1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/IntrinsicsRISCV.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "riscv-lower" 44 45 STATISTIC(NumTailCalls, "Number of tail calls"); 46 47 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 48 const RISCVSubtarget &STI) 49 : TargetLowering(TM), Subtarget(STI) { 50 51 if (Subtarget.isRV32E()) 52 report_fatal_error("Codegen not yet implemented for RV32E"); 53 54 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 55 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 56 57 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 58 !Subtarget.hasStdExtF()) { 59 errs() << "Hard-float 'f' ABI can't be used for a target that " 60 "doesn't support the F instruction set extension (ignoring " 61 "target-abi)\n"; 62 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 63 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 64 !Subtarget.hasStdExtD()) { 65 errs() << "Hard-float 'd' ABI can't be used for a target that " 66 "doesn't support the D instruction set extension (ignoring " 67 "target-abi)\n"; 68 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 69 } 70 71 switch (ABI) { 72 default: 73 report_fatal_error("Don't know how to lower this ABI"); 74 case RISCVABI::ABI_ILP32: 75 case RISCVABI::ABI_ILP32F: 76 case RISCVABI::ABI_ILP32D: 77 case RISCVABI::ABI_LP64: 78 case RISCVABI::ABI_LP64F: 79 case RISCVABI::ABI_LP64D: 80 break; 81 } 82 83 MVT XLenVT = Subtarget.getXLenVT(); 84 85 // Set up the register classes. 86 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 87 88 if (Subtarget.hasStdExtZfh()) 89 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 90 if (Subtarget.hasStdExtF()) 91 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 92 if (Subtarget.hasStdExtD()) 93 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 94 95 static const MVT::SimpleValueType BoolVecVTs[] = { 96 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 97 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 98 static const MVT::SimpleValueType IntVecVTs[] = { 99 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 100 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 101 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 102 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 103 MVT::nxv4i64, MVT::nxv8i64}; 104 static const MVT::SimpleValueType F16VecVTs[] = { 105 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 106 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 107 static const MVT::SimpleValueType F32VecVTs[] = { 108 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 109 static const MVT::SimpleValueType F64VecVTs[] = { 110 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 111 112 if (Subtarget.hasVInstructions()) { 113 auto addRegClassForRVV = [this](MVT VT) { 114 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 115 assert(Size <= 512 && isPowerOf2_32(Size)); 116 const TargetRegisterClass *RC; 117 if (Size <= 64) 118 RC = &RISCV::VRRegClass; 119 else if (Size == 128) 120 RC = &RISCV::VRM2RegClass; 121 else if (Size == 256) 122 RC = &RISCV::VRM4RegClass; 123 else 124 RC = &RISCV::VRM8RegClass; 125 126 addRegisterClass(VT, RC); 127 }; 128 129 for (MVT VT : BoolVecVTs) 130 addRegClassForRVV(VT); 131 for (MVT VT : IntVecVTs) { 132 if (VT.getVectorElementType() == MVT::i64 && 133 !Subtarget.hasVInstructionsI64()) 134 continue; 135 addRegClassForRVV(VT); 136 } 137 138 if (Subtarget.hasVInstructionsF16()) 139 for (MVT VT : F16VecVTs) 140 addRegClassForRVV(VT); 141 142 if (Subtarget.hasVInstructionsF32()) 143 for (MVT VT : F32VecVTs) 144 addRegClassForRVV(VT); 145 146 if (Subtarget.hasVInstructionsF64()) 147 for (MVT VT : F64VecVTs) 148 addRegClassForRVV(VT); 149 150 if (Subtarget.useRVVForFixedLengthVectors()) { 151 auto addRegClassForFixedVectors = [this](MVT VT) { 152 MVT ContainerVT = getContainerForFixedLengthVector(VT); 153 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 154 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 155 addRegisterClass(VT, TRI.getRegClass(RCID)); 156 }; 157 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 158 if (useRVVForFixedLengthVectorVT(VT)) 159 addRegClassForFixedVectors(VT); 160 161 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 162 if (useRVVForFixedLengthVectorVT(VT)) 163 addRegClassForFixedVectors(VT); 164 } 165 } 166 167 // Compute derived properties from the register classes. 168 computeRegisterProperties(STI.getRegisterInfo()); 169 170 setStackPointerRegisterToSaveRestore(RISCV::X2); 171 172 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 173 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 174 175 // TODO: add all necessary setOperationAction calls. 