1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/CodeGen/ValueTypes.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
32 #include "llvm/IR/IntrinsicsRISCV.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "riscv-lower"
42 
43 STATISTIC(NumTailCalls, "Number of tail calls");
44 
45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
46                                          const RISCVSubtarget &STI)
47     : TargetLowering(TM), Subtarget(STI) {
48 
49   if (Subtarget.isRV32E())
50     report_fatal_error("Codegen not yet implemented for RV32E");
51 
52   RISCVABI::ABI ABI = Subtarget.getTargetABI();
53   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
54 
55   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
56       !Subtarget.hasStdExtF()) {
57     errs() << "Hard-float 'f' ABI can't be used for a target that "
58                 "doesn't support the F instruction set extension (ignoring "
59                           "target-abi)\n";
60     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
61   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
62              !Subtarget.hasStdExtD()) {
63     errs() << "Hard-float 'd' ABI can't be used for a target that "
64               "doesn't support the D instruction set extension (ignoring "
65               "target-abi)\n";
66     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
67   }
68 
69   switch (ABI) {
70   default:
71     report_fatal_error("Don't know how to lower this ABI");
72   case RISCVABI::ABI_ILP32:
73   case RISCVABI::ABI_ILP32F:
74   case RISCVABI::ABI_ILP32D:
75   case RISCVABI::ABI_LP64:
76   case RISCVABI::ABI_LP64F:
77   case RISCVABI::ABI_LP64D:
78     break;
79   }
80 
81   MVT XLenVT = Subtarget.getXLenVT();
82 
83   // Set up the register classes.
84   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
85 
86   if (Subtarget.hasStdExtZfh())
87     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
88   if (Subtarget.hasStdExtF())
89     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
90   if (Subtarget.hasStdExtD())
91     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
92 
93   static const MVT::SimpleValueType BoolVecVTs[] = {
94       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
95       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
96   static const MVT::SimpleValueType IntVecVTs[] = {
97       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
98       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
99       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
100       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
101       MVT::nxv4i64, MVT::nxv8i64};
102   static const MVT::SimpleValueType F16VecVTs[] = {
103       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
104       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
105   static const MVT::SimpleValueType F32VecVTs[] = {
106       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
107   static const MVT::SimpleValueType F64VecVTs[] = {
108       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
109 
110   if (Subtarget.hasStdExtV()) {
111     auto addRegClassForRVV = [this](MVT VT) {
112       unsigned Size = VT.getSizeInBits().getKnownMinValue();
113       assert(Size <= 512 && isPowerOf2_32(Size));
114       const TargetRegisterClass *RC;
115       if (Size <= 64)
116         RC = &RISCV::VRRegClass;
117       else if (Size == 128)
118         RC = &RISCV::VRM2RegClass;
119       else if (Size == 256)
120         RC = &RISCV::VRM4RegClass;
121       else
122         RC = &RISCV::VRM8RegClass;
123 
124       addRegisterClass(VT, RC);
125     };
126 
127     for (MVT VT : BoolVecVTs)
128       addRegClassForRVV(VT);
129     for (MVT VT : IntVecVTs)
130       addRegClassForRVV(VT);
131 
132     if (Subtarget.hasStdExtZfh())
133       for (MVT VT : F16VecVTs)
134         addRegClassForRVV(VT);
135 
136     if (Subtarget.hasStdExtF())
137       for (MVT VT : F32VecVTs)
138         addRegClassForRVV(VT);
139 
140     if (Subtarget.hasStdExtD())
141       for (MVT VT : F64VecVTs)
142         addRegClassForRVV(VT);
143 
144     if (Subtarget.useRVVForFixedLengthVectors()) {
145       auto addRegClassForFixedVectors = [this](MVT VT) {
146         MVT ContainerVT = getContainerForFixedLengthVector(VT);
147         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
148         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
149         addRegisterClass(VT, TRI.getRegClass(RCID));
150       };
151       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
152         if (useRVVForFixedLengthVectorVT(VT))
153           addRegClassForFixedVectors(VT);
154 
155       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
156         if (useRVVForFixedLengthVectorVT(VT))
157           addRegClassForFixedVectors(VT);
158     }
159   }
160 
161   // Compute derived properties from the register classes.
162   computeRegisterProperties(STI.getRegisterInfo());
163 
164   setStackPointerRegisterToSaveRestore(RISCV::X2);
165 
166   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
167     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
168 
169   // TODO: add all necessary setOperationAction calls.
170   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
171 
172   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
173   setOperationAction(ISD::BR_CC, XLenVT, Expand);
174   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
175   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
176 
177   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
178   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
179 
180   setOperationAction(ISD::VASTART, MVT::Other, Custom);
181   setOperationAction(ISD::VAARG, MVT::Other, Expand);
182   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
183   setOperationAction(ISD::VAEND, MVT::Other, Expand);
184 
185   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
186   if (!Subtarget.hasStdExtZbb()) {
187     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
188     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
189   }
190 
191   if (Subtarget.is64Bit()) {
192     setOperationAction(ISD::ADD, MVT::i32, Custom);
193     setOperationAction(ISD::SUB, MVT::i32, Custom);
194     setOperationAction(ISD::SHL, MVT::i32, Custom);
195     setOperationAction(ISD::SRA, MVT::i32, Custom);
196     setOperationAction(ISD::SRL, MVT::i32, Custom);
197 
198     setOperationAction(ISD::UADDO, MVT::i32, Custom);
199     setOperationAction(ISD::USUBO, MVT::i32, Custom);
200     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
201     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
202   }
203 
204   if (!Subtarget.hasStdExtM()) {
205     setOperationAction(ISD::MUL, XLenVT, Expand);
206     setOperationAction(ISD::MULHS, XLenVT, Expand);
207     setOperationAction(ISD::MULHU, XLenVT, Expand);
208     setOperationAction(ISD::SDIV, XLenVT, Expand);
209     setOperationAction(ISD::UDIV, XLenVT, Expand);
210     setOperationAction(ISD::SREM, XLenVT, Expand);
211     setOperationAction(ISD::UREM, XLenVT, Expand);
212   } else {
213     if (Subtarget.is64Bit()) {
214       setOperationAction(ISD::MUL, MVT::i32, Custom);
215       setOperationAction(ISD::MUL, MVT::i128, Custom);
216 
217       setOperationAction(ISD::SDIV, MVT::i8, Custom);
218       setOperationAction(ISD::UDIV, MVT::i8, Custom);
219       setOperationAction(ISD::UREM, MVT::i8, Custom);
220       setOperationAction(ISD::SDIV, MVT::i16, Custom);
221       setOperationAction(ISD::UDIV, MVT::i16, Custom);
222       setOperationAction(ISD::UREM, MVT::i16, Custom);
223       setOperationAction(ISD::SDIV, MVT::i32, Custom);
224       setOperationAction(ISD::UDIV, MVT::i32, Custom);
225       setOperationAction(ISD::UREM, MVT::i32, Custom);
226     } else {
227       setOperationAction(ISD::MUL, MVT::i64, Custom);
228     }
229   }
230 
231   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
232   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
233   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
234   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
235 
236   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
237   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
238   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
239 
240   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
241     if (Subtarget.is64Bit()) {
242       setOperationAction(ISD::ROTL, MVT::i32, Custom);
243       setOperationAction(ISD::ROTR, MVT::i32, Custom);
244     }
245   } else {
246     setOperationAction(ISD::ROTL, XLenVT, Expand);
247     setOperationAction(ISD::ROTR, XLenVT, Expand);
248   }
249 
250   if (Subtarget.hasStdExtZbp()) {
251     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
252     // more combining.
253     setOperationAction(ISD::BITREVERSE, XLenVT, Custom);
254     setOperationAction(ISD::BSWAP, XLenVT, Custom);
255 
256     if (Subtarget.is64Bit()) {
257       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
258       setOperationAction(ISD::BSWAP, MVT::i32, Custom);
259     }
260   } else {
261     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
262     // pattern match it directly in isel.
263     setOperationAction(ISD::BSWAP, XLenVT,
264                        Subtarget.hasStdExtZbb() ? Legal : Expand);
265   }
266 
267   if (Subtarget.hasStdExtZbb()) {
268     setOperationAction(ISD::SMIN, XLenVT, Legal);
269     setOperationAction(ISD::SMAX, XLenVT, Legal);
270     setOperationAction(ISD::UMIN, XLenVT, Legal);
271     setOperationAction(ISD::UMAX, XLenVT, Legal);
272 
273     if (Subtarget.is64Bit()) {
274       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
275       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
276       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
277       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
278     }
279   } else {
280     setOperationAction(ISD::CTTZ, XLenVT, Expand);
281     setOperationAction(ISD::CTLZ, XLenVT, Expand);
282     setOperationAction(ISD::CTPOP, XLenVT, Expand);
283   }
284 
285   if (Subtarget.hasStdExtZbt()) {
286     setOperationAction(ISD::FSHL, XLenVT, Custom);
287     setOperationAction(ISD::FSHR, XLenVT, Custom);
288     setOperationAction(ISD::SELECT, XLenVT, Legal);
289 
290     if (Subtarget.is64Bit()) {
291       setOperationAction(ISD::FSHL, MVT::i32, Custom);
292       setOperationAction(ISD::FSHR, MVT::i32, Custom);
293     }
294   } else {
295     setOperationAction(ISD::SELECT, XLenVT, Custom);
296   }
297 
298   ISD::CondCode FPCCToExpand[] = {
299       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
300       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
301       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
302 
303   ISD::NodeType FPOpToExpand[] = {
304       ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP,
305       ISD::FP_TO_FP16};
306 
307   if (Subtarget.hasStdExtZfh())
308     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
309 
310   if (Subtarget.hasStdExtZfh()) {
311     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
312     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
313     for (auto CC : FPCCToExpand)
314       setCondCodeAction(CC, MVT::f16, Expand);
315     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
316     setOperationAction(ISD::SELECT, MVT::f16, Custom);
317     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
318     for (auto Op : FPOpToExpand)
319       setOperationAction(Op, MVT::f16, Expand);
320   }
321 
322   if (Subtarget.hasStdExtF()) {
323     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
324     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
325     for (auto CC : FPCCToExpand)
326       setCondCodeAction(CC, MVT::f32, Expand);
327     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
328     setOperationAction(ISD::SELECT, MVT::f32, Custom);
329     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
330     for (auto Op : FPOpToExpand)
331       setOperationAction(Op, MVT::f32, Expand);
332     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
333     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
334   }
335 
336   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
337     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
338 
339   if (Subtarget.hasStdExtD()) {
340     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
341     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
342     for (auto CC : FPCCToExpand)
343       setCondCodeAction(CC, MVT::f64, Expand);
344     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
345     setOperationAction(ISD::SELECT, MVT::f64, Custom);
346     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
347     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
348     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
349     for (auto Op : FPOpToExpand)
350       setOperationAction(Op, MVT::f64, Expand);
351     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
352     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
353   }
354 
355   if (Subtarget.is64Bit()) {
356     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
357     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
358     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
359     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
360   }
361 
362   if (Subtarget.hasStdExtF()) {
363     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
364     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
365   }
366 
367   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
368   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
369   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
370   setOperationAction(ISD::JumpTable, XLenVT, Custom);
371 
372   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
373 
374   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
375   // Unfortunately this can't be determined just from the ISA naming string.
376   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
377                      Subtarget.is64Bit() ? Legal : Custom);
378 
379   setOperationAction(ISD::TRAP, MVT::Other, Legal);
380   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
381   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
382   if (Subtarget.is64Bit())
383     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
384 
385   if (Subtarget.hasStdExtA()) {
386     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
387     setMinCmpXchgSizeInBits(32);
388   } else {
389     setMaxAtomicSizeInBitsSupported(0);
390   }
391 
392   setBooleanContents(ZeroOrOneBooleanContent);
393 
394   if (Subtarget.hasStdExtV()) {
395     setBooleanVectorContents(ZeroOrOneBooleanContent);
396 
397     setOperationAction(ISD::VSCALE, XLenVT, Custom);
398 
399     // RVV intrinsics may have illegal operands.
400     // We also need to custom legalize vmv.x.s.
401     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
402     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
403     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
404     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
405     if (Subtarget.is64Bit()) {
406       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
407     } else {
408       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
409       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
410     }
411 
412     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
413 
414     if (!Subtarget.is64Bit()) {
415       // We must custom-lower certain vXi64 operations on RV32 due to the vector
416       // element type being illegal.
417       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
418       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
419 
420       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
421       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
422       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
423       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
424       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
425       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
426       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
427       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
428     }
429 
430     for (MVT VT : BoolVecVTs) {
431       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
432 
433       // Mask VTs are custom-expanded into a series of standard nodes
434       setOperationAction(ISD::TRUNCATE, VT, Custom);
435       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
436       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
437 
438       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
439 
440       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
441       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
442       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
443 
444       // Expand all extending loads to types larger than this, and truncating
445       // stores from types larger than this.
446       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
447         setTruncStoreAction(OtherVT, VT, Expand);
448         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
449         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
450         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
451       }
452     }
453 
454     for (MVT VT : IntVecVTs) {
455       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
456       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
457 
458       setOperationAction(ISD::SMIN, VT, Legal);
459       setOperationAction(ISD::SMAX, VT, Legal);
460       setOperationAction(ISD::UMIN, VT, Legal);
461       setOperationAction(ISD::UMAX, VT, Legal);
462 
463       setOperationAction(ISD::ROTL, VT, Expand);
464       setOperationAction(ISD::ROTR, VT, Expand);
465 
466       // Custom-lower extensions and truncations from/to mask types.
467       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
468       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
469       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
470 
471       // RVV has native int->float & float->int conversions where the
472       // element type sizes are within one power-of-two of each other. Any
473       // wider distances between type sizes have to be lowered as sequences
474       // which progressively narrow the gap in stages.
475       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
476       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
477       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
478       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
479 
480       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
481       // nodes which truncate by one power of two at a time.
482       setOperationAction(ISD::TRUNCATE, VT, Custom);
483 
484       // Custom-lower insert/extract operations to simplify patterns.
485       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
486       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
487 
488       // Custom-lower reduction operations to set up the corresponding custom
489       // nodes' operands.
490       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
491       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
492       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
493       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
494       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
495       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
496       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
497       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
498 
499       setOperationAction(ISD::MLOAD, VT, Custom);
500       setOperationAction(ISD::MSTORE, VT, Custom);
501       setOperationAction(ISD::MGATHER, VT, Custom);
502       setOperationAction(ISD::MSCATTER, VT, Custom);
503 
504       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
505       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
506       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
507 
508       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
509       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
510 
511       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
512         setTruncStoreAction(VT, OtherVT, Expand);
513         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
514         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
515         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
516       }
517     }
518 
519     // Expand various CCs to best match the RVV ISA, which natively supports UNE
520     // but no other unordered comparisons, and supports all ordered comparisons
521     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
522     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
523     // and we pattern-match those back to the "original", swapping operands once
524     // more. This way we catch both operations and both "vf" and "fv" forms with
525     // fewer patterns.
526     ISD::CondCode VFPCCToExpand[] = {
527         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
528         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
529         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
530     };
531 
532     // Sets common operation actions on RVV floating-point vector types.
533     const auto SetCommonVFPActions = [&](MVT VT) {
534       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
535       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
536       // sizes are within one power-of-two of each other. Therefore conversions
537       // between vXf16 and vXf64 must be lowered as sequences which convert via
538       // vXf32.
539       setOperationAction(ISD::FP_ROUND, VT, Custom);
540       setOperationAction(ISD::FP_EXTEND, VT, Custom);
541       // Custom-lower insert/extract operations to simplify patterns.
542       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
543       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
544       // Expand various condition codes (explained above).
545       for (auto CC : VFPCCToExpand)
546         setCondCodeAction(CC, VT, Expand);
547 
548       setOperationAction(ISD::FMINNUM, VT, Legal);
549       setOperationAction(ISD::FMAXNUM, VT, Legal);
550 
551       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
552       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
553       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
554 
555       setOperationAction(ISD::MLOAD, VT, Custom);
556       setOperationAction(ISD::MSTORE, VT, Custom);
557       setOperationAction(ISD::MGATHER, VT, Custom);
558       setOperationAction(ISD::MSCATTER, VT, Custom);
559 
560       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
561       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
562       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
563 
564       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
565     };
566 
567     // Sets common extload/truncstore actions on RVV floating-point vector
568     // types.
569     const auto SetCommonVFPExtLoadTruncStoreActions =
570         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
571           for (auto SmallVT : SmallerVTs) {
572             setTruncStoreAction(VT, SmallVT, Expand);
573             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
574           }
575         };
576 
577     if (Subtarget.hasStdExtZfh())
578       for (MVT VT : F16VecVTs)
579         SetCommonVFPActions(VT);
580 
581     for (MVT VT : F32VecVTs) {
582       if (Subtarget.hasStdExtF())
583         SetCommonVFPActions(VT);
584       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
585     }
586 
587     for (MVT VT : F64VecVTs) {
588       if (Subtarget.hasStdExtD())
589         SetCommonVFPActions(VT);
590       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
591       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
592     }
593 
594     if (Subtarget.useRVVForFixedLengthVectors()) {
595       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
596         if (!useRVVForFixedLengthVectorVT(VT))
597           continue;
598 
599         // By default everything must be expanded.
600         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
601           setOperationAction(Op, VT, Expand);
602         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
603           setTruncStoreAction(VT, OtherVT, Expand);
604           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
605           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
606           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
607         }
608 
609         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
610         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
611         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
612 
613         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
614         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
615 
616         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
617 
618         setOperationAction(ISD::LOAD, VT, Custom);
619         setOperationAction(ISD::STORE, VT, Custom);
620 
621         setOperationAction(ISD::SETCC, VT, Custom);
622 
623         setOperationAction(ISD::TRUNCATE, VT, Custom);
624 
625         setOperationAction(ISD::BITCAST, VT, Custom);
626 
627         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
628         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
629         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
630 
631         // Operations below are different for between masks and other vectors.
632         if (VT.getVectorElementType() == MVT::i1) {
633           setOperationAction(ISD::AND, VT, Custom);
634           setOperationAction(ISD::OR, VT, Custom);
635           setOperationAction(ISD::XOR, VT, Custom);
636           continue;
637         }
638 
639         // Use SPLAT_VECTOR to prevent type legalization from destroying the
640         // splats when type legalizing i64 scalar on RV32.
641         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
642         // improvements first.
643         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
644           setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
645           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
646         }
647 
648         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
649         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
650 
651         setOperationAction(ISD::MLOAD, VT, Custom);
652         setOperationAction(ISD::MSTORE, VT, Custom);
653         setOperationAction(ISD::MGATHER, VT, Custom);
654         setOperationAction(ISD::MSCATTER, VT, Custom);
655         setOperationAction(ISD::ADD, VT, Custom);
656         setOperationAction(ISD::MUL, VT, Custom);
657         setOperationAction(ISD::SUB, VT, Custom);
658         setOperationAction(ISD::AND, VT, Custom);
659         setOperationAction(ISD::OR, VT, Custom);
660         setOperationAction(ISD::XOR, VT, Custom);
661         setOperationAction(ISD::SDIV, VT, Custom);
662         setOperationAction(ISD::SREM, VT, Custom);
663         setOperationAction(ISD::UDIV, VT, Custom);
664         setOperationAction(ISD::UREM, VT, Custom);
665         setOperationAction(ISD::SHL, VT, Custom);
666         setOperationAction(ISD::SRA, VT, Custom);
667         setOperationAction(ISD::SRL, VT, Custom);
668 
669         setOperationAction(ISD::SMIN, VT, Custom);
670         setOperationAction(ISD::SMAX, VT, Custom);
671         setOperationAction(ISD::UMIN, VT, Custom);
672         setOperationAction(ISD::UMAX, VT, Custom);
673         setOperationAction(ISD::ABS,  VT, Custom);
674 
675         setOperationAction(ISD::MULHS, VT, Custom);
676         setOperationAction(ISD::MULHU, VT, Custom);
677 
678         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
679         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
680         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
681         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
682 
683         setOperationAction(ISD::VSELECT, VT, Custom);
684 
685         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
686         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
687         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
688 
689         // Custom-lower reduction operations to set up the corresponding custom
690         // nodes' operands.
691         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
692         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
693         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
694         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
695         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
696       }
697 
698       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
699         if (!useRVVForFixedLengthVectorVT(VT))
700           continue;
701 
702         // By default everything must be expanded.
703         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
704           setOperationAction(Op, VT, Expand);
705         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
706           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
707           setTruncStoreAction(VT, OtherVT, Expand);
708         }
709 
710         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
711         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
712         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
713 
714         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
715         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
716         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
717         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
718 
719         setOperationAction(ISD::LOAD, VT, Custom);
720         setOperationAction(ISD::STORE, VT, Custom);
721         setOperationAction(ISD::MLOAD, VT, Custom);
722         setOperationAction(ISD::MSTORE, VT, Custom);
723         setOperationAction(ISD::MGATHER, VT, Custom);
724         setOperationAction(ISD::MSCATTER, VT, Custom);
725         setOperationAction(ISD::FADD, VT, Custom);
726         setOperationAction(ISD::FSUB, VT, Custom);
727         setOperationAction(ISD::FMUL, VT, Custom);
728         setOperationAction(ISD::FDIV, VT, Custom);
729         setOperationAction(ISD::FNEG, VT, Custom);
730         setOperationAction(ISD::FABS, VT, Custom);
731         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
732         setOperationAction(ISD::FSQRT, VT, Custom);
733         setOperationAction(ISD::FMA, VT, Custom);
734         setOperationAction(ISD::FMINNUM, VT, Custom);
735         setOperationAction(ISD::FMAXNUM, VT, Custom);
736 
737         setOperationAction(ISD::FP_ROUND, VT, Custom);
738         setOperationAction(ISD::FP_EXTEND, VT, Custom);
739 
740         for (auto CC : VFPCCToExpand)
741           setCondCodeAction(CC, VT, Expand);
742 
743         setOperationAction(ISD::VSELECT, VT, Custom);
744 
745         setOperationAction(ISD::BITCAST, VT, Custom);
746 
747         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
748         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
749       }
750 
751       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
752       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
753       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
754       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
755       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
756       setOperationAction(ISD::BITCAST, MVT::f16, Custom);
757       setOperationAction(ISD::BITCAST, MVT::f32, Custom);
758       setOperationAction(ISD::BITCAST, MVT::f64, Custom);
759     }
760   }
761 
762   // Function alignments.
763   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
764   setMinFunctionAlignment(FunctionAlignment);
765   setPrefFunctionAlignment(FunctionAlignment);
766 
767   setMinimumJumpTableEntries(5);
768 
769   // Jumps are expensive, compared to logic
770   setJumpIsExpensive();
771 
772   // We can use any register for comparisons
773   setHasMultipleConditionRegisters();
774 
775   setTargetDAGCombine(ISD::AND);
776   setTargetDAGCombine(ISD::OR);
777   setTargetDAGCombine(ISD::XOR);
778   if (Subtarget.hasStdExtV()) {
779     setTargetDAGCombine(ISD::FCOPYSIGN);
780     setTargetDAGCombine(ISD::MGATHER);
781     setTargetDAGCombine(ISD::MSCATTER);
782   }
783 }
784 
785 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
786                                             LLVMContext &Context,
787                                             EVT VT) const {
788   if (!VT.isVector())
789     return getPointerTy(DL);
790   if (Subtarget.hasStdExtV() &&
791       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
792     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
793   return VT.changeVectorElementTypeToInteger();
794 }
795 
796 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
797                                              const CallInst &I,
798                                              MachineFunction &MF,
799                                              unsigned Intrinsic) const {
800   switch (Intrinsic) {
801   default:
802     return false;
803   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
804   case Intrinsic::riscv_masked_atomicrmw_add_i32:
805   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
806   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
807   case Intrinsic::riscv_masked_atomicrmw_max_i32:
808   case Intrinsic::riscv_masked_atomicrmw_min_i32:
809   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
810   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
811   case Intrinsic::riscv_masked_cmpxchg_i32:
812     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
813     Info.opc = ISD::INTRINSIC_W_CHAIN;
814     Info.memVT = MVT::getVT(PtrTy->getElementType());
815     Info.ptrVal = I.getArgOperand(0);
816     Info.offset = 0;
817     Info.align = Align(4);
818     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
819                  MachineMemOperand::MOVolatile;
820     return true;
821   }
822 }
823 
824 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
825                                                 const AddrMode &AM, Type *Ty,
826                                                 unsigned AS,
827                                                 Instruction *I) const {
828   // No global is ever allowed as a base.
829   if (AM.BaseGV)
830     return false;
831 
832   // Require a 12-bit signed offset.
833   if (!isInt<12>(AM.BaseOffs))
834     return false;
835 
836   switch (AM.Scale) {
837   case 0: // "r+i" or just "i", depending on HasBaseReg.
838     break;
839   case 1:
840     if (!AM.HasBaseReg) // allow "r+i".
841       break;
842     return false; // disallow "r+r" or "r+r+i".
843   default:
844     return false;
845   }
846 
847   return true;
848 }
849 
850 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
851   return isInt<12>(Imm);
852 }
853 
854 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
855   return isInt<12>(Imm);
856 }
857 
858 // On RV32, 64-bit integers are split into their high and low parts and held
859 // in two different registers, so the trunc is free since the low register can
860 // just be used.
861 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
862   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
863     return false;
864   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
865   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
866   return (SrcBits == 64 && DestBits == 32);
867 }
868 
869 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
870   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
871       !SrcVT.isInteger() || !DstVT.isInteger())
872     return false;
873   unsigned SrcBits = SrcVT.getSizeInBits();
874   unsigned DestBits = DstVT.getSizeInBits();
875   return (SrcBits == 64 && DestBits == 32);
876 }
877 
878 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
879   // Zexts are free if they can be combined with a load.
880   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
881     EVT MemVT = LD->getMemoryVT();
882     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
883          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
884         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
885          LD->getExtensionType() == ISD::ZEXTLOAD))
886       return true;
887   }
888 
889   return TargetLowering::isZExtFree(Val, VT2);
890 }
891 
892 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
893   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
894 }
895 
896 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
897   return Subtarget.hasStdExtZbb();
898 }
899 
900 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
901   return Subtarget.hasStdExtZbb();
902 }
903 
904 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
905                                        bool ForCodeSize) const {
906   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
907     return false;
908   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
909     return false;
910   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
911     return false;
912   if (Imm.isNegZero())
913     return false;
914   return Imm.isZero();
915 }
916 
917 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
918   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
919          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
920          (VT == MVT::f64 && Subtarget.hasStdExtD());
921 }
922 
923 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
924                                                       CallingConv::ID CC,
925                                                       EVT VT) const {
926   // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still
927   // end up using a GPR but that will be decided based on ABI.
928   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
929     return MVT::f32;
930 
931   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
932 }
933 
934 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
935                                                            CallingConv::ID CC,
936                                                            EVT VT) const {
937   // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still
938   // end up using a GPR but that will be decided based on ABI.
939   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
940     return 1;
941 
942   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
943 }
944 
945 // Changes the condition code and swaps operands if necessary, so the SetCC
946 // operation matches one of the comparisons supported directly by branches
947 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
948 // with 1/-1.
949 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
950                                     ISD::CondCode &CC, SelectionDAG &DAG) {
951   // Convert X > -1 to X >= 0.
952   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
953     RHS = DAG.getConstant(0, DL, RHS.getValueType());
954     CC = ISD::SETGE;
955     return;
956   }
957   // Convert X < 1 to 0 >= X.
958   if (CC == ISD::SETLT && isOneConstant(RHS)) {
959     RHS = LHS;
960     LHS = DAG.getConstant(0, DL, RHS.getValueType());
961     CC = ISD::SETGE;
962     return;
963   }
964 
965   switch (CC) {
966   default:
967     break;
968   case ISD::SETGT:
969   case ISD::SETLE:
970   case ISD::SETUGT:
971   case ISD::SETULE:
972     CC = ISD::getSetCCSwappedOperands(CC);
973     std::swap(LHS, RHS);
974     break;
975   }
976 }
977 
978 // Return the RISC-V branch opcode that matches the given DAG integer
979 // condition code. The CondCode must be one of those supported by the RISC-V
980 // ISA (see translateSetCCForBranch).
981 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
982   switch (CC) {
983   default:
984     llvm_unreachable("Unsupported CondCode");
985   case ISD::SETEQ:
986     return RISCV::BEQ;
987   case ISD::SETNE:
988     return RISCV::BNE;
989   case ISD::SETLT:
990     return RISCV::BLT;
991   case ISD::SETGE:
992     return RISCV::BGE;
993   case ISD::SETULT:
994     return RISCV::BLTU;
995   case ISD::SETUGE:
996     return RISCV::BGEU;
997   }
998 }
999 
1000 RISCVVLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1001   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1002   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1003   if (VT.getVectorElementType() == MVT::i1)
1004     KnownSize *= 8;
1005 
1006   switch (KnownSize) {
1007   default:
1008     llvm_unreachable("Invalid LMUL.");
1009   case 8:
1010     return RISCVVLMUL::LMUL_F8;
1011   case 16:
1012     return RISCVVLMUL::LMUL_F4;
1013   case 32:
1014     return RISCVVLMUL::LMUL_F2;
1015   case 64:
1016     return RISCVVLMUL::LMUL_1;
1017   case 128:
1018     return RISCVVLMUL::LMUL_2;
1019   case 256:
1020     return RISCVVLMUL::LMUL_4;
1021   case 512:
1022     return RISCVVLMUL::LMUL_8;
1023   }
1024 }
1025 
1026 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVVLMUL LMul) {
1027   switch (LMul) {
1028   default:
1029     llvm_unreachable("Invalid LMUL.");
1030   case RISCVVLMUL::LMUL_F8:
1031   case RISCVVLMUL::LMUL_F4:
1032   case RISCVVLMUL::LMUL_F2:
1033   case RISCVVLMUL::LMUL_1:
1034     return RISCV::VRRegClassID;
1035   case RISCVVLMUL::LMUL_2:
1036     return RISCV::VRM2RegClassID;
1037   case RISCVVLMUL::LMUL_4:
1038     return RISCV::VRM4RegClassID;
1039   case RISCVVLMUL::LMUL_8:
1040     return RISCV::VRM8RegClassID;
1041   }
1042 }
1043 
1044 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1045   RISCVVLMUL LMUL = getLMUL(VT);
1046   if (LMUL == RISCVVLMUL::LMUL_F8 || LMUL == RISCVVLMUL::LMUL_F4 ||
1047       LMUL == RISCVVLMUL::LMUL_F2 || LMUL == RISCVVLMUL::LMUL_1) {
1048     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1049                   "Unexpected subreg numbering");
1050     return RISCV::sub_vrm1_0 + Index;
1051   }
1052   if (LMUL == RISCVVLMUL::LMUL_2) {
1053     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1054                   "Unexpected subreg numbering");
1055     return RISCV::sub_vrm2_0 + Index;
1056   }
1057   if (LMUL == RISCVVLMUL::LMUL_4) {
1058     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1059                   "Unexpected subreg numbering");
1060     return RISCV::sub_vrm4_0 + Index;
1061   }
1062   llvm_unreachable("Invalid vector type.");
1063 }
1064 
1065 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1066   if (VT.getVectorElementType() == MVT::i1)
1067     return RISCV::VRRegClassID;
1068   return getRegClassIDForLMUL(getLMUL(VT));
1069 }
1070 
1071 // Attempt to decompose a subvector insert/extract between VecVT and
1072 // SubVecVT via subregister indices. Returns the subregister index that
1073 // can perform the subvector insert/extract with the given element index, as
1074 // well as the index corresponding to any leftover subvectors that must be
1075 // further inserted/extracted within the register class for SubVecVT.
1076 std::pair<unsigned, unsigned>
1077 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1078     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1079     const RISCVRegisterInfo *TRI) {
1080   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1081                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1082                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1083                 "Register classes not ordered");
1084   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1085   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1086   // Try to compose a subregister index that takes us from the incoming
1087   // LMUL>1 register class down to the outgoing one. At each step we half
1088   // the LMUL:
1089   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1090   // Note that this is not guaranteed to find a subregister index, such as
1091   // when we are extracting from one VR type to another.
1092   unsigned SubRegIdx = RISCV::NoSubRegister;
1093   for (const unsigned RCID :
1094        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1095     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1096       VecVT = VecVT.getHalfNumVectorElementsVT();
1097       bool IsHi =
1098           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1099       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1100                                             getSubregIndexByMVT(VecVT, IsHi));
1101       if (IsHi)
1102         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1103     }
1104   return {SubRegIdx, InsertExtractIdx};
1105 }
1106 
1107 static bool useRVVForFixedLengthVectorVT(MVT VT,
1108                                          const RISCVSubtarget &Subtarget) {
1109   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1110   if (!Subtarget.useRVVForFixedLengthVectors())
1111     return false;
1112 
1113   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1114 
1115   // Don't use RVV for vectors we cannot scalarize if required.
1116   switch (VT.getVectorElementType().SimpleTy) {
1117   // i1 is supported but has different rules.
1118   default:
1119     return false;
1120   case MVT::i1:
1121     // Masks can only use a single register.
1122     if (VT.getVectorNumElements() > MinVLen)
1123       return false;
1124     MinVLen /= 8;
1125     break;
1126   case MVT::i8:
1127   case MVT::i16:
1128   case MVT::i32:
1129   case MVT::i64:
1130     break;
1131   case MVT::f16:
1132     if (!Subtarget.hasStdExtZfh())
1133       return false;
1134     break;
1135   case MVT::f32:
1136     if (!Subtarget.hasStdExtF())
1137       return false;
1138     break;
1139   case MVT::f64:
1140     if (!Subtarget.hasStdExtD())
1141       return false;
1142     break;
1143   }
1144 
1145   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1146   // Don't use RVV for types that don't fit.
1147   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1148     return false;
1149 
1150   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1151   // the base fixed length RVV support in place.
1152   if (!VT.isPow2VectorType())
1153     return false;
1154 
1155   return true;
1156 }
1157 
1158 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1159   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1160 }
1161 
1162 // Return the largest legal scalable vector type that matches VT's element type.
1163 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1164                                             const RISCVSubtarget &Subtarget) {
1165   // This may be called before legal types are setup.
1166   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1167           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1168          "Expected legal fixed length vector!");
1169 
1170   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1171 
1172   MVT EltVT = VT.getVectorElementType();
1173   switch (EltVT.SimpleTy) {
1174   default:
1175     llvm_unreachable("unexpected element type for RVV container");
1176   case MVT::i1: {
1177     // Masks are calculated assuming 8-bit elements since that's when we need
1178     // the most elements.
