1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "RISCV.h" 16 #include "RISCVMachineFunctionInfo.h" 17 #include "RISCVRegisterInfo.h" 18 #include "RISCVSubtarget.h" 19 #include "RISCVTargetMachine.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/CallingConvLower.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/SelectionDAGISel.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 36 using namespace llvm; 37 38 #define DEBUG_TYPE "riscv-lower" 39 40 STATISTIC(NumTailCalls, "Number of tail calls"); 41 42 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 43 const RISCVSubtarget &STI) 44 : TargetLowering(TM), Subtarget(STI) { 45 46 if (Subtarget.isRV32E()) 47 report_fatal_error("Codegen not yet implemented for RV32E"); 48 49 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 50 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 51 52 switch (ABI) { 53 default: 54 report_fatal_error("Don't know how to lower this ABI"); 55 case RISCVABI::ABI_ILP32: 56 case RISCVABI::ABI_ILP32F: 57 case RISCVABI::ABI_ILP32D: 58 case RISCVABI::ABI_LP64: 59 case RISCVABI::ABI_LP64F: 60 case RISCVABI::ABI_LP64D: 61 break; 62 } 63 64 MVT XLenVT = Subtarget.getXLenVT(); 65 66 // Set up the register classes. 67 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 68 69 if (Subtarget.hasStdExtF()) 70 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 71 if (Subtarget.hasStdExtD()) 72 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 73 74 // Compute derived properties from the register classes. 75 computeRegisterProperties(STI.getRegisterInfo()); 76 77 setStackPointerRegisterToSaveRestore(RISCV::X2); 78 79 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 80 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 81 82 // TODO: add all necessary setOperationAction calls. 83 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 84 85 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 86 setOperationAction(ISD::BR_CC, XLenVT, Expand); 87 setOperationAction(ISD::SELECT, XLenVT, Custom); 88 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 89 90 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 91 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 92 93 setOperationAction(ISD::VASTART, MVT::Other, Custom); 94 setOperationAction(ISD::VAARG, MVT::Other, Expand); 95 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 96 setOperationAction(ISD::VAEND, MVT::Other, Expand); 97 98 for (auto VT : {MVT::i1, MVT::i8, MVT::i16}) 99 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 100 101 if (Subtarget.is64Bit()) { 102 setOperationAction(ISD::SHL, MVT::i32, Custom); 103 setOperationAction(ISD::SRA, MVT::i32, Custom); 104 setOperationAction(ISD::SRL, MVT::i32, Custom); 105 } 106 107 if (!Subtarget.hasStdExtM()) { 108 setOperationAction(ISD::MUL, XLenVT, Expand); 109 setOperationAction(ISD::MULHS, XLenVT, Expand); 110 setOperationAction(ISD::MULHU, XLenVT, Expand); 111 setOperationAction(ISD::SDIV, XLenVT, Expand); 112 setOperationAction(ISD::UDIV, XLenVT, Expand); 113 setOperationAction(ISD::SREM, XLenVT, Expand); 114 setOperationAction(ISD::UREM, XLenVT, Expand); 115 } 116 117 if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) { 118 setOperationAction(ISD::SDIV, MVT::i32, Custom); 119 setOperationAction(ISD::UDIV, MVT::i32, Custom); 120 setOperationAction(ISD::UREM, MVT::i32, Custom); 121 } 122 123 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 124 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 125 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 126 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 127 128 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 129 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 130 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 131 132 setOperationAction(ISD::ROTL, XLenVT, Expand); 133 setOperationAction(ISD::ROTR, XLenVT, Expand); 134 setOperationAction(ISD::BSWAP, XLenVT, Expand); 135 setOperationAction(ISD::CTTZ, XLenVT, Expand); 136 setOperationAction(ISD::CTLZ, XLenVT, Expand); 137 setOperationAction(ISD::CTPOP, XLenVT, Expand); 138 139 ISD::CondCode FPCCToExtend[] = { 140 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 141 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 142 ISD::SETGE, ISD::SETNE}; 143 144 ISD::NodeType FPOpToExtend[] = { 145 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM}; 146 147 if (Subtarget.hasStdExtF()) { 148 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 149 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 150 for (auto CC : FPCCToExtend) 151 setCondCodeAction(CC, MVT::f32, Expand); 152 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 153 setOperationAction(ISD::SELECT, MVT::f32, Custom); 154 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 155 for (auto Op : FPOpToExtend) 156 setOperationAction(Op, MVT::f32, Expand); 157 } 158 159 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 160 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 161 162 if (Subtarget.hasStdExtD()) { 163 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 164 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 165 for (auto CC : FPCCToExtend) 166 setCondCodeAction(CC, MVT::f64, Expand); 167 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 168 setOperationAction(ISD::SELECT, MVT::f64, Custom); 169 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 170 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 171 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 172 for (auto Op : FPOpToExtend) 173 setOperationAction(Op, MVT::f64, Expand); 174 } 175 176 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 177 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 178 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 179 180 if (Subtarget.hasStdExtA()) { 181 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 182 setMinCmpXchgSizeInBits(32); 183 } else { 184 setMaxAtomicSizeInBitsSupported(0); 185 } 186 187 setBooleanContents(ZeroOrOneBooleanContent); 188 189 // Function alignments (log2). 190 unsigned FunctionAlignment = Subtarget.hasStdExtC() ? 1 : 2; 191 setMinFunctionAlignment(FunctionAlignment); 192 setPrefFunctionAlignment(FunctionAlignment); 193 194 // Effectively disable jump table generation. 195 setMinimumJumpTableEntries(INT_MAX); 196 } 197 198 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, 199 EVT VT) const { 200 if (!VT.isVector()) 201 return getPointerTy(DL); 202 return VT.changeVectorElementTypeToInteger(); 203 } 204 205 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 206 const CallInst &I, 207 MachineFunction &MF, 208 unsigned Intrinsic) const { 209 switch (Intrinsic) { 210 default: 211 return false; 212 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 213 case Intrinsic::riscv_masked_atomicrmw_add_i32: 214 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 215 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 216 case Intrinsic::riscv_masked_atomicrmw_max_i32: 217 case Intrinsic::riscv_masked_atomicrmw_min_i32: 218 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 219 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 220 case Intrinsic::riscv_masked_cmpxchg_i32: 221 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 222 Info.opc = ISD::INTRINSIC_W_CHAIN; 223 Info.memVT = MVT::getVT(PtrTy->getElementType()); 224 Info.ptrVal = I.getArgOperand(0); 225 Info.offset = 0; 226 Info.align = 4; 227 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 228 MachineMemOperand::MOVolatile; 229 return true; 230 } 231 } 232 233 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 234 const AddrMode &AM, Type *Ty, 235 unsigned AS, 236 Instruction *I) const { 237 // No global is ever allowed as a base. 238 if (AM.BaseGV) 239 return false; 240 241 // Require a 12-bit signed offset. 242 if (!isInt<12>(AM.BaseOffs)) 243 return false; 244 245 switch (AM.Scale) { 246 case 0: // "r+i" or just "i", depending on HasBaseReg. 247 break; 248 case 1: 249 if (!AM.HasBaseReg) // allow "r+i". 250 break; 251 return false; // disallow "r+r" or "r+r+i". 252 default: 253 return false; 254 } 255 256 return true; 257 } 258 259 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 260 return isInt<12>(Imm); 261 } 262 263 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 264 return isInt<12>(Imm); 265 } 266 267 // On RV32, 64-bit integers are split into their high and low parts and held 268 // in two different registers, so the trunc is free since the low register can 269 // just be used. 270 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 271 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 272 return false; 273 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 274 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 275 return (SrcBits == 64 && DestBits == 32); 276 } 277 278 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 279 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 280 !SrcVT.isInteger() || !DstVT.isInteger()) 281 return false; 282 unsigned SrcBits = SrcVT.getSizeInBits(); 283 unsigned DestBits = DstVT.getSizeInBits(); 284 return (SrcBits == 64 && DestBits == 32); 285 } 286 287 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 288 // Zexts are free if they can be combined with a load. 289 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 290 EVT MemVT = LD->getMemoryVT(); 291 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 292 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 293 (LD->getExtensionType() == ISD::NON_EXTLOAD || 294 LD->getExtensionType() == ISD::ZEXTLOAD)) 295 return true; 296 } 297 298 return TargetLowering::isZExtFree(Val, VT2); 299 } 300 301 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 302 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 303 } 304 305 // Changes the condition code and swaps operands if necessary, so the SetCC 306 // operation matches one of the comparisons supported directly in the RISC-V 307 // ISA. 308 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { 309 switch (CC) { 310 default: 311 break; 312 case ISD::SETGT: 313 case ISD::SETLE: 314 case ISD::SETUGT: 315 case ISD::SETULE: 316 CC = ISD::getSetCCSwappedOperands(CC); 317 std::swap(LHS, RHS); 318 break; 319 } 320 } 321 322 // Return the RISC-V branch opcode that matches the given DAG integer 323 // condition code. The CondCode must be one of those supported by the RISC-V 324 // ISA (see normaliseSetCC). 