176 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 177 178 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 179 setOperationAction(ISD::BR_CC, XLenVT, Expand); 180 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 181 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 182 183 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 184 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 185 186 setOperationAction(ISD::VASTART, MVT::Other, Custom); 187 setOperationAction(ISD::VAARG, MVT::Other, Expand); 188 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 189 setOperationAction(ISD::VAEND, MVT::Other, Expand); 190 191 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 192 if (!Subtarget.hasStdExtZbb()) { 193 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 195 } 196 197 if (Subtarget.is64Bit()) { 198 setOperationAction(ISD::ADD, MVT::i32, Custom); 199 setOperationAction(ISD::SUB, MVT::i32, Custom); 200 setOperationAction(ISD::SHL, MVT::i32, Custom); 201 setOperationAction(ISD::SRA, MVT::i32, Custom); 202 setOperationAction(ISD::SRL, MVT::i32, Custom); 203 204 setOperationAction(ISD::UADDO, MVT::i32, Custom); 205 setOperationAction(ISD::USUBO, MVT::i32, Custom); 206 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 207 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 208 } else { 209 setLibcallName(RTLIB::SHL_I128, nullptr); 210 setLibcallName(RTLIB::SRL_I128, nullptr); 211 setLibcallName(RTLIB::SRA_I128, nullptr); 212 setLibcallName(RTLIB::MUL_I128, nullptr); 213 setLibcallName(RTLIB::MULO_I64, nullptr); 214 } 215 216 if (!Subtarget.hasStdExtM()) { 217 setOperationAction(ISD::MUL, XLenVT, Expand); 218 setOperationAction(ISD::MULHS, XLenVT, Expand); 219 setOperationAction(ISD::MULHU, XLenVT, Expand); 220 setOperationAction(ISD::SDIV, XLenVT, Expand); 221 setOperationAction(ISD::UDIV, XLenVT, Expand); 222 setOperationAction(ISD::SREM, XLenVT, Expand); 223 setOperationAction(ISD::UREM, XLenVT, Expand); 224 } else { 225 if (Subtarget.is64Bit()) { 226 setOperationAction(ISD::MUL, MVT::i32, Custom); 227 setOperationAction(ISD::MUL, MVT::i128, Custom); 228 229 setOperationAction(ISD::SDIV, MVT::i8, Custom); 230 setOperationAction(ISD::UDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UREM, MVT::i8, Custom); 232 setOperationAction(ISD::SDIV, MVT::i16, Custom); 233 setOperationAction(ISD::UDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UREM, MVT::i16, Custom); 235 setOperationAction(ISD::SDIV, MVT::i32, Custom); 236 setOperationAction(ISD::UDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UREM, MVT::i32, Custom); 238 } else { 239 setOperationAction(ISD::MUL, MVT::i64, Custom); 240 } 241 } 242 243 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 244 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 246 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 247 248 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 249 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 251 252 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 253 if (Subtarget.is64Bit()) { 254 setOperationAction(ISD::ROTL, MVT::i32, Custom); 255 setOperationAction(ISD::ROTR, MVT::i32, Custom); 256 } 257 } else { 258 setOperationAction(ISD::ROTL, XLenVT, Expand); 259 setOperationAction(ISD::ROTR, XLenVT, Expand); 260 } 261 262 if (Subtarget.hasStdExtZbp()) { 263 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 264 // more combining. 265 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 266 setOperationAction(ISD::BSWAP, XLenVT, Custom); 267 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 268 // BSWAP i8 doesn't exist. 269 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 270 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 271 272 if (Subtarget.is64Bit()) { 273 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 274 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 275 } 276 } else { 277 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 278 // pattern match it directly in isel. 279 setOperationAction(ISD::BSWAP, XLenVT, 280 Subtarget.hasStdExtZbb() ? Legal : Expand); 281 } 282 283 if (Subtarget.hasStdExtZbb()) { 284 setOperationAction(ISD::SMIN, XLenVT, Legal); 285 setOperationAction(ISD::SMAX, XLenVT, Legal); 286 setOperationAction(ISD::UMIN, XLenVT, Legal); 287 setOperationAction(ISD::UMAX, XLenVT, Legal); 288 289 if (Subtarget.is64Bit()) { 290 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 291 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 292 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 293 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 294 } 295 } else { 296 setOperationAction(ISD::CTTZ, XLenVT, Expand); 297 setOperationAction(ISD::CTLZ, XLenVT, Expand); 298 setOperationAction(ISD::CTPOP, XLenVT, Expand); 299 } 300 301 if (Subtarget.hasStdExtZbt()) { 302 setOperationAction(ISD::FSHL, XLenVT, Custom); 303 