1179     MinVLen /= 8;
1180     unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1181     unsigned EltsPerBlock = RISCV::RVVBitsPerBlock / 8;
1182     return MVT::getScalableVectorVT(MVT::i1, LMul * EltsPerBlock);
1183   }
1184   case MVT::i8:
1185   case MVT::i16:
1186   case MVT::i32:
1187   case MVT::i64:
1188   case MVT::f16:
1189   case MVT::f32:
1190   case MVT::f64: {
1191     unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1192     unsigned EltsPerBlock = RISCV::RVVBitsPerBlock / EltVT.getSizeInBits();
1193     return MVT::getScalableVectorVT(EltVT, LMul * EltsPerBlock);
1194   }
1195   }
1196 }
1197 
1198 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1199                                             const RISCVSubtarget &Subtarget) {
1200   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1201                                           Subtarget);
1202 }
1203 
1204 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1205   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1206 }
1207 
1208 // Grow V to consume an entire RVV register.
1209 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1210                                        const RISCVSubtarget &Subtarget) {
1211   assert(VT.isScalableVector() &&
1212          "Expected to convert into a scalable vector!");
1213   assert(V.getValueType().isFixedLengthVector() &&
1214          "Expected a fixed length vector operand!");
1215   SDLoc DL(V);
1216   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1217   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1218 }
1219 
1220 // Shrink V so it's just big enough to maintain a VT's worth of data.
1221 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1222                                          const RISCVSubtarget &Subtarget) {
1223   assert(VT.isFixedLengthVector() &&
1224          "Expected to convert into a fixed length vector!");
1225   assert(V.getValueType().isScalableVector() &&
1226          "Expected a scalable vector operand!");
1227   SDLoc DL(V);
1228   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1229   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1230 }
1231 
1232 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1233 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1234 // the vector type that it is contained in.
1235 static std::pair<SDValue, SDValue>
1236 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1237                 const RISCVSubtarget &Subtarget) {
1238   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1239   MVT XLenVT = Subtarget.getXLenVT();
1240   SDValue VL = VecVT.isFixedLengthVector()
1241                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1242                    : DAG.getRegister(RISCV::X0, XLenVT);
1243   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1244   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1245   return {Mask, VL};
1246 }
1247 
1248 // As above but assuming the given type is a scalable vector type.
1249 static std::pair<SDValue, SDValue>
1250 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1251                         const RISCVSubtarget &Subtarget) {
1252   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1253   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1254 }
1255 
1256 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1257 // of either is (currently) supported. This can get us into an infinite loop
1258 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1259 // as a ..., etc.
1260 // Until either (or both) of these can reliably lower any node, reporting that
1261 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1262 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1263 // which is not desirable.
1264 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1265     EVT VT, unsigned DefinedValues) const {
1266   return false;
1267 }
1268 
1269 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
1270   // Only splats are currently supported.
1271   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
1272     return true;
1273 
1274   return false;
1275 }
1276 
1277 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG,
1278                                  const RISCVSubtarget &Subtarget) {
1279   MVT VT = Op.getSimpleValueType();
1280   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1281 
1282   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1283 
1284   SDLoc DL(Op);
1285   SDValue Mask, VL;
1286   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1287 
1288   unsigned Opc =
1289       VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1290   SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL);
1291   return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1292 }
1293 
1294 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1295                                  const RISCVSubtarget &Subtarget) {
1296   MVT VT = Op.getSimpleValueType();
1297   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1298 
1299   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1300 
1301   SDLoc DL(Op);
1302   SDValue Mask, VL;
1303   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1304 
1305   MVT XLenVT = Subtarget.getXLenVT();
1306   unsigned NumElts = Op.getNumOperands();
1307 
1308   if (VT.getVectorElementType() == MVT::i1) {
1309     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1310       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1311       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1312     }
1313 
1314     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1315       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1316       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1317     }
1318 
1319     // Lower constant mask BUILD_VECTORs via an integer vector type, in
1320     // scalar integer chunks whose bit-width depends on the number of mask
1321     // bits and XLEN.
1322     // First, determine the most appropriate scalar integer type to use. This
1323     // is at most XLenVT, but may be shrunk to a smaller vector element type
1324     // according to the size of the final vector - use i8 chunks rather than
1325     // XLenVT if we're producing a v8i1. This results in more consistent
1326     // codegen across RV32 and RV64.
1327     // If we have to use more than one INSERT_VECTOR_ELT then this optimization
1328     // is likely to increase code size; avoid peforming it in such a case.
1329     unsigned NumViaIntegerBits =
1330         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
1331     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
1332         (!DAG.shouldOptForSize() || NumElts <= NumViaIntegerBits)) {
1333       // Now we can create our integer vector type. Note that it may be larger
1334       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
1335       MVT IntegerViaVecVT =
1336           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
1337                            divideCeil(NumElts, NumViaIntegerBits));
1338 
1339       uint64_t Bits = 0;
1340       unsigned BitPos = 0, IntegerEltIdx = 0;
1341       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
1342 
1343       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
1344         // Once we accumulate enough bits to fill our scalar type, insert into
1345         // our vector and clear our accumulated data.
1346         if (I != 0 && I % NumViaIntegerBits == 0) {
1347           if (NumViaIntegerBits <= 32)
1348             Bits = SignExtend64(Bits, 32);
1349           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1350           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
1351                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1352           Bits = 0;
1353           BitPos = 0;
1354           IntegerEltIdx++;
1355         }
1356         SDValue V = Op.getOperand(I);
1357         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
1358         Bits |= ((uint64_t)BitValue << BitPos);
1359       }
1360 
1361       // Insert the (remaining) scalar value into position in our integer
1362       // vector type.
1363       if (NumViaIntegerBits <= 32)
1364         Bits = SignExtend64(Bits, 32);
1365       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1366       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
1367                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1368 
1369       if (NumElts < NumViaIntegerBits) {
1370         // If we're producing a smaller vector than our minimum legal integer
1371         // type, bitcast to the equivalent (known-legal) mask type, and extract
1372         // our final mask.
1373         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
1374         Vec = DAG.getBitcast(MVT::v8i1, Vec);
1375         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
1376                           DAG.getConstant(0, DL, XLenVT));
1377       } else {
1378         // Else we must have produced an integer type with the same size as the
1379         // mask type; bitcast for the final result.
1380         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
1381         Vec = DAG.getBitcast(VT, Vec);
1382       }
1383 
1384       return Vec;
1385     }
1386 
1387     return SDValue();
1388   }
1389 
1390   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1391     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
1392                                         : RISCVISD::VMV_V_X_VL;
1393     Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL);
1394     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1395   }
1396 
1397   // Try and match an index sequence, which we can lower directly to the vid
1398   // instruction. An all-undef vector is matched by getSplatValue, above.
1399   if (VT.isInteger()) {
1400     bool IsVID = true;
1401     for (unsigned I = 0; I < NumElts && IsVID; I++)
1402       IsVID &= Op.getOperand(I).isUndef() ||
1403                (isa<ConstantSDNode>(Op.getOperand(I)) &&
1404                 Op.getConstantOperandVal(I) == I);
1405 
1406     if (IsVID) {
1407       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
1408       return convertFromScalableVector(VT, VID, DAG, Subtarget);
1409     }
1410   }
1411 
1412   // Attempt to detect "hidden" splats, which only reveal themselves as splats
1413   // when re-interpreted as a vector with a larger element type. For example,
1414   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
1415   // could be instead splat as
1416   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
1417   // TODO: This optimization could also work on non-constant splats, but it
1418   // would require bit-manipulation instructions to construct the splat value.
1419   SmallVector<SDValue> Sequence;
1420   unsigned EltBitSize = VT.getScalarSizeInBits();
1421   const auto *BV = cast<BuildVectorSDNode>(Op);
1422   if (VT.isInteger() && EltBitSize < 64 &&
1423       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
1424       BV->getRepeatedSequence(Sequence) &&
1425       (Sequence.size() * EltBitSize) <= 64) {
1426     unsigned SeqLen = Sequence.size();
1427     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
1428     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
1429     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
1430             ViaIntVT == MVT::i64) &&
1431            "Unexpected sequence type");
1432 
1433     unsigned EltIdx = 0;
1434     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
1435     uint64_t SplatValue = 0;
1436     // Construct the amalgamated value which can be splatted as this larger
1437     // vector type.
1438     for (const auto &SeqV : Sequence) {
1439       if (!SeqV.isUndef())
1440         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
1441                        << (EltIdx * EltBitSize));
1442       EltIdx++;
1443     }
1444 
1445     // On RV64, sign-extend from 32 to 64 bits where possible in order to
1446     // achieve better constant materializion.
1447     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
1448       SplatValue = SignExtend64(SplatValue, 32);
1449 
1450     // Since we can't introduce illegal i64 types at this stage, we can only
1451     // perform an i64 splat on RV32 if it is its own sign-extended value. That
1452     // way we can use RVV instructions to splat.
1453     assert((ViaIntVT.bitsLE(XLenVT) ||
1454             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
1455            "Unexpected bitcast sequence");
1456     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
1457       SDValue ViaVL =
1458           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
1459       MVT ViaContainerVT =
1460           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
1461       SDValue Splat =
1462           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
1463                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
1464       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
1465       return DAG.getBitcast(VT, Splat);
1466     }
1467   }
1468 
1469   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
1470   // which constitute a large proportion of the elements. In such cases we can
1471   // splat a vector with the dominant element and make up the shortfall with
1472   // INSERT_VECTOR_ELTs.
1473   // Note that this includes vectors of 2 elements by association. The
1474   // upper-most element is the "dominant" one, allowing us to use a splat to
1475   // "insert" the upper element, and an insert of the lower element at position
1476   // 0, which improves codegen.
1477   SDValue DominantValue;
1478   unsigned MostCommonCount = 0;
1479   DenseMap<SDValue, unsigned> ValueCounts;
1480   unsigned NumUndefElts =
1481       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
1482 
1483   for (SDValue V : Op->op_values()) {
1484     if (V.isUndef())
1485       continue;
1486 
1487     ValueCounts.insert(std::make_pair(V, 0));
1488     unsigned &Count = ValueCounts[V];
1489 
1490     // Is this value dominant? In case of a tie, prefer the highest element as
1491     // it's cheaper to insert near the beginning of a vector than it is at the
1492     // end.
1493     if (++Count >= MostCommonCount) {
1494       DominantValue = V;
1495       MostCommonCount = Count;
1496     }
1497   }
1498 
1499   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
1500   unsigned NumDefElts = NumElts - NumUndefElts;
1501   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
1502 
1503   // Don't perform this optimization when optimizing for size, since
1504   // materializing elements and inserting them tends to cause code bloat.
1505   if (!DAG.shouldOptForSize() &&
1506       ((MostCommonCount > DominantValueCountThreshold) ||
1507        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
1508     // Start by splatting the most common element.
1509     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
1510 
1511     DenseSet<SDValue> Processed{DominantValue};
1512     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
1513     for (const auto &OpIdx : enumerate(Op->ops())) {
1514       const SDValue &V = OpIdx.value();
1515       if (V.isUndef() || !Processed.insert(V).second)
1516         continue;
1517       if (ValueCounts[V] == 1) {
1518         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
1519                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
1520       } else {
1521         // Blend in all instances of this value using a VSELECT, using a
1522         // mask where each bit signals whether that element is the one
1523         // we're after.
1524         SmallVector<SDValue> Ops;
1525         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
1526           return DAG.getConstant(V == V1, DL, XLenVT);
1527         });
1528         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
1529                           DAG.getBuildVector(SelMaskTy, DL, Ops),
1530                           DAG.getSplatBuildVector(VT, DL, V), Vec);
1531       }
1532     }
1533 
1534     return Vec;
1535   }
1536 
1537   return SDValue();
1538 }
1539 
1540 // Use a stack slot to splat the two i32 values in Lo/Hi to the vector desired
1541 // vector nxvXi64 VT.
1542 static SDValue splatPartsI64ThroughStack(const SDLoc &DL, MVT VT, SDValue Lo,
1543                                          SDValue Hi, SDValue VL,
1544                                          SelectionDAG &DAG) {
1545   assert(VT.getVectorElementType() == MVT::i64 && VT.isScalableVector() &&
1546          Lo.getValueType() == MVT::i32 && Hi.getValueType() == MVT::i32 &&
1547          "Unexpected VTs!");
1548   MachineFunction &MF = DAG.getMachineFunction();
1549   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
1550 
1551   // We use the same frame index we use for moving two i32s into 64-bit FPR.
1552   // This is an analogous operation.
1553   int FI = FuncInfo->getMoveF64FrameIndex(MF);
1554   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
1555   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1556   SDValue StackSlot =
1557       DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()));
1558 
1559   SDValue Chain = DAG.getEntryNode();
1560   Lo = DAG.getStore(Chain, DL, Lo, StackSlot, MPI, Align(8));
1561 
1562   SDValue OffsetSlot =
1563       DAG.getMemBasePlusOffset(StackSlot, TypeSize::Fixed(4), DL);
1564   Hi = DAG.getStore(Chain, DL, Hi, OffsetSlot, MPI.getWithOffset(4), Align(8));
1565 
1566   Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
1567 
1568   SDVTList VTs = DAG.getVTList({VT, MVT::Other});
1569   SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, MVT::i64);
1570   SDValue Ops[] = {Chain, IntID, StackSlot,
1571                    DAG.getRegister(RISCV::X0, MVT::i64), VL};
1572 
1573   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MVT::i64,
1574                                  MPI, Align(8), MachineMemOperand::MOLoad);
1575 }
1576 
1577 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo,
1578                                    SDValue Hi, SDValue VL, SelectionDAG &DAG) {
1579   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
1580     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
1581     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
1582     // If Hi constant is all the same sign bit as Lo, lower this as a custom
1583     // node in order to try and match RVV vector/scalar instructions.
1584     if ((LoC >> 31) == HiC)
1585       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL);
1586   }
1587 
1588   // Fall back to a stack store and stride x0 vector load.
1589   return splatPartsI64ThroughStack(DL, VT, Lo, Hi, VL, DAG);
1590 }
1591 
1592 // Called by type legalization to handle splat of i64 on RV32.
1593 // FIXME: We can optimize this when the type has sign or zero bits in one
1594 // of the halves.
1595 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar,
1596                                    SDValue VL, SelectionDAG &DAG) {
1597   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
1598   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
1599                            DAG.getConstant(0, DL, MVT::i32));
1600   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
1601                            DAG.getConstant(1, DL, MVT::i32));
1602   return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG);
1603 }
1604 
1605 // This function lowers a splat of a scalar operand Splat with the vector
1606 // length VL. It ensures the final sequence is type legal, which is useful when
1607 // lowering a splat after type legalization.
1608 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL,
1609                                 SelectionDAG &DAG,
1610                                 const RISCVSubtarget &Subtarget) {
1611   if (VT.isFloatingPoint())
1612     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL);
1613 
1614   MVT XLenVT = Subtarget.getXLenVT();
1615 
1616   // Simplest case is that the operand needs to be promoted to XLenVT.
1617   if (Scalar.getValueType().bitsLE(XLenVT)) {
1618     // If the operand is a constant, sign extend to increase our chances
1619     // of being able to use a .vi instruction. ANY_EXTEND would become a
1620     // a zero extend and the simm5 check in isel would fail.
1621     // FIXME: Should we ignore the upper bits in isel instead?
1622     unsigned ExtOpc =
1623         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
1624     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
1625     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL);
1626   }
1627 
1628   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
1629          "Unexpected scalar for splat lowering!");
1630 
1631   // Otherwise use the more complicated splatting algorithm.
1632   return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
1633 }
1634 
1635 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
1636                                    const RISCVSubtarget &Subtarget) {
1637   SDValue V1 = Op.getOperand(0);
1638   SDValue V2 = Op.getOperand(1);
1639   SDLoc DL(Op);
1640   MVT XLenVT = Subtarget.getXLenVT();
1641   MVT VT = Op.getSimpleValueType();
1642   unsigned NumElts = VT.getVectorNumElements();
1643   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
1644 
1645   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1646 
1647   SDValue TrueMask, VL;
1648   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1649 
1650   if (SVN->isSplat()) {
1651     const int Lane = SVN->getSplatIndex();
1652     if (Lane >= 0) {
1653       MVT SVT = VT.getVectorElementType();
1654 
1655       // Turn splatted vector load into a strided load with an X0 stride.
1656       SDValue V = V1;
1657       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
1658       // with undef.
1659       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
1660       int Offset = Lane;
1661       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
1662         int OpElements =
1663             V.getOperand(0).getSimpleValueType().getVectorNumElements();
1664         V = V.getOperand(Offset / OpElements);
1665         Offset %= OpElements;
1666       }
1667 
1668       // We need to ensure the load isn't atomic or volatile.
1669       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
1670         auto *Ld = cast<LoadSDNode>(V);
1671         Offset *= SVT.getStoreSize();
1672         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
1673                                                    TypeSize::Fixed(Offset), DL);
1674 
1675         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
1676         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
1677           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
1678           SDValue IntID =
1679               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
1680           SDValue Ops[] = {Ld->getChain(), IntID, NewAddr,
1681                            DAG.getRegister(RISCV::X0, XLenVT), VL};
1682           SDValue NewLoad = DAG.getMemIntrinsicNode(
1683               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
1684               DAG.getMachineFunction().getMachineMemOperand(
1685                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
1686           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
1687           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
1688         }
1689 
1690         // Otherwise use a scalar load and splat. This will give the best
1691         // opportunity to fold a splat into the operation. ISel can turn it into
1692         // the x0 strided load if we aren't able to fold away the select.
1693         if (SVT.isFloatingPoint())
1694           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
1695                           Ld->getPointerInfo().getWithOffset(Offset),
1696                           Ld->getOriginalAlign(),
1697                           Ld->getMemOperand()->getFlags());
1698         else
1699           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
1700                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
1701                              Ld->getOriginalAlign(),
1702                              Ld->getMemOperand()->getFlags());
1703         DAG.makeEquivalentMemoryOrdering(Ld, V);
1704 
1705         unsigned Opc =
1706             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1707         SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL);
1708         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1709       }
1710 
1711       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
1712       assert(Lane < (int)NumElts && "Unexpected lane!");
1713       SDValue Gather =
1714           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
1715                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
1716       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
1717     }
1718   }
1719 
1720   // Detect shuffles which can be re-expressed as vector selects; these are
1721   // shuffles in which each element in the destination is taken from an element
1722   // at the corresponding index in either source vectors.
1723   bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) {
1724     int MaskIndex = MaskIdx.value();
1725     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
1726   });
1727 
1728   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
1729 
1730   SmallVector<SDValue> MaskVals;
1731   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
1732   // merged with a second vrgather.
1733   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
1734 
1735   // By default we preserve the original operand order, and use a mask to
1736   // select LHS as true and RHS as false. However, since RVV vector selects may
1737   // feature splats but only on the LHS, we may choose to invert our mask and
1738   // instead select between RHS and LHS.
1739   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
1740   bool InvertMask = IsSelect == SwapOps;
1741 
1742   // Now construct the mask that will be used by the vselect or blended
1743   // vrgather operation. For vrgathers, construct the appropriate indices into
1744   // each vector.
1745   for (int MaskIndex : SVN->getMask()) {
1746     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
1747     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
1748     if (!IsSelect) {
1749       bool IsLHS = MaskIndex < (int)NumElts;
1750       // For "undef" elements of -1, shuffle in element 0 instead.
1751       GatherIndicesLHS.push_back(
1752           DAG.getConstant(IsLHS ? std::max(MaskIndex, 0) : 0, DL, XLenVT));
1753       // TODO: If we're masking out unused elements anyway, it might produce
1754       // better code if we use the most-common element index instead of 0.
1755       GatherIndicesRHS.push_back(
1756           DAG.getConstant(IsLHS ? 0 : MaskIndex - NumElts, DL, XLenVT));
1757     }
1758   }
1759 
1760   if (SwapOps) {
1761     std::swap(V1, V2);
1762     std::swap(GatherIndicesLHS, GatherIndicesRHS);
1763   }
1764 
1765   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
1766   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
1767   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
1768 
1769   if (IsSelect)
1770     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
1771 
1772   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
1773     // On such a large vector we're unable to use i8 as the index type.
1774     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
1775     // may involve vector splitting if we're already at LMUL=8, or our
1776     // user-supplied maximum fixed-length LMUL.
1777     return SDValue();
1778   }
1779 
1780   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
1781   MVT IndexVT = VT.changeTypeToInteger();
1782   // Since we can't introduce illegal index types at this stage, use i16 and
1783   // vrgatherei16 if the corresponding index type for plain vrgather is greater
1784   // than XLenVT.
1785   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
1786     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
1787     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
1788   }
1789 
1790   MVT IndexContainerVT =
1791       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
1792 
1793   SDValue Gather;
1794   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
1795   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
1796   if (SDValue SplatValue = DAG.getSplatValue(V1)) {
1797     Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget);
1798   } else {
1799     SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
1800     LHSIndices =
1801         convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
1802 
1803     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
1804     Gather =
1805         DAG.getNode(GatherOpc, DL, ContainerVT, V1, LHSIndices, TrueMask, VL);
1806   }
1807 
1808   // If a second vector operand is used by this shuffle, blend it in with an
1809   // additional vrgather.
1810   if (!V2.isUndef()) {
1811     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
1812     SelectMask =
1813         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
1814 
1815     SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
1816     RHSIndices =
1817         convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
1818 
1819     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
1820     V2 = DAG.getNode(GatherOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, VL);
1821     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
1822                          Gather, VL);
1823   }
1824 
1825   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
1826 }
1827 
1828 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
1829                                      SDLoc DL, SelectionDAG &DAG,
1830                                      const RISCVSubtarget &Subtarget) {
1831   if (VT.isScalableVector())
1832     return DAG.getFPExtendOrRound(Op, DL, VT);
1833   assert(VT.isFixedLengthVector() &&
1834          "Unexpected value type for RVV FP extend/round lowering");
1835   SDValue Mask, VL;
1836   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1837   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
1838                         ? RISCVISD::FP_EXTEND_VL
1839                         : RISCVISD::FP_ROUND_VL;
1840   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
1841 }
1842 
1843 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
1844                                             SelectionDAG &DAG) const {
1845   switch (Op.getOpcode()) {
1846   default:
1847     report_fatal_error("unimplemented operand");
1848   case ISD::GlobalAddress:
1849     return lowerGlobalAddress(Op, DAG);
1850   case ISD::BlockAddress:
1851     return lowerBlockAddress(Op, DAG);
1852   case ISD::ConstantPool:
1853     return lowerConstantPool(Op, DAG);
1854   case ISD::JumpTable:
1855     return lowerJumpTable(Op, DAG);
1856   case ISD::GlobalTLSAddress:
1857     return lowerGlobalTLSAddress(Op, DAG);
1858   case ISD::SELECT:
1859     return lowerSELECT(Op, DAG);
1860   case ISD::BRCOND:
1861     return lowerBRCOND(Op, DAG);
1862   case ISD::VASTART:
1863     return lowerVASTART(Op, DAG);
1864   case ISD::FRAMEADDR:
1865     return lowerFRAMEADDR(Op, DAG);
1866   case ISD::RETURNADDR:
1867     return lowerRETURNADDR(Op, DAG);
1868   case ISD::SHL_PARTS:
1869     return lowerShiftLeftParts(Op, DAG);
1870   case ISD::SRA_PARTS:
1871     return lowerShiftRightParts(Op, DAG, true);
1872   case ISD::SRL_PARTS:
1873     return lowerShiftRightParts(Op, DAG, false);
1874   case ISD::BITCAST: {
1875     SDLoc DL(Op);
1876     EVT VT = Op.getValueType();
1877     SDValue Op0 = Op.getOperand(0);
1878     EVT Op0VT = Op0.getValueType();
1879     MVT XLenVT = Subtarget.getXLenVT();
1880     if (VT.isFixedLengthVector()) {
1881       // We can handle fixed length vector bitcasts with a simple replacement
1882       // in isel.
1883       if (Op0VT.isFixedLengthVector())
1884         return Op;
1885       // When bitcasting from scalar to fixed-length vector, insert the scalar
1886       // into a one-element vector of the result type, and perform a vector
1887       // bitcast.
1888       if (!Op0VT.isVector()) {
1889         auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
1890         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
1891                                               DAG.getUNDEF(BVT), Op0,
1892                                               DAG.getConstant(0, DL, XLenVT)));
1893       }
1894       return SDValue();
1895     }
1896     // Custom-legalize bitcasts from fixed-length vector types to scalar types
1897     // thus: bitcast the vector to a one-element vector type whose element type
1898     // is the same as the result type, and extract the first element.
1899     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
1900       LLVMContext &Context = *DAG.getContext();
1901       SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0);
1902       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
1903                          DAG.getConstant(0, DL, XLenVT));
1904     }
1905     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
1906       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
1907       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
1908       return FPConv;
1909     }
1910     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
1911         Subtarget.hasStdExtF()) {
1912       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
1913       SDValue FPConv =
1914           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
1915       return FPConv;
1916     }
1917     return SDValue();
1918   }
1919   case ISD::INTRINSIC_WO_CHAIN:
1920     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1921   case ISD::INTRINSIC_W_CHAIN:
1922     return LowerINTRINSIC_W_CHAIN(Op, DAG);
1923   case ISD::BSWAP:
1924   case ISD::BITREVERSE: {
1925     // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
1926     assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
1927     MVT VT = Op.getSimpleValueType();
1928     SDLoc DL(Op);
1929     // Start with the maximum immediate value which is the bitwidth - 1.
1930     unsigned Imm = VT.getSizeInBits() - 1;
1931     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
1932     if (Op.getOpcode() == ISD::BSWAP)
1933       Imm &= ~0x7U;
1934     return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
1935                        DAG.getConstant(Imm, DL, VT));
1936   }
1937   case ISD::FSHL:
1938   case ISD::FSHR: {
1939     MVT VT = Op.getSimpleValueType();
1940     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
1941     SDLoc DL(Op);
1942     if (Op.getOperand(2).getOpcode() == ISD::Constant)
1943       return Op;
1944     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
1945     // use log(XLen) bits. Mask the shift amount accordingly.
1946     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
1947     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
1948                                 DAG.getConstant(ShAmtWidth, DL, VT));
1949     unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR;
1950     return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt);
1951   }
1952   case ISD::TRUNCATE: {
1953     SDLoc DL(Op);
1954     MVT VT = Op.getSimpleValueType();
1955     // Only custom-lower vector truncates
1956     if (!VT.isVector())
1957       return Op;
1958 
1959     // Truncates to mask types are handled differently
1960     if (VT.getVectorElementType() == MVT::i1)
1961       return lowerVectorMaskTrunc(Op, DAG);
1962 
1963     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
1964     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
1965     // truncate by one power of two at a time.
1966     MVT DstEltVT = VT.getVectorElementType();
1967 
1968     SDValue Src = Op.getOperand(0);
1969     MVT SrcVT = Src.getSimpleValueType();
1970     MVT SrcEltVT = SrcVT.getVectorElementType();
1971 
1972     assert(DstEltVT.bitsLT(SrcEltVT) &&
1973            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
1974            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
1975            "Unexpected vector truncate lowering");
1976 
1977     MVT ContainerVT = SrcVT;
1978     if (SrcVT.isFixedLengthVector()) {
1979       ContainerVT = getContainerForFixedLengthVector(SrcVT);
1980       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
1981     }
1982 
1983     SDValue Result = Src;
1984     SDValue Mask, VL;
1985     std::tie(Mask, VL) =
1986         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
1987     LLVMContext &Context = *DAG.getContext();
1988     const ElementCount Count = ContainerVT.getVectorElementCount();
1989     do {
1990       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
1991       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
1992       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
1993                            Mask, VL);
1994     } while (SrcEltVT != DstEltVT);
1995 
1996     if (SrcVT.isFixedLengthVector())
1997       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
1998 
1999     return Result;
2000   }
2001   case ISD::ANY_EXTEND:
2002   case ISD::ZERO_EXTEND:
2003     if (Op.getOperand(0).getValueType().isVector() &&
2004         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2005       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
2006     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
2007   case ISD::SIGN_EXTEND:
2008     if (Op.getOperand(0).getValueType().isVector() &&
2009         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2010       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
2011     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
2012   case ISD::SPLAT_VECTOR_PARTS:
2013     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
2014   case ISD::INSERT_VECTOR_ELT:
2015     return lowerINSERT_VECTOR_ELT(Op, DAG);
2016   case ISD::EXTRACT_VECTOR_ELT:
2017     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
2018   case ISD::VSCALE: {
2019     MVT VT = Op.getSimpleValueType();
2020     SDLoc DL(Op);
2021     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
2022     // We define our scalable vector types for lmul=1 to use a 64 bit known
2023     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
2024     // vscale as VLENB / 8.
2025     assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!");
2026     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
2027                                  DAG.getConstant(3, DL, VT));
2028     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
2029   }
2030   case ISD::FP_EXTEND: {
2031     // RVV can only do fp_extend to types double the size as the source. We
2032     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
2033     // via f32.
2034     SDLoc DL(Op);
2035     MVT VT = Op.getSimpleValueType();
2036     SDValue Src = Op.getOperand(0);
2037     MVT SrcVT = Src.getSimpleValueType();
2038 
2039     // Prepare any fixed-length vector operands.
2040     MVT ContainerVT = VT;
2041     if (SrcVT.isFixedLengthVector()) {
2042       ContainerVT = getContainerForFixedLengthVector(VT);
2043       MVT SrcContainerVT =
2044           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
2045       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2046     }
2047 
2048     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
2049         SrcVT.getVectorElementType() != MVT::f16) {
2050       // For scalable vectors, we only need to close the gap between
2051       // vXf16->vXf64.
2052       if (!VT.isFixedLengthVector())
2053         return Op;
2054       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
2055       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2056       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2057     }
2058 
2059     MVT InterVT = VT.changeVectorElementType(MVT::f32);
2060     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
2061     SDValue IntermediateExtend = getRVVFPExtendOrRound(
2062         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
2063 
2064     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
2065                                            DL, DAG, Subtarget);
2066     if (VT.isFixedLengthVector())
2067       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
2068     return Extend;
2069   }
2070   case ISD::FP_ROUND: {
2071     // RVV can only do fp_round to types half the size as the source. We
2072     // custom-lower f64->f16 rounds via RVV's round-to-odd float
2073     // conversion instruction.
2074     SDLoc DL(Op);
2075     MVT VT = Op.getSimpleValueType();
2076     SDValue Src = Op.getOperand(0);
2077     MVT SrcVT = Src.getSimpleValueType();
2078 
2079     // Prepare any fixed-length vector operands.
2080     MVT ContainerVT = VT;
2081     if (VT.isFixedLengthVector()) {
2082       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2083       ContainerVT =
2084           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2085       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2086     }
2087 
2088     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
2089         SrcVT.getVectorElementType() != MVT::f64) {
2090       // For scalable vectors, we only need to close the gap between
2091       // vXf64<->vXf16.
2092       if (!VT.isFixedLengthVector())
2093         return Op;
2094       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
2095       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2096       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2097     }
2098 
2099     SDValue Mask, VL;
2100     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2101 
2102     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
2103     SDValue IntermediateRound =
2104         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
2105     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
2106                                           DL, DAG, Subtarget);
2107 
2108     if (VT.isFixedLengthVector())
2109       return convertFromScalableVector(VT, Round, DAG, Subtarget);
2110     return Round;
2111   }
2112   case ISD::FP_TO_SINT:
2113   case ISD::FP_TO_UINT:
2114   case ISD::SINT_TO_FP:
2115   case ISD::UINT_TO_FP: {
2116     // RVV can only do fp<->int conversions to types half/double the size as
2117     // the source. We custom-lower any conversions that do two hops into
2118     // sequences.
2119     MVT VT = Op.getSimpleValueType();
2120     if (!VT.isVector())
2121       return Op;
2122     SDLoc DL(Op);
2123     SDValue Src = Op.getOperand(0);
2124     MVT EltVT = VT.getVectorElementType();
2125     MVT SrcVT = Src.getSimpleValueType();
2126     MVT SrcEltVT = SrcVT.getVectorElementType();
2127     unsigned EltSize = EltVT.getSizeInBits();
2128     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
2129     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
2130            "Unexpected vector element types");
2131 
2132     bool IsInt2FP = SrcEltVT.isInteger();
2133     // Widening conversions
2134     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
2135       if (IsInt2FP) {
2136         // Do a regular integer sign/zero extension then convert to float.
2137         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
2138                                       VT.getVectorElementCount());
2139         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
2140                                  ? ISD::ZERO_EXTEND
2141                                  : ISD::SIGN_EXTEND;
2142         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
2143         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
2144       }
2145       // FP2Int
2146       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
2147       // Do one doubling fp_extend then complete the operation by converting
2148       // to int.
2149       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2150       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
2151       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
2152     }
2153 
2154     // Narrowing conversions
2155     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
2156       if (IsInt2FP) {
2157         // One narrowing int_to_fp, then an fp_round.
2158         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
2159         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2160         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
2161         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
2162       }
2163       // FP2Int
2164       // One narrowing fp_to_int, then truncate the integer. If the float isn't
2165       // representable by the integer, the result is poison.
2166       MVT IVecVT =
2167           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
2168                            VT.getVectorElementCount());
2169       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
2170       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
2171     }
2172 
2173     // Scalable vectors can exit here. Patterns will handle equally-sized
2174     // conversions halving/doubling ones.
2175     if (!VT.isFixedLengthVector())
2176       return Op;
2177 
2178     // For fixed-length vectors we lower to a custom "VL" node.
2179     unsigned RVVOpc = 0;
2180     switch (Op.getOpcode()) {
2181     default:
2182       llvm_unreachable("Impossible opcode");
2183     case ISD::FP_TO_SINT:
2184       RVVOpc = RISCVISD::FP_TO_SINT_VL;
2185       break;
2186     case ISD::FP_TO_UINT:
2187       RVVOpc = RISCVISD::FP_TO_UINT_VL;
2188       break;
2189     case ISD::SINT_TO_FP:
2190       RVVOpc = RISCVISD::SINT_TO_FP_VL;
2191       break;
2192     case ISD::UINT_TO_FP:
2193       RVVOpc = RISCVISD::UINT_TO_FP_VL;
2194       break;
2195     }
2196 
2197     MVT ContainerVT, SrcContainerVT;
2198     // Derive the reference container type from the larger vector type.
