::X26)
10778                                .Case("{s11}", RISCV::X27)
10779                                .Case("{t3}", RISCV::X28)
10780                                .Case("{t4}", RISCV::X29)
10781                                .Case("{t5}", RISCV::X30)
10782                                .Case("{t6}", RISCV::X31)
10783                                .Default(RISCV::NoRegister);
10784   if (XRegFromAlias != RISCV::NoRegister)
10785     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
10786 
10787   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
10788   // TableGen record rather than the AsmName to choose registers for InlineAsm
10789   // constraints, plus we want to match those names to the widest floating point
10790   // register type available, manually select floating point registers here.
10791   //
10792   // The second case is the ABI name of the register, so that frontends can also
10793   // use the ABI names in register constraint lists.
10794   if (Subtarget.hasStdExtF()) {
10795     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
10796                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
10797                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
10798                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
10799                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
10800                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
10801                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
10802                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
10803                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
10804                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
10805                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
10806                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
10807                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
10808                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
10809                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
10810                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
10811                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
10812                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
10813                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
10814                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
10815                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
10816                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
10817                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
10818                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
10819                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
10820                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
10821                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
10822                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
10823                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
10824                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
10825                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
10826                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
10827                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
10828                         .Default(RISCV::NoRegister);
10829     if (FReg != RISCV::NoRegister) {
10830       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
10831       if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
10832         unsigned RegNo = FReg - RISCV::F0_F;
10833         unsigned DReg = RISCV::F0_D + RegNo;
10834         return std::make_pair(DReg, &RISCV::FPR64RegClass);
10835       }
10836       if (VT == MVT::f32 || VT == MVT::Other)
10837         return std::make_pair(FReg, &RISCV::FPR32RegClass);
10838       if (Subtarget.hasStdExtZfh() && VT == MVT::f16) {
10839         unsigned RegNo = FReg - RISCV::F0_F;
10840         unsigned HReg = RISCV::F0_H + RegNo;
10841         return std::make_pair(HReg, &RISCV::FPR16RegClass);
10842       }
10843     }
10844   }
10845 
10846   if (Subtarget.hasVInstructions()) {
10847     Register VReg = StringSwitch<Register>(Constraint.lower())
10848                         .Case("{v0}", RISCV::V0)
10849                         .Case("{v1}", RISCV::V1)
10850                         .Case("{v2}", RISCV::V2)
10851                         .Case("{v3}", RISCV::V3)
10852                         .Case("{v4}", RISCV::V4)
10853                         .Case("{v5}", RISCV::V5)
10854                         .Case("{v6}", RISCV::V6)
10855                         .Case("{v7}", RISCV::V7)
10856                         .Case("{v8}", RISCV::V8)
10857                         .Case("{v9}", RISCV::V9)
10858                         .Case("{v10}", RISCV::V10)
10859                         .Case("{v11}", RISCV::V11)
10860                         .Case("{v12}", RISCV::V12)
10861                         .Case("{v13}", RISCV::V13)
10862                         .Case("{v14}", RISCV::V14)
10863                         .Case("{v15}", RISCV::V15)
10864                         .Case("{v16}", RISCV::V16)
10865                         .Case("{v17}", RISCV::V17)
10866                         .Case("{v18}", RISCV::V18)
10867                         .Case("{v19}", RISCV::V19)
10868                         .Case("{v20}", RISCV::V20)
10869                         .Case("{v21}", RISCV::V21)
10870                         .Case("{v22}", RISCV::V22)
10871                         .Case("{v23}", RISCV::V23)
10872                         .Case("{v24}", RISCV::V24)
10873                         .Case("{v25}", RISCV::V25)
10874                         .Case("{v26}", RISCV::V26)
10875                         .Case("{v27}", RISCV::V27)
10876                         .Case("{v28}", RISCV::V28)
10877                         .Case("{v29}", RISCV::V29)
10878                         .Case("{v30}", RISCV::V30)
10879                         .Case("{v31}", RISCV::V31)
10880                         .Default(RISCV::NoRegister);
10881     if (VReg != RISCV::NoRegister) {
10882       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
10883         return std::make_pair(VReg, &RISCV::VMRegClass);
10884       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
10885         return std::make_pair(VReg, &RISCV::VRRegClass);
10886       for (const auto *RC :
10887            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
10888         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
10889           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
10890           return std::make_pair(VReg, RC);
10891         }
10892       }
10893     }
10894   }
10895 
10896   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
10897 }
10898 
10899 unsigned
10900 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
10901   // Currently only support length 1 constraints.