setOperationAction(ISD::FSHR, XLenVT, Custom); 304 setOperationAction(ISD::SELECT, XLenVT, Legal); 305 306 if (Subtarget.is64Bit()) { 307 setOperationAction(ISD::FSHL, MVT::i32, Custom); 308 setOperationAction(ISD::FSHR, MVT::i32, Custom); 309 } 310 } else { 311 setOperationAction(ISD::SELECT, XLenVT, Custom); 312 } 313 314 static const ISD::CondCode FPCCToExpand[] = { 315 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 316 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 317 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 318 319 static const ISD::NodeType FPOpToExpand[] = { 320 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 321 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 322 323 if (Subtarget.hasStdExtZfh()) 324 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 325 326 if (Subtarget.hasStdExtZfh()) { 327 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 328 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 329 setOperationAction(ISD::LRINT, MVT::f16, Legal); 330 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 331 setOperationAction(ISD::LROUND, MVT::f16, Legal); 332 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 333 for (auto CC : FPCCToExpand) 334 setCondCodeAction(CC, MVT::f16, Expand); 335 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 336 setOperationAction(ISD::SELECT, MVT::f16, Custom); 337 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 338 for (auto Op : FPOpToExpand) 339 setOperationAction(Op, MVT::f16, Expand); 340 } 341 342 if (Subtarget.hasStdExtF()) { 343 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 344 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 345 setOperationAction(ISD::LRINT, MVT::f32, Legal); 346 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 347 setOperationAction(ISD::LROUND, MVT::f32, Legal); 348 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 349 for (auto CC : FPCCToExpand) 350 setCondCodeAction(CC, MVT::f32, Expand); 351 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 352 setOperationAction(ISD::SELECT, MVT::f32, Custom); 353 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 354 for (auto Op : FPOpToExpand) 355 setOperationAction(Op, MVT::f32, Expand); 356 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 357 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 358 } 359 360 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 361 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 362 363 if (Subtarget.hasStdExtD()) { 364 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 365 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 366 setOperationAction(ISD::LRINT, MVT::f64, Legal); 367 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 368 setOperationAction(ISD::LROUND, MVT::f64, Legal); 369 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 370 for (auto CC : FPCCToExpand) 371 setCondCodeAction(CC, MVT::f64, Expand); 372 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 373 setOperationAction(ISD::SELECT, MVT::f64, Custom); 374 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 375 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 376 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 377 for (auto Op : FPOpToExpand) 378 setOperationAction(Op, MVT::f64, Expand); 379 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 380 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 381 } 382 383 if (Subtarget.is64Bit()) { 384 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 385 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 386 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 387 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 388 } 389 390 if (Subtarget.hasStdExtF()) { 391 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 392 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 393 394 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 395 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 396 } 397 398 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 399 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 400 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 401 setOperationAction(ISD::JumpTable, XLenVT, Custom); 402 403 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 404 405 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 406 // Unfortunately this can't be determined just from the ISA naming string. 