2199     if (SrcEltSize > EltSize) {
2200       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2201       ContainerVT =
2202           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2203     } else {
2204       ContainerVT = getContainerForFixedLengthVector(VT);
2205       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
2206     }
2207 
2208     SDValue Mask, VL;
2209     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2210 
2211     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2212     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
2213     return convertFromScalableVector(VT, Src, DAG, Subtarget);
2214   }
2215   case ISD::VECREDUCE_ADD:
2216   case ISD::VECREDUCE_UMAX:
2217   case ISD::VECREDUCE_SMAX:
2218   case ISD::VECREDUCE_UMIN:
2219   case ISD::VECREDUCE_SMIN:
2220     return lowerVECREDUCE(Op, DAG);
2221   case ISD::VECREDUCE_AND:
2222   case ISD::VECREDUCE_OR:
2223   case ISD::VECREDUCE_XOR:
2224     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2225       return lowerVectorMaskVECREDUCE(Op, DAG);
2226     return lowerVECREDUCE(Op, DAG);
2227   case ISD::VECREDUCE_FADD:
2228   case ISD::VECREDUCE_SEQ_FADD:
2229     return lowerFPVECREDUCE(Op, DAG);
2230   case ISD::INSERT_SUBVECTOR:
2231     return lowerINSERT_SUBVECTOR(Op, DAG);
2232   case ISD::EXTRACT_SUBVECTOR:
2233     return lowerEXTRACT_SUBVECTOR(Op, DAG);
2234   case ISD::STEP_VECTOR:
2235     return lowerSTEP_VECTOR(Op, DAG);
2236   case ISD::VECTOR_REVERSE:
2237     return lowerVECTOR_REVERSE(Op, DAG);
2238   case ISD::BUILD_VECTOR:
2239     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
2240   case ISD::SPLAT_VECTOR:
2241     return lowerSPLAT_VECTOR(Op, DAG, Subtarget);
2242   case ISD::VECTOR_SHUFFLE:
2243     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
2244   case ISD::CONCAT_VECTORS: {
2245     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
2246     // better than going through the stack, as the default expansion does.
2247     SDLoc DL(Op);
2248     MVT VT = Op.getSimpleValueType();
2249     unsigned NumOpElts =
2250         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
2251     SDValue Vec = DAG.getUNDEF(VT);
2252     for (const auto &OpIdx : enumerate(Op->ops()))
2253       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(),
2254                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
2255     return Vec;
2256   }
2257   case ISD::LOAD:
2258     return lowerFixedLengthVectorLoadToRVV(Op, DAG);
2259   case ISD::STORE:
2260     return lowerFixedLengthVectorStoreToRVV(Op, DAG);
2261   case ISD::MLOAD:
2262     return lowerMLOAD(Op, DAG);
2263   case ISD::MSTORE:
2264     return lowerMSTORE(Op, DAG);
2265   case ISD::SETCC:
2266     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
2267   case ISD::ADD:
2268     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
2269   case ISD::SUB:
2270     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
2271   case ISD::MUL:
2272     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
2273   case ISD::MULHS:
2274     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
2275   case ISD::MULHU:
2276     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
2277   case ISD::AND:
2278     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
2279                                               RISCVISD::AND_VL);
2280   case ISD::OR:
2281     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
2282                                               RISCVISD::OR_VL);
2283   case ISD::XOR:
2284     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
2285                                               RISCVISD::XOR_VL);
2286   case ISD::SDIV:
2287     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
2288   case ISD::SREM:
2289     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
2290   case ISD::UDIV:
2291     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
2292   case ISD::UREM:
2293     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
2294   case ISD::SHL:
2295     return lowerToScalableOp(Op, DAG, RISCVISD::SHL_VL);
2296   case ISD::SRA:
2297     return lowerToScalableOp(Op, DAG, RISCVISD::SRA_VL);
2298   case ISD::SRL:
2299     return lowerToScalableOp(Op, DAG, RISCVISD::SRL_VL);
2300   case ISD::FADD:
2301     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
2302   case ISD::FSUB:
2303     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
2304   case ISD::FMUL:
2305     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
2306   case ISD::FDIV:
2307     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
2308   case ISD::FNEG:
2309     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
2310   case ISD::FABS:
2311     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
2312   case ISD::FSQRT:
2313     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
2314   case ISD::FMA:
2315     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
2316   case ISD::SMIN:
2317     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
2318   case ISD::SMAX:
2319     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
2320   case ISD::UMIN:
2321     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
2322   case ISD::UMAX:
2323     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
2324   case ISD::FMINNUM:
2325     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
2326   case ISD::FMAXNUM:
2327     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
2328   case ISD::ABS:
2329     return lowerABS(Op, DAG);
2330   case ISD::VSELECT:
2331     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
2332   case ISD::FCOPYSIGN:
2333     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
2334   case ISD::MGATHER:
2335     return lowerMGATHER(Op, DAG);
2336   case ISD::MSCATTER:
2337     return lowerMSCATTER(Op, DAG);
2338   case ISD::FLT_ROUNDS_:
2339     return lowerGET_ROUNDING(Op, DAG);
2340   case ISD::SET_ROUNDING:
2341     return lowerSET_ROUNDING(Op, DAG);
2342   }
2343 }
2344 
2345 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
2346                              SelectionDAG &DAG, unsigned Flags) {
2347   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
2348 }
2349 
2350 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
2351                              SelectionDAG &DAG, unsigned Flags) {
2352   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
2353                                    Flags);
2354 }
2355 
2356 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
2357                              SelectionDAG &DAG, unsigned Flags) {
2358   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
2359                                    N->getOffset(), Flags);
2360 }
2361 
2362 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
2363                              SelectionDAG &DAG, unsigned Flags) {
2364   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
2365 }
2366 
2367 template <class NodeTy>
2368 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
2369                                      bool IsLocal) const {
2370   SDLoc DL(N);
2371   EVT Ty = getPointerTy(DAG.getDataLayout());
2372 
2373   if (isPositionIndependent()) {
2374     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
2375     if (IsLocal)
2376       // Use PC-relative addressing to access the symbol. This generates the
2377       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
2378       // %pcrel_lo(auipc)).
2379       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
2380 
2381     // Use PC-relative addressing to access the GOT for this symbol, then load
2382     // the address from the GOT. This generates the pattern (PseudoLA sym),
2383     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
2384     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
2385   }
2386 
2387   switch (getTargetMachine().getCodeModel()) {
2388   default:
2389     report_fatal_error("Unsupported code model for lowering");
2390   case CodeModel::Small: {
2391     // Generate a sequence for accessing addresses within the first 2 GiB of
2392     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
2393     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
2394     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
2395     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
2396     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
2397   }
2398   case CodeModel::Medium: {
2399     // Generate a sequence for accessing addresses within any 2GiB range within
2400     // the address space. This generates the pattern (PseudoLLA sym), which
2401     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
2402     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
2403     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
2404   }
2405   }
2406 }
2407 
2408 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
2409                                                 SelectionDAG &DAG) const {
2410   SDLoc DL(Op);
2411   EVT Ty = Op.getValueType();
2412   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
2413   int64_t Offset = N->getOffset();
2414   MVT XLenVT = Subtarget.getXLenVT();
2415 
2416   const GlobalValue *GV = N->getGlobal();
2417   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
2418   SDValue Addr = getAddr(N, DAG, IsLocal);
2419 
2420   // In order to maximise the opportunity for common subexpression elimination,
2421   // emit a separate ADD node for the global address offset instead of folding
2422   // it in the global address node. Later peephole optimisations may choose to
2423   // fold it back in when profitable.
2424   if (Offset != 0)
2425     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
2426                        DAG.getConstant(Offset, DL, XLenVT));
2427   return Addr;
2428 }
2429 
2430 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
2431                                                SelectionDAG &DAG) const {
2432   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
2433 
2434   return getAddr(N, DAG);
2435 }
2436 
2437 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
2438                                                SelectionDAG &DAG) const {
2439   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
2440 
2441   return getAddr(N, DAG);
2442 }
2443 
2444 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
2445                                             SelectionDAG &DAG) const {
2446   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
2447 
2448   return getAddr(N, DAG);
2449 }
2450 
2451 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
2452                                               SelectionDAG &DAG,
2453                                               bool UseGOT) const {
2454   SDLoc DL(N);
2455   EVT Ty = getPointerTy(DAG.getDataLayout());
2456   const GlobalValue *GV = N->getGlobal();
2457   MVT XLenVT = Subtarget.getXLenVT();
2458 
2459   if (UseGOT) {
2460     // Use PC-relative addressing to access the GOT for this TLS symbol, then
2461     // load the address from the GOT and add the thread pointer. This generates
2462     // the pattern (PseudoLA_TLS_IE sym), which expands to
2463     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
2464     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
2465     SDValue Load =
2466         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
2467 
2468     // Add the thread pointer.
2469     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
2470     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
2471   }
2472 
2473   // Generate a sequence for accessing the address relative to the thread
2474   // pointer, with the appropriate adjustment for the thread pointer offset.
2475   // This generates the pattern
2476   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
2477   SDValue AddrHi =
2478       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
2479   SDValue AddrAdd =
2480       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
2481   SDValue AddrLo =
2482       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
2483 
2484   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
2485   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
2486   SDValue MNAdd = SDValue(
2487       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
2488       0);
2489   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
2490 }
2491 
2492 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
2493                                                SelectionDAG &DAG) const {
2494   SDLoc DL(N);
2495   EVT Ty = getPointerTy(DAG.getDataLayout());
2496   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
2497   const GlobalValue *GV = N->getGlobal();
2498 
2499   // Use a PC-relative addressing mode to access the global dynamic GOT address.
2500   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
2501   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
2502   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
2503   SDValue Load =
2504       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
2505 
2506   // Prepare argument list to generate call.
2507   ArgListTy Args;
2508   ArgListEntry Entry;
2509   Entry.Node = Load;
2510   Entry.Ty = CallTy;
2511   Args.push_back(Entry);
2512 
2513   // Setup call to __tls_get_addr.
2514   TargetLowering::CallLoweringInfo CLI(DAG);
2515   CLI.setDebugLoc(DL)
2516       .setChain(DAG.getEntryNode())
2517       .setLibCallee(CallingConv::C, CallTy,
2518                     DAG.getExternalSymbol("__tls_get_addr", Ty),
2519                     std::move(Args));
2520 
2521   return LowerCallTo(CLI).first;
2522 }
2523 
2524 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
2525                                                    SelectionDAG &DAG) const {
2526   SDLoc DL(Op);
2527   EVT Ty = Op.getValueType();
2528   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
2529   int64_t Offset = N->getOffset();
2530   MVT XLenVT = Subtarget.getXLenVT();
2531 
2532   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
2533 
2534   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
2535       CallingConv::GHC)
2536     report_fatal_error("In GHC calling convention TLS is not supported");
2537 
2538   SDValue Addr;
2539   switch (Model) {
2540   case TLSModel::LocalExec:
2541     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
2542     break;
2543   case TLSModel::InitialExec:
2544     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
2545     break;
2546   case TLSModel::LocalDynamic:
2547   case TLSModel::GeneralDynamic:
2548     Addr = getDynamicTLSAddr(N, DAG);
2549     break;
2550   }
2551 
2552   // In order to maximise the opportunity for common subexpression elimination,
2553   // emit a separate ADD node for the global address offset instead of folding
2554   // it in the global address node. Later peephole optimisations may choose to
2555   // fold it back in when profitable.
2556   if (Offset != 0)
2557     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
2558                        DAG.getConstant(Offset, DL, XLenVT));
2559   return Addr;
2560 }
2561 
2562 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2563   SDValue CondV = Op.getOperand(0);
2564   SDValue TrueV = Op.getOperand(1);
2565   SDValue FalseV = Op.getOperand(2);
2566   SDLoc DL(Op);
2567   MVT XLenVT = Subtarget.getXLenVT();
2568 
2569   // If the result type is XLenVT and CondV is the output of a SETCC node
2570   // which also operated on XLenVT inputs, then merge the SETCC node into the
2571   // lowered RISCVISD::SELECT_CC to take advantage of the integer
2572   // compare+branch instructions. i.e.:
2573   // (select (setcc lhs, rhs, cc), truev, falsev)
2574   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
2575   if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
2576       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
2577     SDValue LHS = CondV.getOperand(0);
2578     SDValue RHS = CondV.getOperand(1);
2579     auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
2580     ISD::CondCode CCVal = CC->get();
2581 
2582     // Special case for a select of 2 constants that have a diffence of 1.
2583     // Normally this is done by DAGCombine, but if the select is introduced by
2584     // type legalization or op legalization, we miss it. Restricting to SETLT
2585     // case for now because that is what signed saturating add/sub need.
2586     // FIXME: We don't need the condition to be SETLT or even a SETCC,
2587     // but we would probably want to swap the true/false values if the condition
2588     // is SETGE/SETLE to avoid an XORI.
2589     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
2590         CCVal == ISD::SETLT) {
2591       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
2592       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
2593       if (TrueVal - 1 == FalseVal)
2594         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
2595       if (TrueVal + 1 == FalseVal)
2596         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
2597     }
2598 
2599     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
2600 
2601     SDValue TargetCC = DAG.getTargetConstant(CCVal, DL, XLenVT);
2602     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
2603     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
2604   }
2605 
2606   // Otherwise:
2607   // (select condv, truev, falsev)
2608   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
2609   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
2610   SDValue SetNE = DAG.getTargetConstant(ISD::SETNE, DL, XLenVT);
2611 
2612   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
2613 
2614   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
2615 }
2616 
2617 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
2618   SDValue CondV = Op.getOperand(1);
2619   SDLoc DL(Op);
2620   MVT XLenVT = Subtarget.getXLenVT();
2621 
2622   if (CondV.getOpcode() == ISD::SETCC &&
2623       CondV.getOperand(0).getValueType() == XLenVT) {
2624     SDValue LHS = CondV.getOperand(0);
2625     SDValue RHS = CondV.getOperand(1);
2626     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
2627 
2628     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
2629 
2630     SDValue TargetCC = DAG.getCondCode(CCVal);
2631     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
2632                        LHS, RHS, TargetCC, Op.getOperand(2));
2633   }
2634 
2635   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
2636                      CondV, DAG.getConstant(0, DL, XLenVT),
2637                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
2638 }
2639 
2640 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2641   MachineFunction &MF = DAG.getMachineFunction();
2642   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
2643 
2644   SDLoc DL(Op);
2645   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2646                                  getPointerTy(MF.getDataLayout()));
2647 
2648   // vastart just stores the address of the VarArgsFrameIndex slot into the
2649   // memory location argument.
2650   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2651   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
2652                       MachinePointerInfo(SV));
2653 }
2654 
2655 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
2656                                             SelectionDAG &DAG) const {
2657   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
2658   MachineFunction &MF = DAG.getMachineFunction();
2659   MachineFrameInfo &MFI = MF.getFrameInfo();
2660   MFI.setFrameAddressIsTaken(true);
2661   Register FrameReg = RI.getFrameRegister(MF);
2662   int XLenInBytes = Subtarget.getXLen() / 8;
2663 
2664   EVT VT = Op.getValueType();
2665   SDLoc DL(Op);
2666   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
2667   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2668   while (Depth--) {
2669     int Offset = -(XLenInBytes * 2);
2670     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
2671                               DAG.getIntPtrConstant(Offset, DL));
2672     FrameAddr =
2673         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2674   }
2675   return FrameAddr;
2676 }
2677 
2678 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
2679                                              SelectionDAG &DAG) const {
2680   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
2681   MachineFunction &MF = DAG.getMachineFunction();
2682   MachineFrameInfo &MFI = MF.getFrameInfo();
2683   MFI.setReturnAddressIsTaken(true);
2684   MVT XLenVT = Subtarget.getXLenVT();
2685   int XLenInBytes = Subtarget.getXLen() / 8;
2686 
2687   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2688     return SDValue();
2689 
2690   EVT VT = Op.getValueType();
2691   SDLoc DL(Op);
2692   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2693   if (Depth) {
2694     int Off = -XLenInBytes;
2695     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
2696     SDValue Offset = DAG.getConstant(Off, DL, VT);
2697     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
2698                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
2699                        MachinePointerInfo());
2700   }
2701 
2702   // Return the value of the return address register, marking it an implicit
2703   // live-in.
2704   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
2705   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
2706 }
2707 
2708 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
2709                                                  SelectionDAG &DAG) const {
2710   SDLoc DL(Op);
2711   SDValue Lo = Op.getOperand(0);
2712   SDValue Hi = Op.getOperand(1);
2713   SDValue Shamt = Op.getOperand(2);
2714   EVT VT = Lo.getValueType();
2715 
2716   // if Shamt-XLEN < 0: // Shamt < XLEN
2717   //   Lo = Lo << Shamt
2718   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
2719   // else:
2720   //   Lo = 0
2721   //   Hi = Lo << (Shamt-XLEN)
2722 
2723   SDValue Zero = DAG.getConstant(0, DL, VT);
2724   SDValue One = DAG.getConstant(1, DL, VT);
2725   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
2726   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
2727   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
2728   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
2729 
2730   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
2731   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
2732   SDValue ShiftRightLo =
2733       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
2734   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
2735   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2736   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
2737 
2738   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
2739 
2740   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
2741   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
2742 
2743   SDValue Parts[2] = {Lo, Hi};
2744   return DAG.getMergeValues(Parts, DL);
2745 }
2746 
2747 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2748                                                   bool IsSRA) const {
2749   SDLoc DL(Op);
2750   SDValue Lo = Op.getOperand(0);
2751   SDValue Hi = Op.getOperand(1);
2752   SDValue Shamt = Op.getOperand(2);
2753   EVT VT = Lo.getValueType();
2754 
2755   // SRA expansion:
2756   //   if Shamt-XLEN < 0: // Shamt < XLEN
2757   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
2758   //     Hi = Hi >>s Shamt
2759   //   else:
2760   //     Lo = Hi >>s (Shamt-XLEN);
2761   //     Hi = Hi >>s (XLEN-1)
2762   //
2763   // SRL expansion:
2764   //   if Shamt-XLEN < 0: // Shamt < XLEN
2765   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
2766   //     Hi = Hi >>u Shamt
2767   //   else:
2768   //     Lo = Hi >>u (Shamt-XLEN);
2769   //     Hi = 0;
2770 
2771   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
2772 
2773   SDValue Zero = DAG.getConstant(0, DL, VT);
2774   SDValue One = DAG.getConstant(1, DL, VT);
2775   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
2776   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
2777   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
2778   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
2779 
2780   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
2781   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
2782   SDValue ShiftLeftHi =
2783       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
2784   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
2785   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
2786   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
2787   SDValue HiFalse =
2788       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
2789 
2790   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
2791 
2792   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
2793   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
2794 
2795   SDValue Parts[2] = {Lo, Hi};
2796   return DAG.getMergeValues(Parts, DL);
2797 }
2798 
2799 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
2800 // illegal (currently only vXi64 RV32).
2801 // FIXME: We could also catch non-constant sign-extended i32 values and lower
2802 // them to SPLAT_VECTOR_I64
2803 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
2804                                                      SelectionDAG &DAG) const {
2805   SDLoc DL(Op);
2806   MVT VecVT = Op.getSimpleValueType();
2807   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
2808          "Unexpected SPLAT_VECTOR_PARTS lowering");
2809 
2810   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
2811   SDValue Lo = Op.getOperand(0);
2812   SDValue Hi = Op.getOperand(1);
2813 
2814   if (VecVT.isFixedLengthVector()) {
2815     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
2816     SDLoc DL(Op);
2817     SDValue Mask, VL;
2818     std::tie(Mask, VL) =
2819         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
2820 
2821     SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG);
2822     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
2823   }
2824 
2825   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2826     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2827     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2828     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2829     // node in order to try and match RVV vector/scalar instructions.
2830     if ((LoC >> 31) == HiC)
2831       return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
2832   }
2833 
2834   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
2835   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
2836       isa<ConstantSDNode>(Hi.getOperand(1)) &&
2837       Hi.getConstantOperandVal(1) == 31)
2838     return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
2839 
2840   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
2841   return splatPartsI64ThroughStack(DL, VecVT, Lo, Hi,
2842                                    DAG.getRegister(RISCV::X0, MVT::i64), DAG);
2843 }
2844 
2845 // Custom-lower extensions from mask vectors by using a vselect either with 1
2846 // for zero/any-extension or -1 for sign-extension:
2847 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
2848 // Note that any-extension is lowered identically to zero-extension.
2849 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
2850                                                 int64_t ExtTrueVal) const {
2851   SDLoc DL(Op);
2852   MVT VecVT = Op.getSimpleValueType();
2853   SDValue Src = Op.getOperand(0);
2854   // Only custom-lower extensions from mask types
2855   assert(Src.getValueType().isVector() &&
2856          Src.getValueType().getVectorElementType() == MVT::i1);
2857 
2858   MVT XLenVT = Subtarget.getXLenVT();
2859   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
2860   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
2861 
2862   if (VecVT.isScalableVector()) {
2863     // Be careful not to introduce illegal scalar types at this stage, and be
2864     // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
2865     // illegal and must be expanded. Since we know that the constants are
2866     // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly.
2867     bool IsRV32E64 =
2868         !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
2869 
2870     if (!IsRV32E64) {
2871       SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
2872       SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
2873     } else {
2874       SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero);
2875       SplatTrueVal =
2876           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal);
2877     }
2878 
2879     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
2880   }
2881 
2882   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
2883   MVT I1ContainerVT =
2884       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
2885 
2886   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
2887 
2888   SDValue Mask, VL;
2889   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
2890 
2891   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL);
2892   SplatTrueVal =
2893       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL);
2894   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
2895                                SplatTrueVal, SplatZero, VL);
2896 
2897   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
2898 }
2899 
2900 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
2901     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
2902   MVT ExtVT = Op.getSimpleValueType();
2903   // Only custom-lower extensions from fixed-length vector types.
2904   if (!ExtVT.isFixedLengthVector())
2905     return Op;
2906   MVT VT = Op.getOperand(0).getSimpleValueType();
2907   // Grab the canonical container type for the extended type. Infer the smaller
2908   // type from that to ensure the same number of vector elements, as we know
2909   // the LMUL will be sufficient to hold the smaller type.
2910   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
2911   // Get the extended container type manually to ensure the same number of
2912   // vector elements between source and dest.
2913   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
2914                                      ContainerExtVT.getVectorElementCount());
2915 
2916   SDValue Op1 =
2917       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
2918 
2919   SDLoc DL(Op);
2920   SDValue Mask, VL;
2921   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2922 
2923   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
2924 
2925   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
2926 }
2927 
2928 // Custom-lower truncations from vectors to mask vectors by using a mask and a
2929 // setcc operation:
2930 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
2931 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
2932                                                   SelectionDAG &DAG) const {
2933   SDLoc DL(Op);
2934   EVT MaskVT = Op.getValueType();
2935   // Only expect to custom-lower truncations to mask types
2936   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
2937          "Unexpected type for vector mask lowering");
2938   SDValue Src = Op.getOperand(0);
2939   MVT VecVT = Src.getSimpleValueType();
2940 
2941   // If this is a fixed vector, we need to convert it to a scalable vector.
2942   MVT ContainerVT = VecVT;
2943   if (VecVT.isFixedLengthVector()) {
2944     ContainerVT = getContainerForFixedLengthVector(VecVT);
2945     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
2946   }
2947 
2948   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
2949   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
2950 
2951   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne);
2952   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero);
2953 
2954   if (VecVT.isScalableVector()) {
2955     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
2956     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
2957   }
2958 
2959   SDValue Mask, VL;
2960   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
2961 
2962   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2963   SDValue Trunc =
2964       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
2965   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
2966                       DAG.getCondCode(ISD::SETNE), Mask, VL);
2967   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
2968 }
2969 
2970 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
2971 // first position of a vector, and that vector is slid up to the insert index.
2972 // By limiting the active vector length to index+1 and merging with the
2973 // original vector (with an undisturbed tail policy for elements >= VL), we
2974 // achieve the desired result of leaving all elements untouched except the one
2975 // at VL-1, which is replaced with the desired value.
2976 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
2977                                                     SelectionDAG &DAG) const {
2978   SDLoc DL(Op);
2979   MVT VecVT = Op.getSimpleValueType();
2980   SDValue Vec = Op.getOperand(0);
2981   SDValue Val = Op.getOperand(1);
2982   SDValue Idx = Op.getOperand(2);
2983 
2984   MVT ContainerVT = VecVT;
2985   // If the operand is a fixed-length vector, convert to a scalable one.
2986   if (VecVT.isFixedLengthVector()) {
2987     ContainerVT = getContainerForFixedLengthVector(VecVT);
2988     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2989   }
2990 
2991   MVT XLenVT = Subtarget.getXLenVT();
2992 
2993   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
2994   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
2995   // Even i64-element vectors on RV32 can be lowered without scalar
2996   // legalization if the most-significant 32 bits of the value are not affected
2997   // by the sign-extension of the lower 32 bits.
2998   // TODO: We could also catch sign extensions of a 32-bit value.
2999   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
3000     const auto *CVal = cast<ConstantSDNode>(Val);
3001     if (isInt<32>(CVal->getSExtValue())) {
3002       IsLegalInsert = true;
3003       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
3004     }
3005   }
3006 
3007   SDValue Mask, VL;
3008   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3009 
3010   SDValue ValInVec;
3011 
3012   if (IsLegalInsert) {
3013     unsigned Opc =
3014         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
3015     if (isNullConstant(Idx)) {
3016       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
3017       if (!VecVT.isFixedLengthVector())
3018         return Vec;
3019       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
3020     }
3021     ValInVec =
3022         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
3023   } else {
3024     // On RV32, i64-element vectors must be specially handled to place the
3025     // value at element 0, by using two vslide1up instructions in sequence on
3026     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
3027     // this.
3028     SDValue One = DAG.getConstant(1, DL, XLenVT);
3029     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
3030     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
3031     MVT I32ContainerVT =
3032         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
3033     SDValue I32Mask =
3034         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
3035     // Limit the active VL to two.
3036     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
3037     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
3038     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
3039     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero,
3040                            InsertI64VL);
3041     // First slide in the hi value, then the lo in underneath it.
3042     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3043                            ValHi, I32Mask, InsertI64VL);
3044     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3045                            ValLo, I32Mask, InsertI64VL);
3046     // Bitcast back to the right container type.
3047     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
3048   }
3049 
3050   // Now that the value is in a vector, slide it into position.
3051   SDValue InsertVL =
3052       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
3053   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
3054                                 ValInVec, Idx, Mask, InsertVL);
3055   if (!VecVT.isFixedLengthVector())
3056     return Slideup;
3057   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
3058 }
3059 
3060 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
3061 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
3062 // types this is done using VMV_X_S to allow us to glean information about the
3063 // sign bits of the result.
3064 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
3065                                                      SelectionDAG &DAG) const {
3066   SDLoc DL(Op);
3067   SDValue Idx = Op.getOperand(1);
3068   SDValue Vec = Op.getOperand(0);
3069   EVT EltVT = Op.getValueType();
3070   MVT VecVT = Vec.getSimpleValueType();
3071   MVT XLenVT = Subtarget.getXLenVT();
3072 
3073   if (VecVT.getVectorElementType() == MVT::i1) {
3074     // FIXME: For now we just promote to an i8 vector and extract from that,
3075     // but this is probably not optimal.
3076     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
3077     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
3078     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
3079   }
3080 
3081   // If this is a fixed vector, we need to convert it to a scalable vector.
3082   MVT ContainerVT = VecVT;
3083   if (VecVT.isFixedLengthVector()) {
3084     ContainerVT = getContainerForFixedLengthVector(VecVT);
3085     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3086   }
3087 
3088   // If the index is 0, the vector is already in the right position.
3089   if (!isNullConstant(Idx)) {
3090     // Use a VL of 1 to avoid processing more elements than we need.
3091     SDValue VL = DAG.getConstant(1, DL, XLenVT);
3092     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3093     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3094     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
3095                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
3096   }
3097 
3098   if (!EltVT.isInteger()) {
3099     // Floating-point extracts are handled in TableGen.
3100     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
3101                        DAG.getConstant(0, DL, XLenVT));
3102   }
3103 
3104   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
3105   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
3106 }
3107 
3108 // Some RVV intrinsics may claim that they want an integer operand to be
3109 // promoted or expanded.
3110 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG,
3111                                           const RISCVSubtarget &Subtarget) {
3112   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3113           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
3114          "Unexpected opcode");
3115 
3116   if (!Subtarget.hasStdExtV())
3117     return SDValue();
3118 
3119   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
3120   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
3121   SDLoc DL(Op);
3122 
3123   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
3124       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
3125   if (!II || !II->SplatOperand)
3126     return SDValue();
3127 
3128   unsigned SplatOp = II->SplatOperand + HasChain;
3129   assert(SplatOp < Op.getNumOperands());
3130 
3131   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
3132   SDValue &ScalarOp = Operands[SplatOp];
3133   MVT OpVT = ScalarOp.getSimpleValueType();
3134   MVT XLenVT = Subtarget.getXLenVT();
3135 
3136   // If this isn't a scalar, or its type is XLenVT we're done.
3137   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
3138     return SDValue();
3139 
3140   // Simplest case is that the operand needs to be promoted to XLenVT.
3141   if (OpVT.bitsLT(XLenVT)) {
3142     // If the operand is a constant, sign extend to increase our chances
3143     // of being able to use a .vi instruction. ANY_EXTEND would become a
3144     // a zero extend and the simm5 check in isel would fail.
3145     // FIXME: Should we ignore the upper bits in isel instead?
3146     unsigned ExtOpc =
3147         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
3148     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
3149     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3150   }
3151 
3152   // Use the previous operand to get the vXi64 VT. The result might be a mask
3153   // VT for compares. Using the previous operand assumes that the previous
3154   // operand will never have a smaller element size than a scalar operand and
3155   // that a widening operation never uses SEW=64.
3156   // NOTE: If this fails the below assert, we can probably just find the
3157   // element count from any operand or result and use it to construct the VT.
3158   assert(II->SplatOperand > 1 && "Unexpected splat operand!");
3159   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
3160 
3161   // The more complex case is when the scalar is larger than XLenVT.
3162   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
3163          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
3164 
3165   // If this is a sign-extended 32-bit constant, we can truncate it and rely
3166   // on the instruction to sign-extend since SEW>XLEN.
3167   if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
3168     if (isInt<32>(CVal->getSExtValue())) {
3169       ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
3170       return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3171     }
3172   }
3173 
3174   // We need to convert the scalar to a splat vector.
3175   // FIXME: Can we implicitly truncate the scalar if it is known to
3176   // be sign extended?
3177   // VL should be the last operand.
3178   SDValue VL = Op.getOperand(Op.getNumOperands() - 1);
3179   assert(VL.getValueType() == XLenVT);
3180   ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG);
3181   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3182 }
3183 
3184 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3185                                                      SelectionDAG &DAG) const {
3186   unsigned IntNo = Op.getConstantOperandVal(0);
3187   SDLoc DL(Op);
3188   MVT XLenVT = Subtarget.getXLenVT();
3189 
3190   switch (IntNo) {
3191   default:
3192     break; // Don't custom lower most intrinsics.
3193   case Intrinsic::thread_pointer: {
3194     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3195     return DAG.getRegister(RISCV::X4, PtrVT);
3196   }
3197   case Intrinsic::riscv_orc_b:
3198     // Lower to the GORCI encoding for orc.b.
3199     return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1),
3200                        DAG.getConstant(7, DL, XLenVT));
3201   case Intrinsic::riscv_grev:
3202   case Intrinsic::riscv_gorc: {
3203     unsigned Opc =
3204         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
3205     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3206   }
3207   case Intrinsic::riscv_shfl:
3208   case Intrinsic::riscv_unshfl: {
3209     unsigned Opc =
3210         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
3211     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3212   }
3213   case Intrinsic::riscv_bcompress:
3214   case Intrinsic::riscv_bdecompress: {
3215     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
3216                                                        : RISCVISD::BDECOMPRESS;
3217     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3218   }
3219   case Intrinsic::riscv_vmv_x_s:
3220     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
3221     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
3222                        Op.getOperand(1));
3223   case Intrinsic::riscv_vmv_v_x:
3224     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
3225                             Op.getSimpleValueType(), DL, DAG, Subtarget);
3226   case Intrinsic::riscv_vfmv_v_f:
3227     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
3228                        Op.getOperand(1), Op.getOperand(2));
3229   case Intrinsic::riscv_vmv_s_x: {
3230     SDValue Scalar = Op.getOperand(2);
3231 
3232     if (Scalar.getValueType().bitsLE(XLenVT)) {
3233       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
3234       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
3235                          Op.getOperand(1), Scalar, Op.getOperand(3));
3236     }
3237 
3238     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
3239 
3240     // This is an i64 value that lives in two scalar registers. We have to
3241     // insert this in a convoluted way. First we build vXi64 splat containing
3242     // the/ two values that we assemble using some bit math. Next we'll use
3243     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
3244     // to merge element 0 from our splat into the source vector.
3245     // FIXME: This is probably not the best way to do this, but it is
3246     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
3247     // point.
3248     //   sw lo, (a0)
3249     //   sw hi, 4(a0)
3250     //   vlse vX, (a0)
3251     //
3252     //   vid.v      vVid
3253     //   vmseq.vx   mMask, vVid, 0
3254     //   vmerge.vvm vDest, vSrc, vVal, mMask
3255     MVT VT = Op.getSimpleValueType();
3256     SDValue Vec = Op.getOperand(1);
3257     SDValue VL = Op.getOperand(3);
3258 
3259     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
3260     SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
3261                                       DAG.getConstant(0, DL, MVT::i32), VL);
3262 
3263     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
3264     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3265     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
3266     SDValue SelectCond =
3267         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
3268                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
3269     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
3270                        Vec, VL);
3271   }
3272   case Intrinsic::riscv_vslide1up:
3273   case Intrinsic::riscv_vslide1down:
3274   case Intrinsic::riscv_vslide1up_mask:
3275   case Intrinsic::riscv_vslide1down_mask: {
3276     // We need to special case these when the scalar is larger than XLen.
3277     unsigned NumOps = Op.getNumOperands();
3278     bool IsMasked = NumOps == 6;
3279     unsigned OpOffset = IsMasked ? 1 : 0;
3280     SDValue Scalar = Op.getOperand(2 + OpOffset);
3281     if (Scalar.getValueType().bitsLE(XLenVT))
3282       break;
3283 
3284     // Splatting a sign extended constant is fine.
3285     if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar))
3286       if (isInt<32>(CVal->getSExtValue()))
3287         break;
3288 
3289     MVT VT = Op.getSimpleValueType();
3290     assert(VT.getVectorElementType() == MVT::i64 &&
3291            Scalar.getValueType() == MVT::i64 && "Unexpected VTs");
3292 
3293     // Convert the vector source to the equivalent nxvXi32 vector.
3294     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
3295     SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset));
3296 
3297     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
3298                                    DAG.getConstant(0, DL, XLenVT));
3299     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
3300                                    DAG.getConstant(1, DL, XLenVT));
3301 
3302     // Double the VL since we halved SEW.
3303     SDValue VL = Op.getOperand(NumOps - 1);
3304     SDValue I32VL =
3305         DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
3306 
3307     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
3308     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL);
3309 
3310     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
3311     // instructions.
3312     if (IntNo == Intrinsic::riscv_vslide1up ||
3313         IntNo == Intrinsic::riscv_vslide1up_mask) {
3314       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi,
3315                         I32Mask, I32VL);
3316       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo,
3317                         I32Mask, I32VL);
3318     } else {
3319       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo,
3320                         I32Mask, I32VL);
3321       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi,
3322                         I32Mask, I32VL);
3323     }
3324 
3325     // Convert back to nxvXi64.