10902   if (ConstraintCode.size() == 1) {
10903     switch (ConstraintCode[0]) {
10904     case 'A':
10905       return InlineAsm::Constraint_A;
10906     default:
10907       break;
10908     }
10909   }
10910 
10911   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
10912 }
10913 
10914 void RISCVTargetLowering::LowerAsmOperandForConstraint(
10915     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
10916     SelectionDAG &DAG) const {
10917   // Currently only support length 1 constraints.
10918   if (Constraint.length() == 1) {
10919     switch (Constraint[0]) {
10920     case 'I':
10921       // Validate & create a 12-bit signed immediate operand.
10922       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
10923         uint64_t CVal = C->getSExtValue();
10924         if (isInt<12>(CVal))
10925           Ops.push_back(
10926               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
10927       }
10928       return;
10929     case 'J':
10930       // Validate & create an integer zero operand.
10931       if (auto *C = dyn_cast<ConstantSDNode>(Op))
10932         if (C->getZExtValue() == 0)
10933           Ops.push_back(
10934               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
10935       return;
10936     case 'K':
10937       // Validate & create a 5-bit unsigned immediate operand.
10938       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
10939         uint64_t CVal = C->getZExtValue();
10940         if (isUInt<5>(CVal))
10941           Ops.push_back(
10942               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
10943       }
10944       return;
10945     case 'S':
10946       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
10947         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
10948                                                  GA->getValueType(0)));
10949       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
10950         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
10951                                                 BA->getValueType(0)));
10952       }
10953       return;
10954     default:
10955       break;
10956     }
10957   }
10958   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
10959 }
10960 
10961 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
10962                                                    Instruction *Inst,
10963                                                    AtomicOrdering Ord) const {
10964   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
10965     return Builder.CreateFence(Ord);
10966   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
10967     return Builder.CreateFence(AtomicOrdering::Release);
10968   return nullptr;
10969 }
10970 
10971 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
10972                                                     Instruction *Inst,
10973                                                     AtomicOrdering Ord) const {
10974   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
10975     return Builder.CreateFence(AtomicOrdering::Acquire);
10976   return nullptr;
10977 }
10978 
10979 TargetLowering::AtomicExpansionKind
10980 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
10981   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
10982   // point operations can't be used in an lr/sc sequence without breaking the
10983   // forward-progress guarantee.
10984   if (AI->isFloatingPointOperation())
10985     return AtomicExpansionKind::CmpXChg;
10986 
10987   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
10988   if (Size == 8 || Size == 16)
10989     return AtomicExpansionKind::MaskedIntrinsic;
10990   return AtomicExpansionKind::None;
10991 }
10992 
10993 static Intrinsic::ID
10994 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
10995   if (XLen == 32) {
10996     switch (BinOp) {
10997     default:
10998       llvm_unreachable("Unexpected AtomicRMW BinOp");
10999     case AtomicRMWInst::Xchg:
11000       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
11001     case AtomicRMWInst::Add:
11002       return Intrinsic::riscv_masked_atomicrmw_add_i32;
11003     case AtomicRMWInst::Sub:
11004       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
11005     case AtomicRMWInst::Nand:
11006       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
11007     case AtomicRMWInst::Max:
11008       return Intrinsic::riscv_masked_atomicrmw_max_i32;
11009     case AtomicRMWInst::Min:
11010       return Intrinsic::riscv_masked_atomicrmw_min_i32;
11011     case AtomicRMWInst::UMax:
11012       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
11013     case AtomicRMWInst::UMin:
11014       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
11015     }
11016   }
11017 
11018   if (XLen == 64) {
11019     switch (BinOp) {
11020     default:
11021       llvm_unreachable("Unexpected AtomicRMW BinOp");
11022     case AtomicRMWInst::Xchg:
11023       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
11024     case AtomicRMWInst::Add:
11025       return Intrinsic::riscv_masked_atomicrmw_add_i64;
11026     case AtomicRMWInst::Sub:
11027       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
11028     case AtomicRMWInst::Nand:
11029       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
11030     case AtomicRMWInst::Max:
11031       return Intrinsic::riscv_masked_atomicrmw_max_i64;
11032     case AtomicRMWInst::Min:
11033       return Intrinsic::riscv_masked_atomicrmw_min_i64;
11034     case AtomicRMWInst::UMax:
11035       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
11036     case AtomicRMWInst::UMin:
11037       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
11038     }
11039   }
11040 
11041   llvm_unreachable("Unexpected XLen\n");
11042 }
11043 
11044 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
11045     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
11046     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
11047   unsigned XLen = Subtarget.getXLen();
11048   Value *Ordering =
11049       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
11050   Type *Tys[] = {AlignedAddr->getType()};
11051   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
11052       AI->getModule(),
11053       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
11054 
11055   if (XLen == 64) {
11056     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
11057     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11058     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
11059   }
11060 
11061   Value *Result;
11062 
11063   // Must pass the shift amount needed to sign extend the loaded value prior
11064   // to performing a signed comparison for min/max. ShiftAmt is the number of
11065   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
11066   // is the number of bits to left+right shift the value in order to
11067   // sign-extend.
