1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicsRISCV.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "riscv-lower"
45 
46 STATISTIC(NumTailCalls, "Number of tail calls");
47 
48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
49                                          const RISCVSubtarget &STI)
50     : TargetLowering(TM), Subtarget(STI) {
51 
52   if (Subtarget.isRV32E())
53     report_fatal_error("Codegen not yet implemented for RV32E");
54 
55   RISCVABI::ABI ABI = Subtarget.getTargetABI();
56   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
57 
58   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
59       !Subtarget.hasStdExtF()) {
60     errs() << "Hard-float 'f' ABI can't be used for a target that "
61                 "doesn't support the F instruction set extension (ignoring "
62                           "target-abi)\n";
63     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
64   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
65              !Subtarget.hasStdExtD()) {
66     errs() << "Hard-float 'd' ABI can't be used for a target that "
67               "doesn't support the D instruction set extension (ignoring "
68               "target-abi)\n";
69     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
70   }
71 
72   switch (ABI) {
73   default:
74     report_fatal_error("Don't know how to lower this ABI");
75   case RISCVABI::ABI_ILP32:
76   case RISCVABI::ABI_ILP32F:
77   case RISCVABI::ABI_ILP32D:
78   case RISCVABI::ABI_LP64:
79   case RISCVABI::ABI_LP64F:
80   case RISCVABI::ABI_LP64D:
81     break;
82   }
83 
84   MVT XLenVT = Subtarget.getXLenVT();
85 
86   // Set up the register classes.
87   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
88 
89   if (Subtarget.hasStdExtZfh())
90     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
91   if (Subtarget.hasStdExtF())
92     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
93   if (Subtarget.hasStdExtD())
94     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
95 
96   static const MVT::SimpleValueType BoolVecVTs[] = {
97       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
98       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
99   static const MVT::SimpleValueType IntVecVTs[] = {
100       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
101       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
102       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
103       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
104       MVT::nxv4i64, MVT::nxv8i64};
105   static const MVT::SimpleValueType F16VecVTs[] = {
106       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
107       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
108   static const MVT::SimpleValueType F32VecVTs[] = {
109       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
110   static const MVT::SimpleValueType F64VecVTs[] = {
111       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
112 
113   if (Subtarget.hasVInstructions()) {
114     auto addRegClassForRVV = [this](MVT VT) {
115       unsigned Size = VT.getSizeInBits().getKnownMinValue();
116       assert(Size <= 512 && isPowerOf2_32(Size));
117       const TargetRegisterClass *RC;
118       if (Size <= 64)
119         RC = &RISCV::VRRegClass;
120       else if (Size == 128)
121         RC = &RISCV::VRM2RegClass;
122       else if (Size == 256)
123         RC = &RISCV::VRM4RegClass;
124       else
125         RC = &RISCV::VRM8RegClass;
126 
127       addRegisterClass(VT, RC);
128     };
129 
130     for (MVT VT : BoolVecVTs)
131       addRegClassForRVV(VT);
132     for (MVT VT : IntVecVTs) {
133       if (VT.getVectorElementType() == MVT::i64 &&
134           !Subtarget.hasVInstructionsI64())
135         continue;
136       addRegClassForRVV(VT);
137     }
138 
139     if (Subtarget.hasVInstructionsF16())
140       for (MVT VT : F16VecVTs)
141         addRegClassForRVV(VT);
142 
143     if (Subtarget.hasVInstructionsF32())
144       for (MVT VT : F32VecVTs)
145         addRegClassForRVV(VT);
146 
147     if (Subtarget.hasVInstructionsF64())
148       for (MVT VT : F64VecVTs)
149         addRegClassForRVV(VT);
150 
151     if (Subtarget.useRVVForFixedLengthVectors()) {
152       auto addRegClassForFixedVectors = [this](MVT VT) {
153         MVT ContainerVT = getContainerForFixedLengthVector(VT);
154         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
155         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
156         addRegisterClass(VT, TRI.getRegClass(RCID));
157       };
158       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
159         if (useRVVForFixedLengthVectorVT(VT))
160           addRegClassForFixedVectors(VT);
161 
162       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
163         if (useRVVForFixedLengthVectorVT(VT))
164           addRegClassForFixedVectors(VT);
165     }
166   }
167 
168   // Compute derived properties from the register classes.
169   computeRegisterProperties(STI.getRegisterInfo());
170 
171   setStackPointerRegisterToSaveRestore(RISCV::X2);
172 
173   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
174     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
175 
176   // TODO: add all necessary setOperationAction calls.
177   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
178 
179   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
180   setOperationAction(ISD::BR_CC, XLenVT, Expand);
181   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
182   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
183 
184   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
185   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
186 
187   setOperationAction(ISD::VASTART, MVT::Other, Custom);
188   setOperationAction(ISD::VAARG, MVT::Other, Expand);
189   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
190   setOperationAction(ISD::VAEND, MVT::Other, Expand);
191 
192   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
193   if (!Subtarget.hasStdExtZbb()) {
194     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
195     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
196   }
197 
198   if (Subtarget.is64Bit()) {
199     setOperationAction(ISD::ADD, MVT::i32, Custom);
200     setOperationAction(ISD::SUB, MVT::i32, Custom);
201     setOperationAction(ISD::SHL, MVT::i32, Custom);
202     setOperationAction(ISD::SRA, MVT::i32, Custom);
203     setOperationAction(ISD::SRL, MVT::i32, Custom);
204 
205     setOperationAction(ISD::UADDO, MVT::i32, Custom);
206     setOperationAction(ISD::USUBO, MVT::i32, Custom);
207     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
208     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
209   } else {
210     setLibcallName(RTLIB::SHL_I128, nullptr);
211     setLibcallName(RTLIB::SRL_I128, nullptr);
212     setLibcallName(RTLIB::SRA_I128, nullptr);
213     setLibcallName(RTLIB::MUL_I128, nullptr);
214     setLibcallName(RTLIB::MULO_I64, nullptr);
215   }
216 
217   if (!Subtarget.hasStdExtM()) {
218     setOperationAction(ISD::MUL, XLenVT, Expand);
219     setOperationAction(ISD::MULHS, XLenVT, Expand);
220     setOperationAction(ISD::MULHU, XLenVT, Expand);
221     setOperationAction(ISD::SDIV, XLenVT, Expand);
222     setOperationAction(ISD::UDIV, XLenVT, Expand);
223     setOperationAction(ISD::SREM, XLenVT, Expand);
224     setOperationAction(ISD::UREM, XLenVT, Expand);
225   } else {
226     if (Subtarget.is64Bit()) {
227       setOperationAction(ISD::MUL, MVT::i32, Custom);
228       setOperationAction(ISD::MUL, MVT::i128, Custom);
229 
230       setOperationAction(ISD::SDIV, MVT::i8, Custom);
231       setOperationAction(ISD::UDIV, MVT::i8, Custom);
232       setOperationAction(ISD::UREM, MVT::i8, Custom);
233       setOperationAction(ISD::SDIV, MVT::i16, Custom);
234       setOperationAction(ISD::UDIV, MVT::i16, Custom);
235       setOperationAction(ISD::UREM, MVT::i16, Custom);
236       setOperationAction(ISD::SDIV, MVT::i32, Custom);
237       setOperationAction(ISD::UDIV, MVT::i32, Custom);
238       setOperationAction(ISD::UREM, MVT::i32, Custom);
239     } else {
240       setOperationAction(ISD::MUL, MVT::i64, Custom);
241     }
242   }
243 
244   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
245   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
246   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
247   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
248 
249   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
250   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
251   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
252 
253   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
254       Subtarget.hasStdExtZbkb()) {
255     if (Subtarget.is64Bit()) {
256       setOperationAction(ISD::ROTL, MVT::i32, Custom);
257       setOperationAction(ISD::ROTR, MVT::i32, Custom);
258     }
259   } else {
260     setOperationAction(ISD::ROTL, XLenVT, Expand);
261     setOperationAction(ISD::ROTR, XLenVT, Expand);
262   }
263 
264   if (Subtarget.hasStdExtZbp()) {
265     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
266     // more combining.
267     setOperationAction(ISD::BITREVERSE, XLenVT,   Custom);
268     setOperationAction(ISD::BSWAP,      XLenVT,   Custom);
269     setOperationAction(ISD::BITREVERSE, MVT::i8,  Custom);
270     // BSWAP i8 doesn't exist.
271     setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
272     setOperationAction(ISD::BSWAP,      MVT::i16, Custom);
273 
274     if (Subtarget.is64Bit()) {
275       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
276       setOperationAction(ISD::BSWAP,      MVT::i32, Custom);
277     }
278   } else {
279     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
280     // pattern match it directly in isel.
281     setOperationAction(ISD::BSWAP, XLenVT,
282                        (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())
283                            ? Legal
284                            : Expand);
285     // Zbkb can use rev8+brev8 to implement bitreverse.
286     setOperationAction(ISD::BITREVERSE, XLenVT,
287                        Subtarget.hasStdExtZbkb() ? Custom : Expand);
288   }
289 
290   if (Subtarget.hasStdExtZbb()) {
291     setOperationAction(ISD::SMIN, XLenVT, Legal);
292     setOperationAction(ISD::SMAX, XLenVT, Legal);
293     setOperationAction(ISD::UMIN, XLenVT, Legal);
294     setOperationAction(ISD::UMAX, XLenVT, Legal);
295 
296     if (Subtarget.is64Bit()) {
297       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
298       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
299       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
300       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
301     }
302   } else {
303     setOperationAction(ISD::CTTZ, XLenVT, Expand);
304     setOperationAction(ISD::CTLZ, XLenVT, Expand);
305     setOperationAction(ISD::CTPOP, XLenVT, Expand);
306 
307     if (Subtarget.is64Bit())
308       setOperationAction(ISD::ABS, MVT::i32, Custom);
309   }
310 
311   if (Subtarget.hasStdExtZbt()) {
312     setOperationAction(ISD::FSHL, XLenVT, Custom);
313     setOperationAction(ISD::FSHR, XLenVT, Custom);
314     setOperationAction(ISD::SELECT, XLenVT, Legal);
315 
316     if (Subtarget.is64Bit()) {
317       setOperationAction(ISD::FSHL, MVT::i32, Custom);
318       setOperationAction(ISD::FSHR, MVT::i32, Custom);
319     }
320   } else {
321     setOperationAction(ISD::SELECT, XLenVT, Custom);
322   }
323 
324   static constexpr ISD::NodeType FPLegalNodeTypes[] = {
325       ISD::FMINNUM,        ISD::FMAXNUM,       ISD::LRINT,
326       ISD::LLRINT,         ISD::LROUND,        ISD::LLROUND,
327       ISD::STRICT_LRINT,   ISD::STRICT_LLRINT, ISD::STRICT_LROUND,
328       ISD::STRICT_LLROUND, ISD::STRICT_FMA,    ISD::STRICT_FADD,
329       ISD::STRICT_FSUB,    ISD::STRICT_FMUL,   ISD::STRICT_FDIV,
330       ISD::STRICT_FSQRT,   ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS};
331 
332   static const ISD::CondCode FPCCToExpand[] = {
333       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
334       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
335       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
336 
337   static const ISD::NodeType FPOpToExpand[] = {
338       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
339       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
340 
341   if (Subtarget.hasStdExtZfh())
342     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
343 
344   if (Subtarget.hasStdExtZfh()) {
345     for (auto NT : FPLegalNodeTypes)
346       setOperationAction(NT, MVT::f16, Legal);
347     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
348     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
349     for (auto CC : FPCCToExpand)
350       setCondCodeAction(CC, MVT::f16, Expand);
351     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
352     setOperationAction(ISD::SELECT, MVT::f16, Custom);
353     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
354 
355     setOperationAction(ISD::FREM,       MVT::f16, Promote);
356     setOperationAction(ISD::FCEIL,      MVT::f16, Promote);
357     setOperationAction(ISD::FFLOOR,     MVT::f16, Promote);
358     setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
359     setOperationAction(ISD::FRINT,      MVT::f16, Promote);
360     setOperationAction(ISD::FROUND,     MVT::f16, Promote);
361     setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote);
362     setOperationAction(ISD::FTRUNC,     MVT::f16, Promote);
363     setOperationAction(ISD::FPOW,       MVT::f16, Promote);
364     setOperationAction(ISD::FPOWI,      MVT::f16, Promote);
365     setOperationAction(ISD::FCOS,       MVT::f16, Promote);
366     setOperationAction(ISD::FSIN,       MVT::f16, Promote);
367     setOperationAction(ISD::FSINCOS,    MVT::f16, Promote);
368     setOperationAction(ISD::FEXP,       MVT::f16, Promote);
369     setOperationAction(ISD::FEXP2,      MVT::f16, Promote);
370     setOperationAction(ISD::FLOG,       MVT::f16, Promote);
371     setOperationAction(ISD::FLOG2,      MVT::f16, Promote);
372     setOperationAction(ISD::FLOG10,     MVT::f16, Promote);
373 
374     // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
375     // complete support for all operations in LegalizeDAG.
376 
377     // We need to custom promote this.
378     if (Subtarget.is64Bit())
379       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
380   }
381 
382   if (Subtarget.hasStdExtF()) {
383     for (auto NT : FPLegalNodeTypes)
384       setOperationAction(NT, MVT::f32, Legal);
385     for (auto CC : FPCCToExpand)
386       setCondCodeAction(CC, MVT::f32, Expand);
387     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
388     setOperationAction(ISD::SELECT, MVT::f32, Custom);
389     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
390     for (auto Op : FPOpToExpand)
391       setOperationAction(Op, MVT::f32, Expand);
392     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
393     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
394   }
395 
396   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
397     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
398 
399   if (Subtarget.hasStdExtD()) {
400     for (auto NT : FPLegalNodeTypes)
401       setOperationAction(NT, MVT::f64, Legal);
402     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
403     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
404     for (auto CC : FPCCToExpand)
405       setCondCodeAction(CC, MVT::f64, Expand);
406     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
407     setOperationAction(ISD::SELECT, MVT::f64, Custom);
408     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
409     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
410     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
411     for (auto Op : FPOpToExpand)
412       setOperationAction(Op, MVT::f64, Expand);
413     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
414     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
415   }
416 
417   if (Subtarget.is64Bit()) {
418     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
419     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
420     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
421     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
422   }
423 
424   if (Subtarget.hasStdExtF()) {
425     setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom);
426     setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom);
427 
428     setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal);
429     setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal);
430     setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal);
431     setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal);
432 
433     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
434     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
435   }
436 
437   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
438   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
439   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
440   setOperationAction(ISD::JumpTable, XLenVT, Custom);
441 
442   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
443 
444   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
445   // Unfortunately this can't be determined just from the ISA naming string.
446   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
447                      Subtarget.is64Bit() ? Legal : Custom);
448 
449   setOperationAction(ISD::TRAP, MVT::Other, Legal);
450   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
451   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
452   if (Subtarget.is64Bit())
453     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
454 
455   if (Subtarget.hasStdExtA()) {
456     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
457     setMinCmpXchgSizeInBits(32);
458   } else {
459     setMaxAtomicSizeInBitsSupported(0);
460   }
461 
462   setBooleanContents(ZeroOrOneBooleanContent);
463 
464   if (Subtarget.hasVInstructions()) {
465     setBooleanVectorContents(ZeroOrOneBooleanContent);
466 
467     setOperationAction(ISD::VSCALE, XLenVT, Custom);
468 
469     // RVV intrinsics may have illegal operands.
470     // We also need to custom legalize vmv.x.s.
471     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
472     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
473     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
474     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
475     if (Subtarget.is64Bit()) {
476       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
477     } else {
478       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
479       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
480     }
481 
482     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
483     setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
484 
485     static const unsigned IntegerVPOps[] = {
486         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
487         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
488         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
489         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
490         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
491         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
492         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
493         ISD::VP_MERGE,       ISD::VP_SELECT};
494 
495     static const unsigned FloatingPointVPOps[] = {
496         ISD::VP_FADD,        ISD::VP_FSUB,        ISD::VP_FMUL,
497         ISD::VP_FDIV,        ISD::VP_FNEG,        ISD::VP_FMA,
498         ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, ISD::VP_REDUCE_FMIN,
499         ISD::VP_REDUCE_FMAX, ISD::VP_MERGE,       ISD::VP_SELECT};
500 
501     if (!Subtarget.is64Bit()) {
502       // We must custom-lower certain vXi64 operations on RV32 due to the vector
503       // element type being illegal.
504       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
505       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
506 
507       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
508       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
509       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
510       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
511       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
512       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
513       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
514       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
515 
516       setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom);
517       setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom);
518       setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom);
519       setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom);
520       setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom);
521       setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom);
522       setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom);
523       setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom);
524     }
525 
526     for (MVT VT : BoolVecVTs) {
527       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
528 
529       // Mask VTs are custom-expanded into a series of standard nodes
530       setOperationAction(ISD::TRUNCATE, VT, Custom);
531       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
532       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
533       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
534 
535       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
536       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
537 
538       setOperationAction(ISD::SELECT, VT, Custom);
539       setOperationAction(ISD::SELECT_CC, VT, Expand);
540       setOperationAction(ISD::VSELECT, VT, Expand);
541       setOperationAction(ISD::VP_MERGE, VT, Expand);
542       setOperationAction(ISD::VP_SELECT, VT, Expand);
543 
544       setOperationAction(ISD::VP_AND, VT, Custom);
545       setOperationAction(ISD::VP_OR, VT, Custom);
546       setOperationAction(ISD::VP_XOR, VT, Custom);
547 
548       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
549       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
550       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
551 
552       setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
553       setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
554       setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
555 
556       // RVV has native int->float & float->int conversions where the
557       // element type sizes are within one power-of-two of each other. Any
558       // wider distances between type sizes have to be lowered as sequences
559       // which progressively narrow the gap in stages.
560       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
561       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
562       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
563       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
564 
565       // Expand all extending loads to types larger than this, and truncating
566       // stores from types larger than this.
567       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
568         setTruncStoreAction(OtherVT, VT, Expand);
569         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
570         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
571         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
572       }
573     }
574 
575     for (MVT VT : IntVecVTs) {
576       if (VT.getVectorElementType() == MVT::i64 &&
577           !Subtarget.hasVInstructionsI64())
578         continue;
579 
580       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
581       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
582 
583       // Vectors implement MULHS/MULHU.
584       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
585       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
586 
587       // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
588       if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) {
589         setOperationAction(ISD::MULHU, VT, Expand);
590         setOperationAction(ISD::MULHS, VT, Expand);
591       }
592 
593       setOperationAction(ISD::SMIN, VT, Legal);
594       setOperationAction(ISD::SMAX, VT, Legal);
595       setOperationAction(ISD::UMIN, VT, Legal);
596       setOperationAction(ISD::UMAX, VT, Legal);
597 
598       setOperationAction(ISD::ROTL, VT, Expand);
599       setOperationAction(ISD::ROTR, VT, Expand);
600 
601       setOperationAction(ISD::CTTZ, VT, Expand);
602       setOperationAction(ISD::CTLZ, VT, Expand);
603       setOperationAction(ISD::CTPOP, VT, Expand);
604 
605       setOperationAction(ISD::BSWAP, VT, Expand);
606 
607       // Custom-lower extensions and truncations from/to mask types.
608       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
609       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
610       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
611 
612       // RVV has native int->float & float->int conversions where the
613       // element type sizes are within one power-of-two of each other. Any
614       // wider distances between type sizes have to be lowered as sequences
615       // which progressively narrow the gap in stages.
616       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
617       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
618       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
619       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
620 
621       setOperationAction(ISD::SADDSAT, VT, Legal);
622       setOperationAction(ISD::UADDSAT, VT, Legal);
623       setOperationAction(ISD::SSUBSAT, VT, Legal);
624       setOperationAction(ISD::USUBSAT, VT, Legal);
625 
626       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
627       // nodes which truncate by one power of two at a time.
628       setOperationAction(ISD::TRUNCATE, VT, Custom);
629 
630       // Custom-lower insert/extract operations to simplify patterns.
631       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
632       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
633 
634       // Custom-lower reduction operations to set up the corresponding custom
635       // nodes' operands.
636       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
637       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
638       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
639       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
640       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
641       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
642       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
643       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
644 
645       for (unsigned VPOpc : IntegerVPOps)
646         setOperationAction(VPOpc, VT, Custom);
647 
648       setOperationAction(ISD::LOAD, VT, Custom);
649       setOperationAction(ISD::STORE, VT, Custom);
650 
651       setOperationAction(ISD::MLOAD, VT, Custom);
652       setOperationAction(ISD::MSTORE, VT, Custom);
653       setOperationAction(ISD::MGATHER, VT, Custom);
654       setOperationAction(ISD::MSCATTER, VT, Custom);
655 
656       setOperationAction(ISD::VP_LOAD, VT, Custom);
657       setOperationAction(ISD::VP_STORE, VT, Custom);
658       setOperationAction(ISD::VP_GATHER, VT, Custom);
659       setOperationAction(ISD::VP_SCATTER, VT, Custom);
660 
661       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
662       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
663       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
664 
665       setOperationAction(ISD::SELECT, VT, Custom);
666       setOperationAction(ISD::SELECT_CC, VT, Expand);
667 
668       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
669       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
670 
671       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
672         setTruncStoreAction(VT, OtherVT, Expand);
673         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
674         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
675         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
676       }
677 
678       // Splice
679       setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
680 
681       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
682       // type that can represent the value exactly.
683       if (VT.getVectorElementType() != MVT::i64) {
684         MVT FloatEltVT =
685             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
686         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
687         if (isTypeLegal(FloatVT)) {
688           setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
689           setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
690         }
691       }
692     }
693 
694     // Expand various CCs to best match the RVV ISA, which natively supports UNE
695     // but no other unordered comparisons, and supports all ordered comparisons
696     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
697     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
698     // and we pattern-match those back to the "original", swapping operands once
699     // more. This way we catch both operations and both "vf" and "fv" forms with
700     // fewer patterns.
701     static const ISD::CondCode VFPCCToExpand[] = {
702         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
703         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
704         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
705     };
706 
707     // Sets common operation actions on RVV floating-point vector types.
708     const auto SetCommonVFPActions = [&](MVT VT) {
709       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
710       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
711       // sizes are within one power-of-two of each other. Therefore conversions
712       // between vXf16 and vXf64 must be lowered as sequences which convert via
713       // vXf32.
714       setOperationAction(ISD::FP_ROUND, VT, Custom);
715       setOperationAction(ISD::FP_EXTEND, VT, Custom);
716       // Custom-lower insert/extract operations to simplify patterns.
717       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
718       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
719       // Expand various condition codes (explained above).
720       for (auto CC : VFPCCToExpand)
721         setCondCodeAction(CC, VT, Expand);
722 
723       setOperationAction(ISD::FMINNUM, VT, Legal);
724       setOperationAction(ISD::FMAXNUM, VT, Legal);
725 
726       setOperationAction(ISD::FTRUNC, VT, Custom);
727       setOperationAction(ISD::FCEIL, VT, Custom);
728       setOperationAction(ISD::FFLOOR, VT, Custom);
729       setOperationAction(ISD::FROUND, VT, Custom);
730 
731       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
732       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
733       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
734       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
735 
736       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
737 
738       setOperationAction(ISD::LOAD, VT, Custom);
739       setOperationAction(ISD::STORE, VT, Custom);
740 
741       setOperationAction(ISD::MLOAD, VT, Custom);
742       setOperationAction(ISD::MSTORE, VT, Custom);
743       setOperationAction(ISD::MGATHER, VT, Custom);
744       setOperationAction(ISD::MSCATTER, VT, Custom);
745 
746       setOperationAction(ISD::VP_LOAD, VT, Custom);
747       setOperationAction(ISD::VP_STORE, VT, Custom);
748       setOperationAction(ISD::VP_GATHER, VT, Custom);
749       setOperationAction(ISD::VP_SCATTER, VT, Custom);
750 
751       setOperationAction(ISD::SELECT, VT, Custom);
752       setOperationAction(ISD::SELECT_CC, VT, Expand);
753 
754       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
755       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
756       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
757 
758       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
759       setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
760 
761       for (unsigned VPOpc : FloatingPointVPOps)
762         setOperationAction(VPOpc, VT, Custom);
763     };
764 
765     // Sets common extload/truncstore actions on RVV floating-point vector
766     // types.
767     const auto SetCommonVFPExtLoadTruncStoreActions =
768         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
769           for (auto SmallVT : SmallerVTs) {
770             setTruncStoreAction(VT, SmallVT, Expand);
771             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
772           }
773         };
774 
775     if (Subtarget.hasVInstructionsF16())
776       for (MVT VT : F16VecVTs)
777         SetCommonVFPActions(VT);
778 
779     for (MVT VT : F32VecVTs) {
780       if (Subtarget.hasVInstructionsF32())
781         SetCommonVFPActions(VT);
782       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
783     }
784 
785     for (MVT VT : F64VecVTs) {
786       if (Subtarget.hasVInstructionsF64())
787         SetCommonVFPActions(VT);
788       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
789       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
790     }
791 
792     if (Subtarget.useRVVForFixedLengthVectors()) {
793       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
794         if (!useRVVForFixedLengthVectorVT(VT))
795           continue;
796 
797         // By default everything must be expanded.
798         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
799           setOperationAction(Op, VT, Expand);
800         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
801           setTruncStoreAction(VT, OtherVT, Expand);
802           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
803           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
804           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
805         }
806 
807         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
808         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
809         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
810 
811         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
812         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
813 
814         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
815         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
816 
817         setOperationAction(ISD::LOAD, VT, Custom);
818         setOperationAction(ISD::STORE, VT, Custom);
819 
820         setOperationAction(ISD::SETCC, VT, Custom);
821 
822         setOperationAction(ISD::SELECT, VT, Custom);
823 
824         setOperationAction(ISD::TRUNCATE, VT, Custom);
825 
826         setOperationAction(ISD::BITCAST, VT, Custom);
827 
828         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
829         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
830         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
831 
832         setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
833         setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
834         setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
835 
836         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
837         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
838         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
839         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
840 
841         // Operations below are different for between masks and other vectors.
842         if (VT.getVectorElementType() == MVT::i1) {
843           setOperationAction(ISD::VP_AND, VT, Custom);
844           setOperationAction(ISD::VP_OR, VT, Custom);
845           setOperationAction(ISD::VP_XOR, VT, Custom);
846           setOperationAction(ISD::AND, VT, Custom);
847           setOperationAction(ISD::OR, VT, Custom);
848           setOperationAction(ISD::XOR, VT, Custom);
849           continue;
850         }
851 
852         // Use SPLAT_VECTOR to prevent type legalization from destroying the
853         // splats when type legalizing i64 scalar on RV32.
854         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
855         // improvements first.
856         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
857           setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
858           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
859         }
860 
861         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
862         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
863 
864         setOperationAction(ISD::MLOAD, VT, Custom);
865         setOperationAction(ISD::MSTORE, VT, Custom);
866         setOperationAction(ISD::MGATHER, VT, Custom);
867         setOperationAction(ISD::MSCATTER, VT, Custom);
868 
869         setOperationAction(ISD::VP_LOAD, VT, Custom);
870         setOperationAction(ISD::VP_STORE, VT, Custom);
871         setOperationAction(ISD::VP_GATHER, VT, Custom);
872         setOperationAction(ISD::VP_SCATTER, VT, Custom);
873 
874         setOperationAction(ISD::ADD, VT, Custom);
875         setOperationAction(ISD::MUL, VT, Custom);
876         setOperationAction(ISD::SUB, VT, Custom);
877         setOperationAction(ISD::AND, VT, Custom);
878         setOperationAction(ISD::OR, VT, Custom);
879         setOperationAction(ISD::XOR, VT, Custom);
880         setOperationAction(ISD::SDIV, VT, Custom);
881         setOperationAction(ISD::SREM, VT, Custom);
882         setOperationAction(ISD::UDIV, VT, Custom);
883         setOperationAction(ISD::UREM, VT, Custom);
884         setOperationAction(ISD::SHL, VT, Custom);
885         setOperationAction(ISD::SRA, VT, Custom);
886         setOperationAction(ISD::SRL, VT, Custom);
887 
888         setOperationAction(ISD::SMIN, VT, Custom);
889         setOperationAction(ISD::SMAX, VT, Custom);
890         setOperationAction(ISD::UMIN, VT, Custom);
891         setOperationAction(ISD::UMAX, VT, Custom);
892         setOperationAction(ISD::ABS,  VT, Custom);
893 
894         // vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
895         if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) {
896           setOperationAction(ISD::MULHS, VT, Custom);
897           setOperationAction(ISD::MULHU, VT, Custom);
898         }
899 
900         setOperationAction(ISD::SADDSAT, VT, Custom);
901         setOperationAction(ISD::UADDSAT, VT, Custom);
902         setOperationAction(ISD::SSUBSAT, VT, Custom);
903         setOperationAction(ISD::USUBSAT, VT, Custom);
904 
905         setOperationAction(ISD::VSELECT, VT, Custom);
906         setOperationAction(ISD::SELECT_CC, VT, Expand);
907 
908         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
909         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
910         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
911 
912         // Custom-lower reduction operations to set up the corresponding custom
913         // nodes' operands.
914         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
915         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
916         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
917         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
918         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
919 
920         for (unsigned VPOpc : IntegerVPOps)
921           setOperationAction(VPOpc, VT, Custom);
922 
923         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
924         // type that can represent the value exactly.
925         if (VT.getVectorElementType() != MVT::i64) {
926           MVT FloatEltVT =
927               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
928           EVT FloatVT =
929               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
930           if (isTypeLegal(FloatVT)) {
931             setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
932             setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
933           }
934         }
935       }
936 
937       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
938         if (!useRVVForFixedLengthVectorVT(VT))
939           continue;
940 
941         // By default everything must be expanded.
942         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
943           setOperationAction(Op, VT, Expand);
944         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
945           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
946           setTruncStoreAction(VT, OtherVT, Expand);
947         }
948 
949         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
950         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
951         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
952 
953         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
954         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
955         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
956         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
957         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
958 
959         setOperationAction(ISD::LOAD, VT, Custom);
960         setOperationAction(ISD::STORE, VT, Custom);
961         setOperationAction(ISD::MLOAD, VT, Custom);
962         setOperationAction(ISD::MSTORE, VT, Custom);
963         setOperationAction(ISD::MGATHER, VT, Custom);
964         setOperationAction(ISD::MSCATTER, VT, Custom);
965 
966         setOperationAction(ISD::VP_LOAD, VT, Custom);
967         setOperationAction(ISD::VP_STORE, VT, Custom);
968         setOperationAction(ISD::VP_GATHER, VT, Custom);
969         setOperationAction(ISD::VP_SCATTER, VT, Custom);
970 
971         setOperationAction(ISD::FADD, VT, Custom);
972         setOperationAction(ISD::FSUB, VT, Custom);
973         setOperationAction(ISD::FMUL, VT, Custom);
974         setOperationAction(ISD::FDIV, VT, Custom);
975         setOperationAction(ISD::FNEG, VT, Custom);
976         setOperationAction(ISD::FABS, VT, Custom);
977         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
978         setOperationAction(ISD::FSQRT, VT, Custom);
979         setOperationAction(ISD::FMA, VT, Custom);
980         setOperationAction(ISD::FMINNUM, VT, Custom);
981         setOperationAction(ISD::FMAXNUM, VT, Custom);
982 
983         setOperationAction(ISD::FP_ROUND, VT, Custom);
984         setOperationAction(ISD::FP_EXTEND, VT, Custom);
985 
986         setOperationAction(ISD::FTRUNC, VT, Custom);
987         setOperationAction(ISD::FCEIL, VT, Custom);
988         setOperationAction(ISD::FFLOOR, VT, Custom);
989         setOperationAction(ISD::FROUND, VT, Custom);
990 
991         for (auto CC : VFPCCToExpand)
992           setCondCodeAction(CC, VT, Expand);
993 
994         setOperationAction(ISD::VSELECT, VT, Custom);
995         setOperationAction(ISD::SELECT, VT, Custom);
996         setOperationAction(ISD::SELECT_CC, VT, Expand);
997 
998         setOperationAction(ISD::BITCAST, VT, Custom);
999 
1000         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
1001         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
1002         setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
1003         setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
1004 
1005         for (unsigned VPOpc : FloatingPointVPOps)
1006           setOperationAction(VPOpc, VT, Custom);
1007       }
1008 
1009       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
1010       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
1011       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
1012       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
1013       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1014       if (Subtarget.hasStdExtZfh())
1015         setOperationAction(ISD::BITCAST, MVT::f16, Custom);
1016       if (Subtarget.hasStdExtF())
1017         setOperationAction(ISD::BITCAST, MVT::f32, Custom);
1018       if (Subtarget.hasStdExtD())
1019         setOperationAction(ISD::BITCAST, MVT::f64, Custom);
1020     }
1021   }
1022 
1023   // Function alignments.
1024   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
1025   setMinFunctionAlignment(FunctionAlignment);
1026   setPrefFunctionAlignment(FunctionAlignment);
1027 
1028   setMinimumJumpTableEntries(5);
1029 
1030   // Jumps are expensive, compared to logic
1031   setJumpIsExpensive();
1032 
1033   setTargetDAGCombine(ISD::ADD);
1034   setTargetDAGCombine(ISD::SUB);
1035   setTargetDAGCombine(ISD::AND);
1036   setTargetDAGCombine(ISD::OR);
1037   setTargetDAGCombine(ISD::XOR);
1038   if (Subtarget.hasStdExtZbp()) {
1039     setTargetDAGCombine(ISD::ROTL);
1040     setTargetDAGCombine(ISD::ROTR);
1041   }
1042   setTargetDAGCombine(ISD::ANY_EXTEND);
1043   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1044   if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb())
1045     setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1046   if (Subtarget.hasStdExtF()) {
1047     setTargetDAGCombine(ISD::ZERO_EXTEND);
1048     setTargetDAGCombine(ISD::FP_TO_SINT);
1049     setTargetDAGCombine(ISD::FP_TO_UINT);
1050     setTargetDAGCombine(ISD::FP_TO_SINT_SAT);
1051     setTargetDAGCombine(ISD::FP_TO_UINT_SAT);
1052   }
1053   if (Subtarget.hasVInstructions()) {
1054     setTargetDAGCombine(ISD::FCOPYSIGN);
1055     setTargetDAGCombine(ISD::MGATHER);
1056     setTargetDAGCombine(ISD::MSCATTER);
1057     setTargetDAGCombine(ISD::VP_GATHER);
1058     setTargetDAGCombine(ISD::VP_SCATTER);
1059     setTargetDAGCombine(ISD::SRA);
1060     setTargetDAGCombine(ISD::SRL);
1061     setTargetDAGCombine(ISD::SHL);
1062     setTargetDAGCombine(ISD::STORE);
1063     setTargetDAGCombine(ISD::SPLAT_VECTOR);
1064   }
1065 
1066   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
1067   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
1068 }
1069 
1070 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
1071                                             LLVMContext &Context,
1072                                             EVT VT) const {
1073   if (!VT.isVector())
1074     return getPointerTy(DL);
1075   if (Subtarget.hasVInstructions() &&
1076       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
1077     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
1078   return VT.changeVectorElementTypeToInteger();
1079 }
1080 
1081 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
1082   return Subtarget.getXLenVT();
1083 }
1084 
1085 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1086                                              const CallInst &I,
1087                                              MachineFunction &MF,
1088                                              unsigned Intrinsic) const {
1089   auto &DL = I.getModule()->getDataLayout();
1090   switch (Intrinsic) {
1091   default:
1092     return false;
1093   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
1094   case Intrinsic::riscv_masked_atomicrmw_add_i32:
1095   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
1096   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
1097   case Intrinsic::riscv_masked_atomicrmw_max_i32:
1098   case Intrinsic::riscv_masked_atomicrmw_min_i32:
1099   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
1100   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
1101   case Intrinsic::riscv_masked_cmpxchg_i32:
1102     Info.opc = ISD::INTRINSIC_W_CHAIN;
1103     Info.memVT = MVT::i32;
1104     Info.ptrVal = I.getArgOperand(0);
1105     Info.offset = 0;
1106     Info.align = Align(4);
1107     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1108                  MachineMemOperand::MOVolatile;
1109     return true;
1110   case Intrinsic::riscv_masked_strided_load:
1111     Info.opc = ISD::INTRINSIC_W_CHAIN;
1112     Info.ptrVal = I.getArgOperand(1);
1113     Info.memVT = getValueType(DL, I.getType()->getScalarType());
1114     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
1115     Info.size = MemoryLocation::UnknownSize;
1116     Info.flags |= MachineMemOperand::MOLoad;
1117     return true;
1118   case Intrinsic::riscv_masked_strided_store:
1119     Info.opc = ISD::INTRINSIC_VOID;
1120     Info.ptrVal = I.getArgOperand(1);
1121     Info.memVT =
1122         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
1123     Info.align = Align(
1124         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
1125         8);
1126     Info.size = MemoryLocation::UnknownSize;
1127     Info.flags |= MachineMemOperand::MOStore;
1128     return true;
1129   }
1130 }
1131 
1132 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1133                                                 const AddrMode &AM, Type *Ty,
1134                                                 unsigned AS,
1135                                                 Instruction *I) const {
1136   // No global is ever allowed as a base.
1137   if (AM.BaseGV)
1138     return false;
1139 
1140   // Require a 12-bit signed offset.
1141   if (!isInt<12>(AM.BaseOffs))
1142     return false;
1143 
1144   switch (AM.Scale) {
1145   case 0: // "r+i" or just "i", depending on HasBaseReg.
1146     break;
1147   case 1:
1148     if (!AM.HasBaseReg) // allow "r+i".
1149       break;
1150     return false; // disallow "r+r" or "r+r+i".
1151   default:
1152     return false;
1153   }
1154 
1155   return true;
1156 }
1157 
1158 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1159   return isInt<12>(Imm);
1160 }
1161 
1162 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1163   return isInt<12>(Imm);
1164 }
1165 
1166 // On RV32, 64-bit integers are split into their high and low parts and held
1167 // in two different registers, so the trunc is free since the low register can
1168 // just be used.
1169 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1170   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1171     return false;
1172   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1173   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1174   return (SrcBits == 64 && DestBits == 32);
1175 }
1176 
1177 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1178   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1179       !SrcVT.isInteger() || !DstVT.isInteger())
1180     return false;
1181   unsigned SrcBits = SrcVT.getSizeInBits();
1182   unsigned DestBits = DstVT.getSizeInBits();
1183   return (SrcBits == 64 && DestBits == 32);
1184 }
1185 
1186 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1187   // Zexts are free if they can be combined with a load.
1188   // Don't advertise i32->i64 zextload as being free for RV64. It interacts
1189   // poorly with type legalization of compares preferring sext.
1190   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1191     EVT MemVT = LD->getMemoryVT();
1192     if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1193         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1194          LD->getExtensionType() == ISD::ZEXTLOAD))
1195       return true;
1196   }
1197 
1198   return TargetLowering::isZExtFree(Val, VT2);
1199 }
1200 
1201 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1202   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1203 }
1204 
1205 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1206   return Subtarget.hasStdExtZbb();
1207 }
1208 
1209 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1210   return Subtarget.hasStdExtZbb();
1211 }
1212 
1213 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1214   EVT VT = Y.getValueType();
1215 
1216   // FIXME: Support vectors once we have tests.
1217   if (VT.isVector())
1218     return false;
1219 
1220   return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
1221           Subtarget.hasStdExtZbkb()) &&
1222          !isa<ConstantSDNode>(Y);
1223 }
1224 
1225 /// Check if sinking \p I's operands to I's basic block is profitable, because
1226 /// the operands can be folded into a target instruction, e.g.
1227 /// splats of scalars can fold into vector instructions.
1228 bool RISCVTargetLowering::shouldSinkOperands(
1229     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1230   using namespace llvm::PatternMatch;
1231 
1232   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1233     return false;
1234 
1235   auto IsSinker = [&](Instruction *I, int Operand) {
1236     switch (I->getOpcode()) {
1237     case Instruction::Add:
1238     case Instruction::Sub:
1239     case Instruction::Mul:
1240     case Instruction::And:
1241     case Instruction::Or:
1242     case Instruction::Xor:
1243     case Instruction::FAdd:
1244     case Instruction::FSub:
1245     case Instruction::FMul:
1246     case Instruction::FDiv:
1247     case Instruction::ICmp:
1248     case Instruction::FCmp:
1249       return true;
1250     case Instruction::Shl:
1251     case Instruction::LShr:
1252     case Instruction::AShr:
1253     case Instruction::UDiv:
1254     case Instruction::SDiv:
1255     case Instruction::URem:
1256     case Instruction::SRem:
1257       return Operand == 1;
1258     case Instruction::Call:
1259       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1260         switch (II->getIntrinsicID()) {
1261         case Intrinsic::fma:
1262         case Intrinsic::vp_fma:
1263           return Operand == 0 || Operand == 1;
1264         // FIXME: Our patterns can only match vx/vf instructions when the splat
1265         // it on the RHS, because TableGen doesn't recognize our VP operations
1266         // as commutative.
1267         case Intrinsic::vp_add:
1268         case Intrinsic::vp_mul:
1269         case Intrinsic::vp_and:
1270         case Intrinsic::vp_or:
1271         case Intrinsic::vp_xor:
1272         case Intrinsic::vp_fadd:
1273         case Intrinsic::vp_fmul:
1274         case Intrinsic::vp_shl:
1275         case Intrinsic::vp_lshr:
1276         case Intrinsic::vp_ashr:
1277         case Intrinsic::vp_udiv:
1278         case Intrinsic::vp_sdiv:
1279         case Intrinsic::vp_urem:
1280         case Intrinsic::vp_srem:
1281           return Operand == 1;
1282         // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have
1283         // explicit patterns for both LHS and RHS (as 'vr' versions).
1284         case Intrinsic::vp_sub:
1285         case Intrinsic::vp_fsub:
1286         case Intrinsic::vp_fdiv:
1287           return Operand == 0 || Operand == 1;
1288         default:
1289           return false;
1290         }
1291       }
1292       return false;
1293     default:
1294       return false;
1295     }
1296   };
1297 
1298   for (auto OpIdx : enumerate(I->operands())) {
1299     if (!IsSinker(I, OpIdx.index()))
1300       continue;
1301 
1302     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1303     // Make sure we are not already sinking this operand
1304     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1305       continue;
1306 
1307     // We are looking for a splat that can be sunk.
1308     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1309                              m_Undef(), m_ZeroMask())))
1310       continue;
1311 
1312     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1313     // and vector registers
1314     for (Use &U : Op->uses()) {
1315       Instruction *Insn = cast<Instruction>(U.getUser());
1316       if (!IsSinker(Insn, U.getOperandNo()))
1317         return false;
1318     }
1319 
1320     Ops.push_back(&Op->getOperandUse(0));
1321     Ops.push_back(&OpIdx.value());
1322   }
1323   return true;
1324 }
1325 
1326 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1327                                        bool ForCodeSize) const {
1328   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1329   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1330     return false;
1331   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1332     return false;
1333   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1334     return false;
1335   return Imm.isZero();
1336 }
1337 
1338 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1339   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1340          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1341          (VT == MVT::f64 && Subtarget.hasStdExtD());
1342 }
1343 
1344 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1345                                                       CallingConv::ID CC,
1346                                                       EVT VT) const {
1347   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1348   // We might still end up using a GPR but that will be decided based on ABI.
1349   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1350   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1351     return MVT::f32;
1352 
1353   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1354 }
1355 
1356 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1357                                                            CallingConv::ID CC,
1358                                                            EVT VT) const {
1359   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1360   // We might still end up using a GPR but that will be decided based on ABI.
1361   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1362   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1363     return 1;
1364 
1365   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1366 }
1367 
1368 // Changes the condition code and swaps operands if necessary, so the SetCC
1369 // operation matches one of the comparisons supported directly by branches
1370 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1371 // with 1/-1.
1372 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1373                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1374   // Convert X > -1 to X >= 0.
1375   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1376     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1377     CC = ISD::SETGE;
1378     return;
1379   }
1380   // Convert X < 1 to 0 >= X.
1381   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1382     RHS = LHS;
1383     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1384     CC = ISD::SETGE;
1385     return;
1386   }
1387 
1388   switch (CC) {
1389   default:
1390     break;
1391   case ISD::SETGT:
1392   case ISD::SETLE:
1393   case ISD::SETUGT:
1394   case ISD::SETULE:
1395     CC = ISD::getSetCCSwappedOperands(CC);
1396     std::swap(LHS, RHS);
1397     break;
1398   }
1399 }
1400 
1401 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1402   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1403   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1404   if (VT.getVectorElementType() == MVT::i1)
1405     KnownSize *= 8;
1406 
1407   switch (KnownSize) {
1408   default:
1409     llvm_unreachable("Invalid LMUL.");
1410   case 8:
1411     return RISCVII::VLMUL::LMUL_F8;
1412   case 16:
1413     return RISCVII::VLMUL::LMUL_F4;
1414   case 32:
1415     return RISCVII::VLMUL::LMUL_F2;
1416   case 64:
1417     return RISCVII::VLMUL::LMUL_1;
1418   case 128:
1419     return RISCVII::VLMUL::LMUL_2;
1420   case 256:
1421     return RISCVII::VLMUL::LMUL_4;
1422   case 512:
1423     return RISCVII::VLMUL::LMUL_8;
1424   }
1425 }
1426 
1427 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1428   switch (LMul) {
1429   default:
1430     llvm_unreachable("Invalid LMUL.");
1431   case RISCVII::VLMUL::LMUL_F8:
1432   case RISCVII::VLMUL::LMUL_F4:
1433   case RISCVII::VLMUL::LMUL_F2:
1434   case RISCVII::VLMUL::LMUL_1:
1435     return RISCV::VRRegClassID;
1436   case RISCVII::VLMUL::LMUL_2:
1437     return RISCV::VRM2RegClassID;
1438   case RISCVII::VLMUL::LMUL_4:
1439     return RISCV::VRM4RegClassID;
1440   case RISCVII::VLMUL::LMUL_8:
1441     return RISCV::VRM8RegClassID;
1442   }
1443 }
1444 
1445 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1446   RISCVII::VLMUL LMUL = getLMUL(VT);
1447   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1448       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1449       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1450       LMUL == RISCVII::VLMUL::LMUL_1) {
1451     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1452                   "Unexpected subreg numbering");
1453     return RISCV::sub_vrm1_0 + Index;
1454   }
1455   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1456     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1457                   "Unexpected subreg numbering");
1458     return RISCV::sub_vrm2_0 + Index;
1459   }
1460   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1461     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1462                   "Unexpected subreg numbering");
1463     return RISCV::sub_vrm4_0 + Index;
1464   }
1465   llvm_unreachable("Invalid vector type.");
1466 }
1467 
1468 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1469   if (VT.getVectorElementType() == MVT::i1)
1470     return RISCV::VRRegClassID;
1471   return getRegClassIDForLMUL(getLMUL(VT));
1472 }
1473 
1474 // Attempt to decompose a subvector insert/extract between VecVT and
1475 // SubVecVT via subregister indices. Returns the subregister index that
1476 // can perform the subvector insert/extract with the given element index, as
1477 // well as the index corresponding to any leftover subvectors that must be
1478 // further inserted/extracted within the register class for SubVecVT.