3326     Vec = DAG.getBitcast(VT, Vec);
3327 
3328     if (!IsMasked)
3329       return Vec;
3330 
3331     // Apply mask after the operation.
3332     SDValue Mask = Op.getOperand(NumOps - 2);
3333     SDValue MaskedOff = Op.getOperand(1);
3334     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL);
3335   }
3336   }
3337 
3338   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
3339 }
3340 
3341 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
3342                                                     SelectionDAG &DAG) const {
3343   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
3344 }
3345 
3346 static MVT getLMUL1VT(MVT VT) {
3347   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
3348          "Unexpected vector MVT");
3349   return MVT::getScalableVectorVT(
3350       VT.getVectorElementType(),
3351       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
3352 }
3353 
3354 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
3355   switch (ISDOpcode) {
3356   default:
3357     llvm_unreachable("Unhandled reduction");
3358   case ISD::VECREDUCE_ADD:
3359     return RISCVISD::VECREDUCE_ADD_VL;
3360   case ISD::VECREDUCE_UMAX:
3361     return RISCVISD::VECREDUCE_UMAX_VL;
3362   case ISD::VECREDUCE_SMAX:
3363     return RISCVISD::VECREDUCE_SMAX_VL;
3364   case ISD::VECREDUCE_UMIN:
3365     return RISCVISD::VECREDUCE_UMIN_VL;
3366   case ISD::VECREDUCE_SMIN:
3367     return RISCVISD::VECREDUCE_SMIN_VL;
3368   case ISD::VECREDUCE_AND:
3369     return RISCVISD::VECREDUCE_AND_VL;
3370   case ISD::VECREDUCE_OR:
3371     return RISCVISD::VECREDUCE_OR_VL;
3372   case ISD::VECREDUCE_XOR:
3373     return RISCVISD::VECREDUCE_XOR_VL;
3374   }
3375 }
3376 
3377 SDValue RISCVTargetLowering::lowerVectorMaskVECREDUCE(SDValue Op,
3378                                                       SelectionDAG &DAG) const {
3379   SDLoc DL(Op);
3380   SDValue Vec = Op.getOperand(0);
3381   MVT VecVT = Vec.getSimpleValueType();
3382   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
3383           Op.getOpcode() == ISD::VECREDUCE_OR ||
3384           Op.getOpcode() == ISD::VECREDUCE_XOR) &&
3385          "Unexpected reduction lowering");
3386 
3387   MVT XLenVT = Subtarget.getXLenVT();
3388   assert(Op.getValueType() == XLenVT &&
3389          "Expected reduction output to be legalized to XLenVT");
3390 
3391   MVT ContainerVT = VecVT;
3392   if (VecVT.isFixedLengthVector()) {
3393     ContainerVT = getContainerForFixedLengthVector(VecVT);
3394     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3395   }
3396 
3397   SDValue Mask, VL;
3398   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3399   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3400 
3401   switch (Op.getOpcode()) {
3402   default:
3403     llvm_unreachable("Unhandled reduction");
3404   case ISD::VECREDUCE_AND:
3405     // vpopc ~x == 0
3406     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, Mask, VL);
3407     Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
3408     return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETEQ);
3409   case ISD::VECREDUCE_OR:
3410     // vpopc x != 0
3411     Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
3412     return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE);
3413   case ISD::VECREDUCE_XOR: {
3414     // ((vpopc x) & 1) != 0
3415     SDValue One = DAG.getConstant(1, DL, XLenVT);
3416     Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
3417     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
3418     return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE);
3419   }
3420   }
3421 }
3422 
3423 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
3424                                             SelectionDAG &DAG) const {
3425   SDLoc DL(Op);
3426   SDValue Vec = Op.getOperand(0);
3427   EVT VecEVT = Vec.getValueType();
3428 
3429   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
3430 
3431   // Due to ordering in legalize types we may have a vector type that needs to
3432   // be split. Do that manually so we can get down to a legal type.
3433   while (getTypeAction(*DAG.getContext(), VecEVT) ==
3434          TargetLowering::TypeSplitVector) {
3435     SDValue Lo, Hi;
3436     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
3437     VecEVT = Lo.getValueType();
3438     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
3439   }
3440 
3441   // TODO: The type may need to be widened rather than split. Or widened before
3442   // it can be split.
3443   if (!isTypeLegal(VecEVT))
3444     return SDValue();
3445 
3446   MVT VecVT = VecEVT.getSimpleVT();
3447   MVT VecEltVT = VecVT.getVectorElementType();
3448   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
3449 
3450   MVT ContainerVT = VecVT;
3451   if (VecVT.isFixedLengthVector()) {
3452     ContainerVT = getContainerForFixedLengthVector(VecVT);
3453     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3454   }
3455 
3456   MVT M1VT = getLMUL1VT(ContainerVT);
3457 
3458   SDValue Mask, VL;
3459   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3460 
3461   // FIXME: This is a VLMAX splat which might be too large and can prevent
3462   // vsetvli removal.
3463   SDValue NeutralElem =
3464       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
3465   SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem);
3466   SDValue Reduction =
3467       DAG.getNode(RVVOpcode, DL, M1VT, Vec, IdentitySplat, Mask, VL);
3468   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
3469                              DAG.getConstant(0, DL, Subtarget.getXLenVT()));
3470   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
3471 }
3472 
3473 // Given a reduction op, this function returns the matching reduction opcode,
3474 // the vector SDValue and the scalar SDValue required to lower this to a
3475 // RISCVISD node.
3476 static std::tuple<unsigned, SDValue, SDValue>
3477 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
3478   SDLoc DL(Op);
3479   switch (Op.getOpcode()) {
3480   default:
3481     llvm_unreachable("Unhandled reduction");
3482   case ISD::VECREDUCE_FADD:
3483     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0),
3484                            DAG.getConstantFP(0.0, DL, EltVT));
3485   case ISD::VECREDUCE_SEQ_FADD:
3486     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
3487                            Op.getOperand(0));
3488   }
3489 }
3490 
3491 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
3492                                               SelectionDAG &DAG) const {
3493   SDLoc DL(Op);
3494   MVT VecEltVT = Op.getSimpleValueType();
3495 
3496   unsigned RVVOpcode;
3497   SDValue VectorVal, ScalarVal;
3498   std::tie(RVVOpcode, VectorVal, ScalarVal) =
3499       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
3500   MVT VecVT = VectorVal.getSimpleValueType();
3501 
3502   MVT ContainerVT = VecVT;
3503   if (VecVT.isFixedLengthVector()) {
3504     ContainerVT = getContainerForFixedLengthVector(VecVT);
3505     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
3506   }
3507 
3508   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
3509 
3510   SDValue Mask, VL;
3511   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3512 
3513   // FIXME: This is a VLMAX splat which might be too large and can prevent
3514   // vsetvli removal.
3515   SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal);
3516   SDValue Reduction =
3517       DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat, Mask, VL);
3518   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
3519                      DAG.getConstant(0, DL, Subtarget.getXLenVT()));
3520 }
3521 
3522 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
3523                                                    SelectionDAG &DAG) const {
3524   SDValue Vec = Op.getOperand(0);
3525   SDValue SubVec = Op.getOperand(1);
3526   MVT VecVT = Vec.getSimpleValueType();
3527   MVT SubVecVT = SubVec.getSimpleValueType();
3528 
3529   SDLoc DL(Op);
3530   MVT XLenVT = Subtarget.getXLenVT();
3531   unsigned OrigIdx = Op.getConstantOperandVal(2);
3532   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
3533 
3534   // We don't have the ability to slide mask vectors up indexed by their i1
3535   // elements; the smallest we can do is i8. Often we are able to bitcast to
3536   // equivalent i8 vectors. Note that when inserting a fixed-length vector
3537   // into a scalable one, we might not necessarily have enough scalable
3538   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
3539   if (SubVecVT.getVectorElementType() == MVT::i1 &&
3540       (OrigIdx != 0 || !Vec.isUndef())) {
3541     if (VecVT.getVectorMinNumElements() >= 8 &&
3542         SubVecVT.getVectorMinNumElements() >= 8) {
3543       assert(OrigIdx % 8 == 0 && "Invalid index");
3544       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
3545              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
3546              "Unexpected mask vector lowering");
3547       OrigIdx /= 8;
3548       SubVecVT =
3549           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
3550                            SubVecVT.isScalableVector());
3551       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
3552                                VecVT.isScalableVector());
3553       Vec = DAG.getBitcast(VecVT, Vec);
3554       SubVec = DAG.getBitcast(SubVecVT, SubVec);
3555     } else {
3556       // We can't slide this mask vector up indexed by its i1 elements.
3557       // This poses a problem when we wish to insert a scalable vector which
3558       // can't be re-expressed as a larger type. Just choose the slow path and
3559       // extend to a larger type, then truncate back down.
3560       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
3561       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
3562       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
3563       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
3564       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
3565                         Op.getOperand(2));
3566       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
3567       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
3568     }
3569   }
3570 
3571   // If the subvector vector is a fixed-length type, we cannot use subregister
3572   // manipulation to simplify the codegen; we don't know which register of a
3573   // LMUL group contains the specific subvector as we only know the minimum
3574   // register size. Therefore we must slide the vector group up the full
3575   // amount.
3576   if (SubVecVT.isFixedLengthVector()) {
3577     if (OrigIdx == 0 && Vec.isUndef())
3578       return Op;
3579     MVT ContainerVT = VecVT;
3580     if (VecVT.isFixedLengthVector()) {
3581       ContainerVT = getContainerForFixedLengthVector(VecVT);
3582       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3583     }
3584     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
3585                          DAG.getUNDEF(ContainerVT), SubVec,
3586                          DAG.getConstant(0, DL, XLenVT));
3587     SDValue Mask =
3588         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
3589     // Set the vector length to only the number of elements we care about. Note
3590     // that for slideup this includes the offset.
3591     SDValue VL =
3592         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
3593     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
3594     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
3595                                   SubVec, SlideupAmt, Mask, VL);
3596     if (VecVT.isFixedLengthVector())
3597       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
3598     return DAG.getBitcast(Op.getValueType(), Slideup);
3599   }
3600 
3601   unsigned SubRegIdx, RemIdx;
3602   std::tie(SubRegIdx, RemIdx) =
3603       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
3604           VecVT, SubVecVT, OrigIdx, TRI);
3605 
3606   RISCVVLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
3607   bool IsSubVecPartReg = SubVecLMUL == RISCVVLMUL::LMUL_F2 ||
3608                          SubVecLMUL == RISCVVLMUL::LMUL_F4 ||
3609                          SubVecLMUL == RISCVVLMUL::LMUL_F8;
3610 
3611   // 1. If the Idx has been completely eliminated and this subvector's size is
3612   // a vector register or a multiple thereof, or the surrounding elements are
3613   // undef, then this is a subvector insert which naturally aligns to a vector
3614   // register. These can easily be handled using subregister manipulation.
3615   // 2. If the subvector is smaller than a vector register, then the insertion
3616   // must preserve the undisturbed elements of the register. We do this by
3617   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
3618   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
3619   // subvector within the vector register, and an INSERT_SUBVECTOR of that
3620   // LMUL=1 type back into the larger vector (resolving to another subregister
3621   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
3622   // to avoid allocating a large register group to hold our subvector.
3623   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
3624     return Op;
3625 
3626   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
3627   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
3628   // (in our case undisturbed). This means we can set up a subvector insertion
3629   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
3630   // size of the subvector.
3631   MVT InterSubVT = VecVT;
3632   SDValue AlignedExtract = Vec;
3633   unsigned AlignedIdx = OrigIdx - RemIdx;
3634   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
3635     InterSubVT = getLMUL1VT(VecVT);
3636     // Extract a subvector equal to the nearest full vector register type. This
3637     // should resolve to a EXTRACT_SUBREG instruction.
3638     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
3639                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
3640   }
3641 
3642   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
3643   // For scalable vectors this must be further multiplied by vscale.
3644   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
3645 
3646   SDValue Mask, VL;
3647   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
3648 
3649   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
3650   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
3651   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
3652   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
3653 
3654   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
3655                        DAG.getUNDEF(InterSubVT), SubVec,
3656                        DAG.getConstant(0, DL, XLenVT));
3657 
3658   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
3659                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
3660 
3661   // If required, insert this subvector back into the correct vector register.
3662   // This should resolve to an INSERT_SUBREG instruction.
3663   if (VecVT.bitsGT(InterSubVT))
3664     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
3665                           DAG.getConstant(AlignedIdx, DL, XLenVT));
3666 
3667   // We might have bitcast from a mask type: cast back to the original type if
3668   // required.
3669   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
3670 }
3671 
3672 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
3673                                                     SelectionDAG &DAG) const {
3674   SDValue Vec = Op.getOperand(0);
3675   MVT SubVecVT = Op.getSimpleValueType();
3676   MVT VecVT = Vec.getSimpleValueType();
3677 
3678   SDLoc DL(Op);
3679   MVT XLenVT = Subtarget.getXLenVT();
3680   unsigned OrigIdx = Op.getConstantOperandVal(1);
3681   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
3682 
3683   // We don't have the ability to slide mask vectors down indexed by their i1
3684   // elements; the smallest we can do is i8. Often we are able to bitcast to
3685   // equivalent i8 vectors. Note that when extracting a fixed-length vector
3686   // from a scalable one, we might not necessarily have enough scalable
3687   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
3688   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
3689     if (VecVT.getVectorMinNumElements() >= 8 &&
3690         SubVecVT.getVectorMinNumElements() >= 8) {
3691       assert(OrigIdx % 8 == 0 && "Invalid index");
3692       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
3693              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
3694              "Unexpected mask vector lowering");
3695       OrigIdx /= 8;
3696       SubVecVT =
3697           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
3698                            SubVecVT.isScalableVector());
3699       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
3700                                VecVT.isScalableVector());
3701       Vec = DAG.getBitcast(VecVT, Vec);
3702     } else {
3703       // We can't slide this mask vector down, indexed by its i1 elements.
3704       // This poses a problem when we wish to extract a scalable vector which
3705       // can't be re-expressed as a larger type. Just choose the slow path and
3706       // extend to a larger type, then truncate back down.
3707       // TODO: We could probably improve this when extracting certain fixed
3708       // from fixed, where we can extract as i8 and shift the correct element
3709       // right to reach the desired subvector?
3710       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
3711       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
3712       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
3713       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
3714                         Op.getOperand(1));
3715       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
3716       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
3717     }
3718   }
3719 
3720   // If the subvector vector is a fixed-length type, we cannot use subregister
3721   // manipulation to simplify the codegen; we don't know which register of a
3722   // LMUL group contains the specific subvector as we only know the minimum
3723   // register size. Therefore we must slide the vector group down the full
3724   // amount.
3725   if (SubVecVT.isFixedLengthVector()) {
3726     // With an index of 0 this is a cast-like subvector, which can be performed
3727     // with subregister operations.
3728     if (OrigIdx == 0)
3729       return Op;
3730     MVT ContainerVT = VecVT;
3731     if (VecVT.isFixedLengthVector()) {
3732       ContainerVT = getContainerForFixedLengthVector(VecVT);
3733       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3734     }
3735     SDValue Mask =
3736         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
3737     // Set the vector length to only the number of elements we care about. This
3738     // avoids sliding down elements we're going to discard straight away.
3739     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
3740     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
3741     SDValue Slidedown =
3742         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
3743                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
3744     // Now we can use a cast-like subvector extract to get the result.
3745     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
3746                             DAG.getConstant(0, DL, XLenVT));
3747     return DAG.getBitcast(Op.getValueType(), Slidedown);
3748   }
3749 
3750   unsigned SubRegIdx, RemIdx;
3751   std::tie(SubRegIdx, RemIdx) =
3752       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
3753           VecVT, SubVecVT, OrigIdx, TRI);
3754 
3755   // If the Idx has been completely eliminated then this is a subvector extract
3756   // which naturally aligns to a vector register. These can easily be handled
3757   // using subregister manipulation.
3758   if (RemIdx == 0)
3759     return Op;
3760 
3761   // Else we must shift our vector register directly to extract the subvector.
3762   // Do this using VSLIDEDOWN.
3763 
3764   // If the vector type is an LMUL-group type, extract a subvector equal to the
3765   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
3766   // instruction.
3767   MVT InterSubVT = VecVT;
3768   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
3769     InterSubVT = getLMUL1VT(VecVT);
3770     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
3771                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
3772   }
3773 
3774   // Slide this vector register down by the desired number of elements in order
3775   // to place the desired subvector starting at element 0.
3776   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
3777   // For scalable vectors this must be further multiplied by vscale.
3778   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
3779 
3780   SDValue Mask, VL;
3781   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
3782   SDValue Slidedown =
3783       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
3784                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
3785 
3786   // Now the vector is in the right position, extract our final subvector. This
3787   // should resolve to a COPY.
3788   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
3789                           DAG.getConstant(0, DL, XLenVT));
3790 
3791   // We might have bitcast from a mask type: cast back to the original type if
3792   // required.
3793   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
3794 }
3795 
3796 // Lower step_vector to the vid instruction. Any non-identity step value must
3797 // be accounted for my manual expansion.
3798 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
3799                                               SelectionDAG &DAG) const {
3800   SDLoc DL(Op);
3801   MVT VT = Op.getSimpleValueType();
3802   MVT XLenVT = Subtarget.getXLenVT();
3803   SDValue Mask, VL;
3804   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
3805   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
3806   uint64_t StepValImm = Op.getConstantOperandVal(0);
3807   if (StepValImm != 1) {
3808     assert(Op.getOperand(0).getValueType() == XLenVT &&
3809            "Unexpected step value type");
3810     if (isPowerOf2_64(StepValImm)) {
3811       SDValue StepVal =
3812           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
3813                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
3814       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
3815     } else {
3816       SDValue StepVal =
3817           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Op.getOperand(0));
3818       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
3819     }
3820   }
3821   return StepVec;
3822 }
3823 
3824 // Implement vector_reverse using vrgather.vv with indices determined by
3825 // subtracting the id of each element from (VLMAX-1). This will convert
3826 // the indices like so:
3827 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
3828 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
3829 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
3830                                                  SelectionDAG &DAG) const {
3831   SDLoc DL(Op);
3832   MVT VecVT = Op.getSimpleValueType();
3833   unsigned EltSize = VecVT.getScalarSizeInBits();
3834   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
3835 
3836   unsigned MaxVLMAX = 0;
3837   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
3838   if (VectorBitsMax != 0)
3839     MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock;
3840 
3841   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
3842   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
3843 
3844   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
3845   // to use vrgatherei16.vv.
3846   // TODO: It's also possible to use vrgatherei16.vv for other types to
3847   // decrease register width for the index calculation.
3848   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
3849     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
3850     // Reverse each half, then reassemble them in reverse order.
3851     // NOTE: It's also possible that after splitting that VLMAX no longer
3852     // requires vrgatherei16.vv.
3853     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
3854       SDValue Lo, Hi;
3855       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
3856       EVT LoVT, HiVT;
3857       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
3858       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
3859       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
3860       // Reassemble the low and high pieces reversed.
3861       // FIXME: This is a CONCAT_VECTORS.
3862       SDValue Res =
3863           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
3864                       DAG.getIntPtrConstant(0, DL));
3865       return DAG.getNode(
3866           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
3867           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
3868     }
3869 
3870     // Just promote the int type to i16 which will double the LMUL.
3871     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
3872     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
3873   }
3874 
3875   MVT XLenVT = Subtarget.getXLenVT();
3876   SDValue Mask, VL;
3877   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
3878 
3879   // Calculate VLMAX-1 for the desired SEW.
3880   unsigned MinElts = VecVT.getVectorMinNumElements();
3881   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
3882                               DAG.getConstant(MinElts, DL, XLenVT));
3883   SDValue VLMinus1 =
3884       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
3885 
3886   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
3887   bool IsRV32E64 =
3888       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
3889   SDValue SplatVL;
3890   if (!IsRV32E64)
3891     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
3892   else
3893     SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1);
3894 
3895   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
3896   SDValue Indices =
3897       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
3898 
3899   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
3900 }
3901 
3902 SDValue
3903 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
3904                                                      SelectionDAG &DAG) const {
3905   auto *Load = cast<LoadSDNode>(Op);
3906 
3907   SDLoc DL(Op);
3908   MVT VT = Op.getSimpleValueType();
3909   MVT ContainerVT = getContainerForFixedLengthVector(VT);
3910 
3911   SDValue VL =
3912       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
3913 
3914   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
3915   SDValue NewLoad = DAG.getMemIntrinsicNode(
3916       RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
3917       Load->getMemoryVT(), Load->getMemOperand());
3918 
3919   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
3920   return DAG.getMergeValues({Result, Load->getChain()}, DL);
3921 }
3922 
3923 SDValue
3924 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
3925                                                       SelectionDAG &DAG) const {
3926   auto *Store = cast<StoreSDNode>(Op);
3927 
3928   SDLoc DL(Op);
3929   SDValue StoreVal = Store->getValue();
3930   MVT VT = StoreVal.getSimpleValueType();
3931 
3932   // If the size less than a byte, we need to pad with zeros to make a byte.
3933   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
3934     VT = MVT::v8i1;
3935     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
3936                            DAG.getConstant(0, DL, VT), StoreVal,
3937                            DAG.getIntPtrConstant(0, DL));
3938   }
3939 
3940   MVT ContainerVT = getContainerForFixedLengthVector(VT);
3941 
3942   SDValue VL =
3943       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
3944 
3945   SDValue NewValue =
3946       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
3947   return DAG.getMemIntrinsicNode(
3948       RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
3949       {Store->getChain(), NewValue, Store->getBasePtr(), VL},
3950       Store->getMemoryVT(), Store->getMemOperand());
3951 }
3952 
3953 SDValue RISCVTargetLowering::lowerMLOAD(SDValue Op, SelectionDAG &DAG) const {
3954   auto *Load = cast<MaskedLoadSDNode>(Op);
3955 
3956   SDLoc DL(Op);
3957   MVT VT = Op.getSimpleValueType();
3958   MVT XLenVT = Subtarget.getXLenVT();
3959 
3960   SDValue Mask = Load->getMask();
3961   SDValue PassThru = Load->getPassThru();
3962   SDValue VL;
3963 
3964   MVT ContainerVT = VT;
3965   if (VT.isFixedLengthVector()) {
3966     ContainerVT = getContainerForFixedLengthVector(VT);
3967     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3968 
3969     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
3970     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
3971     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
3972   } else
3973     VL = DAG.getRegister(RISCV::X0, XLenVT);
3974 
3975   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
3976   SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT);
3977   SDValue Ops[] = {Load->getChain(),   IntID, PassThru,
3978                    Load->getBasePtr(), Mask,  VL};
3979   SDValue Result =
3980       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
3981                               Load->getMemoryVT(), Load->getMemOperand());
3982   SDValue Chain = Result.getValue(1);
3983 
3984   if (VT.isFixedLengthVector())
3985     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
3986 
3987   return DAG.getMergeValues({Result, Chain}, DL);
3988 }
3989 
3990 SDValue RISCVTargetLowering::lowerMSTORE(SDValue Op, SelectionDAG &DAG) const {
3991   auto *Store = cast<MaskedStoreSDNode>(Op);
3992 
3993   SDLoc DL(Op);
3994   SDValue Val = Store->getValue();
3995   SDValue Mask = Store->getMask();
3996   MVT VT = Val.getSimpleValueType();
3997   MVT XLenVT = Subtarget.getXLenVT();
3998   SDValue VL;
3999 
4000   MVT ContainerVT = VT;
4001   if (VT.isFixedLengthVector()) {
4002     ContainerVT = getContainerForFixedLengthVector(VT);
4003     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4004 
4005     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4006     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4007     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4008   } else
4009     VL = DAG.getRegister(RISCV::X0, XLenVT);
4010 
4011   SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vse_mask, DL, XLenVT);
4012   return DAG.getMemIntrinsicNode(
4013       ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
4014       {Store->getChain(), IntID, Val, Store->getBasePtr(), Mask, VL},
4015       Store->getMemoryVT(), Store->getMemOperand());
4016 }
4017 
4018 SDValue
4019 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
4020                                                       SelectionDAG &DAG) const {
4021   MVT InVT = Op.getOperand(0).getSimpleValueType();
4022   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
4023 
4024   MVT VT = Op.getSimpleValueType();
4025 
4026   SDValue Op1 =
4027       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4028   SDValue Op2 =
4029       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
4030 
4031   SDLoc DL(Op);
4032   SDValue VL =
4033       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4034 
4035   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4036   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4037 
4038   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
4039                             Op.getOperand(2), Mask, VL);
4040 
4041   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
4042 }
4043 
4044 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
4045     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
4046   MVT VT = Op.getSimpleValueType();
4047 
4048   if (VT.getVectorElementType() == MVT::i1)
4049     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
4050 
4051   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
4052 }
4053 
4054 // Lower vector ABS to smax(X, sub(0, X)).
4055 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
4056   SDLoc DL(Op);
4057   MVT VT = Op.getSimpleValueType();
4058   SDValue X = Op.getOperand(0);
4059 
4060   assert(VT.isFixedLengthVector() && "Unexpected type");
4061 
4062   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4063   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
4064 
4065   SDValue Mask, VL;
4066   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4067 
4068   SDValue SplatZero =
4069       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4070                   DAG.getConstant(0, DL, Subtarget.getXLenVT()));
4071   SDValue NegX =
4072       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
4073   SDValue Max =
4074       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
4075 
4076   return convertFromScalableVector(VT, Max, DAG, Subtarget);
4077 }
4078 
4079 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
4080     SDValue Op, SelectionDAG &DAG) const {
4081   SDLoc DL(Op);
4082   MVT VT = Op.getSimpleValueType();
4083   SDValue Mag = Op.getOperand(0);
4084   SDValue Sign = Op.getOperand(1);
4085   assert(Mag.getValueType() == Sign.getValueType() &&
4086          "Can only handle COPYSIGN with matching types.");
4087 
4088   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4089   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
4090   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
4091 
4092   SDValue Mask, VL;
4093   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4094 
4095   SDValue CopySign =
4096       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
4097 
4098   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
4099 }
4100 
4101 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
4102     SDValue Op, SelectionDAG &DAG) const {
4103   MVT VT = Op.getSimpleValueType();
4104   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4105 
4106   MVT I1ContainerVT =
4107       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4108 
4109   SDValue CC =
4110       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
4111   SDValue Op1 =
4112       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
4113   SDValue Op2 =
4114       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
4115 
4116   SDLoc DL(Op);
4117   SDValue Mask, VL;
4118   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4119 
4120   SDValue Select =
4121       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
4122 
4123   return convertFromScalableVector(VT, Select, DAG, Subtarget);
4124 }
4125 
4126 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
4127                                                unsigned NewOpc,
4128                                                bool HasMask) const {
4129   MVT VT = Op.getSimpleValueType();
4130   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4131 
4132   // Create list of operands by converting existing ones to scalable types.
4133   SmallVector<SDValue, 6> Ops;
4134   for (const SDValue &V : Op->op_values()) {
4135     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
4136 
4137     // Pass through non-vector operands.
4138     if (!V.getValueType().isVector()) {
4139       Ops.push_back(V);
4140       continue;
4141     }
4142 
4143     // "cast" fixed length vector to a scalable vector.
4144     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
4145            "Only fixed length vectors are supported!");
4146     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
4147   }
4148 
4149   SDLoc DL(Op);
4150   SDValue Mask, VL;
4151   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4152   if (HasMask)
4153     Ops.push_back(Mask);
4154   Ops.push_back(VL);
4155 
4156   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
4157   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
4158 }
4159 
4160 // Custom lower MGATHER to a legalized form for RVV. It will then be matched to
4161 // a RVV indexed load. The RVV indexed load instructions only support the
4162 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or
4163 // truncated to XLEN and are treated as byte offsets. Any signed or scaled
4164 // indexing is extended to the XLEN value type and scaled accordingly.
4165 SDValue RISCVTargetLowering::lowerMGATHER(SDValue Op, SelectionDAG &DAG) const {
4166   auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
4167   SDLoc DL(Op);
4168 
4169   SDValue Index = MGN->getIndex();
4170   SDValue Mask = MGN->getMask();
4171   SDValue PassThru = MGN->getPassThru();
4172 
4173   MVT VT = Op.getSimpleValueType();
4174   MVT IndexVT = Index.getSimpleValueType();
4175   MVT XLenVT = Subtarget.getXLenVT();
4176 
4177   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
4178          "Unexpected VTs!");
4179   assert(MGN->getBasePtr().getSimpleValueType() == XLenVT &&
4180          "Unexpected pointer type");
4181   // Targets have to explicitly opt-in for extending vector loads.
4182   assert(MGN->getExtensionType() == ISD::NON_EXTLOAD &&
4183          "Unexpected extending MGATHER");
4184 
4185   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4186   // the selection of the masked intrinsics doesn't do this for us.
4187   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4188 
4189   SDValue VL;
4190   MVT ContainerVT = VT;
4191   if (VT.isFixedLengthVector()) {
4192     // We need to use the larger of the result and index type to determine the
4193     // scalable type to use so we don't increase LMUL for any operand/result.
4194     if (VT.bitsGE(IndexVT)) {
4195       ContainerVT = getContainerForFixedLengthVector(VT);
4196       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
4197                                  ContainerVT.getVectorElementCount());
4198     } else {
4199       IndexVT = getContainerForFixedLengthVector(IndexVT);
4200       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
4201                                      IndexVT.getVectorElementCount());
4202     }
4203 
4204     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
4205 
4206     if (!IsUnmasked) {
4207       MVT MaskVT =
4208           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4209       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4210       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4211     }
4212 
4213     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4214   } else
4215     VL = DAG.getRegister(RISCV::X0, XLenVT);
4216 
4217   unsigned IntID =
4218       IsUnmasked ? Intrinsic::riscv_vloxei : Intrinsic::riscv_vloxei_mask;
4219   SmallVector<SDValue, 8> Ops{MGN->getChain(),
4220                               DAG.getTargetConstant(IntID, DL, XLenVT)};
4221   if (!IsUnmasked)
4222     Ops.push_back(PassThru);
4223   Ops.push_back(MGN->getBasePtr());
4224   Ops.push_back(Index);
4225   if (!IsUnmasked)
4226     Ops.push_back(Mask);
4227   Ops.push_back(VL);
4228 
4229   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4230   SDValue Result =
4231       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4232                               MGN->getMemoryVT(), MGN->getMemOperand());
4233   SDValue Chain = Result.getValue(1);
4234 
4235   if (VT.isFixedLengthVector())
4236     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4237 
4238   return DAG.getMergeValues({Result, Chain}, DL);
4239 }
4240 
4241 // Custom lower MSCATTER to a legalized form for RVV. It will then be matched to
4242 // a RVV indexed store. The RVV indexed store instructions only support the
4243 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or
4244 // truncated to XLEN and are treated as byte offsets. Any signed or scaled
4245 // indexing is extended to the XLEN value type and scaled accordingly.
4246 SDValue RISCVTargetLowering::lowerMSCATTER(SDValue Op,
4247                                            SelectionDAG &DAG) const {
4248   auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
4249   SDLoc DL(Op);
4250   SDValue Index = MSN->getIndex();
4251   SDValue Mask = MSN->getMask();
4252   SDValue Val = MSN->getValue();
4253 
4254   MVT VT = Val.getSimpleValueType();
4255   MVT IndexVT = Index.getSimpleValueType();
4256   MVT XLenVT = Subtarget.getXLenVT();
4257 
4258   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
4259          "Unexpected VTs!");
4260   assert(MSN->getBasePtr().getSimpleValueType() == XLenVT &&
4261          "Unexpected pointer type");
4262   // Targets have to explicitly opt-in for extending vector loads and
4263   // truncating vector stores.
4264   assert(!MSN->isTruncatingStore() && "Unexpected extending MSCATTER");
4265 
4266   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4267   // the selection of the masked intrinsics doesn't do this for us.
4268   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4269 
4270   SDValue VL;
4271   if (VT.isFixedLengthVector()) {
4272     // We need to use the larger of the value and index type to determine the
4273     // scalable type to use so we don't increase LMUL for any operand/result.
4274     if (VT.bitsGE(IndexVT)) {
4275       VT = getContainerForFixedLengthVector(VT);
4276       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
4277                                  VT.getVectorElementCount());
4278     } else {
4279       IndexVT = getContainerForFixedLengthVector(IndexVT);
4280       VT = MVT::getVectorVT(VT.getVectorElementType(),
4281                             IndexVT.getVectorElementCount());
4282     }
4283 
4284     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
4285     Val = convertToScalableVector(VT, Val, DAG, Subtarget);
4286 
4287     if (!IsUnmasked) {
4288       MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
4289       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4290     }
4291 
4292     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4293   } else
4294     VL = DAG.getRegister(RISCV::X0, XLenVT);
4295 
4296   unsigned IntID =
4297       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
4298   SmallVector<SDValue, 8> Ops{MSN->getChain(),
4299                               DAG.getTargetConstant(IntID, DL, XLenVT)};
4300   Ops.push_back(Val);
4301   Ops.push_back(MSN->getBasePtr());
4302   Ops.push_back(Index);
4303   if (!IsUnmasked)
4304     Ops.push_back(Mask);
4305   Ops.push_back(VL);
4306 
4307   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, MSN->getVTList(), Ops,
4308                                  MSN->getMemoryVT(), MSN->getMemOperand());
4309 }
4310 
4311 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
4312                                                SelectionDAG &DAG) const {
4313   const MVT XLenVT = Subtarget.getXLenVT();
4314   SDLoc DL(Op);
4315   SDValue Chain = Op->getOperand(0);
4316   SDValue SysRegNo = DAG.getConstant(
4317       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
4318   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
4319   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
4320 
4321   // Encoding used for rounding mode in RISCV differs from that used in
4322   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
4323   // table, which consists of a sequence of 4-bit fields, each representing
4324   // corresponding FLT_ROUNDS mode.
4325   static const int Table =
4326       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
4327       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
4328       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
4329       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
4330       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
4331 
4332   SDValue Shift =
4333       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
4334   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
4335                                 DAG.getConstant(Table, DL, XLenVT), Shift);
4336   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
4337                                DAG.getConstant(7, DL, XLenVT));
4338 
4339   return DAG.getMergeValues({Masked, Chain}, DL);
4340 }
4341 
4342 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
4343                                                SelectionDAG &DAG) const {
4344   const MVT XLenVT = Subtarget.getXLenVT();
4345   SDLoc DL(Op);
4346   SDValue Chain = Op->getOperand(0);
4347   SDValue RMValue = Op->getOperand(1);
4348   SDValue SysRegNo = DAG.getConstant(
4349       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
4350 
4351   // Encoding used for rounding mode in RISCV differs from that used in
4352   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
4353   // a table, which consists of a sequence of 4-bit fields, each representing
4354   // corresponding RISCV mode.