407 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 408 Subtarget.is64Bit() ? Legal : Custom); 409 410 setOperationAction(ISD::TRAP, MVT::Other, Legal); 411 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 412 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 413 if (Subtarget.is64Bit()) 414 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 415 416 if (Subtarget.hasStdExtA()) { 417 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 418 setMinCmpXchgSizeInBits(32); 419 } else { 420 setMaxAtomicSizeInBitsSupported(0); 421 } 422 423 setBooleanContents(ZeroOrOneBooleanContent); 424 425 if (Subtarget.hasVInstructions()) { 426 setBooleanVectorContents(ZeroOrOneBooleanContent); 427 428 setOperationAction(ISD::VSCALE, XLenVT, Custom); 429 430 // RVV intrinsics may have illegal operands. 431 // We also need to custom legalize vmv.x.s. 432 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 433 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 434 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 435 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 436 if (Subtarget.is64Bit()) { 437 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 438 } else { 439 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 440 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 441 } 442 443 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 444 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 445 446 static const unsigned IntegerVPOps[] = { 447 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 448 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 449 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 450 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 451 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 452 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 453 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN}; 454 455 static const unsigned FloatingPointVPOps[] = { 456 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 457 ISD::VP_FDIV, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 458 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX}; 459 460 if (!Subtarget.is64Bit()) { 461 // We must custom-lower certain vXi64 operations on RV32 due to the vector 462 // element type being illegal. 463 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 464 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 465 466 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 467 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 468 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 469 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 470 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 471 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 472 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 473 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 474 475 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 476 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 477 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 478 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 479 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 480 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 481 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 482 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 483 } 484 485 for (MVT VT : BoolVecVTs) { 486 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 487 488 // Mask VTs are custom-expanded into a series of standard nodes 489 setOperationAction(ISD::TRUNCATE, VT, Custom); 490 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 491 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 492 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 493 494 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 495 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 496 497 setOperationAction(ISD::SELECT, VT, Custom); 498 setOperationAction(ISD::SELECT_CC, VT, Expand); 499 setOperationAction(ISD::VSELECT, VT, Expand); 500 501 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 502 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 503 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 504 505 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 506 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 507 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 508 509 // RVV has native int->float & float->int conversions where the 510 // element type sizes are within one power-of-two of each other. Any 511 // wider distances between type sizes have to be lowered as sequences 512 // which progressively narrow the gap in stages. 513 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 514 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 515 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 516 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 517 518 // Expand all extending loads to types larger than this, and truncating 519 // stores from types larger than this. 520 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 521 setTruncStoreAction(OtherVT, VT, Expand); 522 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 523 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 524 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 525 } 526 } 527 528 for (MVT VT : IntVecVTs) { 529 if (VT.getVectorElementType() == MVT::i64 && 530 !Subtarget.hasVInstructionsI64()) 531 continue; 532 533 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 534 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 535 536 // Vectors implement MULHS/MULHU. 