325 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 326 switch (CC) { 327 default: 328 llvm_unreachable("Unsupported CondCode"); 329 case ISD::SETEQ: 330 return RISCV::BEQ; 331 case ISD::SETNE: 332 return RISCV::BNE; 333 case ISD::SETLT: 334 return RISCV::BLT; 335 case ISD::SETGE: 336 return RISCV::BGE; 337 case ISD::SETULT: 338 return RISCV::BLTU; 339 case ISD::SETUGE: 340 return RISCV::BGEU; 341 } 342 } 343 344 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 345 SelectionDAG &DAG) const { 346 switch (Op.getOpcode()) { 347 default: 348 report_fatal_error("unimplemented operand"); 349 case ISD::GlobalAddress: 350 return lowerGlobalAddress(Op, DAG); 351 case ISD::BlockAddress: 352 return lowerBlockAddress(Op, DAG); 353 case ISD::ConstantPool: 354 return lowerConstantPool(Op, DAG); 355 case ISD::SELECT: 356 return lowerSELECT(Op, DAG); 357 case ISD::VASTART: 358 return lowerVASTART(Op, DAG); 359 case ISD::FRAMEADDR: 360 return lowerFRAMEADDR(Op, DAG); 361 case ISD::RETURNADDR: 362 return lowerRETURNADDR(Op, DAG); 363 case ISD::SHL_PARTS: 364 return lowerShiftLeftParts(Op, DAG); 365 case ISD::SRA_PARTS: 366 return lowerShiftRightParts(Op, DAG, true); 367 case ISD::SRL_PARTS: 368 return lowerShiftRightParts(Op, DAG, false); 369 case ISD::BITCAST: { 370 assert(Subtarget.is64Bit() && Subtarget.hasStdExtF() && 371 "Unexpected custom legalisation"); 372 SDLoc DL(Op); 373 SDValue Op0 = Op.getOperand(0); 374 if (Op.getValueType() != MVT::f32 || Op0.getValueType() != MVT::i32) 375 return SDValue(); 376 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 377 SDValue FPConv = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 378 return FPConv; 379 } 380 } 381 } 382 383 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 384 SelectionDAG &DAG, unsigned Flags) { 385 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 386 } 387 388 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 389 SelectionDAG &DAG, unsigned Flags) { 390 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 391 Flags); 392 } 393 394 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 395 SelectionDAG &DAG, unsigned Flags) { 396 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(), 397 N->getOffset(), Flags); 398 } 399 400 template <class NodeTy> 401 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG) const { 402 SDLoc DL(N); 403 EVT Ty = getPointerTy(DAG.getDataLayout()); 404 405 switch (getTargetMachine().getCodeModel()) { 406 default: 407 report_fatal_error("Unsupported code model for lowering"); 408 case CodeModel::Small: { 409 // Generate a sequence for accessing addresses within the first 2 GiB of 410 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 411 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 412 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 413 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 414 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 415 } 416 case CodeModel::Medium: { 417 // Generate a sequence for accessing addresses within any 2GiB range within 418 // the address space. This generates the pattern (PseudoLLA sym), which 419 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 420 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 421 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 422 } 423 } 424 } 425 426 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 427 SelectionDAG &DAG) const { 428 SDLoc DL(Op); 429 EVT Ty = Op.getValueType(); 430 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 431 int64_t Offset = N->getOffset(); 432 MVT XLenVT = Subtarget.getXLenVT(); 433 434 if (isPositionIndependent()) 435 report_fatal_error("Unable to lowerGlobalAddress"); 436 437 SDValue Addr = getAddr(N, DAG); 438 439 // In order to maximise the opportunity for common subexpression elimination, 440 // emit a separate ADD node for the global address offset instead of folding 441 // it in the global address node. Later peephole optimisations may choose to 442 // fold it back in when profitable. 443 if (Offset != 0) 444 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 445 DAG.getConstant(Offset, DL, XLenVT)); 446 return Addr; 447 } 448 449 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 450 SelectionDAG &DAG) const { 451 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 452 453 if (isPositionIndependent()) 454 report_fatal_error("Unable to lowerBlockAddress"); 455 456 return getAddr(N, DAG); 457 } 458 459 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 460 SelectionDAG &DAG) const { 461 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 462 463 if (isPositionIndependent()) 464 report_fatal_error("Unable to lowerConstantPool"); 465 466 return getAddr(N, DAG); 467 } 468 469 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 470 SDValue CondV = Op.getOperand(0); 471 SDValue TrueV = Op.getOperand(1); 472 SDValue FalseV = Op.getOperand(2); 473 SDLoc DL(Op); 474 MVT XLenVT = Subtarget.getXLenVT(); 475 476 // If the result type is XLenVT and CondV is the output of a SETCC node 477 // which also operated on XLenVT inputs, then merge the SETCC node into the 478 // lowered RISCVISD::SELECT_CC to take advantage of the integer 479 // compare+branch instructions. i.e.: 480 // (select (setcc lhs, rhs, cc), truev, falsev) 481 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 482 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 483 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 484 SDValue LHS = CondV.getOperand(0); 485 SDValue RHS = CondV.getOperand(1); 486 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 487 ISD::CondCode CCVal = CC->get(); 488 489 normaliseSetCC(LHS, RHS, CCVal); 490 491 SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); 492 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 493 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 494 return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops); 495 } 496 497 // Otherwise: 498 // (select condv, truev, falsev) 499 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 500 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 501 SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); 502 503 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 504 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 505 506 return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops); 507 } 508 509 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 510 MachineFunction &MF = DAG.getMachineFunction(); 511 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 512 513 SDLoc DL(Op); 514 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 515 getPointerTy(MF.getDataLayout())); 516 517 // vastart just stores the address of the VarArgsFrameIndex slot into the 518 // memory location argument. 519 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 520 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 521 MachinePointerInfo(SV)); 522 } 523 524 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 525 SelectionDAG &DAG) const { 526 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 527 MachineFunction &MF = DAG.getMachineFunction(); 528 MachineFrameInfo &MFI = MF.getFrameInfo(); 529 MFI.setFrameAddressIsTaken(true); 530 unsigned FrameReg = RI.getFrameRegister(MF); 531 int XLenInBytes = Subtarget.getXLen() / 8; 532 533 EVT VT = Op.getValueType(); 534 SDLoc DL(Op); 535 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 536 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 537 while (Depth--) { 538 int Offset = -(XLenInBytes * 2); 539 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 540 DAG.getIntPtrConstant(Offset, DL)); 541 FrameAddr = 542 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 543 } 544 return FrameAddr; 545 } 546 547 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 548 SelectionDAG &DAG) const { 549 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 550 MachineFunction &MF = DAG.getMachineFunction(); 551 MachineFrameInfo &MFI = MF.getFrameInfo(); 552 MFI.setReturnAddressIsTaken(true); 553 MVT XLenVT = Subtarget.getXLenVT(); 554 int XLenInBytes = Subtarget.getXLen() / 8; 555 556 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 557 return SDValue(); 558 559 EVT VT = Op.getValueType(); 560 SDLoc DL(Op); 561 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 562 if (Depth) { 563 int Off = -XLenInBytes; 564 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 565 SDValue Offset = DAG.getConstant(Off, DL, VT); 566 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 567 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 568 MachinePointerInfo()); 569 } 570 571 // Return the value of the return address register, marking it an implicit 572 // live-in. 573 unsigned Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 574 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 575 } 576 577 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 578 SelectionDAG &DAG) const { 579 SDLoc DL(Op); 580 SDValue Lo = Op.getOperand(0); 581 SDValue Hi = Op.getOperand(1); 582 SDValue Shamt = Op.getOperand(2); 583 EVT VT = Lo.getValueType(); 584 585 // if Shamt-XLEN < 0: // Shamt < XLEN 586 // Lo = Lo << Shamt 587 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 588 // else: 589 // Lo = 0 590 // Hi = Lo << (Shamt-XLEN) 591 592 SDValue Zero = DAG.getConstant(0, DL, VT); 593 SDValue One = DAG.getConstant(1, DL, VT); 594 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 595 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 596 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 597 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 598 599 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 600 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 601 SDValue ShiftRightLo = 602 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 603 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 604 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 605 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 606 607 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 608 609 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 610 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 611 612 SDValue Parts[2] = {Lo, Hi}; 613 return DAG.getMergeValues(Parts, DL); 614 } 615 616 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 617 bool IsSRA) const { 618 SDLoc DL(Op); 619 SDValue Lo = Op.getOperand(0); 620 SDValue Hi = Op.getOperand(1); 621 SDValue Shamt = Op.getOperand(2); 622 EVT VT = Lo.getValueType(); 623 624 // SRA