4355   static const unsigned Table =
4356       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
4357       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
4358       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
4359       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
4360       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
4361 
4362   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
4363                               DAG.getConstant(2, DL, XLenVT));
4364   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
4365                                 DAG.getConstant(Table, DL, XLenVT), Shift);
4366   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
4367                         DAG.getConstant(0x7, DL, XLenVT));
4368   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
4369                      RMValue);
4370 }
4371 
4372 // Returns the opcode of the target-specific SDNode that implements the 32-bit
4373 // form of the given Opcode.
4374 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
4375   switch (Opcode) {
4376   default:
4377     llvm_unreachable("Unexpected opcode");
4378   case ISD::SHL:
4379     return RISCVISD::SLLW;
4380   case ISD::SRA:
4381     return RISCVISD::SRAW;
4382   case ISD::SRL:
4383     return RISCVISD::SRLW;
4384   case ISD::SDIV:
4385     return RISCVISD::DIVW;
4386   case ISD::UDIV:
4387     return RISCVISD::DIVUW;
4388   case ISD::UREM:
4389     return RISCVISD::REMUW;
4390   case ISD::ROTL:
4391     return RISCVISD::ROLW;
4392   case ISD::ROTR:
4393     return RISCVISD::RORW;
4394   case RISCVISD::GREV:
4395     return RISCVISD::GREVW;
4396   case RISCVISD::GORC:
4397     return RISCVISD::GORCW;
4398   }
4399 }
4400 
4401 // Converts the given 32-bit operation to a target-specific SelectionDAG node.
4402 // Because i32 isn't a legal type for RV64, these operations would otherwise
4403 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W
4404 // later one because the fact the operation was originally of type i32 is
4405 // lost.
4406 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
4407                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
4408   SDLoc DL(N);
4409   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
4410   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
4411   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
4412   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
4413   // ReplaceNodeResults requires we maintain the same type for the return value.
4414   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
4415 }
4416 
4417 // Converts the given 32-bit operation to a i64 operation with signed extension
4418 // semantic to reduce the signed extension instructions.
4419 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
4420   SDLoc DL(N);
4421   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4422   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4423   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
4424   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
4425                                DAG.getValueType(MVT::i32));
4426   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
4427 }
4428 
4429 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
4430                                              SmallVectorImpl<SDValue> &Results,
4431                                              SelectionDAG &DAG) const {
4432   SDLoc DL(N);
4433   switch (N->getOpcode()) {
4434   default:
4435     llvm_unreachable("Don't know how to custom type legalize this operation!");
4436   case ISD::STRICT_FP_TO_SINT:
4437   case ISD::STRICT_FP_TO_UINT:
4438   case ISD::FP_TO_SINT:
4439   case ISD::FP_TO_UINT: {
4440     bool IsStrict = N->isStrictFPOpcode();
4441     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4442            "Unexpected custom legalisation");
4443     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
4444     // If the FP type needs to be softened, emit a library call using the 'si'
4445     // version. If we left it to default legalization we'd end up with 'di'. If
4446     // the FP type doesn't need to be softened just let generic type
4447     // legalization promote the result type.
4448     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
4449         TargetLowering::TypeSoftenFloat)
4450       return;
4451     RTLIB::Libcall LC;
4452     if (N->getOpcode() == ISD::FP_TO_SINT ||
4453         N->getOpcode() == ISD::STRICT_FP_TO_SINT)
4454       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
4455     else
4456       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
4457     MakeLibCallOptions CallOptions;
4458     EVT OpVT = Op0.getValueType();
4459     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
4460     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
4461     SDValue Result;
4462     std::tie(Result, Chain) =
4463         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
4464     Results.push_back(Result);
4465     if (IsStrict)
4466       Results.push_back(Chain);
4467     break;
4468   }
4469   case ISD::READCYCLECOUNTER: {
4470     assert(!Subtarget.is64Bit() &&
4471            "READCYCLECOUNTER only has custom type legalization on riscv32");
4472 
4473     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4474     SDValue RCW =
4475         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
4476 
4477     Results.push_back(
4478         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
4479     Results.push_back(RCW.getValue(2));
4480     break;
4481   }
4482   case ISD::MUL: {
4483     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
4484     unsigned XLen = Subtarget.getXLen();
4485     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
4486     if (Size > XLen) {
4487       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
4488       SDValue LHS = N->getOperand(0);
4489       SDValue RHS = N->getOperand(1);
4490       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
4491 
4492       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
4493       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
4494       // We need exactly one side to be unsigned.
4495       if (LHSIsU == RHSIsU)
4496         return;
4497 
4498       auto MakeMULPair = [&](SDValue S, SDValue U) {
4499         MVT XLenVT = Subtarget.getXLenVT();
4500         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
4501         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
4502         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
4503         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
4504         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
4505       };
4506 
4507       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
4508       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
4509 
4510       // The other operand should be signed, but still prefer MULH when
4511       // possible.
4512       if (RHSIsU && LHSIsS && !RHSIsS)
4513         Results.push_back(MakeMULPair(LHS, RHS));
4514       else if (LHSIsU && RHSIsS && !LHSIsS)
4515         Results.push_back(MakeMULPair(RHS, LHS));
4516 
4517       return;
4518     }
4519     LLVM_FALLTHROUGH;
4520   }
4521   case ISD::ADD:
4522   case ISD::SUB:
4523     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4524            "Unexpected custom legalisation");
4525     if (N->getOperand(1).getOpcode() == ISD::Constant)
4526       return;
4527     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
4528     break;
4529   case ISD::SHL:
4530   case ISD::SRA:
4531   case ISD::SRL:
4532     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4533            "Unexpected custom legalisation");
4534     if (N->getOperand(1).getOpcode() == ISD::Constant)
4535       return;
4536     Results.push_back(customLegalizeToWOp(N, DAG));
4537     break;
4538   case ISD::ROTL:
4539   case ISD::ROTR:
4540     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4541            "Unexpected custom legalisation");
4542     Results.push_back(customLegalizeToWOp(N, DAG));
4543     break;
4544   case ISD::CTTZ:
4545   case ISD::CTTZ_ZERO_UNDEF:
4546   case ISD::CTLZ:
4547   case ISD::CTLZ_ZERO_UNDEF: {
4548     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4549            "Unexpected custom legalisation");
4550 
4551     SDValue NewOp0 =
4552         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4553     bool IsCTZ =
4554         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
4555     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
4556     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
4557     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4558     return;
4559   }
4560   case ISD::SDIV:
4561   case ISD::UDIV:
4562   case ISD::UREM: {
4563     MVT VT = N->getSimpleValueType(0);
4564     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
4565            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
4566            "Unexpected custom legalisation");
4567     if (N->getOperand(0).getOpcode() == ISD::Constant ||
4568         N->getOperand(1).getOpcode() == ISD::Constant)
4569       return;
4570 
4571     // If the input is i32, use ANY_EXTEND since the W instructions don't read
4572     // the upper 32 bits. For other types we need to sign or zero extend
4573     // based on the opcode.
4574     unsigned ExtOpc = ISD::ANY_EXTEND;
4575     if (VT != MVT::i32)
4576       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
4577                                            : ISD::ZERO_EXTEND;
4578 
4579     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
4580     break;
4581   }
4582   case ISD::UADDO:
4583   case ISD::USUBO: {
4584     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4585            "Unexpected custom legalisation");
4586     bool IsAdd = N->getOpcode() == ISD::UADDO;
4587     // Create an ADDW or SUBW.
4588     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4589     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4590     SDValue Res =
4591         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
4592     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
4593                       DAG.getValueType(MVT::i32));
4594 
4595     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
4596     // Since the inputs are sign extended from i32, this is equivalent to
4597     // comparing the lower 32 bits.
4598     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
4599     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
4600                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
4601 
4602     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4603     Results.push_back(Overflow);
4604     return;
4605   }
4606   case ISD::UADDSAT:
4607   case ISD::USUBSAT: {
4608     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4609            "Unexpected custom legalisation");
4610     if (Subtarget.hasStdExtZbb()) {
4611       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
4612       // sign extend allows overflow of the lower 32 bits to be detected on
4613       // the promoted size.
4614       SDValue LHS =
4615           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
4616       SDValue RHS =
4617           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
4618       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
4619       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4620       return;
4621     }
4622 
4623     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
4624     // promotion for UADDO/USUBO.
4625     Results.push_back(expandAddSubSat(N, DAG));
4626     return;
4627   }
4628   case ISD::BITCAST: {
4629     EVT VT = N->getValueType(0);
4630     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
4631     SDValue Op0 = N->getOperand(0);
4632     EVT Op0VT = Op0.getValueType();
4633     MVT XLenVT = Subtarget.getXLenVT();
4634     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
4635       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
4636       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
4637     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
4638                Subtarget.hasStdExtF()) {
4639       SDValue FPConv =
4640           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
4641       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
4642     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
4643                isTypeLegal(Op0VT)) {
4644       // Custom-legalize bitcasts from fixed-length vector types to illegal
4645       // scalar types in order to improve codegen. Bitcast the vector to a
4646       // one-element vector type whose element type is the same as the result
4647       // type, and extract the first element.
4648       LLVMContext &Context = *DAG.getContext();
4649       SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0);
4650       Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
4651                                     DAG.getConstant(0, DL, XLenVT)));
4652     }
4653     break;
4654   }
4655   case RISCVISD::GREV:
4656   case RISCVISD::GORC: {
4657     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4658            "Unexpected custom legalisation");
4659     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
4660     // This is similar to customLegalizeToWOp, except that we pass the second
4661     // operand (a TargetConstant) straight through: it is already of type
4662     // XLenVT.
4663     RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
4664     SDValue NewOp0 =
4665         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4666     SDValue NewOp1 =
4667         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4668     SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
4669     // ReplaceNodeResults requires we maintain the same type for the return
4670     // value.
4671     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
4672     break;
4673   }
4674   case RISCVISD::SHFL: {
4675     // There is no SHFLIW instruction, but we can just promote the operation.
4676     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4677            "Unexpected custom legalisation");
4678     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
4679     SDValue NewOp0 =
4680         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4681     SDValue NewOp1 =
4682         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4683     SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1);
4684     // ReplaceNodeResults requires we maintain the same type for the return
4685     // value.
4686     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
4687     break;
4688   }
4689   case ISD::BSWAP:
4690   case ISD::BITREVERSE: {
4691     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4692            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
4693     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
4694                                  N->getOperand(0));
4695     unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24;
4696     SDValue GREVIW = DAG.getNode(RISCVISD::GREVW, DL, MVT::i64, NewOp0,
4697                                  DAG.getConstant(Imm, DL, MVT::i64));
4698     // ReplaceNodeResults requires we maintain the same type for the return
4699     // value.
4700     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW));
4701     break;
4702   }
4703   case ISD::FSHL:
4704   case ISD::FSHR: {
4705     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4706            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
4707     SDValue NewOp0 =
4708         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4709     SDValue NewOp1 =
4710         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4711     SDValue NewOp2 =
4712         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
4713     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
4714     // Mask the shift amount to 5 bits.
4715     NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
4716                          DAG.getConstant(0x1f, DL, MVT::i64));
4717     unsigned Opc =
4718         N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW;
4719     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2);
4720     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
4721     break;
4722   }
4723   case ISD::EXTRACT_VECTOR_ELT: {
4724     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
4725     // type is illegal (currently only vXi64 RV32).
4726     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
4727     // transferred to the destination register. We issue two of these from the
4728     // upper- and lower- halves of the SEW-bit vector element, slid down to the
4729     // first element.
4730     SDValue Vec = N->getOperand(0);
4731     SDValue Idx = N->getOperand(1);
4732 
4733     // The vector type hasn't been legalized yet so we can't issue target
4734     // specific nodes if it needs legalization.
4735     // FIXME: We would manually legalize if it's important.
4736     if (!isTypeLegal(Vec.getValueType()))
4737       return;
4738 
4739     MVT VecVT = Vec.getSimpleValueType();
4740 
4741     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
4742            VecVT.getVectorElementType() == MVT::i64 &&
4743            "Unexpected EXTRACT_VECTOR_ELT legalization");
4744 
4745     // If this is a fixed vector, we need to convert it to a scalable vector.
4746     MVT ContainerVT = VecVT;
4747     if (VecVT.isFixedLengthVector()) {
4748       ContainerVT = getContainerForFixedLengthVector(VecVT);
4749       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4750     }
4751 
4752     MVT XLenVT = Subtarget.getXLenVT();
4753 
4754     // Use a VL of 1 to avoid processing more elements than we need.
4755     MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
4756     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4757     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4758 
4759     // Unless the index is known to be 0, we must slide the vector down to get
4760     // the desired element into index 0.
4761     if (!isNullConstant(Idx)) {
4762       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4763                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4764     }
4765 
4766     // Extract the lower XLEN bits of the correct vector element.
4767     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4768 
4769     // To extract the upper XLEN bits of the vector element, shift the first
4770     // element right by 32 bits and re-extract the lower XLEN bits.
4771     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4772                                      DAG.getConstant(32, DL, XLenVT), VL);
4773     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
4774                                  ThirtyTwoV, Mask, VL);
4775 
4776     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
4777 
4778     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
4779     break;
4780   }
4781   case ISD::INTRINSIC_WO_CHAIN: {
4782     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4783     switch (IntNo) {
4784     default:
4785       llvm_unreachable(
4786           "Don't know how to custom type legalize this intrinsic!");
4787     case Intrinsic::riscv_orc_b: {
4788       // Lower to the GORCI encoding for orc.b with the operand extended.
4789       SDValue NewOp =
4790           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4791       // If Zbp is enabled, use GORCIW which will sign extend the result.
4792       unsigned Opc =
4793           Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC;
4794       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp,
4795                                 DAG.getConstant(7, DL, MVT::i64));
4796       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4797       return;
4798     }
4799     case Intrinsic::riscv_grev:
4800     case Intrinsic::riscv_gorc: {
4801       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4802              "Unexpected custom legalisation");
4803       SDValue NewOp1 =
4804           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4805       SDValue NewOp2 =
4806           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
4807       unsigned Opc =
4808           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
4809       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
4810       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4811       break;
4812     }
4813     case Intrinsic::riscv_shfl:
4814     case Intrinsic::riscv_unshfl: {
4815       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4816              "Unexpected custom legalisation");
4817       SDValue NewOp1 =
4818           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4819       SDValue NewOp2 =
4820           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
4821       unsigned Opc =
4822           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
4823       if (isa<ConstantSDNode>(N->getOperand(2))) {
4824         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
4825                              DAG.getConstant(0xf, DL, MVT::i64));
4826         Opc =
4827             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4828       }
4829       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
4830       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4831       break;
4832     }
4833     case Intrinsic::riscv_bcompress:
4834     case Intrinsic::riscv_bdecompress: {
4835       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4836              "Unexpected custom legalisation");
4837       SDValue NewOp1 =
4838           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4839       SDValue NewOp2 =
4840           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
4841       unsigned Opc = IntNo == Intrinsic::riscv_bcompress
4842                          ? RISCVISD::BCOMPRESSW
4843                          : RISCVISD::BDECOMPRESSW;
4844       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
4845       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4846       break;
4847     }
4848     case Intrinsic::riscv_vmv_x_s: {
4849       EVT VT = N->getValueType(0);
4850       MVT XLenVT = Subtarget.getXLenVT();
4851       if (VT.bitsLT(XLenVT)) {
4852         // Simple case just extract using vmv.x.s and truncate.
4853         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
4854                                       Subtarget.getXLenVT(), N->getOperand(1));
4855         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
4856         return;
4857       }
4858 
4859       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
4860              "Unexpected custom legalization");
4861 
4862       // We need to do the move in two steps.
4863       SDValue Vec = N->getOperand(1);
4864       MVT VecVT = Vec.getSimpleValueType();
4865 
4866       // First extract the lower XLEN bits of the element.
4867       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4868 
4869       // To extract the upper XLEN bits of the vector element, shift the first
4870       // element right by 32 bits and re-extract the lower XLEN bits.
4871       SDValue VL = DAG.getConstant(1, DL, XLenVT);
4872       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
4873       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4874       SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT,
4875                                        DAG.getConstant(32, DL, XLenVT), VL);
4876       SDValue LShr32 =
4877           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
4878       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
4879 
4880       Results.push_back(
4881           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
4882       break;
4883     }
4884     }
4885     break;
4886   }
4887   case ISD::VECREDUCE_ADD:
4888   case ISD::VECREDUCE_AND:
4889   case ISD::VECREDUCE_OR:
4890   case ISD::VECREDUCE_XOR:
4891   case ISD::VECREDUCE_SMAX:
4892   case ISD::VECREDUCE_UMAX:
4893   case ISD::VECREDUCE_SMIN:
4894   case ISD::VECREDUCE_UMIN:
4895     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
4896       Results.push_back(V);
4897     break;
4898   case ISD::FLT_ROUNDS_: {
4899     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
4900     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
4901     Results.push_back(Res.getValue(0));
4902     Results.push_back(Res.getValue(1));
4903     break;
4904   }
4905   }
4906 }
4907 
4908 // A structure to hold one of the bit-manipulation patterns below. Together, a
4909 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
4910 //   (or (and (shl x, 1), 0xAAAAAAAA),
4911 //       (and (srl x, 1), 0x55555555))
4912 struct RISCVBitmanipPat {
4913   SDValue Op;
4914   unsigned ShAmt;
4915   bool IsSHL;
4916 
4917   bool formsPairWith(const RISCVBitmanipPat &Other) const {
4918     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
4919   }
4920 };
4921 
4922 // Matches patterns of the form
4923 //   (and (shl x, C2), (C1 << C2))
4924 //   (and (srl x, C2), C1)
4925 //   (shl (and x, C1), C2)
4926 //   (srl (and x, (C1 << C2)), C2)
4927 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
4928 // The expected masks for each shift amount are specified in BitmanipMasks where
4929 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
4930 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
4931 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
4932 // XLen is 64.
4933 static Optional<RISCVBitmanipPat>
4934 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
4935   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
4936          "Unexpected number of masks");
4937   Optional<uint64_t> Mask;
4938   // Optionally consume a mask around the shift operation.
4939   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
4940     Mask = Op.getConstantOperandVal(1);
4941     Op = Op.getOperand(0);
4942   }
4943   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
4944     return None;
4945   bool IsSHL = Op.getOpcode() == ISD::SHL;
4946 
4947   if (!isa<ConstantSDNode>(Op.getOperand(1)))
4948     return None;
4949   uint64_t ShAmt = Op.getConstantOperandVal(1);
4950 
4951   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
4952   if (ShAmt >= Width && !isPowerOf2_64(ShAmt))
4953     return None;
4954   // If we don't have enough masks for 64 bit, then we must be trying to
4955   // match SHFL so we're only allowed to shift 1/4 of the width.
4956   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
4957     return None;
4958 
4959   SDValue Src = Op.getOperand(0);
4960 
4961   // The expected mask is shifted left when the AND is found around SHL
4962   // patterns.
4963   //   ((x >> 1) & 0x55555555)
4964   //   ((x << 1) & 0xAAAAAAAA)
4965   bool SHLExpMask = IsSHL;
4966 
4967   if (!Mask) {
4968     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
4969     // the mask is all ones: consume that now.
4970     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
4971       Mask = Src.getConstantOperandVal(1);
4972       Src = Src.getOperand(0);
4973       // The expected mask is now in fact shifted left for SRL, so reverse the
4974       // decision.
4975       //   ((x & 0xAAAAAAAA) >> 1)
4976       //   ((x & 0x55555555) << 1)
4977       SHLExpMask = !SHLExpMask;
4978     } else {
4979       // Use a default shifted mask of all-ones if there's no AND, truncated
4980       // down to the expected width. This simplifies the logic later on.
4981       Mask = maskTrailingOnes<uint64_t>(Width);
4982       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
4983     }
4984   }
4985 
4986   unsigned MaskIdx = Log2_32(ShAmt);
4987   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
4988 
4989   if (SHLExpMask)
4990     ExpMask <<= ShAmt;
4991 
4992   if (Mask != ExpMask)
4993     return None;
4994 
4995   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
4996 }
4997 
4998 // Matches any of the following bit-manipulation patterns:
4999 //   (and (shl x, 1), (0x55555555 << 1))
5000 //   (and (srl x, 1), 0x55555555)
5001 //   (shl (and x, 0x55555555), 1)
5002 //   (srl (and x, (0x55555555 << 1)), 1)
5003 // where the shift amount and mask may vary thus:
5004 //   [1]  = 0x55555555 / 0xAAAAAAAA
5005 //   [2]  = 0x33333333 / 0xCCCCCCCC
5006 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
5007 //   [8]  = 0x00FF00FF / 0xFF00FF00
5008 //   [16] = 0x0000FFFF / 0xFFFFFFFF
5009 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
5010 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
5011   // These are the unshifted masks which we use to match bit-manipulation
5012   // patterns. They may be shifted left in certain circumstances.
5013   static const uint64_t BitmanipMasks[] = {
5014       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
5015       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
5016 
5017   return matchRISCVBitmanipPat(Op, BitmanipMasks);
5018 }
5019 
5020 // Match the following pattern as a GREVI(W) operation
5021 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
5022 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
5023                                const RISCVSubtarget &Subtarget) {
5024   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
5025   EVT VT = Op.getValueType();
5026 
5027   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
5028     auto LHS = matchGREVIPat(Op.getOperand(0));
5029     auto RHS = matchGREVIPat(Op.getOperand(1));
5030     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
5031       SDLoc DL(Op);
5032       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
5033                          DAG.getConstant(LHS->ShAmt, DL, VT));
5034     }
5035   }
5036   return SDValue();
5037 }
5038 
5039 // Matches any the following pattern as a GORCI(W) operation
5040 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
5041 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
5042 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
5043 // Note that with the variant of 3.,
5044 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
5045 // the inner pattern will first be matched as GREVI and then the outer
5046 // pattern will be matched to GORC via the first rule above.
5047 // 4.  (or (rotl/rotr x, bitwidth/2), x)
5048 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
5049                                const RISCVSubtarget &Subtarget) {
5050   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
5051   EVT VT = Op.getValueType();
5052 
5053   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
5054     SDLoc DL(Op);
5055     SDValue Op0 = Op.getOperand(0);
5056     SDValue Op1 = Op.getOperand(1);
5057 
5058     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
5059       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
5060           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
5061           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
5062         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
5063       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
5064       if ((Reverse.getOpcode() == ISD::ROTL ||
5065            Reverse.getOpcode() == ISD::ROTR) &&
5066           Reverse.getOperand(0) == X &&
5067           isa<ConstantSDNode>(Reverse.getOperand(1))) {
5068         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
5069         if (RotAmt == (VT.getSizeInBits() / 2))
5070           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
5071                              DAG.getConstant(RotAmt, DL, VT));
5072       }
5073       return SDValue();
5074     };
5075 
5076     // Check for either commutable permutation of (or (GREVI x, shamt), x)
5077     if (SDValue V = MatchOROfReverse(Op0, Op1))
5078       return V;
5079     if (SDValue V = MatchOROfReverse(Op1, Op0))
5080       return V;
5081 
5082     // OR is commutable so canonicalize its OR operand to the left
5083     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
5084       std::swap(Op0, Op1);
5085     if (Op0.getOpcode() != ISD::OR)
5086       return SDValue();
5087     SDValue OrOp0 = Op0.getOperand(0);
5088     SDValue OrOp1 = Op0.getOperand(1);
5089     auto LHS = matchGREVIPat(OrOp0);
5090     // OR is commutable so swap the operands and try again: x might have been
5091     // on the left
5092     if (!LHS) {
5093       std::swap(OrOp0, OrOp1);
5094       LHS = matchGREVIPat(OrOp0);
5095     }
5096     auto RHS = matchGREVIPat(Op1);
5097     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
5098       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
5099                          DAG.getConstant(LHS->ShAmt, DL, VT));
5100     }
5101   }
5102   return SDValue();
5103 }
5104 
5105 // Matches any of the following bit-manipulation patterns:
5106 //   (and (shl x, 1), (0x22222222 << 1))
5107 //   (and (srl x, 1), 0x22222222)
5108 //   (shl (and x, 0x22222222), 1)
5109 //   (srl (and x, (0x22222222 << 1)), 1)
5110 // where the shift amount and mask may vary thus:
5111 //   [1]  = 0x22222222 / 0x44444444
5112 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
5113 //   [4]  = 0x00F000F0 / 0x0F000F00
5114 //   [8]  = 0x0000FF00 / 0x00FF0000
5115 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
5116 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
5117   // These are the unshifted masks which we use to match bit-manipulation
5118   // patterns. They may be shifted left in certain circumstances.
5119   static const uint64_t BitmanipMasks[] = {
5120       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
5121       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
5122 
5123   return matchRISCVBitmanipPat(Op, BitmanipMasks);
5124 }
5125 
5126 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
5127 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
5128                                const RISCVSubtarget &Subtarget) {
5129   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
5130   EVT VT = Op.getValueType();
5131 
5132   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
5133     return SDValue();
5134 
5135   SDValue Op0 = Op.getOperand(0);
5136   SDValue Op1 = Op.getOperand(1);
5137 
5138   // Or is commutable so canonicalize the second OR to the LHS.
5139   if (Op0.getOpcode() != ISD::OR)
5140     std::swap(Op0, Op1);
5141   if (Op0.getOpcode() != ISD::OR)
5142     return SDValue();
5143 
5144   // We found an inner OR, so our operands are the operands of the inner OR
5145   // and the other operand of the outer OR.
5146   SDValue A = Op0.getOperand(0);
5147   SDValue B = Op0.getOperand(1);
5148   SDValue C = Op1;
5149 
5150   auto Match1 = matchSHFLPat(A);
5151   auto Match2 = matchSHFLPat(B);
5152 
5153   // If neither matched, we failed.
5154   if (!Match1 && !Match2)
5155     return SDValue();
5156 
5157   // We had at least one match. if one failed, try the remaining C operand.
5158   if (!Match1) {
5159     std::swap(A, C);
5160     Match1 = matchSHFLPat(A);
5161     if (!Match1)
5162       return SDValue();
5163   } else if (!Match2) {
5164     std::swap(B, C);
5165     Match2 = matchSHFLPat(B);
5166     if (!Match2)
5167       return SDValue();
5168   }
5169   assert(Match1 && Match2);
5170 
5171   // Make sure our matches pair up.
5172   if (!Match1->formsPairWith(*Match2))
5173     return SDValue();
5174 
5175   // All the remains is to make sure C is an AND with the same input, that masks
5176   // out the bits that are being shuffled.
5177   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
5178       C.getOperand(0) != Match1->Op)
5179     return SDValue();
5180 
5181   uint64_t Mask = C.getConstantOperandVal(1);
5182 
5183   static const uint64_t BitmanipMasks[] = {
5184       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
5185       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
5186   };
5187 
5188   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
5189   unsigned MaskIdx = Log2_32(Match1->ShAmt);
5190   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
5191 
5192   if (Mask != ExpMask)
5193     return SDValue();
5194 
5195   SDLoc DL(Op);
5196   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
5197                      DAG.getConstant(Match1->ShAmt, DL, VT));
5198 }
5199 
5200 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
5201 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
5202 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
5203 // not undo itself, but they are redundant.
5204 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
5205   SDValue Src = N->getOperand(0);
5206 
5207   if (Src.getOpcode() != N->getOpcode())
5208     return SDValue();
5209 
5210   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
5211       !isa<ConstantSDNode>(Src.getOperand(1)))
5212     return SDValue();
5213 
5214   unsigned ShAmt1 = N->getConstantOperandVal(1);
5215   unsigned ShAmt2 = Src.getConstantOperandVal(1);
5216   Src = Src.getOperand(0);
5217 
5218   unsigned CombinedShAmt;
5219   if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW)
5220     CombinedShAmt = ShAmt1 | ShAmt2;
5221   else
5222     CombinedShAmt = ShAmt1 ^ ShAmt2;
5223 
5224   if (CombinedShAmt == 0)
5225     return Src;
5226 
5227   SDLoc DL(N);
5228   return DAG.getNode(
5229       N->getOpcode(), DL, N->getValueType(0), Src,
5230       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
5231 }
5232 
5233 // Combine a constant select operand into its use:
5234 //
5235 // (and (select_cc lhs, rhs, cc, -1, c), x)
5236 //   -> (select_cc lhs, rhs, cc, x, (and, x, c))  [AllOnes=1]
5237 // (or  (select_cc lhs, rhs, cc, 0, c), x)
5238 //   -> (select_cc lhs, rhs, cc, x, (or, x, c))  [AllOnes=0]
5239 // (xor (select_cc lhs, rhs, cc, 0, c), x)
5240 //   -> (select_cc lhs, rhs, cc, x, (xor, x, c))  [AllOnes=0]
5241 static SDValue combineSelectCCAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
5242                                      SelectionDAG &DAG, bool AllOnes) {
5243   EVT VT = N->getValueType(0);
5244 
5245   if (Slct.getOpcode() != RISCVISD::SELECT_CC || !Slct.hasOneUse())
5246     return SDValue();
5247 
5248   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
5249     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
5250   };
5251 
5252   bool SwapSelectOps;
5253   SDValue TrueVal = Slct.getOperand(3);
5254   SDValue FalseVal = Slct.getOperand(4);
5255   SDValue NonConstantVal;
5256   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
5257     SwapSelectOps = false;
5258     NonConstantVal = FalseVal;
5259   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
5260     SwapSelectOps = true;
5261     NonConstantVal = TrueVal;
5262   } else
5263     return SDValue();
5264 
5265   // Slct is now know to be the desired identity constant when CC is true.
5266   TrueVal = OtherOp;
5267   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
5268   // Unless SwapSelectOps says CC should be false.
5269   if (SwapSelectOps)
5270     std::swap(TrueVal, FalseVal);
5271 
5272   return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
5273                      {Slct.getOperand(0), Slct.getOperand(1),
5274                       Slct.getOperand(2), TrueVal, FalseVal});
5275 }
5276 
5277 // Attempt combineSelectAndUse on each operand of a commutative operator N.
5278 static SDValue combineSelectCCAndUseCommutative(SDNode *N, SelectionDAG &DAG,
5279                                                 bool AllOnes) {
5280   SDValue N0 = N->getOperand(0);
5281   SDValue N1 = N->getOperand(1);
5282   if (SDValue Result = combineSelectCCAndUse(N, N0, N1, DAG, AllOnes))
5283     return Result;
5284   if (SDValue Result = combineSelectCCAndUse(N, N1, N0, DAG, AllOnes))
5285     return Result;
5286   return SDValue();
5287 }
5288 
5289 static SDValue performANDCombine(SDNode *N,
5290                                  TargetLowering::DAGCombinerInfo &DCI,
5291                                  const RISCVSubtarget &Subtarget) {
5292   SelectionDAG &DAG = DCI.DAG;
5293 
5294   // fold (and (select_cc lhs, rhs, cc, -1, y), x) ->
5295   //      (select lhs, rhs, cc, x, (and x, y))
5296   return combineSelectCCAndUseCommutative(N, DAG, true);
5297 }
5298 
5299 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
5300                                 const RISCVSubtarget &Subtarget) {
5301   SelectionDAG &DAG = DCI.DAG;
5302   if (Subtarget.hasStdExtZbp()) {
5303     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
5304       return GREV;
5305     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
5306       return GORC;
5307     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
5308       return SHFL;
5309   }
5310 
5311   // fold (or (select_cc lhs, rhs, cc, 0, y), x) ->
5312   //      (select lhs, rhs, cc, x, (or x, y))
5313   return combineSelectCCAndUseCommutative(N, DAG, false);
5314 }
5315 
5316 static SDValue performXORCombine(SDNode *N,
5317                                  TargetLowering::DAGCombinerInfo &DCI,
5318                                  const RISCVSubtarget &Subtarget) {
5319   SelectionDAG &DAG = DCI.DAG;
5320 
5321   // fold (xor (select_cc lhs, rhs, cc, 0, y), x) ->
5322   //      (select lhs, rhs, cc, x, (xor x, y))
5323   return combineSelectCCAndUseCommutative(N, DAG, false);
5324 }
5325 
5326 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
5327                                                DAGCombinerInfo &DCI) const {
5328   SelectionDAG &DAG = DCI.DAG;
5329 
5330   switch (N->getOpcode()) {
5331   default:
5332     break;
5333   case RISCVISD::SplitF64: {
5334     SDValue Op0 = N->getOperand(0);
5335     // If the input to SplitF64 is just BuildPairF64 then the operation is
5336     // redundant. Instead, use BuildPairF64's operands directly.
5337     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
5338       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
5339 
5340     SDLoc DL(N);
5341 
5342     // It's cheaper to materialise two 32-bit integers than to load a double
5343     // from the constant pool and transfer it to integer registers through the
5344     // stack.
5345     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
5346       APInt V = C->getValueAPF().bitcastToAPInt();
5347       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
5348       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
5349       return DCI.CombineTo(N, Lo, Hi);
5350     }
5351 
5352     // This is a target-specific version of a DAGCombine performed in
5353     // DAGCombiner::visitBITCAST. It performs the equivalent of:
5354     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5355     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5356     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
5357         !Op0.getNode()->hasOneUse())
5358       break;
5359     SDValue NewSplitF64 =
5360         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
5361                     Op0.getOperand(0));
5362     SDValue Lo = NewSplitF64.getValue(0);
5363     SDValue Hi = NewSplitF64.getValue(1);
5364     APInt SignBit = APInt::getSignMask(32);
5365     if (Op0.getOpcode() == ISD::FNEG) {
5366       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
5367                                   DAG.getConstant(SignBit, DL, MVT::i32));
5368       return DCI.CombineTo(N, Lo, NewHi);
5369     }
5370     assert(Op0.getOpcode() == ISD::FABS);
5371     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
5372                                 DAG.getConstant(~SignBit, DL, MVT::i32));
5373     return DCI.CombineTo(N, Lo, NewHi);
5374   }
5375   case RISCVISD::SLLW:
5376   case RISCVISD::SRAW:
5377   case RISCVISD::SRLW:
5378   case RISCVISD::ROLW:
5379   case RISCVISD::RORW: {
5380     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
5381     SDValue LHS = N->getOperand(0);
5382     SDValue RHS = N->getOperand(1);
5383     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
5384     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
5385     if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) ||
5386         SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) {
5387       if (N->getOpcode() != ISD::DELETED_NODE)
5388         DCI.AddToWorklist(N);
5389       return SDValue(N, 0);
5390     }
5391     break;
5392   }
5393   case RISCVISD::CLZW:
5394   case RISCVISD::CTZW: {
5395     // Only the lower 32 bits of the first operand are read
5396     SDValue Op0 = N->getOperand(0);
5397     APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32);
5398     if (SimplifyDemandedBits(Op0, Mask, DCI)) {
5399       if (N->getOpcode() != ISD::DELETED_NODE)
5400         DCI.AddToWorklist(N);
5401       return SDValue(N, 0);
5402     }
5403     break;
5404   }
5405   case RISCVISD::FSL:
5406   case RISCVISD::FSR: {
5407     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
5408     SDValue ShAmt = N->getOperand(2);
5409     unsigned BitWidth = ShAmt.getValueSizeInBits();
5410     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
5411     APInt ShAmtMask(BitWidth, (BitWidth * 2) - 1);
5412     if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
5413       if (N->getOpcode() != ISD::DELETED_NODE)
5414         DCI.AddToWorklist(N);
5415       return SDValue(N, 0);
5416     }
5417     break;
5418   }
5419   case RISCVISD::FSLW:
5420   case RISCVISD::FSRW: {
5421     // Only the lower 32 bits of Values and lower 6 bits of shift amount are
5422     // read.