537 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 538 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 539 540 setOperationAction(ISD::SMIN, VT, Legal); 541 setOperationAction(ISD::SMAX, VT, Legal); 542 setOperationAction(ISD::UMIN, VT, Legal); 543 setOperationAction(ISD::UMAX, VT, Legal); 544 545 setOperationAction(ISD::ROTL, VT, Expand); 546 setOperationAction(ISD::ROTR, VT, Expand); 547 548 setOperationAction(ISD::CTTZ, VT, Expand); 549 setOperationAction(ISD::CTLZ, VT, Expand); 550 setOperationAction(ISD::CTPOP, VT, Expand); 551 552 setOperationAction(ISD::BSWAP, VT, Expand); 553 554 // Custom-lower extensions and truncations from/to mask types. 555 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 556 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 557 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 558 559 // RVV has native int->float & float->int conversions where the 560 // element type sizes are within one power-of-two of each other. Any 561 // wider distances between type sizes have to be lowered as sequences 562 // which progressively narrow the gap in stages. 563 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 564 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 565 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 566 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 567 568 setOperationAction(ISD::SADDSAT, VT, Legal); 569 setOperationAction(ISD::UADDSAT, VT, Legal); 570 setOperationAction(ISD::SSUBSAT, VT, Legal); 571 setOperationAction(ISD::USUBSAT, VT, Legal); 572 573 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 574 // nodes which truncate by one power of two at a time. 575 setOperationAction(ISD::TRUNCATE, VT, Custom); 576 577 // Custom-lower insert/extract operations to simplify patterns. 578 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 579 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 580 581 // Custom-lower reduction operations to set up the corresponding custom 582 // nodes' operands. 583 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 584 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 585 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 586 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 587 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 588 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 589 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 590 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 591 592 for (unsigned VPOpc : IntegerVPOps) 593 setOperationAction(VPOpc, VT, Custom); 594 595 setOperationAction(ISD::LOAD, VT, Custom); 596 setOperationAction(ISD::STORE, VT, Custom); 597 598 setOperationAction(ISD::MLOAD, VT, Custom); 599 setOperationAction(ISD::MSTORE, VT, Custom); 600 setOperationAction(ISD::MGATHER, VT, Custom); 601 setOperationAction(ISD::MSCATTER, VT, Custom); 602 603 setOperationAction(ISD::VP_LOAD, VT, Custom); 604 setOperationAction(ISD::VP_STORE, VT, Custom); 605 setOperationAction(ISD::VP_GATHER, VT, Custom); 606 setOperationAction(ISD::VP_SCATTER, VT, Custom); 607 608 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 609 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 610 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 611 612 setOperationAction(ISD::SELECT, VT, Custom); 613 setOperationAction(ISD::SELECT_CC, VT, Expand); 614 615 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 616 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 617 618 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 619 setTruncStoreAction(VT, OtherVT, Expand); 620 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 621 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 622 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 623 } 624 } 625 626 // Expand various CCs to best match the RVV ISA, which natively supports UNE 627 // but no other unordered comparisons, and supports all ordered comparisons 628 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 629 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 630 // and we pattern-match those back to the "original", swapping operands once 631 // more. This way we catch both operations and both "vf" and "fv" forms with 632 // fewer patterns. 633 static const ISD::CondCode VFPCCToExpand[] = { 634 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 635 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 636 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 637 }; 638 639 // Sets common operation actions on RVV floating-point vector types. 