1479 std::pair<unsigned, unsigned>
1480 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1481     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1482     const RISCVRegisterInfo *TRI) {
1483   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1484                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1485                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1486                 "Register classes not ordered");
1487   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1488   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1489   // Try to compose a subregister index that takes us from the incoming
1490   // LMUL>1 register class down to the outgoing one. At each step we half
1491   // the LMUL:
1492   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1493   // Note that this is not guaranteed to find a subregister index, such as
1494   // when we are extracting from one VR type to another.
1495   unsigned SubRegIdx = RISCV::NoSubRegister;
1496   for (const unsigned RCID :
1497        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1498     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1499       VecVT = VecVT.getHalfNumVectorElementsVT();
1500       bool IsHi =
1501           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1502       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1503                                             getSubregIndexByMVT(VecVT, IsHi));
1504       if (IsHi)
1505         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1506     }
1507   return {SubRegIdx, InsertExtractIdx};
1508 }
1509 
1510 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1511 // stores for those types.
1512 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1513   return !Subtarget.useRVVForFixedLengthVectors() ||
1514          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1515 }
1516 
1517 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1518   if (ScalarTy->isPointerTy())
1519     return true;
1520 
1521   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1522       ScalarTy->isIntegerTy(32))
1523     return true;
1524 
1525   if (ScalarTy->isIntegerTy(64))
1526     return Subtarget.hasVInstructionsI64();
1527 
1528   if (ScalarTy->isHalfTy())
1529     return Subtarget.hasVInstructionsF16();
1530   if (ScalarTy->isFloatTy())
1531     return Subtarget.hasVInstructionsF32();
1532   if (ScalarTy->isDoubleTy())
1533     return Subtarget.hasVInstructionsF64();
1534 
1535   return false;
1536 }
1537 
1538 static SDValue getVLOperand(SDValue Op) {
1539   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1540           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
1541          "Unexpected opcode");
1542   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
1543   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
1544   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
1545       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
1546   if (!II)
1547     return SDValue();
1548   return Op.getOperand(II->VLOperand + 1 + HasChain);
1549 }
1550 
1551 static bool useRVVForFixedLengthVectorVT(MVT VT,
1552                                          const RISCVSubtarget &Subtarget) {
1553   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1554   if (!Subtarget.useRVVForFixedLengthVectors())
1555     return false;
1556 
1557   // We only support a set of vector types with a consistent maximum fixed size
1558   // across all supported vector element types to avoid legalization issues.
1559   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1560   // fixed-length vector type we support is 1024 bytes.
1561   if (VT.getFixedSizeInBits() > 1024 * 8)
1562     return false;
1563 
1564   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1565 
1566   MVT EltVT = VT.getVectorElementType();
1567 
1568   // Don't use RVV for vectors we cannot scalarize if required.
1569   switch (EltVT.SimpleTy) {
1570   // i1 is supported but has different rules.
1571   default:
1572     return false;
1573   case MVT::i1:
1574     // Masks can only use a single register.
1575     if (VT.getVectorNumElements() > MinVLen)
1576       return false;
1577     MinVLen /= 8;
1578     break;
1579   case MVT::i8:
1580   case MVT::i16:
1581   case MVT::i32:
1582     break;
1583   case MVT::i64:
1584     if (!Subtarget.hasVInstructionsI64())
1585       return false;
1586     break;
1587   case MVT::f16:
1588     if (!Subtarget.hasVInstructionsF16())
1589       return false;
1590     break;
1591   case MVT::f32:
1592     if (!Subtarget.hasVInstructionsF32())
1593       return false;
1594     break;
1595   case MVT::f64:
1596     if (!Subtarget.hasVInstructionsF64())
1597       return false;
1598     break;
1599   }
1600 
1601   // Reject elements larger than ELEN.
1602   if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors())
1603     return false;
1604 
1605   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1606   // Don't use RVV for types that don't fit.
1607   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1608     return false;
1609 
1610   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1611   // the base fixed length RVV support in place.
1612   if (!VT.isPow2VectorType())
1613     return false;
1614 
1615   return true;
1616 }
1617 
1618 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1619   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1620 }
1621 
1622 // Return the largest legal scalable vector type that matches VT's element type.
1623 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1624                                             const RISCVSubtarget &Subtarget) {
1625   // This may be called before legal types are setup.
1626   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1627           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1628          "Expected legal fixed length vector!");
1629 
1630   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1631   unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors();
1632 
1633   MVT EltVT = VT.getVectorElementType();
1634   switch (EltVT.SimpleTy) {
1635   default:
1636     llvm_unreachable("unexpected element type for RVV container");
1637   case MVT::i1:
1638   case MVT::i8:
1639   case MVT::i16:
1640   case MVT::i32:
1641   case MVT::i64:
1642   case MVT::f16:
1643   case MVT::f32:
1644   case MVT::f64: {
1645     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1646     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1647     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1648     unsigned NumElts =
1649         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1650     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1651     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1652     return MVT::getScalableVectorVT(EltVT, NumElts);
1653   }
1654   }
1655 }
1656 
1657 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1658                                             const RISCVSubtarget &Subtarget) {
1659   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1660                                           Subtarget);
1661 }
1662 
1663 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1664   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1665 }
1666 
1667 // Grow V to consume an entire RVV register.
1668 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1669                                        const RISCVSubtarget &Subtarget) {
1670   assert(VT.isScalableVector() &&
1671          "Expected to convert into a scalable vector!");
1672   assert(V.getValueType().isFixedLengthVector() &&
1673          "Expected a fixed length vector operand!");
1674   SDLoc DL(V);
1675   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1676   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1677 }
1678 
1679 // Shrink V so it's just big enough to maintain a VT's worth of data.
1680 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1681                                          const RISCVSubtarget &Subtarget) {
1682   assert(VT.isFixedLengthVector() &&
1683          "Expected to convert into a fixed length vector!");
1684   assert(V.getValueType().isScalableVector() &&
1685          "Expected a scalable vector operand!");
1686   SDLoc DL(V);
1687   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1688   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1689 }
1690 
1691 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1692 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1693 // the vector type that it is contained in.
1694 static std::pair<SDValue, SDValue>
1695 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1696                 const RISCVSubtarget &Subtarget) {
1697   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1698   MVT XLenVT = Subtarget.getXLenVT();
1699   SDValue VL = VecVT.isFixedLengthVector()
1700                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1701                    : DAG.getRegister(RISCV::X0, XLenVT);
1702   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1703   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1704   return {Mask, VL};
1705 }
1706 
1707 // As above but assuming the given type is a scalable vector type.
1708 static std::pair<SDValue, SDValue>
1709 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1710                         const RISCVSubtarget &Subtarget) {
1711   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1712   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1713 }
1714 
1715 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1716 // of either is (currently) supported. This can get us into an infinite loop
1717 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1718 // as a ..., etc.
1719 // Until either (or both) of these can reliably lower any node, reporting that
1720 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1721 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1722 // which is not desirable.
1723 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1724     EVT VT, unsigned DefinedValues) const {
1725   return false;
1726 }
1727 
1728 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
1729                                   const RISCVSubtarget &Subtarget) {
1730   // RISCV FP-to-int conversions saturate to the destination register size, but
1731   // don't produce 0 for nan. We can use a conversion instruction and fix the
1732   // nan case with a compare and a select.
1733   SDValue Src = Op.getOperand(0);
1734 
1735   EVT DstVT = Op.getValueType();
1736   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1737 
1738   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1739   unsigned Opc;
1740   if (SatVT == DstVT)
1741     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
1742   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1743     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
1744   else
1745     return SDValue();
1746   // FIXME: Support other SatVTs by clamping before or after the conversion.
1747 
1748   SDLoc DL(Op);
1749   SDValue FpToInt = DAG.getNode(
1750       Opc, DL, DstVT, Src,
1751       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
1752 
1753   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1754   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1755 }
1756 
1757 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1758 // and back. Taking care to avoid converting values that are nan or already
1759 // correct.
1760 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1761 // have FRM dependencies modeled yet.
1762 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1763   MVT VT = Op.getSimpleValueType();
1764   assert(VT.isVector() && "Unexpected type");
1765 
1766   SDLoc DL(Op);
1767 
1768   // Freeze the source since we are increasing the number of uses.
1769   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1770 
1771   // Truncate to integer and convert back to FP.
1772   MVT IntVT = VT.changeVectorElementTypeToInteger();
1773   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1774   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1775 
1776   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1777 
1778   if (Op.getOpcode() == ISD::FCEIL) {
1779     // If the truncated value is the greater than or equal to the original
1780     // value, we've computed the ceil. Otherwise, we went the wrong way and
1781     // need to increase by 1.
1782     // FIXME: This should use a masked operation. Handle here or in isel?
1783     SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1784                                  DAG.getConstantFP(1.0, DL, VT));
1785     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1786     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1787   } else if (Op.getOpcode() == ISD::FFLOOR) {
1788     // If the truncated value is the less than or equal to the original value,
1789     // we've computed the floor. Otherwise, we went the wrong way and need to
1790     // decrease by 1.
1791     // FIXME: This should use a masked operation. Handle here or in isel?
1792     SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1793                                  DAG.getConstantFP(1.0, DL, VT));
1794     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1795     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1796   }
1797 
1798   // Restore the original sign so that -0.0 is preserved.
1799   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1800 
1801   // Determine the largest integer that can be represented exactly. This and
1802   // values larger than it don't have any fractional bits so don't need to
1803   // be converted.
1804   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1805   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1806   APFloat MaxVal = APFloat(FltSem);
1807   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1808                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1809   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1810 
1811   // If abs(Src) was larger than MaxVal or nan, keep it.
1812   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1813   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1814   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1815 }
1816 
1817 // ISD::FROUND is defined to round to nearest with ties rounding away from 0.
1818 // This mode isn't supported in vector hardware on RISCV. But as long as we
1819 // aren't compiling with trapping math, we can emulate this with
1820 // floor(X + copysign(nextafter(0.5, 0.0), X)).
1821 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM
1822 // dependencies modeled yet.
1823 // FIXME: Use masked operations to avoid final merge.
1824 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) {
1825   MVT VT = Op.getSimpleValueType();
1826   assert(VT.isVector() && "Unexpected type");
1827 
1828   SDLoc DL(Op);
1829 
1830   // Freeze the source since we are increasing the number of uses.
1831   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1832 
1833   // We do the conversion on the absolute value and fix the sign at the end.
1834   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1835 
1836   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1837   bool Ignored;
1838   APFloat Point5Pred = APFloat(0.5f);
1839   Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored);
1840   Point5Pred.next(/*nextDown*/ true);
1841 
1842   // Add the adjustment.
1843   SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs,
1844                                DAG.getConstantFP(Point5Pred, DL, VT));
1845 
1846   // Truncate to integer and convert back to fp.
1847   MVT IntVT = VT.changeVectorElementTypeToInteger();
1848   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust);
1849   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1850 
1851   // Restore the original sign.
1852   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1853 
1854   // Determine the largest integer that can be represented exactly. This and
1855   // values larger than it don't have any fractional bits so don't need to
1856   // be converted.
1857   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1858   APFloat MaxVal = APFloat(FltSem);
1859   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1860                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1861   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1862 
1863   // If abs(Src) was larger than MaxVal or nan, keep it.
1864   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1865   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1866   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1867 }
1868 
1869 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG,
1870                                  const RISCVSubtarget &Subtarget) {
1871   MVT VT = Op.getSimpleValueType();
1872   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1873 
1874   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1875 
1876   SDLoc DL(Op);
1877   SDValue Mask, VL;
1878   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1879 
1880   unsigned Opc =
1881       VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1882   SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
1883                               Op.getOperand(0), VL);
1884   return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1885 }
1886 
1887 struct VIDSequence {
1888   int64_t StepNumerator;
1889   unsigned StepDenominator;
1890   int64_t Addend;
1891 };
1892 
1893 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1894 // to the (non-zero) step S and start value X. This can be then lowered as the
1895 // RVV sequence (VID * S) + X, for example.
1896 // The step S is represented as an integer numerator divided by a positive
1897 // denominator. Note that the implementation currently only identifies
1898 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1899 // cannot detect 2/3, for example.
1900 // Note that this method will also match potentially unappealing index
1901 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1902 // determine whether this is worth generating code for.
1903 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1904   unsigned NumElts = Op.getNumOperands();
1905   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1906   if (!Op.getValueType().isInteger())
1907     return None;
1908 
1909   Optional<unsigned> SeqStepDenom;
1910   Optional<int64_t> SeqStepNum, SeqAddend;
1911   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1912   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1913   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1914     // Assume undef elements match the sequence; we just have to be careful
1915     // when interpolating across them.
1916     if (Op.getOperand(Idx).isUndef())
1917       continue;
1918     // The BUILD_VECTOR must be all constants.
1919     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1920       return None;
1921 
1922     uint64_t Val = Op.getConstantOperandVal(Idx) &
1923                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1924 
1925     if (PrevElt) {
1926       // Calculate the step since the last non-undef element, and ensure
1927       // it's consistent across the entire sequence.
1928       unsigned IdxDiff = Idx - PrevElt->second;
1929       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1930 
1931       // A zero-value value difference means that we're somewhere in the middle
1932       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1933       // step change before evaluating the sequence.
1934       if (ValDiff != 0) {
1935         int64_t Remainder = ValDiff % IdxDiff;
1936         // Normalize the step if it's greater than 1.
1937         if (Remainder != ValDiff) {
1938           // The difference must cleanly divide the element span.
1939           if (Remainder != 0)
1940             return None;
1941           ValDiff /= IdxDiff;
1942           IdxDiff = 1;
1943         }
1944 
1945         if (!SeqStepNum)
1946           SeqStepNum = ValDiff;
1947         else if (ValDiff != SeqStepNum)
1948           return None;
1949 
1950         if (!SeqStepDenom)
1951           SeqStepDenom = IdxDiff;
1952         else if (IdxDiff != *SeqStepDenom)
1953           return None;
1954       }
1955     }
1956 
1957     // Record and/or check any addend.
1958     if (SeqStepNum && SeqStepDenom) {
1959       uint64_t ExpectedVal =
1960           (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1961       int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1962       if (!SeqAddend)
1963         SeqAddend = Addend;
1964       else if (SeqAddend != Addend)
1965         return None;
1966     }
1967 
1968     // Record this non-undef element for later.
1969     if (!PrevElt || PrevElt->first != Val)
1970       PrevElt = std::make_pair(Val, Idx);
1971   }
1972   // We need to have logged both a step and an addend for this to count as
1973   // a legal index sequence.
1974   if (!SeqStepNum || !SeqStepDenom || !SeqAddend)
1975     return None;
1976 
1977   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1978 }
1979 
1980 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT
1981 // and lower it as a VRGATHER_VX_VL from the source vector.
1982 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL,
1983                                   SelectionDAG &DAG,
1984                                   const RISCVSubtarget &Subtarget) {
1985   if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1986     return SDValue();
1987   SDValue Vec = SplatVal.getOperand(0);
1988   // Only perform this optimization on vectors of the same size for simplicity.
1989   if (Vec.getValueType() != VT)
1990     return SDValue();
1991   SDValue Idx = SplatVal.getOperand(1);
1992   // The index must be a legal type.
1993   if (Idx.getValueType() != Subtarget.getXLenVT())
1994     return SDValue();
1995 
1996   MVT ContainerVT = VT;
1997   if (VT.isFixedLengthVector()) {
1998     ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1999     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2000   }
2001 
2002   SDValue Mask, VL;
2003   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2004 
2005   SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec,
2006                                Idx, Mask, VL);
2007 
2008   if (!VT.isFixedLengthVector())
2009     return Gather;
2010 
2011   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2012 }
2013 
2014 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
2015                                  const RISCVSubtarget &Subtarget) {
2016   MVT VT = Op.getSimpleValueType();
2017   assert(VT.isFixedLengthVector() && "Unexpected vector!");
2018 
2019   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2020 
2021   SDLoc DL(Op);
2022   SDValue Mask, VL;
2023   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2024 
2025   MVT XLenVT = Subtarget.getXLenVT();
2026   unsigned NumElts = Op.getNumOperands();
2027 
2028   if (VT.getVectorElementType() == MVT::i1) {
2029     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
2030       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
2031       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
2032     }
2033 
2034     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
2035       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
2036       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
2037     }
2038 
2039     // Lower constant mask BUILD_VECTORs via an integer vector type, in
2040     // scalar integer chunks whose bit-width depends on the number of mask
2041     // bits and XLEN.
2042     // First, determine the most appropriate scalar integer type to use. This
2043     // is at most XLenVT, but may be shrunk to a smaller vector element type
2044     // according to the size of the final vector - use i8 chunks rather than
2045     // XLenVT if we're producing a v8i1. This results in more consistent
2046     // codegen across RV32 and RV64.
2047     unsigned NumViaIntegerBits =
2048         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
2049     NumViaIntegerBits = std::min(NumViaIntegerBits,
2050                                  Subtarget.getMaxELENForFixedLengthVectors());
2051     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
2052       // If we have to use more than one INSERT_VECTOR_ELT then this
2053       // optimization is likely to increase code size; avoid peforming it in
2054       // such a case. We can use a load from a constant pool in this case.
2055       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
2056         return SDValue();
2057       // Now we can create our integer vector type. Note that it may be larger
2058       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
2059       MVT IntegerViaVecVT =
2060           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
2061                            divideCeil(NumElts, NumViaIntegerBits));
2062 
2063       uint64_t Bits = 0;
2064       unsigned BitPos = 0, IntegerEltIdx = 0;
2065       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
2066 
2067       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
2068         // Once we accumulate enough bits to fill our scalar type, insert into
2069         // our vector and clear our accumulated data.
2070         if (I != 0 && I % NumViaIntegerBits == 0) {
2071           if (NumViaIntegerBits <= 32)
2072             Bits = SignExtend64(Bits, 32);
2073           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2074           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
2075                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2076           Bits = 0;
2077           BitPos = 0;
2078           IntegerEltIdx++;
2079         }
2080         SDValue V = Op.getOperand(I);
2081         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
2082         Bits |= ((uint64_t)BitValue << BitPos);
2083       }
2084 
2085       // Insert the (remaining) scalar value into position in our integer
2086       // vector type.
2087       if (NumViaIntegerBits <= 32)
2088         Bits = SignExtend64(Bits, 32);
2089       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2090       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
2091                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2092 
2093       if (NumElts < NumViaIntegerBits) {
2094         // If we're producing a smaller vector than our minimum legal integer
2095         // type, bitcast to the equivalent (known-legal) mask type, and extract
2096         // our final mask.
2097         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
2098         Vec = DAG.getBitcast(MVT::v8i1, Vec);
2099         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
2100                           DAG.getConstant(0, DL, XLenVT));
2101       } else {
2102         // Else we must have produced an integer type with the same size as the
2103         // mask type; bitcast for the final result.
2104         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
2105         Vec = DAG.getBitcast(VT, Vec);
2106       }
2107 
2108       return Vec;
2109     }
2110 
2111     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
2112     // vector type, we have a legal equivalently-sized i8 type, so we can use
2113     // that.
2114     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
2115     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
2116 
2117     SDValue WideVec;
2118     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2119       // For a splat, perform a scalar truncate before creating the wider
2120       // vector.
2121       assert(Splat.getValueType() == XLenVT &&
2122              "Unexpected type for i1 splat value");
2123       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
2124                           DAG.getConstant(1, DL, XLenVT));
2125       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
2126     } else {
2127       SmallVector<SDValue, 8> Ops(Op->op_values());
2128       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
2129       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
2130       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
2131     }
2132 
2133     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
2134   }
2135 
2136   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2137     if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget))
2138       return Gather;
2139     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2140                                         : RISCVISD::VMV_V_X_VL;
2141     Splat =
2142         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL);
2143     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2144   }
2145 
2146   // Try and match index sequences, which we can lower to the vid instruction
2147   // with optional modifications. An all-undef vector is matched by
2148   // getSplatValue, above.
2149   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2150     int64_t StepNumerator = SimpleVID->StepNumerator;
2151     unsigned StepDenominator = SimpleVID->StepDenominator;
2152     int64_t Addend = SimpleVID->Addend;
2153 
2154     assert(StepNumerator != 0 && "Invalid step");
2155     bool Negate = false;
2156     int64_t SplatStepVal = StepNumerator;
2157     unsigned StepOpcode = ISD::MUL;
2158     if (StepNumerator != 1) {
2159       if (isPowerOf2_64(std::abs(StepNumerator))) {
2160         Negate = StepNumerator < 0;
2161         StepOpcode = ISD::SHL;
2162         SplatStepVal = Log2_64(std::abs(StepNumerator));
2163       }
2164     }
2165 
2166     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2167     // threshold since it's the immediate value many RVV instructions accept.
2168     // There is no vmul.vi instruction so ensure multiply constant can fit in
2169     // a single addi instruction.
2170     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2171          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2172         isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) {
2173       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2174       // Convert right out of the scalable type so we can use standard ISD
2175       // nodes for the rest of the computation. If we used scalable types with
2176       // these, we'd lose the fixed-length vector info and generate worse
2177       // vsetvli code.
2178       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2179       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2180           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2181         SDValue SplatStep = DAG.getSplatVector(
2182             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2183         VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2184       }
2185       if (StepDenominator != 1) {
2186         SDValue SplatStep = DAG.getSplatVector(
2187             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2188         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2189       }
2190       if (Addend != 0 || Negate) {
2191         SDValue SplatAddend =
2192             DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2193         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2194       }
2195       return VID;
2196     }
2197   }
2198 
2199   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2200   // when re-interpreted as a vector with a larger element type. For example,
2201   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2202   // could be instead splat as
2203   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2204   // TODO: This optimization could also work on non-constant splats, but it
2205   // would require bit-manipulation instructions to construct the splat value.
2206   SmallVector<SDValue> Sequence;
2207   unsigned EltBitSize = VT.getScalarSizeInBits();
2208   const auto *BV = cast<BuildVectorSDNode>(Op);
2209   if (VT.isInteger() && EltBitSize < 64 &&
2210       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2211       BV->getRepeatedSequence(Sequence) &&
2212       (Sequence.size() * EltBitSize) <= 64) {
2213     unsigned SeqLen = Sequence.size();
2214     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2215     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2216     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2217             ViaIntVT == MVT::i64) &&
2218            "Unexpected sequence type");
2219 
2220     unsigned EltIdx = 0;
2221     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2222     uint64_t SplatValue = 0;
2223     // Construct the amalgamated value which can be splatted as this larger
2224     // vector type.
2225     for (const auto &SeqV : Sequence) {
2226       if (!SeqV.isUndef())
2227         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2228                        << (EltIdx * EltBitSize));
2229       EltIdx++;
2230     }
2231 
2232     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2233     // achieve better constant materializion.
2234     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2235       SplatValue = SignExtend64(SplatValue, 32);
2236 
2237     // Since we can't introduce illegal i64 types at this stage, we can only
2238     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2239     // way we can use RVV instructions to splat.
2240     assert((ViaIntVT.bitsLE(XLenVT) ||
2241             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2242            "Unexpected bitcast sequence");
2243     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2244       SDValue ViaVL =
2245           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2246       MVT ViaContainerVT =
2247           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2248       SDValue Splat =
2249           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2250                       DAG.getUNDEF(ViaContainerVT),
2251                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2252       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2253       return DAG.getBitcast(VT, Splat);
2254     }
2255   }
2256 
2257   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2258   // which constitute a large proportion of the elements. In such cases we can
2259   // splat a vector with the dominant element and make up the shortfall with
2260   // INSERT_VECTOR_ELTs.
2261   // Note that this includes vectors of 2 elements by association. The
2262   // upper-most element is the "dominant" one, allowing us to use a splat to
2263   // "insert" the upper element, and an insert of the lower element at position
2264   // 0, which improves codegen.
2265   SDValue DominantValue;
2266   unsigned MostCommonCount = 0;
2267   DenseMap<SDValue, unsigned> ValueCounts;
2268   unsigned NumUndefElts =
2269       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2270 
2271   // Track the number of scalar loads we know we'd be inserting, estimated as
2272   // any non-zero floating-point constant. Other kinds of element are either
2273   // already in registers or are materialized on demand. The threshold at which
2274   // a vector load is more desirable than several scalar materializion and
2275   // vector-insertion instructions is not known.
2276   unsigned NumScalarLoads = 0;
2277 
2278   for (SDValue V : Op->op_values()) {
2279     if (V.isUndef())
2280       continue;
2281 
2282     ValueCounts.insert(std::make_pair(V, 0));
2283     unsigned &Count = ValueCounts[V];
2284 
2285     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2286       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2287 
2288     // Is this value dominant? In case of a tie, prefer the highest element as
2289     // it's cheaper to insert near the beginning of a vector than it is at the
2290     // end.
2291     if (++Count >= MostCommonCount) {
2292       DominantValue = V;
2293       MostCommonCount = Count;
2294     }
2295   }
2296 
2297   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2298   unsigned NumDefElts = NumElts - NumUndefElts;
2299   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2300 
2301   // Don't perform this optimization when optimizing for size, since
2302   // materializing elements and inserting them tends to cause code bloat.
2303   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2304       ((MostCommonCount > DominantValueCountThreshold) ||
2305        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2306     // Start by splatting the most common element.
2307     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2308 
2309     DenseSet<SDValue> Processed{DominantValue};
2310     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2311     for (const auto &OpIdx : enumerate(Op->ops())) {
2312       const SDValue &V = OpIdx.value();
2313       if (V.isUndef() || !Processed.insert(V).second)
2314         continue;
2315       if (ValueCounts[V] == 1) {
2316         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2317                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2318       } else {
2319         // Blend in all instances of this value using a VSELECT, using a
2320         // mask where each bit signals whether that element is the one
2321         // we're after.
2322         SmallVector<SDValue> Ops;
2323         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2324           return DAG.getConstant(V == V1, DL, XLenVT);
2325         });
2326         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2327                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2328                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2329       }
2330     }
2331 
2332     return Vec;
2333   }
2334 
2335   return SDValue();
2336 }
2337 
2338 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2339                                    SDValue Lo, SDValue Hi, SDValue VL,
2340                                    SelectionDAG &DAG) {
2341   bool HasPassthru = Passthru && !Passthru.isUndef();
2342   if (!HasPassthru && !Passthru)
2343     Passthru = DAG.getUNDEF(VT);
2344   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2345     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2346     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2347     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2348     // node in order to try and match RVV vector/scalar instructions.
2349     if ((LoC >> 31) == HiC)
2350       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
2351 
2352     // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use
2353     // vmv.v.x whose EEW = 32 to lower it.
2354     auto *Const = dyn_cast<ConstantSDNode>(VL);
2355     if (LoC == HiC && Const && Const->isAllOnesValue()) {
2356       MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
2357       // TODO: if vl <= min(VLMAX), we can also do this. But we could not
2358       // access the subtarget here now.
2359       auto InterVec = DAG.getNode(
2360           RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo,
2361                                   DAG.getRegister(RISCV::X0, MVT::i32));
2362       return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
2363     }
2364   }
2365 
2366   // Fall back to a stack store and stride x0 vector load.
2367   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo,
2368                      Hi, VL);
2369 }
2370 
2371 // Called by type legalization to handle splat of i64 on RV32.
2372 // FIXME: We can optimize this when the type has sign or zero bits in one
2373 // of the halves.
2374 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2375                                    SDValue Scalar, SDValue VL,
2376                                    SelectionDAG &DAG) {
2377   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2378   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2379                            DAG.getConstant(0, DL, MVT::i32));
2380   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2381                            DAG.getConstant(1, DL, MVT::i32));
2382   return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG);
2383 }
2384 
2385 // This function lowers a splat of a scalar operand Splat with the vector
2386 // length VL. It ensures the final sequence is type legal, which is useful when
2387 // lowering a splat after type legalization.
2388 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL,
2389                                 MVT VT, SDLoc DL, SelectionDAG &DAG,
2390                                 const RISCVSubtarget &Subtarget) {
2391   bool HasPassthru = Passthru && !Passthru.isUndef();
2392   if (!HasPassthru && !Passthru)
2393     Passthru = DAG.getUNDEF(VT);
2394   if (VT.isFloatingPoint()) {
2395     // If VL is 1, we could use vfmv.s.f.
2396     if (isOneConstant(VL))
2397       return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL);
2398     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL);
2399   }
2400 
2401   MVT XLenVT = Subtarget.getXLenVT();
2402 
2403   // Simplest case is that the operand needs to be promoted to XLenVT.
2404   if (Scalar.getValueType().bitsLE(XLenVT)) {
2405     // If the operand is a constant, sign extend to increase our chances
2406     // of being able to use a .vi instruction. ANY_EXTEND would become a
2407     // a zero extend and the simm5 check in isel would fail.
2408     // FIXME: Should we ignore the upper bits in isel instead?
2409     unsigned ExtOpc =
2410         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2411     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2412     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
2413     // If VL is 1 and the scalar value won't benefit from immediate, we could
2414     // use vmv.s.x.
2415     if (isOneConstant(VL) &&
2416         (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
2417       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL);
2418     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
2419   }
2420 
2421   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2422          "Unexpected scalar for splat lowering!");
2423 
2424   if (isOneConstant(VL) && isNullConstant(Scalar))
2425     return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru,
2426                        DAG.getConstant(0, DL, XLenVT), VL);
2427 
2428   // Otherwise use the more complicated splatting algorithm.
2429   return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG);
2430 }
2431 
2432 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources,
2433                                 const RISCVSubtarget &Subtarget) {
2434   // We need to be able to widen elements to the next larger integer type.
2435   if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors())
2436     return false;
2437 
2438   int Size = Mask.size();
2439   assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
2440 
2441   int Srcs[] = {-1, -1};
2442   for (int i = 0; i != Size; ++i) {
2443     // Ignore undef elements.
2444     if (Mask[i] < 0)
2445       continue;
2446 
2447     // Is this an even or odd element.
2448     int Pol = i % 2;
2449 
2450     // Ensure we consistently use the same source for this element polarity.
2451     int Src = Mask[i] / Size;
2452     if (Srcs[Pol] < 0)
2453       Srcs[Pol] = Src;
2454     if (Srcs[Pol] != Src)
2455       return false;
2456 
2457     // Make sure the element within the source is appropriate for this element
2458     // in the destination.
2459     int Elt = Mask[i] % Size;
2460     if (Elt != i / 2)
2461       return false;
2462   }
2463 
2464   // We need to find a source for each polarity and they can't be the same.
2465   if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1])
2466     return false;
2467 
2468   // Swap the sources if the second source was in the even polarity.
2469   SwapSources = Srcs[0] > Srcs[1];
2470 
2471   return true;
2472 }
2473 
2474 /// Match shuffles that concatenate two vectors, rotate the concatenation,
2475 /// and then extract the original number of elements from the rotated result.
2476 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The
2477 /// returned rotation amount is for a rotate right, where elements move from
2478 /// higher elements to lower elements. \p LoSrc indicates the first source
2479 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector
2480 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be
2481 /// 0 or 1 if a rotation is found.
2482 ///
2483 /// NOTE: We talk about rotate to the right which matches how bit shift and
2484 /// rotate instructions are described where LSBs are on the right, but LLVM IR
2485 /// and the table below write vectors with the lowest elements on the left.
2486 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) {
2487   int Size = Mask.size();
2488 
2489   // We need to detect various ways of spelling a rotation:
2490   //   [11, 12, 13, 14, 15,  0,  1,  2]
2491   //   [-1, 12, 13, 14, -1, -1,  1, -1]
2492   //   [-1, -1, -1, -1, -1, -1,  1,  2]
2493   //   [ 3,  4,  5,  6,  7,  8,  9, 10]
2494   //   [-1,  4,  5,  6, -1, -1,  9, -1]
2495   //   [-1,  4,  5,  6, -1, -1, -1, -1]
2496   int Rotation = 0;
2497   LoSrc = -1;
2498   HiSrc = -1;
2499   for (int i = 0; i != Size; ++i) {
2500     int M = Mask[i];
2501     if (M < 0)
2502       continue;
2503 
2504     // Determine where a rotate vector would have started.
2505     int StartIdx = i - (M % Size);
2506     // The identity rotation isn't interesting, stop.
2507     if (StartIdx == 0)
2508       return -1;
2509 
2510     // If we found the tail of a vector the rotation must be the missing
2511     // front. If we found the head of a vector, it must be how much of the
2512     // head.
2513     int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
2514 
2515     if (Rotation == 0)
2516       Rotation = CandidateRotation;
2517     else if (Rotation != CandidateRotation)
2518       // The rotations don't match, so we can't match this mask.
2519       return -1;
2520 
2521     // Compute which value this mask is pointing at.
2522     int MaskSrc = M < Size ? 0 : 1;
2523 
2524     // Compute which of the two target values this index should be assigned to.
2525     // This reflects whether the high elements are remaining or the low elemnts
2526     // are remaining.
2527     int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc;
2528 
2529     // Either set up this value if we've not encountered it before, or check
2530     // that it remains consistent.
2531     if (TargetSrc < 0)
2532       TargetSrc = MaskSrc;
2533     else if (TargetSrc != MaskSrc)
2534       // This may be a rotation, but it pulls from the inputs in some
2535       // unsupported interleaving.
2536       return -1;
2537   }
2538 
2539   // Check that we successfully analyzed the mask, and normalize the results.
2540   assert(Rotation != 0 && "Failed to locate a viable rotation!");
2541   assert((LoSrc >= 0 || HiSrc >= 0) &&
2542          "Failed to find a rotated input vector!");
2543 
2544   return Rotation;
2545 }
2546 
2547 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2548                                    const RISCVSubtarget &Subtarget) {
2549   SDValue V1 = Op.getOperand(0);
2550   SDValue V2 = Op.getOperand(1);
2551   SDLoc DL(Op);
2552   MVT XLenVT = Subtarget.getXLenVT();
2553   MVT VT = Op.getSimpleValueType();
2554   unsigned NumElts = VT.getVectorNumElements();
2555   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2556 
2557   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2558 
2559   SDValue TrueMask, VL;
2560   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2561 
2562   if (SVN->isSplat()) {
2563     const int Lane = SVN->getSplatIndex();
2564     if (Lane >= 0) {
2565       MVT SVT = VT.getVectorElementType();
2566 
2567       // Turn splatted vector load into a strided load with an X0 stride.
2568       SDValue V = V1;
2569       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2570       // with undef.
2571       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2572       int Offset = Lane;
2573       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2574         int OpElements =
2575             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2576         V = V.getOperand(Offset / OpElements);
2577         Offset %= OpElements;
2578       }
2579 
2580       // We need to ensure the load isn't atomic or volatile.
2581       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2582         auto *Ld = cast<LoadSDNode>(V);
2583         Offset *= SVT.getStoreSize();
2584         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2585                                                    TypeSize::Fixed(Offset), DL);
2586 
2587         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2588         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2589           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2590           SDValue IntID =
2591               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2592           SDValue Ops[] = {Ld->getChain(),
2593                            IntID,
2594                            DAG.getUNDEF(ContainerVT),
2595                            NewAddr,
2596                            DAG.getRegister(RISCV::X0, XLenVT),
2597                            VL};
2598           SDValue NewLoad = DAG.getMemIntrinsicNode(
2599               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2600               DAG.getMachineFunction().getMachineMemOperand(
2601                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2602           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2603           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2604         }
2605 
2606         // Otherwise use a scalar load and splat. This will give the best
2607         // opportunity to fold a splat into the operation. ISel can turn it into
2608         // the x0 strided load if we aren't able to fold away the select.
2609         if (SVT.isFloatingPoint())
2610           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2611                           Ld->getPointerInfo().getWithOffset(Offset),
2612                           Ld->getOriginalAlign(),
2613                           Ld->getMemOperand()->getFlags());
2614         else
2615           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2616                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2617                              Ld->getOriginalAlign(),
2618                              Ld->getMemOperand()->getFlags());
2619         DAG.makeEquivalentMemoryOrdering(Ld, V);
2620 
2621         unsigned Opc =
2622             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2623         SDValue Splat =
2624             DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL);
2625         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2626       }
2627 
2628       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2629       assert(Lane < (int)NumElts && "Unexpected lane!");
2630       SDValue Gather =
2631           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
2632                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
2633       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2634     }
2635   }
2636 
2637   ArrayRef<int> Mask = SVN->getMask();
2638 
2639   // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may
2640   // be undef which can be handled with a single SLIDEDOWN/UP.
2641   int LoSrc, HiSrc;
2642   int Rotation = isElementRotate(LoSrc, HiSrc, Mask);
2643   if (Rotation > 0) {
2644     SDValue LoV, HiV;
2645     if (LoSrc >= 0) {
2646       LoV = LoSrc == 0 ? V1 : V2;
2647       LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget);
2648     }
2649     if (HiSrc >= 0) {
2650       HiV = HiSrc == 0 ? V1 : V2;
2651       HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget);
2652     }
2653 
2654     // We found a rotation. We need to slide HiV down by Rotation. Then we need
2655     // to slide LoV up by (NumElts - Rotation).
2656     unsigned InvRotate = NumElts - Rotation;
2657 
2658     SDValue Res = DAG.getUNDEF(ContainerVT);
2659     if (HiV) {
2660       // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN.
2661       // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it
2662       // causes multiple vsetvlis in some test cases such as lowering
2663       // reduce.mul
2664       SDValue DownVL = VL;
2665       if (LoV)
2666         DownVL = DAG.getConstant(InvRotate, DL, XLenVT);
2667       Res =
2668           DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV,
2669                       DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL);
2670     }
2671     if (LoV)
2672       Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV,
2673                         DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL);
2674 
2675     return convertFromScalableVector(VT, Res, DAG, Subtarget);
2676   }
2677 
2678   // Detect an interleave shuffle and lower to
2679   // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
2680   bool SwapSources;
2681   if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) {
2682     // Swap sources if needed.
2683     if (SwapSources)
2684       std::swap(V1, V2);
2685 
2686     // Extract the lower half of the vectors.
2687     MVT HalfVT = VT.getHalfNumVectorElementsVT();
2688     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
2689                      DAG.getConstant(0, DL, XLenVT));
2690     V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2,
2691                      DAG.getConstant(0, DL, XLenVT));
2692 
2693     // Double the element width and halve the number of elements in an int type.
2694     unsigned EltBits = VT.getScalarSizeInBits();
2695     MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
2696     MVT WideIntVT =
2697         MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2);
2698     // Convert this to a scalable vector. We need to base this on the
2699     // destination size to ensure there's always a type with a smaller LMUL.
2700     MVT WideIntContainerVT =
2701         getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget);
2702 
2703     // Convert sources to scalable vectors with the same element count as the
2704     // larger type.
2705     MVT HalfContainerVT = MVT::getVectorVT(
2706         VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount());
2707     V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget);
2708     V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget);
2709 
2710     // Cast sources to integer.
2711     MVT IntEltVT = MVT::getIntegerVT(EltBits);
2712     MVT IntHalfVT =
2713         MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount());
2714     V1 = DAG.getBitcast(IntHalfVT, V1);
2715     V2 = DAG.getBitcast(IntHalfVT, V2);
2716 
2717     // Freeze V2 since we use it twice and we need to be sure that the add and
2718     // multiply see the same value.
2719     V2 = DAG.getFreeze(V2);
2720 
2721     // Recreate TrueMask using the widened type's element count.
2722     MVT MaskVT =
2723         MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount());
2724     TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
2725 
2726     // Widen V1 and V2 with 0s and add one copy of V2 to V1.
2727     SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1,
2728                               V2, TrueMask, VL);
2729     // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer.
2730     SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT,
2731                                      DAG.getUNDEF(IntHalfVT),
2732                                      DAG.getAllOnesConstant(DL, XLenVT));
2733     SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT,
2734                                    V2, Multiplier, TrueMask, VL);
2735     // Add the new copies to our previous addition giving us 2^eltbits copies of
2736     // V2. This is equivalent to shifting V2 left by eltbits. This should
2737     // combine with the vwmulu.vv above to form vwmaccu.vv.
2738     Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul,
2739                       TrueMask, VL);
2740     // Cast back to ContainerVT. We need to re-create a new ContainerVT in case
2741     // WideIntContainerVT is a larger fractional LMUL than implied by the fixed
2742     // vector VT.
2743     ContainerVT =
2744         MVT::getVectorVT(VT.getVectorElementType(),
2745                          WideIntContainerVT.getVectorElementCount() * 2);
2746     Add = DAG.getBitcast(ContainerVT, Add);
2747     return convertFromScalableVector(VT, Add, DAG, Subtarget);
2748   }
2749 
2750   // Detect shuffles which can be re-expressed as vector selects; these are
2751   // shuffles in which each element in the destination is taken from an element
2752   // at the corresponding index in either source vectors.
2753   bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) {
2754     int MaskIndex = MaskIdx.value();
2755     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2756   });
2757 
2758   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2759 
2760   SmallVector<SDValue> MaskVals;
2761   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2762   // merged with a second vrgather.
2763   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2764 
2765   // By default we preserve the original operand order, and use a mask to
2766   // select LHS as true and RHS as false. However, since RVV vector selects may
2767   // feature splats but only on the LHS, we may choose to invert our mask and
2768   // instead select between RHS and LHS.
2769   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2770   bool InvertMask = IsSelect == SwapOps;
2771 
2772   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2773   // half.
2774   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2775 
2776   // Now construct the mask that will be used by the vselect or blended
2777   // vrgather operation. For vrgathers, construct the appropriate indices into
2778   // each vector.
2779   for (int MaskIndex : Mask) {
2780     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2781     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2782     if (!IsSelect) {
2783       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2784       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2785                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2786                                      : DAG.getUNDEF(XLenVT));
2787       GatherIndicesRHS.push_back(
2788           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2789                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2790       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2791         ++LHSIndexCounts[MaskIndex];
2792       if (!IsLHSOrUndefIndex)
2793         ++RHSIndexCounts[MaskIndex - NumElts];
2794     }
2795   }
2796 
2797   if (SwapOps) {
2798     std::swap(V1, V2);
2799     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2800   }
2801 
2802   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2803   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2804   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2805 
2806   if (IsSelect)
2807     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2808 
2809   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2810     // On such a large vector we're unable to use i8 as the index type.
2811     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2812     // may involve vector splitting if we're already at LMUL=8, or our
2813     // user-supplied maximum fixed-length LMUL.
2814     return SDValue();
2815   }
2816 
2817   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2818   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2819   MVT IndexVT = VT.changeTypeToInteger();
2820   // Since we can't introduce illegal index types at this stage, use i16 and
2821   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2822   // than XLenVT.
2823   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2824     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2825     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2826   }
2827 
2828   MVT IndexContainerVT =
2829       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2830 
2831   SDValue Gather;
2832   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2833   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2834   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2835     Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG,
2836                               Subtarget);
2837   } else {
2838     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2839     // If only one index is used, we can use a "splat" vrgather.
2840     // TODO: We can splat the most-common index and fix-up any stragglers, if
2841     // that's beneficial.
2842     if (LHSIndexCounts.size() == 1) {
2843       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2844       Gather =
2845           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2846                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2847     } else {
2848       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2849       LHSIndices =
2850           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2851 
2852       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2853                            TrueMask, VL);
2854     }
2855   }
2856 
2857   // If a second vector operand is used by this shuffle, blend it in with an
2858   // additional vrgather.
2859   if (!V2.isUndef()) {
2860     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2861     // If only one index is used, we can use a "splat" vrgather.
2862     // TODO: We can splat the most-common index and fix-up any stragglers, if
2863     // that's beneficial.
2864     if (RHSIndexCounts.size() == 1) {
2865       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2866       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2867                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2868     } else {
2869       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2870       RHSIndices =
2871           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2872       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2873                        VL);
2874     }
2875 
2876     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2877     SelectMask =
2878         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2879 
2880     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2881                          Gather, VL);
2882   }
2883 
2884   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2885 }
2886 
2887 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
2888   // Support splats for any type. These should type legalize well.
2889   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
2890     return true;
2891 
2892   // Only support legal VTs for other shuffles for now.
2893   if (!isTypeLegal(VT))
2894     return false;
2895 
2896   MVT SVT = VT.getSimpleVT();
2897 
2898   bool SwapSources;
2899   int LoSrc, HiSrc;
2900   return (isElementRotate(LoSrc, HiSrc, M) > 0) ||
2901          isInterleaveShuffle(M, SVT, SwapSources, Subtarget);
2902 }
2903 
2904 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
2905                                      SDLoc DL, SelectionDAG &DAG,
2906                                      const RISCVSubtarget &Subtarget) {
2907   if (VT.isScalableVector())
2908     return DAG.getFPExtendOrRound(Op, DL, VT);
2909   assert(VT.isFixedLengthVector() &&
2910          "Unexpected value type for RVV FP extend/round lowering");
2911   SDValue Mask, VL;
2912   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2913   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
2914                         ? RISCVISD::FP_EXTEND_VL
2915                         : RISCVISD::FP_ROUND_VL;
2916   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
2917 }
2918 
2919 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2920 // the exponent.
2921 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2922   MVT VT = Op.getSimpleValueType();
2923   unsigned EltSize = VT.getScalarSizeInBits();
2924   SDValue Src = Op.getOperand(0);
2925   SDLoc DL(Op);
2926 
2927   // We need a FP type that can represent the value.
2928   // TODO: Use f16 for i8 when possible?
2929   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2930   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2931 
2932   // Legal types should have been checked in the RISCVTargetLowering
2933   // constructor.
2934   // TODO: Splitting may make sense in some cases.
2935   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2936          "Expected legal float type!");
2937 
2938   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2939   // The trailing zero count is equal to log2 of this single bit value.
2940   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2941     SDValue Neg =
2942         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2943     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2944   }
2945 
2946   // We have a legal FP type, convert to it.
2947   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2948   // Bitcast to integer and shift the exponent to the LSB.
2949   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2950   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2951   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2952   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2953                               DAG.getConstant(ShiftAmt, DL, IntVT));
2954   // Truncate back to original type to allow vnsrl.
2955   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2956   // The exponent contains log2 of the value in biased form.
2957   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2958 
2959   // For trailing zeros, we just need to subtract the bias.
2960   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2961     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2962                        DAG.getConstant(ExponentBias, DL, VT));
2963 
2964   // For leading zeros, we need to remove the bias and convert from log2 to
2965   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2966   unsigned Adjust = ExponentBias + (EltSize - 1);
2967   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2968 }
2969 
2970 // While RVV has alignment restrictions, we should always be able to load as a
2971 // legal equivalently-sized byte-typed vector instead. This method is
2972 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2973 // the load is already correctly-aligned, it returns SDValue().