5423     SDValue Op0 = N->getOperand(0);
5424     SDValue Op1 = N->getOperand(1);
5425     SDValue ShAmt = N->getOperand(2);
5426     APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32);
5427     APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6);
5428     if (SimplifyDemandedBits(Op0, OpMask, DCI) ||
5429         SimplifyDemandedBits(Op1, OpMask, DCI) ||
5430         SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
5431       if (N->getOpcode() != ISD::DELETED_NODE)
5432         DCI.AddToWorklist(N);
5433       return SDValue(N, 0);
5434     }
5435     break;
5436   }
5437   case RISCVISD::GREV:
5438   case RISCVISD::GORC: {
5439     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
5440     SDValue ShAmt = N->getOperand(1);
5441     unsigned BitWidth = ShAmt.getValueSizeInBits();
5442     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
5443     APInt ShAmtMask(BitWidth, BitWidth - 1);
5444     if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
5445       if (N->getOpcode() != ISD::DELETED_NODE)
5446         DCI.AddToWorklist(N);
5447       return SDValue(N, 0);
5448     }
5449 
5450     return combineGREVI_GORCI(N, DCI.DAG);
5451   }
5452   case RISCVISD::GREVW:
5453   case RISCVISD::GORCW: {
5454     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
5455     SDValue LHS = N->getOperand(0);
5456     SDValue RHS = N->getOperand(1);
5457     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
5458     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
5459     if (SimplifyDemandedBits(LHS, LHSMask, DCI) ||
5460         SimplifyDemandedBits(RHS, RHSMask, DCI)) {
5461       if (N->getOpcode() != ISD::DELETED_NODE)
5462         DCI.AddToWorklist(N);
5463       return SDValue(N, 0);
5464     }
5465 
5466     return combineGREVI_GORCI(N, DCI.DAG);
5467   }
5468   case RISCVISD::SHFL:
5469   case RISCVISD::UNSHFL: {
5470     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
5471     SDValue ShAmt = N->getOperand(1);
5472     unsigned BitWidth = ShAmt.getValueSizeInBits();
5473     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
5474     APInt ShAmtMask(BitWidth, (BitWidth / 2) - 1);
5475     if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
5476       if (N->getOpcode() != ISD::DELETED_NODE)
5477         DCI.AddToWorklist(N);
5478       return SDValue(N, 0);
5479     }
5480 
5481     break;
5482   }
5483   case RISCVISD::SHFLW:
5484   case RISCVISD::UNSHFLW: {
5485     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
5486     SDValue LHS = N->getOperand(0);
5487     SDValue RHS = N->getOperand(1);
5488     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
5489     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4);
5490     if (SimplifyDemandedBits(LHS, LHSMask, DCI) ||
5491         SimplifyDemandedBits(RHS, RHSMask, DCI)) {
5492       if (N->getOpcode() != ISD::DELETED_NODE)
5493         DCI.AddToWorklist(N);
5494       return SDValue(N, 0);
5495     }
5496 
5497     break;
5498   }
5499   case RISCVISD::BCOMPRESSW:
5500   case RISCVISD::BDECOMPRESSW: {
5501     // Only the lower 32 bits of LHS and RHS are read.
5502     SDValue LHS = N->getOperand(0);
5503     SDValue RHS = N->getOperand(1);
5504     APInt Mask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
5505     if (SimplifyDemandedBits(LHS, Mask, DCI) ||
5506         SimplifyDemandedBits(RHS, Mask, DCI)) {
5507       if (N->getOpcode() != ISD::DELETED_NODE)
5508         DCI.AddToWorklist(N);
5509       return SDValue(N, 0);
5510     }
5511 
5512     break;
5513   }
5514   case RISCVISD::FMV_X_ANYEXTW_RV64: {
5515     SDLoc DL(N);
5516     SDValue Op0 = N->getOperand(0);
5517     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
5518     // conversion is unnecessary and can be replaced with an ANY_EXTEND
5519     // of the FMV_W_X_RV64 operand.
5520     if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) {
5521       assert(Op0.getOperand(0).getValueType() == MVT::i64 &&
5522              "Unexpected value type!");
5523       return Op0.getOperand(0);
5524     }
5525 
5526     // This is a target-specific version of a DAGCombine performed in
5527     // DAGCombiner::visitBITCAST. It performs the equivalent of:
5528     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5529     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5530     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
5531         !Op0.getNode()->hasOneUse())
5532       break;
5533     SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64,
5534                                  Op0.getOperand(0));
5535     APInt SignBit = APInt::getSignMask(32).sext(64);
5536     if (Op0.getOpcode() == ISD::FNEG)
5537       return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV,
5538                          DAG.getConstant(SignBit, DL, MVT::i64));
5539 
5540     assert(Op0.getOpcode() == ISD::FABS);
5541     return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV,
5542                        DAG.getConstant(~SignBit, DL, MVT::i64));
5543   }
5544   case ISD::AND:
5545     return performANDCombine(N, DCI, Subtarget);
5546   case ISD::OR:
5547     return performORCombine(N, DCI, Subtarget);
5548   case ISD::XOR:
5549     return performXORCombine(N, DCI, Subtarget);
5550   case RISCVISD::SELECT_CC: {
5551     // Transform
5552     SDValue LHS = N->getOperand(0);
5553     SDValue RHS = N->getOperand(1);
5554     auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2));
5555     if (!ISD::isIntEqualitySetCC(CCVal))
5556       break;
5557 
5558     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
5559     //      (select_cc X, Y, lt, trueV, falseV)
5560     // Sometimes the setcc is introduced after select_cc has been formed.
5561     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
5562         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
5563       // If we're looking for eq 0 instead of ne 0, we need to invert the
5564       // condition.
5565       bool Invert = CCVal == ISD::SETEQ;
5566       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
5567       if (Invert)
5568         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
5569 
5570       SDLoc DL(N);
5571       RHS = LHS.getOperand(1);
5572       LHS = LHS.getOperand(0);
5573       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
5574 
5575       SDValue TargetCC =
5576           DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT());
5577       return DAG.getNode(
5578           RISCVISD::SELECT_CC, DL, N->getValueType(0),
5579           {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)});
5580     }
5581 
5582     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
5583     //      (select_cc X, Y, eq/ne, trueV, falseV)
5584     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
5585       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
5586                          {LHS.getOperand(0), LHS.getOperand(1),
5587                           N->getOperand(2), N->getOperand(3),
5588                           N->getOperand(4)});
5589     // (select_cc X, 1, setne, trueV, falseV) ->
5590     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
5591     // This can occur when legalizing some floating point comparisons.
5592     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
5593     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
5594       SDLoc DL(N);
5595       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
5596       SDValue TargetCC =
5597           DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT());
5598       RHS = DAG.getConstant(0, DL, LHS.getValueType());
5599       return DAG.getNode(
5600           RISCVISD::SELECT_CC, DL, N->getValueType(0),
5601           {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)});
5602     }
5603 
5604     break;
5605   }
5606   case RISCVISD::BR_CC: {
5607     SDValue LHS = N->getOperand(1);
5608     SDValue RHS = N->getOperand(2);
5609     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
5610     if (!ISD::isIntEqualitySetCC(CCVal))
5611       break;
5612 
5613     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
5614     //      (br_cc X, Y, lt, dest)
5615     // Sometimes the setcc is introduced after br_cc has been formed.
5616     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
5617         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
5618       // If we're looking for eq 0 instead of ne 0, we need to invert the
5619       // condition.
5620       bool Invert = CCVal == ISD::SETEQ;
5621       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
5622       if (Invert)
5623         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
5624 
5625       SDLoc DL(N);
5626       RHS = LHS.getOperand(1);
5627       LHS = LHS.getOperand(0);
5628       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
5629 
5630       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
5631                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
5632                          N->getOperand(4));
5633     }
5634 
5635     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
5636     //      (br_cc X, Y, eq/ne, trueV, falseV)
5637     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
5638       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
5639                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
5640                          N->getOperand(3), N->getOperand(4));
5641 
5642     // (br_cc X, 1, setne, br_cc) ->
5643     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
5644     // This can occur when legalizing some floating point comparisons.
5645     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
5646     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
5647       SDLoc DL(N);
5648       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
5649       SDValue TargetCC = DAG.getCondCode(CCVal);
5650       RHS = DAG.getConstant(0, DL, LHS.getValueType());
5651       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
5652                          N->getOperand(0), LHS, RHS, TargetCC,
5653                          N->getOperand(4));
5654     }
5655     break;
5656   }
5657   case ISD::FCOPYSIGN: {
5658     EVT VT = N->getValueType(0);
5659     if (!VT.isVector())
5660       break;
5661     // There is a form of VFSGNJ which injects the negated sign of its second
5662     // operand. Try and bubble any FNEG up after the extend/round to produce
5663     // this optimized pattern. Avoid modifying cases where FP_ROUND and
5664     // TRUNC=1.
5665     SDValue In2 = N->getOperand(1);
5666     // Avoid cases where the extend/round has multiple uses, as duplicating
5667     // those is typically more expensive than removing a fneg.
5668     if (!In2.hasOneUse())
5669       break;
5670     if (In2.getOpcode() != ISD::FP_EXTEND &&
5671         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
5672       break;
5673     In2 = In2.getOperand(0);
5674     if (In2.getOpcode() != ISD::FNEG)
5675       break;
5676     SDLoc DL(N);
5677     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
5678     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
5679                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
5680   }
5681   case ISD::MGATHER:
5682   case ISD::MSCATTER: {
5683     if (!DCI.isBeforeLegalize())
5684       break;
5685     MaskedGatherScatterSDNode *MGSN = cast<MaskedGatherScatterSDNode>(N);
5686     SDValue Index = MGSN->getIndex();
5687     EVT IndexVT = Index.getValueType();
5688     MVT XLenVT = Subtarget.getXLenVT();
5689     // RISCV indexed loads only support the "unsigned unscaled" addressing
5690     // mode, so anything else must be manually legalized.
5691     bool NeedsIdxLegalization = MGSN->isIndexScaled() ||
5692                                 (MGSN->isIndexSigned() &&
5693                                  IndexVT.getVectorElementType().bitsLT(XLenVT));
5694     if (!NeedsIdxLegalization)
5695       break;
5696 
5697     SDLoc DL(N);
5698 
5699     // Any index legalization should first promote to XLenVT, so we don't lose
5700     // bits when scaling. This may create an illegal index type so we let
5701     // LLVM's legalization take care of the splitting.
5702     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
5703       IndexVT = IndexVT.changeVectorElementType(XLenVT);
5704       Index = DAG.getNode(MGSN->isIndexSigned() ? ISD::SIGN_EXTEND
5705                                                 : ISD::ZERO_EXTEND,
5706                           DL, IndexVT, Index);
5707     }
5708 
5709     unsigned Scale = N->getConstantOperandVal(5);
5710     if (MGSN->isIndexScaled() && Scale != 1) {
5711       // Manually scale the indices by the element size.
5712       // TODO: Sanitize the scale operand here?
5713       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
5714       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
5715       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
5716     }
5717 
5718     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
5719     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) {
5720       return DAG.getMaskedGather(
5721           N->getVTList(), MGSN->getMemoryVT(), DL,
5722           {MGSN->getChain(), MGN->getPassThru(), MGSN->getMask(),
5723            MGSN->getBasePtr(), Index, MGN->getScale()},
5724           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
5725     }
5726     const auto *MSN = cast<MaskedScatterSDNode>(N);
5727     return DAG.getMaskedScatter(
5728         N->getVTList(), MGSN->getMemoryVT(), DL,
5729         {MGSN->getChain(), MSN->getValue(), MGSN->getMask(), MGSN->getBasePtr(),
5730          Index, MGSN->getScale()},
5731         MGSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
5732   }
5733   }
5734 
5735   return SDValue();
5736 }
5737 
5738 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
5739     const SDNode *N, CombineLevel Level) const {
5740   // The following folds are only desirable if `(OP _, c1 << c2)` can be
5741   // materialised in fewer instructions than `(OP _, c1)`:
5742   //
5743   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
5744   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
5745   SDValue N0 = N->getOperand(0);
5746   EVT Ty = N0.getValueType();
5747   if (Ty.isScalarInteger() &&
5748       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
5749     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
5750     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
5751     if (C1 && C2) {
5752       const APInt &C1Int = C1->getAPIntValue();
5753       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
5754 
5755       // We can materialise `c1 << c2` into an add immediate, so it's "free",
5756       // and the combine should happen, to potentially allow further combines
5757       // later.
5758       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
5759           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
5760         return true;
5761 
5762       // We can materialise `c1` in an add immediate, so it's "free", and the
5763       // combine should be prevented.
5764       if (C1Int.getMinSignedBits() <= 64 &&
5765           isLegalAddImmediate(C1Int.getSExtValue()))
5766         return false;
5767 
5768       // Neither constant will fit into an immediate, so find materialisation
5769       // costs.
5770       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
5771                                               Subtarget.is64Bit());
5772       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
5773           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit());
5774 
5775       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
5776       // combine should be prevented.
5777       if (C1Cost < ShiftedC1Cost)
5778         return false;
5779     }
5780   }
5781   return true;
5782 }
5783 
5784 bool RISCVTargetLowering::targetShrinkDemandedConstant(
5785     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
5786     TargetLoweringOpt &TLO) const {
5787   // Delay this optimization as late as possible.
5788   if (!TLO.LegalOps)
5789     return false;
5790 
5791   EVT VT = Op.getValueType();
5792   if (VT.isVector())
5793     return false;
5794 
5795   // Only handle AND for now.
5796   if (Op.getOpcode() != ISD::AND)
5797     return false;
5798 
5799   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5800   if (!C)
5801     return false;
5802 
5803   const APInt &Mask = C->getAPIntValue();
5804 
5805   // Clear all non-demanded bits initially.
5806   APInt ShrunkMask = Mask & DemandedBits;
5807 
5808   // Try to make a smaller immediate by setting undemanded bits.
5809 
5810   APInt ExpandedMask = Mask | ~DemandedBits;
5811 
5812   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
5813     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
5814   };
5815   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
5816     if (NewMask == Mask)
5817       return true;
5818     SDLoc DL(Op);
5819     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
5820     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
5821     return TLO.CombineTo(Op, NewOp);
5822   };
5823 
5824   // If the shrunk mask fits in sign extended 12 bits, let the target
5825   // independent code apply it.
5826   if (ShrunkMask.isSignedIntN(12))
5827     return false;
5828 
5829   // Preserve (and X, 0xffff) when zext.h is supported.
5830   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
5831     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
5832     if (IsLegalMask(NewMask))
5833       return UseMask(NewMask);
5834   }
5835 
5836   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
5837   if (VT == MVT::i64) {
5838     APInt NewMask = APInt(64, 0xffffffff);
5839     if (IsLegalMask(NewMask))
5840       return UseMask(NewMask);
5841   }
5842 
5843   // For the remaining optimizations, we need to be able to make a negative
5844   // number through a combination of mask and undemanded bits.
5845   if (!ExpandedMask.isNegative())
5846     return false;
5847 
5848   // What is the fewest number of bits we need to represent the negative number.
5849   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
5850 
5851   // Try to make a 12 bit negative immediate. If that fails try to make a 32
5852   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
5853   APInt NewMask = ShrunkMask;
5854   if (MinSignedBits <= 12)
5855     NewMask.setBitsFrom(11);
5856   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
5857     NewMask.setBitsFrom(31);
5858   else
5859     return false;
5860 
5861   // Sanity check that our new mask is a subset of the demanded mask.
5862   assert(IsLegalMask(NewMask));
5863   return UseMask(NewMask);
5864 }
5865 
5866 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
5867                                                         KnownBits &Known,
5868                                                         const APInt &DemandedElts,
5869                                                         const SelectionDAG &DAG,
5870                                                         unsigned Depth) const {
5871   unsigned BitWidth = Known.getBitWidth();
5872   unsigned Opc = Op.getOpcode();
5873   assert((Opc >= ISD::BUILTIN_OP_END ||
5874           Opc == ISD::INTRINSIC_WO_CHAIN ||
5875           Opc == ISD::INTRINSIC_W_CHAIN ||
5876           Opc == ISD::INTRINSIC_VOID) &&
5877          "Should use MaskedValueIsZero if you don't know whether Op"
5878          " is a target node!");
5879 
5880   Known.resetAll();
5881   switch (Opc) {
5882   default: break;
5883   case RISCVISD::SELECT_CC: {
5884     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
5885     // If we don't know any bits, early out.
5886     if (Known.isUnknown())
5887       break;
5888     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
5889 
5890     // Only known if known in both the LHS and RHS.
5891     Known = KnownBits::commonBits(Known, Known2);
5892     break;
5893   }
5894   case RISCVISD::REMUW: {
5895     KnownBits Known2;
5896     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
5897     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
5898     // We only care about the lower 32 bits.
5899     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
5900     // Restore the original width by sign extending.
5901     Known = Known.sext(BitWidth);
5902     break;
5903   }
5904   case RISCVISD::DIVUW: {
5905     KnownBits Known2;
5906     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
5907     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
5908     // We only care about the lower 32 bits.
5909     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
5910     // Restore the original width by sign extending.
5911     Known = Known.sext(BitWidth);
5912     break;
5913   }
5914   case RISCVISD::CTZW: {
5915     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
5916     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
5917     unsigned LowBits = Log2_32(PossibleTZ) + 1;
5918     Known.Zero.setBitsFrom(LowBits);
5919     break;
5920   }
5921   case RISCVISD::CLZW: {
5922     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
5923     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
5924     unsigned LowBits = Log2_32(PossibleLZ) + 1;
5925     Known.Zero.setBitsFrom(LowBits);
5926     break;
5927   }
5928   case RISCVISD::READ_VLENB:
5929     // We assume VLENB is at least 16 bytes.
5930     Known.Zero.setLowBits(4);
5931     break;
5932   case ISD::INTRINSIC_W_CHAIN: {
5933     unsigned IntNo = Op.getConstantOperandVal(1);
5934     switch (IntNo) {
5935     default:
5936       // We can't do anything for most intrinsics.
5937       break;
5938     case Intrinsic::riscv_vsetvli:
5939     case Intrinsic::riscv_vsetvlimax:
5940       // Assume that VL output is positive and would fit in an int32_t.
5941       // TODO: VLEN might be capped at 16 bits in a future V spec update.
5942       if (BitWidth >= 32)
5943         Known.Zero.setBitsFrom(31);
5944       break;
5945     }
5946     break;
5947   }
5948   }
5949 }
5950 
5951 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
5952     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
5953     unsigned Depth) const {
5954   switch (Op.getOpcode()) {
5955   default:
5956     break;
5957   case RISCVISD::SLLW:
5958   case RISCVISD::SRAW:
5959   case RISCVISD::SRLW:
5960   case RISCVISD::DIVW:
5961   case RISCVISD::DIVUW:
5962   case RISCVISD::REMUW:
5963   case RISCVISD::ROLW:
5964   case RISCVISD::RORW:
5965   case RISCVISD::GREVW:
5966   case RISCVISD::GORCW:
5967   case RISCVISD::FSLW:
5968   case RISCVISD::FSRW:
5969   case RISCVISD::SHFLW:
5970   case RISCVISD::UNSHFLW:
5971   case RISCVISD::BCOMPRESSW:
5972   case RISCVISD::BDECOMPRESSW:
5973     // TODO: As the result is sign-extended, this is conservatively correct. A
5974     // more precise answer could be calculated for SRAW depending on known
5975     // bits in the shift amount.
5976     return 33;
5977   case RISCVISD::SHFL:
5978   case RISCVISD::UNSHFL: {
5979     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
5980     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
5981     // will stay within the upper 32 bits. If there were more than 32 sign bits
5982     // before there will be at least 33 sign bits after.
5983     if (Op.getValueType() == MVT::i64 &&
5984         isa<ConstantSDNode>(Op.getOperand(1)) &&
5985         (Op.getConstantOperandVal(1) & 0x10) == 0) {
5986       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
5987       if (Tmp > 32)
5988         return 33;
5989     }
5990     break;
5991   }
5992   case RISCVISD::VMV_X_S:
5993     // The number of sign bits of the scalar result is computed by obtaining the
5994     // element type of the input vector operand, subtracting its width from the
5995     // XLEN, and then adding one (sign bit within the element type). If the
5996     // element type is wider than XLen, the least-significant XLEN bits are
5997     // taken.
5998     if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen())
5999       return 1;
6000     return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1;
6001   }
6002 
6003   return 1;
6004 }
6005 
6006 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
6007                                                   MachineBasicBlock *BB) {
6008   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
6009 
6010   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
6011   // Should the count have wrapped while it was being read, we need to try
6012   // again.
6013   // ...
6014   // read:
6015   // rdcycleh x3 # load high word of cycle
6016   // rdcycle  x2 # load low word of cycle
6017   // rdcycleh x4 # load high word of cycle
6018   // bne x3, x4, read # check if high word reads match, otherwise try again
6019   // ...
6020 
6021   MachineFunction &MF = *BB->getParent();
6022   const BasicBlock *LLVM_BB = BB->getBasicBlock();
6023   MachineFunction::iterator It = ++BB->getIterator();
6024 
6025   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
6026   MF.insert(It, LoopMBB);
6027 
6028   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
6029   MF.insert(It, DoneMBB);
6030 
6031   // Transfer the remainder of BB and its successor edges to DoneMBB.
6032   DoneMBB->splice(DoneMBB->begin(), BB,
6033                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
6034   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
6035 
6036   BB->addSuccessor(LoopMBB);
6037 
6038   MachineRegisterInfo &RegInfo = MF.getRegInfo();
6039   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
6040   Register LoReg = MI.getOperand(0).getReg();
6041   Register HiReg = MI.getOperand(1).getReg();
6042   DebugLoc DL = MI.getDebugLoc();
6043 
6044   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
6045   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
6046       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
6047       .addReg(RISCV::X0);
6048   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
6049       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
6050       .addReg(RISCV::X0);
6051   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
6052       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
6053       .addReg(RISCV::X0);
6054 
6055   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
6056       .addReg(HiReg)
6057       .addReg(ReadAgainReg)
6058       .addMBB(LoopMBB);
6059 
6060   LoopMBB->addSuccessor(LoopMBB);
6061   LoopMBB->addSuccessor(DoneMBB);
6062 
6063   MI.eraseFromParent();
6064 
6065   return DoneMBB;
6066 }
6067 
6068 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
6069                                              MachineBasicBlock *BB) {
6070   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
6071 
6072   MachineFunction &MF = *BB->getParent();
6073   DebugLoc DL = MI.getDebugLoc();
6074   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
6075   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
6076   Register LoReg = MI.getOperand(0).getReg();
6077   Register HiReg = MI.getOperand(1).getReg();
6078   Register SrcReg = MI.getOperand(2).getReg();
6079   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
6080   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
6081 
6082   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
6083                           RI);
6084   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
6085   MachineMemOperand *MMOLo =
6086       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
6087   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
6088       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
6089   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
6090       .addFrameIndex(FI)
6091       .addImm(0)
6092       .addMemOperand(MMOLo);
6093   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
6094       .addFrameIndex(FI)
6095       .addImm(4)
6096       .addMemOperand(MMOHi);
6097   MI.eraseFromParent(); // The pseudo instruction is gone now.
6098   return BB;
6099 }
6100 
6101 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
6102                                                  MachineBasicBlock *BB) {
6103   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
6104          "Unexpected instruction");
6105 
6106   MachineFunction &MF = *BB->getParent();
6107   DebugLoc DL = MI.getDebugLoc();
6108   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
6109   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
6110   Register DstReg = MI.getOperand(0).getReg();
6111   Register LoReg = MI.getOperand(1).getReg();
6112   Register HiReg = MI.getOperand(2).getReg();
6113   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
6114   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
6115 
6116   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
6117   MachineMemOperand *MMOLo =
6118       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
6119   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
6120       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
6121   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
6122       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
6123       .addFrameIndex(FI)
6124       .addImm(0)
6125       .addMemOperand(MMOLo);
6126   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
6127       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
6128       .addFrameIndex(FI)
6129       .addImm(4)
6130       .addMemOperand(MMOHi);
6131   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
6132   MI.eraseFromParent(); // The pseudo instruction is gone now.
6133   return BB;
6134 }
6135 
6136 static bool isSelectPseudo(MachineInstr &MI) {
6137   switch (MI.getOpcode()) {
6138   default:
6139     return false;
6140   case RISCV::Select_GPR_Using_CC_GPR:
6141   case RISCV::Select_FPR16_Using_CC_GPR:
6142   case RISCV::Select_FPR32_Using_CC_GPR:
6143   case RISCV::Select_FPR64_Using_CC_GPR:
6144     return true;
6145   }
6146 }
6147 
6148 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
6149                                            MachineBasicBlock *BB) {
6150   // To "insert" Select_* instructions, we actually have to insert the triangle
6151   // control-flow pattern.  The incoming instructions know the destination vreg
6152   // to set, the condition code register to branch on, the true/false values to
6153   // select between, and the condcode to use to select the appropriate branch.
6154   //
6155   // We produce the following control flow:
6156   //     HeadMBB
6157   //     |  \
6158   //     |  IfFalseMBB
6159   //     | /
6160   //    TailMBB
6161   //
6162   // When we find a sequence of selects we attempt to optimize their emission
6163   // by sharing the control flow. Currently we only handle cases where we have
6164   // multiple selects with the exact same condition (same LHS, RHS and CC).
6165   // The selects may be interleaved with other instructions if the other
6166   // instructions meet some requirements we deem safe:
6167   // - They are debug instructions. Otherwise,
6168   // - They do not have side-effects, do not access memory and their inputs do
6169   //   not depend on the results of the select pseudo-instructions.
6170   // The TrueV/FalseV operands of the selects cannot depend on the result of
6171   // previous selects in the sequence.
6172   // These conditions could be further relaxed. See the X86 target for a
6173   // related approach and more information.
6174   Register LHS = MI.getOperand(1).getReg();
6175   Register RHS = MI.getOperand(2).getReg();
6176   auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
6177 
6178   SmallVector<MachineInstr *, 4> SelectDebugValues;
6179   SmallSet<Register, 4> SelectDests;
6180   SelectDests.insert(MI.getOperand(0).getReg());
6181 
6182   MachineInstr *LastSelectPseudo = &MI;
6183 
6184   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
6185        SequenceMBBI != E; ++SequenceMBBI) {
6186     if (SequenceMBBI->isDebugInstr())
6187       continue;
6188     else if (isSelectPseudo(*SequenceMBBI)) {
6189       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
6190           SequenceMBBI->getOperand(2).getReg() != RHS ||
6191           SequenceMBBI->getOperand(3).getImm() != CC ||
6192           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
6193           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
6194         break;
6195       LastSelectPseudo = &*SequenceMBBI;
6196       SequenceMBBI->collectDebugValues(SelectDebugValues);
6197       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
6198     } else {
6199       if (SequenceMBBI->hasUnmodeledSideEffects() ||
6200           SequenceMBBI->mayLoadOrStore())
6201         break;
6202       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
6203             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
6204           }))
6205         break;
6206     }
6207   }
6208 
6209   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
6210   const BasicBlock *LLVM_BB = BB->getBasicBlock();
6211   DebugLoc DL = MI.getDebugLoc();
6212   MachineFunction::iterator I = ++BB->getIterator();
6213 
6214   MachineBasicBlock *HeadMBB = BB;
6215   MachineFunction *F = BB->getParent();
6216   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
6217   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
6218 
6219   F->insert(I, IfFalseMBB);
6220   F->insert(I, TailMBB);
6221 
6222   // Transfer debug instructions associated with the selects to TailMBB.
6223   for (MachineInstr *DebugInstr : SelectDebugValues) {
6224     TailMBB->push_back(DebugInstr->removeFromParent());
6225   }
6226 
6227   // Move all instructions after the sequence to TailMBB.
6228   TailMBB->splice(TailMBB->end(), HeadMBB,
6229                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
6230   // Update machine-CFG edges by transferring all successors of the current
6231   // block to the new block which will contain the Phi nodes for the selects.
6232   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
6233   // Set the successors for HeadMBB.
6234   HeadMBB->addSuccessor(IfFalseMBB);
6235   HeadMBB->addSuccessor(TailMBB);
6236 
6237   // Insert appropriate branch.
6238   unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
6239 
6240   BuildMI(HeadMBB, DL, TII.get(Opcode))
6241     .addReg(LHS)
6242     .addReg(RHS)
6243     .addMBB(TailMBB);
6244 
6245   // IfFalseMBB just falls through to TailMBB.
6246   IfFalseMBB->addSuccessor(TailMBB);
6247 
6248   // Create PHIs for all of the select pseudo-instructions.
6249   auto SelectMBBI = MI.getIterator();
6250   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
6251   auto InsertionPoint = TailMBB->begin();
6252   while (SelectMBBI != SelectEnd) {
6253     auto Next = std::next(SelectMBBI);
6254     if (isSelectPseudo(*SelectMBBI)) {
6255       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
6256       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
6257               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
6258           .addReg(SelectMBBI->getOperand(4).getReg())
6259           .addMBB(HeadMBB)
6260           .addReg(SelectMBBI->getOperand(5).getReg())
6261           .addMBB(IfFalseMBB);
6262       SelectMBBI->eraseFromParent();
6263     }
6264     SelectMBBI = Next;
6265   }
6266 
6267   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
6268   return TailMBB;
6269 }
6270 
6271 static MachineInstr *elideCopies(MachineInstr *MI,
6272                                  const MachineRegisterInfo &MRI) {
6273   while (true) {
6274     if (!MI->isFullCopy())
6275       return MI;
6276     if (!Register::isVirtualRegister(MI->getOperand(1).getReg()))
6277       return nullptr;
6278     MI = MRI.getVRegDef(MI->getOperand(1).getReg());
6279     if (!MI)
6280       return nullptr;
6281   }
6282 }
6283 
6284 static MachineBasicBlock *addVSetVL(MachineInstr &MI, MachineBasicBlock *BB,
6285                                     int VLIndex, unsigned SEWIndex,
6286                                     RISCVVLMUL VLMul, bool ForceTailAgnostic) {
6287   MachineFunction &MF = *BB->getParent();
6288   DebugLoc DL = MI.getDebugLoc();
6289   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
6290 
6291   unsigned SEW = MI.getOperand(SEWIndex).getImm();
6292   assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW");
6293   RISCVVSEW ElementWidth = static_cast<RISCVVSEW>(Log2_32(SEW / 8));
6294 
6295   MachineRegisterInfo &MRI = MF.getRegInfo();
6296 
6297   auto BuildVSETVLI = [&]() {
6298     if (VLIndex >= 0) {
6299       Register DestReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
6300       const MachineOperand &VLOp = MI.getOperand(VLIndex);
6301 
6302       // VL can be a register or an immediate.
6303       if (VLOp.isImm())
6304         return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETIVLI))
6305             .addReg(DestReg, RegState::Define | RegState::Dead)
6306             .addImm(VLOp.getImm());
6307 
6308       Register VLReg = MI.getOperand(VLIndex).getReg();
6309       return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI))
6310           .addReg(DestReg, RegState::Define | RegState::Dead)
6311           .addReg(VLReg);
6312     }
6313 
6314     // With no VL operator in the pseudo, do not modify VL (rd = X0, rs1 = X0).
6315     return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI))
6316         .addReg(RISCV::X0, RegState::Define | RegState::Dead)
6317         .addReg(RISCV::X0, RegState::Kill);
6318   };
6319 
6320   MachineInstrBuilder MIB = BuildVSETVLI();
6321 
6322   // Default to tail agnostic unless the destination is tied to a source. In
6323   // that case the user would have some control over the tail values. The tail
6324   // policy is also ignored on instructions that only update element 0 like
6325   // vmv.s.x or reductions so use agnostic there to match the common case.
6326   // FIXME: This is conservatively correct, but we might want to detect that
6327   // the input is undefined.
6328   bool TailAgnostic = true;
6329   unsigned UseOpIdx;
6330   if (!ForceTailAgnostic && MI.isRegTiedToUseOperand(0, &UseOpIdx)) {
6331     TailAgnostic = false;
6332     // If the tied operand is an IMPLICIT_DEF we can keep TailAgnostic.
6333     const MachineOperand &UseMO = MI.getOperand(UseOpIdx);
6334     MachineInstr *UseMI = MRI.getVRegDef(UseMO.getReg());
6335     if (UseMI) {
6336       UseMI = elideCopies(UseMI, MRI);
6337       if (UseMI && UseMI->isImplicitDef())
6338         TailAgnostic = true;
6339     }
6340   }
6341 
6342   // For simplicity we reuse the vtype representation here.
6343   MIB.addImm(RISCVVType::encodeVTYPE(VLMul, ElementWidth,
6344                                      /*TailAgnostic*/ TailAgnostic,
6345                                      /*MaskAgnostic*/ false));
6346 
6347   // Remove (now) redundant operands from pseudo
6348   if (VLIndex >= 0 && MI.getOperand(VLIndex).isReg()) {
6349     MI.getOperand(VLIndex).setReg(RISCV::NoRegister);
6350     MI.getOperand(VLIndex).setIsKill(false);
6351   }
6352 
6353   return BB;
6354 }
6355 
6356 MachineBasicBlock *
6357 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
6358                                                  MachineBasicBlock *BB) const {
6359   uint64_t TSFlags = MI.getDesc().TSFlags;
6360 
6361   if (TSFlags & RISCVII::HasSEWOpMask) {
6362     unsigned NumOperands = MI.getNumExplicitOperands();
6363     int VLIndex = (TSFlags & RISCVII::HasVLOpMask) ? NumOperands - 2 : -1;
6364     unsigned SEWIndex = NumOperands - 1;
6365     bool ForceTailAgnostic = TSFlags & RISCVII::ForceTailAgnosticMask;
6366 
6367     RISCVVLMUL VLMul = static_cast<RISCVVLMUL>((TSFlags & RISCVII::VLMulMask) >>
6368                                                RISCVII::VLMulShift);
6369     return addVSetVL(MI, BB, VLIndex, SEWIndex, VLMul, ForceTailAgnostic);
6370   }
6371 
6372   switch (MI.getOpcode()) {
6373   default:
6374     llvm_unreachable("Unexpected instr type to insert");
6375   case RISCV::ReadCycleWide:
6376     assert(!Subtarget.is64Bit() &&
6377            "ReadCycleWrite is only to be used on riscv32");
6378     return emitReadCycleWidePseudo(MI, BB);
6379   case RISCV::Select_GPR_Using_CC_GPR:
6380   case RISCV::Select_FPR16_Using_CC_GPR:
6381   case RISCV::Select_FPR32_Using_CC_GPR:
6382   case RISCV::Select_FPR64_Using_CC_GPR:
6383     return emitSelectPseudo(MI, BB);
6384   case RISCV::BuildPairF64Pseudo:
6385     return emitBuildPairF64Pseudo(MI, BB);
6386   case RISCV::SplitF64Pseudo:
6387     return emitSplitF64Pseudo(MI, BB);
6388   }
6389 }
6390 
6391 // Calling Convention Implementation.