640 const auto SetCommonVFPActions = [&](MVT VT) { 641 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 642 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 643 // sizes are within one power-of-two of each other. Therefore conversions 644 // between vXf16 and vXf64 must be lowered as sequences which convert via 645 // vXf32. 646 setOperationAction(ISD::FP_ROUND, VT, Custom); 647 setOperationAction(ISD::FP_EXTEND, VT, Custom); 648 // Custom-lower insert/extract operations to simplify patterns. 649 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 650 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 651 // Expand various condition codes (explained above). 652 for (auto CC : VFPCCToExpand) 653 setCondCodeAction(CC, VT, Expand); 654 655 setOperationAction(ISD::FMINNUM, VT, Legal); 656 setOperationAction(ISD::FMAXNUM, VT, Legal); 657 658 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 659 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 660 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 661 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 662 663 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 664 665 setOperationAction(ISD::LOAD, VT, Custom); 666 setOperationAction(ISD::STORE, VT, Custom); 667 668 setOperationAction(ISD::MLOAD, VT, Custom); 669 setOperationAction(ISD::MSTORE, VT, Custom); 670 setOperationAction(ISD::MGATHER, VT, Custom); 671 setOperationAction(ISD::MSCATTER, VT, Custom); 672 673 setOperationAction(ISD::VP_LOAD, VT, Custom); 674 setOperationAction(ISD::VP_STORE, VT, Custom); 675 setOperationAction(ISD::VP_GATHER, VT, Custom); 676 setOperationAction(ISD::VP_SCATTER, VT, Custom); 677 678 setOperationAction(ISD::SELECT, VT, Custom); 679 setOperationAction(ISD::SELECT_CC, VT, Expand); 680 681 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 682 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 683 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 684 685 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 686 687 for (unsigned VPOpc : FloatingPointVPOps) 688 setOperationAction(VPOpc, VT, Custom); 689 }; 690 691 // Sets common extload/truncstore actions on RVV floating-point vector 692 // types. 693 const auto SetCommonVFPExtLoadTruncStoreActions = 694 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 695 for (auto SmallVT : SmallerVTs) { 696 setTruncStoreAction(VT, SmallVT, Expand); 697 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 698 } 699 }; 700 701 if (Subtarget.hasVInstructionsF16()) 702 for (MVT VT : F16VecVTs) 703 SetCommonVFPActions(VT); 704 705 for (MVT VT : F32VecVTs) { 706 if (Subtarget.hasVInstructionsF32()) 707 SetCommonVFPActions(VT); 708 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 709 } 710 711 for (MVT VT : F64VecVTs) { 712 if (Subtarget.hasVInstructionsF64()) 713 SetCommonVFPActions(VT); 714 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 715 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 716 } 717 718 if (Subtarget.useRVVForFixedLengthVectors()) { 719 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 720 if (!useRVVForFixedLengthVectorVT(VT)) 721 continue; 722 723 // By default everything must be expanded. 724 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 725 setOperationAction(Op, VT, Expand); 726 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 727 setTruncStoreAction(VT, OtherVT, Expand); 728 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 729 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 730 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 731 } 732 733 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 734 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 735 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 736 737 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 738 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 739 740 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 741 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 742 743 setOperationAction(ISD::LOAD, VT, Custom); 744 setOperationAction(ISD::STORE, VT, Custom); 745 746 setOperationAction(ISD::SETCC, VT, Custom); 747 748 setOperationAction(ISD::SELECT, VT, Custom); 749 750 setOperationAction(ISD::TRUNCATE, VT, Custom); 751 752 setOperationAction(ISD::BITCAST, VT, Custom); 753 754 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 755 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 756 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 757 758 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 759 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 760 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 761 762 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 763 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 764 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 765 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 766 767 // Operations below are different for between masks and other vectors. 