2974 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2975                                                     SelectionDAG &DAG) const {
2976   auto *Load = cast<LoadSDNode>(Op);
2977   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2978 
2979   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2980                                      Load->getMemoryVT(),
2981                                      *Load->getMemOperand()))
2982     return SDValue();
2983 
2984   SDLoc DL(Op);
2985   MVT VT = Op.getSimpleValueType();
2986   unsigned EltSizeBits = VT.getScalarSizeInBits();
2987   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2988          "Unexpected unaligned RVV load type");
2989   MVT NewVT =
2990       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2991   assert(NewVT.isValid() &&
2992          "Expecting equally-sized RVV vector types to be legal");
2993   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2994                           Load->getPointerInfo(), Load->getOriginalAlign(),
2995                           Load->getMemOperand()->getFlags());
2996   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2997 }
2998 
2999 // While RVV has alignment restrictions, we should always be able to store as a
3000 // legal equivalently-sized byte-typed vector instead. This method is
3001 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
3002 // returns SDValue() if the store is already correctly aligned.
3003 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
3004                                                      SelectionDAG &DAG) const {
3005   auto *Store = cast<StoreSDNode>(Op);
3006   assert(Store && Store->getValue().getValueType().isVector() &&
3007          "Expected vector store");
3008 
3009   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
3010                                      Store->getMemoryVT(),
3011                                      *Store->getMemOperand()))
3012     return SDValue();
3013 
3014   SDLoc DL(Op);
3015   SDValue StoredVal = Store->getValue();
3016   MVT VT = StoredVal.getSimpleValueType();
3017   unsigned EltSizeBits = VT.getScalarSizeInBits();
3018   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
3019          "Unexpected unaligned RVV store type");
3020   MVT NewVT =
3021       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
3022   assert(NewVT.isValid() &&
3023          "Expecting equally-sized RVV vector types to be legal");
3024   StoredVal = DAG.getBitcast(NewVT, StoredVal);
3025   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
3026                       Store->getPointerInfo(), Store->getOriginalAlign(),
3027                       Store->getMemOperand()->getFlags());
3028 }
3029 
3030 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
3031                                             SelectionDAG &DAG) const {
3032   switch (Op.getOpcode()) {
3033   default:
3034     report_fatal_error("unimplemented operand");
3035   case ISD::GlobalAddress:
3036     return lowerGlobalAddress(Op, DAG);
3037   case ISD::BlockAddress:
3038     return lowerBlockAddress(Op, DAG);
3039   case ISD::ConstantPool:
3040     return lowerConstantPool(Op, DAG);
3041   case ISD::JumpTable:
3042     return lowerJumpTable(Op, DAG);
3043   case ISD::GlobalTLSAddress:
3044     return lowerGlobalTLSAddress(Op, DAG);
3045   case ISD::SELECT:
3046     return lowerSELECT(Op, DAG);
3047   case ISD::BRCOND:
3048     return lowerBRCOND(Op, DAG);
3049   case ISD::VASTART:
3050     return lowerVASTART(Op, DAG);
3051   case ISD::FRAMEADDR:
3052     return lowerFRAMEADDR(Op, DAG);
3053   case ISD::RETURNADDR:
3054     return lowerRETURNADDR(Op, DAG);
3055   case ISD::SHL_PARTS:
3056     return lowerShiftLeftParts(Op, DAG);
3057   case ISD::SRA_PARTS:
3058     return lowerShiftRightParts(Op, DAG, true);
3059   case ISD::SRL_PARTS:
3060     return lowerShiftRightParts(Op, DAG, false);
3061   case ISD::BITCAST: {
3062     SDLoc DL(Op);
3063     EVT VT = Op.getValueType();
3064     SDValue Op0 = Op.getOperand(0);
3065     EVT Op0VT = Op0.getValueType();
3066     MVT XLenVT = Subtarget.getXLenVT();
3067     if (VT.isFixedLengthVector()) {
3068       // We can handle fixed length vector bitcasts with a simple replacement
3069       // in isel.
3070       if (Op0VT.isFixedLengthVector())
3071         return Op;
3072       // When bitcasting from scalar to fixed-length vector, insert the scalar
3073       // into a one-element vector of the result type, and perform a vector
3074       // bitcast.
3075       if (!Op0VT.isVector()) {
3076         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
3077         if (!isTypeLegal(BVT))
3078           return SDValue();
3079         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
3080                                               DAG.getUNDEF(BVT), Op0,
3081                                               DAG.getConstant(0, DL, XLenVT)));
3082       }
3083       return SDValue();
3084     }
3085     // Custom-legalize bitcasts from fixed-length vector types to scalar types
3086     // thus: bitcast the vector to a one-element vector type whose element type
3087     // is the same as the result type, and extract the first element.
3088     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
3089       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
3090       if (!isTypeLegal(BVT))
3091         return SDValue();
3092       SDValue BVec = DAG.getBitcast(BVT, Op0);
3093       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
3094                          DAG.getConstant(0, DL, XLenVT));
3095     }
3096     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
3097       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
3098       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
3099       return FPConv;
3100     }
3101     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
3102         Subtarget.hasStdExtF()) {
3103       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
3104       SDValue FPConv =
3105           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
3106       return FPConv;
3107     }
3108     return SDValue();
3109   }
3110   case ISD::INTRINSIC_WO_CHAIN:
3111     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3112   case ISD::INTRINSIC_W_CHAIN:
3113     return LowerINTRINSIC_W_CHAIN(Op, DAG);
3114   case ISD::INTRINSIC_VOID:
3115     return LowerINTRINSIC_VOID(Op, DAG);
3116   case ISD::BSWAP:
3117   case ISD::BITREVERSE: {
3118     MVT VT = Op.getSimpleValueType();
3119     SDLoc DL(Op);
3120     if (Subtarget.hasStdExtZbp()) {
3121       // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
3122       // Start with the maximum immediate value which is the bitwidth - 1.
3123       unsigned Imm = VT.getSizeInBits() - 1;
3124       // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
3125       if (Op.getOpcode() == ISD::BSWAP)
3126         Imm &= ~0x7U;
3127       return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
3128                          DAG.getConstant(Imm, DL, VT));
3129     }
3130     assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
3131     assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
3132     // Expand bitreverse to a bswap(rev8) followed by brev8.
3133     SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
3134     // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized
3135     // as brev8 by an isel pattern.
3136     return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap,
3137                        DAG.getConstant(7, DL, VT));
3138   }
3139   case ISD::FSHL:
3140   case ISD::FSHR: {
3141     MVT VT = Op.getSimpleValueType();
3142     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
3143     SDLoc DL(Op);
3144     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
3145     // use log(XLen) bits. Mask the shift amount accordingly to prevent
3146     // accidentally setting the extra bit.
3147     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
3148     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
3149                                 DAG.getConstant(ShAmtWidth, DL, VT));
3150     // fshl and fshr concatenate their operands in the same order. fsr and fsl
3151     // instruction use different orders. fshl will return its first operand for
3152     // shift of zero, fshr will return its second operand. fsl and fsr both
3153     // return rs1 so the ISD nodes need to have different operand orders.
3154     // Shift amount is in rs2.
3155     SDValue Op0 = Op.getOperand(0);
3156     SDValue Op1 = Op.getOperand(1);
3157     unsigned Opc = RISCVISD::FSL;
3158     if (Op.getOpcode() == ISD::FSHR) {
3159       std::swap(Op0, Op1);
3160       Opc = RISCVISD::FSR;
3161     }
3162     return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt);
3163   }
3164   case ISD::TRUNCATE: {
3165     SDLoc DL(Op);
3166     MVT VT = Op.getSimpleValueType();
3167     // Only custom-lower vector truncates
3168     if (!VT.isVector())
3169       return Op;
3170 
3171     // Truncates to mask types are handled differently
3172     if (VT.getVectorElementType() == MVT::i1)
3173       return lowerVectorMaskTrunc(Op, DAG);
3174 
3175     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
3176     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
3177     // truncate by one power of two at a time.
3178     MVT DstEltVT = VT.getVectorElementType();
3179 
3180     SDValue Src = Op.getOperand(0);
3181     MVT SrcVT = Src.getSimpleValueType();
3182     MVT SrcEltVT = SrcVT.getVectorElementType();
3183 
3184     assert(DstEltVT.bitsLT(SrcEltVT) &&
3185            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
3186            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
3187            "Unexpected vector truncate lowering");
3188 
3189     MVT ContainerVT = SrcVT;
3190     if (SrcVT.isFixedLengthVector()) {
3191       ContainerVT = getContainerForFixedLengthVector(SrcVT);
3192       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3193     }
3194 
3195     SDValue Result = Src;
3196     SDValue Mask, VL;
3197     std::tie(Mask, VL) =
3198         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
3199     LLVMContext &Context = *DAG.getContext();
3200     const ElementCount Count = ContainerVT.getVectorElementCount();
3201     do {
3202       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
3203       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
3204       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
3205                            Mask, VL);
3206     } while (SrcEltVT != DstEltVT);
3207 
3208     if (SrcVT.isFixedLengthVector())
3209       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
3210 
3211     return Result;
3212   }
3213   case ISD::ANY_EXTEND:
3214   case ISD::ZERO_EXTEND:
3215     if (Op.getOperand(0).getValueType().isVector() &&
3216         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3217       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
3218     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
3219   case ISD::SIGN_EXTEND:
3220     if (Op.getOperand(0).getValueType().isVector() &&
3221         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3222       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
3223     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
3224   case ISD::SPLAT_VECTOR_PARTS:
3225     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
3226   case ISD::INSERT_VECTOR_ELT:
3227     return lowerINSERT_VECTOR_ELT(Op, DAG);
3228   case ISD::EXTRACT_VECTOR_ELT:
3229     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3230   case ISD::VSCALE: {
3231     MVT VT = Op.getSimpleValueType();
3232     SDLoc DL(Op);
3233     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
3234     // We define our scalable vector types for lmul=1 to use a 64 bit known
3235     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
3236     // vscale as VLENB / 8.
3237     static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
3238     if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock)
3239       report_fatal_error("Support for VLEN==32 is incomplete.");
3240     if (isa<ConstantSDNode>(Op.getOperand(0))) {
3241       // We assume VLENB is a multiple of 8. We manually choose the best shift
3242       // here because SimplifyDemandedBits isn't always able to simplify it.
3243       uint64_t Val = Op.getConstantOperandVal(0);
3244       if (isPowerOf2_64(Val)) {
3245         uint64_t Log2 = Log2_64(Val);
3246         if (Log2 < 3)
3247           return DAG.getNode(ISD::SRL, DL, VT, VLENB,
3248                              DAG.getConstant(3 - Log2, DL, VT));
3249         if (Log2 > 3)
3250           return DAG.getNode(ISD::SHL, DL, VT, VLENB,
3251                              DAG.getConstant(Log2 - 3, DL, VT));
3252         return VLENB;
3253       }
3254       // If the multiplier is a multiple of 8, scale it down to avoid needing
3255       // to shift the VLENB value.
3256       if ((Val % 8) == 0)
3257         return DAG.getNode(ISD::MUL, DL, VT, VLENB,
3258                            DAG.getConstant(Val / 8, DL, VT));
3259     }
3260 
3261     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
3262                                  DAG.getConstant(3, DL, VT));
3263     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
3264   }
3265   case ISD::FPOWI: {
3266     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
3267     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
3268     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
3269         Op.getOperand(1).getValueType() == MVT::i32) {
3270       SDLoc DL(Op);
3271       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
3272       SDValue Powi =
3273           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
3274       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
3275                          DAG.getIntPtrConstant(0, DL));
3276     }
3277     return SDValue();
3278   }
3279   case ISD::FP_EXTEND: {
3280     // RVV can only do fp_extend to types double the size as the source. We
3281     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
3282     // via f32.
3283     SDLoc DL(Op);
3284     MVT VT = Op.getSimpleValueType();
3285     SDValue Src = Op.getOperand(0);
3286     MVT SrcVT = Src.getSimpleValueType();
3287 
3288     // Prepare any fixed-length vector operands.
3289     MVT ContainerVT = VT;
3290     if (SrcVT.isFixedLengthVector()) {
3291       ContainerVT = getContainerForFixedLengthVector(VT);
3292       MVT SrcContainerVT =
3293           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
3294       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3295     }
3296 
3297     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
3298         SrcVT.getVectorElementType() != MVT::f16) {
3299       // For scalable vectors, we only need to close the gap between
3300       // vXf16->vXf64.
3301       if (!VT.isFixedLengthVector())
3302         return Op;
3303       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
3304       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
3305       return convertFromScalableVector(VT, Src, DAG, Subtarget);
3306     }
3307 
3308     MVT InterVT = VT.changeVectorElementType(MVT::f32);
3309     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
3310     SDValue IntermediateExtend = getRVVFPExtendOrRound(
3311         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
3312 
3313     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
3314                                            DL, DAG, Subtarget);
3315     if (VT.isFixedLengthVector())
3316       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
3317     return Extend;
3318   }
3319   case ISD::FP_ROUND: {
3320     // RVV can only do fp_round to types half the size as the source. We
3321     // custom-lower f64->f16 rounds via RVV's round-to-odd float
3322     // conversion instruction.
3323     SDLoc DL(Op);
3324     MVT VT = Op.getSimpleValueType();
3325     SDValue Src = Op.getOperand(0);
3326     MVT SrcVT = Src.getSimpleValueType();
3327 
3328     // Prepare any fixed-length vector operands.
3329     MVT ContainerVT = VT;
3330     if (VT.isFixedLengthVector()) {
3331       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3332       ContainerVT =
3333           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3334       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3335     }
3336 
3337     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
3338         SrcVT.getVectorElementType() != MVT::f64) {
3339       // For scalable vectors, we only need to close the gap between
3340       // vXf64<->vXf16.
3341       if (!VT.isFixedLengthVector())
3342         return Op;
3343       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
3344       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
3345       return convertFromScalableVector(VT, Src, DAG, Subtarget);
3346     }
3347 
3348     SDValue Mask, VL;
3349     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3350 
3351     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
3352     SDValue IntermediateRound =
3353         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
3354     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
3355                                           DL, DAG, Subtarget);
3356 
3357     if (VT.isFixedLengthVector())
3358       return convertFromScalableVector(VT, Round, DAG, Subtarget);
3359     return Round;
3360   }
3361   case ISD::FP_TO_SINT:
3362   case ISD::FP_TO_UINT:
3363   case ISD::SINT_TO_FP:
3364   case ISD::UINT_TO_FP: {
3365     // RVV can only do fp<->int conversions to types half/double the size as
3366     // the source. We custom-lower any conversions that do two hops into
3367     // sequences.
3368     MVT VT = Op.getSimpleValueType();
3369     if (!VT.isVector())
3370       return Op;
3371     SDLoc DL(Op);
3372     SDValue Src = Op.getOperand(0);
3373     MVT EltVT = VT.getVectorElementType();
3374     MVT SrcVT = Src.getSimpleValueType();
3375     MVT SrcEltVT = SrcVT.getVectorElementType();
3376     unsigned EltSize = EltVT.getSizeInBits();
3377     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
3378     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
3379            "Unexpected vector element types");
3380 
3381     bool IsInt2FP = SrcEltVT.isInteger();
3382     // Widening conversions
3383     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
3384       if (IsInt2FP) {
3385         // Do a regular integer sign/zero extension then convert to float.
3386         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
3387                                       VT.getVectorElementCount());
3388         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
3389                                  ? ISD::ZERO_EXTEND
3390                                  : ISD::SIGN_EXTEND;
3391         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
3392         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
3393       }
3394       // FP2Int
3395       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
3396       // Do one doubling fp_extend then complete the operation by converting
3397       // to int.
3398       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3399       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
3400       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
3401     }
3402 
3403     // Narrowing conversions
3404     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
3405       if (IsInt2FP) {
3406         // One narrowing int_to_fp, then an fp_round.
3407         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
3408         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3409         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
3410         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
3411       }
3412       // FP2Int
3413       // One narrowing fp_to_int, then truncate the integer. If the float isn't
3414       // representable by the integer, the result is poison.
3415       MVT IVecVT =
3416           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
3417                            VT.getVectorElementCount());
3418       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
3419       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
3420     }
3421 
3422     // Scalable vectors can exit here. Patterns will handle equally-sized
3423     // conversions halving/doubling ones.
3424     if (!VT.isFixedLengthVector())
3425       return Op;
3426 
3427     // For fixed-length vectors we lower to a custom "VL" node.
3428     unsigned RVVOpc = 0;
3429     switch (Op.getOpcode()) {
3430     default:
3431       llvm_unreachable("Impossible opcode");
3432     case ISD::FP_TO_SINT:
3433       RVVOpc = RISCVISD::FP_TO_SINT_VL;
3434       break;
3435     case ISD::FP_TO_UINT:
3436       RVVOpc = RISCVISD::FP_TO_UINT_VL;
3437       break;
3438     case ISD::SINT_TO_FP:
3439       RVVOpc = RISCVISD::SINT_TO_FP_VL;
3440       break;
3441     case ISD::UINT_TO_FP:
3442       RVVOpc = RISCVISD::UINT_TO_FP_VL;
3443       break;
3444     }
3445 
3446     MVT ContainerVT, SrcContainerVT;
3447     // Derive the reference container type from the larger vector type.
3448     if (SrcEltSize > EltSize) {
3449       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3450       ContainerVT =
3451           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3452     } else {
3453       ContainerVT = getContainerForFixedLengthVector(VT);
3454       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
3455     }
3456 
3457     SDValue Mask, VL;
3458     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3459 
3460     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3461     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3462     return convertFromScalableVector(VT, Src, DAG, Subtarget);
3463   }
3464   case ISD::FP_TO_SINT_SAT:
3465   case ISD::FP_TO_UINT_SAT:
3466     return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
3467   case ISD::FTRUNC:
3468   case ISD::FCEIL:
3469   case ISD::FFLOOR:
3470     return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3471   case ISD::FROUND:
3472     return lowerFROUND(Op, DAG);
3473   case ISD::VECREDUCE_ADD:
3474   case ISD::VECREDUCE_UMAX:
3475   case ISD::VECREDUCE_SMAX:
3476   case ISD::VECREDUCE_UMIN:
3477   case ISD::VECREDUCE_SMIN:
3478     return lowerVECREDUCE(Op, DAG);
3479   case ISD::VECREDUCE_AND:
3480   case ISD::VECREDUCE_OR:
3481   case ISD::VECREDUCE_XOR:
3482     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3483       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3484     return lowerVECREDUCE(Op, DAG);
3485   case ISD::VECREDUCE_FADD:
3486   case ISD::VECREDUCE_SEQ_FADD:
3487   case ISD::VECREDUCE_FMIN:
3488   case ISD::VECREDUCE_FMAX:
3489     return lowerFPVECREDUCE(Op, DAG);
3490   case ISD::VP_REDUCE_ADD:
3491   case ISD::VP_REDUCE_UMAX:
3492   case ISD::VP_REDUCE_SMAX:
3493   case ISD::VP_REDUCE_UMIN:
3494   case ISD::VP_REDUCE_SMIN:
3495   case ISD::VP_REDUCE_FADD:
3496   case ISD::VP_REDUCE_SEQ_FADD:
3497   case ISD::VP_REDUCE_FMIN:
3498   case ISD::VP_REDUCE_FMAX:
3499     return lowerVPREDUCE(Op, DAG);
3500   case ISD::VP_REDUCE_AND:
3501   case ISD::VP_REDUCE_OR:
3502   case ISD::VP_REDUCE_XOR:
3503     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3504       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3505     return lowerVPREDUCE(Op, DAG);
3506   case ISD::INSERT_SUBVECTOR:
3507     return lowerINSERT_SUBVECTOR(Op, DAG);
3508   case ISD::EXTRACT_SUBVECTOR:
3509     return lowerEXTRACT_SUBVECTOR(Op, DAG);
3510   case ISD::STEP_VECTOR:
3511     return lowerSTEP_VECTOR(Op, DAG);
3512   case ISD::VECTOR_REVERSE:
3513     return lowerVECTOR_REVERSE(Op, DAG);
3514   case ISD::VECTOR_SPLICE:
3515     return lowerVECTOR_SPLICE(Op, DAG);
3516   case ISD::BUILD_VECTOR:
3517     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3518   case ISD::SPLAT_VECTOR:
3519     if (Op.getValueType().getVectorElementType() == MVT::i1)
3520       return lowerVectorMaskSplat(Op, DAG);
3521     return lowerSPLAT_VECTOR(Op, DAG, Subtarget);
3522   case ISD::VECTOR_SHUFFLE:
3523     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3524   case ISD::CONCAT_VECTORS: {
3525     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3526     // better than going through the stack, as the default expansion does.
3527     SDLoc DL(Op);
3528     MVT VT = Op.getSimpleValueType();
3529     unsigned NumOpElts =
3530         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3531     SDValue Vec = DAG.getUNDEF(VT);
3532     for (const auto &OpIdx : enumerate(Op->ops())) {
3533       SDValue SubVec = OpIdx.value();
3534       // Don't insert undef subvectors.
3535       if (SubVec.isUndef())
3536         continue;
3537       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
3538                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3539     }
3540     return Vec;
3541   }
3542   case ISD::LOAD:
3543     if (auto V = expandUnalignedRVVLoad(Op, DAG))
3544       return V;
3545     if (Op.getValueType().isFixedLengthVector())
3546       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3547     return Op;
3548   case ISD::STORE:
3549     if (auto V = expandUnalignedRVVStore(Op, DAG))
3550       return V;
3551     if (Op.getOperand(1).getValueType().isFixedLengthVector())
3552       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3553     return Op;
3554   case ISD::MLOAD:
3555   case ISD::VP_LOAD:
3556     return lowerMaskedLoad(Op, DAG);
3557   case ISD::MSTORE:
3558   case ISD::VP_STORE:
3559     return lowerMaskedStore(Op, DAG);
3560   case ISD::SETCC:
3561     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3562   case ISD::ADD:
3563     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3564   case ISD::SUB:
3565     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3566   case ISD::MUL:
3567     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3568   case ISD::MULHS:
3569     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3570   case ISD::MULHU:
3571     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3572   case ISD::AND:
3573     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3574                                               RISCVISD::AND_VL);
3575   case ISD::OR:
3576     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3577                                               RISCVISD::OR_VL);
3578   case ISD::XOR:
3579     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3580                                               RISCVISD::XOR_VL);
3581   case ISD::SDIV:
3582     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3583   case ISD::SREM:
3584     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3585   case ISD::UDIV:
3586     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3587   case ISD::UREM:
3588     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3589   case ISD::SHL:
3590   case ISD::SRA:
3591   case ISD::SRL:
3592     if (Op.getSimpleValueType().isFixedLengthVector())
3593       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3594     // This can be called for an i32 shift amount that needs to be promoted.
3595     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3596            "Unexpected custom legalisation");
3597     return SDValue();
3598   case ISD::SADDSAT:
3599     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3600   case ISD::UADDSAT:
3601     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3602   case ISD::SSUBSAT:
3603     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3604   case ISD::USUBSAT:
3605     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3606   case ISD::FADD:
3607     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3608   case ISD::FSUB:
3609     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3610   case ISD::FMUL:
3611     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3612   case ISD::FDIV:
3613     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3614   case ISD::FNEG:
3615     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3616   case ISD::FABS:
3617     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3618   case ISD::FSQRT:
3619     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3620   case ISD::FMA:
3621     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
3622   case ISD::SMIN:
3623     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3624   case ISD::SMAX:
3625     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3626   case ISD::UMIN:
3627     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3628   case ISD::UMAX:
3629     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3630   case ISD::FMINNUM:
3631     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3632   case ISD::FMAXNUM:
3633     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3634   case ISD::ABS:
3635     return lowerABS(Op, DAG);
3636   case ISD::CTLZ_ZERO_UNDEF:
3637   case ISD::CTTZ_ZERO_UNDEF:
3638     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3639   case ISD::VSELECT:
3640     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3641   case ISD::FCOPYSIGN:
3642     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3643   case ISD::MGATHER:
3644   case ISD::VP_GATHER:
3645     return lowerMaskedGather(Op, DAG);
3646   case ISD::MSCATTER:
3647   case ISD::VP_SCATTER:
3648     return lowerMaskedScatter(Op, DAG);
3649   case ISD::FLT_ROUNDS_:
3650     return lowerGET_ROUNDING(Op, DAG);
3651   case ISD::SET_ROUNDING:
3652     return lowerSET_ROUNDING(Op, DAG);
3653   case ISD::VP_SELECT:
3654     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3655   case ISD::VP_MERGE:
3656     return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL);
3657   case ISD::VP_ADD:
3658     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3659   case ISD::VP_SUB:
3660     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3661   case ISD::VP_MUL:
3662     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3663   case ISD::VP_SDIV:
3664     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3665   case ISD::VP_UDIV:
3666     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3667   case ISD::VP_SREM:
3668     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3669   case ISD::VP_UREM:
3670     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3671   case ISD::VP_AND:
3672     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3673   case ISD::VP_OR:
3674     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3675   case ISD::VP_XOR:
3676     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3677   case ISD::VP_ASHR:
3678     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3679   case ISD::VP_LSHR:
3680     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3681   case ISD::VP_SHL:
3682     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3683   case ISD::VP_FADD:
3684     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3685   case ISD::VP_FSUB:
3686     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3687   case ISD::VP_FMUL:
3688     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3689   case ISD::VP_FDIV:
3690     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3691   case ISD::VP_FNEG:
3692     return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL);
3693   case ISD::VP_FMA:
3694     return lowerVPOp(Op, DAG, RISCVISD::FMA_VL);
3695   }
3696 }
3697 
3698 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3699                              SelectionDAG &DAG, unsigned Flags) {
3700   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3701 }
3702 
3703 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3704                              SelectionDAG &DAG, unsigned Flags) {
3705   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3706                                    Flags);
3707 }
3708 
3709 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3710                              SelectionDAG &DAG, unsigned Flags) {
3711   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3712                                    N->getOffset(), Flags);
3713 }
3714 
3715 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3716                              SelectionDAG &DAG, unsigned Flags) {
3717   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3718 }
3719 
3720 template <class NodeTy>
3721 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3722                                      bool IsLocal) const {
3723   SDLoc DL(N);
3724   EVT Ty = getPointerTy(DAG.getDataLayout());
3725 
3726   if (isPositionIndependent()) {
3727     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3728     if (IsLocal)
3729       // Use PC-relative addressing to access the symbol. This generates the
3730       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3731       // %pcrel_lo(auipc)).
3732       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3733 
3734     // Use PC-relative addressing to access the GOT for this symbol, then load
3735     // the address from the GOT. This generates the pattern (PseudoLA sym),
3736     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3737     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
3738   }
3739 
3740   switch (getTargetMachine().getCodeModel()) {
3741   default:
3742     report_fatal_error("Unsupported code model for lowering");
3743   case CodeModel::Small: {
3744     // Generate a sequence for accessing addresses within the first 2 GiB of
3745     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3746     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3747     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3748     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3749     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
3750   }
3751   case CodeModel::Medium: {
3752     // Generate a sequence for accessing addresses within any 2GiB range within
3753     // the address space. This generates the pattern (PseudoLLA sym), which
3754     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3755     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3756     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3757   }
3758   }
3759 }
3760 
3761 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3762                                                 SelectionDAG &DAG) const {
3763   SDLoc DL(Op);
3764   EVT Ty = Op.getValueType();
3765   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3766   int64_t Offset = N->getOffset();
3767   MVT XLenVT = Subtarget.getXLenVT();
3768 
3769   const GlobalValue *GV = N->getGlobal();
3770   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3771   SDValue Addr = getAddr(N, DAG, IsLocal);
3772 
3773   // In order to maximise the opportunity for common subexpression elimination,
3774   // emit a separate ADD node for the global address offset instead of folding
3775   // it in the global address node. Later peephole optimisations may choose to
3776   // fold it back in when profitable.
3777   if (Offset != 0)
3778     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3779                        DAG.getConstant(Offset, DL, XLenVT));
3780   return Addr;
3781 }
3782 
3783 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3784                                                SelectionDAG &DAG) const {
3785   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3786 
3787   return getAddr(N, DAG);
3788 }
3789 
3790 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3791                                                SelectionDAG &DAG) const {
3792   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3793 
3794   return getAddr(N, DAG);
3795 }
3796 
3797 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3798                                             SelectionDAG &DAG) const {
3799   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3800 
3801   return getAddr(N, DAG);
3802 }
3803 
3804 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3805                                               SelectionDAG &DAG,
3806                                               bool UseGOT) const {
3807   SDLoc DL(N);
3808   EVT Ty = getPointerTy(DAG.getDataLayout());
3809   const GlobalValue *GV = N->getGlobal();
3810   MVT XLenVT = Subtarget.getXLenVT();
3811 
3812   if (UseGOT) {
3813     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3814     // load the address from the GOT and add the thread pointer. This generates
3815     // the pattern (PseudoLA_TLS_IE sym), which expands to
3816     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3817     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3818     SDValue Load =
3819         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
3820 
3821     // Add the thread pointer.
3822     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3823     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3824   }
3825 
3826   // Generate a sequence for accessing the address relative to the thread
3827   // pointer, with the appropriate adjustment for the thread pointer offset.
3828   // This generates the pattern
3829   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3830   SDValue AddrHi =
3831       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3832   SDValue AddrAdd =
3833       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3834   SDValue AddrLo =
3835       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3836 
3837   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3838   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3839   SDValue MNAdd = SDValue(
3840       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
3841       0);
3842   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
3843 }
3844 
3845 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3846                                                SelectionDAG &DAG) const {
3847   SDLoc DL(N);
3848   EVT Ty = getPointerTy(DAG.getDataLayout());
3849   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3850   const GlobalValue *GV = N->getGlobal();
3851 
3852   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3853   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3854   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3855   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3856   SDValue Load =
3857       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
3858 
3859   // Prepare argument list to generate call.
3860   ArgListTy Args;
3861   ArgListEntry Entry;
3862   Entry.Node = Load;
3863   Entry.Ty = CallTy;
3864   Args.push_back(Entry);
3865 
3866   // Setup call to __tls_get_addr.
3867   TargetLowering::CallLoweringInfo CLI(DAG);
3868   CLI.setDebugLoc(DL)
3869       .setChain(DAG.getEntryNode())
3870       .setLibCallee(CallingConv::C, CallTy,
3871                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3872                     std::move(Args));
3873 
3874   return LowerCallTo(CLI).first;
3875 }
3876 
3877 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3878                                                    SelectionDAG &DAG) const {
3879   SDLoc DL(Op);
3880   EVT Ty = Op.getValueType();
3881   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3882   int64_t Offset = N->getOffset();
3883   MVT XLenVT = Subtarget.getXLenVT();
3884 
3885   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3886 
3887   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3888       CallingConv::GHC)
3889     report_fatal_error("In GHC calling convention TLS is not supported");
3890 
3891   SDValue Addr;
3892   switch (Model) {
3893   case TLSModel::LocalExec:
3894     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3895     break;
3896   case TLSModel::InitialExec:
3897     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3898     break;
3899   case TLSModel::LocalDynamic:
3900   case TLSModel::GeneralDynamic:
3901     Addr = getDynamicTLSAddr(N, DAG);
3902     break;
3903   }
3904 
3905   // In order to maximise the opportunity for common subexpression elimination,
3906   // emit a separate ADD node for the global address offset instead of folding
3907   // it in the global address node. Later peephole optimisations may choose to
3908   // fold it back in when profitable.
3909   if (Offset != 0)
3910     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3911                        DAG.getConstant(Offset, DL, XLenVT));
3912   return Addr;
3913 }
3914 
3915 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3916   SDValue CondV = Op.getOperand(0);
3917   SDValue TrueV = Op.getOperand(1);
3918   SDValue FalseV = Op.getOperand(2);
3919   SDLoc DL(Op);
3920   MVT VT = Op.getSimpleValueType();
3921   MVT XLenVT = Subtarget.getXLenVT();
3922 
3923   // Lower vector SELECTs to VSELECTs by splatting the condition.
3924   if (VT.isVector()) {
3925     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3926     SDValue CondSplat = VT.isScalableVector()
3927                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3928                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3929     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3930   }
3931 
3932   // If the result type is XLenVT and CondV is the output of a SETCC node
3933   // which also operated on XLenVT inputs, then merge the SETCC node into the
3934   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3935   // compare+branch instructions. i.e.:
3936   // (select (setcc lhs, rhs, cc), truev, falsev)
3937   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3938   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3939       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3940     SDValue LHS = CondV.getOperand(0);
3941     SDValue RHS = CondV.getOperand(1);
3942     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3943     ISD::CondCode CCVal = CC->get();
3944 
3945     // Special case for a select of 2 constants that have a diffence of 1.
3946     // Normally this is done by DAGCombine, but if the select is introduced by
3947     // type legalization or op legalization, we miss it. Restricting to SETLT
3948     // case for now because that is what signed saturating add/sub need.
3949     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3950     // but we would probably want to swap the true/false values if the condition
3951     // is SETGE/SETLE to avoid an XORI.
3952     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3953         CCVal == ISD::SETLT) {
3954       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3955       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3956       if (TrueVal - 1 == FalseVal)
3957         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3958       if (TrueVal + 1 == FalseVal)
3959         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3960     }
3961 
3962     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3963 
3964     SDValue TargetCC = DAG.getCondCode(CCVal);
3965     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3966     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3967   }
3968 
3969   // Otherwise:
3970   // (select condv, truev, falsev)
3971   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3972   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3973   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3974 
3975   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3976 
3977   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3978 }
3979 
3980 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3981   SDValue CondV = Op.getOperand(1);
3982   SDLoc DL(Op);
3983   MVT XLenVT = Subtarget.getXLenVT();
3984 
3985   if (CondV.getOpcode() == ISD::SETCC &&
3986       CondV.getOperand(0).getValueType() == XLenVT) {
3987     SDValue LHS = CondV.getOperand(0);
3988     SDValue RHS = CondV.getOperand(1);
3989     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3990 
3991     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3992 
3993     SDValue TargetCC = DAG.getCondCode(CCVal);
3994     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3995                        LHS, RHS, TargetCC, Op.getOperand(2));
3996   }
3997 
3998   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3999                      CondV, DAG.getConstant(0, DL, XLenVT),
4000                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
4001 }
4002 
4003 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
4004   MachineFunction &MF = DAG.getMachineFunction();
4005   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
4006 
4007   SDLoc DL(Op);
4008   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
4009                                  getPointerTy(MF.getDataLayout()));
4010 
4011   // vastart just stores the address of the VarArgsFrameIndex slot into the
4012   // memory location argument.
4013   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4014   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
4015                       MachinePointerInfo(SV));
4016 }
4017 
4018 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
4019                                             SelectionDAG &DAG) const {
4020   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
4021   MachineFunction &MF = DAG.getMachineFunction();
4022   MachineFrameInfo &MFI = MF.getFrameInfo();
4023   MFI.setFrameAddressIsTaken(true);
4024   Register FrameReg = RI.getFrameRegister(MF);
4025   int XLenInBytes = Subtarget.getXLen() / 8;
4026 
4027   EVT VT = Op.getValueType();
4028   SDLoc DL(Op);
4029   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
4030   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4031   while (Depth--) {
4032     int Offset = -(XLenInBytes * 2);
4033     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
4034                               DAG.getIntPtrConstant(Offset, DL));
4035     FrameAddr =
4036         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
4037   }
4038   return FrameAddr;
4039 }
4040 
4041 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
4042                                              SelectionDAG &DAG) const {
4043   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
4044   MachineFunction &MF = DAG.getMachineFunction();
4045   MachineFrameInfo &MFI = MF.getFrameInfo();
4046   MFI.setReturnAddressIsTaken(true);
4047   MVT XLenVT = Subtarget.getXLenVT();
4048   int XLenInBytes = Subtarget.getXLen() / 8;
4049 
4050   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
4051     return SDValue();
4052 
4053   EVT VT = Op.getValueType();
4054   SDLoc DL(Op);
4055   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4056   if (Depth) {
4057     int Off = -XLenInBytes;
4058     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
4059     SDValue Offset = DAG.getConstant(Off, DL, VT);
4060     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4061                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4062                        MachinePointerInfo());
4063   }
4064 
4065   // Return the value of the return address register, marking it an implicit
4066   // live-in.
4067   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
4068   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
4069 }
4070 
4071 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
4072                                                  SelectionDAG &DAG) const {
4073   SDLoc DL(Op);
4074   SDValue Lo = Op.getOperand(0);
4075   SDValue Hi = Op.getOperand(1);
4076   SDValue Shamt = Op.getOperand(2);
4077   EVT VT = Lo.getValueType();
4078 
4079   // if Shamt-XLEN < 0: // Shamt < XLEN
4080   //   Lo = Lo << Shamt
4081   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt))
4082   // else:
4083   //   Lo = 0
4084   //   Hi = Lo << (Shamt-XLEN)
4085 
4086   SDValue Zero = DAG.getConstant(0, DL, VT);
4087   SDValue One = DAG.getConstant(1, DL, VT);
4088   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4089   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4090   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4091   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4092 
4093   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
4094   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
4095   SDValue ShiftRightLo =
4096       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
4097   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
4098   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
4099   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
4100 
4101   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4102 
4103   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
4104   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4105 
4106   SDValue Parts[2] = {Lo, Hi};
4107   return DAG.getMergeValues(Parts, DL);
4108 }
4109 
4110 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
4111                                                   bool IsSRA) const {
4112   SDLoc DL(Op);
4113   SDValue Lo = Op.getOperand(0);
4114   SDValue Hi = Op.getOperand(1);
4115   SDValue Shamt = Op.getOperand(2);
4116   EVT VT = Lo.getValueType();
4117 
4118   // SRA expansion:
4119   //   if Shamt-XLEN < 0: // Shamt < XLEN
4120   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4121   //     Hi = Hi >>s Shamt
4122   //   else:
4123   //     Lo = Hi >>s (Shamt-XLEN);
4124   //     Hi = Hi >>s (XLEN-1)
4125   //
4126   // SRL expansion:
4127   //   if Shamt-XLEN < 0: // Shamt < XLEN
4128   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4129   //     Hi = Hi >>u Shamt
4130   //   else:
4131   //     Lo = Hi >>u (Shamt-XLEN);
4132   //     Hi = 0;
4133 
4134   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
4135 
4136   SDValue Zero = DAG.getConstant(0, DL, VT);
4137   SDValue One = DAG.getConstant(1, DL, VT);
4138   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4139   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4140   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4141   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4142 
4143   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
4144   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
4145   SDValue ShiftLeftHi =
4146       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
4147   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
4148   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
4149   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
4150   SDValue HiFalse =
4151       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
4152 
4153   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4154 
4155   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
4156   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4157 
4158   SDValue Parts[2] = {Lo, Hi};
4159   return DAG.getMergeValues(Parts, DL);
4160 }
4161 
4162 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
4163 // legal equivalently-sized i8 type, so we can use that as a go-between.
4164 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
4165                                                   SelectionDAG &DAG) const {
4166   SDLoc DL(Op);
4167   MVT VT = Op.getSimpleValueType();
4168   SDValue SplatVal = Op.getOperand(0);
4169   // All-zeros or all-ones splats are handled specially.
4170   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
4171     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4172     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
4173   }
4174   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
4175     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4176     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
4177   }
4178   MVT XLenVT = Subtarget.getXLenVT();
4179   assert(SplatVal.getValueType() == XLenVT &&
4180          "Unexpected type for i1 splat value");
4181   MVT InterVT = VT.changeVectorElementType(MVT::i8);
4182   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
4183                          DAG.getConstant(1, DL, XLenVT));
4184   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
4185   SDValue Zero = DAG.getConstant(0, DL, InterVT);
4186   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
4187 }
4188 
4189 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
4190 // illegal (currently only vXi64 RV32).
4191 // FIXME: We could also catch non-constant sign-extended i32 values and lower
4192 // them to VMV_V_X_VL.
4193 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
4194                                                      SelectionDAG &DAG) const {
4195   SDLoc DL(Op);
4196   MVT VecVT = Op.getSimpleValueType();
4197   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
4198          "Unexpected SPLAT_VECTOR_PARTS lowering");
4199 
4200   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
4201   SDValue Lo = Op.getOperand(0);
4202   SDValue Hi = Op.getOperand(1);
4203 
4204   if (VecVT.isFixedLengthVector()) {
4205     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4206     SDLoc DL(Op);
4207     SDValue Mask, VL;
4208     std::tie(Mask, VL) =
4209         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4210 
4211     SDValue Res =
4212         splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG);
4213     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
4214   }
4215 
4216   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
4217     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
4218     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
4219     // If Hi constant is all the same sign bit as Lo, lower this as a custom
4220     // node in order to try and match RVV vector/scalar instructions.
4221     if ((LoC >> 31) == HiC)
4222       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4223                          Lo, DAG.getRegister(RISCV::X0, MVT::i32));
4224   }
4225 
4226   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
4227   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
4228       isa<ConstantSDNode>(Hi.getOperand(1)) &&
4229       Hi.getConstantOperandVal(1) == 31)
4230     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo,
4231                        DAG.getRegister(RISCV::X0, MVT::i32));
4232 
4233   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
4234   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT,
4235                      DAG.getUNDEF(VecVT), Lo, Hi,
4236                      DAG.getRegister(RISCV::X0, MVT::i32));
4237 }
4238 
4239 // Custom-lower extensions from mask vectors by using a vselect either with 1
4240 // for zero/any-extension or -1 for sign-extension:
4241 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
4242 // Note that any-extension is lowered identically to zero-extension.
4243 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
4244                                                 int64_t ExtTrueVal) const {
4245   SDLoc DL(Op);
4246   MVT VecVT = Op.getSimpleValueType();
4247   SDValue Src = Op.getOperand(0);
4248   // Only custom-lower extensions from mask types
4249   assert(Src.getValueType().isVector() &&
4250          Src.getValueType().getVectorElementType() == MVT::i1);
4251 
4252   MVT XLenVT = Subtarget.getXLenVT();
4253   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
4254   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
4255 
4256   if (VecVT.isScalableVector()) {
4257     // Be careful not to introduce illegal scalar types at this stage, and be
4258     // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
4259     // illegal and must be expanded. Since we know that the constants are
4260     // sign-extended 32-bit values, we use VMV_V_X_VL directly.
4261     bool IsRV32E64 =
4262         !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
4263 
4264     if (!IsRV32E64) {
4265       SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
4266       SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
4267     } else {
4268       SplatZero =
4269           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4270                       SplatZero, DAG.getRegister(RISCV::X0, XLenVT));
4271       SplatTrueVal =
4272           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4273                       SplatTrueVal, DAG.getRegister(RISCV::X0, XLenVT));
4274     }
4275 
4276     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
4277   }
4278 
4279   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4280   MVT I1ContainerVT =
4281       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4282 
4283   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
4284 
4285   SDValue Mask, VL;
4286   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4287 
4288   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4289                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4290   SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4291                              DAG.getUNDEF(ContainerVT), SplatTrueVal, VL);
4292   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
4293                                SplatTrueVal, SplatZero, VL);
4294 
4295   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
4296 }
4297 
4298 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
4299     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
4300   MVT ExtVT = Op.getSimpleValueType();
4301   // Only custom-lower extensions from fixed-length vector types.
4302   if (!ExtVT.isFixedLengthVector())
4303     return Op;
4304   MVT VT = Op.getOperand(0).getSimpleValueType();
4305   // Grab the canonical container type for the extended type. Infer the smaller
4306   // type from that to ensure the same number of vector elements, as we know
4307   // the LMUL will be sufficient to hold the smaller type.
4308   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
4309   // Get the extended container type manually to ensure the same number of
4310   // vector elements between source and dest.
4311   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4312                                      ContainerExtVT.getVectorElementCount());
4313 
4314   SDValue Op1 =
4315       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4316 
4317   SDLoc DL(Op);
4318   SDValue Mask, VL;
4319   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4320 
4321   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
4322 
4323   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
4324 }
4325 
4326 // Custom-lower truncations from vectors to mask vectors by using a mask and a
4327 // setcc operation:
4328 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
4329 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
4330                                                   SelectionDAG &DAG) const {
4331   SDLoc DL(Op);
4332   EVT MaskVT = Op.getValueType();
4333   // Only expect to custom-lower truncations to mask types
4334   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
4335          "Unexpected type for vector mask lowering");
4336   SDValue Src = Op.getOperand(0);
4337   MVT VecVT = Src.getSimpleValueType();
4338 
4339   // If this is a fixed vector, we need to convert it to a scalable vector.
4340   MVT ContainerVT = VecVT;
4341   if (VecVT.isFixedLengthVector()) {
4342     ContainerVT = getContainerForFixedLengthVector(VecVT);
4343     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4344   }
4345 
4346   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
4347   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
4348 
4349   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4350                          DAG.getUNDEF(ContainerVT), SplatOne);
4351   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4352                           DAG.getUNDEF(ContainerVT), SplatZero);
4353 
4354   if (VecVT.isScalableVector()) {
4355     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
4356     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
4357   }
4358 
4359   SDValue Mask, VL;
4360   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4361 
4362   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
4363   SDValue Trunc =
4364       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
4365   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
4366                       DAG.getCondCode(ISD::SETNE), Mask, VL);
4367   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
4368 }
4369 
4370 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
4371 // first position of a vector, and that vector is slid up to the insert index.
4372 // By limiting the active vector length to index+1 and merging with the
4373 // original vector (with an undisturbed tail policy for elements >= VL), we
4374 // achieve the desired result of leaving all elements untouched except the one
4375 // at VL-1, which is replaced with the desired value.
4376 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4377                                                     SelectionDAG &DAG) const {
4378   SDLoc DL(Op);
4379   MVT VecVT = Op.getSimpleValueType();
4380   SDValue Vec = Op.getOperand(0);
4381   SDValue Val = Op.getOperand(1);
4382   SDValue Idx = Op.getOperand(2);
4383 
4384   if (VecVT.getVectorElementType() == MVT::i1) {
4385     // FIXME: For now we just promote to an i8 vector and insert into that,
4386     // but this is probably not optimal.
4387     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4388     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4389     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
4390     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
4391   }
4392 
4393   MVT ContainerVT = VecVT;
4394   // If the operand is a fixed-length vector, convert to a scalable one.
4395   if (VecVT.isFixedLengthVector()) {
4396     ContainerVT = getContainerForFixedLengthVector(VecVT);
4397     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4398   }
4399 
4400   MVT XLenVT = Subtarget.getXLenVT();
4401 
4402   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4403   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
4404   // Even i64-element vectors on RV32 can be lowered without scalar
4405   // legalization if the most-significant 32 bits of the value are not affected
4406   // by the sign-extension of the lower 32 bits.
4407   // TODO: We could also catch sign extensions of a 32-bit value.
4408   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
4409     const auto *CVal = cast<ConstantSDNode>(Val);
4410     if (isInt<32>(CVal->getSExtValue())) {
4411       IsLegalInsert = true;
4412       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4413     }
4414   }
4415 
4416   SDValue Mask, VL;
4417   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4418 
4419   SDValue ValInVec;
4420 
4421   if (IsLegalInsert) {
4422     unsigned Opc =
4423         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
4424     if (isNullConstant(Idx)) {
4425       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
4426       if (!VecVT.isFixedLengthVector())
4427         return Vec;
4428       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
4429     }
4430     ValInVec =
4431         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
4432   } else {
4433     // On RV32, i64-element vectors must be specially handled to place the
4434     // value at element 0, by using two vslide1up instructions in sequence on
4435     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
4436     // this.