expansion: 625 // if Shamt-XLEN < 0: // Shamt < XLEN 626 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 627 // Hi = Hi >>s Shamt 628 // else: 629 // Lo = Hi >>s (Shamt-XLEN); 630 // Hi = Hi >>s (XLEN-1) 631 // 632 // SRL expansion: 633 // if Shamt-XLEN < 0: // Shamt < XLEN 634 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 635 // Hi = Hi >>u Shamt 636 // else: 637 // Lo = Hi >>u (Shamt-XLEN); 638 // Hi = 0; 639 640 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 641 642 SDValue Zero = DAG.getConstant(0, DL, VT); 643 SDValue One = DAG.getConstant(1, DL, VT); 644 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 645 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 646 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 647 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 648 649 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 650 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 651 SDValue ShiftLeftHi = 652 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 653 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 654 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 655 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 656 SDValue HiFalse = 657 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 658 659 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 660 661 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 662 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 663 664 SDValue Parts[2] = {Lo, Hi}; 665 return DAG.getMergeValues(Parts, DL); 666 } 667 668 // Returns the opcode of the target-specific SDNode that implements the 32-bit 669 // form of the given Opcode. 670 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 671 switch (Opcode) { 672 default: 673 llvm_unreachable("Unexpected opcode"); 674 case ISD::SHL: 675 return RISCVISD::SLLW; 676 case ISD::SRA: 677 return RISCVISD::SRAW; 678 case ISD::SRL: 679 return RISCVISD::SRLW; 680 case ISD::SDIV: 681 return RISCVISD::DIVW; 682 case ISD::UDIV: 683 return RISCVISD::DIVUW; 684 case ISD::UREM: 685 return RISCVISD::REMUW; 686 } 687 } 688 689 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 690 // Because i32 isn't a legal type for RV64, these operations would otherwise 691 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 692 // later one because the fact the operation was originally of type i32 is 693 // lost. 694 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG) { 695 SDLoc DL(N); 696 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 697 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 698 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 699 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 700 // ReplaceNodeResults requires we maintain the same type for the return value. 701 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 702 } 703 704 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 705 SmallVectorImpl<SDValue> &Results, 706 SelectionDAG &DAG) const { 707 SDLoc DL(N); 708 switch (N->getOpcode()) { 709 default: 710 llvm_unreachable("Don't know how to custom type legalize this operation!"); 711 case ISD::SHL: 712 case ISD::SRA: 713 case ISD::SRL: 714 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 715 "Unexpected custom legalisation"); 716 if (N->getOperand(1).getOpcode() == ISD::Constant) 717 return; 718 Results.push_back(customLegalizeToWOp(N, DAG)); 719 break; 720 case ISD::SDIV: 721 case ISD::UDIV: 722 case ISD::UREM: 723 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 724 Subtarget.hasStdExtM() && "Unexpected custom legalisation"); 725 if (N->getOperand(0).getOpcode() == ISD::Constant || 726 N->getOperand(1).getOpcode() == ISD::Constant) 727 return; 728 Results.push_back(customLegalizeToWOp(N, DAG)); 729 break; 730 case ISD::BITCAST: { 731 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 732 Subtarget.hasStdExtF() && "Unexpected custom legalisation"); 733 SDLoc DL(N); 734 SDValue Op0 = N->getOperand(0); 735 if (Op0.getValueType() != MVT::f32) 736 return; 737 SDValue FPConv = 738 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 739 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 740 break; 741 } 742 } 743 } 744 745 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 746 DAGCombinerInfo &DCI) const { 747 SelectionDAG &DAG = DCI.DAG; 748 749 switch (N->getOpcode()) { 750 default: 751 break; 752 case RISCVISD::SplitF64: { 753 SDValue Op0 = N->getOperand(0); 754 // If the input to SplitF64 is just BuildPairF64 then the operation is 755 // redundant. Instead, use BuildPairF64's operands directly. 756 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 757 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 758 759 SDLoc DL(N); 760 761 // It's cheaper to materialise two 32-bit integers than to load a double 762 // from the constant pool and transfer it to integer registers through the 763 // stack. 764 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 765 APInt V = C->getValueAPF().bitcastToAPInt(); 766 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 767 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 768 return DCI.CombineTo(N, Lo, Hi); 769 } 770 771 // This is a target-specific version of a DAGCombine performed in 772 // DAGCombiner::visitBITCAST. It performs the equivalent of: 773 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 774 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 775 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 776 !Op0.getNode()->hasOneUse()) 777 break; 778 SDValue NewSplitF64 = 779 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 780 Op0.getOperand(0)); 781 SDValue Lo = NewSplitF64.getValue(0); 782 SDValue Hi = NewSplitF64.getValue(1); 783 APInt SignBit = APInt::getSignMask(32); 784 if (Op0.getOpcode() == ISD::FNEG) { 785 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 786 DAG.getConstant(SignBit, DL, MVT::i32)); 787 return DCI.CombineTo(N, Lo, NewHi); 788 } 789 assert(Op0.getOpcode() == ISD::FABS); 790 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 791 DAG.getConstant(~SignBit, DL, MVT::i32)); 792 return DCI.CombineTo(N, Lo, NewHi); 793 } 794 case RISCVISD::SLLW: 795 case RISCVISD::SRAW: 796 case RISCVISD::SRLW: { 797 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 798 SDValue LHS = N->getOperand(0); 799 SDValue RHS = N->getOperand(1); 800 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 801 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 802 if ((SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI)) || 803 (SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI))) 804 return SDValue(); 805 break; 806 } 807 case RISCVISD::FMV_X_ANYEXTW_RV64: { 808 SDLoc DL(N); 809 SDValue Op0 = N->getOperand(0); 810 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 811 // conversion is unnecessary and can be replaced with an ANY_EXTEND 812 // of the FMV_W_X_RV64 operand. 813 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 814 SDValue AExtOp = 815 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0.getOperand(0)); 816 return DCI.CombineTo(N, AExtOp); 817 } 818 819 // This is a target-specific version of a DAGCombine performed in 820 // DAGCombiner::visitBITCAST. It performs the equivalent of: 821 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 822 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 823 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 824 !Op0.getNode()->hasOneUse()) 825 break; 826 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 827 Op0.getOperand(0)); 828 APInt SignBit = APInt::getSignMask(32).sext(64); 829 if (Op0.getOpcode() == ISD::FNEG) { 830 return DCI.CombineTo(N, 831 DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 832 DAG.getConstant(SignBit, DL, MVT::i64))); 833 } 834 assert(Op0.getOpcode() == ISD::FABS); 835 return DCI.CombineTo(N, 836 DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 837 DAG.getConstant(~SignBit, DL, MVT::i64))); 838 } 839 } 840 841 return SDValue(); 842 } 843 844 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 845 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 846 unsigned Depth) const { 847 switch (Op.getOpcode()) { 848 default: 849 break; 850 case RISCVISD::SLLW: 851 case RISCVISD::SRAW: 852 case RISCVISD::SRLW: 853 case RISCVISD::DIVW: 854 case RISCVISD::DIVUW: 855 case RISCVISD::REMUW: 856 // TODO: As the result is sign-extended, this is conservatively correct. A 857 // more precise answer could be calculated for SRAW depending on known 858 // bits in the shift amount. 859 return 33; 860 } 861 862 return 1; 863 } 864 865 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 866 MachineBasicBlock *BB) { 867 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 868 869 MachineFunction &MF = *BB->getParent(); 870 DebugLoc DL = MI.getDebugLoc(); 871 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 872 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 873 unsigned LoReg = MI.getOperand(0).getReg(); 874 unsigned HiReg = MI.getOperand(1).getReg(); 875 unsigned SrcReg = MI.getOperand(2).getReg(); 876 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 877 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(); 878 879 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 880 RI); 881 MachineMemOperand *MMO = 882 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 883 MachineMemOperand::MOLoad, 8, 8); 884 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 885 .addFrameIndex(FI) 886 .addImm(0) 887 .addMemOperand(MMO); 888 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 889 .addFrameIndex(FI) 890 .addImm(4) 891 .addMemOperand(MMO); 892 MI.eraseFromParent(); // The pseudo instruction is gone now. 893 return BB; 894 } 895 896 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 897 MachineBasicBlock *BB) { 898 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 899 "Unexpected instruction"); 900 901 MachineFunction &MF = *BB->getParent(); 902 DebugLoc DL = MI.getDebugLoc(); 903 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 904 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 905 unsigned DstReg = MI.getOperand(0).getReg(); 906 unsigned LoReg = MI.getOperand(1).getReg(); 907 unsigned HiReg = MI.getOperand(2).getReg(); 908 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 909 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(); 910 911 MachineMemOperand *MMO = 912 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 913 MachineMemOperand::MOStore, 8, 8); 914 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 915 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 916 .addFrameIndex(FI) 917 .addImm(0) 918 .addMemOperand(MMO); 919 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 920 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 921 .addFrameIndex(FI) 922 .addImm(4) 923 .addMemOperand(MMO); 924 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 925 MI.eraseFromParent(); // The pseudo instruction is gone now. 926 return BB; 927 } 928 929 static bool isSelectPseudo(MachineInstr &MI) { 930 switch (MI.getOpcode()) { 931 default: 932 return false; 933 case RISCV::Select_GPR_Using_CC_GPR: 934 case RISCV::Select_FPR32_Using_CC_GPR: 935 case RISCV::Select_FPR64_Using_CC_GPR: 936 return true; 937 } 938 } 939 940 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 941 MachineBasicBlock *BB) { 942 // To "insert" Select_* instructions, we actually have to insert the triangle 943 // control-flow pattern. The incoming instructions know the destination vreg 944 // to set, the condition code register to branch on, the true/false values to 945 // select between, and the condcode to use to select the appropriate branch. 