768 if (VT.getVectorElementType() == MVT::i1) { 769 setOperationAction(ISD::AND, VT, Custom); 770 setOperationAction(ISD::OR, VT, Custom); 771 setOperationAction(ISD::XOR, VT, Custom); 772 continue; 773 } 774 775 // Use SPLAT_VECTOR to prevent type legalization from destroying the 776 // splats when type legalizing i64 scalar on RV32. 777 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 778 // improvements first. 779 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 780 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 781 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 782 } 783 784 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 785 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 786 787 setOperationAction(ISD::MLOAD, VT, Custom); 788 setOperationAction(ISD::MSTORE, VT, Custom); 789 setOperationAction(ISD::MGATHER, VT, Custom); 790 setOperationAction(ISD::MSCATTER, VT, Custom); 791 792 setOperationAction(ISD::VP_LOAD, VT, Custom); 793 setOperationAction(ISD::VP_STORE, VT, Custom); 794 setOperationAction(ISD::VP_GATHER, VT, Custom); 795 setOperationAction(ISD::VP_SCATTER, VT, Custom); 796 797 setOperationAction(ISD::ADD, VT, Custom); 798 setOperationAction(ISD::MUL, VT, Custom); 799 setOperationAction(ISD::SUB, VT, Custom); 800 setOperationAction(ISD::AND, VT, Custom); 801 setOperationAction(ISD::OR, VT, Custom); 802 setOperationAction(ISD::XOR, VT, Custom); 803 setOperationAction(ISD::SDIV, VT, Custom); 804 setOperationAction(ISD::SREM, VT, Custom); 805 setOperationAction(ISD::UDIV, VT, Custom); 806 setOperationAction(ISD::UREM, VT, Custom); 807 setOperationAction(ISD::SHL, VT, Custom); 808 setOperationAction(ISD::SRA, VT, Custom); 809 setOperationAction(ISD::SRL, VT, Custom); 810 811 setOperationAction(ISD::SMIN, VT, Custom); 812 setOperationAction(ISD::SMAX, VT, Custom); 813 setOperationAction(ISD::UMIN, VT, Custom); 814 setOperationAction(ISD::UMAX, VT, Custom); 815 setOperationAction(ISD::ABS, VT, Custom); 816 817 setOperationAction(ISD::MULHS, VT, Custom); 818 setOperationAction(ISD::MULHU, VT, Custom); 819 820 setOperationAction(ISD::SADDSAT, VT, Custom); 821 setOperationAction(ISD::UADDSAT, VT, Custom); 822 setOperationAction(ISD::SSUBSAT, VT, Custom); 823 setOperationAction(ISD::USUBSAT, VT, Custom); 824 825 setOperationAction(ISD::VSELECT, VT, Custom); 826 setOperationAction(ISD::SELECT_CC, VT, Expand); 827 828 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 829 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 830 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 831 832 // Custom-lower reduction operations to set up the corresponding custom 833 // nodes' operands. 834 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 835 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 836 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 837 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 838 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 839 840 for (unsigned VPOpc : IntegerVPOps) 841 setOperationAction(VPOpc, VT, Custom); 842 } 843 844 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 845 if (!useRVVForFixedLengthVectorVT(VT)) 846 continue; 847 848 // By default everything must be expanded. 849 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 850 setOperationAction(Op, VT, Expand); 851 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 852 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 853 setTruncStoreAction(VT, OtherVT, Expand); 854 } 855 856 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 857 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 858 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 859 860 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 861 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 862 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 863 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 864 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 865 866 setOperationAction(ISD::LOAD, VT, Custom); 867 setOperationAction(ISD::STORE, VT, Custom); 868 setOperationAction(ISD::MLOAD, VT, Custom); 869 setOperationAction(ISD::MSTORE, VT, Custom); 870 setOperationAction(ISD::MGATHER, VT, Custom); 871 setOperationAction(ISD::MSCATTER, VT, Custom); 872 873 setOperationAction(ISD::VP_LOAD, VT, Custom); 874 setOperationAction(ISD::VP_STORE, VT, Custom); 875 setOperationAction(ISD::VP_GATHER, VT, Custom); 876 setOperationAction(ISD::VP_SCATTER, VT, Custom); 877 