4437     SDValue One = DAG.getConstant(1, DL, XLenVT);
4438     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
4439     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
4440     MVT I32ContainerVT =
4441         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
4442     SDValue I32Mask =
4443         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
4444     // Limit the active VL to two.
4445     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
4446     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
4447     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
4448     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT,
4449                            DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL);
4450     // First slide in the hi value, then the lo in underneath it.
4451     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4452                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi,
4453                            I32Mask, InsertI64VL);
4454     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4455                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo,
4456                            I32Mask, InsertI64VL);
4457     // Bitcast back to the right container type.
4458     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
4459   }
4460 
4461   // Now that the value is in a vector, slide it into position.
4462   SDValue InsertVL =
4463       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
4464   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4465                                 ValInVec, Idx, Mask, InsertVL);
4466   if (!VecVT.isFixedLengthVector())
4467     return Slideup;
4468   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4469 }
4470 
4471 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
4472 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
4473 // types this is done using VMV_X_S to allow us to glean information about the
4474 // sign bits of the result.
4475 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4476                                                      SelectionDAG &DAG) const {
4477   SDLoc DL(Op);
4478   SDValue Idx = Op.getOperand(1);
4479   SDValue Vec = Op.getOperand(0);
4480   EVT EltVT = Op.getValueType();
4481   MVT VecVT = Vec.getSimpleValueType();
4482   MVT XLenVT = Subtarget.getXLenVT();
4483 
4484   if (VecVT.getVectorElementType() == MVT::i1) {
4485     if (VecVT.isFixedLengthVector()) {
4486       unsigned NumElts = VecVT.getVectorNumElements();
4487       if (NumElts >= 8) {
4488         MVT WideEltVT;
4489         unsigned WidenVecLen;
4490         SDValue ExtractElementIdx;
4491         SDValue ExtractBitIdx;
4492         unsigned MaxEEW = Subtarget.getMaxELENForFixedLengthVectors();
4493         MVT LargestEltVT = MVT::getIntegerVT(
4494             std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
4495         if (NumElts <= LargestEltVT.getSizeInBits()) {
4496           assert(isPowerOf2_32(NumElts) &&
4497                  "the number of elements should be power of 2");
4498           WideEltVT = MVT::getIntegerVT(NumElts);
4499           WidenVecLen = 1;
4500           ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
4501           ExtractBitIdx = Idx;
4502         } else {
4503           WideEltVT = LargestEltVT;
4504           WidenVecLen = NumElts / WideEltVT.getSizeInBits();
4505           // extract element index = index / element width
4506           ExtractElementIdx = DAG.getNode(
4507               ISD::SRL, DL, XLenVT, Idx,
4508               DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
4509           // mask bit index = index % element width
4510           ExtractBitIdx = DAG.getNode(
4511               ISD::AND, DL, XLenVT, Idx,
4512               DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
4513         }
4514         MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
4515         Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
4516         SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
4517                                          Vec, ExtractElementIdx);
4518         // Extract the bit from GPR.
4519         SDValue ShiftRight =
4520             DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
4521         return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
4522                            DAG.getConstant(1, DL, XLenVT));
4523       }
4524     }
4525     // Otherwise, promote to an i8 vector and extract from that.
4526     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4527     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4528     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4529   }
4530 
4531   // If this is a fixed vector, we need to convert it to a scalable vector.
4532   MVT ContainerVT = VecVT;
4533   if (VecVT.isFixedLengthVector()) {
4534     ContainerVT = getContainerForFixedLengthVector(VecVT);
4535     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4536   }
4537 
4538   // If the index is 0, the vector is already in the right position.
4539   if (!isNullConstant(Idx)) {
4540     // Use a VL of 1 to avoid processing more elements than we need.
4541     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4542     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4543     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4544     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4545                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4546   }
4547 
4548   if (!EltVT.isInteger()) {
4549     // Floating-point extracts are handled in TableGen.
4550     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4551                        DAG.getConstant(0, DL, XLenVT));
4552   }
4553 
4554   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4555   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4556 }
4557 
4558 // Some RVV intrinsics may claim that they want an integer operand to be
4559 // promoted or expanded.
4560 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG,
4561                                            const RISCVSubtarget &Subtarget) {
4562   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4563           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4564          "Unexpected opcode");
4565 
4566   if (!Subtarget.hasVInstructions())
4567     return SDValue();
4568 
4569   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4570   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4571   SDLoc DL(Op);
4572 
4573   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4574       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4575   if (!II || !II->hasScalarOperand())
4576     return SDValue();
4577 
4578   unsigned SplatOp = II->ScalarOperand + 1 + HasChain;
4579   assert(SplatOp < Op.getNumOperands());
4580 
4581   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4582   SDValue &ScalarOp = Operands[SplatOp];
4583   MVT OpVT = ScalarOp.getSimpleValueType();
4584   MVT XLenVT = Subtarget.getXLenVT();
4585 
4586   // If this isn't a scalar, or its type is XLenVT we're done.
4587   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4588     return SDValue();
4589 
4590   // Simplest case is that the operand needs to be promoted to XLenVT.
4591   if (OpVT.bitsLT(XLenVT)) {
4592     // If the operand is a constant, sign extend to increase our chances
4593     // of being able to use a .vi instruction. ANY_EXTEND would become a
4594     // a zero extend and the simm5 check in isel would fail.
4595     // FIXME: Should we ignore the upper bits in isel instead?
4596     unsigned ExtOpc =
4597         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4598     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4599     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4600   }
4601 
4602   // Use the previous operand to get the vXi64 VT. The result might be a mask
4603   // VT for compares. Using the previous operand assumes that the previous
4604   // operand will never have a smaller element size than a scalar operand and
4605   // that a widening operation never uses SEW=64.
4606   // NOTE: If this fails the below assert, we can probably just find the
4607   // element count from any operand or result and use it to construct the VT.
4608   assert(II->ScalarOperand > 0 && "Unexpected splat operand!");
4609   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4610 
4611   // The more complex case is when the scalar is larger than XLenVT.
4612   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4613          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4614 
4615   // If this is a sign-extended 32-bit constant, we can truncate it and rely
4616   // on the instruction to sign-extend since SEW>XLEN.
4617   if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
4618     if (isInt<32>(CVal->getSExtValue())) {
4619       ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4620       return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4621     }
4622   }
4623 
4624   switch (IntNo) {
4625   case Intrinsic::riscv_vslide1up:
4626   case Intrinsic::riscv_vslide1down:
4627   case Intrinsic::riscv_vslide1up_mask:
4628   case Intrinsic::riscv_vslide1down_mask: {
4629     // We need to special case these when the scalar is larger than XLen.
4630     unsigned NumOps = Op.getNumOperands();
4631     bool IsMasked = NumOps == 7;
4632 
4633     // Convert the vector source to the equivalent nxvXi32 vector.
4634     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4635     SDValue Vec = DAG.getBitcast(I32VT, Operands[2]);
4636 
4637     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4638                                    DAG.getConstant(0, DL, XLenVT));
4639     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4640                                    DAG.getConstant(1, DL, XLenVT));
4641 
4642     // Double the VL since we halved SEW.
4643     SDValue VL = getVLOperand(Op);
4644     SDValue I32VL =
4645         DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4646 
4647     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
4648     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL);
4649 
4650     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4651     // instructions.
4652     SDValue Passthru;
4653     if (IsMasked)
4654       Passthru = DAG.getUNDEF(I32VT);
4655     else
4656       Passthru = DAG.getBitcast(I32VT, Operands[1]);
4657 
4658     if (IntNo == Intrinsic::riscv_vslide1up ||
4659         IntNo == Intrinsic::riscv_vslide1up_mask) {
4660       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4661                         ScalarHi, I32Mask, I32VL);
4662       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4663                         ScalarLo, I32Mask, I32VL);
4664     } else {
4665       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4666                         ScalarLo, I32Mask, I32VL);
4667       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4668                         ScalarHi, I32Mask, I32VL);
4669     }
4670 
4671     // Convert back to nxvXi64.
4672     Vec = DAG.getBitcast(VT, Vec);
4673 
4674     if (!IsMasked)
4675       return Vec;
4676     // Apply mask after the operation.
4677     SDValue Mask = Operands[NumOps - 3];
4678     SDValue MaskedOff = Operands[1];
4679     // Assume Policy operand is the last operand.
4680     uint64_t Policy =
4681         cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue();
4682     // We don't need to select maskedoff if it's undef.
4683     if (MaskedOff.isUndef())
4684       return Vec;
4685     // TAMU
4686     if (Policy == RISCVII::TAIL_AGNOSTIC)
4687       return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff,
4688                          VL);
4689     // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma.
4690     // It's fine because vmerge does not care mask policy.
4691     return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff, VL);
4692   }
4693   }
4694 
4695   // We need to convert the scalar to a splat vector.
4696   // FIXME: Can we implicitly truncate the scalar if it is known to
4697   // be sign extended?
4698   SDValue VL = getVLOperand(Op);
4699   assert(VL.getValueType() == XLenVT);
4700   ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG);
4701   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4702 }
4703 
4704 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4705                                                      SelectionDAG &DAG) const {
4706   unsigned IntNo = Op.getConstantOperandVal(0);
4707   SDLoc DL(Op);
4708   MVT XLenVT = Subtarget.getXLenVT();
4709 
4710   switch (IntNo) {
4711   default:
4712     break; // Don't custom lower most intrinsics.
4713   case Intrinsic::thread_pointer: {
4714     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4715     return DAG.getRegister(RISCV::X4, PtrVT);
4716   }
4717   case Intrinsic::riscv_orc_b:
4718   case Intrinsic::riscv_brev8: {
4719     // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8.
4720     unsigned Opc =
4721         IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC;
4722     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4723                        DAG.getConstant(7, DL, XLenVT));
4724   }
4725   case Intrinsic::riscv_grev:
4726   case Intrinsic::riscv_gorc: {
4727     unsigned Opc =
4728         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4729     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4730   }
4731   case Intrinsic::riscv_zip:
4732   case Intrinsic::riscv_unzip: {
4733     // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip.
4734     // For i32 the immdiate is 15. For i64 the immediate is 31.
4735     unsigned Opc =
4736         IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4737     unsigned BitWidth = Op.getValueSizeInBits();
4738     assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width");
4739     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4740                        DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT));
4741   }
4742   case Intrinsic::riscv_shfl:
4743   case Intrinsic::riscv_unshfl: {
4744     unsigned Opc =
4745         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4746     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4747   }
4748   case Intrinsic::riscv_bcompress:
4749   case Intrinsic::riscv_bdecompress: {
4750     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4751                                                        : RISCVISD::BDECOMPRESS;
4752     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4753   }
4754   case Intrinsic::riscv_bfp:
4755     return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1),
4756                        Op.getOperand(2));
4757   case Intrinsic::riscv_fsl:
4758     return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1),
4759                        Op.getOperand(2), Op.getOperand(3));
4760   case Intrinsic::riscv_fsr:
4761     return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1),
4762                        Op.getOperand(2), Op.getOperand(3));
4763   case Intrinsic::riscv_vmv_x_s:
4764     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4765     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4766                        Op.getOperand(1));
4767   case Intrinsic::riscv_vmv_v_x:
4768     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4769                             Op.getOperand(3), Op.getSimpleValueType(), DL, DAG,
4770                             Subtarget);
4771   case Intrinsic::riscv_vfmv_v_f:
4772     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4773                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4774   case Intrinsic::riscv_vmv_s_x: {
4775     SDValue Scalar = Op.getOperand(2);
4776 
4777     if (Scalar.getValueType().bitsLE(XLenVT)) {
4778       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4779       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4780                          Op.getOperand(1), Scalar, Op.getOperand(3));
4781     }
4782 
4783     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4784 
4785     // This is an i64 value that lives in two scalar registers. We have to
4786     // insert this in a convoluted way. First we build vXi64 splat containing
4787     // the/ two values that we assemble using some bit math. Next we'll use
4788     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4789     // to merge element 0 from our splat into the source vector.
4790     // FIXME: This is probably not the best way to do this, but it is
4791     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4792     // point.
4793     //   sw lo, (a0)
4794     //   sw hi, 4(a0)
4795     //   vlse vX, (a0)
4796     //
4797     //   vid.v      vVid
4798     //   vmseq.vx   mMask, vVid, 0
4799     //   vmerge.vvm vDest, vSrc, vVal, mMask
4800     MVT VT = Op.getSimpleValueType();
4801     SDValue Vec = Op.getOperand(1);
4802     SDValue VL = getVLOperand(Op);
4803 
4804     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG);
4805     if (Op.getOperand(1).isUndef())
4806       return SplattedVal;
4807     SDValue SplattedIdx =
4808         DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
4809                     DAG.getConstant(0, DL, MVT::i32), VL);
4810 
4811     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
4812     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4813     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4814     SDValue SelectCond =
4815         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4816                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4817     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4818                        Vec, VL);
4819   }
4820   }
4821 
4822   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4823 }
4824 
4825 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4826                                                     SelectionDAG &DAG) const {
4827   unsigned IntNo = Op.getConstantOperandVal(1);
4828   switch (IntNo) {
4829   default:
4830     break;
4831   case Intrinsic::riscv_masked_strided_load: {
4832     SDLoc DL(Op);
4833     MVT XLenVT = Subtarget.getXLenVT();
4834 
4835     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4836     // the selection of the masked intrinsics doesn't do this for us.
4837     SDValue Mask = Op.getOperand(5);
4838     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4839 
4840     MVT VT = Op->getSimpleValueType(0);
4841     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4842 
4843     SDValue PassThru = Op.getOperand(2);
4844     if (!IsUnmasked) {
4845       MVT MaskVT =
4846           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4847       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4848       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4849     }
4850 
4851     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4852 
4853     SDValue IntID = DAG.getTargetConstant(
4854         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4855         XLenVT);
4856 
4857     auto *Load = cast<MemIntrinsicSDNode>(Op);
4858     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4859     if (IsUnmasked)
4860       Ops.push_back(DAG.getUNDEF(ContainerVT));
4861     else
4862       Ops.push_back(PassThru);
4863     Ops.push_back(Op.getOperand(3)); // Ptr
4864     Ops.push_back(Op.getOperand(4)); // Stride
4865     if (!IsUnmasked)
4866       Ops.push_back(Mask);
4867     Ops.push_back(VL);
4868     if (!IsUnmasked) {
4869       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4870       Ops.push_back(Policy);
4871     }
4872 
4873     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4874     SDValue Result =
4875         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4876                                 Load->getMemoryVT(), Load->getMemOperand());
4877     SDValue Chain = Result.getValue(1);
4878     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4879     return DAG.getMergeValues({Result, Chain}, DL);
4880   }
4881   }
4882 
4883   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4884 }
4885 
4886 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4887                                                  SelectionDAG &DAG) const {
4888   unsigned IntNo = Op.getConstantOperandVal(1);
4889   switch (IntNo) {
4890   default:
4891     break;
4892   case Intrinsic::riscv_masked_strided_store: {
4893     SDLoc DL(Op);
4894     MVT XLenVT = Subtarget.getXLenVT();
4895 
4896     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4897     // the selection of the masked intrinsics doesn't do this for us.
4898     SDValue Mask = Op.getOperand(5);
4899     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4900 
4901     SDValue Val = Op.getOperand(2);
4902     MVT VT = Val.getSimpleValueType();
4903     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4904 
4905     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4906     if (!IsUnmasked) {
4907       MVT MaskVT =
4908           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4909       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4910     }
4911 
4912     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4913 
4914     SDValue IntID = DAG.getTargetConstant(
4915         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
4916         XLenVT);
4917 
4918     auto *Store = cast<MemIntrinsicSDNode>(Op);
4919     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
4920     Ops.push_back(Val);
4921     Ops.push_back(Op.getOperand(3)); // Ptr
4922     Ops.push_back(Op.getOperand(4)); // Stride
4923     if (!IsUnmasked)
4924       Ops.push_back(Mask);
4925     Ops.push_back(VL);
4926 
4927     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
4928                                    Ops, Store->getMemoryVT(),
4929                                    Store->getMemOperand());
4930   }
4931   }
4932 
4933   return SDValue();
4934 }
4935 
4936 static MVT getLMUL1VT(MVT VT) {
4937   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
4938          "Unexpected vector MVT");
4939   return MVT::getScalableVectorVT(
4940       VT.getVectorElementType(),
4941       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
4942 }
4943 
4944 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
4945   switch (ISDOpcode) {
4946   default:
4947     llvm_unreachable("Unhandled reduction");
4948   case ISD::VECREDUCE_ADD:
4949     return RISCVISD::VECREDUCE_ADD_VL;
4950   case ISD::VECREDUCE_UMAX:
4951     return RISCVISD::VECREDUCE_UMAX_VL;
4952   case ISD::VECREDUCE_SMAX:
4953     return RISCVISD::VECREDUCE_SMAX_VL;
4954   case ISD::VECREDUCE_UMIN:
4955     return RISCVISD::VECREDUCE_UMIN_VL;
4956   case ISD::VECREDUCE_SMIN:
4957     return RISCVISD::VECREDUCE_SMIN_VL;
4958   case ISD::VECREDUCE_AND:
4959     return RISCVISD::VECREDUCE_AND_VL;
4960   case ISD::VECREDUCE_OR:
4961     return RISCVISD::VECREDUCE_OR_VL;
4962   case ISD::VECREDUCE_XOR:
4963     return RISCVISD::VECREDUCE_XOR_VL;
4964   }
4965 }
4966 
4967 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
4968                                                          SelectionDAG &DAG,
4969                                                          bool IsVP) const {
4970   SDLoc DL(Op);
4971   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
4972   MVT VecVT = Vec.getSimpleValueType();
4973   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
4974           Op.getOpcode() == ISD::VECREDUCE_OR ||
4975           Op.getOpcode() == ISD::VECREDUCE_XOR ||
4976           Op.getOpcode() == ISD::VP_REDUCE_AND ||
4977           Op.getOpcode() == ISD::VP_REDUCE_OR ||
4978           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
4979          "Unexpected reduction lowering");
4980 
4981   MVT XLenVT = Subtarget.getXLenVT();
4982   assert(Op.getValueType() == XLenVT &&
4983          "Expected reduction output to be legalized to XLenVT");
4984 
4985   MVT ContainerVT = VecVT;
4986   if (VecVT.isFixedLengthVector()) {
4987     ContainerVT = getContainerForFixedLengthVector(VecVT);
4988     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4989   }
4990 
4991   SDValue Mask, VL;
4992   if (IsVP) {
4993     Mask = Op.getOperand(2);
4994     VL = Op.getOperand(3);
4995   } else {
4996     std::tie(Mask, VL) =
4997         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4998   }
4999 
5000   unsigned BaseOpc;
5001   ISD::CondCode CC;
5002   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
5003 
5004   switch (Op.getOpcode()) {
5005   default:
5006     llvm_unreachable("Unhandled reduction");
5007   case ISD::VECREDUCE_AND:
5008   case ISD::VP_REDUCE_AND: {
5009     // vcpop ~x == 0
5010     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
5011     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
5012     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5013     CC = ISD::SETEQ;
5014     BaseOpc = ISD::AND;
5015     break;
5016   }
5017   case ISD::VECREDUCE_OR:
5018   case ISD::VP_REDUCE_OR:
5019     // vcpop x != 0
5020     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5021     CC = ISD::SETNE;
5022     BaseOpc = ISD::OR;
5023     break;
5024   case ISD::VECREDUCE_XOR:
5025   case ISD::VP_REDUCE_XOR: {
5026     // ((vcpop x) & 1) != 0
5027     SDValue One = DAG.getConstant(1, DL, XLenVT);
5028     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5029     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
5030     CC = ISD::SETNE;
5031     BaseOpc = ISD::XOR;
5032     break;
5033   }
5034   }
5035 
5036   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
5037 
5038   if (!IsVP)
5039     return SetCC;
5040 
5041   // Now include the start value in the operation.
5042   // Note that we must return the start value when no elements are operated
5043   // upon. The vcpop instructions we've emitted in each case above will return
5044   // 0 for an inactive vector, and so we've already received the neutral value:
5045   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
5046   // can simply include the start value.
5047   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
5048 }
5049 
5050 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
5051                                             SelectionDAG &DAG) const {
5052   SDLoc DL(Op);
5053   SDValue Vec = Op.getOperand(0);
5054   EVT VecEVT = Vec.getValueType();
5055 
5056   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
5057 
5058   // Due to ordering in legalize types we may have a vector type that needs to
5059   // be split. Do that manually so we can get down to a legal type.
5060   while (getTypeAction(*DAG.getContext(), VecEVT) ==
5061          TargetLowering::TypeSplitVector) {
5062     SDValue Lo, Hi;
5063     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
5064     VecEVT = Lo.getValueType();
5065     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
5066   }
5067 
5068   // TODO: The type may need to be widened rather than split. Or widened before
5069   // it can be split.
5070   if (!isTypeLegal(VecEVT))
5071     return SDValue();
5072 
5073   MVT VecVT = VecEVT.getSimpleVT();
5074   MVT VecEltVT = VecVT.getVectorElementType();
5075   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
5076 
5077   MVT ContainerVT = VecVT;
5078   if (VecVT.isFixedLengthVector()) {
5079     ContainerVT = getContainerForFixedLengthVector(VecVT);
5080     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5081   }
5082 
5083   MVT M1VT = getLMUL1VT(ContainerVT);
5084   MVT XLenVT = Subtarget.getXLenVT();
5085 
5086   SDValue Mask, VL;
5087   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5088 
5089   SDValue NeutralElem =
5090       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
5091   SDValue IdentitySplat =
5092       lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT),
5093                        M1VT, DL, DAG, Subtarget);
5094   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
5095                                   IdentitySplat, Mask, VL);
5096   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5097                              DAG.getConstant(0, DL, XLenVT));
5098   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5099 }
5100 
5101 // Given a reduction op, this function returns the matching reduction opcode,
5102 // the vector SDValue and the scalar SDValue required to lower this to a
5103 // RISCVISD node.
5104 static std::tuple<unsigned, SDValue, SDValue>
5105 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
5106   SDLoc DL(Op);
5107   auto Flags = Op->getFlags();
5108   unsigned Opcode = Op.getOpcode();
5109   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
5110   switch (Opcode) {
5111   default:
5112     llvm_unreachable("Unhandled reduction");
5113   case ISD::VECREDUCE_FADD: {
5114     // Use positive zero if we can. It is cheaper to materialize.
5115     SDValue Zero =
5116         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
5117     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
5118   }
5119   case ISD::VECREDUCE_SEQ_FADD:
5120     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
5121                            Op.getOperand(0));
5122   case ISD::VECREDUCE_FMIN:
5123     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
5124                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5125   case ISD::VECREDUCE_FMAX:
5126     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
5127                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5128   }
5129 }
5130 
5131 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
5132                                               SelectionDAG &DAG) const {
5133   SDLoc DL(Op);
5134   MVT VecEltVT = Op.getSimpleValueType();
5135 
5136   unsigned RVVOpcode;
5137   SDValue VectorVal, ScalarVal;
5138   std::tie(RVVOpcode, VectorVal, ScalarVal) =
5139       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
5140   MVT VecVT = VectorVal.getSimpleValueType();
5141 
5142   MVT ContainerVT = VecVT;
5143   if (VecVT.isFixedLengthVector()) {
5144     ContainerVT = getContainerForFixedLengthVector(VecVT);
5145     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
5146   }
5147 
5148   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
5149   MVT XLenVT = Subtarget.getXLenVT();
5150 
5151   SDValue Mask, VL;
5152   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5153 
5154   SDValue ScalarSplat =
5155       lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT),
5156                        M1VT, DL, DAG, Subtarget);
5157   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
5158                                   VectorVal, ScalarSplat, Mask, VL);
5159   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5160                      DAG.getConstant(0, DL, XLenVT));
5161 }
5162 
5163 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
5164   switch (ISDOpcode) {
5165   default:
5166     llvm_unreachable("Unhandled reduction");
5167   case ISD::VP_REDUCE_ADD:
5168     return RISCVISD::VECREDUCE_ADD_VL;
5169   case ISD::VP_REDUCE_UMAX:
5170     return RISCVISD::VECREDUCE_UMAX_VL;
5171   case ISD::VP_REDUCE_SMAX:
5172     return RISCVISD::VECREDUCE_SMAX_VL;
5173   case ISD::VP_REDUCE_UMIN:
5174     return RISCVISD::VECREDUCE_UMIN_VL;
5175   case ISD::VP_REDUCE_SMIN:
5176     return RISCVISD::VECREDUCE_SMIN_VL;
5177   case ISD::VP_REDUCE_AND:
5178     return RISCVISD::VECREDUCE_AND_VL;
5179   case ISD::VP_REDUCE_OR:
5180     return RISCVISD::VECREDUCE_OR_VL;
5181   case ISD::VP_REDUCE_XOR:
5182     return RISCVISD::VECREDUCE_XOR_VL;
5183   case ISD::VP_REDUCE_FADD:
5184     return RISCVISD::VECREDUCE_FADD_VL;
5185   case ISD::VP_REDUCE_SEQ_FADD:
5186     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
5187   case ISD::VP_REDUCE_FMAX:
5188     return RISCVISD::VECREDUCE_FMAX_VL;
5189   case ISD::VP_REDUCE_FMIN:
5190     return RISCVISD::VECREDUCE_FMIN_VL;
5191   }
5192 }
5193 
5194 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
5195                                            SelectionDAG &DAG) const {
5196   SDLoc DL(Op);
5197   SDValue Vec = Op.getOperand(1);
5198   EVT VecEVT = Vec.getValueType();
5199 
5200   // TODO: The type may need to be widened rather than split. Or widened before
5201   // it can be split.
5202   if (!isTypeLegal(VecEVT))
5203     return SDValue();
5204 
5205   MVT VecVT = VecEVT.getSimpleVT();
5206   MVT VecEltVT = VecVT.getVectorElementType();
5207   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
5208 
5209   MVT ContainerVT = VecVT;
5210   if (VecVT.isFixedLengthVector()) {
5211     ContainerVT = getContainerForFixedLengthVector(VecVT);
5212     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5213   }
5214 
5215   SDValue VL = Op.getOperand(3);
5216   SDValue Mask = Op.getOperand(2);
5217 
5218   MVT M1VT = getLMUL1VT(ContainerVT);
5219   MVT XLenVT = Subtarget.getXLenVT();
5220   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
5221 
5222   SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0),
5223                                         DAG.getConstant(1, DL, XLenVT), M1VT,
5224                                         DL, DAG, Subtarget);
5225   SDValue Reduction =
5226       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
5227   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
5228                              DAG.getConstant(0, DL, XLenVT));
5229   if (!VecVT.isInteger())
5230     return Elt0;
5231   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5232 }
5233 
5234 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5235                                                    SelectionDAG &DAG) const {
5236   SDValue Vec = Op.getOperand(0);
5237   SDValue SubVec = Op.getOperand(1);
5238   MVT VecVT = Vec.getSimpleValueType();
5239   MVT SubVecVT = SubVec.getSimpleValueType();
5240 
5241   SDLoc DL(Op);
5242   MVT XLenVT = Subtarget.getXLenVT();
5243   unsigned OrigIdx = Op.getConstantOperandVal(2);
5244   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5245 
5246   // We don't have the ability to slide mask vectors up indexed by their i1
5247   // elements; the smallest we can do is i8. Often we are able to bitcast to
5248   // equivalent i8 vectors. Note that when inserting a fixed-length vector
5249   // into a scalable one, we might not necessarily have enough scalable
5250   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
5251   if (SubVecVT.getVectorElementType() == MVT::i1 &&
5252       (OrigIdx != 0 || !Vec.isUndef())) {
5253     if (VecVT.getVectorMinNumElements() >= 8 &&
5254         SubVecVT.getVectorMinNumElements() >= 8) {
5255       assert(OrigIdx % 8 == 0 && "Invalid index");
5256       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5257              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5258              "Unexpected mask vector lowering");
5259       OrigIdx /= 8;
5260       SubVecVT =
5261           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5262                            SubVecVT.isScalableVector());
5263       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5264                                VecVT.isScalableVector());
5265       Vec = DAG.getBitcast(VecVT, Vec);
5266       SubVec = DAG.getBitcast(SubVecVT, SubVec);
5267     } else {
5268       // We can't slide this mask vector up indexed by its i1 elements.
5269       // This poses a problem when we wish to insert a scalable vector which
5270       // can't be re-expressed as a larger type. Just choose the slow path and
5271       // extend to a larger type, then truncate back down.
5272       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5273       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5274       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5275       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
5276       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
5277                         Op.getOperand(2));
5278       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
5279       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
5280     }
5281   }
5282 
5283   // If the subvector vector is a fixed-length type, we cannot use subregister
5284   // manipulation to simplify the codegen; we don't know which register of a
5285   // LMUL group contains the specific subvector as we only know the minimum
5286   // register size. Therefore we must slide the vector group up the full
5287   // amount.
5288   if (SubVecVT.isFixedLengthVector()) {
5289     if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
5290       return Op;
5291     MVT ContainerVT = VecVT;
5292     if (VecVT.isFixedLengthVector()) {
5293       ContainerVT = getContainerForFixedLengthVector(VecVT);
5294       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5295     }
5296     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
5297                          DAG.getUNDEF(ContainerVT), SubVec,
5298                          DAG.getConstant(0, DL, XLenVT));
5299     if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
5300       SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
5301       return DAG.getBitcast(Op.getValueType(), SubVec);
5302     }
5303     SDValue Mask =
5304         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5305     // Set the vector length to only the number of elements we care about. Note
5306     // that for slideup this includes the offset.
5307     SDValue VL =
5308         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
5309     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5310     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
5311                                   SubVec, SlideupAmt, Mask, VL);
5312     if (VecVT.isFixedLengthVector())
5313       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
5314     return DAG.getBitcast(Op.getValueType(), Slideup);
5315   }
5316 
5317   unsigned SubRegIdx, RemIdx;
5318   std::tie(SubRegIdx, RemIdx) =
5319       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5320           VecVT, SubVecVT, OrigIdx, TRI);
5321 
5322   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
5323   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
5324                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
5325                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
5326 
5327   // 1. If the Idx has been completely eliminated and this subvector's size is
5328   // a vector register or a multiple thereof, or the surrounding elements are
5329   // undef, then this is a subvector insert which naturally aligns to a vector
5330   // register. These can easily be handled using subregister manipulation.
5331   // 2. If the subvector is smaller than a vector register, then the insertion
5332   // must preserve the undisturbed elements of the register. We do this by
5333   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
5334   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
5335   // subvector within the vector register, and an INSERT_SUBVECTOR of that
5336   // LMUL=1 type back into the larger vector (resolving to another subregister
5337   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
5338   // to avoid allocating a large register group to hold our subvector.
5339   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
5340     return Op;
5341 
5342   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
5343   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
5344   // (in our case undisturbed). This means we can set up a subvector insertion
5345   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
5346   // size of the subvector.
5347   MVT InterSubVT = VecVT;
5348   SDValue AlignedExtract = Vec;
5349   unsigned AlignedIdx = OrigIdx - RemIdx;
5350   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5351     InterSubVT = getLMUL1VT(VecVT);
5352     // Extract a subvector equal to the nearest full vector register type. This
5353     // should resolve to a EXTRACT_SUBREG instruction.
5354     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5355                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
5356   }
5357 
5358   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5359   // For scalable vectors this must be further multiplied by vscale.
5360   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
5361 
5362   SDValue Mask, VL;
5363   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5364 
5365   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
5366   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
5367   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
5368   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
5369 
5370   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
5371                        DAG.getUNDEF(InterSubVT), SubVec,
5372                        DAG.getConstant(0, DL, XLenVT));
5373 
5374   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
5375                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
5376 
5377   // If required, insert this subvector back into the correct vector register.
5378   // This should resolve to an INSERT_SUBREG instruction.
5379   if (VecVT.bitsGT(InterSubVT))
5380     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
5381                           DAG.getConstant(AlignedIdx, DL, XLenVT));
5382 
5383   // We might have bitcast from a mask type: cast back to the original type if
5384   // required.
5385   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
5386 }
5387 
5388 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
5389                                                     SelectionDAG &DAG) const {
5390   SDValue Vec = Op.getOperand(0);
5391   MVT SubVecVT = Op.getSimpleValueType();
5392   MVT VecVT = Vec.getSimpleValueType();
5393 
5394   SDLoc DL(Op);
5395   MVT XLenVT = Subtarget.getXLenVT();
5396   unsigned OrigIdx = Op.getConstantOperandVal(1);
5397   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5398 
5399   // We don't have the ability to slide mask vectors down indexed by their i1
5400   // elements; the smallest we can do is i8. Often we are able to bitcast to
5401   // equivalent i8 vectors. Note that when extracting a fixed-length vector
5402   // from a scalable one, we might not necessarily have enough scalable
5403   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
5404   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
5405     if (VecVT.getVectorMinNumElements() >= 8 &&
5406         SubVecVT.getVectorMinNumElements() >= 8) {
5407       assert(OrigIdx % 8 == 0 && "Invalid index");
5408       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5409              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5410              "Unexpected mask vector lowering");
5411       OrigIdx /= 8;
5412       SubVecVT =
5413           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5414                            SubVecVT.isScalableVector());
5415       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5416                                VecVT.isScalableVector());
5417       Vec = DAG.getBitcast(VecVT, Vec);
5418     } else {
5419       // We can't slide this mask vector down, indexed by its i1 elements.
5420       // This poses a problem when we wish to extract a scalable vector which
5421       // can't be re-expressed as a larger type. Just choose the slow path and
5422       // extend to a larger type, then truncate back down.
5423       // TODO: We could probably improve this when extracting certain fixed
5424       // from fixed, where we can extract as i8 and shift the correct element
5425       // right to reach the desired subvector?
5426       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5427       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5428       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5429       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
5430                         Op.getOperand(1));
5431       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
5432       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
5433     }
5434   }
5435 
5436   // If the subvector vector is a fixed-length type, we cannot use subregister
5437   // manipulation to simplify the codegen; we don't know which register of a
5438   // LMUL group contains the specific subvector as we only know the minimum
5439   // register size. Therefore we must slide the vector group down the full
5440   // amount.
5441   if (SubVecVT.isFixedLengthVector()) {
5442     // With an index of 0 this is a cast-like subvector, which can be performed
5443     // with subregister operations.
5444     if (OrigIdx == 0)
5445       return Op;
5446     MVT ContainerVT = VecVT;
5447     if (VecVT.isFixedLengthVector()) {
5448       ContainerVT = getContainerForFixedLengthVector(VecVT);
5449       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5450     }
5451     SDValue Mask =
5452         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5453     // Set the vector length to only the number of elements we care about. This
5454     // avoids sliding down elements we're going to discard straight away.
5455     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
5456     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5457     SDValue Slidedown =
5458         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5459                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
5460     // Now we can use a cast-like subvector extract to get the result.
5461     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5462                             DAG.getConstant(0, DL, XLenVT));
5463     return DAG.getBitcast(Op.getValueType(), Slidedown);
5464   }
5465 
5466   unsigned SubRegIdx, RemIdx;
5467   std::tie(SubRegIdx, RemIdx) =
5468       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5469           VecVT, SubVecVT, OrigIdx, TRI);
5470 
5471   // If the Idx has been completely eliminated then this is a subvector extract
5472   // which naturally aligns to a vector register. These can easily be handled
5473   // using subregister manipulation.
5474   if (RemIdx == 0)
5475     return Op;
5476 
5477   // Else we must shift our vector register directly to extract the subvector.
5478   // Do this using VSLIDEDOWN.
5479 
5480   // If the vector type is an LMUL-group type, extract a subvector equal to the
5481   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
5482   // instruction.
5483   MVT InterSubVT = VecVT;
5484   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5485     InterSubVT = getLMUL1VT(VecVT);
5486     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5487                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
5488   }
5489 
5490   // Slide this vector register down by the desired number of elements in order
5491   // to place the desired subvector starting at element 0.
5492   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5493   // For scalable vectors this must be further multiplied by vscale.
5494   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
5495 
5496   SDValue Mask, VL;
5497   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
5498   SDValue Slidedown =
5499       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
5500                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
5501 
5502   // Now the vector is in the right position, extract our final subvector. This
5503   // should resolve to a COPY.
5504   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5505                           DAG.getConstant(0, DL, XLenVT));
5506 
5507   // We might have bitcast from a mask type: cast back to the original type if
5508   // required.
5509   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
5510 }
5511 
5512 // Lower step_vector to the vid instruction. Any non-identity step value must
5513 // be accounted for my manual expansion.
5514 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
5515                                               SelectionDAG &DAG) const {
5516   SDLoc DL(Op);
5517   MVT VT = Op.getSimpleValueType();
5518   MVT XLenVT = Subtarget.getXLenVT();
5519   SDValue Mask, VL;
5520   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
5521   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
5522   uint64_t StepValImm = Op.getConstantOperandVal(0);
5523   if (StepValImm != 1) {
5524     if (isPowerOf2_64(StepValImm)) {
5525       SDValue StepVal =
5526           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
5527                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
5528       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
5529     } else {
5530       SDValue StepVal = lowerScalarSplat(
5531           SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()),
5532           VL, VT, DL, DAG, Subtarget);
5533       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
5534     }
5535   }
5536   return StepVec;
5537 }
5538 
5539 // Implement vector_reverse using vrgather.vv with indices determined by
5540 // subtracting the id of each element from (VLMAX-1). This will convert
5541 // the indices like so:
5542 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
5543 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
5544 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
5545                                                  SelectionDAG &DAG) const {
5546   SDLoc DL(Op);
5547   MVT VecVT = Op.getSimpleValueType();
5548   unsigned EltSize = VecVT.getScalarSizeInBits();
5549   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
5550 
5551   unsigned MaxVLMAX = 0;
5552   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
5553   if (VectorBitsMax != 0)
5554     MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock;
5555 
5556   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
5557   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
5558 
5559   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
5560   // to use vrgatherei16.vv.
5561   // TODO: It's also possible to use vrgatherei16.vv for other types to
5562   // decrease register width for the index calculation.
5563   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
5564     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
5565     // Reverse each half, then reassemble them in reverse order.
5566     // NOTE: It's also possible that after splitting that VLMAX no longer
5567     // requires vrgatherei16.vv.
5568     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
5569       SDValue Lo, Hi;
5570       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5571       EVT LoVT, HiVT;
5572       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5573       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5574       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5575       // Reassemble the low and high pieces reversed.
5576       // FIXME: This is a CONCAT_VECTORS.
5577       SDValue Res =
5578           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5579                       DAG.getIntPtrConstant(0, DL));
5580       return DAG.getNode(
5581           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5582           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5583     }
5584 
5585     // Just promote the int type to i16 which will double the LMUL.
5586     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5587     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5588   }
5589 
5590   MVT XLenVT = Subtarget.getXLenVT();
5591   SDValue Mask, VL;
5592   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5593 
5594   // Calculate VLMAX-1 for the desired SEW.
5595   unsigned MinElts = VecVT.getVectorMinNumElements();
5596   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5597                               DAG.getConstant(MinElts, DL, XLenVT));
5598   SDValue VLMinus1 =
5599       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5600 
5601   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5602   bool IsRV32E64 =
5603       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5604   SDValue SplatVL;
5605   if (!IsRV32E64)
5606     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5607   else
5608     SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT),
5609                           VLMinus1, DAG.getRegister(RISCV::X0, XLenVT));
5610 
5611   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5612   SDValue Indices =
5613       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5614 
5615   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
5616 }
5617 
5618 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op,
5619                                                 SelectionDAG &DAG) const {
5620   SDLoc DL(Op);
5621   SDValue V1 = Op.getOperand(0);
5622   SDValue V2 = Op.getOperand(1);
5623   MVT XLenVT = Subtarget.getXLenVT();
5624   MVT VecVT = Op.getSimpleValueType();
5625 
5626   unsigned MinElts = VecVT.getVectorMinNumElements();
5627   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5628                               DAG.getConstant(MinElts, DL, XLenVT));
5629 
5630   int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue();
5631   SDValue DownOffset, UpOffset;
5632   if (ImmValue >= 0) {
5633     // The operand is a TargetConstant, we need to rebuild it as a regular
5634     // constant.
5635     DownOffset = DAG.getConstant(ImmValue, DL, XLenVT);
5636     UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset);
5637   } else {
5638     // The operand is a TargetConstant, we need to rebuild it as a regular
5639     // constant rather than negating the original operand.
5640     UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT);
5641     DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset);
5642   }
5643 
5644   MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
5645   SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VLMax);
5646 
5647   SDValue SlideDown =
5648       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1,
5649                   DownOffset, TrueMask, UpOffset);
5650   return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset,
5651                      TrueMask,
5652                      DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT));
5653 }
5654 
5655 SDValue
5656 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5657                                                      SelectionDAG &DAG) const {
5658   SDLoc DL(Op);
5659   auto *Load = cast<LoadSDNode>(Op);
5660 
5661   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5662                                         Load->getMemoryVT(),
5663                                         *Load->getMemOperand()) &&
5664          "Expecting a correctly-aligned load");
5665 
5666   MVT VT = Op.getSimpleValueType();
5667   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5668 
5669   SDValue VL =
5670       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5671 
5672   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5673   SDValue NewLoad = DAG.getMemIntrinsicNode(
5674       RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
5675       Load->getMemoryVT(), Load->getMemOperand());
5676 
5677   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5678   return DAG.getMergeValues({Result, Load->getChain()}, DL);
5679 }
5680 
5681 SDValue
5682 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5683                                                       SelectionDAG &DAG) const {
5684   SDLoc DL(Op);
5685   auto *Store = cast<StoreSDNode>(Op);
5686 
5687   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5688                                         Store->getMemoryVT(),
5689                                         *Store->getMemOperand()) &&
5690          "Expecting a correctly-aligned store");
5691 
5692   SDValue StoreVal = Store->getValue();
5693   MVT VT = StoreVal.getSimpleValueType();
5694 
5695   // If the size less than a byte, we need to pad with zeros to make a byte.
5696   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5697     VT = MVT::v8i1;
5698     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5699                            DAG.getConstant(0, DL, VT), StoreVal,
5700                            DAG.getIntPtrConstant(0, DL));
5701   }
5702 
5703   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5704 
5705   SDValue VL =
5706       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5707 
5708   SDValue NewValue =
5709       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5710   return DAG.getMemIntrinsicNode(
5711       RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
5712       {Store->getChain(), NewValue, Store->getBasePtr(), VL},
5713       Store->getMemoryVT(), Store->getMemOperand());
5714 }
5715 
5716 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5717                                              SelectionDAG &DAG) const {
5718   SDLoc DL(Op);
5719   MVT VT = Op.getSimpleValueType();
5720 
5721   const auto *MemSD = cast<MemSDNode>(Op);
5722   EVT MemVT = MemSD->getMemoryVT();
5723   MachineMemOperand *MMO = MemSD->getMemOperand();
5724   SDValue Chain = MemSD->getChain();
5725   SDValue BasePtr = MemSD->getBasePtr();
5726 
5727   SDValue Mask, PassThru, VL;
5728   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5729     Mask = VPLoad->getMask();
5730     PassThru = DAG.getUNDEF(VT);
5731     VL = VPLoad->getVectorLength();
5732   } else {
5733     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5734     Mask = MLoad->getMask();
5735     PassThru = MLoad->getPassThru();
5736   }
5737 
5738   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5739 
5740   MVT XLenVT = Subtarget.getXLenVT();
5741 
5742   MVT ContainerVT = VT;
5743   if (VT.isFixedLengthVector()) {
5744     ContainerVT = getContainerForFixedLengthVector(VT);
5745     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5746     if (!IsUnmasked) {
5747       MVT MaskVT =
5748           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5749       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5750     }
5751   }
5752 
5753   if (!VL)
5754     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5755 
5756   unsigned IntID =
5757       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5758   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5759   if (IsUnmasked)
5760     Ops.push_back(DAG.getUNDEF(ContainerVT));
5761   else
5762     Ops.push_back(PassThru);
5763   Ops.push_back(BasePtr);
5764   if (!IsUnmasked)
5765     Ops.push_back(Mask);
5766   Ops.push_back(VL);
5767   if (!IsUnmasked)
5768     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5769 
5770   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5771 
5772   SDValue Result =
5773       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5774   Chain = Result.getValue(1);
5775 
5776   if (VT.isFixedLengthVector())
5777     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5778 
5779   return DAG.getMergeValues({Result, Chain}, DL);
5780 }
5781 
5782 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5783                                               SelectionDAG &DAG) const {
5784   SDLoc DL(Op);
5785 
5786   const auto *MemSD = cast<MemSDNode>(Op);
5787   EVT MemVT = MemSD->getMemoryVT();
5788   MachineMemOperand *MMO = MemSD->getMemOperand();
5789   SDValue Chain = MemSD->getChain();
5790   SDValue BasePtr = MemSD->getBasePtr();
5791   SDValue Val, Mask, VL;
5792 
5793   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5794     Val = VPStore->getValue();
5795     Mask = VPStore->getMask();
5796     VL = VPStore->getVectorLength();
5797   } else {
5798     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5799     Val = MStore->getValue();
5800     Mask = MStore->getMask();
5801   }
5802 
5803   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5804 
5805   MVT VT = Val.getSimpleValueType();
5806   MVT XLenVT = Subtarget.getXLenVT();
5807 
5808   MVT ContainerVT = VT;
5809   if (VT.isFixedLengthVector()) {
5810     ContainerVT = getContainerForFixedLengthVector(VT);
5811 
5812     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5813     if (!IsUnmasked) {
5814       MVT MaskVT =
5815           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5816       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5817     }
5818   }
5819 
5820   if (!VL)
5821     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5822 
5823   unsigned IntID =
5824       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5825   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5826   Ops.push_back(Val);
5827   Ops.push_back(BasePtr);
5828   if (!IsUnmasked)
5829     Ops.push_back(Mask);
5830   Ops.push_back(VL);
5831 
5832   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5833                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5834 }
5835 
5836 SDValue
5837 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
5838                                                       SelectionDAG &DAG) const {
5839   MVT InVT = Op.getOperand(0).getSimpleValueType();
5840   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
5841 
5842   MVT VT = Op.getSimpleValueType();
5843 
5844   SDValue Op1 =
5845       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
5846   SDValue Op2 =
5847       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5848 
5849   SDLoc DL(Op);
5850   SDValue VL =
5851       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5852 
5853   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5854   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5855 
5856   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
5857                             Op.getOperand(2), Mask, VL);
5858 
5859   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
5860 }
5861 
5862 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
5863     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
5864   MVT VT = Op.getSimpleValueType();
5865 
5866   if (VT.getVectorElementType() == MVT::i1)
5867     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
5868 
5869   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
5870 }
5871 
5872 SDValue
5873 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
5874                                                       SelectionDAG &DAG) const {
5875   unsigned Opc;
5876   switch (Op.getOpcode()) {
5877   default: llvm_unreachable("Unexpected opcode!");
5878   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
5879   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
5880   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
5881   }
5882 
5883   return lowerToScalableOp(Op, DAG, Opc);
5884 }
5885 
5886 // Lower vector ABS to smax(X, sub(0, X)).