946 // 947 // We produce the following control flow: 948 // HeadMBB 949 // | \ 950 // | IfFalseMBB 951 // | / 952 // TailMBB 953 // 954 // When we find a sequence of selects we attempt to optimize their emission 955 // by sharing the control flow. Currently we only handle cases where we have 956 // multiple selects with the exact same condition (same LHS, RHS and CC). 957 // The selects may be interleaved with other instructions if the other 958 // instructions meet some requirements we deem safe: 959 // - They are debug instructions. Otherwise, 960 // - They do not have side-effects, do not access memory and their inputs do 961 // not depend on the results of the select pseudo-instructions. 962 // The TrueV/FalseV operands of the selects cannot depend on the result of 963 // previous selects in the sequence. 964 // These conditions could be further relaxed. See the X86 target for a 965 // related approach and more information. 966 unsigned LHS = MI.getOperand(1).getReg(); 967 unsigned RHS = MI.getOperand(2).getReg(); 968 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 969 970 SmallVector<MachineInstr *, 4> SelectDebugValues; 971 SmallSet<unsigned, 4> SelectDests; 972 SelectDests.insert(MI.getOperand(0).getReg()); 973 974 MachineInstr *LastSelectPseudo = &MI; 975 976 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 977 SequenceMBBI != E; ++SequenceMBBI) { 978 if (SequenceMBBI->isDebugInstr()) 979 continue; 980 else if (isSelectPseudo(*SequenceMBBI)) { 981 if (SequenceMBBI->getOperand(1).getReg() != LHS || 982 SequenceMBBI->getOperand(2).getReg() != RHS || 983 SequenceMBBI->getOperand(3).getImm() != CC || 984 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 985 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 986 break; 987 LastSelectPseudo = &*SequenceMBBI; 988 SequenceMBBI->collectDebugValues(SelectDebugValues); 989 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 990 } else { 991 if (SequenceMBBI->hasUnmodeledSideEffects() || 992 SequenceMBBI->mayLoadOrStore()) 993 break; 994 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 995 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 996 })) 997 break; 998 } 999 } 1000 1001 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 1002 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1003 DebugLoc DL = MI.getDebugLoc(); 1004 MachineFunction::iterator I = ++BB->getIterator(); 1005 1006 MachineBasicBlock *HeadMBB = BB; 1007 MachineFunction *F = BB->getParent(); 1008 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 1009 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 1010 1011 F->insert(I, IfFalseMBB); 1012 F->insert(I, TailMBB); 1013 1014 // Transfer debug instructions associated with the selects to TailMBB. 1015 for (MachineInstr *DebugInstr : SelectDebugValues) { 1016 TailMBB->push_back(DebugInstr->removeFromParent()); 1017 } 1018 1019 // Move all instructions after the sequence to TailMBB. 1020 TailMBB->splice(TailMBB->end(), HeadMBB, 1021 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 1022 // Update machine-CFG edges by transferring all successors of the current 1023 // block to the new block which will contain the Phi nodes for the selects. 1024 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 1025 // Set the successors for HeadMBB. 1026 HeadMBB->addSuccessor(IfFalseMBB); 1027 HeadMBB->addSuccessor(TailMBB); 1028 1029 // Insert appropriate branch. 1030 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 1031 1032 BuildMI(HeadMBB, DL, TII.get(Opcode)) 1033 .addReg(LHS) 1034 .addReg(RHS) 1035 .addMBB(TailMBB); 1036 1037 // IfFalseMBB just falls through to TailMBB. 1038 IfFalseMBB->addSuccessor(TailMBB); 1039 1040 // Create PHIs for all of the select pseudo-instructions. 1041 auto SelectMBBI = MI.getIterator(); 1042 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 1043 auto InsertionPoint = TailMBB->begin(); 1044 while (SelectMBBI != SelectEnd) { 1045 auto Next = std::next(SelectMBBI); 1046 if (isSelectPseudo(*SelectMBBI)) { 1047 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 1048 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 1049 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 1050 .addReg(SelectMBBI->getOperand(4).getReg()) 1051 .addMBB(HeadMBB) 1052 .addReg(SelectMBBI->getOperand(5).getReg()) 1053 .addMBB(IfFalseMBB); 1054 SelectMBBI->eraseFromParent(); 1055 } 1056 SelectMBBI = Next; 1057 } 1058 1059 return TailMBB; 1060 } 1061 1062 MachineBasicBlock * 1063 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 1064 MachineBasicBlock *BB) const { 1065 switch (MI.getOpcode()) { 1066 default: 1067 llvm_unreachable("Unexpected instr type to insert"); 1068 case RISCV::Select_GPR_Using_CC_GPR: 1069 case RISCV::Select_FPR32_Using_CC_GPR: 1070 case RISCV::Select_FPR64_Using_CC_GPR: 1071 return emitSelectPseudo(MI, BB); 1072 case RISCV::BuildPairF64Pseudo: 1073 return emitBuildPairF64Pseudo(MI, BB); 1074 case RISCV::SplitF64Pseudo: 1075 return emitSplitF64Pseudo(MI, BB); 1076 } 1077 } 1078 1079 // Calling Convention Implementation. 1080 // The expectations for frontend ABI lowering vary from target to target. 1081 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 1082 // details, but this is a longer term goal. For now, we simply try to keep the 1083 // role of the frontend as simple and well-defined as possible. The rules can 1084 // be summarised as: 1085 // * Never split up large scalar arguments. We handle them here. 1086 // * If a hardfloat calling convention is being used, and the struct may be 1087 // passed in a pair of registers (fp+fp, int+fp), and both registers are 1088 // available, then pass as two separate arguments. If either the GPRs or FPRs 1089 // are exhausted, then pass according to the rule below. 1090 // * If a struct could never be passed in registers or directly in a stack 1091 // slot (as it is larger than 2*XLEN and the floating point rules don't 1092 // apply), then pass it using a pointer with the byval attribute. 1093 // * If a struct is less than 2*XLEN, then coerce to either a two-element 1094 // word-sized array or a 2*XLEN scalar (depending on alignment). 1095 // * The frontend can determine whether a struct is returned by reference or 1096 // not based on its size and fields. If it will be returned by reference, the 1097 // frontend must modify the prototype so a pointer with the sret annotation is 1098 // passed as the first argument. This is not necessary for large scalar 1099 // returns. 1100 // * Struct return values and varargs should be coerced to structs containing 1101 // register-size fields in the same situations they would be for fixed 1102 // arguments. 1103 1104 static const MCPhysReg ArgGPRs[] = { 1105 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 1106 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 1107 }; 1108 static const MCPhysReg ArgFPR32s[] = { 1109 RISCV::F10_32, RISCV::F11_32, RISCV::F12_32, RISCV::F13_32, 1110 RISCV::F14_32, RISCV::F15_32, RISCV::F16_32, RISCV::F17_32 1111 }; 1112 static const MCPhysReg ArgFPR64s[] = { 1113 RISCV::F10_64, RISCV::F11_64, RISCV::F12_64, RISCV::F13_64, 1114 RISCV::F14_64, RISCV::F15_64, RISCV::F16_64, RISCV::F17_64 1115 }; 1116 1117 // Pass a 2*XLEN argument that has been split into two XLEN values through 1118 // registers or the stack as necessary. 1119 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 1120 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 1121 MVT ValVT2, MVT LocVT2, 1122 ISD::ArgFlagsTy ArgFlags2) { 1123 unsigned XLenInBytes = XLen / 8; 1124 if (unsigned Reg = State.AllocateReg(ArgGPRs)) { 1125 // At least one half can be passed via register. 1126 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 1127 VA1.getLocVT(), CCValAssign::Full)); 1128 } else { 1129 // Both halves must be passed on the stack, with proper alignment. 1130 unsigned StackAlign = std::max(XLenInBytes, ArgFlags1.getOrigAlign()); 1131 State.addLoc( 1132 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 1133 State.AllocateStack(XLenInBytes, StackAlign), 1134 VA1.getLocVT(), CCValAssign::Full)); 1135 State.addLoc(CCValAssign::getMem( 1136 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2, 1137 CCValAssign::Full)); 1138 return false; 1139 } 1140 1141 if (unsigned Reg = State.AllocateReg(ArgGPRs)) { 1142 // The second half can also be passed via register. 1143 State.addLoc( 1144 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 1145 } else { 1146 // The second half is passed via the stack, without additional alignment. 1147 State.addLoc(CCValAssign::getMem( 1148 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2, 1149 CCValAssign::Full)); 1150 } 1151 1152 return false; 1153 } 1154 1155 // Implements the RISC-V calling convention. Returns true upon failure. 1156 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 1157 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 1158 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 1159 bool IsRet, Type *OrigTy) { 1160 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 1161 assert(XLen == 32 || XLen == 64); 1162 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 1163 1164 // Any return value split in to more than two values can't be returned 1165 // directly. 