6392 // The expectations for frontend ABI lowering vary from target to target.
6393 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
6394 // details, but this is a longer term goal. For now, we simply try to keep the
6395 // role of the frontend as simple and well-defined as possible. The rules can
6396 // be summarised as:
6397 // * Never split up large scalar arguments. We handle them here.
6398 // * If a hardfloat calling convention is being used, and the struct may be
6399 // passed in a pair of registers (fp+fp, int+fp), and both registers are
6400 // available, then pass as two separate arguments. If either the GPRs or FPRs
6401 // are exhausted, then pass according to the rule below.
6402 // * If a struct could never be passed in registers or directly in a stack
6403 // slot (as it is larger than 2*XLEN and the floating point rules don't
6404 // apply), then pass it using a pointer with the byval attribute.
6405 // * If a struct is less than 2*XLEN, then coerce to either a two-element
6406 // word-sized array or a 2*XLEN scalar (depending on alignment).
6407 // * The frontend can determine whether a struct is returned by reference or
6408 // not based on its size and fields. If it will be returned by reference, the
6409 // frontend must modify the prototype so a pointer with the sret annotation is
6410 // passed as the first argument. This is not necessary for large scalar
6411 // returns.
6412 // * Struct return values and varargs should be coerced to structs containing
6413 // register-size fields in the same situations they would be for fixed
6414 // arguments.
6415 
6416 static const MCPhysReg ArgGPRs[] = {
6417   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
6418   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
6419 };
6420 static const MCPhysReg ArgFPR16s[] = {
6421   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
6422   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
6423 };
6424 static const MCPhysReg ArgFPR32s[] = {
6425   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
6426   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
6427 };
6428 static const MCPhysReg ArgFPR64s[] = {
6429   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
6430   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
6431 };
6432 // This is an interim calling convention and it may be changed in the future.
6433 static const MCPhysReg ArgVRs[] = {
6434     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
6435     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
6436     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
6437 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
6438                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
6439                                      RISCV::V20M2, RISCV::V22M2};
6440 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
6441                                      RISCV::V20M4};
6442 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
6443 
6444 // Pass a 2*XLEN argument that has been split into two XLEN values through
6445 // registers or the stack as necessary.
6446 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
6447                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
6448                                 MVT ValVT2, MVT LocVT2,
6449                                 ISD::ArgFlagsTy ArgFlags2) {
6450   unsigned XLenInBytes = XLen / 8;
6451   if (Register Reg = State.AllocateReg(ArgGPRs)) {
6452     // At least one half can be passed via register.
6453     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
6454                                      VA1.getLocVT(), CCValAssign::Full));
6455   } else {
6456     // Both halves must be passed on the stack, with proper alignment.
6457     Align StackAlign =
6458         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
6459     State.addLoc(
6460         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
6461                             State.AllocateStack(XLenInBytes, StackAlign),
6462                             VA1.getLocVT(), CCValAssign::Full));
6463     State.addLoc(CCValAssign::getMem(
6464         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
6465         LocVT2, CCValAssign::Full));
6466     return false;
6467   }
6468 
6469   if (Register Reg = State.AllocateReg(ArgGPRs)) {
6470     // The second half can also be passed via register.
6471     State.addLoc(
6472         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
6473   } else {
6474     // The second half is passed via the stack, without additional alignment.
6475     State.addLoc(CCValAssign::getMem(
6476         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
6477         LocVT2, CCValAssign::Full));
6478   }
6479 
6480   return false;
6481 }
6482 
6483 // Implements the RISC-V calling convention. Returns true upon failure.
6484 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
6485                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
6486                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
6487                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
6488                      Optional<unsigned> FirstMaskArgument) {
6489   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
6490   assert(XLen == 32 || XLen == 64);
6491   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
6492 
6493   // Any return value split in to more than two values can't be returned
6494   // directly. Vectors are returned via the available vector registers.
6495   if (!LocVT.isVector() && IsRet && ValNo > 1)
6496     return true;
6497 
6498   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
6499   // variadic argument, or if no F16/F32 argument registers are available.
6500   bool UseGPRForF16_F32 = true;
6501   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
6502   // variadic argument, or if no F64 argument registers are available.
6503   bool UseGPRForF64 = true;
6504 
6505   switch (ABI) {
6506   default:
6507     llvm_unreachable("Unexpected ABI");
6508   case RISCVABI::ABI_ILP32:
6509   case RISCVABI::ABI_LP64:
6510     break;
6511   case RISCVABI::ABI_ILP32F:
6512   case RISCVABI::ABI_LP64F:
6513     UseGPRForF16_F32 = !IsFixed;
6514     break;
6515   case RISCVABI::ABI_ILP32D:
6516   case RISCVABI::ABI_LP64D:
6517     UseGPRForF16_F32 = !IsFixed;
6518     UseGPRForF64 = !IsFixed;
6519     break;
6520   }
6521 
6522   // FPR16, FPR32, and FPR64 alias each other.
6523   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
6524     UseGPRForF16_F32 = true;
6525     UseGPRForF64 = true;
6526   }
6527 
6528   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
6529   // similar local variables rather than directly checking against the target
6530   // ABI.
6531 
6532   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
6533     LocVT = XLenVT;
6534     LocInfo = CCValAssign::BCvt;
6535   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
6536     LocVT = MVT::i64;
6537     LocInfo = CCValAssign::BCvt;
6538   }
6539 
6540   // If this is a variadic argument, the RISC-V calling convention requires
6541   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
6542   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
6543   // be used regardless of whether the original argument was split during
6544   // legalisation or not. The argument will not be passed by registers if the
6545   // original type is larger than 2*XLEN, so the register alignment rule does
6546   // not apply.
6547   unsigned TwoXLenInBytes = (2 * XLen) / 8;
6548   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
6549       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
6550     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
6551     // Skip 'odd' register if necessary.
6552     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
6553       State.AllocateReg(ArgGPRs);
6554   }
6555 
6556   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
6557   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
6558       State.getPendingArgFlags();
6559 
6560   assert(PendingLocs.size() == PendingArgFlags.size() &&
6561          "PendingLocs and PendingArgFlags out of sync");
6562 
6563   // Handle passing f64 on RV32D with a soft float ABI or when floating point
6564   // registers are exhausted.
6565   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
6566     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
6567            "Can't lower f64 if it is split");
6568     // Depending on available argument GPRS, f64 may be passed in a pair of
6569     // GPRs, split between a GPR and the stack, or passed completely on the
6570     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
6571     // cases.
6572     Register Reg = State.AllocateReg(ArgGPRs);
6573     LocVT = MVT::i32;
6574     if (!Reg) {
6575       unsigned StackOffset = State.AllocateStack(8, Align(8));
6576       State.addLoc(
6577           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
6578       return false;
6579     }
6580     if (!State.AllocateReg(ArgGPRs))
6581       State.AllocateStack(4, Align(4));
6582     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6583     return false;
6584   }
6585 
6586   // Fixed-length vectors are located in the corresponding scalable-vector
6587   // container types.
6588   if (ValVT.isFixedLengthVector())
6589     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
6590 
6591   // Split arguments might be passed indirectly, so keep track of the pending
6592   // values. Split vectors are passed via a mix of registers and indirectly, so
6593   // treat them as we would any other argument.
6594   if (!LocVT.isVector() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
6595     LocVT = XLenVT;
6596     LocInfo = CCValAssign::Indirect;
6597     PendingLocs.push_back(
6598         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
6599     PendingArgFlags.push_back(ArgFlags);
6600     if (!ArgFlags.isSplitEnd()) {
6601       return false;
6602     }
6603   }
6604 
6605   // If the split argument only had two elements, it should be passed directly
6606   // in registers or on the stack.
6607   if (!LocVT.isVector() && ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
6608     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
6609     // Apply the normal calling convention rules to the first half of the
6610     // split argument.
6611     CCValAssign VA = PendingLocs[0];
6612     ISD::ArgFlagsTy AF = PendingArgFlags[0];
6613     PendingLocs.clear();
6614     PendingArgFlags.clear();
6615     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
6616                                ArgFlags);
6617   }
6618 
6619   // Allocate to a register if possible, or else a stack slot.
6620   Register Reg;
6621   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
6622     Reg = State.AllocateReg(ArgFPR16s);
6623   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
6624     Reg = State.AllocateReg(ArgFPR32s);
6625   else if (ValVT == MVT::f64 && !UseGPRForF64)
6626     Reg = State.AllocateReg(ArgFPR64s);
6627   else if (ValVT.isVector()) {
6628     const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
6629     if (RC == &RISCV::VRRegClass) {
6630       // Assign the first mask argument to V0.
6631       // This is an interim calling convention and it may be changed in the
6632       // future.
6633       if (FirstMaskArgument.hasValue() &&
6634           ValNo == FirstMaskArgument.getValue()) {
6635         Reg = State.AllocateReg(RISCV::V0);
6636       } else {
6637         Reg = State.AllocateReg(ArgVRs);
6638       }
6639     } else if (RC == &RISCV::VRM2RegClass) {
6640       Reg = State.AllocateReg(ArgVRM2s);
6641     } else if (RC == &RISCV::VRM4RegClass) {
6642       Reg = State.AllocateReg(ArgVRM4s);
6643     } else if (RC == &RISCV::VRM8RegClass) {
6644       Reg = State.AllocateReg(ArgVRM8s);
6645     } else {
6646       llvm_unreachable("Unhandled class register for ValueType");
6647     }
6648     if (!Reg) {
6649       // For return values, the vector must be passed fully via registers or
6650       // via the stack.
6651       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
6652       // but we're using all of them.
6653       if (IsRet)
6654         return true;
6655       LocInfo = CCValAssign::Indirect;
6656       // Try using a GPR to pass the address
6657       Reg = State.AllocateReg(ArgGPRs);
6658       LocVT = XLenVT;
6659     }
6660   } else
6661     Reg = State.AllocateReg(ArgGPRs);
6662   unsigned StackOffset =
6663       Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8));
6664 
6665   // If we reach this point and PendingLocs is non-empty, we must be at the
6666   // end of a split argument that must be passed indirectly.
6667   if (!PendingLocs.empty()) {
6668     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
6669     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
6670 
6671     for (auto &It : PendingLocs) {
6672       if (Reg)
6673         It.convertToReg(Reg);
6674       else
6675         It.convertToMem(StackOffset);
6676       State.addLoc(It);
6677     }
6678     PendingLocs.clear();
6679     PendingArgFlags.clear();
6680     return false;
6681   }
6682 
6683   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
6684           (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) &&
6685          "Expected an XLenVT or vector types at this stage");
6686 
6687   if (Reg) {
6688     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6689     return false;
6690   }
6691 
6692   // When a floating-point value is passed on the stack, no bit-conversion is
6693   // needed.
6694   if (ValVT.isFloatingPoint()) {
6695     LocVT = ValVT;
6696     LocInfo = CCValAssign::Full;
6697   }
6698   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
6699   return false;
6700 }
6701 
6702 template <typename ArgTy>
6703 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
6704   for (const auto &ArgIdx : enumerate(Args)) {
6705     MVT ArgVT = ArgIdx.value().VT;
6706     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
6707       return ArgIdx.index();
6708   }
6709   return None;
6710 }
6711 
6712 void RISCVTargetLowering::analyzeInputArgs(
6713     MachineFunction &MF, CCState &CCInfo,
6714     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const {
6715   unsigned NumArgs = Ins.size();
6716   FunctionType *FType = MF.getFunction().getFunctionType();
6717 
6718   Optional<unsigned> FirstMaskArgument;
6719   if (Subtarget.hasStdExtV())
6720     FirstMaskArgument = preAssignMask(Ins);
6721 
6722   for (unsigned i = 0; i != NumArgs; ++i) {
6723     MVT ArgVT = Ins[i].VT;
6724     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
6725 
6726     Type *ArgTy = nullptr;
6727     if (IsRet)
6728       ArgTy = FType->getReturnType();
6729     else if (Ins[i].isOrigArg())
6730       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
6731 
6732     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
6733     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
6734                  ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
6735                  FirstMaskArgument)) {
6736       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
6737                         << EVT(ArgVT).getEVTString() << '\n');
6738       llvm_unreachable(nullptr);
6739     }
6740   }
6741 }
6742 
6743 void RISCVTargetLowering::analyzeOutputArgs(
6744     MachineFunction &MF, CCState &CCInfo,
6745     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
6746     CallLoweringInfo *CLI) const {
6747   unsigned NumArgs = Outs.size();
6748 
6749   Optional<unsigned> FirstMaskArgument;
6750   if (Subtarget.hasStdExtV())
6751     FirstMaskArgument = preAssignMask(Outs);
6752 
6753   for (unsigned i = 0; i != NumArgs; i++) {
6754     MVT ArgVT = Outs[i].VT;
6755     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
6756     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
6757 
6758     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
6759     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
6760                  ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
6761                  FirstMaskArgument)) {
6762       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
6763                         << EVT(ArgVT).getEVTString() << "\n");
6764       llvm_unreachable(nullptr);
6765     }
6766   }
6767 }
6768 
6769 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
6770 // values.
6771 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
6772                                    const CCValAssign &VA, const SDLoc &DL,
6773                                    const RISCVSubtarget &Subtarget) {
6774   switch (VA.getLocInfo()) {
6775   default:
6776     llvm_unreachable("Unexpected CCValAssign::LocInfo");
6777   case CCValAssign::Full:
6778     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
6779       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
6780     break;
6781   case CCValAssign::BCvt:
6782     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
6783       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
6784     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
6785       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
6786     else
6787       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
6788     break;
6789   }
6790   return Val;
6791 }
6792 
6793 // The caller is responsible for loading the full value if the argument is
6794 // passed with CCValAssign::Indirect.
6795 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
6796                                 const CCValAssign &VA, const SDLoc &DL,
6797                                 const RISCVTargetLowering &TLI) {
6798   MachineFunction &MF = DAG.getMachineFunction();
6799   MachineRegisterInfo &RegInfo = MF.getRegInfo();
6800   EVT LocVT = VA.getLocVT();
6801   SDValue Val;
6802   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
6803   Register VReg = RegInfo.createVirtualRegister(RC);
6804   RegInfo.addLiveIn(VA.getLocReg(), VReg);
6805   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
6806 
6807   if (VA.getLocInfo() == CCValAssign::Indirect)
6808     return Val;
6809 
6810   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
6811 }
6812 
6813 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
6814                                    const CCValAssign &VA, const SDLoc &DL,
6815                                    const RISCVSubtarget &Subtarget) {
6816   EVT LocVT = VA.getLocVT();
6817 
6818   switch (VA.getLocInfo()) {
6819   default:
6820     llvm_unreachable("Unexpected CCValAssign::LocInfo");
6821   case CCValAssign::Full:
6822     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
6823       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
6824     break;
6825   case CCValAssign::BCvt:
6826     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
6827       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
6828     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
6829       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
6830     else
6831       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
6832     break;
6833   }
6834   return Val;
6835 }
6836 
6837 // The caller is responsible for loading the full value if the argument is
6838 // passed with CCValAssign::Indirect.
6839 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
6840                                 const CCValAssign &VA, const SDLoc &DL) {
6841   MachineFunction &MF = DAG.getMachineFunction();
6842   MachineFrameInfo &MFI = MF.getFrameInfo();
6843   EVT LocVT = VA.getLocVT();
6844   EVT ValVT = VA.getValVT();
6845   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
6846   int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
6847                                  VA.getLocMemOffset(), /*Immutable=*/true);
6848   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
6849   SDValue Val;
6850 
6851   ISD::LoadExtType ExtType;
6852   switch (VA.getLocInfo()) {
6853   default:
6854     llvm_unreachable("Unexpected CCValAssign::LocInfo");
6855   case CCValAssign::Full:
6856   case CCValAssign::Indirect:
6857   case CCValAssign::BCvt:
6858     ExtType = ISD::NON_EXTLOAD;
6859     break;
6860   }
6861   Val = DAG.getExtLoad(
6862       ExtType, DL, LocVT, Chain, FIN,
6863       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
6864   return Val;
6865 }
6866 
6867 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
6868                                        const CCValAssign &VA, const SDLoc &DL) {
6869   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
6870          "Unexpected VA");
6871   MachineFunction &MF = DAG.getMachineFunction();
6872   MachineFrameInfo &MFI = MF.getFrameInfo();
6873   MachineRegisterInfo &RegInfo = MF.getRegInfo();
6874 
6875   if (VA.isMemLoc()) {
6876     // f64 is passed on the stack.
6877     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
6878     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
6879     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
6880                        MachinePointerInfo::getFixedStack(MF, FI));
6881   }
6882 
6883   assert(VA.isRegLoc() && "Expected register VA assignment");
6884 
6885   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
6886   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
6887   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
6888   SDValue Hi;
6889   if (VA.getLocReg() == RISCV::X17) {
6890     // Second half of f64 is passed on the stack.
6891     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
6892     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
6893     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
6894                      MachinePointerInfo::getFixedStack(MF, FI));
6895   } else {
6896     // Second half of f64 is passed in another GPR.
6897     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
6898     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
6899     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
6900   }
6901   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
6902 }
6903 
6904 // FastCC has less than 1% performance improvement for some particular
6905 // benchmark. But theoretically, it may has benenfit for some cases.
6906 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT,
6907                             CCValAssign::LocInfo LocInfo,
6908                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
6909 
6910   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
6911     // X5 and X6 might be used for save-restore libcall.
6912     static const MCPhysReg GPRList[] = {
6913         RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
6914         RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
6915         RISCV::X29, RISCV::X30, RISCV::X31};
6916     if (unsigned Reg = State.AllocateReg(GPRList)) {
6917       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6918       return false;
6919     }
6920   }
6921 
6922   if (LocVT == MVT::f16) {
6923     static const MCPhysReg FPR16List[] = {
6924         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
6925         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
6926         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
6927         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
6928     if (unsigned Reg = State.AllocateReg(FPR16List)) {
6929       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6930       return false;
6931     }
6932   }
6933 
6934   if (LocVT == MVT::f32) {
6935     static const MCPhysReg FPR32List[] = {
6936         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
6937         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
6938         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
6939         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
6940     if (unsigned Reg = State.AllocateReg(FPR32List)) {
6941       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6942       return false;
6943     }
6944   }
6945 
6946   if (LocVT == MVT::f64) {
6947     static const MCPhysReg FPR64List[] = {
6948         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
6949         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
6950         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
6951         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
6952     if (unsigned Reg = State.AllocateReg(FPR64List)) {
6953       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6954       return false;
6955     }
6956   }
6957 
6958   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
6959     unsigned Offset4 = State.AllocateStack(4, Align(4));
6960     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
6961     return false;
6962   }
6963 
6964   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
6965     unsigned Offset5 = State.AllocateStack(8, Align(8));
6966     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
6967     return false;
6968   }
6969 
6970   return true; // CC didn't match.
6971 }
6972 
6973 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
6974                          CCValAssign::LocInfo LocInfo,
6975                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
6976 
6977   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
6978     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
6979     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
6980     static const MCPhysReg GPRList[] = {
6981         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
6982         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
6983     if (unsigned Reg = State.AllocateReg(GPRList)) {
6984       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6985       return false;
6986     }
6987   }
6988 
6989   if (LocVT == MVT::f32) {
6990     // Pass in STG registers: F1, ..., F6
6991     //                        fs0 ... fs5
6992     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
6993                                           RISCV::F18_F, RISCV::F19_F,
6994                                           RISCV::F20_F, RISCV::F21_F};
6995     if (unsigned Reg = State.AllocateReg(FPR32List)) {
6996       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6997       return false;
6998     }
6999   }
7000 
7001   if (LocVT == MVT::f64) {
7002     // Pass in STG registers: D1, ..., D6
7003     //                        fs6 ... fs11
7004     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
7005                                           RISCV::F24_D, RISCV::F25_D,
7006                                           RISCV::F26_D, RISCV::F27_D};
7007     if (unsigned Reg = State.AllocateReg(FPR64List)) {
7008       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7009       return false;
7010     }
7011   }
7012 
7013   report_fatal_error("No registers left in GHC calling convention");
7014   return true;
7015 }
7016 
7017 // Transform physical registers into virtual registers.
7018 SDValue RISCVTargetLowering::LowerFormalArguments(
7019     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
7020     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
7021     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
7022 
7023   MachineFunction &MF = DAG.getMachineFunction();
7024 
7025   switch (CallConv) {
7026   default:
7027     report_fatal_error("Unsupported calling convention");
7028   case CallingConv::C:
7029   case CallingConv::Fast:
7030     break;
7031   case CallingConv::GHC:
7032     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
7033         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
7034       report_fatal_error(
7035         "GHC calling convention requires the F and D instruction set extensions");
7036   }
7037 
7038   const Function &Func = MF.getFunction();
7039   if (Func.hasFnAttribute("interrupt")) {
7040     if (!Func.arg_empty())
7041       report_fatal_error(
7042         "Functions with the interrupt attribute cannot have arguments!");
7043 
7044     StringRef Kind =
7045       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
7046 
7047     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
7048       report_fatal_error(
7049         "Function interrupt attribute argument not supported!");
7050   }
7051 
7052   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7053   MVT XLenVT = Subtarget.getXLenVT();
7054   unsigned XLenInBytes = Subtarget.getXLen() / 8;
7055   // Used with vargs to acumulate store chains.
7056   std::vector<SDValue> OutChains;
7057 
7058   // Assign locations to all of the incoming arguments.
7059   SmallVector<CCValAssign, 16> ArgLocs;
7060   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
7061 
7062   if (CallConv == CallingConv::Fast)
7063     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC);
7064   else if (CallConv == CallingConv::GHC)
7065     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
7066   else
7067     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false);
7068 
7069   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
7070     CCValAssign &VA = ArgLocs[i];
7071     SDValue ArgValue;
7072     // Passing f64 on RV32D with a soft float ABI must be handled as a special
7073     // case.
7074     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
7075       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
7076     else if (VA.isRegLoc())
7077       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
7078     else
7079       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
7080 
7081     if (VA.getLocInfo() == CCValAssign::Indirect) {
7082       // If the original argument was split and passed by reference (e.g. i128
7083       // on RV32), we need to load all parts of it here (using the same
7084       // address). Vectors may be partly split to registers and partly to the
7085       // stack, in which case the base address is partly offset and subsequent
7086       // stores are relative to that.
7087       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
7088                                    MachinePointerInfo()));
7089       unsigned ArgIndex = Ins[i].OrigArgIndex;
7090       unsigned ArgPartOffset = Ins[i].PartOffset;
7091       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
7092       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
7093         CCValAssign &PartVA = ArgLocs[i + 1];
7094         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
7095         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
7096                                       DAG.getIntPtrConstant(PartOffset, DL));
7097         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
7098                                      MachinePointerInfo()));
7099         ++i;
7100       }
7101       continue;
7102     }
7103     InVals.push_back(ArgValue);
7104   }
7105 
7106   if (IsVarArg) {
7107     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
7108     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
7109     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
7110     MachineFrameInfo &MFI = MF.getFrameInfo();
7111     MachineRegisterInfo &RegInfo = MF.getRegInfo();
7112     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
7113 
7114     // Offset of the first variable argument from stack pointer, and size of
7115     // the vararg save area. For now, the varargs save area is either zero or
7116     // large enough to hold a0-a7.
7117     int VaArgOffset, VarArgsSaveSize;
7118 
7119     // If all registers are allocated, then all varargs must be passed on the
7120     // stack and we don't need to save any argregs.
7121     if (ArgRegs.size() == Idx) {
7122       VaArgOffset = CCInfo.getNextStackOffset();
7123       VarArgsSaveSize = 0;
7124     } else {
7125       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
7126       VaArgOffset = -VarArgsSaveSize;
7127     }
7128 
7129     // Record the frame index of the first variable argument
7130     // which is a value necessary to VASTART.
7131     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
7132     RVFI->setVarArgsFrameIndex(FI);
7133 
7134     // If saving an odd number of registers then create an extra stack slot to
7135     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
7136     // offsets to even-numbered registered remain 2*XLEN-aligned.
7137     if (Idx % 2) {
7138       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
7139       VarArgsSaveSize += XLenInBytes;
7140     }
7141 
7142     // Copy the integer registers that may have been used for passing varargs
7143     // to the vararg save area.
7144     for (unsigned I = Idx; I < ArgRegs.size();
7145          ++I, VaArgOffset += XLenInBytes) {
7146       const Register Reg = RegInfo.createVirtualRegister(RC);
7147       RegInfo.addLiveIn(ArgRegs[I], Reg);
7148       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
7149       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
7150       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
7151       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
7152                                    MachinePointerInfo::getFixedStack(MF, FI));
7153       cast<StoreSDNode>(Store.getNode())
7154           ->getMemOperand()
7155           ->setValue((Value *)nullptr);
7156       OutChains.push_back(Store);
7157     }
7158     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
7159   }
7160 
7161   // All stores are grouped in one node to allow the matching between
7162   // the size of Ins and InVals. This only happens for vararg functions.
7163   if (!OutChains.empty()) {
7164     OutChains.push_back(Chain);
7165     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
7166   }
7167 
7168   return Chain;
7169 }
7170 
7171 /// isEligibleForTailCallOptimization - Check whether the call is eligible
7172 /// for tail call optimization.
7173 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
7174 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
7175     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
7176     const SmallVector<CCValAssign, 16> &ArgLocs) const {
7177 
7178   auto &Callee = CLI.Callee;
7179   auto CalleeCC = CLI.CallConv;
7180   auto &Outs = CLI.Outs;
7181   auto &Caller = MF.getFunction();
7182   auto CallerCC = Caller.getCallingConv();
7183 
7184   // Exception-handling functions need a special set of instructions to
7185   // indicate a return to the hardware. Tail-calling another function would
7186   // probably break this.
7187   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
7188   // should be expanded as new function attributes are introduced.
7189   if (Caller.hasFnAttribute("interrupt"))
7190     return false;
7191 
7192   // Do not tail call opt if the stack is used to pass parameters.
7193   if (CCInfo.getNextStackOffset() != 0)
7194     return false;
7195 
7196   // Do not tail call opt if any parameters need to be passed indirectly.
7197   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
7198   // passed indirectly. So the address of the value will be passed in a
7199   // register, or if not available, then the address is put on the stack. In
7200   // order to pass indirectly, space on the stack often needs to be allocated
7201   // in order to store the value. In this case the CCInfo.getNextStackOffset()
7202   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
7203   // are passed CCValAssign::Indirect.
7204   for (auto &VA : ArgLocs)
7205     if (VA.getLocInfo() == CCValAssign::Indirect)
7206       return false;
7207 
7208   // Do not tail call opt if either caller or callee uses struct return
7209   // semantics.
7210   auto IsCallerStructRet = Caller.hasStructRetAttr();
7211   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
7212   if (IsCallerStructRet || IsCalleeStructRet)
7213     return false;
7214 
7215   // Externally-defined functions with weak linkage should not be
7216   // tail-called. The behaviour of branch instructions in this situation (as
7217   // used for tail calls) is implementation-defined, so we cannot rely on the
7218   // linker replacing the tail call with a return.
7219   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
7220     const GlobalValue *GV = G->getGlobal();
7221     if (GV->hasExternalWeakLinkage())
7222       return false;
7223   }
7224 
7225   // The callee has to preserve all registers the caller needs to preserve.
7226   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
7227   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
7228   if (CalleeCC != CallerCC) {
7229     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
7230     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
7231       return false;
7232   }
7233 
7234   // Byval parameters hand the function a pointer directly into the stack area
7235   // we want to reuse during a tail call. Working around this *is* possible
7236   // but less efficient and uglier in LowerCall.
7237   for (auto &Arg : Outs)
7238     if (Arg.Flags.isByVal())
7239       return false;
7240 
7241   return true;
7242 }
7243 
7244 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
7245   return DAG.getDataLayout().getPrefTypeAlign(
7246       VT.getTypeForEVT(*DAG.getContext()));
7247 }
7248 
7249 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
7250 // and output parameter nodes.
7251 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
7252                                        SmallVectorImpl<SDValue> &InVals) const {
7253   SelectionDAG &DAG = CLI.DAG;
7254   SDLoc &DL = CLI.DL;
7255   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
7256   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
7257   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
7258   SDValue Chain = CLI.Chain;
7259   SDValue Callee = CLI.Callee;
7260   bool &IsTailCall = CLI.IsTailCall;
7261   CallingConv::ID CallConv = CLI.CallConv;
7262   bool IsVarArg = CLI.IsVarArg;
7263   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7264   MVT XLenVT = Subtarget.getXLenVT();
7265 
7266   MachineFunction &MF = DAG.getMachineFunction();
7267 
7268   // Analyze the operands of the call, assigning locations to each operand.
7269   SmallVector<CCValAssign, 16> ArgLocs;
7270   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
7271 
7272   if (CallConv == CallingConv::Fast)
7273     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC);
7274   else if (CallConv == CallingConv::GHC)
7275     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
7276   else
7277     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI);
7278 
7279   // Check if it's really possible to do a tail call.
7280   if (IsTailCall)
7281     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
7282 
7283   if (IsTailCall)
7284     ++NumTailCalls;
7285   else if (CLI.CB && CLI.CB->isMustTailCall())
7286     report_fatal_error("failed to perform tail call elimination on a call "
7287                        "site marked musttail");
7288 
7289   // Get a count of how many bytes are to be pushed on the stack.
7290   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
7291 
7292   // Create local copies for byval args
7293   SmallVector<SDValue, 8> ByValArgs;
7294   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
7295     ISD::ArgFlagsTy Flags = Outs[i].Flags;
7296     if (!Flags.isByVal())
7297       continue;
7298 
7299     SDValue Arg = OutVals[i];
7300     unsigned Size = Flags.getByValSize();
7301     Align Alignment = Flags.getNonZeroByValAlign();
7302 
7303     int FI =
7304         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
7305     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
7306     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
7307 
7308     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
7309                           /*IsVolatile=*/false,
7310                           /*AlwaysInline=*/false, IsTailCall,
7311                           MachinePointerInfo(), MachinePointerInfo());
7312     ByValArgs.push_back(FIPtr);
7313   }
7314 
7315   if (!IsTailCall)
7316     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
7317 
7318   // Copy argument values to their designated locations.
7319   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
7320   SmallVector<SDValue, 8> MemOpChains;
7321   SDValue StackPtr;
7322   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
7323     CCValAssign &VA = ArgLocs[i];
7324     SDValue ArgValue = OutVals[i];
7325     ISD::ArgFlagsTy Flags = Outs[i].Flags;
7326 
7327     // Handle passing f64 on RV32D with a soft float ABI as a special case.
7328     bool IsF64OnRV32DSoftABI =
7329         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
7330     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
7331       SDValue SplitF64 = DAG.getNode(
7332           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
7333       SDValue Lo = SplitF64.getValue(0);
7334       SDValue Hi = SplitF64.getValue(1);
7335 
7336       Register RegLo = VA.getLocReg();
7337       RegsToPass.push_back(std::make_pair(RegLo, Lo));
7338 
7339       if (RegLo == RISCV::X17) {
7340         // Second half of f64 is passed on the stack.
7341         // Work out the address of the stack slot.
7342         if (!StackPtr.getNode())
7343           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
7344         // Emit the store.
7345         MemOpChains.push_back(
7346             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
7347       } else {
7348         // Second half of f64 is passed in another GPR.
7349         assert(RegLo < RISCV::X31 && "Invalid register pair");
7350         Register RegHigh = RegLo + 1;
7351         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
7352       }
7353       continue;
7354     }
7355 
7356     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
7357     // as any other MemLoc.
7358 
7359     // Promote the value if needed.
7360     // For now, only handle fully promoted and indirect arguments.
7361     if (VA.getLocInfo() == CCValAssign::Indirect) {
7362       // Store the argument in a stack slot and pass its address.
7363       Align StackAlign =
7364           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
7365                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
7366       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
7367       // If the original argument was split (e.g. i128), we need
7368       // to store the required parts of it here (and pass just one address).
7369       // Vectors may be partly split to registers and partly to the stack, in
7370       // which case the base address is partly offset and subsequent stores are
7371       // relative to that.
7372       unsigned ArgIndex = Outs[i].OrigArgIndex;
7373       unsigned ArgPartOffset = Outs[i].PartOffset;
7374       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
7375       // Calculate the total size to store. We don't have access to what we're
7376       // actually storing other than performing the loop and collecting the
7377       // info.
7378       SmallVector<std::pair<SDValue, unsigned>> Parts;
7379       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
7380         SDValue PartValue = OutVals[i + 1];
7381         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
7382         EVT PartVT = PartValue.getValueType();
7383         StoredSize += PartVT.getStoreSize();
7384         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
7385         Parts.push_back(std::make_pair(PartValue, PartOffset));
7386         ++i;
7387       }
7388       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
7389       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
7390       MemOpChains.push_back(
7391           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
7392                        MachinePointerInfo::getFixedStack(MF, FI)));
7393       for (const auto &Part : Parts) {
7394         SDValue PartValue = Part.first;
7395         unsigned PartOffset = Part.second;
7396         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
7397                                       DAG.getIntPtrConstant(PartOffset, DL));
7398         MemOpChains.push_back(
7399             DAG.getStore(Chain, DL, PartValue, Address,
7400                          MachinePointerInfo::getFixedStack(MF, FI)));
7401       }
7402       ArgValue = SpillSlot;
7403     } else {
7404       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
7405     }
7406 
7407     // Use local copy if it is a byval arg.
7408     if (Flags.isByVal())
7409       ArgValue = ByValArgs[j++];
7410 
7411     if (VA.isRegLoc()) {
7412       // Queue up the argument copies and emit them at the end.
7413       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
7414     } else {
7415       assert(VA.isMemLoc() && "Argument not register or memory");
7416       assert(!IsTailCall && "Tail call not allowed if stack is used "
7417                             "for passing parameters");
7418 
7419       // Work out the address of the stack slot.