5887 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
5888   SDLoc DL(Op);
5889   MVT VT = Op.getSimpleValueType();
5890   SDValue X = Op.getOperand(0);
5891 
5892   assert(VT.isFixedLengthVector() && "Unexpected type");
5893 
5894   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5895   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
5896 
5897   SDValue Mask, VL;
5898   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5899 
5900   SDValue SplatZero = DAG.getNode(
5901       RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
5902       DAG.getConstant(0, DL, Subtarget.getXLenVT()));
5903   SDValue NegX =
5904       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
5905   SDValue Max =
5906       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
5907 
5908   return convertFromScalableVector(VT, Max, DAG, Subtarget);
5909 }
5910 
5911 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
5912     SDValue Op, SelectionDAG &DAG) const {
5913   SDLoc DL(Op);
5914   MVT VT = Op.getSimpleValueType();
5915   SDValue Mag = Op.getOperand(0);
5916   SDValue Sign = Op.getOperand(1);
5917   assert(Mag.getValueType() == Sign.getValueType() &&
5918          "Can only handle COPYSIGN with matching types.");
5919 
5920   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5921   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
5922   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
5923 
5924   SDValue Mask, VL;
5925   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5926 
5927   SDValue CopySign =
5928       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
5929 
5930   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
5931 }
5932 
5933 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
5934     SDValue Op, SelectionDAG &DAG) const {
5935   MVT VT = Op.getSimpleValueType();
5936   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5937 
5938   MVT I1ContainerVT =
5939       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5940 
5941   SDValue CC =
5942       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
5943   SDValue Op1 =
5944       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5945   SDValue Op2 =
5946       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
5947 
5948   SDLoc DL(Op);
5949   SDValue Mask, VL;
5950   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5951 
5952   SDValue Select =
5953       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
5954 
5955   return convertFromScalableVector(VT, Select, DAG, Subtarget);
5956 }
5957 
5958 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
5959                                                unsigned NewOpc,
5960                                                bool HasMask) const {
5961   MVT VT = Op.getSimpleValueType();
5962   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5963 
5964   // Create list of operands by converting existing ones to scalable types.
5965   SmallVector<SDValue, 6> Ops;
5966   for (const SDValue &V : Op->op_values()) {
5967     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5968 
5969     // Pass through non-vector operands.
5970     if (!V.getValueType().isVector()) {
5971       Ops.push_back(V);
5972       continue;
5973     }
5974 
5975     // "cast" fixed length vector to a scalable vector.
5976     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
5977            "Only fixed length vectors are supported!");
5978     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5979   }
5980 
5981   SDLoc DL(Op);
5982   SDValue Mask, VL;
5983   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5984   if (HasMask)
5985     Ops.push_back(Mask);
5986   Ops.push_back(VL);
5987 
5988   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
5989   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
5990 }
5991 
5992 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
5993 // * Operands of each node are assumed to be in the same order.
5994 // * The EVL operand is promoted from i32 to i64 on RV64.
5995 // * Fixed-length vectors are converted to their scalable-vector container
5996 //   types.
5997 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
5998                                        unsigned RISCVISDOpc) const {
5999   SDLoc DL(Op);
6000   MVT VT = Op.getSimpleValueType();
6001   SmallVector<SDValue, 4> Ops;
6002 
6003   for (const auto &OpIdx : enumerate(Op->ops())) {
6004     SDValue V = OpIdx.value();
6005     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6006     // Pass through operands which aren't fixed-length vectors.
6007     if (!V.getValueType().isFixedLengthVector()) {
6008       Ops.push_back(V);
6009       continue;
6010     }
6011     // "cast" fixed length vector to a scalable vector.
6012     MVT OpVT = V.getSimpleValueType();
6013     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
6014     assert(useRVVForFixedLengthVectorVT(OpVT) &&
6015            "Only fixed length vectors are supported!");
6016     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6017   }
6018 
6019   if (!VT.isFixedLengthVector())
6020     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
6021 
6022   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6023 
6024   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
6025 
6026   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
6027 }
6028 
6029 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
6030                                             unsigned MaskOpc,
6031                                             unsigned VecOpc) const {
6032   MVT VT = Op.getSimpleValueType();
6033   if (VT.getVectorElementType() != MVT::i1)
6034     return lowerVPOp(Op, DAG, VecOpc);
6035 
6036   // It is safe to drop mask parameter as masked-off elements are undef.
6037   SDValue Op1 = Op->getOperand(0);
6038   SDValue Op2 = Op->getOperand(1);
6039   SDValue VL = Op->getOperand(3);
6040 
6041   MVT ContainerVT = VT;
6042   const bool IsFixed = VT.isFixedLengthVector();
6043   if (IsFixed) {
6044     ContainerVT = getContainerForFixedLengthVector(VT);
6045     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6046     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6047   }
6048 
6049   SDLoc DL(Op);
6050   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
6051   if (!IsFixed)
6052     return Val;
6053   return convertFromScalableVector(VT, Val, DAG, Subtarget);
6054 }
6055 
6056 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
6057 // matched to a RVV indexed load. The RVV indexed load instructions only
6058 // support the "unsigned unscaled" addressing mode; indices are implicitly
6059 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6060 // signed or scaled indexing is extended to the XLEN value type and scaled
6061 // accordingly.
6062 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
6063                                                SelectionDAG &DAG) const {
6064   SDLoc DL(Op);
6065   MVT VT = Op.getSimpleValueType();
6066 
6067   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6068   EVT MemVT = MemSD->getMemoryVT();
6069   MachineMemOperand *MMO = MemSD->getMemOperand();
6070   SDValue Chain = MemSD->getChain();
6071   SDValue BasePtr = MemSD->getBasePtr();
6072 
6073   ISD::LoadExtType LoadExtType;
6074   SDValue Index, Mask, PassThru, VL;
6075 
6076   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
6077     Index = VPGN->getIndex();
6078     Mask = VPGN->getMask();
6079     PassThru = DAG.getUNDEF(VT);
6080     VL = VPGN->getVectorLength();
6081     // VP doesn't support extending loads.
6082     LoadExtType = ISD::NON_EXTLOAD;
6083   } else {
6084     // Else it must be a MGATHER.
6085     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
6086     Index = MGN->getIndex();
6087     Mask = MGN->getMask();
6088     PassThru = MGN->getPassThru();
6089     LoadExtType = MGN->getExtensionType();
6090   }
6091 
6092   MVT IndexVT = Index.getSimpleValueType();
6093   MVT XLenVT = Subtarget.getXLenVT();
6094 
6095   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6096          "Unexpected VTs!");
6097   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6098   // Targets have to explicitly opt-in for extending vector loads.
6099   assert(LoadExtType == ISD::NON_EXTLOAD &&
6100          "Unexpected extending MGATHER/VP_GATHER");
6101   (void)LoadExtType;
6102 
6103   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6104   // the selection of the masked intrinsics doesn't do this for us.
6105   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6106 
6107   MVT ContainerVT = VT;
6108   if (VT.isFixedLengthVector()) {
6109     // We need to use the larger of the result and index type to determine the
6110     // scalable type to use so we don't increase LMUL for any operand/result.
6111     if (VT.bitsGE(IndexVT)) {
6112       ContainerVT = getContainerForFixedLengthVector(VT);
6113       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6114                                  ContainerVT.getVectorElementCount());
6115     } else {
6116       IndexVT = getContainerForFixedLengthVector(IndexVT);
6117       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
6118                                      IndexVT.getVectorElementCount());
6119     }
6120 
6121     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6122 
6123     if (!IsUnmasked) {
6124       MVT MaskVT =
6125           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6126       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6127       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
6128     }
6129   }
6130 
6131   if (!VL)
6132     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6133 
6134   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6135     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6136     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6137                                    VL);
6138     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6139                         TrueMask, VL);
6140   }
6141 
6142   unsigned IntID =
6143       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
6144   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6145   if (IsUnmasked)
6146     Ops.push_back(DAG.getUNDEF(ContainerVT));
6147   else
6148     Ops.push_back(PassThru);
6149   Ops.push_back(BasePtr);
6150   Ops.push_back(Index);
6151   if (!IsUnmasked)
6152     Ops.push_back(Mask);
6153   Ops.push_back(VL);
6154   if (!IsUnmasked)
6155     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
6156 
6157   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
6158   SDValue Result =
6159       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
6160   Chain = Result.getValue(1);
6161 
6162   if (VT.isFixedLengthVector())
6163     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
6164 
6165   return DAG.getMergeValues({Result, Chain}, DL);
6166 }
6167 
6168 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
6169 // matched to a RVV indexed store. The RVV indexed store instructions only
6170 // support the "unsigned unscaled" addressing mode; indices are implicitly
6171 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6172 // signed or scaled indexing is extended to the XLEN value type and scaled
6173 // accordingly.
6174 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
6175                                                 SelectionDAG &DAG) const {
6176   SDLoc DL(Op);
6177   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6178   EVT MemVT = MemSD->getMemoryVT();
6179   MachineMemOperand *MMO = MemSD->getMemOperand();
6180   SDValue Chain = MemSD->getChain();
6181   SDValue BasePtr = MemSD->getBasePtr();
6182 
6183   bool IsTruncatingStore = false;
6184   SDValue Index, Mask, Val, VL;
6185 
6186   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
6187     Index = VPSN->getIndex();
6188     Mask = VPSN->getMask();
6189     Val = VPSN->getValue();
6190     VL = VPSN->getVectorLength();
6191     // VP doesn't support truncating stores.
6192     IsTruncatingStore = false;
6193   } else {
6194     // Else it must be a MSCATTER.
6195     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
6196     Index = MSN->getIndex();
6197     Mask = MSN->getMask();
6198     Val = MSN->getValue();
6199     IsTruncatingStore = MSN->isTruncatingStore();
6200   }
6201 
6202   MVT VT = Val.getSimpleValueType();
6203   MVT IndexVT = Index.getSimpleValueType();
6204   MVT XLenVT = Subtarget.getXLenVT();
6205 
6206   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6207          "Unexpected VTs!");
6208   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6209   // Targets have to explicitly opt-in for extending vector loads and
6210   // truncating vector stores.
6211   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
6212   (void)IsTruncatingStore;
6213 
6214   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6215   // the selection of the masked intrinsics doesn't do this for us.
6216   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6217 
6218   MVT ContainerVT = VT;
6219   if (VT.isFixedLengthVector()) {
6220     // We need to use the larger of the value and index type to determine the
6221     // scalable type to use so we don't increase LMUL for any operand/result.
6222     if (VT.bitsGE(IndexVT)) {
6223       ContainerVT = getContainerForFixedLengthVector(VT);
6224       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6225                                  ContainerVT.getVectorElementCount());
6226     } else {
6227       IndexVT = getContainerForFixedLengthVector(IndexVT);
6228       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
6229                                      IndexVT.getVectorElementCount());
6230     }
6231 
6232     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6233     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
6234 
6235     if (!IsUnmasked) {
6236       MVT MaskVT =
6237           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6238       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6239     }
6240   }
6241 
6242   if (!VL)
6243     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6244 
6245   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6246     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6247     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6248                                    VL);
6249     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6250                         TrueMask, VL);
6251   }
6252 
6253   unsigned IntID =
6254       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
6255   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6256   Ops.push_back(Val);
6257   Ops.push_back(BasePtr);
6258   Ops.push_back(Index);
6259   if (!IsUnmasked)
6260     Ops.push_back(Mask);
6261   Ops.push_back(VL);
6262 
6263   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
6264                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
6265 }
6266 
6267 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
6268                                                SelectionDAG &DAG) const {
6269   const MVT XLenVT = Subtarget.getXLenVT();
6270   SDLoc DL(Op);
6271   SDValue Chain = Op->getOperand(0);
6272   SDValue SysRegNo = DAG.getTargetConstant(
6273       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6274   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
6275   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
6276 
6277   // Encoding used for rounding mode in RISCV differs from that used in
6278   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
6279   // table, which consists of a sequence of 4-bit fields, each representing
6280   // corresponding FLT_ROUNDS mode.
6281   static const int Table =
6282       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
6283       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
6284       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
6285       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
6286       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
6287 
6288   SDValue Shift =
6289       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
6290   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6291                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6292   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6293                                DAG.getConstant(7, DL, XLenVT));
6294 
6295   return DAG.getMergeValues({Masked, Chain}, DL);
6296 }
6297 
6298 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
6299                                                SelectionDAG &DAG) const {
6300   const MVT XLenVT = Subtarget.getXLenVT();
6301   SDLoc DL(Op);
6302   SDValue Chain = Op->getOperand(0);
6303   SDValue RMValue = Op->getOperand(1);
6304   SDValue SysRegNo = DAG.getTargetConstant(
6305       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6306 
6307   // Encoding used for rounding mode in RISCV differs from that used in
6308   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
6309   // a table, which consists of a sequence of 4-bit fields, each representing
6310   // corresponding RISCV mode.
6311   static const unsigned Table =
6312       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
6313       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
6314       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
6315       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
6316       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
6317 
6318   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
6319                               DAG.getConstant(2, DL, XLenVT));
6320   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6321                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6322   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6323                         DAG.getConstant(0x7, DL, XLenVT));
6324   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
6325                      RMValue);
6326 }
6327 
6328 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) {
6329   switch (IntNo) {
6330   default:
6331     llvm_unreachable("Unexpected Intrinsic");
6332   case Intrinsic::riscv_grev:
6333     return RISCVISD::GREVW;
6334   case Intrinsic::riscv_gorc:
6335     return RISCVISD::GORCW;
6336   case Intrinsic::riscv_bcompress:
6337     return RISCVISD::BCOMPRESSW;
6338   case Intrinsic::riscv_bdecompress:
6339     return RISCVISD::BDECOMPRESSW;
6340   case Intrinsic::riscv_bfp:
6341     return RISCVISD::BFPW;
6342   case Intrinsic::riscv_fsl:
6343     return RISCVISD::FSLW;
6344   case Intrinsic::riscv_fsr:
6345     return RISCVISD::FSRW;
6346   }
6347 }
6348 
6349 // Converts the given intrinsic to a i64 operation with any extension.
6350 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG,
6351                                          unsigned IntNo) {
6352   SDLoc DL(N);
6353   RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo);
6354   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6355   SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6356   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2);
6357   // ReplaceNodeResults requires we maintain the same type for the return value.
6358   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6359 }
6360 
6361 // Returns the opcode of the target-specific SDNode that implements the 32-bit
6362 // form of the given Opcode.
6363 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
6364   switch (Opcode) {
6365   default:
6366     llvm_unreachable("Unexpected opcode");
6367   case ISD::SHL:
6368     return RISCVISD::SLLW;
6369   case ISD::SRA:
6370     return RISCVISD::SRAW;
6371   case ISD::SRL:
6372     return RISCVISD::SRLW;
6373   case ISD::SDIV:
6374     return RISCVISD::DIVW;
6375   case ISD::UDIV:
6376     return RISCVISD::DIVUW;
6377   case ISD::UREM:
6378     return RISCVISD::REMUW;
6379   case ISD::ROTL:
6380     return RISCVISD::ROLW;
6381   case ISD::ROTR:
6382     return RISCVISD::RORW;
6383   case RISCVISD::GREV:
6384     return RISCVISD::GREVW;
6385   case RISCVISD::GORC:
6386     return RISCVISD::GORCW;
6387   }
6388 }
6389 
6390 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
6391 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
6392 // otherwise be promoted to i64, making it difficult to select the
6393 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
6394 // type i8/i16/i32 is lost.
6395 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
6396                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
6397   SDLoc DL(N);
6398   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6399   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
6400   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
6401   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6402   // ReplaceNodeResults requires we maintain the same type for the return value.
6403   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6404 }
6405 
6406 // Converts the given 32-bit operation to a i64 operation with signed extension
6407 // semantic to reduce the signed extension instructions.
6408 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
6409   SDLoc DL(N);
6410   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6411   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6412   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
6413   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6414                                DAG.getValueType(MVT::i32));
6415   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
6416 }
6417 
6418 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
6419                                              SmallVectorImpl<SDValue> &Results,
6420                                              SelectionDAG &DAG) const {
6421   SDLoc DL(N);
6422   switch (N->getOpcode()) {
6423   default:
6424     llvm_unreachable("Don't know how to custom type legalize this operation!");
6425   case ISD::STRICT_FP_TO_SINT:
6426   case ISD::STRICT_FP_TO_UINT:
6427   case ISD::FP_TO_SINT:
6428   case ISD::FP_TO_UINT: {
6429     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6430            "Unexpected custom legalisation");
6431     bool IsStrict = N->isStrictFPOpcode();
6432     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
6433                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
6434     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
6435     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
6436         TargetLowering::TypeSoftenFloat) {
6437       if (!isTypeLegal(Op0.getValueType()))
6438         return;
6439       if (IsStrict) {
6440         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
6441                                 : RISCVISD::STRICT_FCVT_WU_RV64;
6442         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
6443         SDValue Res = DAG.getNode(
6444             Opc, DL, VTs, N->getOperand(0), Op0,
6445             DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6446         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6447         Results.push_back(Res.getValue(1));
6448         return;
6449       }
6450       unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
6451       SDValue Res =
6452           DAG.getNode(Opc, DL, MVT::i64, Op0,
6453                       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6454       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6455       return;
6456     }
6457     // If the FP type needs to be softened, emit a library call using the 'si'
6458     // version. If we left it to default legalization we'd end up with 'di'. If
6459     // the FP type doesn't need to be softened just let generic type
6460     // legalization promote the result type.
6461     RTLIB::Libcall LC;
6462     if (IsSigned)
6463       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
6464     else
6465       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
6466     MakeLibCallOptions CallOptions;
6467     EVT OpVT = Op0.getValueType();
6468     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
6469     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
6470     SDValue Result;
6471     std::tie(Result, Chain) =
6472         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
6473     Results.push_back(Result);
6474     if (IsStrict)
6475       Results.push_back(Chain);
6476     break;
6477   }
6478   case ISD::READCYCLECOUNTER: {
6479     assert(!Subtarget.is64Bit() &&
6480            "READCYCLECOUNTER only has custom type legalization on riscv32");
6481 
6482     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6483     SDValue RCW =
6484         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
6485 
6486     Results.push_back(
6487         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
6488     Results.push_back(RCW.getValue(2));
6489     break;
6490   }
6491   case ISD::MUL: {
6492     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
6493     unsigned XLen = Subtarget.getXLen();
6494     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
6495     if (Size > XLen) {
6496       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
6497       SDValue LHS = N->getOperand(0);
6498       SDValue RHS = N->getOperand(1);
6499       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
6500 
6501       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
6502       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
6503       // We need exactly one side to be unsigned.
6504       if (LHSIsU == RHSIsU)
6505         return;
6506 
6507       auto MakeMULPair = [&](SDValue S, SDValue U) {
6508         MVT XLenVT = Subtarget.getXLenVT();
6509         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
6510         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
6511         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
6512         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
6513         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
6514       };
6515 
6516       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
6517       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
6518 
6519       // The other operand should be signed, but still prefer MULH when
6520       // possible.
6521       if (RHSIsU && LHSIsS && !RHSIsS)
6522         Results.push_back(MakeMULPair(LHS, RHS));
6523       else if (LHSIsU && RHSIsS && !LHSIsS)
6524         Results.push_back(MakeMULPair(RHS, LHS));
6525 
6526       return;
6527     }
6528     LLVM_FALLTHROUGH;
6529   }
6530   case ISD::ADD:
6531   case ISD::SUB:
6532     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6533            "Unexpected custom legalisation");
6534     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
6535     break;
6536   case ISD::SHL:
6537   case ISD::SRA:
6538   case ISD::SRL:
6539     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6540            "Unexpected custom legalisation");
6541     if (N->getOperand(1).getOpcode() != ISD::Constant) {
6542       Results.push_back(customLegalizeToWOp(N, DAG));
6543       break;
6544     }
6545 
6546     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
6547     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
6548     // shift amount.
6549     if (N->getOpcode() == ISD::SHL) {
6550       SDLoc DL(N);
6551       SDValue NewOp0 =
6552           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6553       SDValue NewOp1 =
6554           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
6555       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
6556       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6557                                    DAG.getValueType(MVT::i32));
6558       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6559     }
6560 
6561     break;
6562   case ISD::ROTL:
6563   case ISD::ROTR:
6564     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6565            "Unexpected custom legalisation");
6566     Results.push_back(customLegalizeToWOp(N, DAG));
6567     break;
6568   case ISD::CTTZ:
6569   case ISD::CTTZ_ZERO_UNDEF:
6570   case ISD::CTLZ:
6571   case ISD::CTLZ_ZERO_UNDEF: {
6572     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6573            "Unexpected custom legalisation");
6574 
6575     SDValue NewOp0 =
6576         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6577     bool IsCTZ =
6578         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
6579     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
6580     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
6581     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6582     return;
6583   }
6584   case ISD::SDIV:
6585   case ISD::UDIV:
6586   case ISD::UREM: {
6587     MVT VT = N->getSimpleValueType(0);
6588     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
6589            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
6590            "Unexpected custom legalisation");
6591     // Don't promote division/remainder by constant since we should expand those
6592     // to multiply by magic constant.
6593     // FIXME: What if the expansion is disabled for minsize.
6594     if (N->getOperand(1).getOpcode() == ISD::Constant)
6595       return;
6596 
6597     // If the input is i32, use ANY_EXTEND since the W instructions don't read
6598     // the upper 32 bits. For other types we need to sign or zero extend
6599     // based on the opcode.
6600     unsigned ExtOpc = ISD::ANY_EXTEND;
6601     if (VT != MVT::i32)
6602       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
6603                                            : ISD::ZERO_EXTEND;
6604 
6605     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
6606     break;
6607   }
6608   case ISD::UADDO:
6609   case ISD::USUBO: {
6610     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6611            "Unexpected custom legalisation");
6612     bool IsAdd = N->getOpcode() == ISD::UADDO;
6613     // Create an ADDW or SUBW.
6614     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6615     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6616     SDValue Res =
6617         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
6618     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
6619                       DAG.getValueType(MVT::i32));
6620 
6621     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
6622     // Since the inputs are sign extended from i32, this is equivalent to
6623     // comparing the lower 32 bits.
6624     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6625     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
6626                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
6627 
6628     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6629     Results.push_back(Overflow);
6630     return;
6631   }
6632   case ISD::UADDSAT:
6633   case ISD::USUBSAT: {
6634     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6635            "Unexpected custom legalisation");
6636     if (Subtarget.hasStdExtZbb()) {
6637       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
6638       // sign extend allows overflow of the lower 32 bits to be detected on
6639       // the promoted size.
6640       SDValue LHS =
6641           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6642       SDValue RHS =
6643           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
6644       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
6645       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6646       return;
6647     }
6648 
6649     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
6650     // promotion for UADDO/USUBO.
6651     Results.push_back(expandAddSubSat(N, DAG));
6652     return;
6653   }
6654   case ISD::ABS: {
6655     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6656            "Unexpected custom legalisation");
6657           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6658 
6659     // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y)
6660 
6661     SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6662 
6663     // Freeze the source so we can increase it's use count.
6664     Src = DAG.getFreeze(Src);
6665 
6666     // Copy sign bit to all bits using the sraiw pattern.
6667     SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src,
6668                                    DAG.getValueType(MVT::i32));
6669     SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill,
6670                            DAG.getConstant(31, DL, MVT::i64));
6671 
6672     SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill);
6673     NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill);
6674 
6675     // NOTE: The result is only required to be anyextended, but sext is
6676     // consistent with type legalization of sub.
6677     NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes,
6678                          DAG.getValueType(MVT::i32));
6679     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6680     return;
6681   }
6682   case ISD::BITCAST: {
6683     EVT VT = N->getValueType(0);
6684     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
6685     SDValue Op0 = N->getOperand(0);
6686     EVT Op0VT = Op0.getValueType();
6687     MVT XLenVT = Subtarget.getXLenVT();
6688     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
6689       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
6690       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
6691     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
6692                Subtarget.hasStdExtF()) {
6693       SDValue FPConv =
6694           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
6695       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
6696     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
6697                isTypeLegal(Op0VT)) {
6698       // Custom-legalize bitcasts from fixed-length vector types to illegal
6699       // scalar types in order to improve codegen. Bitcast the vector to a
6700       // one-element vector type whose element type is the same as the result
6701       // type, and extract the first element.
6702       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
6703       if (isTypeLegal(BVT)) {
6704         SDValue BVec = DAG.getBitcast(BVT, Op0);
6705         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
6706                                       DAG.getConstant(0, DL, XLenVT)));
6707       }
6708     }
6709     break;
6710   }
6711   case RISCVISD::GREV:
6712   case RISCVISD::GORC: {
6713     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6714            "Unexpected custom legalisation");
6715     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6716     // This is similar to customLegalizeToWOp, except that we pass the second
6717     // operand (a TargetConstant) straight through: it is already of type
6718     // XLenVT.
6719     RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6720     SDValue NewOp0 =
6721         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6722     SDValue NewOp1 =
6723         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6724     SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6725     // ReplaceNodeResults requires we maintain the same type for the return
6726     // value.
6727     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6728     break;
6729   }
6730   case RISCVISD::SHFL: {
6731     // There is no SHFLIW instruction, but we can just promote the operation.
6732     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6733            "Unexpected custom legalisation");
6734     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6735     SDValue NewOp0 =
6736         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6737     SDValue NewOp1 =
6738         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6739     SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1);
6740     // ReplaceNodeResults requires we maintain the same type for the return
6741     // value.
6742     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6743     break;
6744   }
6745   case ISD::BSWAP:
6746   case ISD::BITREVERSE: {
6747     MVT VT = N->getSimpleValueType(0);
6748     MVT XLenVT = Subtarget.getXLenVT();
6749     assert((VT == MVT::i8 || VT == MVT::i16 ||
6750             (VT == MVT::i32 && Subtarget.is64Bit())) &&
6751            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
6752     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
6753     unsigned Imm = VT.getSizeInBits() - 1;
6754     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
6755     if (N->getOpcode() == ISD::BSWAP)
6756       Imm &= ~0x7U;
6757     unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV;
6758     SDValue GREVI =
6759         DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT));
6760     // ReplaceNodeResults requires we maintain the same type for the return
6761     // value.
6762     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
6763     break;
6764   }
6765   case ISD::FSHL:
6766   case ISD::FSHR: {
6767     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6768            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
6769     SDValue NewOp0 =
6770         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6771     SDValue NewOp1 =
6772         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6773     SDValue NewShAmt =
6774         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6775     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
6776     // Mask the shift amount to 5 bits to prevent accidentally setting bit 5.
6777     NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt,
6778                            DAG.getConstant(0x1f, DL, MVT::i64));
6779     // fshl and fshr concatenate their operands in the same order. fsrw and fslw
6780     // instruction use different orders. fshl will return its first operand for
6781     // shift of zero, fshr will return its second operand. fsl and fsr both
6782     // return rs1 so the ISD nodes need to have different operand orders.
6783     // Shift amount is in rs2.
6784     unsigned Opc = RISCVISD::FSLW;
6785     if (N->getOpcode() == ISD::FSHR) {
6786       std::swap(NewOp0, NewOp1);
6787       Opc = RISCVISD::FSRW;
6788     }
6789     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt);
6790     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
6791     break;
6792   }
6793   case ISD::EXTRACT_VECTOR_ELT: {
6794     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
6795     // type is illegal (currently only vXi64 RV32).
6796     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
6797     // transferred to the destination register. We issue two of these from the
6798     // upper- and lower- halves of the SEW-bit vector element, slid down to the
6799     // first element.
6800     SDValue Vec = N->getOperand(0);
6801     SDValue Idx = N->getOperand(1);
6802 
6803     // The vector type hasn't been legalized yet so we can't issue target
6804     // specific nodes if it needs legalization.
6805     // FIXME: We would manually legalize if it's important.
6806     if (!isTypeLegal(Vec.getValueType()))
6807       return;
6808 
6809     MVT VecVT = Vec.getSimpleValueType();
6810 
6811     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
6812            VecVT.getVectorElementType() == MVT::i64 &&
6813            "Unexpected EXTRACT_VECTOR_ELT legalization");
6814 
6815     // If this is a fixed vector, we need to convert it to a scalable vector.
6816     MVT ContainerVT = VecVT;
6817     if (VecVT.isFixedLengthVector()) {
6818       ContainerVT = getContainerForFixedLengthVector(VecVT);
6819       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
6820     }
6821 
6822     MVT XLenVT = Subtarget.getXLenVT();
6823 
6824     // Use a VL of 1 to avoid processing more elements than we need.
6825     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6826     SDValue VL = DAG.getConstant(1, DL, XLenVT);
6827     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6828 
6829     // Unless the index is known to be 0, we must slide the vector down to get
6830     // the desired element into index 0.
6831     if (!isNullConstant(Idx)) {
6832       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
6833                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
6834     }
6835 
6836     // Extract the lower XLEN bits of the correct vector element.
6837     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
6838 
6839     // To extract the upper XLEN bits of the vector element, shift the first
6840     // element right by 32 bits and re-extract the lower XLEN bits.
6841     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6842                                      DAG.getUNDEF(ContainerVT),
6843                                      DAG.getConstant(32, DL, XLenVT), VL);
6844     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
6845                                  ThirtyTwoV, Mask, VL);
6846 
6847     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
6848 
6849     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
6850     break;
6851   }
6852   case ISD::INTRINSIC_WO_CHAIN: {
6853     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
6854     switch (IntNo) {
6855     default:
6856       llvm_unreachable(
6857           "Don't know how to custom type legalize this intrinsic!");
6858     case Intrinsic::riscv_grev:
6859     case Intrinsic::riscv_gorc:
6860     case Intrinsic::riscv_bcompress:
6861     case Intrinsic::riscv_bdecompress:
6862     case Intrinsic::riscv_bfp: {
6863       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6864              "Unexpected custom legalisation");
6865       Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo));
6866       break;
6867     }
6868     case Intrinsic::riscv_fsl:
6869     case Intrinsic::riscv_fsr: {
6870       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6871              "Unexpected custom legalisation");
6872       SDValue NewOp1 =
6873           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6874       SDValue NewOp2 =
6875           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6876       SDValue NewOp3 =
6877           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3));
6878       unsigned Opc = getRISCVWOpcodeByIntr(IntNo);
6879       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3);
6880       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6881       break;
6882     }
6883     case Intrinsic::riscv_orc_b: {
6884       // Lower to the GORCI encoding for orc.b with the operand extended.
6885       SDValue NewOp =
6886           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6887       // If Zbp is enabled, use GORCIW which will sign extend the result.
6888       unsigned Opc =
6889           Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC;
6890       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp,
6891                                 DAG.getConstant(7, DL, MVT::i64));
6892       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6893       return;
6894     }
6895     case Intrinsic::riscv_shfl:
6896     case Intrinsic::riscv_unshfl: {
6897       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6898              "Unexpected custom legalisation");
6899       SDValue NewOp1 =
6900           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6901       SDValue NewOp2 =
6902           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6903       unsigned Opc =
6904           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
6905       // There is no (UN)SHFLIW. If the control word is a constant, we can use
6906       // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half
6907       // will be shuffled the same way as the lower 32 bit half, but the two
6908       // halves won't cross.
6909       if (isa<ConstantSDNode>(NewOp2)) {
6910         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
6911                              DAG.getConstant(0xf, DL, MVT::i64));
6912         Opc =
6913             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
6914       }
6915       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
6916       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6917       break;
6918     }
6919     case Intrinsic::riscv_vmv_x_s: {
6920       EVT VT = N->getValueType(0);
6921       MVT XLenVT = Subtarget.getXLenVT();
6922       if (VT.bitsLT(XLenVT)) {
6923         // Simple case just extract using vmv.x.s and truncate.
6924         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
6925                                       Subtarget.getXLenVT(), N->getOperand(1));
6926         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
6927         return;
6928       }
6929 
6930       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
6931              "Unexpected custom legalization");
6932 
6933       // We need to do the move in two steps.
6934       SDValue Vec = N->getOperand(1);
6935       MVT VecVT = Vec.getSimpleValueType();
6936 
6937       // First extract the lower XLEN bits of the element.
6938       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
6939 
6940       // To extract the upper XLEN bits of the vector element, shift the first
6941       // element right by 32 bits and re-extract the lower XLEN bits.
6942       SDValue VL = DAG.getConstant(1, DL, XLenVT);
6943       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
6944       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6945       SDValue ThirtyTwoV =
6946           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
6947                       DAG.getConstant(32, DL, XLenVT), VL);
6948       SDValue LShr32 =
6949           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
6950       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
6951 
6952       Results.push_back(
6953           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
6954       break;
6955     }
6956     }
6957     break;
6958   }
6959   case ISD::VECREDUCE_ADD:
6960   case ISD::VECREDUCE_AND:
6961   case ISD::VECREDUCE_OR:
6962   case ISD::VECREDUCE_XOR:
6963   case ISD::VECREDUCE_SMAX:
6964   case ISD::VECREDUCE_UMAX:
6965   case ISD::VECREDUCE_SMIN:
6966   case ISD::VECREDUCE_UMIN:
6967     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
6968       Results.push_back(V);
6969     break;
6970   case ISD::VP_REDUCE_ADD:
6971   case ISD::VP_REDUCE_AND:
6972   case ISD::VP_REDUCE_OR:
6973   case ISD::VP_REDUCE_XOR:
6974   case ISD::VP_REDUCE_SMAX:
6975   case ISD::VP_REDUCE_UMAX:
6976   case ISD::VP_REDUCE_SMIN:
6977   case ISD::VP_REDUCE_UMIN:
6978     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
6979       Results.push_back(V);
6980     break;
6981   case ISD::FLT_ROUNDS_: {
6982     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
6983     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
6984     Results.push_back(Res.getValue(0));
6985     Results.push_back(Res.getValue(1));
6986     break;
6987   }
6988   }
6989 }
6990 
6991 // A structure to hold one of the bit-manipulation patterns below. Together, a
6992 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
6993 //   (or (and (shl x, 1), 0xAAAAAAAA),
6994 //       (and (srl x, 1), 0x55555555))
6995 struct RISCVBitmanipPat {
6996   SDValue Op;
6997   unsigned ShAmt;
6998   bool IsSHL;
6999 
7000   bool formsPairWith(const RISCVBitmanipPat &Other) const {
7001     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
7002   }
7003 };
7004 
7005 // Matches patterns of the form
7006 //   (and (shl x, C2), (C1 << C2))
7007 //   (and (srl x, C2), C1)
7008 //   (shl (and x, C1), C2)
7009 //   (srl (and x, (C1 << C2)), C2)
7010 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
7011 // The expected masks for each shift amount are specified in BitmanipMasks where
7012 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
7013 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
7014 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
7015 // XLen is 64.
7016 static Optional<RISCVBitmanipPat>
7017 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
7018   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
7019          "Unexpected number of masks");
7020   Optional<uint64_t> Mask;
7021   // Optionally consume a mask around the shift operation.
7022   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
7023     Mask = Op.getConstantOperandVal(1);
7024     Op = Op.getOperand(0);
7025   }
7026   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
7027     return None;
7028   bool IsSHL = Op.getOpcode() == ISD::SHL;
7029 
7030   if (!isa<ConstantSDNode>(Op.getOperand(1)))
7031     return None;
7032   uint64_t ShAmt = Op.getConstantOperandVal(1);
7033 
7034   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7035   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
7036     return None;
7037   // If we don't have enough masks for 64 bit, then we must be trying to
7038   // match SHFL so we're only allowed to shift 1/4 of the width.
7039   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
7040     return None;
7041 
7042   SDValue Src = Op.getOperand(0);
7043 
7044   // The expected mask is shifted left when the AND is found around SHL
7045   // patterns.
7046   //   ((x >> 1) & 0x55555555)
7047   //   ((x << 1) & 0xAAAAAAAA)
7048   bool SHLExpMask = IsSHL;
7049 
7050   if (!Mask) {
7051     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
7052     // the mask is all ones: consume that now.
7053     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
7054       Mask = Src.getConstantOperandVal(1);
7055       Src = Src.getOperand(0);
7056       // The expected mask is now in fact shifted left for SRL, so reverse the
7057       // decision.
7058       //   ((x & 0xAAAAAAAA) >> 1)
7059       //   ((x & 0x55555555) << 1)
7060       SHLExpMask = !SHLExpMask;
7061     } else {
7062       // Use a default shifted mask of all-ones if there's no AND, truncated
7063       // down to the expected width. This simplifies the logic later on.
7064       Mask = maskTrailingOnes<uint64_t>(Width);
7065       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
7066     }
7067   }
7068 
7069   unsigned MaskIdx = Log2_32(ShAmt);
7070   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7071 
7072   if (SHLExpMask)
7073     ExpMask <<= ShAmt;
7074 
7075   if (Mask != ExpMask)
7076     return None;
7077 
7078   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
7079 }
7080 
7081 // Matches any of the following bit-manipulation patterns:
7082 //   (and (shl x, 1), (0x55555555 << 1))
7083 //   (and (srl x, 1), 0x55555555)
7084 //   (shl (and x, 0x55555555), 1)
7085 //   (srl (and x, (0x55555555 << 1)), 1)
7086 // where the shift amount and mask may vary thus:
7087 //   [1]  = 0x55555555 / 0xAAAAAAAA
7088 //   [2]  = 0x33333333 / 0xCCCCCCCC
7089 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
7090 //   [8]  = 0x00FF00FF / 0xFF00FF00
7091 //   [16] = 0x0000FFFF / 0xFFFFFFFF
7092 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
7093 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
7094   // These are the unshifted masks which we use to match bit-manipulation
7095   // patterns. They may be shifted left in certain circumstances.
7096   static const uint64_t BitmanipMasks[] = {
7097       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
7098       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
7099 
7100   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7101 }
7102 
7103 // Match the following pattern as a GREVI(W) operation
7104 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
7105 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
7106                                const RISCVSubtarget &Subtarget) {
7107   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7108   EVT VT = Op.getValueType();
7109 
7110   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7111     auto LHS = matchGREVIPat(Op.getOperand(0));
7112     auto RHS = matchGREVIPat(Op.getOperand(1));
7113     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
7114       SDLoc DL(Op);
7115       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
7116                          DAG.getConstant(LHS->ShAmt, DL, VT));
7117     }
7118   }
7119   return SDValue();
7120 }
7121 
7122 // Matches any the following pattern as a GORCI(W) operation
7123 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
7124 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
7125 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
7126 // Note that with the variant of 3.,
7127 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
7128 // the inner pattern will first be matched as GREVI and then the outer
7129 // pattern will be matched to GORC via the first rule above.
7130 // 4.  (or (rotl/rotr x, bitwidth/2), x)
7131 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
7132                                const RISCVSubtarget &Subtarget) {
7133   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7134   EVT VT = Op.getValueType();
7135 
7136   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7137     SDLoc DL(Op);
7138     SDValue Op0 = Op.getOperand(0);
7139     SDValue Op1 = Op.getOperand(1);
7140 
7141     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
7142       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
7143           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
7144           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
7145         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
7146       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
7147       if ((Reverse.getOpcode() == ISD::ROTL ||
7148            Reverse.getOpcode() == ISD::ROTR) &&
7149           Reverse.getOperand(0) == X &&
7150           isa<ConstantSDNode>(Reverse.getOperand(1))) {
7151         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
7152         if (RotAmt == (VT.getSizeInBits() / 2))
7153           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
7154                              DAG.getConstant(RotAmt, DL, VT));
7155       }
7156       return SDValue();
7157     };
7158 
7159     // Check for either commutable permutation of (or (GREVI x, shamt), x)
7160     if (SDValue V = MatchOROfReverse(Op0, Op1))
7161       return V;
7162     if (SDValue V = MatchOROfReverse(Op1, Op0))
7163       return V;
7164 
7165     // OR is commutable so canonicalize its OR operand to the left
7166     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
7167       std::swap(Op0, Op1);
7168     if (Op0.getOpcode() != ISD::OR)
7169       return SDValue();
7170     SDValue OrOp0 = Op0.getOperand(0);
7171     SDValue OrOp1 = Op0.getOperand(1);
7172     auto LHS = matchGREVIPat(OrOp0);
7173     // OR is commutable so swap the operands and try again: x might have been
7174     // on the left
7175     if (!LHS) {
7176       std::swap(OrOp0, OrOp1);
7177       LHS = matchGREVIPat(OrOp0);
7178     }
7179     auto RHS = matchGREVIPat(Op1);
7180     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
7181       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
7182                          DAG.getConstant(LHS->ShAmt, DL, VT));
7183     }
7184   }
7185   return SDValue();
7186 }
7187 
7188 // Matches any of the following bit-manipulation patterns:
7189 //   (and (shl x, 1), (0x22222222 << 1))
7190 //   (and (srl x, 1), 0x22222222)
7191 //   (shl (and x, 0x22222222), 1)
7192 //   (srl (and x, (0x22222222 << 1)), 1)
7193 // where the shift amount and mask may vary thus:
7194 //   [1]  = 0x22222222 / 0x44444444
7195 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
7196 //   [4]  = 0x00F000F0 / 0x0F000F00
7197 //   [8]  = 0x0000FF00 / 0x00FF0000
7198 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
7199 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
7200   // These are the unshifted masks which we use to match bit-manipulation
7201   // patterns. They may be shifted left in certain circumstances.
7202   static const uint64_t BitmanipMasks[] = {
7203       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
7204       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
7205 
7206   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7207 }
7208 
7209 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
7210 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
7211                                const RISCVSubtarget &Subtarget) {
7212   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7213   EVT VT = Op.getValueType();
7214 
7215   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
7216     return SDValue();
7217 
7218   SDValue Op0 = Op.getOperand(0);
7219   SDValue Op1 = Op.getOperand(1);
7220 
7221   // Or is commutable so canonicalize the second OR to the LHS.
7222   if (Op0.getOpcode() != ISD::OR)
7223     std::swap(Op0, Op1);
7224   if (Op0.getOpcode() != ISD::OR)
7225     return SDValue();
7226 
7227   // We found an inner OR, so our operands are the operands of the inner OR
7228   // and the other operand of the outer OR.
7229   SDValue A = Op0.getOperand(0);
7230   SDValue B = Op0.getOperand(1);
7231   SDValue C = Op1;
7232 
7233   auto Match1 = matchSHFLPat(A);
7234   auto Match2 = matchSHFLPat(B);
7235 
7236   // If neither matched, we failed.
7237   if (!Match1 && !Match2)
7238     return SDValue();
7239 
7240   // We had at least one match. if one failed, try the remaining C operand.
7241   if (!Match1) {
7242     std::swap(A, C);
7243     Match1 = matchSHFLPat(A);
7244     if (!Match1)
7245       return SDValue();
7246   } else if (!Match2) {
7247     std::swap(B, C);
7248     Match2 = matchSHFLPat(B);
7249     if (!Match2)
7250       return SDValue();
7251   }
7252   assert(Match1 && Match2);
7253 
7254   // Make sure our matches pair up.
7255   if (!Match1->formsPairWith(*Match2))
7256     return SDValue();
7257 
7258   // All the remains is to make sure C is an AND with the same input, that masks
7259   // out the bits that are being shuffled.
7260   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
7261       C.getOperand(0) != Match1->Op)
7262     return SDValue();
7263 
7264   uint64_t Mask = C.getConstantOperandVal(1);
7265 
7266   static const uint64_t BitmanipMasks[] = {
7267       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
7268       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
7269   };
7270 
7271   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7272   unsigned MaskIdx = Log2_32(Match1->ShAmt);
7273   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7274 
7275   if (Mask != ExpMask)
7276     return SDValue();
7277 
7278   SDLoc DL(Op);
7279   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
7280                      DAG.getConstant(Match1->ShAmt, DL, VT));
7281 }
7282 
7283 // Optimize (add (shl x, c0), (shl y, c1)) ->
7284 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
7285 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
7286                                   const RISCVSubtarget &Subtarget) {
7287   // Perform this optimization only in the zba extension.
7288   if (!Subtarget.hasStdExtZba())
7289     return SDValue();
7290 
7291   // Skip for vector types and larger types.
7292   EVT VT = N->getValueType(0);
7293   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7294     return SDValue();
7295 
7296   // The two operand nodes must be SHL and have no other use.
7297   SDValue N0 = N->getOperand(0);
7298   SDValue N1 = N->getOperand(1);
7299   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
7300       !N0->hasOneUse() || !N1->hasOneUse())
7301     return SDValue();
7302 
7303   // Check c0 and c1.
7304   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7305   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
7306   if (!N0C || !N1C)
7307     return SDValue();
7308   int64_t C0 = N0C->getSExtValue();
7309   int64_t C1 = N1C->getSExtValue();
7310   if (C0 <= 0 || C1 <= 0)
7311     return SDValue();
7312 
7313   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
7314   int64_t Bits = std::min(C0, C1);
7315   int64_t Diff = std::abs(C0 - C1);
7316   if (Diff != 1 && Diff != 2 && Diff != 3)
7317     return SDValue();
7318 
7319   // Build nodes.
7320   SDLoc DL(N);
7321   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
7322   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
7323   SDValue NA0 =
7324       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
7325   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
7326   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
7327 }
7328 
7329 // Combine
7330 // ROTR ((GREV x, 24), 16) -> (GREVI x, 8) for RV32
7331 // ROTL ((GREV x, 24), 16) -> (GREVI x, 8) for RV32
7332 // ROTR ((GREV x, 56), 32) -> (GREVI x, 24) for RV64
7333 // ROTL ((GREV x, 56), 32) -> (GREVI x, 24) for RV64
7334 // RORW ((GREVW x, 24), 16) -> (GREVIW x, 8) for RV64
7335 // ROLW ((GREVW x, 24), 16) -> (GREVIW x, 8) for RV64
7336 // The grev patterns represents BSWAP.
7337 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB
7338 // off the grev.
7339 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG,
7340                                           const RISCVSubtarget &Subtarget) {
7341   bool IsWInstruction =
7342       N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW;
7343   assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL ||
7344           IsWInstruction) &&
7345          "Unexpected opcode!");
7346   SDValue Src = N->getOperand(0);
7347   EVT VT = N->getValueType(0);
7348   SDLoc DL(N);
7349 
7350   if (!Subtarget.hasStdExtZbp())
7351     return SDValue();
7352 
7353   unsigned GrevOpc = IsWInstruction ? RISCVISD::GREVW : RISCVISD::GREV;
7354   if (Src.getOpcode() != GrevOpc)
7355     return SDValue();
7356 
7357   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7358       !isa<ConstantSDNode>(Src.getOperand(1)))
7359     return SDValue();
7360 
7361   unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits();
7362   assert(isPowerOf2_32(BitWidth) && "Expected a power of 2");
7363 
7364   // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for
7365   // RORW/ROLW. And the grev should be the encoding for bswap for this width.
7366   unsigned ShAmt1 = N->getConstantOperandVal(1);
7367   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7368   if (BitWidth < 16 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8))
7369     return SDValue();
7370 
7371   Src = Src.getOperand(0);
7372 
7373   // Toggle bit the MSB of the shift.