1166 if (IsRet && ValNo > 1) 1167 return true; 1168 1169 // UseGPRForF32 if targeting one of the soft-float ABIs, if passing a 1170 // variadic argument, or if no F32 argument registers are available. 1171 bool UseGPRForF32 = true; 1172 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 1173 // variadic argument, or if no F64 argument registers are available. 1174 bool UseGPRForF64 = true; 1175 1176 switch (ABI) { 1177 default: 1178 llvm_unreachable("Unexpected ABI"); 1179 case RISCVABI::ABI_ILP32: 1180 case RISCVABI::ABI_LP64: 1181 break; 1182 case RISCVABI::ABI_ILP32F: 1183 case RISCVABI::ABI_LP64F: 1184 UseGPRForF32 = !IsFixed; 1185 break; 1186 case RISCVABI::ABI_ILP32D: 1187 case RISCVABI::ABI_LP64D: 1188 UseGPRForF32 = !IsFixed; 1189 UseGPRForF64 = !IsFixed; 1190 break; 1191 } 1192 1193 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) 1194 UseGPRForF32 = true; 1195 if (State.getFirstUnallocated(ArgFPR64s) == array_lengthof(ArgFPR64s)) 1196 UseGPRForF64 = true; 1197 1198 // From this point on, rely on UseGPRForF32, UseGPRForF64 and similar local 1199 // variables rather than directly checking against the target ABI. 1200 1201 if (UseGPRForF32 && ValVT == MVT::f32) { 1202 LocVT = XLenVT; 1203 LocInfo = CCValAssign::BCvt; 1204 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 1205 LocVT = MVT::i64; 1206 LocInfo = CCValAssign::BCvt; 1207 } 1208 1209 // If this is a variadic argument, the RISC-V calling convention requires 1210 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 1211 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 1212 // be used regardless of whether the original argument was split during 1213 // legalisation or not. The argument will not be passed by registers if the 1214 // original type is larger than 2*XLEN, so the register alignment rule does 1215 // not apply. 1216 unsigned TwoXLenInBytes = (2 * XLen) / 8; 1217 if (!IsFixed && ArgFlags.getOrigAlign() == TwoXLenInBytes && 1218 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 1219 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 1220 // Skip 'odd' register if necessary. 1221 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 1222 State.AllocateReg(ArgGPRs); 1223 } 1224 1225 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 1226 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 1227 State.getPendingArgFlags(); 1228 1229 assert(PendingLocs.size() == PendingArgFlags.size() && 1230 "PendingLocs and PendingArgFlags out of sync"); 1231 1232 // Handle passing f64 on RV32D with a soft float ABI or when floating point 1233 // registers are exhausted. 1234 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 1235 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 1236 "Can't lower f64 if it is split"); 1237 // Depending on available argument GPRS, f64 may be passed in a pair of 1238 // GPRs, split between a GPR and the stack, or passed completely on the 1239 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 1240 // cases. 1241 unsigned Reg = State.AllocateReg(ArgGPRs); 1242 LocVT = MVT::i32; 1243 if (!Reg) { 1244 unsigned StackOffset = State.AllocateStack(8, 8); 1245 State.addLoc( 1246 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 1247 return false; 1248 } 1249 if (!State.AllocateReg(ArgGPRs)) 1250 State.AllocateStack(4, 4); 1251 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1252 return false; 1253 } 1254 1255 // Split arguments might be passed indirectly, so keep track of the pending 1256 // values. 1257 if (ArgFlags.isSplit() || !PendingLocs.empty()) { 1258 LocVT = XLenVT; 1259 LocInfo = CCValAssign::Indirect; 1260 PendingLocs.push_back( 1261 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 1262 PendingArgFlags.push_back(ArgFlags); 1263 if (!ArgFlags.isSplitEnd()) { 1264 return false; 1265 } 1266 } 1267 1268 // If the split argument only had two elements, it should be passed directly 1269 // in registers or on the stack. 1270 if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 1271 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 1272 // Apply the normal calling convention rules to the first half of the 1273 // split argument. 1274 CCValAssign VA = PendingLocs[0]; 1275 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 1276 PendingLocs.clear(); 1277 PendingArgFlags.clear(); 1278 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 1279 ArgFlags); 1280 } 1281 1282 // Allocate to a register if possible, or else a stack slot. 1283 unsigned Reg; 1284 if (ValVT == MVT::f32 && !UseGPRForF32) 1285 Reg = State.AllocateReg(ArgFPR32s, ArgFPR64s); 1286 else if (ValVT == MVT::f64 && !UseGPRForF64) 1287 Reg = State.AllocateReg(ArgFPR64s, ArgFPR32s); 1288 else 1289 Reg = State.AllocateReg(ArgGPRs); 1290 unsigned StackOffset = Reg ? 0 : State.AllocateStack(XLen / 8, XLen / 8); 1291 1292 // If we reach this point and PendingLocs is non-empty, we must be at the 1293 // end of a split argument that must be passed indirectly. 1294 if (!PendingLocs.empty()) { 1295 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 1296 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 1297 1298 for (auto &It : PendingLocs) { 1299 if (Reg) 1300 It.convertToReg(Reg); 1301 else 1302 It.convertToMem(StackOffset); 1303 State.addLoc(It); 1304 } 1305 PendingLocs.clear(); 1306 PendingArgFlags.clear(); 1307 return false; 1308 } 1309 1310 assert((!UseGPRForF32 || !UseGPRForF64 || LocVT == XLenVT) && 1311 "Expected an XLenVT at this stage"); 1312 1313 if (Reg) { 1314 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1315 return false; 1316 } 1317 1318 // When an f32 or f64 is passed on the stack, no bit-conversion is needed. 1319 if (ValVT == MVT::f32 || ValVT == MVT::f64) { 1320 LocVT = ValVT; 1321 LocInfo = CCValAssign::Full; 1322 } 1323 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 1324 return false; 1325 } 1326 1327 void RISCVTargetLowering::analyzeInputArgs( 1328 MachineFunction &MF, CCState &CCInfo, 1329 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 1330 unsigned NumArgs = Ins.size(); 1331 FunctionType *FType = MF.getFunction().getFunctionType(); 1332 1333 for (unsigned i = 0; i != NumArgs; ++i) { 1334 MVT ArgVT = Ins[i].VT; 1335 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 1336 1337 Type *ArgTy = nullptr; 1338 if (IsRet) 1339 ArgTy = FType->getReturnType(); 1340 else if (Ins[i].isOrigArg()) 1341 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 1342 1343 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 1344 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 1345 ArgFlags, CCInfo, /*IsRet=*/true, IsRet, ArgTy)) { 1346 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 1347 << EVT(ArgVT).getEVTString() << '\n'); 1348 llvm_unreachable(nullptr); 1349 } 1350 } 1351 } 1352 1353 void RISCVTargetLowering::analyzeOutputArgs( 1354 MachineFunction &MF, CCState &CCInfo, 1355 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 1356 CallLoweringInfo *CLI) const { 1357 unsigned NumArgs = Outs.size(); 1358 1359 for (unsigned i = 0; i != NumArgs; i++) { 1360 MVT ArgVT = Outs[i].VT; 1361 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 1362 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 1363 1364 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 1365 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 1366 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) { 1367 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 1368 << EVT(ArgVT).getEVTString() << "\n"); 1369 llvm_unreachable(nullptr); 1370 } 1371 } 1372 } 1373 1374 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 1375 // values. 1376 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 1377 const CCValAssign &VA, const SDLoc &DL) { 1378 switch (VA.getLocInfo()) { 1379 default: 1380 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1381 case CCValAssign::Full: 1382 break; 1383 case CCValAssign::BCvt: 1384 if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) { 1385 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 1386 break; 1387 } 1388 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 1389 break; 1390 } 1391 return Val; 1392 } 1393 1394 // The caller is responsible for loading the full value if the argument is 1395 // passed with CCValAssign::Indirect. 1396 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 1397 const CCValAssign &VA, const SDLoc &DL) { 1398 MachineFunction &MF = DAG.getMachineFunction(); 1399 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1400 EVT LocVT = VA.getLocVT(); 1401 SDValue Val; 1402 const TargetRegisterClass *RC; 1403 1404 switch (LocVT.getSimpleVT().SimpleTy) { 1405 default: 1406 llvm_unreachable("Unexpected register type"); 1407 case MVT::i32: 1408 case MVT::i64: 1409 RC = &RISCV::GPRRegClass; 1410 break; 1411 case MVT::f32: 1412 RC = &RISCV::FPR32RegClass; 1413 break; 1414 case MVT::f64: 1415 RC = &RISCV::FPR64RegClass; 1416 break; 1417 } 1418 1419 unsigned VReg = RegInfo.createVirtualRegister(RC); 1420 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1421 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1422 1423 if (VA.getLocInfo() == CCValAssign::Indirect) 1424 return Val; 1425 1426 return convertLocVTToValVT(DAG, Val, VA, DL); 1427 } 1428 1429 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 1430 const CCValAssign &VA, const SDLoc &DL) { 1431 EVT LocVT = VA.getLocVT(); 1432 1433 switch (VA.getLocInfo()) { 1434 default: 1435 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1436 case CCValAssign::Full: 1437 break; 1438 case CCValAssign::BCvt: 1439 if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) { 1440 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 1441 break; 1442 } 1443 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 1444 break; 1445 } 1446 return Val; 1447 } 1448 1449 // The caller is responsible for loading the full value if the argument is 1450 // passed with CCValAssign::Indirect. 