11068   if (AI->getOperation() == AtomicRMWInst::Min ||
11069       AI->getOperation() == AtomicRMWInst::Max) {
11070     const DataLayout &DL = AI->getModule()->getDataLayout();
11071     unsigned ValWidth =
11072         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
11073     Value *SextShamt =
11074         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
11075     Result = Builder.CreateCall(LrwOpScwLoop,
11076                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
11077   } else {
11078     Result =
11079         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
11080   }
11081 
11082   if (XLen == 64)
11083     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11084   return Result;
11085 }
11086 
11087 TargetLowering::AtomicExpansionKind
11088 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
11089     AtomicCmpXchgInst *CI) const {
11090   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
11091   if (Size == 8 || Size == 16)
11092     return AtomicExpansionKind::MaskedIntrinsic;
11093   return AtomicExpansionKind::None;
11094 }
11095 
11096 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
11097     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
11098     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
11099   unsigned XLen = Subtarget.getXLen();
11100   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
11101   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
11102   if (XLen == 64) {
11103     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
11104     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
11105     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11106     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
11107   }
11108   Type *Tys[] = {AlignedAddr->getType()};
11109   Function *MaskedCmpXchg =
11110       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
11111   Value *Result = Builder.CreateCall(
11112       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
11113   if (XLen == 64)
11114     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11115   return Result;
11116 }
11117 
11118 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
11119   return false;
11120 }
11121 
11122 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
11123                                                EVT VT) const {
11124   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
11125     return false;
11126 
11127   switch (FPVT.getSimpleVT().SimpleTy) {
11128   case MVT::f16:
11129     return Subtarget.hasStdExtZfh();
11130   case MVT::f32:
11131     return Subtarget.hasStdExtF();
11132   case MVT::f64:
11133     return Subtarget.hasStdExtD();
11134   default:
11135     return false;
11136   }
11137 }
11138 
11139 unsigned RISCVTargetLowering::getJumpTableEncoding() const {
11140   // If we are using the small code model, we can reduce size of jump table
11141   // entry to 4 bytes.
11142   if (Subtarget.is64Bit() && !isPositionIndependent() &&
11143       getTargetMachine().getCodeModel() == CodeModel::Small) {
11144     return MachineJumpTableInfo::EK_Custom32;
11145   }
11146   return TargetLowering::getJumpTableEncoding();
11147 }
11148 
11149 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
11150     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
11151     unsigned uid, MCContext &Ctx) const {
11152   assert(Subtarget.is64Bit() && !isPositionIndependent() &&
11153          getTargetMachine().getCodeModel() == CodeModel::Small);
11154   return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
11155 }
11156 
11157 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
11158                                                      EVT VT) const {
11159   VT = VT.getScalarType();
11160 
11161   if (!VT.isSimple())
11162     return false;
11163 
11164   switch (VT.getSimpleVT().SimpleTy) {
11165   case MVT::f16:
11166     return Subtarget.hasStdExtZfh();
11167   case MVT::f32:
11168     return Subtarget.hasStdExtF();
11169   case MVT::f64:
11170     return Subtarget.hasStdExtD();
11171   default:
11172     break;
11173   }
11174 
11175   return false;
11176 }
11177 
11178 Register RISCVTargetLowering::getExceptionPointerRegister(
11179     const Constant *PersonalityFn) const {
11180   return RISCV::X10;
11181 }
11182 
11183 Register RISCVTargetLowering::getExceptionSelectorRegister(
11184     const Constant *PersonalityFn) const {
11185   return RISCV::X11;
11186 }
11187 
11188 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
11189   // Return false to suppress the unnecessary extensions if the LibCall
11190   // arguments or return value is f32 type for LP64 ABI.