7374   unsigned CombinedShAmt = ShAmt1 ^ ShAmt2;
7375   if (CombinedShAmt == 0)
7376     return Src;
7377 
7378   return DAG.getNode(
7379       GrevOpc, DL, VT, Src,
7380       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7381 }
7382 
7383 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
7384 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
7385 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
7386 // not undo itself, but they are redundant.
7387 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
7388   SDValue Src = N->getOperand(0);
7389 
7390   if (Src.getOpcode() != N->getOpcode())
7391     return SDValue();
7392 
7393   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7394       !isa<ConstantSDNode>(Src.getOperand(1)))
7395     return SDValue();
7396 
7397   unsigned ShAmt1 = N->getConstantOperandVal(1);
7398   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7399   Src = Src.getOperand(0);
7400 
7401   unsigned CombinedShAmt;
7402   if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW)
7403     CombinedShAmt = ShAmt1 | ShAmt2;
7404   else
7405     CombinedShAmt = ShAmt1 ^ ShAmt2;
7406 
7407   if (CombinedShAmt == 0)
7408     return Src;
7409 
7410   SDLoc DL(N);
7411   return DAG.getNode(
7412       N->getOpcode(), DL, N->getValueType(0), Src,
7413       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7414 }
7415 
7416 // Combine a constant select operand into its use:
7417 //
7418 // (and (select cond, -1, c), x)
7419 //   -> (select cond, x, (and x, c))  [AllOnes=1]
7420 // (or  (select cond, 0, c), x)
7421 //   -> (select cond, x, (or x, c))  [AllOnes=0]
7422 // (xor (select cond, 0, c), x)
7423 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
7424 // (add (select cond, 0, c), x)
7425 //   -> (select cond, x, (add x, c))  [AllOnes=0]
7426 // (sub x, (select cond, 0, c))
7427 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
7428 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7429                                    SelectionDAG &DAG, bool AllOnes) {
7430   EVT VT = N->getValueType(0);
7431 
7432   // Skip vectors.
7433   if (VT.isVector())
7434     return SDValue();
7435 
7436   if ((Slct.getOpcode() != ISD::SELECT &&
7437        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
7438       !Slct.hasOneUse())
7439     return SDValue();
7440 
7441   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
7442     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
7443   };
7444 
7445   bool SwapSelectOps;
7446   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
7447   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
7448   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
7449   SDValue NonConstantVal;
7450   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
7451     SwapSelectOps = false;
7452     NonConstantVal = FalseVal;
7453   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
7454     SwapSelectOps = true;
7455     NonConstantVal = TrueVal;
7456   } else
7457     return SDValue();
7458 
7459   // Slct is now know to be the desired identity constant when CC is true.
7460   TrueVal = OtherOp;
7461   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
7462   // Unless SwapSelectOps says the condition should be false.
7463   if (SwapSelectOps)
7464     std::swap(TrueVal, FalseVal);
7465 
7466   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
7467     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
7468                        {Slct.getOperand(0), Slct.getOperand(1),
7469                         Slct.getOperand(2), TrueVal, FalseVal});
7470 
7471   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
7472                      {Slct.getOperand(0), TrueVal, FalseVal});
7473 }
7474 
7475 // Attempt combineSelectAndUse on each operand of a commutative operator N.
7476 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
7477                                               bool AllOnes) {
7478   SDValue N0 = N->getOperand(0);
7479   SDValue N1 = N->getOperand(1);
7480   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
7481     return Result;
7482   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
7483     return Result;
7484   return SDValue();
7485 }
7486 
7487 // Transform (add (mul x, c0), c1) ->
7488 //           (add (mul (add x, c1/c0), c0), c1%c0).
7489 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
7490 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
7491 // to an infinite loop in DAGCombine if transformed.
7492 // Or transform (add (mul x, c0), c1) ->
7493 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
7494 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
7495 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
7496 // lead to an infinite loop in DAGCombine if transformed.
7497 // Or transform (add (mul x, c0), c1) ->
7498 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
7499 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
7500 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
7501 // lead to an infinite loop in DAGCombine if transformed.
7502 // Or transform (add (mul x, c0), c1) ->
7503 //              (mul (add x, c1/c0), c0).
7504 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
7505 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
7506                                      const RISCVSubtarget &Subtarget) {
7507   // Skip for vector types and larger types.
7508   EVT VT = N->getValueType(0);
7509   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7510     return SDValue();
7511   // The first operand node must be a MUL and has no other use.
7512   SDValue N0 = N->getOperand(0);
7513   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
7514     return SDValue();
7515   // Check if c0 and c1 match above conditions.
7516   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7517   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
7518   if (!N0C || !N1C)
7519     return SDValue();
7520   // If N0C has multiple uses it's possible one of the cases in
7521   // DAGCombiner::isMulAddWithConstProfitable will be true, which would result
7522   // in an infinite loop.
7523   if (!N0C->hasOneUse())
7524     return SDValue();
7525   int64_t C0 = N0C->getSExtValue();
7526   int64_t C1 = N1C->getSExtValue();
7527   int64_t CA, CB;
7528   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
7529     return SDValue();
7530   // Search for proper CA (non-zero) and CB that both are simm12.
7531   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
7532       !isInt<12>(C0 * (C1 / C0))) {
7533     CA = C1 / C0;
7534     CB = C1 % C0;
7535   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
7536              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
7537     CA = C1 / C0 + 1;
7538     CB = C1 % C0 - C0;
7539   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
7540              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
7541     CA = C1 / C0 - 1;
7542     CB = C1 % C0 + C0;
7543   } else
7544     return SDValue();
7545   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
7546   SDLoc DL(N);
7547   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
7548                              DAG.getConstant(CA, DL, VT));
7549   SDValue New1 =
7550       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
7551   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
7552 }
7553 
7554 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
7555                                  const RISCVSubtarget &Subtarget) {
7556   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
7557     return V;
7558   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
7559     return V;
7560   // fold (add (select lhs, rhs, cc, 0, y), x) ->
7561   //      (select lhs, rhs, cc, x, (add x, y))
7562   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7563 }
7564 
7565 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
7566   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
7567   //      (select lhs, rhs, cc, x, (sub x, y))
7568   SDValue N0 = N->getOperand(0);
7569   SDValue N1 = N->getOperand(1);
7570   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
7571 }
7572 
7573 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) {
7574   // fold (and (select lhs, rhs, cc, -1, y), x) ->
7575   //      (select lhs, rhs, cc, x, (and x, y))
7576   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
7577 }
7578 
7579 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
7580                                 const RISCVSubtarget &Subtarget) {
7581   if (Subtarget.hasStdExtZbp()) {
7582     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
7583       return GREV;
7584     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
7585       return GORC;
7586     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
7587       return SHFL;
7588   }
7589 
7590   // fold (or (select cond, 0, y), x) ->
7591   //      (select cond, x, (or x, y))
7592   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7593 }
7594 
7595 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
7596   // fold (xor (select cond, 0, y), x) ->
7597   //      (select cond, x, (xor x, y))
7598   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7599 }
7600 
7601 static SDValue
7602 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
7603                                 const RISCVSubtarget &Subtarget) {
7604   SDValue Src = N->getOperand(0);
7605   EVT VT = N->getValueType(0);
7606 
7607   // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X)
7608   if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
7609       cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16))
7610     return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT,
7611                        Src.getOperand(0));
7612 
7613   // Fold (i64 (sext_inreg (abs X), i32)) ->
7614   // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits.
7615   // The (sext_inreg (neg X), i32) will be selected to negw by isel. This
7616   // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user
7617   // of the (i32 (abs X)) is a sext or setcc or something else that causes type
7618   // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have
7619   // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg
7620   // may get combined into an earlier operation so we need to use
7621   // ComputeNumSignBits.
7622   // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for
7623   // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so
7624   // we can't assume that X has 33 sign bits. We must check.
7625   if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() &&
7626       Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 &&
7627       cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 &&
7628       DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) {
7629     SDLoc DL(N);
7630     SDValue Freeze = DAG.getFreeze(Src.getOperand(0));
7631     SDValue Neg =
7632         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze);
7633     Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg,
7634                       DAG.getValueType(MVT::i32));
7635     return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg);
7636   }
7637 
7638   return SDValue();
7639 }
7640 
7641 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND
7642 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free
7643 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be
7644 // removed during type legalization leaving an ADD/SUB/MUL use that won't use
7645 // ADDW/SUBW/MULW.
7646 static SDValue performANY_EXTENDCombine(SDNode *N,
7647                                         TargetLowering::DAGCombinerInfo &DCI,
7648                                         const RISCVSubtarget &Subtarget) {
7649   if (!Subtarget.is64Bit())
7650     return SDValue();
7651 
7652   SelectionDAG &DAG = DCI.DAG;
7653 
7654   SDValue Src = N->getOperand(0);
7655   EVT VT = N->getValueType(0);
7656   if (VT != MVT::i64 || Src.getValueType() != MVT::i32)
7657     return SDValue();
7658 
7659   // The opcode must be one that can implicitly sign_extend.
7660   // FIXME: Additional opcodes.
7661   switch (Src.getOpcode()) {
7662   default:
7663     return SDValue();
7664   case ISD::MUL:
7665     if (!Subtarget.hasStdExtM())
7666       return SDValue();
7667     LLVM_FALLTHROUGH;
7668   case ISD::ADD:
7669   case ISD::SUB:
7670     break;
7671   }
7672 
7673   // Only handle cases where the result is used by a CopyToReg. That likely
7674   // means the value is a liveout of the basic block. This helps prevent
7675   // infinite combine loops like PR51206.
7676   if (none_of(N->uses(),
7677               [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; }))
7678     return SDValue();
7679 
7680   SmallVector<SDNode *, 4> SetCCs;
7681   for (SDNode::use_iterator UI = Src.getNode()->use_begin(),
7682                             UE = Src.getNode()->use_end();
7683        UI != UE; ++UI) {
7684     SDNode *User = *UI;
7685     if (User == N)
7686       continue;
7687     if (UI.getUse().getResNo() != Src.getResNo())
7688       continue;
7689     // All i32 setccs are legalized by sign extending operands.
7690     if (User->getOpcode() == ISD::SETCC) {
7691       SetCCs.push_back(User);
7692       continue;
7693     }
7694     // We don't know if we can extend this user.
7695     break;
7696   }
7697 
7698   // If we don't have any SetCCs, this isn't worthwhile.
7699   if (SetCCs.empty())
7700     return SDValue();
7701 
7702   SDLoc DL(N);
7703   SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src);
7704   DCI.CombineTo(N, SExt);
7705 
7706   // Promote all the setccs.
7707   for (SDNode *SetCC : SetCCs) {
7708     SmallVector<SDValue, 4> Ops;
7709 
7710     for (unsigned j = 0; j != 2; ++j) {
7711       SDValue SOp = SetCC->getOperand(j);
7712       if (SOp == Src)
7713         Ops.push_back(SExt);
7714       else
7715         Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp));
7716     }
7717 
7718     Ops.push_back(SetCC->getOperand(2));
7719     DCI.CombineTo(SetCC,
7720                   DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
7721   }
7722   return SDValue(N, 0);
7723 }
7724 
7725 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to
7726 // vwadd(u).vv/vx or vwsub(u).vv/vx.
7727 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG,
7728                                              bool Commute = false) {
7729   assert((N->getOpcode() == RISCVISD::ADD_VL ||
7730           N->getOpcode() == RISCVISD::SUB_VL) &&
7731          "Unexpected opcode");
7732   bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL;
7733   SDValue Op0 = N->getOperand(0);
7734   SDValue Op1 = N->getOperand(1);
7735   if (Commute)
7736     std::swap(Op0, Op1);
7737 
7738   MVT VT = N->getSimpleValueType(0);
7739 
7740   // Determine the narrow size for a widening add/sub.
7741   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
7742   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
7743                                   VT.getVectorElementCount());
7744 
7745   SDValue Mask = N->getOperand(2);
7746   SDValue VL = N->getOperand(3);
7747 
7748   SDLoc DL(N);
7749 
7750   // If the RHS is a sext or zext, we can form a widening op.
7751   if ((Op1.getOpcode() == RISCVISD::VZEXT_VL ||
7752        Op1.getOpcode() == RISCVISD::VSEXT_VL) &&
7753       Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) {
7754     unsigned ExtOpc = Op1.getOpcode();
7755     Op1 = Op1.getOperand(0);
7756     // Re-introduce narrower extends if needed.
7757     if (Op1.getValueType() != NarrowVT)
7758       Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
7759 
7760     unsigned WOpc;
7761     if (ExtOpc == RISCVISD::VSEXT_VL)
7762       WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL;
7763     else
7764       WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL;
7765 
7766     return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL);
7767   }
7768 
7769   // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar
7770   // sext/zext?
7771 
7772   return SDValue();
7773 }
7774 
7775 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or
7776 // vwsub(u).vv/vx.
7777 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) {
7778   SDValue Op0 = N->getOperand(0);
7779   SDValue Op1 = N->getOperand(1);
7780   SDValue Mask = N->getOperand(2);
7781   SDValue VL = N->getOperand(3);
7782 
7783   MVT VT = N->getSimpleValueType(0);
7784   MVT NarrowVT = Op1.getSimpleValueType();
7785   unsigned NarrowSize = NarrowVT.getScalarSizeInBits();
7786 
7787   unsigned VOpc;
7788   switch (N->getOpcode()) {
7789   default: llvm_unreachable("Unexpected opcode");
7790   case RISCVISD::VWADD_W_VL:  VOpc = RISCVISD::VWADD_VL;  break;
7791   case RISCVISD::VWSUB_W_VL:  VOpc = RISCVISD::VWSUB_VL;  break;
7792   case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break;
7793   case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break;
7794   }
7795 
7796   bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL ||
7797                   N->getOpcode() == RISCVISD::VWSUB_W_VL;
7798 
7799   SDLoc DL(N);
7800 
7801   // If the LHS is a sext or zext, we can narrow this op to the same size as
7802   // the RHS.
7803   if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) ||
7804        (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) &&
7805       Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) {
7806     unsigned ExtOpc = Op0.getOpcode();
7807     Op0 = Op0.getOperand(0);
7808     // Re-introduce narrower extends if needed.
7809     if (Op0.getValueType() != NarrowVT)
7810       Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
7811     return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL);
7812   }
7813 
7814   bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL ||
7815                N->getOpcode() == RISCVISD::VWADDU_W_VL;
7816 
7817   // Look for splats on the left hand side of a vwadd(u).wv. We might be able
7818   // to commute and use a vwadd(u).vx instead.
7819   if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL &&
7820       Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) {
7821     Op0 = Op0.getOperand(1);
7822 
7823     // See if have enough sign bits or zero bits in the scalar to use a
7824     // widening add/sub by splatting to smaller element size.
7825     unsigned EltBits = VT.getScalarSizeInBits();
7826     unsigned ScalarBits = Op0.getValueSizeInBits();
7827     // Make sure we're getting all element bits from the scalar register.
7828     // FIXME: Support implicit sign extension of vmv.v.x?
7829     if (ScalarBits < EltBits)
7830       return SDValue();
7831 
7832     if (IsSigned) {
7833       if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize))
7834         return SDValue();
7835     } else {
7836       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
7837       if (!DAG.MaskedValueIsZero(Op0, Mask))
7838         return SDValue();
7839     }
7840 
7841     Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
7842                       DAG.getUNDEF(NarrowVT), Op0, VL);
7843     return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL);
7844   }
7845 
7846   return SDValue();
7847 }
7848 
7849 // Try to form VWMUL, VWMULU or VWMULSU.
7850 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op.
7851 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG,
7852                                        bool Commute) {
7853   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
7854   SDValue Op0 = N->getOperand(0);
7855   SDValue Op1 = N->getOperand(1);
7856   if (Commute)
7857     std::swap(Op0, Op1);
7858 
7859   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
7860   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
7861   bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL;
7862   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
7863     return SDValue();
7864 
7865   SDValue Mask = N->getOperand(2);
7866   SDValue VL = N->getOperand(3);
7867 
7868   // Make sure the mask and VL match.
7869   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
7870     return SDValue();
7871 
7872   MVT VT = N->getSimpleValueType(0);
7873 
7874   // Determine the narrow size for a widening multiply.
7875   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
7876   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
7877                                   VT.getVectorElementCount());
7878 
7879   SDLoc DL(N);
7880 
7881   // See if the other operand is the same opcode.
7882   if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) {
7883     if (!Op1.hasOneUse())
7884       return SDValue();
7885 
7886     // Make sure the mask and VL match.
7887     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
7888       return SDValue();
7889 
7890     Op1 = Op1.getOperand(0);
7891   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
7892     // The operand is a splat of a scalar.
7893 
7894     // The pasthru must be undef for tail agnostic
7895     if (!Op1.getOperand(0).isUndef())
7896       return SDValue();
7897     // The VL must be the same.
7898     if (Op1.getOperand(2) != VL)
7899       return SDValue();
7900 
7901     // Get the scalar value.
7902     Op1 = Op1.getOperand(1);
7903 
7904     // See if have enough sign bits or zero bits in the scalar to use a
7905     // widening multiply by splatting to smaller element size.
7906     unsigned EltBits = VT.getScalarSizeInBits();
7907     unsigned ScalarBits = Op1.getValueSizeInBits();
7908     // Make sure we're getting all element bits from the scalar register.
7909     // FIXME: Support implicit sign extension of vmv.v.x?
7910     if (ScalarBits < EltBits)
7911       return SDValue();
7912 
7913     // If the LHS is a sign extend, try to use vwmul.
7914     if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) {
7915       // Can use vwmul.
7916     } else {
7917       // Otherwise try to use vwmulu or vwmulsu.
7918       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
7919       if (DAG.MaskedValueIsZero(Op1, Mask))
7920         IsVWMULSU = IsSignExt;
7921       else
7922         return SDValue();
7923     }
7924 
7925     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
7926                       DAG.getUNDEF(NarrowVT), Op1, VL);
7927   } else
7928     return SDValue();
7929 
7930   Op0 = Op0.getOperand(0);
7931 
7932   // Re-introduce narrower extends if needed.
7933   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
7934   if (Op0.getValueType() != NarrowVT)
7935     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
7936   // vwmulsu requires second operand to be zero extended.
7937   ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc;
7938   if (Op1.getValueType() != NarrowVT)
7939     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
7940 
7941   unsigned WMulOpc = RISCVISD::VWMULSU_VL;
7942   if (!IsVWMULSU)
7943     WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
7944   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
7945 }
7946 
7947 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) {
7948   switch (Op.getOpcode()) {
7949   case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE;
7950   case ISD::FTRUNC:     return RISCVFPRndMode::RTZ;
7951   case ISD::FFLOOR:     return RISCVFPRndMode::RDN;
7952   case ISD::FCEIL:      return RISCVFPRndMode::RUP;
7953   case ISD::FROUND:     return RISCVFPRndMode::RMM;
7954   }
7955 
7956   return RISCVFPRndMode::Invalid;
7957 }
7958 
7959 // Fold
7960 //   (fp_to_int (froundeven X)) -> fcvt X, rne
7961 //   (fp_to_int (ftrunc X))     -> fcvt X, rtz
7962 //   (fp_to_int (ffloor X))     -> fcvt X, rdn
7963 //   (fp_to_int (fceil X))      -> fcvt X, rup
7964 //   (fp_to_int (fround X))     -> fcvt X, rmm
7965 static SDValue performFP_TO_INTCombine(SDNode *N,
7966                                        TargetLowering::DAGCombinerInfo &DCI,
7967                                        const RISCVSubtarget &Subtarget) {
7968   SelectionDAG &DAG = DCI.DAG;
7969   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7970   MVT XLenVT = Subtarget.getXLenVT();
7971 
7972   // Only handle XLen or i32 types. Other types narrower than XLen will
7973   // eventually be legalized to XLenVT.
7974   EVT VT = N->getValueType(0);
7975   if (VT != MVT::i32 && VT != XLenVT)
7976     return SDValue();
7977 
7978   SDValue Src = N->getOperand(0);
7979 
7980   // Ensure the FP type is also legal.
7981   if (!TLI.isTypeLegal(Src.getValueType()))
7982     return SDValue();
7983 
7984   // Don't do this for f16 with Zfhmin and not Zfh.
7985   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
7986     return SDValue();
7987 
7988   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
7989   if (FRM == RISCVFPRndMode::Invalid)
7990     return SDValue();
7991 
7992   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
7993 
7994   unsigned Opc;
7995   if (VT == XLenVT)
7996     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
7997   else
7998     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
7999 
8000   SDLoc DL(N);
8001   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
8002                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8003   return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
8004 }
8005 
8006 // Fold
8007 //   (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
8008 //   (fp_to_int_sat (ftrunc X))     -> (select X == nan, 0, (fcvt X, rtz))
8009 //   (fp_to_int_sat (ffloor X))     -> (select X == nan, 0, (fcvt X, rdn))
8010 //   (fp_to_int_sat (fceil X))      -> (select X == nan, 0, (fcvt X, rup))
8011 //   (fp_to_int_sat (fround X))     -> (select X == nan, 0, (fcvt X, rmm))
8012 static SDValue performFP_TO_INT_SATCombine(SDNode *N,
8013                                        TargetLowering::DAGCombinerInfo &DCI,
8014                                        const RISCVSubtarget &Subtarget) {
8015   SelectionDAG &DAG = DCI.DAG;
8016   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8017   MVT XLenVT = Subtarget.getXLenVT();
8018 
8019   // Only handle XLen types. Other types narrower than XLen will eventually be
8020   // legalized to XLenVT.
8021   EVT DstVT = N->getValueType(0);
8022   if (DstVT != XLenVT)
8023     return SDValue();
8024 
8025   SDValue Src = N->getOperand(0);
8026 
8027   // Ensure the FP type is also legal.
8028   if (!TLI.isTypeLegal(Src.getValueType()))
8029     return SDValue();
8030 
8031   // Don't do this for f16 with Zfhmin and not Zfh.
8032   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8033     return SDValue();
8034 
8035   EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
8036 
8037   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8038   if (FRM == RISCVFPRndMode::Invalid)
8039     return SDValue();
8040 
8041   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
8042 
8043   unsigned Opc;
8044   if (SatVT == DstVT)
8045     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8046   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
8047     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8048   else
8049     return SDValue();
8050   // FIXME: Support other SatVTs by clamping before or after the conversion.
8051 
8052   Src = Src.getOperand(0);
8053 
8054   SDLoc DL(N);
8055   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
8056                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8057 
8058   // RISCV FP-to-int conversions saturate to the destination register size, but
8059   // don't produce 0 for nan.
8060   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
8061   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
8062 }
8063 
8064 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
8065                                                DAGCombinerInfo &DCI) const {
8066   SelectionDAG &DAG = DCI.DAG;
8067 
8068   // Helper to call SimplifyDemandedBits on an operand of N where only some low
8069   // bits are demanded. N will be added to the Worklist if it was not deleted.
8070   // Caller should return SDValue(N, 0) if this returns true.
8071   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
8072     SDValue Op = N->getOperand(OpNo);
8073     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
8074     if (!SimplifyDemandedBits(Op, Mask, DCI))
8075       return false;
8076 
8077     if (N->getOpcode() != ISD::DELETED_NODE)
8078       DCI.AddToWorklist(N);
8079     return true;
8080   };
8081 
8082   switch (N->getOpcode()) {
8083   default:
8084     break;
8085   case RISCVISD::SplitF64: {
8086     SDValue Op0 = N->getOperand(0);
8087     // If the input to SplitF64 is just BuildPairF64 then the operation is
8088     // redundant. Instead, use BuildPairF64's operands directly.
8089     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
8090       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
8091 
8092     if (Op0->isUndef()) {
8093       SDValue Lo = DAG.getUNDEF(MVT::i32);
8094       SDValue Hi = DAG.getUNDEF(MVT::i32);
8095       return DCI.CombineTo(N, Lo, Hi);
8096     }
8097 
8098     SDLoc DL(N);
8099 
8100     // It's cheaper to materialise two 32-bit integers than to load a double
8101     // from the constant pool and transfer it to integer registers through the
8102     // stack.
8103     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
8104       APInt V = C->getValueAPF().bitcastToAPInt();
8105       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
8106       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
8107       return DCI.CombineTo(N, Lo, Hi);
8108     }
8109 
8110     // This is a target-specific version of a DAGCombine performed in
8111     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8112     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8113     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8114     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8115         !Op0.getNode()->hasOneUse())
8116       break;
8117     SDValue NewSplitF64 =
8118         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
8119                     Op0.getOperand(0));
8120     SDValue Lo = NewSplitF64.getValue(0);
8121     SDValue Hi = NewSplitF64.getValue(1);
8122     APInt SignBit = APInt::getSignMask(32);
8123     if (Op0.getOpcode() == ISD::FNEG) {
8124       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
8125                                   DAG.getConstant(SignBit, DL, MVT::i32));
8126       return DCI.CombineTo(N, Lo, NewHi);
8127     }
8128     assert(Op0.getOpcode() == ISD::FABS);
8129     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
8130                                 DAG.getConstant(~SignBit, DL, MVT::i32));
8131     return DCI.CombineTo(N, Lo, NewHi);
8132   }
8133   case RISCVISD::SLLW:
8134   case RISCVISD::SRAW:
8135   case RISCVISD::SRLW: {
8136     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8137     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8138         SimplifyDemandedLowBitsHelper(1, 5))
8139       return SDValue(N, 0);
8140 
8141     break;
8142   }
8143   case ISD::ROTR:
8144   case ISD::ROTL:
8145   case RISCVISD::RORW:
8146   case RISCVISD::ROLW: {
8147     if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) {
8148       // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8149       if (SimplifyDemandedLowBitsHelper(0, 32) ||
8150           SimplifyDemandedLowBitsHelper(1, 5))
8151         return SDValue(N, 0);
8152     }
8153 
8154     return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget);
8155   }
8156   case RISCVISD::CLZW:
8157   case RISCVISD::CTZW: {
8158     // Only the lower 32 bits of the first operand are read
8159     if (SimplifyDemandedLowBitsHelper(0, 32))
8160       return SDValue(N, 0);
8161     break;
8162   }
8163   case RISCVISD::GREV:
8164   case RISCVISD::GORC: {
8165     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
8166     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8167     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8168     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
8169       return SDValue(N, 0);
8170 
8171     return combineGREVI_GORCI(N, DAG);
8172   }
8173   case RISCVISD::GREVW:
8174   case RISCVISD::GORCW: {
8175     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8176     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8177         SimplifyDemandedLowBitsHelper(1, 5))
8178       return SDValue(N, 0);
8179 
8180     return combineGREVI_GORCI(N, DAG);
8181   }
8182   case RISCVISD::SHFL:
8183   case RISCVISD::UNSHFL: {
8184     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
8185     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8186     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8187     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
8188       return SDValue(N, 0);
8189 
8190     break;
8191   }
8192   case RISCVISD::SHFLW:
8193   case RISCVISD::UNSHFLW: {
8194     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
8195     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8196         SimplifyDemandedLowBitsHelper(1, 4))
8197       return SDValue(N, 0);
8198 
8199     break;
8200   }
8201   case RISCVISD::BCOMPRESSW:
8202   case RISCVISD::BDECOMPRESSW: {
8203     // Only the lower 32 bits of LHS and RHS are read.
8204     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8205         SimplifyDemandedLowBitsHelper(1, 32))
8206       return SDValue(N, 0);
8207 
8208     break;
8209   }
8210   case RISCVISD::FSR:
8211   case RISCVISD::FSL:
8212   case RISCVISD::FSRW:
8213   case RISCVISD::FSLW: {
8214     bool IsWInstruction =
8215         N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW;
8216     unsigned BitWidth =
8217         IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits();
8218     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8219     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
8220     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1))
8221       return SDValue(N, 0);
8222 
8223     break;
8224   }
8225   case RISCVISD::FMV_X_ANYEXTH:
8226   case RISCVISD::FMV_X_ANYEXTW_RV64: {
8227     SDLoc DL(N);
8228     SDValue Op0 = N->getOperand(0);
8229     MVT VT = N->getSimpleValueType(0);
8230     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
8231     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
8232     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
8233     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
8234          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
8235         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8236          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
8237       assert(Op0.getOperand(0).getValueType() == VT &&
8238              "Unexpected value type!");
8239       return Op0.getOperand(0);
8240     }
8241 
8242     // This is a target-specific version of a DAGCombine performed in
8243     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8244     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8245     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8246     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8247         !Op0.getNode()->hasOneUse())
8248       break;
8249     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
8250     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
8251     APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits());
8252     if (Op0.getOpcode() == ISD::FNEG)
8253       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
8254                          DAG.getConstant(SignBit, DL, VT));
8255 
8256     assert(Op0.getOpcode() == ISD::FABS);
8257     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
8258                        DAG.getConstant(~SignBit, DL, VT));
8259   }
8260   case ISD::ADD:
8261     return performADDCombine(N, DAG, Subtarget);
8262   case ISD::SUB:
8263     return performSUBCombine(N, DAG);
8264   case ISD::AND:
8265     return performANDCombine(N, DAG);
8266   case ISD::OR:
8267     return performORCombine(N, DAG, Subtarget);
8268   case ISD::XOR:
8269     return performXORCombine(N, DAG);
8270   case ISD::SIGN_EXTEND_INREG:
8271     return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
8272   case ISD::ANY_EXTEND:
8273     return performANY_EXTENDCombine(N, DCI, Subtarget);
8274   case ISD::ZERO_EXTEND:
8275     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
8276     // type legalization. This is safe because fp_to_uint produces poison if
8277     // it overflows.
8278     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
8279       SDValue Src = N->getOperand(0);
8280       if (Src.getOpcode() == ISD::FP_TO_UINT &&
8281           isTypeLegal(Src.getOperand(0).getValueType()))
8282         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
8283                            Src.getOperand(0));
8284       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
8285           isTypeLegal(Src.getOperand(1).getValueType())) {
8286         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
8287         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
8288                                   Src.getOperand(0), Src.getOperand(1));
8289         DCI.CombineTo(N, Res);
8290         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
8291         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
8292         return SDValue(N, 0); // Return N so it doesn't get rechecked.
8293       }
8294     }
8295     return SDValue();
8296   case RISCVISD::SELECT_CC: {
8297     // Transform
8298     SDValue LHS = N->getOperand(0);
8299     SDValue RHS = N->getOperand(1);
8300     SDValue TrueV = N->getOperand(3);
8301     SDValue FalseV = N->getOperand(4);
8302 
8303     // If the True and False values are the same, we don't need a select_cc.
8304     if (TrueV == FalseV)
8305       return TrueV;
8306 
8307     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
8308     if (!ISD::isIntEqualitySetCC(CCVal))
8309       break;
8310 
8311     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
8312     //      (select_cc X, Y, lt, trueV, falseV)
8313     // Sometimes the setcc is introduced after select_cc has been formed.
8314     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8315         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8316       // If we're looking for eq 0 instead of ne 0, we need to invert the
8317       // condition.
8318       bool Invert = CCVal == ISD::SETEQ;
8319       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8320       if (Invert)
8321         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8322 
8323       SDLoc DL(N);
8324       RHS = LHS.getOperand(1);
8325       LHS = LHS.getOperand(0);
8326       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8327 
8328       SDValue TargetCC = DAG.getCondCode(CCVal);
8329       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8330                          {LHS, RHS, TargetCC, TrueV, FalseV});
8331     }
8332 
8333     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
8334     //      (select_cc X, Y, eq/ne, trueV, falseV)
8335     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8336       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
8337                          {LHS.getOperand(0), LHS.getOperand(1),
8338                           N->getOperand(2), TrueV, FalseV});
8339     // (select_cc X, 1, setne, trueV, falseV) ->
8340     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
8341     // This can occur when legalizing some floating point comparisons.
8342     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8343     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8344       SDLoc DL(N);
8345       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8346       SDValue TargetCC = DAG.getCondCode(CCVal);
8347       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8348       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8349                          {LHS, RHS, TargetCC, TrueV, FalseV});
8350     }
8351 
8352     break;
8353   }
8354   case RISCVISD::BR_CC: {
8355     SDValue LHS = N->getOperand(1);
8356     SDValue RHS = N->getOperand(2);
8357     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
8358     if (!ISD::isIntEqualitySetCC(CCVal))
8359       break;
8360 
8361     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
8362     //      (br_cc X, Y, lt, dest)
8363     // Sometimes the setcc is introduced after br_cc has been formed.
8364     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8365         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8366       // If we're looking for eq 0 instead of ne 0, we need to invert the
8367       // condition.
8368       bool Invert = CCVal == ISD::SETEQ;
8369       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8370       if (Invert)
8371         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8372 
8373       SDLoc DL(N);
8374       RHS = LHS.getOperand(1);
8375       LHS = LHS.getOperand(0);
8376       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8377 
8378       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8379                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
8380                          N->getOperand(4));
8381     }
8382 
8383     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
8384     //      (br_cc X, Y, eq/ne, trueV, falseV)
8385     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8386       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
8387                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
8388                          N->getOperand(3), N->getOperand(4));
8389 
8390     // (br_cc X, 1, setne, br_cc) ->
8391     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
8392     // This can occur when legalizing some floating point comparisons.
8393     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8394     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8395       SDLoc DL(N);
8396       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8397       SDValue TargetCC = DAG.getCondCode(CCVal);
8398       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8399       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8400                          N->getOperand(0), LHS, RHS, TargetCC,
8401                          N->getOperand(4));
8402     }
8403     break;
8404   }
8405   case ISD::FP_TO_SINT:
8406   case ISD::FP_TO_UINT:
8407     return performFP_TO_INTCombine(N, DCI, Subtarget);
8408   case ISD::FP_TO_SINT_SAT:
8409   case ISD::FP_TO_UINT_SAT:
8410     return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
8411   case ISD::FCOPYSIGN: {
8412     EVT VT = N->getValueType(0);
8413     if (!VT.isVector())
8414       break;
8415     // There is a form of VFSGNJ which injects the negated sign of its second
8416     // operand. Try and bubble any FNEG up after the extend/round to produce
8417     // this optimized pattern. Avoid modifying cases where FP_ROUND and
8418     // TRUNC=1.
8419     SDValue In2 = N->getOperand(1);
8420     // Avoid cases where the extend/round has multiple uses, as duplicating
8421     // those is typically more expensive than removing a fneg.
8422     if (!In2.hasOneUse())
8423       break;
8424     if (In2.getOpcode() != ISD::FP_EXTEND &&
8425         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
8426       break;
8427     In2 = In2.getOperand(0);
8428     if (In2.getOpcode() != ISD::FNEG)
8429       break;
8430     SDLoc DL(N);
8431     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
8432     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
8433                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
8434   }
8435   case ISD::MGATHER:
8436   case ISD::MSCATTER:
8437   case ISD::VP_GATHER:
8438   case ISD::VP_SCATTER: {
8439     if (!DCI.isBeforeLegalize())
8440       break;
8441     SDValue Index, ScaleOp;
8442     bool IsIndexScaled = false;
8443     bool IsIndexSigned = false;
8444     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
8445       Index = VPGSN->getIndex();
8446       ScaleOp = VPGSN->getScale();
8447       IsIndexScaled = VPGSN->isIndexScaled();
8448       IsIndexSigned = VPGSN->isIndexSigned();
8449     } else {
8450       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
8451       Index = MGSN->getIndex();
8452       ScaleOp = MGSN->getScale();
8453       IsIndexScaled = MGSN->isIndexScaled();
8454       IsIndexSigned = MGSN->isIndexSigned();
8455     }
8456     EVT IndexVT = Index.getValueType();
8457     MVT XLenVT = Subtarget.getXLenVT();
8458     // RISCV indexed loads only support the "unsigned unscaled" addressing
8459     // mode, so anything else must be manually legalized.
8460     bool NeedsIdxLegalization =
8461         IsIndexScaled ||
8462         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
8463     if (!NeedsIdxLegalization)
8464       break;
8465 
8466     SDLoc DL(N);
8467 
8468     // Any index legalization should first promote to XLenVT, so we don't lose
8469     // bits when scaling. This may create an illegal index type so we let
8470     // LLVM's legalization take care of the splitting.
8471     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
8472     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
8473       IndexVT = IndexVT.changeVectorElementType(XLenVT);
8474       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
8475                           DL, IndexVT, Index);
8476     }
8477 
8478     unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
8479     if (IsIndexScaled && Scale != 1) {
8480       // Manually scale the indices by the element size.
8481       // TODO: Sanitize the scale operand here?
8482       // TODO: For VP nodes, should we use VP_SHL here?
8483       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
8484       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
8485       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
8486     }
8487 
8488     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
8489     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
8490       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
8491                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
8492                               VPGN->getScale(), VPGN->getMask(),
8493                               VPGN->getVectorLength()},
8494                              VPGN->getMemOperand(), NewIndexTy);
8495     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
8496       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
8497                               {VPSN->getChain(), VPSN->getValue(),
8498                                VPSN->getBasePtr(), Index, VPSN->getScale(),
8499                                VPSN->getMask(), VPSN->getVectorLength()},
8500                               VPSN->getMemOperand(), NewIndexTy);
8501     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
8502       return DAG.getMaskedGather(
8503           N->getVTList(), MGN->getMemoryVT(), DL,
8504           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
8505            MGN->getBasePtr(), Index, MGN->getScale()},
8506           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
8507     const auto *MSN = cast<MaskedScatterSDNode>(N);
8508     return DAG.getMaskedScatter(
8509         N->getVTList(), MSN->getMemoryVT(), DL,
8510         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
8511          Index, MSN->getScale()},
8512         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
8513   }
8514   case RISCVISD::SRA_VL:
8515   case RISCVISD::SRL_VL:
8516   case RISCVISD::SHL_VL: {
8517     SDValue ShAmt = N->getOperand(1);
8518     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8519       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8520       SDLoc DL(N);
8521       SDValue VL = N->getOperand(3);
8522       EVT VT = N->getValueType(0);
8523       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8524                           ShAmt.getOperand(1), VL);
8525       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
8526                          N->getOperand(2), N->getOperand(3));
8527     }
8528     break;
8529   }
8530   case ISD::SRA:
8531   case ISD::SRL:
8532   case ISD::SHL: {
8533     SDValue ShAmt = N->getOperand(1);
8534     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8535       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8536       SDLoc DL(N);
8537       EVT VT = N->getValueType(0);
8538       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8539                           ShAmt.getOperand(1),
8540                           DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()));
8541       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
8542     }
8543     break;
8544   }
8545   case RISCVISD::ADD_VL:
8546     if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false))
8547       return V;
8548     return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true);
8549   case RISCVISD::SUB_VL:
8550     return combineADDSUB_VLToVWADDSUB_VL(N, DAG);
8551   case RISCVISD::VWADD_W_VL:
8552   case RISCVISD::VWADDU_W_VL:
8553   case RISCVISD::VWSUB_W_VL:
8554   case RISCVISD::VWSUBU_W_VL:
8555     return combineVWADD_W_VL_VWSUB_W_VL(N, DAG);
8556   case RISCVISD::MUL_VL:
8557     if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false))
8558       return V;
8559     // Mul is commutative.
8560     return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true);
8561   case ISD::STORE: {
8562     auto *Store = cast<StoreSDNode>(N);
8563     SDValue Val = Store->getValue();
8564     // Combine store of vmv.x.s to vse with VL of 1.
8565     // FIXME: Support FP.
8566     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
8567       SDValue Src = Val.getOperand(0);
8568       EVT VecVT = Src.getValueType();
8569       EVT MemVT = Store->getMemoryVT();
8570       // The memory VT and the element type must match.
8571       if (VecVT.getVectorElementType() == MemVT) {
8572         SDLoc DL(N);
8573         MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
8574         return DAG.getStoreVP(
8575             Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
8576             DAG.getConstant(1, DL, MaskVT),
8577             DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
8578             Store->getMemOperand(), Store->getAddressingMode(),
8579             Store->isTruncatingStore(), /*IsCompress*/ false);
8580       }
8581     }
8582 
8583     break;
8584   }
8585   case ISD::SPLAT_VECTOR: {
8586     EVT VT = N->getValueType(0);
8587     // Only perform this combine on legal MVT types.
8588     if (!isTypeLegal(VT))
8589       break;
8590     if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N,
8591                                          DAG, Subtarget))
8592       return Gather;
8593     break;
8594   }
8595   case RISCVISD::VMV_V_X_VL: {
8596     // Tail agnostic VMV.V.X only demands the vector element bitwidth from the
8597     // scalar input.
8598     unsigned ScalarSize = N->getOperand(1).getValueSizeInBits();
8599     unsigned EltWidth = N->getValueType(0).getScalarSizeInBits();
8600     if (ScalarSize > EltWidth && N->getOperand(0).isUndef())
8601       if (SimplifyDemandedLowBitsHelper(1, EltWidth))
8602         return SDValue(N, 0);
8603 
8604     break;
8605   }
8606   case ISD::INTRINSIC_WO_CHAIN: {
8607     unsigned IntNo = N->getConstantOperandVal(0);
8608     switch (IntNo) {
8609       // By default we do not combine any intrinsic.
8610     default:
8611       return SDValue();
8612     case Intrinsic::riscv_vcpop:
8613     case Intrinsic::riscv_vcpop_mask:
8614     case Intrinsic::riscv_vfirst:
8615     case Intrinsic::riscv_vfirst_mask: {
8616       SDValue VL = N->getOperand(2);
8617       if (IntNo == Intrinsic::riscv_vcpop_mask ||
8618           IntNo == Intrinsic::riscv_vfirst_mask)
8619         VL = N->getOperand(3);
8620       if (!isNullConstant(VL))
8621         return SDValue();
8622       // If VL is 0, vcpop -> li 0, vfirst -> li -1.
8623       SDLoc DL(N);
8624       EVT VT = N->getValueType(0);
8625       if (IntNo == Intrinsic::riscv_vfirst ||
8626           IntNo == Intrinsic::riscv_vfirst_mask)
8627         return DAG.getConstant(-1, DL, VT);
8628       return DAG.getConstant(0, DL, VT);
8629     }
8630     }
8631   }
8632   }
8633 
8634   return SDValue();
8635 }
8636 
8637 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
8638     const SDNode *N, CombineLevel Level) const {
8639   // The following folds are only desirable if `(OP _, c1 << c2)` can be
8640   // materialised in fewer instructions than `(OP _, c1)`:
8641   //
8642   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
8643   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
8644   SDValue N0 = N->getOperand(0);
8645   EVT Ty = N0.getValueType();
8646   if (Ty.isScalarInteger() &&
8647       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
8648     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
8649     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
8650     if (C1 && C2) {
8651       const APInt &C1Int = C1->getAPIntValue();
8652       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
8653 
8654       // We can materialise `c1 << c2` into an add immediate, so it's "free",
8655       // and the combine should happen, to potentially allow further combines
8656       // later.
8657       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
8658           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
8659         return true;
8660 
8661       // We can materialise `c1` in an add immediate, so it's "free", and the
8662       // combine should be prevented.
8663       if (C1Int.getMinSignedBits() <= 64 &&
8664           isLegalAddImmediate(C1Int.getSExtValue()))
8665         return false;
8666 
8667       // Neither constant will fit into an immediate, so find materialisation
8668       // costs.
8669       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
8670                                               Subtarget.getFeatureBits(),
8671                                               /*CompressionCost*/true);
8672       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
8673           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
8674           /*CompressionCost*/true);
8675 
8676       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
8677       // combine should be prevented.
8678       if (C1Cost < ShiftedC1Cost)
8679         return false;
8680     }
8681   }
8682   return true;
8683 }
8684 
8685 bool RISCVTargetLowering::targetShrinkDemandedConstant(
8686     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
8687     TargetLoweringOpt &TLO) const {
8688   // Delay this optimization as late as possible.
8689   if (!TLO.LegalOps)
8690     return false;
8691 
8692   EVT VT = Op.getValueType();
8693   if (VT.isVector())
8694     return false;
8695 
8696   // Only handle AND for now.
8697   if (Op.getOpcode() != ISD::AND)
8698     return false;
8699 
8700   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8701   if (!C)
8702     return false;
8703 
8704   const APInt &Mask = C->getAPIntValue();
8705 
8706   // Clear all non-demanded bits initially.
8707   APInt ShrunkMask = Mask & DemandedBits;
8708 
8709   // Try to make a smaller immediate by setting undemanded bits.
8710 
8711   APInt ExpandedMask = Mask | ~DemandedBits;
8712 
8713   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
8714     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
8715   };
8716   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
8717     if (NewMask == Mask)
8718       return true;
8719     SDLoc DL(Op);
8720     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
8721     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
8722     return TLO.CombineTo(Op, NewOp);
8723   };
8724 
8725   // If the shrunk mask fits in sign extended 12 bits, let the target
8726   // independent code apply it.
8727   if (ShrunkMask.isSignedIntN(12))
8728     return false;
8729 
8730   // Preserve (and X, 0xffff) when zext.h is supported.
8731   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
8732     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
8733     if (IsLegalMask(NewMask))
8734       return UseMask(NewMask);
8735   }
8736 
8737   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
8738   if (VT == MVT::i64) {
8739     APInt NewMask = APInt(64, 0xffffffff);
8740     if (IsLegalMask(NewMask))
8741       return UseMask(NewMask);
8742   }
8743 
8744   // For the remaining optimizations, we need to be able to make a negative
8745   // number through a combination of mask and undemanded bits.
8746   if (!ExpandedMask.isNegative())
8747     return false;
8748 
8749   // What is the fewest number of bits we need to represent the negative number.
8750   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
8751 
8752   // Try to make a 12 bit negative immediate. If that fails try to make a 32
8753   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
8754   APInt NewMask = ShrunkMask;
8755   if (MinSignedBits <= 12)
8756     NewMask.setBitsFrom(11);
8757   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
8758     NewMask.setBitsFrom(31);
8759   else
8760     return false;
8761 
8762   // Check that our new mask is a subset of the demanded mask.
8763   assert(IsLegalMask(NewMask));
8764   return UseMask(NewMask);
8765 }
8766 
8767 static void computeGREV(APInt &Src, unsigned ShAmt) {
8768   ShAmt &= Src.getBitWidth() - 1;
8769   uint64_t x = Src.getZExtValue();
8770   if (ShAmt & 1)
8771     x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
8772   if (ShAmt & 2)
8773     x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
8774   if (ShAmt & 4)
8775     x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
8776   if (ShAmt & 8)
8777     x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8);
8778   if (ShAmt & 16)
8779     x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16);
8780   if (ShAmt & 32)
8781     x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32);
8782   Src = x;
8783 }
8784 
8785 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
8786                                                         KnownBits &Known,
8787                                                         const APInt &DemandedElts,
8788                                                         const SelectionDAG &DAG,
8789                                                         unsigned Depth) const {
8790   unsigned BitWidth = Known.getBitWidth();
8791   unsigned Opc = Op.getOpcode();
8792   assert((Opc >= ISD::BUILTIN_OP_END ||
8793           Opc == ISD::INTRINSIC_WO_CHAIN ||
8794           Opc == ISD::INTRINSIC_W_CHAIN ||
8795           Opc == ISD::INTRINSIC_VOID) &&
8796          "Should use MaskedValueIsZero if you don't know whether Op"
8797          " is a target node!");
8798 
8799   Known.resetAll();
8800   switch (Opc) {
8801   default: break;
8802   case RISCVISD::SELECT_CC: {
8803     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
8804     // If we don't know any bits, early out.