1451 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 1452 const CCValAssign &VA, const SDLoc &DL) { 1453 MachineFunction &MF = DAG.getMachineFunction(); 1454 MachineFrameInfo &MFI = MF.getFrameInfo(); 1455 EVT LocVT = VA.getLocVT(); 1456 EVT ValVT = VA.getValVT(); 1457 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 1458 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 1459 VA.getLocMemOffset(), /*Immutable=*/true); 1460 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1461 SDValue Val; 1462 1463 ISD::LoadExtType ExtType; 1464 switch (VA.getLocInfo()) { 1465 default: 1466 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1467 case CCValAssign::Full: 1468 case CCValAssign::Indirect: 1469 case CCValAssign::BCvt: 1470 ExtType = ISD::NON_EXTLOAD; 1471 break; 1472 } 1473 Val = DAG.getExtLoad( 1474 ExtType, DL, LocVT, Chain, FIN, 1475 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 1476 return Val; 1477 } 1478 1479 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 1480 const CCValAssign &VA, const SDLoc &DL) { 1481 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 1482 "Unexpected VA"); 1483 MachineFunction &MF = DAG.getMachineFunction(); 1484 MachineFrameInfo &MFI = MF.getFrameInfo(); 1485 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1486 1487 if (VA.isMemLoc()) { 1488 // f64 is passed on the stack. 1489 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 1490 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1491 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 1492 MachinePointerInfo::getFixedStack(MF, FI)); 1493 } 1494 1495 assert(VA.isRegLoc() && "Expected register VA assignment"); 1496 1497 unsigned LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1498 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 1499 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 1500 SDValue Hi; 1501 if (VA.getLocReg() == RISCV::X17) { 1502 // Second half of f64 is passed on the stack. 1503 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 1504 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1505 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 1506 MachinePointerInfo::getFixedStack(MF, FI)); 1507 } else { 1508 // Second half of f64 is passed in another GPR. 1509 unsigned HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1510 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 1511 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 1512 } 1513 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 1514 } 1515 1516 // Transform physical registers into virtual registers. 1517 SDValue RISCVTargetLowering::LowerFormalArguments( 1518 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1519 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1520 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1521 1522 switch (CallConv) { 1523 default: 1524 report_fatal_error("Unsupported calling convention"); 1525 case CallingConv::C: 1526 case CallingConv::Fast: 1527 break; 1528 } 1529 1530 MachineFunction &MF = DAG.getMachineFunction(); 1531 1532 const Function &Func = MF.getFunction(); 1533 if (Func.hasFnAttribute("interrupt")) { 1534 if (!Func.arg_empty()) 1535 report_fatal_error( 1536 "Functions with the interrupt attribute cannot have arguments!"); 1537 1538 StringRef Kind = 1539 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 1540 1541 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 1542 report_fatal_error( 1543 "Function interrupt attribute argument not supported!"); 1544 } 1545 1546 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1547 MVT XLenVT = Subtarget.getXLenVT(); 1548 unsigned XLenInBytes = Subtarget.getXLen() / 8; 1549 // Used with vargs to acumulate store chains. 1550 std::vector<SDValue> OutChains; 1551 1552 // Assign locations to all of the incoming arguments. 1553 SmallVector<CCValAssign, 16> ArgLocs; 1554 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1555 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 1556 1557 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1558 CCValAssign &VA = ArgLocs[i]; 1559 SDValue ArgValue; 1560 // Passing f64 on RV32D with a soft float ABI must be handled as a special 1561 // case. 1562 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 1563 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 1564 else if (VA.isRegLoc()) 1565 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL); 1566 else 1567 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 1568 1569 if (VA.getLocInfo() == CCValAssign::Indirect) { 1570 // If the original argument was split and passed by reference (e.g. i128 1571 // on RV32), we need to load all parts of it here (using the same 1572 // address). 1573 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1574 MachinePointerInfo())); 1575 unsigned ArgIndex = Ins[i].OrigArgIndex; 1576 assert(Ins[i].PartOffset == 0); 1577 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 1578 CCValAssign &PartVA = ArgLocs[i + 1]; 1579 unsigned PartOffset = Ins[i + 1].PartOffset; 1580 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1581 DAG.getIntPtrConstant(PartOffset, DL)); 1582 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1583 MachinePointerInfo())); 1584 ++i; 1585 } 1586 continue; 1587 } 1588 InVals.push_back(ArgValue); 1589 } 1590 1591 if (IsVarArg) { 1592 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 1593 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 1594 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 1595 MachineFrameInfo &MFI = MF.getFrameInfo(); 1596 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1597 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 1598 1599 // Offset of the first variable argument from stack pointer, and size of 1600 // the vararg save area. For now, the varargs save area is either zero or 1601 // large enough to hold a0-a7. 1602 int VaArgOffset, VarArgsSaveSize; 1603 1604 // If all registers are allocated, then all varargs must be passed on the 1605 // stack and we don't need to save any argregs. 1606 if (ArgRegs.size() == Idx) { 1607 VaArgOffset = CCInfo.getNextStackOffset(); 1608 VarArgsSaveSize = 0; 1609 } else { 1610 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 1611 VaArgOffset = -VarArgsSaveSize; 1612 } 1613 1614 // Record the frame index of the first variable argument 1615 // which is a value necessary to VASTART. 1616 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 1617 RVFI->setVarArgsFrameIndex(FI); 1618 1619 // If saving an odd number of registers then create an extra stack slot to 1620 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 1621 // offsets to even-numbered registered remain 2*XLEN-aligned. 1622 if (Idx % 2) { 1623 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, 1624 true); 1625 VarArgsSaveSize += XLenInBytes; 1626 } 1627 1628 // Copy the integer registers that may have been used for passing varargs 1629 // to the vararg save area. 1630 for (unsigned I = Idx; I < ArgRegs.size(); 1631 ++I, VaArgOffset += XLenInBytes) { 1632 const unsigned Reg = RegInfo.createVirtualRegister(RC); 1633 RegInfo.addLiveIn(ArgRegs[I], Reg); 1634 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 1635 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 1636 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1637 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 1638 MachinePointerInfo::getFixedStack(MF, FI)); 1639 cast<StoreSDNode>(Store.getNode()) 1640 ->getMemOperand() 1641 ->setValue((Value *)nullptr); 1642 OutChains.push_back(Store); 1643 } 1644 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 1645 } 1646 1647 // All stores are grouped in one node to allow the matching between 1648 // the size of Ins and InVals. This only happens for vararg functions. 1649 if (!OutChains.empty()) { 1650 OutChains.push_back(Chain); 1651 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1652 } 1653 1654 return Chain; 1655 } 1656 1657 /// isEligibleForTailCallOptimization - Check whether the call is eligible 1658 /// for tail call optimization. 1659 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 1660 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 1661 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 1662 const SmallVector<CCValAssign, 16> &ArgLocs) const { 1663 1664 auto &Callee = CLI.Callee; 1665 auto CalleeCC = CLI.CallConv; 1666 auto IsVarArg = CLI.IsVarArg; 1667 auto &Outs = CLI.Outs; 1668 auto &Caller = MF.getFunction(); 1669 auto CallerCC = Caller.getCallingConv(); 1670 1671 // Do not tail call opt functions with "disable-tail-calls" attribute. 1672 if (Caller.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 1673 return false; 1674 1675 // Exception-handling functions need a special set of instructions to 1676 // indicate a return to the hardware. Tail-calling another function would 1677 // probably break this. 1678 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 1679 // should be expanded as new function attributes are introduced. 1680 if (Caller.hasFnAttribute("interrupt")) 1681 return false; 1682 1683 // Do not tail call opt functions with varargs. 1684 if (IsVarArg) 1685 return false; 1686 1687 // Do not tail call opt if the stack is used to pass parameters. 1688 if (CCInfo.getNextStackOffset() != 0) 1689 return false; 1690 1691 // Do not tail call opt if any parameters need to be passed indirectly. 1692 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 1693 // passed indirectly. So the address of the value will be passed in a 1694 // register, or if not available, then the address is put on the stack. In 1695 // order to pass indirectly, space on the stack often needs to be allocated 1696 // in order to store the value. In this case the CCInfo.getNextStackOffset() 1697 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 1698 // are passed CCValAssign::Indirect. 1699 for (auto &VA : ArgLocs) 1700 if (VA.getLocInfo() == CCValAssign::Indirect) 1701 return false; 1702 1703 // Do not tail call opt if either caller or callee uses struct return 1704 // semantics. 1705 auto IsCallerStructRet = Caller.hasStructRetAttr(); 1706 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 1707 if (IsCallerStructRet || IsCalleeStructRet) 1708 return false; 1709 1710 // Externally-defined functions with weak linkage should not be 1711 // tail-called. The behaviour of branch instructions in this situation (as 1712 // used for tail calls) is implementation-defined, so we cannot rely on the 1713 // linker replacing the tail call with a return. 1714 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1715 const GlobalValue *GV = G->getGlobal(); 1716 if (GV->hasExternalWeakLinkage()) 1717 return false; 1718 } 1719 1720 // The callee has to preserve all registers the caller needs to preserve. 1721 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1722 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 1723 if (CalleeCC != CallerCC) { 1724 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 1725 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 1726 return false; 1727 } 1728 1729 // Byval parameters hand the function a pointer directly into the stack area 1730 // we want to reuse during a tail call. Working around this *is* possible 1731 // but less efficient and uglier in LowerCall. 