11191   RISCVABI::ABI ABI = Subtarget.getTargetABI();
11192   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
11193     return false;
11194 
11195   return true;
11196 }
11197 
11198 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
11199   if (Subtarget.is64Bit() && Type == MVT::i32)
11200     return true;
11201 
11202   return IsSigned;
11203 }
11204 
11205 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
11206                                                  SDValue C) const {
11207   // Check integral scalar types.
11208   if (VT.isScalarInteger()) {
11209     // Omit the optimization if the sub target has the M extension and the data
11210     // size exceeds XLen.
11211     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
11212       return false;
11213     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
11214       // Break the MUL to a SLLI and an ADD/SUB.
11215       const APInt &Imm = ConstNode->getAPIntValue();
11216       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
11217           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
11218         return true;
11219       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
11220       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
11221           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
11222            (Imm - 8).isPowerOf2()))
11223         return true;
11224       // Omit the following optimization if the sub target has the M extension
11225       // and the data size >= XLen.
11226       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
11227         return false;
11228       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
11229       // a pair of LUI/ADDI.
11230       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
11231         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
11232         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
11233             (1 - ImmS).isPowerOf2())
11234         return true;
11235       }
11236     }
11237   }
11238 
11239   return false;
11240 }
11241 
11242 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
11243                                                       SDValue ConstNode) const {
11244   // Let the DAGCombiner decide for vectors.
11245   EVT VT = AddNode.getValueType();
11246   if (VT.isVector())
11247     return true;
11248 
11249   // Let the DAGCombiner decide for larger types.
11250   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
11251     return true;
11252 
11253   // It is worse if c1 is simm12 while c1*c2 is not.
11254   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
11255   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
11256   const APInt &C1 = C1Node->getAPIntValue();
11257   const APInt &C2 = C2Node->getAPIntValue();
11258   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
11259     return false;
11260 
11261   // Default to true and let the DAGCombiner decide.
11262   return true;
11263 }
11264 
11265 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
11266     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
11267     bool *Fast) const {
11268   if (!VT.isVector())
11269     return false;
11270 
11271   EVT ElemVT = VT.getVectorElementType();
11272   if (Alignment >= ElemVT.getStoreSize()) {
11273     if (Fast)
11274       *Fast = true;
11275     return true;
11276   }
11277 
11278   return false;
11279 }
11280 
11281 bool RISCVTargetLowering::splitValueIntoRegisterParts(
11282     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
11283     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
11284   bool IsABIRegCopy = CC.hasValue();
11285   EVT ValueVT = Val.getValueType();
11286   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11287     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
11288     // and cast to f32.
11289     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
11290     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
11291     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
11292                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
11293     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
11294     Parts[0] = Val;
11295     return true;
11296   }
11297 
11298   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11299     LLVMContext &Context = *DAG.getContext();
11300     EVT ValueEltVT = ValueVT.getVectorElementType();
11301     EVT PartEltVT = PartVT.getVectorElementType();
11302     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11303     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11304     if (PartVTBitSize % ValueVTBitSize == 0) {
11305       assert(PartVTBitSize >= ValueVTBitSize);
11306       // If the element types are different, bitcast to the same element type of
11307       // PartVT first.
11308       // Give an example here, we want copy a <vscale x 1 x i8> value to
11309       // <vscale x 4 x i16>.
11310       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
11311       // subvector, then we can bitcast to <vscale x 4 x i16>.
11312       if (ValueEltVT != PartEltVT) {
11313         if (PartVTBitSize > ValueVTBitSize) {
11314           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11315           assert(Count != 0 && "The number of element should not be zero.");
11316           EVT SameEltTypeVT =
11317               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11318           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
11319                             DAG.getUNDEF(SameEltTypeVT), Val,
11320                             DAG.getVectorIdxConstant(0, DL));
11321         }
11322         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
11323       } else {
11324         Val =
11325             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
11326                         Val, DAG.getVectorIdxConstant(0, DL));
11327       }
11328       Parts[0] = Val;
11329       return true;
11330     }
11331   }
11332   return false;
11333 }
11334 
11335 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
11336     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
11337     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
11338   bool IsABIRegCopy = CC.hasValue();
11339   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11340     SDValue Val = Parts[0];
11341 
11342     // Cast the f32 to i32, truncate to i16, and cast back to f16.