7420       if (!StackPtr.getNode())
7421         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
7422       SDValue Address =
7423           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
7424                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
7425 
7426       // Emit the store.
7427       MemOpChains.push_back(
7428           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
7429     }
7430   }
7431 
7432   // Join the stores, which are independent of one another.
7433   if (!MemOpChains.empty())
7434     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
7435 
7436   SDValue Glue;
7437 
7438   // Build a sequence of copy-to-reg nodes, chained and glued together.
7439   for (auto &Reg : RegsToPass) {
7440     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
7441     Glue = Chain.getValue(1);
7442   }
7443 
7444   // Validate that none of the argument registers have been marked as
7445   // reserved, if so report an error. Do the same for the return address if this
7446   // is not a tailcall.
7447   validateCCReservedRegs(RegsToPass, MF);
7448   if (!IsTailCall &&
7449       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
7450     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
7451         MF.getFunction(),
7452         "Return address register required, but has been reserved."});
7453 
7454   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
7455   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
7456   // split it and then direct call can be matched by PseudoCALL.
7457   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
7458     const GlobalValue *GV = S->getGlobal();
7459 
7460     unsigned OpFlags = RISCVII::MO_CALL;
7461     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
7462       OpFlags = RISCVII::MO_PLT;
7463 
7464     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
7465   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
7466     unsigned OpFlags = RISCVII::MO_CALL;
7467 
7468     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
7469                                                  nullptr))
7470       OpFlags = RISCVII::MO_PLT;
7471 
7472     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
7473   }
7474 
7475   // The first call operand is the chain and the second is the target address.
7476   SmallVector<SDValue, 8> Ops;
7477   Ops.push_back(Chain);
7478   Ops.push_back(Callee);
7479 
7480   // Add argument registers to the end of the list so that they are
7481   // known live into the call.
7482   for (auto &Reg : RegsToPass)
7483     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
7484 
7485   if (!IsTailCall) {
7486     // Add a register mask operand representing the call-preserved registers.
7487     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
7488     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
7489     assert(Mask && "Missing call preserved mask for calling convention");
7490     Ops.push_back(DAG.getRegisterMask(Mask));
7491   }
7492 
7493   // Glue the call to the argument copies, if any.
7494   if (Glue.getNode())
7495     Ops.push_back(Glue);
7496 
7497   // Emit the call.
7498   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7499 
7500   if (IsTailCall) {
7501     MF.getFrameInfo().setHasTailCall();
7502     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
7503   }
7504 
7505   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
7506   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
7507   Glue = Chain.getValue(1);
7508 
7509   // Mark the end of the call, which is glued to the call itself.
7510   Chain = DAG.getCALLSEQ_END(Chain,
7511                              DAG.getConstant(NumBytes, DL, PtrVT, true),
7512                              DAG.getConstant(0, DL, PtrVT, true),
7513                              Glue, DL);
7514   Glue = Chain.getValue(1);
7515 
7516   // Assign locations to each value returned by this call.
7517   SmallVector<CCValAssign, 16> RVLocs;
7518   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
7519   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true);
7520 
7521   // Copy all of the result registers out of their specified physreg.
7522   for (auto &VA : RVLocs) {
7523     // Copy the value out
7524     SDValue RetValue =
7525         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
7526     // Glue the RetValue to the end of the call sequence
7527     Chain = RetValue.getValue(1);
7528     Glue = RetValue.getValue(2);
7529 
7530     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
7531       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
7532       SDValue RetValue2 =
7533           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
7534       Chain = RetValue2.getValue(1);
7535       Glue = RetValue2.getValue(2);
7536       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
7537                              RetValue2);
7538     }
7539 
7540     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
7541 
7542     InVals.push_back(RetValue);
7543   }
7544 
7545   return Chain;
7546 }
7547 
7548 bool RISCVTargetLowering::CanLowerReturn(
7549     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
7550     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
7551   SmallVector<CCValAssign, 16> RVLocs;
7552   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
7553 
7554   Optional<unsigned> FirstMaskArgument;
7555   if (Subtarget.hasStdExtV())
7556     FirstMaskArgument = preAssignMask(Outs);
7557 
7558   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
7559     MVT VT = Outs[i].VT;
7560     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
7561     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
7562     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
7563                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
7564                  *this, FirstMaskArgument))
7565       return false;
7566   }
7567   return true;
7568 }
7569 
7570 SDValue
7571 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7572                                  bool IsVarArg,
7573                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
7574                                  const SmallVectorImpl<SDValue> &OutVals,
7575                                  const SDLoc &DL, SelectionDAG &DAG) const {
7576   const MachineFunction &MF = DAG.getMachineFunction();
7577   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
7578 
7579   // Stores the assignment of the return value to a location.
7580   SmallVector<CCValAssign, 16> RVLocs;
7581 
7582   // Info about the registers and stack slot.
7583   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
7584                  *DAG.getContext());
7585 
7586   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
7587                     nullptr);
7588 
7589   if (CallConv == CallingConv::GHC && !RVLocs.empty())
7590     report_fatal_error("GHC functions return void only");
7591 
7592   SDValue Glue;
7593   SmallVector<SDValue, 4> RetOps(1, Chain);
7594 
7595   // Copy the result values into the output registers.
7596   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
7597     SDValue Val = OutVals[i];
7598     CCValAssign &VA = RVLocs[i];
7599     assert(VA.isRegLoc() && "Can only return in registers!");
7600 
7601     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
7602       // Handle returning f64 on RV32D with a soft float ABI.
7603       assert(VA.isRegLoc() && "Expected return via registers");
7604       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
7605                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
7606       SDValue Lo = SplitF64.getValue(0);
7607       SDValue Hi = SplitF64.getValue(1);
7608       Register RegLo = VA.getLocReg();
7609       assert(RegLo < RISCV::X31 && "Invalid register pair");
7610       Register RegHi = RegLo + 1;
7611 
7612       if (STI.isRegisterReservedByUser(RegLo) ||
7613           STI.isRegisterReservedByUser(RegHi))
7614         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
7615             MF.getFunction(),
7616             "Return value register required, but has been reserved."});
7617 
7618       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
7619       Glue = Chain.getValue(1);
7620       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
7621       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
7622       Glue = Chain.getValue(1);
7623       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
7624     } else {
7625       // Handle a 'normal' return.
7626       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
7627       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
7628 
7629       if (STI.isRegisterReservedByUser(VA.getLocReg()))
7630         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
7631             MF.getFunction(),
7632             "Return value register required, but has been reserved."});
7633 
7634       // Guarantee that all emitted copies are stuck together.
7635       Glue = Chain.getValue(1);
7636       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7637     }
7638   }
7639 
7640   RetOps[0] = Chain; // Update chain.
7641 
7642   // Add the glue node if we have it.
7643   if (Glue.getNode()) {
7644     RetOps.push_back(Glue);
7645   }
7646 
7647   // Interrupt service routines use different return instructions.
7648   const Function &Func = DAG.getMachineFunction().getFunction();
7649   if (Func.hasFnAttribute("interrupt")) {
7650     if (!Func.getReturnType()->isVoidTy())
7651       report_fatal_error(
7652           "Functions with the interrupt attribute must have void return type!");
7653 
7654     MachineFunction &MF = DAG.getMachineFunction();
7655     StringRef Kind =
7656       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
7657 
7658     unsigned RetOpc;
7659     if (Kind == "user")
7660       RetOpc = RISCVISD::URET_FLAG;
7661     else if (Kind == "supervisor")
7662       RetOpc = RISCVISD::SRET_FLAG;
7663     else
7664       RetOpc = RISCVISD::MRET_FLAG;
7665 
7666     return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
7667   }
7668 
7669   return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
7670 }
7671 
7672 void RISCVTargetLowering::validateCCReservedRegs(
7673     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
7674     MachineFunction &MF) const {
7675   const Function &F = MF.getFunction();
7676   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
7677 
7678   if (llvm::any_of(Regs, [&STI](auto Reg) {
7679         return STI.isRegisterReservedByUser(Reg.first);
7680       }))
7681     F.getContext().diagnose(DiagnosticInfoUnsupported{
7682         F, "Argument register required, but has been reserved."});
7683 }
7684 
7685 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
7686   return CI->isTailCall();
7687 }
7688 
7689 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
7690 #define NODE_NAME_CASE(NODE)                                                   \
7691   case RISCVISD::NODE:                                                         \
7692     return "RISCVISD::" #NODE;
7693   // clang-format off
7694   switch ((RISCVISD::NodeType)Opcode) {
7695   case RISCVISD::FIRST_NUMBER:
7696     break;
7697   NODE_NAME_CASE(RET_FLAG)
7698   NODE_NAME_CASE(URET_FLAG)
7699   NODE_NAME_CASE(SRET_FLAG)
7700   NODE_NAME_CASE(MRET_FLAG)
7701   NODE_NAME_CASE(CALL)
7702   NODE_NAME_CASE(SELECT_CC)
7703   NODE_NAME_CASE(BR_CC)
7704   NODE_NAME_CASE(BuildPairF64)
7705   NODE_NAME_CASE(SplitF64)
7706   NODE_NAME_CASE(TAIL)
7707   NODE_NAME_CASE(MULHSU)
7708   NODE_NAME_CASE(SLLW)
7709   NODE_NAME_CASE(SRAW)
7710   NODE_NAME_CASE(SRLW)
7711   NODE_NAME_CASE(DIVW)
7712   NODE_NAME_CASE(DIVUW)
7713   NODE_NAME_CASE(REMUW)
7714   NODE_NAME_CASE(ROLW)
7715   NODE_NAME_CASE(RORW)
7716   NODE_NAME_CASE(CLZW)
7717   NODE_NAME_CASE(CTZW)
7718   NODE_NAME_CASE(FSLW)
7719   NODE_NAME_CASE(FSRW)
7720   NODE_NAME_CASE(FSL)
7721   NODE_NAME_CASE(FSR)
7722   NODE_NAME_CASE(FMV_H_X)
7723   NODE_NAME_CASE(FMV_X_ANYEXTH)
7724   NODE_NAME_CASE(FMV_W_X_RV64)
7725   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
7726   NODE_NAME_CASE(READ_CYCLE_WIDE)
7727   NODE_NAME_CASE(GREV)
7728   NODE_NAME_CASE(GREVW)
7729   NODE_NAME_CASE(GORC)
7730   NODE_NAME_CASE(GORCW)
7731   NODE_NAME_CASE(SHFL)
7732   NODE_NAME_CASE(SHFLW)
7733   NODE_NAME_CASE(UNSHFL)
7734   NODE_NAME_CASE(UNSHFLW)
7735   NODE_NAME_CASE(BCOMPRESS)
7736   NODE_NAME_CASE(BCOMPRESSW)
7737   NODE_NAME_CASE(BDECOMPRESS)
7738   NODE_NAME_CASE(BDECOMPRESSW)
7739   NODE_NAME_CASE(VMV_V_X_VL)
7740   NODE_NAME_CASE(VFMV_V_F_VL)
7741   NODE_NAME_CASE(VMV_X_S)
7742   NODE_NAME_CASE(VMV_S_X_VL)
7743   NODE_NAME_CASE(VFMV_S_F_VL)
7744   NODE_NAME_CASE(SPLAT_VECTOR_I64)
7745   NODE_NAME_CASE(READ_VLENB)
7746   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
7747   NODE_NAME_CASE(VLEFF)
7748   NODE_NAME_CASE(VLEFF_MASK)
7749   NODE_NAME_CASE(VSLIDEUP_VL)
7750   NODE_NAME_CASE(VSLIDE1UP_VL)
7751   NODE_NAME_CASE(VSLIDEDOWN_VL)
7752   NODE_NAME_CASE(VSLIDE1DOWN_VL)
7753   NODE_NAME_CASE(VID_VL)
7754   NODE_NAME_CASE(VFNCVT_ROD_VL)
7755   NODE_NAME_CASE(VECREDUCE_ADD_VL)
7756   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
7757   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
7758   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
7759   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
7760   NODE_NAME_CASE(VECREDUCE_AND_VL)
7761   NODE_NAME_CASE(VECREDUCE_OR_VL)
7762   NODE_NAME_CASE(VECREDUCE_XOR_VL)
7763   NODE_NAME_CASE(VECREDUCE_FADD_VL)
7764   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
7765   NODE_NAME_CASE(ADD_VL)
7766   NODE_NAME_CASE(AND_VL)
7767   NODE_NAME_CASE(MUL_VL)
7768   NODE_NAME_CASE(OR_VL)
7769   NODE_NAME_CASE(SDIV_VL)
7770   NODE_NAME_CASE(SHL_VL)
7771   NODE_NAME_CASE(SREM_VL)
7772   NODE_NAME_CASE(SRA_VL)
7773   NODE_NAME_CASE(SRL_VL)
7774   NODE_NAME_CASE(SUB_VL)
7775   NODE_NAME_CASE(UDIV_VL)
7776   NODE_NAME_CASE(UREM_VL)
7777   NODE_NAME_CASE(XOR_VL)
7778   NODE_NAME_CASE(FADD_VL)
7779   NODE_NAME_CASE(FSUB_VL)
7780   NODE_NAME_CASE(FMUL_VL)
7781   NODE_NAME_CASE(FDIV_VL)
7782   NODE_NAME_CASE(FNEG_VL)
7783   NODE_NAME_CASE(FABS_VL)
7784   NODE_NAME_CASE(FSQRT_VL)
7785   NODE_NAME_CASE(FMA_VL)
7786   NODE_NAME_CASE(FCOPYSIGN_VL)
7787   NODE_NAME_CASE(SMIN_VL)
7788   NODE_NAME_CASE(SMAX_VL)
7789   NODE_NAME_CASE(UMIN_VL)
7790   NODE_NAME_CASE(UMAX_VL)
7791   NODE_NAME_CASE(FMINNUM_VL)
7792   NODE_NAME_CASE(FMAXNUM_VL)
7793   NODE_NAME_CASE(MULHS_VL)
7794   NODE_NAME_CASE(MULHU_VL)
7795   NODE_NAME_CASE(FP_TO_SINT_VL)
7796   NODE_NAME_CASE(FP_TO_UINT_VL)
7797   NODE_NAME_CASE(SINT_TO_FP_VL)
7798   NODE_NAME_CASE(UINT_TO_FP_VL)
7799   NODE_NAME_CASE(FP_EXTEND_VL)
7800   NODE_NAME_CASE(FP_ROUND_VL)
7801   NODE_NAME_CASE(SETCC_VL)
7802   NODE_NAME_CASE(VSELECT_VL)
7803   NODE_NAME_CASE(VMAND_VL)
7804   NODE_NAME_CASE(VMOR_VL)
7805   NODE_NAME_CASE(VMXOR_VL)
7806   NODE_NAME_CASE(VMCLR_VL)
7807   NODE_NAME_CASE(VMSET_VL)
7808   NODE_NAME_CASE(VRGATHER_VX_VL)
7809   NODE_NAME_CASE(VRGATHER_VV_VL)
7810   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
7811   NODE_NAME_CASE(VSEXT_VL)
7812   NODE_NAME_CASE(VZEXT_VL)
7813   NODE_NAME_CASE(VPOPC_VL)
7814   NODE_NAME_CASE(VLE_VL)
7815   NODE_NAME_CASE(VSE_VL)
7816   NODE_NAME_CASE(READ_CSR)
7817   NODE_NAME_CASE(WRITE_CSR)
7818   NODE_NAME_CASE(SWAP_CSR)
7819   }
7820   // clang-format on
7821   return nullptr;
7822 #undef NODE_NAME_CASE
7823 }
7824 
7825 /// getConstraintType - Given a constraint letter, return the type of
7826 /// constraint it is for this target.
7827 RISCVTargetLowering::ConstraintType
7828 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
7829   if (Constraint.size() == 1) {
7830     switch (Constraint[0]) {
7831     default:
7832       break;
7833     case 'f':
7834     case 'v':
7835       return C_RegisterClass;
7836     case 'I':
7837     case 'J':
7838     case 'K':
7839       return C_Immediate;
7840     case 'A':
7841       return C_Memory;
7842     }
7843   }
7844   return TargetLowering::getConstraintType(Constraint);
7845 }
7846 
7847 std::pair<unsigned, const TargetRegisterClass *>
7848 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
7849                                                   StringRef Constraint,
7850                                                   MVT VT) const {
7851   // First, see if this is a constraint that directly corresponds to a
7852   // RISCV register class.
7853   if (Constraint.size() == 1) {
7854     switch (Constraint[0]) {
7855     case 'r':
7856       return std::make_pair(0U, &RISCV::GPRRegClass);
7857     case 'f':
7858       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
7859         return std::make_pair(0U, &RISCV::FPR16RegClass);
7860       if (Subtarget.hasStdExtF() && VT == MVT::f32)
7861         return std::make_pair(0U, &RISCV::FPR32RegClass);
7862       if (Subtarget.hasStdExtD() && VT == MVT::f64)
7863         return std::make_pair(0U, &RISCV::FPR64RegClass);
7864       break;
7865     case 'v':
7866       for (const auto *RC :
7867            {&RISCV::VMRegClass, &RISCV::VRRegClass, &RISCV::VRM2RegClass,
7868             &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
7869         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
7870           return std::make_pair(0U, RC);
7871       }
7872       break;
7873     default:
7874       break;
7875     }
7876   }
7877 
7878   // Clang will correctly decode the usage of register name aliases into their
7879   // official names. However, other frontends like `rustc` do not. This allows
7880   // users of these frontends to use the ABI names for registers in LLVM-style
7881   // register constraints.
7882   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
7883                                .Case("{zero}", RISCV::X0)
7884                                .Case("{ra}", RISCV::X1)
7885                                .Case("{sp}", RISCV::X2)
7886                                .Case("{gp}", RISCV::X3)
7887                                .Case("{tp}", RISCV::X4)
7888                                .Case("{t0}", RISCV::X5)
7889                                .Case("{t1}", RISCV::X6)
7890                                .Case("{t2}", RISCV::X7)
7891                                .Cases("{s0}", "{fp}", RISCV::X8)
7892                                .Case("{s1}", RISCV::X9)
7893                                .Case("{a0}", RISCV::X10)
7894                                .Case("{a1}", RISCV::X11)
7895                                .Case("{a2}", RISCV::X12)
7896                                .Case("{a3}", RISCV::X13)
7897                                .Case("{a4}", RISCV::X14)
7898                                .Case("{a5}", RISCV::X15)
7899                                .Case("{a6}", RISCV::X16)
7900                                .Case("{a7}", RISCV::X17)
7901                                .Case("{s2}", RISCV::X18)
7902                                .Case("{s3}", RISCV::X19)
7903                                .Case("{s4}", RISCV::X20)
7904                                .Case("{s5}", RISCV::X21)
7905                                .Case("{s6}", RISCV::X22)
7906                                .Case("{s7}", RISCV::X23)
7907                                .Case("{s8}", RISCV::X24)
7908                                .Case("{s9}", RISCV::X25)
7909                                .Case("{s10}", RISCV::X26)
7910                                .Case("{s11}", RISCV::X27)
7911                                .Case("{t3}", RISCV::X28)
7912                                .Case("{t4}", RISCV::X29)
7913                                .Case("{t5}", RISCV::X30)
7914                                .Case("{t6}", RISCV::X31)
7915                                .Default(RISCV::NoRegister);
7916   if (XRegFromAlias != RISCV::NoRegister)
7917     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
7918 
7919   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
7920   // TableGen record rather than the AsmName to choose registers for InlineAsm
7921   // constraints, plus we want to match those names to the widest floating point
7922   // register type available, manually select floating point registers here.
7923   //
7924   // The second case is the ABI name of the register, so that frontends can also
7925   // use the ABI names in register constraint lists.
7926   if (Subtarget.hasStdExtF()) {
7927     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
7928                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
7929                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
7930                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
7931                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
7932                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
7933                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
7934                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
7935                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
7936                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
7937                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
7938                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
7939                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
7940                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
7941                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
7942                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
7943                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
7944                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
7945                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
7946                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
7947                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
7948                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
7949                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
7950                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
7951                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
7952                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
7953                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
7954                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
7955                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
7956                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
7957                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
7958                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
7959                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
7960                         .Default(RISCV::NoRegister);
7961     if (FReg != RISCV::NoRegister) {
7962       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
7963       if (Subtarget.hasStdExtD()) {
7964         unsigned RegNo = FReg - RISCV::F0_F;
7965         unsigned DReg = RISCV::F0_D + RegNo;
7966         return std::make_pair(DReg, &RISCV::FPR64RegClass);
7967       }
7968       return std::make_pair(FReg, &RISCV::FPR32RegClass);
7969     }
7970   }
7971 
7972   if (Subtarget.hasStdExtV()) {
7973     Register VReg = StringSwitch<Register>(Constraint.lower())
7974                         .Case("{v0}", RISCV::V0)
7975                         .Case("{v1}", RISCV::V1)
7976                         .Case("{v2}", RISCV::V2)
7977                         .Case("{v3}", RISCV::V3)
7978                         .Case("{v4}", RISCV::V4)
7979                         .Case("{v5}", RISCV::V5)
7980                         .Case("{v6}", RISCV::V6)
7981                         .Case("{v7}", RISCV::V7)
7982                         .Case("{v8}", RISCV::V8)
7983                         .Case("{v9}", RISCV::V9)
7984                         .Case("{v10}", RISCV::V10)
7985                         .Case("{v11}", RISCV::V11)
7986                         .Case("{v12}", RISCV::V12)
7987                         .Case("{v13}", RISCV::V13)
7988                         .Case("{v14}", RISCV::V14)
7989                         .Case("{v15}", RISCV::V15)
7990                         .Case("{v16}", RISCV::V16)
7991                         .Case("{v17}", RISCV::V17)
7992                         .Case("{v18}", RISCV::V18)
7993                         .Case("{v19}", RISCV::V19)
7994                         .Case("{v20}", RISCV::V20)
7995                         .Case("{v21}", RISCV::V21)
7996                         .Case("{v22}", RISCV::V22)
7997                         .Case("{v23}", RISCV::V23)
7998                         .Case("{v24}", RISCV::V24)
7999                         .Case("{v25}", RISCV::V25)
8000                         .Case("{v26}", RISCV::V26)
8001                         .Case("{v27}", RISCV::V27)
8002                         .Case("{v28}", RISCV::V28)
8003                         .Case("{v29}", RISCV::V29)
8004                         .Case("{v30}", RISCV::V30)
8005                         .Case("{v31}", RISCV::V31)
8006                         .Default(RISCV::NoRegister);
8007     if (VReg != RISCV::NoRegister) {
8008       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
8009         return std::make_pair(VReg, &RISCV::VMRegClass);
8010       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
8011         return std::make_pair(VReg, &RISCV::VRRegClass);
8012       for (const auto *RC :
8013            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
8014         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
8015           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
8016           return std::make_pair(VReg, RC);
8017         }
8018       }
8019     }
8020   }
8021 
8022   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
8023 }
8024 
8025 unsigned
8026 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
8027   // Currently only support length 1 constraints.
8028   if (ConstraintCode.size() == 1) {
8029     switch (ConstraintCode[0]) {
8030     case 'A':
8031       return InlineAsm::Constraint_A;
8032     default:
8033       break;
8034     }
8035   }
8036 
8037   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
8038 }
8039 
8040 void RISCVTargetLowering::LowerAsmOperandForConstraint(
8041     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
8042     SelectionDAG &DAG) const {
8043   // Currently only support length 1 constraints.
8044   if (Constraint.length() == 1) {
8045     switch (Constraint[0]) {
8046     case 'I':
8047       // Validate & create a 12-bit signed immediate operand.
8048       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
8049         uint64_t CVal = C->getSExtValue();
8050         if (isInt<12>(CVal))
8051           Ops.push_back(
8052               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
8053       }
8054       return;
8055     case 'J':
8056       // Validate & create an integer zero operand.
8057       if (auto *C = dyn_cast<ConstantSDNode>(Op))
8058         if (C->getZExtValue() == 0)
8059           Ops.push_back(
8060               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
8061       return;
8062     case 'K':
8063       // Validate & create a 5-bit unsigned immediate operand.
8064       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
8065         uint64_t CVal = C->getZExtValue();
8066         if (isUInt<5>(CVal))
8067           Ops.push_back(
8068               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
8069       }
8070       return;
8071     default:
8072       break;
8073     }
8074   }
8075   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
8076 }
8077 
8078 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
8079                                                    Instruction *Inst,
8080                                                    AtomicOrdering Ord) const {
8081   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
8082     return Builder.CreateFence(Ord);
8083   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
8084     return Builder.CreateFence(AtomicOrdering::Release);
8085   return nullptr;
8086 }
8087 
8088 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
8089                                                     Instruction *Inst,
8090                                                     AtomicOrdering Ord) const {
8091   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
8092     return Builder.CreateFence(AtomicOrdering::Acquire);
8093   return nullptr;
8094 }
8095 
8096 TargetLowering::AtomicExpansionKind
8097 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
8098   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
8099   // point operations can't be used in an lr/sc sequence without breaking the
8100   // forward-progress guarantee.
8101   if (AI->isFloatingPointOperation())
8102     return AtomicExpansionKind::CmpXChg;
8103 
8104   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
8105   if (Size == 8 || Size == 16)
8106     return AtomicExpansionKind::MaskedIntrinsic;
8107   return AtomicExpansionKind::None;
8108 }
8109 
8110 static Intrinsic::ID
8111 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
8112   if (XLen == 32) {
8113     switch (BinOp) {
8114     default:
8115       llvm_unreachable("Unexpected AtomicRMW BinOp");
8116     case AtomicRMWInst::Xchg:
8117       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
8118     case AtomicRMWInst::Add:
8119       return Intrinsic::riscv_masked_atomicrmw_add_i32;
8120     case AtomicRMWInst::Sub:
8121       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
8122     case AtomicRMWInst::Nand:
8123       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
8124     case AtomicRMWInst::Max:
8125       return Intrinsic::riscv_masked_atomicrmw_max_i32;
8126     case AtomicRMWInst::Min:
8127       return Intrinsic::riscv_masked_atomicrmw_min_i32;
8128     case AtomicRMWInst::UMax:
8129       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
8130     case AtomicRMWInst::UMin:
8131       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
8132     }
8133   }
8134 
8135   if (XLen == 64) {
8136     switch (BinOp) {
8137     default:
8138       llvm_unreachable("Unexpected AtomicRMW BinOp");
8139     case AtomicRMWInst::Xchg:
8140       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
8141     case AtomicRMWInst::Add:
8142       return Intrinsic::riscv_masked_atomicrmw_add_i64;
8143     case AtomicRMWInst::Sub:
8144       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
8145     case AtomicRMWInst::Nand:
8146       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
8147     case AtomicRMWInst::Max:
8148       return Intrinsic::riscv_masked_atomicrmw_max_i64;
8149     case AtomicRMWInst::Min:
8150       return Intrinsic::riscv_masked_atomicrmw_min_i64;
8151     case AtomicRMWInst::UMax:
8152       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
8153     case AtomicRMWInst::UMin:
8154       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
8155     }
8156   }
8157 
8158   llvm_unreachable("Unexpected XLen\n");
8159 }
8160 
8161 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
8162     IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
8163     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
8164   unsigned XLen = Subtarget.getXLen();
8165   Value *Ordering =
8166       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
8167   Type *Tys[] = {AlignedAddr->getType()};
8168   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
8169       AI->getModule(),
8170       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
8171 
8172   if (XLen == 64) {
8173     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
8174     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
8175     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
8176   }
8177 
8178   Value *Result;
8179 
8180   // Must pass the shift amount needed to sign extend the loaded value prior
8181   // to performing a signed comparison for min/max. ShiftAmt is the number of
8182   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
8183   // is the number of bits to left+right shift the value in order to
8184   // sign-extend.
8185   if (AI->getOperation() == AtomicRMWInst::Min ||
8186       AI->getOperation() == AtomicRMWInst::Max) {
8187     const DataLayout &DL = AI->getModule()->getDataLayout();
8188     unsigned ValWidth =
8189         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
8190     Value *SextShamt =
8191         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
8192     Result = Builder.CreateCall(LrwOpScwLoop,
8193                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
8194   } else {
8195     Result =
8196         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
8197   }
8198 
8199   if (XLen == 64)
8200     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
8201   return Result;
8202 }
8203 
8204 TargetLowering::AtomicExpansionKind
8205 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
8206     AtomicCmpXchgInst *CI) const {
8207   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
8208   if (Size == 8 || Size == 16)
8209     return AtomicExpansionKind::MaskedIntrinsic;
8210   return AtomicExpansionKind::None;
8211 }
8212 
8213 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
8214     IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
8215     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
8216   unsigned XLen = Subtarget.getXLen();
8217   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
8218   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
8219   if (XLen == 64) {
8220     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
8221     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
8222     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
8223     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
8224   }
8225   Type *Tys[] = {AlignedAddr->getType()};
8226   Function *MaskedCmpXchg =
8227       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
8228   Value *Result = Builder.CreateCall(
8229       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
8230   if (XLen == 64)
8231     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
8232   return Result;
8233 }
8234 
8235 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
8236   return false;
8237 }
8238 
8239 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
8240                                                      EVT VT) const {
8241   VT = VT.getScalarType();
8242 
8243   if (!VT.isSimple())
8244     return false;
8245 
8246   switch (VT.getSimpleVT().SimpleTy) {
8247   case MVT::f16:
8248     return Subtarget.hasStdExtZfh();
8249   case MVT::f32:
8250     return Subtarget.hasStdExtF();
8251   case MVT::f64:
8252     return Subtarget.hasStdExtD();
8253   default:
8254     break;
8255   }
8256 
8257   return false;
8258 }
8259 
8260 Register RISCVTargetLowering::getExceptionPointerRegister(
8261     const Constant *PersonalityFn) const {
8262   return RISCV::X10;
8263 }
8264 
8265 Register RISCVTargetLowering::getExceptionSelectorRegister(
8266     const Constant *PersonalityFn) const {
8267   return RISCV::X11;
8268 }
8269 
8270 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
8271   // Return false to suppress the unnecessary extensions if the LibCall
8272   // arguments or return value is f32 type for LP64 ABI.
8273   RISCVABI::ABI ABI = Subtarget.getTargetABI();
8274   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
8275     return false;
8276 
8277   return true;
8278 }
8279 
8280 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
8281   if (Subtarget.is64Bit() && Type == MVT::i32)
8282     return true;
8283 
8284   return IsSigned;
8285 }
8286 
8287 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
8288                                                  SDValue C) const {
8289   // Check integral scalar types.
8290   if (VT.isScalarInteger()) {
8291     // Omit the optimization if the sub target has the M extension and the data
8292     // size exceeds XLen.
8293     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
8294       return false;
8295     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
8296       // Break the MUL to a SLLI and an ADD/SUB.
8297       const APInt &Imm = ConstNode->getAPIntValue();
8298       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
8299           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
8300         return true;
8301       // Omit the following optimization if the sub target has the M extension
8302       // and the data size >= XLen.
8303       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
8304         return false;
8305       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
8306       // a pair of LUI/ADDI.
8307       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
8308         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
8309         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
8310             (1 - ImmS).isPowerOf2())
8311         return true;
8312       }
8313     }
8314   }
8315 
8316   return false;
8317 }
8318 
8319 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
8320     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
8321     bool *Fast) const {
8322   if (!VT.isScalableVector())
8323     return false;
8324 
8325   EVT ElemVT = VT.getVectorElementType();
8326   if (Alignment >= ElemVT.getStoreSize()) {
8327     if (Fast)
8328       *Fast = true;
8329     return true;
8330   }
8331 
8332   return false;
8333 }
8334 
8335 bool RISCVTargetLowering::splitValueIntoRegisterParts(
8336     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
8337     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
8338   bool IsABIRegCopy = CC.hasValue();
8339   EVT ValueVT = Val.getValueType();
8340   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
8341     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
8342     // and cast to f32.
8343     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
8344     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
8345     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
8346                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
8347     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
8348     Parts[0] = Val;
8349     return true;
8350   }
8351 
8352   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
8353     LLVMContext &Context = *DAG.getContext();
8354     EVT ValueEltVT = ValueVT.getVectorElementType();
8355     EVT PartEltVT = PartVT.getVectorElementType();
8356     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
8357     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
8358     if (PartVTBitSize % ValueVTBitSize == 0) {
8359       // If the element types are different, bitcast to the same element type of
8360       // PartVT first.
8361       if (ValueEltVT != PartEltVT) {
8362         unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
8363         assert(Count != 0 && "The number of element should not be zero.");
8364         EVT SameEltTypeVT =
8365             EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
8366         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
8367       }
8368       Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
8369                         Val, DAG.getConstant(0, DL, Subtarget.getXLenVT()));
8370       Parts[0] = Val;
8371       return true;
8372     }
8373   }
8374   return false;
8375 }
8376 
8377 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
8378     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
8379     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
8380   bool IsABIRegCopy = CC.hasValue();
8381   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
8382     SDValue Val = Parts[0];
8383 
8384     // Cast the f32 to i32, truncate to i16, and cast back to f16.
8385     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
8386     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
8387     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
8388     return Val;
8389   }
8390 
8391   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
8392     LLVMContext &Context = *DAG.getContext();
8393     SDValue Val = Parts[0];
8394     EVT ValueEltVT = ValueVT.getVectorElementType();
8395     EVT PartEltVT = PartVT.getVectorElementType();
8396     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
8397     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
8398     if (PartVTBitSize % ValueVTBitSize == 0) {
8399       EVT SameEltTypeVT = ValueVT;
8400       // If the element types are different, convert it to the same element type
8401       // of PartVT.
8402       if (ValueEltVT != PartEltVT) {
8403         unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
8404         assert(Count != 0 && "The number of element should not be zero.");
8405         SameEltTypeVT =
8406             EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
8407       }
8408       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val,
8409                         DAG.getConstant(0, DL, Subtarget.getXLenVT()));
8410       if (ValueEltVT != PartEltVT)
8411         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
8412       return Val;
8413     }
8414   }
8415   return SDValue();
8416 }
8417 
8418 #define GET_REGISTER_MATCHER
8419 #include "RISCVGenAsmMatcher.inc"
8420 
8421 Register
8422 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
8423                                        const MachineFunction &MF) const {
8424   Register Reg = MatchRegisterAltName(RegName);
8425   if (Reg == RISCV::NoRegister)
8426     Reg = MatchRegisterName(RegName);
8427   if (Reg == RISCV::NoRegister)
8428     report_fatal_error(
8429         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
8430   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
8431   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
8432     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
8433                              StringRef(RegName) + "\"."));
8434   return Reg;
8435 }
8436 
8437 namespace llvm {
8438 namespace RISCVVIntrinsicsTable {
8439 
8440 #define GET_RISCVVIntrinsicsTable_IMPL
8441 #include "RISCVGenSearchableTables.inc"
8442 
8443 } // namespace RISCVVIntrinsicsTable
8444 
8445 } // namespace llvm
8446