8805     if (Known.isUnknown())
8806       break;
8807     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
8808 
8809     // Only known if known in both the LHS and RHS.
8810     Known = KnownBits::commonBits(Known, Known2);
8811     break;
8812   }
8813   case RISCVISD::REMUW: {
8814     KnownBits Known2;
8815     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
8816     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
8817     // We only care about the lower 32 bits.
8818     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
8819     // Restore the original width by sign extending.
8820     Known = Known.sext(BitWidth);
8821     break;
8822   }
8823   case RISCVISD::DIVUW: {
8824     KnownBits Known2;
8825     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
8826     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
8827     // We only care about the lower 32 bits.
8828     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
8829     // Restore the original width by sign extending.
8830     Known = Known.sext(BitWidth);
8831     break;
8832   }
8833   case RISCVISD::CTZW: {
8834     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8835     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
8836     unsigned LowBits = Log2_32(PossibleTZ) + 1;
8837     Known.Zero.setBitsFrom(LowBits);
8838     break;
8839   }
8840   case RISCVISD::CLZW: {
8841     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8842     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
8843     unsigned LowBits = Log2_32(PossibleLZ) + 1;
8844     Known.Zero.setBitsFrom(LowBits);
8845     break;
8846   }
8847   case RISCVISD::GREV:
8848   case RISCVISD::GREVW: {
8849     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8850       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8851       if (Opc == RISCVISD::GREVW)
8852         Known = Known.trunc(32);
8853       unsigned ShAmt = C->getZExtValue();
8854       computeGREV(Known.Zero, ShAmt);
8855       computeGREV(Known.One, ShAmt);
8856       if (Opc == RISCVISD::GREVW)
8857         Known = Known.sext(BitWidth);
8858     }
8859     break;
8860   }
8861   case RISCVISD::READ_VLENB: {
8862     // If we know the minimum VLen from Zvl extensions, we can use that to
8863     // determine the trailing zeros of VLENB.
8864     // FIXME: Limit to 128 bit vectors until we have more testing.
8865     unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8;
8866     if (MinVLenB > 0)
8867       Known.Zero.setLowBits(Log2_32(MinVLenB));
8868     // We assume VLENB is no more than 65536 / 8 bytes.
8869     Known.Zero.setBitsFrom(14);
8870     break;
8871   }
8872   case ISD::INTRINSIC_W_CHAIN:
8873   case ISD::INTRINSIC_WO_CHAIN: {
8874     unsigned IntNo =
8875         Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
8876     switch (IntNo) {
8877     default:
8878       // We can't do anything for most intrinsics.
8879       break;
8880     case Intrinsic::riscv_vsetvli:
8881     case Intrinsic::riscv_vsetvlimax:
8882     case Intrinsic::riscv_vsetvli_opt:
8883     case Intrinsic::riscv_vsetvlimax_opt:
8884       // Assume that VL output is positive and would fit in an int32_t.
8885       // TODO: VLEN might be capped at 16 bits in a future V spec update.
8886       if (BitWidth >= 32)
8887         Known.Zero.setBitsFrom(31);
8888       break;
8889     }
8890     break;
8891   }
8892   }
8893 }
8894 
8895 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
8896     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
8897     unsigned Depth) const {
8898   switch (Op.getOpcode()) {
8899   default:
8900     break;
8901   case RISCVISD::SELECT_CC: {
8902     unsigned Tmp =
8903         DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
8904     if (Tmp == 1) return 1;  // Early out.
8905     unsigned Tmp2 =
8906         DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
8907     return std::min(Tmp, Tmp2);
8908   }
8909   case RISCVISD::SLLW:
8910   case RISCVISD::SRAW:
8911   case RISCVISD::SRLW:
8912   case RISCVISD::DIVW:
8913   case RISCVISD::DIVUW:
8914   case RISCVISD::REMUW:
8915   case RISCVISD::ROLW:
8916   case RISCVISD::RORW:
8917   case RISCVISD::GREVW:
8918   case RISCVISD::GORCW:
8919   case RISCVISD::FSLW:
8920   case RISCVISD::FSRW:
8921   case RISCVISD::SHFLW:
8922   case RISCVISD::UNSHFLW:
8923   case RISCVISD::BCOMPRESSW:
8924   case RISCVISD::BDECOMPRESSW:
8925   case RISCVISD::BFPW:
8926   case RISCVISD::FCVT_W_RV64:
8927   case RISCVISD::FCVT_WU_RV64:
8928   case RISCVISD::STRICT_FCVT_W_RV64:
8929   case RISCVISD::STRICT_FCVT_WU_RV64:
8930     // TODO: As the result is sign-extended, this is conservatively correct. A
8931     // more precise answer could be calculated for SRAW depending on known
8932     // bits in the shift amount.
8933     return 33;
8934   case RISCVISD::SHFL:
8935   case RISCVISD::UNSHFL: {
8936     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
8937     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
8938     // will stay within the upper 32 bits. If there were more than 32 sign bits
8939     // before there will be at least 33 sign bits after.
8940     if (Op.getValueType() == MVT::i64 &&
8941         isa<ConstantSDNode>(Op.getOperand(1)) &&
8942         (Op.getConstantOperandVal(1) & 0x10) == 0) {
8943       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
8944       if (Tmp > 32)
8945         return 33;
8946     }
8947     break;
8948   }
8949   case RISCVISD::VMV_X_S: {
8950     // The number of sign bits of the scalar result is computed by obtaining the
8951     // element type of the input vector operand, subtracting its width from the
8952     // XLEN, and then adding one (sign bit within the element type). If the
8953     // element type is wider than XLen, the least-significant XLEN bits are
8954     // taken.
8955     unsigned XLen = Subtarget.getXLen();
8956     unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits();
8957     if (EltBits <= XLen)
8958       return XLen - EltBits + 1;
8959     break;
8960   }
8961   }
8962 
8963   return 1;
8964 }
8965 
8966 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
8967                                                   MachineBasicBlock *BB) {
8968   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
8969 
8970   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
8971   // Should the count have wrapped while it was being read, we need to try
8972   // again.
8973   // ...
8974   // read:
8975   // rdcycleh x3 # load high word of cycle
8976   // rdcycle  x2 # load low word of cycle
8977   // rdcycleh x4 # load high word of cycle
8978   // bne x3, x4, read # check if high word reads match, otherwise try again
8979   // ...
8980 
8981   MachineFunction &MF = *BB->getParent();
8982   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8983   MachineFunction::iterator It = ++BB->getIterator();
8984 
8985   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
8986   MF.insert(It, LoopMBB);
8987 
8988   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
8989   MF.insert(It, DoneMBB);
8990 
8991   // Transfer the remainder of BB and its successor edges to DoneMBB.
8992   DoneMBB->splice(DoneMBB->begin(), BB,
8993                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
8994   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
8995 
8996   BB->addSuccessor(LoopMBB);
8997 
8998   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8999   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9000   Register LoReg = MI.getOperand(0).getReg();
9001   Register HiReg = MI.getOperand(1).getReg();
9002   DebugLoc DL = MI.getDebugLoc();
9003 
9004   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
9005   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
9006       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9007       .addReg(RISCV::X0);
9008   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
9009       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
9010       .addReg(RISCV::X0);
9011   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
9012       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9013       .addReg(RISCV::X0);
9014 
9015   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
9016       .addReg(HiReg)
9017       .addReg(ReadAgainReg)
9018       .addMBB(LoopMBB);
9019 
9020   LoopMBB->addSuccessor(LoopMBB);
9021   LoopMBB->addSuccessor(DoneMBB);
9022 
9023   MI.eraseFromParent();
9024 
9025   return DoneMBB;
9026 }
9027 
9028 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
9029                                              MachineBasicBlock *BB) {
9030   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
9031 
9032   MachineFunction &MF = *BB->getParent();
9033   DebugLoc DL = MI.getDebugLoc();
9034   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9035   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9036   Register LoReg = MI.getOperand(0).getReg();
9037   Register HiReg = MI.getOperand(1).getReg();
9038   Register SrcReg = MI.getOperand(2).getReg();
9039   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
9040   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9041 
9042   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
9043                           RI);
9044   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9045   MachineMemOperand *MMOLo =
9046       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
9047   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9048       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
9049   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
9050       .addFrameIndex(FI)
9051       .addImm(0)
9052       .addMemOperand(MMOLo);
9053   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
9054       .addFrameIndex(FI)
9055       .addImm(4)
9056       .addMemOperand(MMOHi);
9057   MI.eraseFromParent(); // The pseudo instruction is gone now.
9058   return BB;
9059 }
9060 
9061 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
9062                                                  MachineBasicBlock *BB) {
9063   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
9064          "Unexpected instruction");
9065 
9066   MachineFunction &MF = *BB->getParent();
9067   DebugLoc DL = MI.getDebugLoc();
9068   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9069   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9070   Register DstReg = MI.getOperand(0).getReg();
9071   Register LoReg = MI.getOperand(1).getReg();
9072   Register HiReg = MI.getOperand(2).getReg();
9073   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
9074   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9075 
9076   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9077   MachineMemOperand *MMOLo =
9078       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
9079   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9080       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
9081   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9082       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
9083       .addFrameIndex(FI)
9084       .addImm(0)
9085       .addMemOperand(MMOLo);
9086   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9087       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
9088       .addFrameIndex(FI)
9089       .addImm(4)
9090       .addMemOperand(MMOHi);
9091   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
9092   MI.eraseFromParent(); // The pseudo instruction is gone now.
9093   return BB;
9094 }
9095 
9096 static bool isSelectPseudo(MachineInstr &MI) {
9097   switch (MI.getOpcode()) {
9098   default:
9099     return false;
9100   case RISCV::Select_GPR_Using_CC_GPR:
9101   case RISCV::Select_FPR16_Using_CC_GPR:
9102   case RISCV::Select_FPR32_Using_CC_GPR:
9103   case RISCV::Select_FPR64_Using_CC_GPR:
9104     return true;
9105   }
9106 }
9107 
9108 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
9109                                         unsigned RelOpcode, unsigned EqOpcode,
9110                                         const RISCVSubtarget &Subtarget) {
9111   DebugLoc DL = MI.getDebugLoc();
9112   Register DstReg = MI.getOperand(0).getReg();
9113   Register Src1Reg = MI.getOperand(1).getReg();
9114   Register Src2Reg = MI.getOperand(2).getReg();
9115   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
9116   Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
9117   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
9118 
9119   // Save the current FFLAGS.
9120   BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
9121 
9122   auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
9123                  .addReg(Src1Reg)
9124                  .addReg(Src2Reg);
9125   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9126     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
9127 
9128   // Restore the FFLAGS.
9129   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
9130       .addReg(SavedFFlags, RegState::Kill);
9131 
9132   // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
9133   auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
9134                   .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
9135                   .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
9136   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9137     MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
9138 
9139   // Erase the pseudoinstruction.
9140   MI.eraseFromParent();
9141   return BB;
9142 }
9143 
9144 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
9145                                            MachineBasicBlock *BB,
9146                                            const RISCVSubtarget &Subtarget) {
9147   // To "insert" Select_* instructions, we actually have to insert the triangle
9148   // control-flow pattern.  The incoming instructions know the destination vreg
9149   // to set, the condition code register to branch on, the true/false values to
9150   // select between, and the condcode to use to select the appropriate branch.
9151   //
9152   // We produce the following control flow:
9153   //     HeadMBB
9154   //     |  \
9155   //     |  IfFalseMBB
9156   //     | /
9157   //    TailMBB
9158   //
9159   // When we find a sequence of selects we attempt to optimize their emission
9160   // by sharing the control flow. Currently we only handle cases where we have
9161   // multiple selects with the exact same condition (same LHS, RHS and CC).
9162   // The selects may be interleaved with other instructions if the other
9163   // instructions meet some requirements we deem safe:
9164   // - They are debug instructions. Otherwise,
9165   // - They do not have side-effects, do not access memory and their inputs do
9166   //   not depend on the results of the select pseudo-instructions.
9167   // The TrueV/FalseV operands of the selects cannot depend on the result of
9168   // previous selects in the sequence.
9169   // These conditions could be further relaxed. See the X86 target for a
9170   // related approach and more information.
9171   Register LHS = MI.getOperand(1).getReg();
9172   Register RHS = MI.getOperand(2).getReg();
9173   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
9174 
9175   SmallVector<MachineInstr *, 4> SelectDebugValues;
9176   SmallSet<Register, 4> SelectDests;
9177   SelectDests.insert(MI.getOperand(0).getReg());
9178 
9179   MachineInstr *LastSelectPseudo = &MI;
9180 
9181   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
9182        SequenceMBBI != E; ++SequenceMBBI) {
9183     if (SequenceMBBI->isDebugInstr())
9184       continue;
9185     else if (isSelectPseudo(*SequenceMBBI)) {
9186       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
9187           SequenceMBBI->getOperand(2).getReg() != RHS ||
9188           SequenceMBBI->getOperand(3).getImm() != CC ||
9189           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
9190           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
9191         break;
9192       LastSelectPseudo = &*SequenceMBBI;
9193       SequenceMBBI->collectDebugValues(SelectDebugValues);
9194       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
9195     } else {
9196       if (SequenceMBBI->hasUnmodeledSideEffects() ||
9197           SequenceMBBI->mayLoadOrStore())
9198         break;
9199       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
9200             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
9201           }))
9202         break;
9203     }
9204   }
9205 
9206   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
9207   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9208   DebugLoc DL = MI.getDebugLoc();
9209   MachineFunction::iterator I = ++BB->getIterator();
9210 
9211   MachineBasicBlock *HeadMBB = BB;
9212   MachineFunction *F = BB->getParent();
9213   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
9214   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
9215 
9216   F->insert(I, IfFalseMBB);
9217   F->insert(I, TailMBB);
9218 
9219   // Transfer debug instructions associated with the selects to TailMBB.
9220   for (MachineInstr *DebugInstr : SelectDebugValues) {
9221     TailMBB->push_back(DebugInstr->removeFromParent());
9222   }
9223 
9224   // Move all instructions after the sequence to TailMBB.
9225   TailMBB->splice(TailMBB->end(), HeadMBB,
9226                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
9227   // Update machine-CFG edges by transferring all successors of the current
9228   // block to the new block which will contain the Phi nodes for the selects.
9229   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
9230   // Set the successors for HeadMBB.
9231   HeadMBB->addSuccessor(IfFalseMBB);
9232   HeadMBB->addSuccessor(TailMBB);
9233 
9234   // Insert appropriate branch.
9235   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
9236     .addReg(LHS)
9237     .addReg(RHS)
9238     .addMBB(TailMBB);
9239 
9240   // IfFalseMBB just falls through to TailMBB.
9241   IfFalseMBB->addSuccessor(TailMBB);
9242 
9243   // Create PHIs for all of the select pseudo-instructions.
9244   auto SelectMBBI = MI.getIterator();
9245   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
9246   auto InsertionPoint = TailMBB->begin();
9247   while (SelectMBBI != SelectEnd) {
9248     auto Next = std::next(SelectMBBI);
9249     if (isSelectPseudo(*SelectMBBI)) {
9250       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
9251       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
9252               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
9253           .addReg(SelectMBBI->getOperand(4).getReg())
9254           .addMBB(HeadMBB)
9255           .addReg(SelectMBBI->getOperand(5).getReg())
9256           .addMBB(IfFalseMBB);
9257       SelectMBBI->eraseFromParent();
9258     }
9259     SelectMBBI = Next;
9260   }
9261 
9262   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
9263   return TailMBB;
9264 }
9265 
9266 MachineBasicBlock *
9267 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9268                                                  MachineBasicBlock *BB) const {
9269   switch (MI.getOpcode()) {
9270   default:
9271     llvm_unreachable("Unexpected instr type to insert");
9272   case RISCV::ReadCycleWide:
9273     assert(!Subtarget.is64Bit() &&
9274            "ReadCycleWrite is only to be used on riscv32");
9275     return emitReadCycleWidePseudo(MI, BB);
9276   case RISCV::Select_GPR_Using_CC_GPR:
9277   case RISCV::Select_FPR16_Using_CC_GPR:
9278   case RISCV::Select_FPR32_Using_CC_GPR:
9279   case RISCV::Select_FPR64_Using_CC_GPR:
9280     return emitSelectPseudo(MI, BB, Subtarget);
9281   case RISCV::BuildPairF64Pseudo:
9282     return emitBuildPairF64Pseudo(MI, BB);
9283   case RISCV::SplitF64Pseudo:
9284     return emitSplitF64Pseudo(MI, BB);
9285   case RISCV::PseudoQuietFLE_H:
9286     return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
9287   case RISCV::PseudoQuietFLT_H:
9288     return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
9289   case RISCV::PseudoQuietFLE_S:
9290     return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
9291   case RISCV::PseudoQuietFLT_S:
9292     return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
9293   case RISCV::PseudoQuietFLE_D:
9294     return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
9295   case RISCV::PseudoQuietFLT_D:
9296     return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
9297   }
9298 }
9299 
9300 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
9301                                                         SDNode *Node) const {
9302   // Add FRM dependency to any instructions with dynamic rounding mode.
9303   unsigned Opc = MI.getOpcode();
9304   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
9305   if (Idx < 0)
9306     return;
9307   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
9308     return;
9309   // If the instruction already reads FRM, don't add another read.
9310   if (MI.readsRegister(RISCV::FRM))
9311     return;
9312   MI.addOperand(
9313       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
9314 }
9315 
9316 // Calling Convention Implementation.
9317 // The expectations for frontend ABI lowering vary from target to target.
9318 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
9319 // details, but this is a longer term goal. For now, we simply try to keep the
9320 // role of the frontend as simple and well-defined as possible. The rules can
9321 // be summarised as:
9322 // * Never split up large scalar arguments. We handle them here.
9323 // * If a hardfloat calling convention is being used, and the struct may be
9324 // passed in a pair of registers (fp+fp, int+fp), and both registers are
9325 // available, then pass as two separate arguments. If either the GPRs or FPRs
9326 // are exhausted, then pass according to the rule below.
9327 // * If a struct could never be passed in registers or directly in a stack
9328 // slot (as it is larger than 2*XLEN and the floating point rules don't
9329 // apply), then pass it using a pointer with the byval attribute.
9330 // * If a struct is less than 2*XLEN, then coerce to either a two-element
9331 // word-sized array or a 2*XLEN scalar (depending on alignment).
9332 // * The frontend can determine whether a struct is returned by reference or
9333 // not based on its size and fields. If it will be returned by reference, the
9334 // frontend must modify the prototype so a pointer with the sret annotation is
9335 // passed as the first argument. This is not necessary for large scalar
9336 // returns.
9337 // * Struct return values and varargs should be coerced to structs containing
9338 // register-size fields in the same situations they would be for fixed
9339 // arguments.
9340 
9341 static const MCPhysReg ArgGPRs[] = {
9342   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
9343   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
9344 };
9345 static const MCPhysReg ArgFPR16s[] = {
9346   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
9347   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
9348 };
9349 static const MCPhysReg ArgFPR32s[] = {
9350   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
9351   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
9352 };
9353 static const MCPhysReg ArgFPR64s[] = {
9354   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
9355   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
9356 };
9357 // This is an interim calling convention and it may be changed in the future.
9358 static const MCPhysReg ArgVRs[] = {
9359     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
9360     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
9361     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
9362 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
9363                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
9364                                      RISCV::V20M2, RISCV::V22M2};
9365 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
9366                                      RISCV::V20M4};
9367 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
9368 
9369 // Pass a 2*XLEN argument that has been split into two XLEN values through
9370 // registers or the stack as necessary.
9371 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
9372                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
9373                                 MVT ValVT2, MVT LocVT2,
9374                                 ISD::ArgFlagsTy ArgFlags2) {
9375   unsigned XLenInBytes = XLen / 8;
9376   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9377     // At least one half can be passed via register.
9378     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
9379                                      VA1.getLocVT(), CCValAssign::Full));
9380   } else {
9381     // Both halves must be passed on the stack, with proper alignment.
9382     Align StackAlign =
9383         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
9384     State.addLoc(
9385         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
9386                             State.AllocateStack(XLenInBytes, StackAlign),
9387                             VA1.getLocVT(), CCValAssign::Full));
9388     State.addLoc(CCValAssign::getMem(
9389         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9390         LocVT2, CCValAssign::Full));
9391     return false;
9392   }
9393 
9394   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9395     // The second half can also be passed via register.
9396     State.addLoc(
9397         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
9398   } else {
9399     // The second half is passed via the stack, without additional alignment.
9400     State.addLoc(CCValAssign::getMem(
9401         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9402         LocVT2, CCValAssign::Full));
9403   }
9404 
9405   return false;
9406 }
9407 
9408 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
9409                                Optional<unsigned> FirstMaskArgument,
9410                                CCState &State, const RISCVTargetLowering &TLI) {
9411   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
9412   if (RC == &RISCV::VRRegClass) {
9413     // Assign the first mask argument to V0.
9414     // This is an interim calling convention and it may be changed in the
9415     // future.
9416     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
9417       return State.AllocateReg(RISCV::V0);
9418     return State.AllocateReg(ArgVRs);
9419   }
9420   if (RC == &RISCV::VRM2RegClass)
9421     return State.AllocateReg(ArgVRM2s);
9422   if (RC == &RISCV::VRM4RegClass)
9423     return State.AllocateReg(ArgVRM4s);
9424   if (RC == &RISCV::VRM8RegClass)
9425     return State.AllocateReg(ArgVRM8s);
9426   llvm_unreachable("Unhandled register class for ValueType");
9427 }
9428 
9429 // Implements the RISC-V calling convention. Returns true upon failure.
9430 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
9431                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
9432                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
9433                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
9434                      Optional<unsigned> FirstMaskArgument) {
9435   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
9436   assert(XLen == 32 || XLen == 64);
9437   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
9438 
9439   // Any return value split in to more than two values can't be returned
9440   // directly. Vectors are returned via the available vector registers.
9441   if (!LocVT.isVector() && IsRet && ValNo > 1)
9442     return true;
9443 
9444   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
9445   // variadic argument, or if no F16/F32 argument registers are available.
9446   bool UseGPRForF16_F32 = true;
9447   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
9448   // variadic argument, or if no F64 argument registers are available.
9449   bool UseGPRForF64 = true;
9450 
9451   switch (ABI) {
9452   default:
9453     llvm_unreachable("Unexpected ABI");
9454   case RISCVABI::ABI_ILP32:
9455   case RISCVABI::ABI_LP64:
9456     break;
9457   case RISCVABI::ABI_ILP32F:
9458   case RISCVABI::ABI_LP64F:
9459     UseGPRForF16_F32 = !IsFixed;
9460     break;
9461   case RISCVABI::ABI_ILP32D:
9462   case RISCVABI::ABI_LP64D:
9463     UseGPRForF16_F32 = !IsFixed;
9464     UseGPRForF64 = !IsFixed;
9465     break;
9466   }
9467 
9468   // FPR16, FPR32, and FPR64 alias each other.
9469   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
9470     UseGPRForF16_F32 = true;
9471     UseGPRForF64 = true;
9472   }
9473 
9474   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
9475   // similar local variables rather than directly checking against the target
9476   // ABI.
9477 
9478   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
9479     LocVT = XLenVT;
9480     LocInfo = CCValAssign::BCvt;
9481   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
9482     LocVT = MVT::i64;
9483     LocInfo = CCValAssign::BCvt;
9484   }
9485 
9486   // If this is a variadic argument, the RISC-V calling convention requires
9487   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
9488   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
9489   // be used regardless of whether the original argument was split during
9490   // legalisation or not. The argument will not be passed by registers if the
9491   // original type is larger than 2*XLEN, so the register alignment rule does
9492   // not apply.
9493   unsigned TwoXLenInBytes = (2 * XLen) / 8;
9494   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
9495       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
9496     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
9497     // Skip 'odd' register if necessary.
9498     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
9499       State.AllocateReg(ArgGPRs);
9500   }
9501 
9502   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
9503   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
9504       State.getPendingArgFlags();
9505 
9506   assert(PendingLocs.size() == PendingArgFlags.size() &&
9507          "PendingLocs and PendingArgFlags out of sync");
9508 
9509   // Handle passing f64 on RV32D with a soft float ABI or when floating point
9510   // registers are exhausted.
9511   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
9512     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
9513            "Can't lower f64 if it is split");
9514     // Depending on available argument GPRS, f64 may be passed in a pair of
9515     // GPRs, split between a GPR and the stack, or passed completely on the
9516     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
9517     // cases.
9518     Register Reg = State.AllocateReg(ArgGPRs);
9519     LocVT = MVT::i32;
9520     if (!Reg) {
9521       unsigned StackOffset = State.AllocateStack(8, Align(8));
9522       State.addLoc(
9523           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9524       return false;
9525     }
9526     if (!State.AllocateReg(ArgGPRs))
9527       State.AllocateStack(4, Align(4));
9528     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9529     return false;
9530   }
9531 
9532   // Fixed-length vectors are located in the corresponding scalable-vector
9533   // container types.
9534   if (ValVT.isFixedLengthVector())
9535     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9536 
9537   // Split arguments might be passed indirectly, so keep track of the pending
9538   // values. Split vectors are passed via a mix of registers and indirectly, so
9539   // treat them as we would any other argument.
9540   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
9541     LocVT = XLenVT;
9542     LocInfo = CCValAssign::Indirect;
9543     PendingLocs.push_back(
9544         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
9545     PendingArgFlags.push_back(ArgFlags);
9546     if (!ArgFlags.isSplitEnd()) {
9547       return false;
9548     }
9549   }
9550 
9551   // If the split argument only had two elements, it should be passed directly
9552   // in registers or on the stack.
9553   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
9554       PendingLocs.size() <= 2) {
9555     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
9556     // Apply the normal calling convention rules to the first half of the
9557     // split argument.
9558     CCValAssign VA = PendingLocs[0];
9559     ISD::ArgFlagsTy AF = PendingArgFlags[0];
9560     PendingLocs.clear();
9561     PendingArgFlags.clear();
9562     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
9563                                ArgFlags);
9564   }
9565 
9566   // Allocate to a register if possible, or else a stack slot.
9567   Register Reg;
9568   unsigned StoreSizeBytes = XLen / 8;
9569   Align StackAlign = Align(XLen / 8);
9570 
9571   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
9572     Reg = State.AllocateReg(ArgFPR16s);
9573   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
9574     Reg = State.AllocateReg(ArgFPR32s);
9575   else if (ValVT == MVT::f64 && !UseGPRForF64)
9576     Reg = State.AllocateReg(ArgFPR64s);
9577   else if (ValVT.isVector()) {
9578     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
9579     if (!Reg) {
9580       // For return values, the vector must be passed fully via registers or
9581       // via the stack.
9582       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
9583       // but we're using all of them.
9584       if (IsRet)
9585         return true;
9586       // Try using a GPR to pass the address
9587       if ((Reg = State.AllocateReg(ArgGPRs))) {
9588         LocVT = XLenVT;
9589         LocInfo = CCValAssign::Indirect;
9590       } else if (ValVT.isScalableVector()) {
9591         LocVT = XLenVT;
9592         LocInfo = CCValAssign::Indirect;
9593       } else {
9594         // Pass fixed-length vectors on the stack.
9595         LocVT = ValVT;
9596         StoreSizeBytes = ValVT.getStoreSize();
9597         // Align vectors to their element sizes, being careful for vXi1
9598         // vectors.
9599         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9600       }
9601     }
9602   } else {
9603     Reg = State.AllocateReg(ArgGPRs);
9604   }
9605 
9606   unsigned StackOffset =
9607       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
9608 
9609   // If we reach this point and PendingLocs is non-empty, we must be at the
9610   // end of a split argument that must be passed indirectly.
9611   if (!PendingLocs.empty()) {
9612     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
9613     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
9614 
9615     for (auto &It : PendingLocs) {
9616       if (Reg)
9617         It.convertToReg(Reg);
9618       else
9619         It.convertToMem(StackOffset);
9620       State.addLoc(It);
9621     }
9622     PendingLocs.clear();
9623     PendingArgFlags.clear();
9624     return false;
9625   }
9626 
9627   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
9628           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
9629          "Expected an XLenVT or vector types at this stage");
9630 
9631   if (Reg) {
9632     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9633     return false;
9634   }
9635 
9636   // When a floating-point value is passed on the stack, no bit-conversion is
9637   // needed.
9638   if (ValVT.isFloatingPoint()) {
9639     LocVT = ValVT;
9640     LocInfo = CCValAssign::Full;
9641   }
9642   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9643   return false;
9644 }
9645 
9646 template <typename ArgTy>
9647 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
9648   for (const auto &ArgIdx : enumerate(Args)) {
9649     MVT ArgVT = ArgIdx.value().VT;
9650     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
9651       return ArgIdx.index();
9652   }
9653   return None;
9654 }
9655 
9656 void RISCVTargetLowering::analyzeInputArgs(
9657     MachineFunction &MF, CCState &CCInfo,
9658     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
9659     RISCVCCAssignFn Fn) const {
9660   unsigned NumArgs = Ins.size();
9661   FunctionType *FType = MF.getFunction().getFunctionType();
9662 
9663   Optional<unsigned> FirstMaskArgument;
9664   if (Subtarget.hasVInstructions())
9665     FirstMaskArgument = preAssignMask(Ins);
9666 
9667   for (unsigned i = 0; i != NumArgs; ++i) {
9668     MVT ArgVT = Ins[i].VT;
9669     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
9670 
9671     Type *ArgTy = nullptr;
9672     if (IsRet)
9673       ArgTy = FType->getReturnType();
9674     else if (Ins[i].isOrigArg())
9675       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
9676 
9677     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9678     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
9679            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
9680            FirstMaskArgument)) {
9681       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
9682                         << EVT(ArgVT).getEVTString() << '\n');
9683       llvm_unreachable(nullptr);
9684     }
9685   }
9686 }
9687 
9688 void RISCVTargetLowering::analyzeOutputArgs(
9689     MachineFunction &MF, CCState &CCInfo,
9690     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
9691     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
9692   unsigned NumArgs = Outs.size();
9693 
9694   Optional<unsigned> FirstMaskArgument;
9695   if (Subtarget.hasVInstructions())
9696     FirstMaskArgument = preAssignMask(Outs);
9697 
9698   for (unsigned i = 0; i != NumArgs; i++) {
9699     MVT ArgVT = Outs[i].VT;
9700     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
9701     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
9702 
9703     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9704     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
9705            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
9706            FirstMaskArgument)) {
9707       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
9708                         << EVT(ArgVT).getEVTString() << "\n");
9709       llvm_unreachable(nullptr);
9710     }
9711   }
9712 }
9713 
9714 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
9715 // values.
9716 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
9717                                    const CCValAssign &VA, const SDLoc &DL,
9718                                    const RISCVSubtarget &Subtarget) {
9719   switch (VA.getLocInfo()) {
9720   default:
9721     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9722   case CCValAssign::Full:
9723     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
9724       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
9725     break;
9726   case CCValAssign::BCvt:
9727     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
9728       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
9729     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
9730       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
9731     else
9732       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
9733     break;
9734   }
9735   return Val;
9736 }
9737 
9738 // The caller is responsible for loading the full value if the argument is
9739 // passed with CCValAssign::Indirect.
9740 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
9741                                 const CCValAssign &VA, const SDLoc &DL,
9742                                 const RISCVTargetLowering &TLI) {
9743   MachineFunction &MF = DAG.getMachineFunction();
9744   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9745   EVT LocVT = VA.getLocVT();
9746   SDValue Val;
9747   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
9748   Register VReg = RegInfo.createVirtualRegister(RC);
9749   RegInfo.addLiveIn(VA.getLocReg(), VReg);
9750   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
9751 
9752   if (VA.getLocInfo() == CCValAssign::Indirect)
9753     return Val;
9754 
9755   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
9756 }
9757 
9758 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
9759                                    const CCValAssign &VA, const SDLoc &DL,
9760                                    const RISCVSubtarget &Subtarget) {
9761   EVT LocVT = VA.getLocVT();
9762 
9763   switch (VA.getLocInfo()) {
9764   default:
9765     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9766   case CCValAssign::Full:
9767     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
9768       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
9769     break;
9770   case CCValAssign::BCvt:
9771     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
9772       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
9773     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
9774       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
9775     else
9776       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
9777     break;
9778   }
9779   return Val;
9780 }
9781 
9782 // The caller is responsible for loading the full value if the argument is
9783 // passed with CCValAssign::Indirect.
9784 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
9785                                 const CCValAssign &VA, const SDLoc &DL) {
9786   MachineFunction &MF = DAG.getMachineFunction();
9787   MachineFrameInfo &MFI = MF.getFrameInfo();
9788   EVT LocVT = VA.getLocVT();
9789   EVT ValVT = VA.getValVT();
9790   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
9791   if (ValVT.isScalableVector()) {
9792     // When the value is a scalable vector, we save the pointer which points to
9793     // the scalable vector value in the stack. The ValVT will be the pointer
9794     // type, instead of the scalable vector type.
9795     ValVT = LocVT;
9796   }
9797   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
9798                                  /*IsImmutable=*/true);
9799   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
9800   SDValue Val;
9801 
9802   ISD::LoadExtType ExtType;
9803   switch (VA.getLocInfo()) {
9804   default:
9805     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9806   case CCValAssign::Full:
9807   case CCValAssign::Indirect:
9808   case CCValAssign::BCvt:
9809     ExtType = ISD::NON_EXTLOAD;
9810     break;
9811   }
9812   Val = DAG.getExtLoad(
9813       ExtType, DL, LocVT, Chain, FIN,
9814       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
9815   return Val;
9816 }
9817 
9818 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
9819                                        const CCValAssign &VA, const SDLoc &DL) {
9820   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
9821          "Unexpected VA");
9822   MachineFunction &MF = DAG.getMachineFunction();
9823   MachineFrameInfo &MFI = MF.getFrameInfo();
9824   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9825 
9826   if (VA.isMemLoc()) {
9827     // f64 is passed on the stack.
9828     int FI =
9829         MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
9830     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
9831     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
9832                        MachinePointerInfo::getFixedStack(MF, FI));
9833   }
9834 
9835   assert(VA.isRegLoc() && "Expected register VA assignment");
9836 
9837   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9838   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
9839   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
9840   SDValue Hi;
9841   if (VA.getLocReg() == RISCV::X17) {
9842     // Second half of f64 is passed on the stack.
9843     int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
9844     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
9845     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
9846                      MachinePointerInfo::getFixedStack(MF, FI));
9847   } else {
9848     // Second half of f64 is passed in another GPR.
9849     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9850     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
9851     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
9852   }
9853   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
9854 }
9855 
9856 // FastCC has less than 1% performance improvement for some particular
9857 // benchmark. But theoretically, it may has benenfit for some cases.
9858 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
9859                             unsigned ValNo, MVT ValVT, MVT LocVT,
9860                             CCValAssign::LocInfo LocInfo,
9861                             ISD::ArgFlagsTy ArgFlags, CCState &State,
9862                             bool IsFixed, bool IsRet, Type *OrigTy,
9863                             const RISCVTargetLowering &TLI,
9864                             Optional<unsigned> FirstMaskArgument) {
9865 
9866   // X5 and X6 might be used for save-restore libcall.
9867   static const MCPhysReg GPRList[] = {
9868       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
9869       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
9870       RISCV::X29, RISCV::X30, RISCV::X31};
9871 
9872   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
9873     if (unsigned Reg = State.AllocateReg(GPRList)) {
9874       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9875       return false;
9876     }
9877   }
9878 
9879   if (LocVT == MVT::f16) {
9880     static const MCPhysReg FPR16List[] = {
9881         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
9882         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
9883         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
9884         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
9885     if (unsigned Reg = State.AllocateReg(FPR16List)) {
9886       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9887       return false;
9888     }
9889   }
9890 
9891   if (LocVT == MVT::f32) {
9892     static const MCPhysReg FPR32List[] = {
9893         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
9894         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
9895         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
9896         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
9897     if (unsigned Reg = State.AllocateReg(FPR32List)) {
9898       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9899       return false;
9900     }
9901   }
9902 
9903   if (LocVT == MVT::f64) {
9904     static const MCPhysReg FPR64List[] = {
9905         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
9906         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
9907         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
9908         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
9909     if (unsigned Reg = State.AllocateReg(FPR64List)) {
9910       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9911       return false;
9912     }
9913   }
9914 
9915   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
9916     unsigned Offset4 = State.AllocateStack(4, Align(4));
9917     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
9918     return false;
9919   }
9920 
9921   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
9922     unsigned Offset5 = State.AllocateStack(8, Align(8));
9923     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
9924     return false;
9925   }
9926 
9927   if (LocVT.isVector()) {
9928     if (unsigned Reg =
9929             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
9930       // Fixed-length vectors are located in the corresponding scalable-vector
9931       // container types.
9932       if (ValVT.isFixedLengthVector())
9933         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9934       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9935     } else {
9936       // Try and pass the address via a "fast" GPR.
9937       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
9938         LocInfo = CCValAssign::Indirect;
9939         LocVT = TLI.getSubtarget().getXLenVT();
9940         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
9941       } else if (ValVT.isFixedLengthVector()) {
9942         auto StackAlign =
9943             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9944         unsigned StackOffset =
9945             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
9946         State.addLoc(
9947             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9948       } else {
9949         // Can't pass scalable vectors on the stack.
9950         return true;
9951       }
9952     }
9953 
9954     return false;
9955   }
9956 
9957   return true; // CC didn't match.
9958 }
9959 
9960 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
9961                          CCValAssign::LocInfo LocInfo,
9962                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
9963 
9964   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
9965     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
9966     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
9967     static const MCPhysReg GPRList[] = {
9968         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
9969         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
9970     if (unsigned Reg = State.AllocateReg(GPRList)) {
9971       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9972       return false;
9973     }
9974   }
9975 
9976   if (LocVT == MVT::f32) {
9977     // Pass in STG registers: F1, ..., F6
9978     //                        fs0 ... fs5
9979     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
9980                                           RISCV::F18_F, RISCV::F19_F,
9981                                           RISCV::F20_F, RISCV::F21_F};
9982     if (unsigned Reg = State.AllocateReg(FPR32List)) {
9983       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9984       return false;
9985     }
9986   }
9987 
9988   if (LocVT == MVT::f64) {
9989     // Pass in STG registers: D1, ..., D6
9990     //                        fs6 ... fs11
9991     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
9992                                           RISCV::F24_D, RISCV::F25_D,
9993                                           RISCV::F26_D, RISCV::F27_D};
9994     if (unsigned Reg = State.AllocateReg(FPR64List)) {
9995       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9996       return false;
9997     }
9998   }
9999 
10000   report_fatal_error("No registers left in GHC calling convention");
10001   return true;
10002 }
10003 
10004 // Transform physical registers into virtual registers.
10005 SDValue RISCVTargetLowering::LowerFormalArguments(
10006     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
10007     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
10008     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
10009 
10010   MachineFunction &MF = DAG.getMachineFunction();
10011 
10012   switch (CallConv) {
10013   default:
10014     report_fatal_error("Unsupported calling convention");
10015   case CallingConv::C:
10016   case CallingConv::Fast:
10017     break;
10018   case CallingConv::GHC:
10019     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
10020         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
10021       report_fatal_error(
10022         "GHC calling convention requires the F and D instruction set extensions");
10023   }
10024 
10025   const Function &Func = MF.getFunction();
10026   if (Func.hasFnAttribute("interrupt")) {
10027     if (!Func.arg_empty())
10028       report_fatal_error(
10029         "Functions with the interrupt attribute cannot have arguments!");
10030 
10031     StringRef Kind =
10032       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10033 
10034     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
10035       report_fatal_error(
10036         "Function interrupt attribute argument not supported!");
10037   }
10038 
10039   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10040   MVT XLenVT = Subtarget.getXLenVT();
10041   unsigned XLenInBytes = Subtarget.getXLen() / 8;
10042   // Used with vargs to acumulate store chains.
10043   std::vector<SDValue> OutChains;
10044 
10045   // Assign locations to all of the incoming arguments.
10046   SmallVector<CCValAssign, 16> ArgLocs;
10047   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10048 
10049   if (CallConv == CallingConv::GHC)
10050     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
10051   else
10052     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
10053                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10054                                                    : CC_RISCV);
10055 
10056   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
10057     CCValAssign &VA = ArgLocs[i];
10058     SDValue ArgValue;
10059     // Passing f64 on RV32D with a soft float ABI must be handled as a special
10060     // case.
10061     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
10062       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
10063     else if (VA.isRegLoc())
10064       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
10065     else
10066       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
10067 
10068     if (VA.getLocInfo() == CCValAssign::Indirect) {
10069       // If the original argument was split and passed by reference (e.g. i128
10070       // on RV32), we need to load all parts of it here (using the same
10071       // address). Vectors may be partly split to registers and partly to the
10072       // stack, in which case the base address is partly offset and subsequent
10073       // stores are relative to that.
10074       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
10075                                    MachinePointerInfo()));
10076       unsigned ArgIndex = Ins[i].OrigArgIndex;
10077       unsigned ArgPartOffset = Ins[i].PartOffset;
10078       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10079       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
10080         CCValAssign &PartVA = ArgLocs[i + 1];
10081         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
10082         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10083         if (PartVA.getValVT().isScalableVector())
10084           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10085         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
10086         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
10087                                      MachinePointerInfo()));
10088         ++i;
10089       }
10090       continue;
10091     }
10092     InVals.push_back(ArgValue);
10093   }
10094 
10095   if (IsVarArg) {
10096     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
10097     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
10098     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
10099     MachineFrameInfo &MFI = MF.getFrameInfo();
10100     MachineRegisterInfo &RegInfo = MF.getRegInfo();
10101     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
10102 
10103     // Offset of the first variable argument from stack pointer, and size of
10104     // the vararg save area. For now, the varargs save area is either zero or
10105     // large enough to hold a0-a7.
10106     int VaArgOffset, VarArgsSaveSize;
10107 
10108     // If all registers are allocated, then all varargs must be passed on the
10109     // stack and we don't need to save any argregs.
10110     if (ArgRegs.size() == Idx) {
10111       VaArgOffset = CCInfo.getNextStackOffset();
10112       VarArgsSaveSize = 0;
10113     } else {
10114       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
10115       VaArgOffset = -VarArgsSaveSize;
10116     }
10117 
10118     // Record the frame index of the first variable argument
10119     // which is a value necessary to VASTART.
10120     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10121     RVFI->setVarArgsFrameIndex(FI);
10122 
10123     // If saving an odd number of registers then create an extra stack slot to
10124     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
10125     // offsets to even-numbered registered remain 2*XLEN-aligned.
10126     if (Idx % 2) {
10127       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
10128       VarArgsSaveSize += XLenInBytes;
10129     }
10130 
10131     // Copy the integer registers that may have been used for passing varargs
10132     // to the vararg save area.
10133     for (unsigned I = Idx; I < ArgRegs.size();
10134          ++I, VaArgOffset += XLenInBytes) {
10135       const Register Reg = RegInfo.createVirtualRegister(RC);
10136       RegInfo.addLiveIn(ArgRegs[I], Reg);
10137       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
10138       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10139       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10140       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
10141                                    MachinePointerInfo::getFixedStack(MF, FI));
10142       cast<StoreSDNode>(Store.getNode())
10143           ->getMemOperand()
10144           ->setValue((Value *)nullptr);
10145       OutChains.push_back(Store);
10146     }
10147     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
10148   }
10149 
10150   // All stores are grouped in one node to allow the matching between
10151   // the size of Ins and InVals. This only happens for vararg functions.
10152   if (!OutChains.empty()) {
10153     OutChains.push_back(Chain);
10154     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
10155   }
10156 
10157   return Chain;
10158 }
10159 
10160 /// isEligibleForTailCallOptimization - Check whether the call is eligible
10161 /// for tail call optimization.
10162 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
10163 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
10164     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
10165     const SmallVector<CCValAssign, 16> &ArgLocs) const {
10166 
10167   auto &Callee = CLI.Callee;
10168   auto CalleeCC = CLI.CallConv;
10169   auto &Outs = CLI.Outs;
10170   auto &Caller = MF.getFunction();
10171   auto CallerCC = Caller.getCallingConv();
10172 
10173   // Exception-handling functions need a special set of instructions to
10174   // indicate a return to the hardware. Tail-calling another function would
10175   // probably break this.
10176   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
10177   // should be expanded as new function attributes are introduced.
10178   if (Caller.hasFnAttribute("interrupt"))
10179     return false;
10180 
10181   // Do not tail call opt if the stack is used to pass parameters.
10182   if (CCInfo.getNextStackOffset() != 0)
10183     return false;
10184 
10185   // Do not tail call opt if any parameters need to be passed indirectly.
10186   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
10187   // passed indirectly. So the address of the value will be passed in a
10188   // register, or if not available, then the address is put on the stack. In
10189   // order to pass indirectly, space on the stack often needs to be allocated
10190   // in order to store the value. In this case the CCInfo.getNextStackOffset()
10191   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
10192   // are passed CCValAssign::Indirect.
10193   for (auto &VA : ArgLocs)
10194     if (VA.getLocInfo() == CCValAssign::Indirect)
10195       return false;
10196 
10197   // Do not tail call opt if either caller or callee uses struct return
10198   // semantics.
10199   auto IsCallerStructRet = Caller.hasStructRetAttr();
10200   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
10201   if (IsCallerStructRet || IsCalleeStructRet)
10202     return false;
10203 
10204   // Externally-defined functions with weak linkage should not be
10205   // tail-called. The behaviour of branch instructions in this situation (as
10206   // used for tail calls) is implementation-defined, so we cannot rely on the
10207   // linker replacing the tail call with a return.
10208   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
10209     const GlobalValue *GV = G->getGlobal();
10210     if (GV->hasExternalWeakLinkage())
10211       return false;
10212   }
10213 
10214   // The callee has to preserve all registers the caller needs to preserve.
10215   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
10216   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
10217   if (CalleeCC != CallerCC) {
10218     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
10219     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
10220       return false;
10221   }
10222 
10223   // Byval parameters hand the function a pointer directly into the stack area
10224   // we want to reuse during a tail call. Working around this *is* possible
10225   // but less efficient and uglier in LowerCall.
10226   for (auto &Arg : Outs)
10227     if (Arg.Flags.isByVal())
10228       return false;
10229 
10230   return true;
10231 }
10232 
10233 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
10234   return DAG.getDataLayout().getPrefTypeAlign(
10235       VT.getTypeForEVT(*DAG.getContext()));
10236 }
10237 
10238 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
10239 // and output parameter nodes.
10240 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
10241                                        SmallVectorImpl<SDValue> &InVals) const {
10242   SelectionDAG &DAG = CLI.DAG;
10243   SDLoc &DL = CLI.DL;
10244   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
10245   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
10246   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
10247   SDValue Chain = CLI.Chain;
10248   SDValue Callee = CLI.Callee;
10249   bool &IsTailCall = CLI.IsTailCall;
10250   CallingConv::ID CallConv = CLI.CallConv;
10251   bool IsVarArg = CLI.IsVarArg;
10252   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10253   MVT XLenVT = Subtarget.getXLenVT();
10254 
10255   MachineFunction &MF = DAG.getMachineFunction();
10256 
10257   // Analyze the operands of the call, assigning locations to each operand.