1732 for (auto &Arg : Outs) 1733 if (Arg.Flags.isByVal()) 1734 return false; 1735 1736 return true; 1737 } 1738 1739 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 1740 // and output parameter nodes. 1741 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 1742 SmallVectorImpl<SDValue> &InVals) const { 1743 SelectionDAG &DAG = CLI.DAG; 1744 SDLoc &DL = CLI.DL; 1745 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1746 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1747 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1748 SDValue Chain = CLI.Chain; 1749 SDValue Callee = CLI.Callee; 1750 bool &IsTailCall = CLI.IsTailCall; 1751 CallingConv::ID CallConv = CLI.CallConv; 1752 bool IsVarArg = CLI.IsVarArg; 1753 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1754 MVT XLenVT = Subtarget.getXLenVT(); 1755 1756 MachineFunction &MF = DAG.getMachineFunction(); 1757 1758 // Analyze the operands of the call, assigning locations to each operand. 1759 SmallVector<CCValAssign, 16> ArgLocs; 1760 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1761 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 1762 1763 // Check if it's really possible to do a tail call. 1764 if (IsTailCall) 1765 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 1766 1767 if (IsTailCall) 1768 ++NumTailCalls; 1769 else if (CLI.CS && CLI.CS.isMustTailCall()) 1770 report_fatal_error("failed to perform tail call elimination on a call " 1771 "site marked musttail"); 1772 1773 // Get a count of how many bytes are to be pushed on the stack. 1774 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1775 1776 // Create local copies for byval args 1777 SmallVector<SDValue, 8> ByValArgs; 1778 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 1779 ISD::ArgFlagsTy Flags = Outs[i].Flags; 1780 if (!Flags.isByVal()) 1781 continue; 1782 1783 SDValue Arg = OutVals[i]; 1784 unsigned Size = Flags.getByValSize(); 1785 unsigned Align = Flags.getByValAlign(); 1786 1787 int FI = MF.getFrameInfo().CreateStackObject(Size, Align, /*isSS=*/false); 1788 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1789 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 1790 1791 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align, 1792 /*IsVolatile=*/false, 1793 /*AlwaysInline=*/false, 1794 IsTailCall, MachinePointerInfo(), 1795 MachinePointerInfo()); 1796 ByValArgs.push_back(FIPtr); 1797 } 1798 1799 if (!IsTailCall) 1800 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 1801 1802 // Copy argument values to their designated locations. 1803 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 1804 SmallVector<SDValue, 8> MemOpChains; 1805 SDValue StackPtr; 1806 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 1807 CCValAssign &VA = ArgLocs[i]; 1808 SDValue ArgValue = OutVals[i]; 1809 ISD::ArgFlagsTy Flags = Outs[i].Flags; 1810 1811 // Handle passing f64 on RV32D with a soft float ABI as a special case. 1812 bool IsF64OnRV32DSoftABI = 1813 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 1814 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 1815 SDValue SplitF64 = DAG.getNode( 1816 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 1817 SDValue Lo = SplitF64.getValue(0); 1818 SDValue Hi = SplitF64.getValue(1); 1819 1820 unsigned RegLo = VA.getLocReg(); 1821 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 1822 1823 if (RegLo == RISCV::X17) { 1824 // Second half of f64 is passed on the stack. 1825 // Work out the address of the stack slot. 1826 if (!StackPtr.getNode()) 1827 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 1828 // Emit the store. 1829 MemOpChains.push_back( 1830 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 1831 } else { 1832 // Second half of f64 is passed in another GPR. 1833 unsigned RegHigh = RegLo + 1; 1834 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 1835 } 1836 continue; 1837 } 1838 1839 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 1840 // as any other MemLoc. 1841 1842 // Promote the value if needed. 1843 // For now, only handle fully promoted and indirect arguments. 1844 if (VA.getLocInfo() == CCValAssign::Indirect) { 1845 // Store the argument in a stack slot and pass its address. 1846 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); 1847 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1848 MemOpChains.push_back( 1849 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1850 MachinePointerInfo::getFixedStack(MF, FI))); 1851 // If the original argument was split (e.g. i128), we need 1852 // to store all parts of it here (and pass just one address). 1853 unsigned ArgIndex = Outs[i].OrigArgIndex; 1854 assert(Outs[i].PartOffset == 0); 1855 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 1856 SDValue PartValue = OutVals[i + 1]; 1857 unsigned PartOffset = Outs[i + 1].PartOffset; 1858 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1859 DAG.getIntPtrConstant(PartOffset, DL)); 1860 MemOpChains.push_back( 1861 DAG.getStore(Chain, DL, PartValue, Address, 1862 MachinePointerInfo::getFixedStack(MF, FI))); 1863 ++i; 1864 } 1865 ArgValue = SpillSlot; 1866 } else { 1867 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL); 1868 } 1869 1870 // Use local copy if it is a byval arg. 1871 if (Flags.isByVal()) 1872 ArgValue = ByValArgs[j++]; 1873 1874 if (VA.isRegLoc()) { 1875 // Queue up the argument copies and emit them at the end. 1876 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1877 } else { 1878 assert(VA.isMemLoc() && "Argument not register or memory"); 1879 assert(!IsTailCall && "Tail call not allowed if stack is used " 1880 "for passing parameters"); 1881 1882 // Work out the address of the stack slot. 1883 if (!StackPtr.getNode()) 1884 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 1885 SDValue Address = 1886 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1887 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 1888 1889 // Emit the store. 1890 MemOpChains.push_back( 1891 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1892 } 1893 } 1894 1895 // Join the stores, which are independent of one another. 1896 if (!MemOpChains.empty()) 1897 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1898 1899 SDValue Glue; 1900 1901 // Build a sequence of copy-to-reg nodes, chained and glued together. 1902 for (auto &Reg : RegsToPass) { 1903 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 1904 Glue = Chain.getValue(1); 1905 } 1906 1907 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 1908 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 1909 // split it and then direct call can be matched by PseudoCALL. 1910 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 1911 Callee = DAG.getTargetGlobalAddress(S->getGlobal(), DL, PtrVT, 0, 1912 RISCVII::MO_CALL); 1913 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1914 Callee = 1915 DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, RISCVII::MO_CALL); 1916 } 1917 1918 // The first call operand is the chain and the second is the target address. 1919 SmallVector<SDValue, 8> Ops; 1920 Ops.push_back(Chain); 1921 Ops.push_back(Callee); 1922 1923 // Add argument registers to the end of the list so that they are 1924 // known live into the call. 1925 for (auto &Reg : RegsToPass) 1926 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 1927 1928 if (!IsTailCall) { 1929 // Add a register mask operand representing the call-preserved registers. 1930 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1931 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1932 assert(Mask && "Missing call preserved mask for calling convention"); 1933 Ops.push_back(DAG.getRegisterMask(Mask)); 1934 } 1935 1936 // Glue the call to the argument copies, if any. 1937 if (Glue.getNode()) 1938 Ops.push_back(Glue); 1939 1940 // Emit the call. 1941 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1942 1943 if (IsTailCall) { 1944 MF.getFrameInfo().setHasTailCall(); 1945 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 1946 } 1947 1948 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 1949 Glue = Chain.getValue(1); 1950 1951 // Mark the end of the call, which is glued to the call itself. 1952 Chain = DAG.getCALLSEQ_END(Chain, 1953 DAG.getConstant(NumBytes, DL, PtrVT, true), 1954 DAG.getConstant(0, DL, PtrVT, true), 1955 Glue, DL); 1956 Glue = Chain.getValue(1); 1957 1958 // Assign locations to each value returned by this call. 1959 SmallVector<CCValAssign, 16> RVLocs; 1960 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 1961 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 1962 1963 // Copy all of the result registers out of their specified physreg. 1964 for (auto &VA : RVLocs) { 1965 // Copy the value out 1966 SDValue RetValue = 1967 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 1968 // Glue the RetValue to the end of the call sequence 1969 Chain = RetValue.getValue(1); 1970 Glue = RetValue.getValue(2); 1971 1972 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 1973 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 1974 SDValue RetValue2 = 1975 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 1976 Chain = RetValue2.getValue(1); 1977 Glue = RetValue2.getValue(2); 1978 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 1979 RetValue2); 1980 } 1981 1982 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL); 1983 1984 InVals.push_back(RetValue); 1985 } 1986 1987 return Chain; 1988 } 1989 1990 bool RISCVTargetLowering::CanLowerReturn( 1991 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 1992 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 1993 SmallVector<CCValAssign, 16> RVLocs; 1994 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 1995 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 1996 MVT VT = Outs[i].VT; 1997 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 1998 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 1999 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 2000 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr)) 2001 return false; 2002 } 2003 return true; 2004 } 2005 2006 SDValue 2007 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 2008 bool IsVarArg, 2009 const SmallVectorImpl<ISD::OutputArg> &Outs, 2010 const SmallVectorImpl<SDValue> &OutVals, 2011 const SDLoc &DL, SelectionDAG &DAG) const { 2012 // Stores the assignment of the return value to a location. 