11343     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
11344     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
11345     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
11346     return Val;
11347   }
11348 
11349   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11350     LLVMContext &Context = *DAG.getContext();
11351     SDValue Val = Parts[0];
11352     EVT ValueEltVT = ValueVT.getVectorElementType();
11353     EVT PartEltVT = PartVT.getVectorElementType();
11354     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11355     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11356     if (PartVTBitSize % ValueVTBitSize == 0) {
11357       assert(PartVTBitSize >= ValueVTBitSize);
11358       EVT SameEltTypeVT = ValueVT;
11359       // If the element types are different, convert it to the same element type
11360       // of PartVT.
11361       // Give an example here, we want copy a <vscale x 1 x i8> value from
11362       // <vscale x 4 x i16>.
11363       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
11364       // then we can extract <vscale x 1 x i8>.
11365       if (ValueEltVT != PartEltVT) {
11366         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11367         assert(Count != 0 && "The number of element should not be zero.");
11368         SameEltTypeVT =
11369             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11370         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
11371       }
11372       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
11373                         DAG.getVectorIdxConstant(0, DL));
11374       return Val;
11375     }
11376   }
11377   return SDValue();
11378 }
11379 
11380 SDValue
11381 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
11382                                    SelectionDAG &DAG,
11383                                    SmallVectorImpl<SDNode *> &Created) const {
11384   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
11385   if (isIntDivCheap(N->getValueType(0), Attr))
11386     return SDValue(N, 0); // Lower SDIV as SDIV
11387 
11388   assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) &&
11389          "Unexpected divisor!");
11390 
11391   // Conditional move is needed, so do the transformation iff Zbt is enabled.
11392   if (!Subtarget.hasStdExtZbt())
11393     return SDValue();
11394 
11395   // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation.
11396   // Besides, more critical path instructions will be generated when dividing
11397   // by 2. So we keep using the original DAGs for these cases.
11398   unsigned Lg2 = Divisor.countTrailingZeros();
11399   if (Lg2 == 1 || Lg2 >= 12)
11400     return SDValue();
11401 
11402   // fold (sdiv X, pow2)
11403   EVT VT = N->getValueType(0);
11404   if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64))
11405     return SDValue();
11406 
11407   SDLoc DL(N);
11408   SDValue N0 = N->getOperand(0);
11409   SDValue Zero = DAG.getConstant(0, DL, VT);
11410   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
11411 
11412   // Add (N0 < 0) ? Pow2 - 1 : 0;
11413   SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT);
11414   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
11415   SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
11416 
11417   Created.push_back(Cmp.getNode());
11418   Created.push_back(Add.getNode());
11419   Created.push_back(Sel.getNode());
11420 
11421   // Divide by pow2.
11422   SDValue SRA =
11423       DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT));
11424 
11425   // If we're dividing by a positive value, we're done.  Otherwise, we must
11426   // negate the result.
11427   if (Divisor.isNonNegative())
11428     return SRA;
11429 
11430   Created.push_back(SRA.getNode());
11431   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
11432 }
11433 
11434 #define GET_REGISTER_MATCHER
11435 #include "RISCVGenAsmMatcher.inc"
11436 
11437 Register
11438 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
11439                                        const MachineFunction &MF) const {
11440   Register Reg = MatchRegisterAltName(RegName);
11441   if (Reg == RISCV::NoRegister)
11442     Reg = MatchRegisterName(RegName);
11443   if (Reg == RISCV::NoRegister)
11444     report_fatal_error(
11445         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
11446   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
11447   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
11448     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
11449                              StringRef(RegName) + "\"."));
11450   return Reg;
11451 }
11452 
11453 namespace llvm {
11454 namespace RISCVVIntrinsicsTable {
11455 
11456 #define GET_RISCVVIntrinsicsTable_IMPL
11457 #include "RISCVGenSearchableTables.inc"
11458 
11459 } // namespace RISCVVIntrinsicsTable
11460 
11461 } // namespace llvm
11462