10258   SmallVector<CCValAssign, 16> ArgLocs;
10259   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10260 
10261   if (CallConv == CallingConv::GHC)
10262     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
10263   else
10264     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
10265                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10266                                                     : CC_RISCV);
10267 
10268   // Check if it's really possible to do a tail call.
10269   if (IsTailCall)
10270     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
10271 
10272   if (IsTailCall)
10273     ++NumTailCalls;
10274   else if (CLI.CB && CLI.CB->isMustTailCall())
10275     report_fatal_error("failed to perform tail call elimination on a call "
10276                        "site marked musttail");
10277 
10278   // Get a count of how many bytes are to be pushed on the stack.
10279   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
10280 
10281   // Create local copies for byval args
10282   SmallVector<SDValue, 8> ByValArgs;
10283   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10284     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10285     if (!Flags.isByVal())
10286       continue;
10287 
10288     SDValue Arg = OutVals[i];
10289     unsigned Size = Flags.getByValSize();
10290     Align Alignment = Flags.getNonZeroByValAlign();
10291 
10292     int FI =
10293         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
10294     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10295     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
10296 
10297     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
10298                           /*IsVolatile=*/false,
10299                           /*AlwaysInline=*/false, IsTailCall,
10300                           MachinePointerInfo(), MachinePointerInfo());
10301     ByValArgs.push_back(FIPtr);
10302   }
10303 
10304   if (!IsTailCall)
10305     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
10306 
10307   // Copy argument values to their designated locations.
10308   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
10309   SmallVector<SDValue, 8> MemOpChains;
10310   SDValue StackPtr;
10311   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
10312     CCValAssign &VA = ArgLocs[i];
10313     SDValue ArgValue = OutVals[i];
10314     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10315 
10316     // Handle passing f64 on RV32D with a soft float ABI as a special case.
10317     bool IsF64OnRV32DSoftABI =
10318         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
10319     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
10320       SDValue SplitF64 = DAG.getNode(
10321           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
10322       SDValue Lo = SplitF64.getValue(0);
10323       SDValue Hi = SplitF64.getValue(1);
10324 
10325       Register RegLo = VA.getLocReg();
10326       RegsToPass.push_back(std::make_pair(RegLo, Lo));
10327 
10328       if (RegLo == RISCV::X17) {
10329         // Second half of f64 is passed on the stack.
10330         // Work out the address of the stack slot.
10331         if (!StackPtr.getNode())
10332           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10333         // Emit the store.
10334         MemOpChains.push_back(
10335             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
10336       } else {
10337         // Second half of f64 is passed in another GPR.
10338         assert(RegLo < RISCV::X31 && "Invalid register pair");
10339         Register RegHigh = RegLo + 1;
10340         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
10341       }
10342       continue;
10343     }
10344 
10345     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
10346     // as any other MemLoc.
10347 
10348     // Promote the value if needed.
10349     // For now, only handle fully promoted and indirect arguments.
10350     if (VA.getLocInfo() == CCValAssign::Indirect) {
10351       // Store the argument in a stack slot and pass its address.
10352       Align StackAlign =
10353           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
10354                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
10355       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
10356       // If the original argument was split (e.g. i128), we need
10357       // to store the required parts of it here (and pass just one address).
10358       // Vectors may be partly split to registers and partly to the stack, in
10359       // which case the base address is partly offset and subsequent stores are
10360       // relative to that.
10361       unsigned ArgIndex = Outs[i].OrigArgIndex;
10362       unsigned ArgPartOffset = Outs[i].PartOffset;
10363       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10364       // Calculate the total size to store. We don't have access to what we're
10365       // actually storing other than performing the loop and collecting the
10366       // info.
10367       SmallVector<std::pair<SDValue, SDValue>> Parts;
10368       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
10369         SDValue PartValue = OutVals[i + 1];
10370         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
10371         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10372         EVT PartVT = PartValue.getValueType();
10373         if (PartVT.isScalableVector())
10374           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10375         StoredSize += PartVT.getStoreSize();
10376         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
10377         Parts.push_back(std::make_pair(PartValue, Offset));
10378         ++i;
10379       }
10380       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
10381       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
10382       MemOpChains.push_back(
10383           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
10384                        MachinePointerInfo::getFixedStack(MF, FI)));
10385       for (const auto &Part : Parts) {
10386         SDValue PartValue = Part.first;
10387         SDValue PartOffset = Part.second;
10388         SDValue Address =
10389             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
10390         MemOpChains.push_back(
10391             DAG.getStore(Chain, DL, PartValue, Address,
10392                          MachinePointerInfo::getFixedStack(MF, FI)));
10393       }
10394       ArgValue = SpillSlot;
10395     } else {
10396       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
10397     }
10398 
10399     // Use local copy if it is a byval arg.
10400     if (Flags.isByVal())
10401       ArgValue = ByValArgs[j++];
10402 
10403     if (VA.isRegLoc()) {
10404       // Queue up the argument copies and emit them at the end.
10405       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
10406     } else {
10407       assert(VA.isMemLoc() && "Argument not register or memory");
10408       assert(!IsTailCall && "Tail call not allowed if stack is used "
10409                             "for passing parameters");
10410 
10411       // Work out the address of the stack slot.
10412       if (!StackPtr.getNode())
10413         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10414       SDValue Address =
10415           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
10416                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
10417 
10418       // Emit the store.
10419       MemOpChains.push_back(
10420           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
10421     }
10422   }
10423 
10424   // Join the stores, which are independent of one another.
10425   if (!MemOpChains.empty())
10426     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
10427 
10428   SDValue Glue;
10429 
10430   // Build a sequence of copy-to-reg nodes, chained and glued together.
10431   for (auto &Reg : RegsToPass) {
10432     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
10433     Glue = Chain.getValue(1);
10434   }
10435 
10436   // Validate that none of the argument registers have been marked as
10437   // reserved, if so report an error. Do the same for the return address if this
10438   // is not a tailcall.
10439   validateCCReservedRegs(RegsToPass, MF);
10440   if (!IsTailCall &&
10441       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
10442     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10443         MF.getFunction(),
10444         "Return address register required, but has been reserved."});
10445 
10446   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
10447   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
10448   // split it and then direct call can be matched by PseudoCALL.
10449   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
10450     const GlobalValue *GV = S->getGlobal();
10451 
10452     unsigned OpFlags = RISCVII::MO_CALL;
10453     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
10454       OpFlags = RISCVII::MO_PLT;
10455 
10456     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
10457   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
10458     unsigned OpFlags = RISCVII::MO_CALL;
10459 
10460     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
10461                                                  nullptr))
10462       OpFlags = RISCVII::MO_PLT;
10463 
10464     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
10465   }
10466 
10467   // The first call operand is the chain and the second is the target address.
10468   SmallVector<SDValue, 8> Ops;
10469   Ops.push_back(Chain);
10470   Ops.push_back(Callee);
10471 
10472   // Add argument registers to the end of the list so that they are
10473   // known live into the call.
10474   for (auto &Reg : RegsToPass)
10475     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
10476 
10477   if (!IsTailCall) {
10478     // Add a register mask operand representing the call-preserved registers.
10479     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
10480     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
10481     assert(Mask && "Missing call preserved mask for calling convention");
10482     Ops.push_back(DAG.getRegisterMask(Mask));
10483   }
10484 
10485   // Glue the call to the argument copies, if any.
10486   if (Glue.getNode())
10487     Ops.push_back(Glue);
10488 
10489   // Emit the call.
10490   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10491 
10492   if (IsTailCall) {
10493     MF.getFrameInfo().setHasTailCall();
10494     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
10495   }
10496 
10497   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
10498   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
10499   Glue = Chain.getValue(1);
10500 
10501   // Mark the end of the call, which is glued to the call itself.
10502   Chain = DAG.getCALLSEQ_END(Chain,
10503                              DAG.getConstant(NumBytes, DL, PtrVT, true),
10504                              DAG.getConstant(0, DL, PtrVT, true),
10505                              Glue, DL);
10506   Glue = Chain.getValue(1);
10507 
10508   // Assign locations to each value returned by this call.
10509   SmallVector<CCValAssign, 16> RVLocs;
10510   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
10511   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
10512 
10513   // Copy all of the result registers out of their specified physreg.
10514   for (auto &VA : RVLocs) {
10515     // Copy the value out
10516     SDValue RetValue =
10517         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
10518     // Glue the RetValue to the end of the call sequence
10519     Chain = RetValue.getValue(1);
10520     Glue = RetValue.getValue(2);
10521 
10522     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10523       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
10524       SDValue RetValue2 =
10525           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
10526       Chain = RetValue2.getValue(1);
10527       Glue = RetValue2.getValue(2);
10528       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
10529                              RetValue2);
10530     }
10531 
10532     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
10533 
10534     InVals.push_back(RetValue);
10535   }
10536 
10537   return Chain;
10538 }
10539 
10540 bool RISCVTargetLowering::CanLowerReturn(
10541     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
10542     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
10543   SmallVector<CCValAssign, 16> RVLocs;
10544   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
10545 
10546   Optional<unsigned> FirstMaskArgument;
10547   if (Subtarget.hasVInstructions())
10548     FirstMaskArgument = preAssignMask(Outs);
10549 
10550   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10551     MVT VT = Outs[i].VT;
10552     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10553     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10554     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
10555                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
10556                  *this, FirstMaskArgument))
10557       return false;
10558   }
10559   return true;
10560 }
10561 
10562 SDValue
10563 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
10564                                  bool IsVarArg,
10565                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
10566                                  const SmallVectorImpl<SDValue> &OutVals,
10567                                  const SDLoc &DL, SelectionDAG &DAG) const {
10568   const MachineFunction &MF = DAG.getMachineFunction();
10569   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10570 
10571   // Stores the assignment of the return value to a location.
10572   SmallVector<CCValAssign, 16> RVLocs;
10573 
10574   // Info about the registers and stack slot.
10575   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
10576                  *DAG.getContext());
10577 
10578   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
10579                     nullptr, CC_RISCV);
10580 
10581   if (CallConv == CallingConv::GHC && !RVLocs.empty())
10582     report_fatal_error("GHC functions return void only");
10583 
10584   SDValue Glue;
10585   SmallVector<SDValue, 4> RetOps(1, Chain);
10586 
10587   // Copy the result values into the output registers.
10588   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
10589     SDValue Val = OutVals[i];
10590     CCValAssign &VA = RVLocs[i];
10591     assert(VA.isRegLoc() && "Can only return in registers!");
10592 
10593     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10594       // Handle returning f64 on RV32D with a soft float ABI.
10595       assert(VA.isRegLoc() && "Expected return via registers");
10596       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
10597                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
10598       SDValue Lo = SplitF64.getValue(0);
10599       SDValue Hi = SplitF64.getValue(1);
10600       Register RegLo = VA.getLocReg();
10601       assert(RegLo < RISCV::X31 && "Invalid register pair");
10602       Register RegHi = RegLo + 1;
10603 
10604       if (STI.isRegisterReservedByUser(RegLo) ||
10605           STI.isRegisterReservedByUser(RegHi))
10606         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10607             MF.getFunction(),
10608             "Return value register required, but has been reserved."});
10609 
10610       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
10611       Glue = Chain.getValue(1);
10612       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
10613       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
10614       Glue = Chain.getValue(1);
10615       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
10616     } else {
10617       // Handle a 'normal' return.
10618       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
10619       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
10620 
10621       if (STI.isRegisterReservedByUser(VA.getLocReg()))
10622         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10623             MF.getFunction(),
10624             "Return value register required, but has been reserved."});
10625 
10626       // Guarantee that all emitted copies are stuck together.
10627       Glue = Chain.getValue(1);
10628       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
10629     }
10630   }
10631 
10632   RetOps[0] = Chain; // Update chain.
10633 
10634   // Add the glue node if we have it.
10635   if (Glue.getNode()) {
10636     RetOps.push_back(Glue);
10637   }
10638 
10639   unsigned RetOpc = RISCVISD::RET_FLAG;
10640   // Interrupt service routines use different return instructions.
10641   const Function &Func = DAG.getMachineFunction().getFunction();
10642   if (Func.hasFnAttribute("interrupt")) {
10643     if (!Func.getReturnType()->isVoidTy())
10644       report_fatal_error(
10645           "Functions with the interrupt attribute must have void return type!");
10646 
10647     MachineFunction &MF = DAG.getMachineFunction();
10648     StringRef Kind =
10649       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10650 
10651     if (Kind == "user")
10652       RetOpc = RISCVISD::URET_FLAG;
10653     else if (Kind == "supervisor")
10654       RetOpc = RISCVISD::SRET_FLAG;
10655     else
10656       RetOpc = RISCVISD::MRET_FLAG;
10657   }
10658 
10659   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
10660 }
10661 
10662 void RISCVTargetLowering::validateCCReservedRegs(
10663     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
10664     MachineFunction &MF) const {
10665   const Function &F = MF.getFunction();
10666   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10667 
10668   if (llvm::any_of(Regs, [&STI](auto Reg) {
10669         return STI.isRegisterReservedByUser(Reg.first);
10670       }))
10671     F.getContext().diagnose(DiagnosticInfoUnsupported{
10672         F, "Argument register required, but has been reserved."});
10673 }
10674 
10675 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
10676   return CI->isTailCall();
10677 }
10678 
10679 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
10680 #define NODE_NAME_CASE(NODE)                                                   \
10681   case RISCVISD::NODE:                                                         \
10682     return "RISCVISD::" #NODE;
10683   // clang-format off
10684   switch ((RISCVISD::NodeType)Opcode) {
10685   case RISCVISD::FIRST_NUMBER:
10686     break;
10687   NODE_NAME_CASE(RET_FLAG)
10688   NODE_NAME_CASE(URET_FLAG)
10689   NODE_NAME_CASE(SRET_FLAG)
10690   NODE_NAME_CASE(MRET_FLAG)
10691   NODE_NAME_CASE(CALL)
10692   NODE_NAME_CASE(SELECT_CC)
10693   NODE_NAME_CASE(BR_CC)
10694   NODE_NAME_CASE(BuildPairF64)
10695   NODE_NAME_CASE(SplitF64)
10696   NODE_NAME_CASE(TAIL)
10697   NODE_NAME_CASE(MULHSU)
10698   NODE_NAME_CASE(SLLW)
10699   NODE_NAME_CASE(SRAW)
10700   NODE_NAME_CASE(SRLW)
10701   NODE_NAME_CASE(DIVW)
10702   NODE_NAME_CASE(DIVUW)
10703   NODE_NAME_CASE(REMUW)
10704   NODE_NAME_CASE(ROLW)
10705   NODE_NAME_CASE(RORW)
10706   NODE_NAME_CASE(CLZW)
10707   NODE_NAME_CASE(CTZW)
10708   NODE_NAME_CASE(FSLW)
10709   NODE_NAME_CASE(FSRW)
10710   NODE_NAME_CASE(FSL)
10711   NODE_NAME_CASE(FSR)
10712   NODE_NAME_CASE(FMV_H_X)
10713   NODE_NAME_CASE(FMV_X_ANYEXTH)
10714   NODE_NAME_CASE(FMV_X_SIGNEXTH)
10715   NODE_NAME_CASE(FMV_W_X_RV64)
10716   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
10717   NODE_NAME_CASE(FCVT_X)
10718   NODE_NAME_CASE(FCVT_XU)
10719   NODE_NAME_CASE(FCVT_W_RV64)
10720   NODE_NAME_CASE(FCVT_WU_RV64)
10721   NODE_NAME_CASE(STRICT_FCVT_W_RV64)
10722   NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
10723   NODE_NAME_CASE(READ_CYCLE_WIDE)
10724   NODE_NAME_CASE(GREV)
10725   NODE_NAME_CASE(GREVW)
10726   NODE_NAME_CASE(GORC)
10727   NODE_NAME_CASE(GORCW)
10728   NODE_NAME_CASE(SHFL)
10729   NODE_NAME_CASE(SHFLW)
10730   NODE_NAME_CASE(UNSHFL)
10731   NODE_NAME_CASE(UNSHFLW)
10732   NODE_NAME_CASE(BFP)
10733   NODE_NAME_CASE(BFPW)
10734   NODE_NAME_CASE(BCOMPRESS)
10735   NODE_NAME_CASE(BCOMPRESSW)
10736   NODE_NAME_CASE(BDECOMPRESS)
10737   NODE_NAME_CASE(BDECOMPRESSW)
10738   NODE_NAME_CASE(VMV_V_X_VL)
10739   NODE_NAME_CASE(VFMV_V_F_VL)
10740   NODE_NAME_CASE(VMV_X_S)
10741   NODE_NAME_CASE(VMV_S_X_VL)
10742   NODE_NAME_CASE(VFMV_S_F_VL)
10743   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
10744   NODE_NAME_CASE(READ_VLENB)
10745   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
10746   NODE_NAME_CASE(VSLIDEUP_VL)
10747   NODE_NAME_CASE(VSLIDE1UP_VL)
10748   NODE_NAME_CASE(VSLIDEDOWN_VL)
10749   NODE_NAME_CASE(VSLIDE1DOWN_VL)
10750   NODE_NAME_CASE(VID_VL)
10751   NODE_NAME_CASE(VFNCVT_ROD_VL)
10752   NODE_NAME_CASE(VECREDUCE_ADD_VL)
10753   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
10754   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
10755   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
10756   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
10757   NODE_NAME_CASE(VECREDUCE_AND_VL)
10758   NODE_NAME_CASE(VECREDUCE_OR_VL)
10759   NODE_NAME_CASE(VECREDUCE_XOR_VL)
10760   NODE_NAME_CASE(VECREDUCE_FADD_VL)
10761   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
10762   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
10763   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
10764   NODE_NAME_CASE(ADD_VL)
10765   NODE_NAME_CASE(AND_VL)
10766   NODE_NAME_CASE(MUL_VL)
10767   NODE_NAME_CASE(OR_VL)
10768   NODE_NAME_CASE(SDIV_VL)
10769   NODE_NAME_CASE(SHL_VL)
10770   NODE_NAME_CASE(SREM_VL)
10771   NODE_NAME_CASE(SRA_VL)
10772   NODE_NAME_CASE(SRL_VL)
10773   NODE_NAME_CASE(SUB_VL)
10774   NODE_NAME_CASE(UDIV_VL)
10775   NODE_NAME_CASE(UREM_VL)
10776   NODE_NAME_CASE(XOR_VL)
10777   NODE_NAME_CASE(SADDSAT_VL)
10778   NODE_NAME_CASE(UADDSAT_VL)
10779   NODE_NAME_CASE(SSUBSAT_VL)
10780   NODE_NAME_CASE(USUBSAT_VL)
10781   NODE_NAME_CASE(FADD_VL)
10782   NODE_NAME_CASE(FSUB_VL)
10783   NODE_NAME_CASE(FMUL_VL)
10784   NODE_NAME_CASE(FDIV_VL)
10785   NODE_NAME_CASE(FNEG_VL)
10786   NODE_NAME_CASE(FABS_VL)
10787   NODE_NAME_CASE(FSQRT_VL)
10788   NODE_NAME_CASE(FMA_VL)
10789   NODE_NAME_CASE(FCOPYSIGN_VL)
10790   NODE_NAME_CASE(SMIN_VL)
10791   NODE_NAME_CASE(SMAX_VL)
10792   NODE_NAME_CASE(UMIN_VL)
10793   NODE_NAME_CASE(UMAX_VL)
10794   NODE_NAME_CASE(FMINNUM_VL)
10795   NODE_NAME_CASE(FMAXNUM_VL)
10796   NODE_NAME_CASE(MULHS_VL)
10797   NODE_NAME_CASE(MULHU_VL)
10798   NODE_NAME_CASE(FP_TO_SINT_VL)
10799   NODE_NAME_CASE(FP_TO_UINT_VL)
10800   NODE_NAME_CASE(SINT_TO_FP_VL)
10801   NODE_NAME_CASE(UINT_TO_FP_VL)
10802   NODE_NAME_CASE(FP_EXTEND_VL)
10803   NODE_NAME_CASE(FP_ROUND_VL)
10804   NODE_NAME_CASE(VWMUL_VL)
10805   NODE_NAME_CASE(VWMULU_VL)
10806   NODE_NAME_CASE(VWMULSU_VL)
10807   NODE_NAME_CASE(VWADD_VL)
10808   NODE_NAME_CASE(VWADDU_VL)
10809   NODE_NAME_CASE(VWSUB_VL)
10810   NODE_NAME_CASE(VWSUBU_VL)
10811   NODE_NAME_CASE(VWADD_W_VL)
10812   NODE_NAME_CASE(VWADDU_W_VL)
10813   NODE_NAME_CASE(VWSUB_W_VL)
10814   NODE_NAME_CASE(VWSUBU_W_VL)
10815   NODE_NAME_CASE(SETCC_VL)
10816   NODE_NAME_CASE(VSELECT_VL)
10817   NODE_NAME_CASE(VP_MERGE_VL)
10818   NODE_NAME_CASE(VMAND_VL)
10819   NODE_NAME_CASE(VMOR_VL)
10820   NODE_NAME_CASE(VMXOR_VL)
10821   NODE_NAME_CASE(VMCLR_VL)
10822   NODE_NAME_CASE(VMSET_VL)
10823   NODE_NAME_CASE(VRGATHER_VX_VL)
10824   NODE_NAME_CASE(VRGATHER_VV_VL)
10825   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
10826   NODE_NAME_CASE(VSEXT_VL)
10827   NODE_NAME_CASE(VZEXT_VL)
10828   NODE_NAME_CASE(VCPOP_VL)
10829   NODE_NAME_CASE(VLE_VL)
10830   NODE_NAME_CASE(VSE_VL)
10831   NODE_NAME_CASE(READ_CSR)
10832   NODE_NAME_CASE(WRITE_CSR)
10833   NODE_NAME_CASE(SWAP_CSR)
10834   }
10835   // clang-format on
10836   return nullptr;
10837 #undef NODE_NAME_CASE
10838 }
10839 
10840 /// getConstraintType - Given a constraint letter, return the type of
10841 /// constraint it is for this target.
10842 RISCVTargetLowering::ConstraintType
10843 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
10844   if (Constraint.size() == 1) {
10845     switch (Constraint[0]) {
10846     default:
10847       break;
10848     case 'f':
10849       return C_RegisterClass;
10850     case 'I':
10851     case 'J':
10852     case 'K':
10853       return C_Immediate;
10854     case 'A':
10855       return C_Memory;
10856     case 'S': // A symbolic address
10857       return C_Other;
10858     }
10859   } else {
10860     if (Constraint == "vr" || Constraint == "vm")
10861       return C_RegisterClass;
10862   }
10863   return TargetLowering::getConstraintType(Constraint);
10864 }
10865 
10866 std::pair<unsigned, const TargetRegisterClass *>
10867 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
10868                                                   StringRef Constraint,
10869                                                   MVT VT) const {
10870   // First, see if this is a constraint that directly corresponds to a
10871   // RISCV register class.
10872   if (Constraint.size() == 1) {
10873     switch (Constraint[0]) {
10874     case 'r':
10875       // TODO: Support fixed vectors up to XLen for P extension?
10876       if (VT.isVector())
10877         break;
10878       return std::make_pair(0U, &RISCV::GPRRegClass);
10879     case 'f':
10880       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
10881         return std::make_pair(0U, &RISCV::FPR16RegClass);
10882       if (Subtarget.hasStdExtF() && VT == MVT::f32)
10883         return std::make_pair(0U, &RISCV::FPR32RegClass);
10884       if (Subtarget.hasStdExtD() && VT == MVT::f64)
10885         return std::make_pair(0U, &RISCV::FPR64RegClass);
10886       break;
10887     default:
10888       break;
10889     }
10890   } else if (Constraint == "vr") {
10891     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
10892                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
10893       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
10894         return std::make_pair(0U, RC);
10895     }
10896   } else if (Constraint == "vm") {
10897     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
10898       return std::make_pair(0U, &RISCV::VMV0RegClass);
10899   }
10900 
10901   // Clang will correctly decode the usage of register name aliases into their
10902   // official names. However, other frontends like `rustc` do not. This allows
10903   // users of these frontends to use the ABI names for registers in LLVM-style
10904   // register constraints.
10905   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
10906                                .Case("{zero}", RISCV::X0)
10907                                .Case("{ra}", RISCV::X1)
10908                                .Case("{sp}", RISCV::X2)
10909                                .Case("{gp}", RISCV::X3)
10910                                .Case("{tp}", RISCV::X4)
10911                                .Case("{t0}", RISCV::X5)
10912                                .Case("{t1}", RISCV::X6)
10913                                .Case("{t2}", RISCV::X7)
10914                                .Cases("{s0}", "{fp}", RISCV::X8)
10915                                .Case("{s1}", RISCV::X9)
10916                                .Case("{a0}", RISCV::X10)
10917                                .Case("{a1}", RISCV::X11)
10918                                .Case("{a2}", RISCV::X12)
10919                                .Case("{a3}", RISCV::X13)
10920                                .Case("{a4}", RISCV::X14)
10921                                .Case("{a5}", RISCV::X15)
10922                                .Case("{a6}", RISCV::X16)
10923                                .Case("{a7}", RISCV::X17)
10924                                .Case("{s2}", RISCV::X18)
10925                                .Case("{s3}", RISCV::X19)
10926                                .Case("{s4}", RISCV::X20)
10927                                .Case("{s5}", RISCV::X21)
10928                                .Case("{s6}", RISCV::X22)
10929                                .Case("{s7}", RISCV::X23)
10930                                .Case("{s8}", RISCV::X24)
10931                                .Case("{s9}", RISCV::X25)
10932                                .Case("{s10}", RISCV::X26)
10933                                .Case("{s11}", RISCV::X27)
10934                                .Case("{t3}", RISCV::X28)
10935                                .Case("{t4}", RISCV::X29)
10936                                .Case("{t5}", RISCV::X30)
10937                                .Case("{t6}", RISCV::X31)
10938                                .Default(RISCV::NoRegister);
10939   if (XRegFromAlias != RISCV::NoRegister)
10940     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
10941 
10942   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
10943   // TableGen record rather than the AsmName to choose registers for InlineAsm
10944   // constraints, plus we want to match those names to the widest floating point
10945   // register type available, manually select floating point registers here.
10946   //
10947   // The second case is the ABI name of the register, so that frontends can also
10948   // use the ABI names in register constraint lists.
10949   if (Subtarget.hasStdExtF()) {
10950     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
10951                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
10952                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
10953                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
10954                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
10955                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
10956                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
10957                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
10958                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
10959                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
10960                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
10961                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
10962                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
10963                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
10964                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
10965                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
10966                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
10967                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
10968                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
10969                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
10970                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
10971                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
10972                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
10973                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
10974                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
10975                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
10976                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
10977                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
10978                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
10979                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
10980                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
10981                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
10982                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
10983                         .Default(RISCV::NoRegister);
10984     if (FReg != RISCV::NoRegister) {
10985       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
10986       if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
10987         unsigned RegNo = FReg - RISCV::F0_F;
10988         unsigned DReg = RISCV::F0_D + RegNo;
10989         return std::make_pair(DReg, &RISCV::FPR64RegClass);
10990       }
10991       if (VT == MVT::f32 || VT == MVT::Other)
10992         return std::make_pair(FReg, &RISCV::FPR32RegClass);
10993       if (Subtarget.hasStdExtZfh() && VT == MVT::f16) {
10994         unsigned RegNo = FReg - RISCV::F0_F;
10995         unsigned HReg = RISCV::F0_H + RegNo;
10996         return std::make_pair(HReg, &RISCV::FPR16RegClass);
10997       }
10998     }
10999   }
11000 
11001   if (Subtarget.hasVInstructions()) {
11002     Register VReg = StringSwitch<Register>(Constraint.lower())
11003                         .Case("{v0}", RISCV::V0)
11004                         .Case("{v1}", RISCV::V1)
11005                         .Case("{v2}", RISCV::V2)
11006                         .Case("{v3}", RISCV::V3)
11007                         .Case("{v4}", RISCV::V4)
11008                         .Case("{v5}", RISCV::V5)
11009                         .Case("{v6}", RISCV::V6)
11010                         .Case("{v7}", RISCV::V7)
11011                         .Case("{v8}", RISCV::V8)
11012                         .Case("{v9}", RISCV::V9)
11013                         .Case("{v10}", RISCV::V10)
11014                         .Case("{v11}", RISCV::V11)
11015                         .Case("{v12}", RISCV::V12)
11016                         .Case("{v13}", RISCV::V13)
11017                         .Case("{v14}", RISCV::V14)
11018                         .Case("{v15}", RISCV::V15)
11019                         .Case("{v16}", RISCV::V16)
11020                         .Case("{v17}", RISCV::V17)
11021                         .Case("{v18}", RISCV::V18)
11022                         .Case("{v19}", RISCV::V19)
11023                         .Case("{v20}", RISCV::V20)
11024                         .Case("{v21}", RISCV::V21)
11025                         .Case("{v22}", RISCV::V22)
11026                         .Case("{v23}", RISCV::V23)
11027                         .Case("{v24}", RISCV::V24)
11028                         .Case("{v25}", RISCV::V25)
11029                         .Case("{v26}", RISCV::V26)
11030                         .Case("{v27}", RISCV::V27)
11031                         .Case("{v28}", RISCV::V28)
11032                         .Case("{v29}", RISCV::V29)
11033                         .Case("{v30}", RISCV::V30)
11034                         .Case("{v31}", RISCV::V31)
11035                         .Default(RISCV::NoRegister);
11036     if (VReg != RISCV::NoRegister) {
11037       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
11038         return std::make_pair(VReg, &RISCV::VMRegClass);
11039       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
11040         return std::make_pair(VReg, &RISCV::VRRegClass);
11041       for (const auto *RC :
11042            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11043         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
11044           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
11045           return std::make_pair(VReg, RC);
11046         }
11047       }
11048     }
11049   }
11050 
11051   std::pair<Register, const TargetRegisterClass *> Res =
11052       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11053 
11054   // If we picked one of the Zfinx register classes, remap it to the GPR class.
11055   // FIXME: When Zfinx is supported in CodeGen this will need to take the
11056   // Subtarget into account.
11057   if (Res.second == &RISCV::GPRF16RegClass ||
11058       Res.second == &RISCV::GPRF32RegClass ||
11059       Res.second == &RISCV::GPRF64RegClass)
11060     return std::make_pair(Res.first, &RISCV::GPRRegClass);
11061 
11062   return Res;
11063 }
11064 
11065 unsigned
11066 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
11067   // Currently only support length 1 constraints.
11068   if (ConstraintCode.size() == 1) {
11069     switch (ConstraintCode[0]) {
11070     case 'A':
11071       return InlineAsm::Constraint_A;
11072     default:
11073       break;
11074     }
11075   }
11076 
11077   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
11078 }
11079 
11080 void RISCVTargetLowering::LowerAsmOperandForConstraint(
11081     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
11082     SelectionDAG &DAG) const {
11083   // Currently only support length 1 constraints.
11084   if (Constraint.length() == 1) {
11085     switch (Constraint[0]) {
11086     case 'I':
11087       // Validate & create a 12-bit signed immediate operand.
11088       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11089         uint64_t CVal = C->getSExtValue();
11090         if (isInt<12>(CVal))
11091           Ops.push_back(
11092               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11093       }
11094       return;
11095     case 'J':
11096       // Validate & create an integer zero operand.
11097       if (auto *C = dyn_cast<ConstantSDNode>(Op))
11098         if (C->getZExtValue() == 0)
11099           Ops.push_back(
11100               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
11101       return;
11102     case 'K':
11103       // Validate & create a 5-bit unsigned immediate operand.
11104       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11105         uint64_t CVal = C->getZExtValue();
11106         if (isUInt<5>(CVal))
11107           Ops.push_back(
11108               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11109       }
11110       return;
11111     case 'S':
11112       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
11113         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
11114                                                  GA->getValueType(0)));
11115       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
11116         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
11117                                                 BA->getValueType(0)));
11118       }
11119       return;
11120     default:
11121       break;
11122     }
11123   }
11124   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11125 }
11126 
11127 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
11128                                                    Instruction *Inst,
11129                                                    AtomicOrdering Ord) const {
11130   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
11131     return Builder.CreateFence(Ord);
11132   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
11133     return Builder.CreateFence(AtomicOrdering::Release);
11134   return nullptr;
11135 }
11136 
11137 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
11138                                                     Instruction *Inst,
11139                                                     AtomicOrdering Ord) const {
11140   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
11141     return Builder.CreateFence(AtomicOrdering::Acquire);
11142   return nullptr;
11143 }
11144 
11145 TargetLowering::AtomicExpansionKind
11146 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
11147   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
11148   // point operations can't be used in an lr/sc sequence without breaking the
11149   // forward-progress guarantee.
11150   if (AI->isFloatingPointOperation())
11151     return AtomicExpansionKind::CmpXChg;
11152 
11153   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
11154   if (Size == 8 || Size == 16)
11155     return AtomicExpansionKind::MaskedIntrinsic;
11156   return AtomicExpansionKind::None;
11157 }
11158 
11159 static Intrinsic::ID
11160 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
11161   if (XLen == 32) {
11162     switch (BinOp) {
11163     default:
11164       llvm_unreachable("Unexpected AtomicRMW BinOp");
11165     case AtomicRMWInst::Xchg:
11166       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
11167     case AtomicRMWInst::Add:
11168       return Intrinsic::riscv_masked_atomicrmw_add_i32;
11169     case AtomicRMWInst::Sub:
11170       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
11171     case AtomicRMWInst::Nand:
11172       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
11173     case AtomicRMWInst::Max:
11174       return Intrinsic::riscv_masked_atomicrmw_max_i32;
11175     case AtomicRMWInst::Min:
11176       return Intrinsic::riscv_masked_atomicrmw_min_i32;
11177     case AtomicRMWInst::UMax:
11178       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
11179     case AtomicRMWInst::UMin:
11180       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
11181     }
11182   }
11183 
11184   if (XLen == 64) {
11185     switch (BinOp) {
11186     default:
11187       llvm_unreachable("Unexpected AtomicRMW BinOp");
11188     case AtomicRMWInst::Xchg:
11189       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
11190     case AtomicRMWInst::Add:
11191       return Intrinsic::riscv_masked_atomicrmw_add_i64;
11192     case AtomicRMWInst::Sub:
11193       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
11194     case AtomicRMWInst::Nand:
11195       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
11196     case AtomicRMWInst::Max:
11197       return Intrinsic::riscv_masked_atomicrmw_max_i64;
11198     case AtomicRMWInst::Min:
11199       return Intrinsic::riscv_masked_atomicrmw_min_i64;
11200     case AtomicRMWInst::UMax:
11201       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
11202     case AtomicRMWInst::UMin:
11203       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
11204     }
11205   }
11206 
11207   llvm_unreachable("Unexpected XLen\n");
11208 }
11209 
11210 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
11211     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
11212     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
11213   unsigned XLen = Subtarget.getXLen();
11214   Value *Ordering =
11215       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
11216   Type *Tys[] = {AlignedAddr->getType()};
11217   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
11218       AI->getModule(),
11219       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
11220 
11221   if (XLen == 64) {
11222     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
11223     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11224     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
11225   }
11226 
11227   Value *Result;
11228 
11229   // Must pass the shift amount needed to sign extend the loaded value prior
11230   // to performing a signed comparison for min/max. ShiftAmt is the number of
11231   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
11232   // is the number of bits to left+right shift the value in order to
11233   // sign-extend.
11234   if (AI->getOperation() == AtomicRMWInst::Min ||
11235       AI->getOperation() == AtomicRMWInst::Max) {
11236     const DataLayout &DL = AI->getModule()->getDataLayout();
11237     unsigned ValWidth =
11238         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
11239     Value *SextShamt =
11240         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
11241     Result = Builder.CreateCall(LrwOpScwLoop,
11242                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
11243   } else {
11244     Result =
11245         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
11246   }
11247 
11248   if (XLen == 64)
11249     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11250   return Result;
11251 }
11252 
11253 TargetLowering::AtomicExpansionKind
11254 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
11255     AtomicCmpXchgInst *CI) const {
11256   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
11257   if (Size == 8 || Size == 16)
11258     return AtomicExpansionKind::MaskedIntrinsic;
11259   return AtomicExpansionKind::None;
11260 }
11261 
11262 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
11263     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
11264     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
11265   unsigned XLen = Subtarget.getXLen();
11266   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
11267   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
11268   if (XLen == 64) {
11269     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
11270     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
11271     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11272     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
11273   }
11274   Type *Tys[] = {AlignedAddr->getType()};
11275   Function *MaskedCmpXchg =
11276       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
11277   Value *Result = Builder.CreateCall(
11278       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
11279   if (XLen == 64)
11280     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11281   return Result;
11282 }
11283 
11284 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
11285   return false;
11286 }
11287 
11288 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
11289                                                EVT VT) const {
11290   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
11291     return false;
11292 
11293   switch (FPVT.getSimpleVT().SimpleTy) {
11294   case MVT::f16:
11295     return Subtarget.hasStdExtZfh();
11296   case MVT::f32:
11297     return Subtarget.hasStdExtF();
11298   case MVT::f64:
11299     return Subtarget.hasStdExtD();
11300   default:
11301     return false;
11302   }
11303 }
11304 
11305 unsigned RISCVTargetLowering::getJumpTableEncoding() const {
11306   // If we are using the small code model, we can reduce size of jump table
11307   // entry to 4 bytes.
11308   if (Subtarget.is64Bit() && !isPositionIndependent() &&
11309       getTargetMachine().getCodeModel() == CodeModel::Small) {
11310     return MachineJumpTableInfo::EK_Custom32;
11311   }
11312   return TargetLowering::getJumpTableEncoding();
11313 }
11314 
11315 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
11316     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
11317     unsigned uid, MCContext &Ctx) const {
11318   assert(Subtarget.is64Bit() && !isPositionIndependent() &&
11319          getTargetMachine().getCodeModel() == CodeModel::Small);
11320   return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
11321 }
11322 
11323 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
11324                                                      EVT VT) const {
11325   VT = VT.getScalarType();
11326 
11327   if (!VT.isSimple())
11328     return false;
11329 
11330   switch (VT.getSimpleVT().SimpleTy) {
11331   case MVT::f16:
11332     return Subtarget.hasStdExtZfh();
11333   case MVT::f32:
11334     return Subtarget.hasStdExtF();
11335   case MVT::f64:
11336     return Subtarget.hasStdExtD();
11337   default:
11338     break;
11339   }
11340 
11341   return false;
11342 }
11343 
11344 Register RISCVTargetLowering::getExceptionPointerRegister(
11345     const Constant *PersonalityFn) const {
11346   return RISCV::X10;
11347 }
11348 
11349 Register RISCVTargetLowering::getExceptionSelectorRegister(
11350     const Constant *PersonalityFn) const {
11351   return RISCV::X11;
11352 }
11353 
11354 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
11355   // Return false to suppress the unnecessary extensions if the LibCall
11356   // arguments or return value is f32 type for LP64 ABI.
11357   RISCVABI::ABI ABI = Subtarget.getTargetABI();
11358   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
11359     return false;
11360 
11361   return true;
11362 }
11363 
11364 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
11365   if (Subtarget.is64Bit() && Type == MVT::i32)
11366     return true;
11367 
11368   return IsSigned;
11369 }
11370 
11371 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
11372                                                  SDValue C) const {
11373   // Check integral scalar types.
11374   if (VT.isScalarInteger()) {
11375     // Omit the optimization if the sub target has the M extension and the data
11376     // size exceeds XLen.
11377     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
11378       return false;
11379     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
11380       // Break the MUL to a SLLI and an ADD/SUB.
11381       const APInt &Imm = ConstNode->getAPIntValue();
11382       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
11383           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
11384         return true;
11385       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
11386       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
11387           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
11388            (Imm - 8).isPowerOf2()))
11389         return true;
11390       // Omit the following optimization if the sub target has the M extension
11391       // and the data size >= XLen.
11392       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
11393         return false;
11394       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
11395       // a pair of LUI/ADDI.
11396       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
11397         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
11398         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
11399             (1 - ImmS).isPowerOf2())
11400         return true;
11401       }
11402     }
11403   }
11404 
11405   return false;
11406 }
11407 
11408 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
11409                                                       SDValue ConstNode) const {
11410   // Let the DAGCombiner decide for vectors.
11411   EVT VT = AddNode.getValueType();
11412   if (VT.isVector())
11413     return true;
11414 
11415   // Let the DAGCombiner decide for larger types.
11416   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
11417     return true;
11418 
11419   // It is worse if c1 is simm12 while c1*c2 is not.
11420   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
11421   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
11422   const APInt &C1 = C1Node->getAPIntValue();
11423   const APInt &C2 = C2Node->getAPIntValue();
11424   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
11425     return false;
11426 
11427   // Default to true and let the DAGCombiner decide.
11428   return true;
11429 }
11430 
11431 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
11432     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
11433     bool *Fast) const {
11434   if (!VT.isVector())
11435     return false;
11436 
11437   EVT ElemVT = VT.getVectorElementType();
11438   if (Alignment >= ElemVT.getStoreSize()) {
11439     if (Fast)
11440       *Fast = true;
11441     return true;
11442   }
11443 
11444   return false;
11445 }
11446 
11447 bool RISCVTargetLowering::splitValueIntoRegisterParts(
11448     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
11449     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
11450   bool IsABIRegCopy = CC.hasValue();
11451   EVT ValueVT = Val.getValueType();
11452   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11453     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
11454     // and cast to f32.
11455     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
11456     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
11457     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
11458                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
11459     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
11460     Parts[0] = Val;
11461     return true;
11462   }
11463 
11464   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11465     LLVMContext &Context = *DAG.getContext();
11466     EVT ValueEltVT = ValueVT.getVectorElementType();
11467     EVT PartEltVT = PartVT.getVectorElementType();
11468     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11469     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11470     if (PartVTBitSize % ValueVTBitSize == 0) {
11471       assert(PartVTBitSize >= ValueVTBitSize);
11472       // If the element types are different, bitcast to the same element type of
11473       // PartVT first.
11474       // Give an example here, we want copy a <vscale x 1 x i8> value to
11475       // <vscale x 4 x i16>.
11476       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
11477       // subvector, then we can bitcast to <vscale x 4 x i16>.
11478       if (ValueEltVT != PartEltVT) {
11479         if (PartVTBitSize > ValueVTBitSize) {
11480           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11481           assert(Count != 0 && "The number of element should not be zero.");
11482           EVT SameEltTypeVT =
11483               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11484           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
11485                             DAG.getUNDEF(SameEltTypeVT), Val,
11486                             DAG.getVectorIdxConstant(0, DL));
11487         }
11488         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
11489       } else {
11490         Val =
11491             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
11492                         Val, DAG.getVectorIdxConstant(0, DL));
11493       }
11494       Parts[0] = Val;
11495       return true;
11496     }
11497   }
11498   return false;
11499 }
11500 
11501 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
11502     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
11503     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
11504   bool IsABIRegCopy = CC.hasValue();
11505   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11506     SDValue Val = Parts[0];
11507 
11508     // Cast the f32 to i32, truncate to i16, and cast back to f16.
11509     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
11510     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
11511     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
11512     return Val;
11513   }
11514 
11515   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11516     LLVMContext &Context = *DAG.getContext();
11517     SDValue Val = Parts[0];
11518     EVT ValueEltVT = ValueVT.getVectorElementType();
11519     EVT PartEltVT = PartVT.getVectorElementType();
11520     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11521     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11522     if (PartVTBitSize % ValueVTBitSize == 0) {
11523       assert(PartVTBitSize >= ValueVTBitSize);
11524       EVT SameEltTypeVT = ValueVT;
11525       // If the element types are different, convert it to the same element type
11526       // of PartVT.
11527       // Give an example here, we want copy a <vscale x 1 x i8> value from
11528       // <vscale x 4 x i16>.
11529       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
11530       // then we can extract <vscale x 1 x i8>.
11531       if (ValueEltVT != PartEltVT) {
11532         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11533         assert(Count != 0 && "The number of element should not be zero.");
11534         SameEltTypeVT =
11535             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11536         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
11537       }
11538       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
11539                         DAG.getVectorIdxConstant(0, DL));
11540       return Val;
11541     }
11542   }
11543   return SDValue();
11544 }
11545 
11546 SDValue
11547 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
11548                                    SelectionDAG &DAG,
11549                                    SmallVectorImpl<SDNode *> &Created) const {
11550   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
11551   if (isIntDivCheap(N->getValueType(0), Attr))
11552     return SDValue(N, 0); // Lower SDIV as SDIV
11553 
11554   assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) &&
11555          "Unexpected divisor!");
11556 
11557   // Conditional move is needed, so do the transformation iff Zbt is enabled.
11558   if (!Subtarget.hasStdExtZbt())
11559     return SDValue();
11560 
11561   // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation.
11562   // Besides, more critical path instructions will be generated when dividing
11563   // by 2. So we keep using the original DAGs for these cases.
11564   unsigned Lg2 = Divisor.countTrailingZeros();
11565   if (Lg2 == 1 || Lg2 >= 12)
11566     return SDValue();
11567 
11568   // fold (sdiv X, pow2)
11569   EVT VT = N->getValueType(0);
11570   if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64))
11571     return SDValue();
11572 
11573   SDLoc DL(N);
11574   SDValue N0 = N->getOperand(0);
11575   SDValue Zero = DAG.getConstant(0, DL, VT);
11576   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
11577 
11578   // Add (N0 < 0) ? Pow2 - 1 : 0;
11579   SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT);
11580   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
11581   SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
11582 
11583   Created.push_back(Cmp.getNode());
11584   Created.push_back(Add.getNode());
11585   Created.push_back(Sel.getNode());
11586 
11587   // Divide by pow2.
11588   SDValue SRA =
11589       DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT));
11590 
11591   // If we're dividing by a positive value, we're done.  Otherwise, we must
11592   // negate the result.
11593   if (Divisor.isNonNegative())
11594     return SRA;
11595 
11596   Created.push_back(SRA.getNode());
11597   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
11598 }
11599 
11600 #define GET_REGISTER_MATCHER
11601 #include "RISCVGenAsmMatcher.inc"
11602 
11603 Register
11604 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
11605                                        const MachineFunction &MF) const {
11606   Register Reg = MatchRegisterAltName(RegName);
11607   if (Reg == RISCV::NoRegister)
11608     Reg = MatchRegisterName(RegName);
11609   if (Reg == RISCV::NoRegister)
11610     report_fatal_error(
11611         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
11612   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
11613   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
11614     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
11615                              StringRef(RegName) + "\"."));
11616   return Reg;
11617 }
11618 
11619 namespace llvm {
11620 namespace RISCVVIntrinsicsTable {
11621 
11622 #define GET_RISCVVIntrinsicsTable_IMPL
11623 #include "RISCVGenSearchableTables.inc"
11624 
11625 } // namespace RISCVVIntrinsicsTable
11626 
11627 } // namespace llvm
11628