2013 SmallVector<CCValAssign, 16> RVLocs; 2014 2015 // Info about the registers and stack slot. 2016 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 2017 *DAG.getContext()); 2018 2019 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 2020 nullptr); 2021 2022 SDValue Glue; 2023 SmallVector<SDValue, 4> RetOps(1, Chain); 2024 2025 // Copy the result values into the output registers. 2026 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 2027 SDValue Val = OutVals[i]; 2028 CCValAssign &VA = RVLocs[i]; 2029 assert(VA.isRegLoc() && "Can only return in registers!"); 2030 2031 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 2032 // Handle returning f64 on RV32D with a soft float ABI. 2033 assert(VA.isRegLoc() && "Expected return via registers"); 2034 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 2035 DAG.getVTList(MVT::i32, MVT::i32), Val); 2036 SDValue Lo = SplitF64.getValue(0); 2037 SDValue Hi = SplitF64.getValue(1); 2038 unsigned RegLo = VA.getLocReg(); 2039 unsigned RegHi = RegLo + 1; 2040 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 2041 Glue = Chain.getValue(1); 2042 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 2043 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 2044 Glue = Chain.getValue(1); 2045 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 2046 } else { 2047 // Handle a 'normal' return. 2048 Val = convertValVTToLocVT(DAG, Val, VA, DL); 2049 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 2050 2051 // Guarantee that all emitted copies are stuck together. 2052 Glue = Chain.getValue(1); 2053 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2054 } 2055 } 2056 2057 RetOps[0] = Chain; // Update chain. 2058 2059 // Add the glue node if we have it. 2060 if (Glue.getNode()) { 2061 RetOps.push_back(Glue); 2062 } 2063 2064 // Interrupt service routines use different return instructions. 2065 const Function &Func = DAG.getMachineFunction().getFunction(); 2066 if (Func.hasFnAttribute("interrupt")) { 2067 if (!Func.getReturnType()->isVoidTy()) 2068 report_fatal_error( 2069 "Functions with the interrupt attribute must have void return type!"); 2070 2071 MachineFunction &MF = DAG.getMachineFunction(); 2072 StringRef Kind = 2073 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 2074 2075 unsigned RetOpc; 2076 if (Kind == "user") 2077 RetOpc = RISCVISD::URET_FLAG; 2078 else if (Kind == "supervisor") 2079 RetOpc = RISCVISD::SRET_FLAG; 2080 else 2081 RetOpc = RISCVISD::MRET_FLAG; 2082 2083 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 2084 } 2085 2086 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 2087 } 2088 2089 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 2090 switch ((RISCVISD::NodeType)Opcode) { 2091 case RISCVISD::FIRST_NUMBER: 2092 break; 2093 case RISCVISD::RET_FLAG: 2094 return "RISCVISD::RET_FLAG"; 2095 case RISCVISD::URET_FLAG: 2096 return "RISCVISD::URET_FLAG"; 2097 case RISCVISD::SRET_FLAG: 2098 return "RISCVISD::SRET_FLAG"; 2099 case RISCVISD::MRET_FLAG: 2100 return "RISCVISD::MRET_FLAG"; 2101 case RISCVISD::CALL: 2102 return "RISCVISD::CALL"; 2103 case RISCVISD::SELECT_CC: 2104 return "RISCVISD::SELECT_CC"; 2105 case RISCVISD::BuildPairF64: 2106 return "RISCVISD::BuildPairF64"; 2107 case RISCVISD::SplitF64: 2108 return "RISCVISD::SplitF64"; 2109 case RISCVISD::TAIL: 2110 return "RISCVISD::TAIL"; 2111 case RISCVISD::SLLW: 2112 return "RISCVISD::SLLW"; 2113 case RISCVISD::SRAW: 2114 return "RISCVISD::SRAW"; 2115 case RISCVISD::SRLW: 2116 return "RISCVISD::SRLW"; 2117 case RISCVISD::DIVW: 2118 return "RISCVISD::DIVW"; 2119 case RISCVISD::DIVUW: 2120 return "RISCVISD::DIVUW"; 2121 case RISCVISD::REMUW: 2122 return "RISCVISD::REMUW"; 2123 case RISCVISD::FMV_W_X_RV64: 2124 return "RISCVISD::FMV_W_X_RV64"; 2125 case RISCVISD::FMV_X_ANYEXTW_RV64: 2126 return "RISCVISD::FMV_X_ANYEXTW_RV64"; 2127 } 2128 return nullptr; 2129 } 2130 2131 std::pair<unsigned, const TargetRegisterClass *> 2132 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 2133 StringRef Constraint, 2134 MVT VT) const { 2135 // First, see if this is a constraint that directly corresponds to a 2136 // RISCV register class. 2137 if (Constraint.size() == 1) { 2138 switch (Constraint[0]) { 2139 case 'r': 2140 return std::make_pair(0U, &RISCV::GPRRegClass); 2141 default: 2142 break; 2143 } 2144 } 2145 2146 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 2147 } 2148 2149 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 2150 Instruction *Inst, 2151 AtomicOrdering Ord) const { 2152 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 2153 return Builder.CreateFence(Ord); 2154 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 2155 return Builder.CreateFence(AtomicOrdering::Release); 2156 return nullptr; 2157 } 2158 2159 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 2160 Instruction *Inst, 2161 AtomicOrdering Ord) const { 2162 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 2163 return Builder.CreateFence(AtomicOrdering::Acquire); 2164 return nullptr; 2165 } 2166 2167 TargetLowering::AtomicExpansionKind 2168 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 2169 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 2170 // point operations can't be used in an lr/sc sequence without breaking the 2171 // forward-progress guarantee. 2172 if (AI->isFloatingPointOperation()) 2173 return AtomicExpansionKind::CmpXChg; 2174 2175 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 2176 if (Size == 8 || Size == 16) 2177 return AtomicExpansionKind::MaskedIntrinsic; 2178 return AtomicExpansionKind::None; 2179 } 2180 2181 static Intrinsic::ID 2182 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 2183 if (XLen == 32) { 2184 switch (BinOp) { 2185 default: 2186 llvm_unreachable("Unexpected AtomicRMW BinOp"); 2187 case AtomicRMWInst::Xchg: 2188 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 2189 case AtomicRMWInst::Add: 2190 return Intrinsic::riscv_masked_atomicrmw_add_i32; 2191 case AtomicRMWInst::Sub: 2192 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 2193 case AtomicRMWInst::Nand: 2194 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 2195 case AtomicRMWInst::Max: 2196 return Intrinsic::riscv_masked_atomicrmw_max_i32; 2197 case AtomicRMWInst::Min: 2198 return Intrinsic::riscv_masked_atomicrmw_min_i32; 2199 case AtomicRMWInst::UMax: 2200 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 2201 case AtomicRMWInst::UMin: 2202 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 2203 } 2204 } 2205 2206 if (XLen == 64) { 2207 switch (BinOp) { 2208 default: 2209 llvm_unreachable("Unexpected AtomicRMW BinOp"); 2210 case AtomicRMWInst::Xchg: 2211 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 2212 case AtomicRMWInst::Add: 2213 return Intrinsic::riscv_masked_atomicrmw_add_i64; 2214 case AtomicRMWInst::Sub: 2215 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 2216 case AtomicRMWInst::Nand: 2217 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 2218 case AtomicRMWInst::Max: 2219 return Intrinsic::riscv_masked_atomicrmw_max_i64; 2220 case AtomicRMWInst::Min: 2221 return Intrinsic::riscv_masked_atomicrmw_min_i64; 2222 case AtomicRMWInst::UMax: 2223 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 2224 case AtomicRMWInst::UMin: 2225 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 2226 } 2227 } 2228 2229 llvm_unreachable("Unexpected XLen\n"); 2230 } 2231 2232 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 2233 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 2234 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 2235 unsigned XLen = Subtarget.getXLen(); 2236 Value *Ordering = 2237 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 2238 Type *Tys[] = {AlignedAddr->getType()}; 2239 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 2240 AI->getModule(), 2241 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 2242 2243 if (XLen == 64) { 2244 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 2245 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 2246 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 2247 } 2248 2249 Value *Result; 2250 2251 // Must pass the shift amount needed to sign extend the loaded value prior 2252 // to performing a signed comparison for min/max. ShiftAmt is the number of 2253 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 2254 // is the number of bits to left+right shift the value in order to 2255 // sign-extend. 2256 if (AI->getOperation() == AtomicRMWInst::Min || 2257 AI->getOperation() == AtomicRMWInst::Max) { 2258 const DataLayout &DL = AI->getModule()->getDataLayout(); 2259 unsigned ValWidth = 2260 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 2261 Value *SextShamt = 2262 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 2263 Result = Builder.CreateCall(LrwOpScwLoop, 2264 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 2265 } else { 2266 Result = 2267 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 2268 } 2269 2270 if (XLen == 64) 2271 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 2272 return Result; 2273 } 2274 2275 TargetLowering::AtomicExpansionKind 2276 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 2277 AtomicCmpXchgInst *CI) const { 2278 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 2279 if (Size == 8 || Size == 16) 2280 return AtomicExpansionKind::MaskedIntrinsic; 2281 return AtomicExpansionKind::None; 2282 } 2283 2284 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 2285 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 2286 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 2287 unsigned XLen = Subtarget.getXLen(); 2288 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 2289 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 2290 if (XLen == 64) { 2291 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 2292 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 2293 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 2294 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 2295 } 2296 Type *Tys[] = {AlignedAddr->getType()}; 2297 Function *MaskedCmpXchg = 2298 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 2299 Value *Result = Builder.CreateCall( 2300 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 2301 if (XLen == 64) 2302 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 2303 return Result; 2304 } 2305