878 setOperationAction(ISD::FADD, VT, Custom); 879 setOperationAction(ISD::FSUB, VT, Custom); 880 setOperationAction(ISD::FMUL, VT, Custom); 881 setOperationAction(ISD::FDIV, VT, Custom); 882 setOperationAction(ISD::FNEG, VT, Custom); 883 setOperationAction(ISD::FABS, VT, Custom); 884 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 885 setOperationAction(ISD::FSQRT, VT, Custom); 886 setOperationAction(ISD::FMA, VT, Custom); 887 setOperationAction(ISD::FMINNUM, VT, Custom); 888 setOperationAction(ISD::FMAXNUM, VT, Custom); 889 890 setOperationAction(ISD::FP_ROUND, VT, Custom); 891 setOperationAction(ISD::FP_EXTEND, VT, Custom); 892 893 for (auto CC : VFPCCToExpand) 894 setCondCodeAction(CC, VT, Expand); 895 896 setOperationAction(ISD::VSELECT, VT, Custom); 897 setOperationAction(ISD::SELECT, VT, Custom); 898 setOperationAction(ISD::SELECT_CC, VT, Expand); 899 900 setOperationAction(ISD::BITCAST, VT, Custom); 901 902 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 903 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 904 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 905 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 906 907 for (unsigned VPOpc : FloatingPointVPOps) 908 setOperationAction(VPOpc, VT, Custom); 909 } 910 911 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 912 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 913 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 914 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 915 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 916 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 917 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 918 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 919 } 920 } 921 922 // Function alignments. 923 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 924 setMinFunctionAlignment(FunctionAlignment); 925 setPrefFunctionAlignment(FunctionAlignment); 926 927 setMinimumJumpTableEntries(5); 928 929 // Jumps are expensive, compared to logic 930 setJumpIsExpensive(); 931 932 // We can use any register for comparisons 933 setHasMultipleConditionRegisters(); 934 935 setTargetDAGCombine(ISD::ADD); 936 setTargetDAGCombine(ISD::SUB); 937 setTargetDAGCombine(ISD::AND); 938 setTargetDAGCombine(ISD::OR); 939 setTargetDAGCombine(ISD::XOR); 940 setTargetDAGCombine(ISD::ANY_EXTEND); 941 setTargetDAGCombine(ISD::ZERO_EXTEND); 942 if (Subtarget.hasVInstructions()) { 943 setTargetDAGCombine(ISD::FCOPYSIGN); 944 setTargetDAGCombine(ISD::MGATHER); 945 setTargetDAGCombine(ISD::MSCATTER); 946 setTargetDAGCombine(ISD::VP_GATHER); 947 setTargetDAGCombine(ISD::VP_SCATTER); 948 setTargetDAGCombine(ISD::SRA); 949 setTargetDAGCombine(ISD::SRL); 950 setTargetDAGCombine(ISD::SHL); 951 setTargetDAGCombine(ISD::STORE); 952 } 953 } 954 955 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 956 LLVMContext &Context, 957 EVT VT) const { 958 if (!VT.isVector()) 959 return getPointerTy(DL); 960 if (Subtarget.hasVInstructions() && 961 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 962 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 963 return VT.changeVectorElementTypeToInteger(); 964 } 965 966 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 967 return Subtarget.getXLenVT(); 968 } 969 970 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 971 const CallInst &I, 972 MachineFunction &MF, 973 unsigned Intrinsic) const { 974 auto &DL = I.getModule()->getDataLayout(); 975 switch (Intrinsic) { 976 default: 977 return false; 978 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 979 case Intrinsic::riscv_masked_atomicrmw_add_i32: 980 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 981 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 982 case Intrinsic::riscv_masked_atomicrmw_max_i32: 983 case Intrinsic::riscv_masked_atomicrmw_min_i32: 984 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 985 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 986 case Intrinsic::riscv_masked_cmpxchg_i32: { 987 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 988 Info.opc = ISD::INTRINSIC_W_CHAIN; 989 Info.memVT = MVT::getVT(PtrTy->getElementType()); 990 Info.ptrVal = I.getArgOperand(0); 991 Info.offset = 0; 992 Info.align = Align(4); 993 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 994 MachineMemOperand::MOVolatile; 995 return true; 996 } 997 case Intrinsic::riscv_masked_strided_load: 998 Info.opc = ISD::INTRINSIC_W_CHAIN; 999 Info.ptrVal = I.getArgOperand(1); 1000 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1001 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1002 Info.size = MemoryLocation::UnknownSize; 1003 Info.flags |= MachineMemOperand::MOLoad; 1004 return true; 1005 case Intrinsic::riscv_masked_strided_store: 1006 Info.opc = ISD::INTRINSIC_VOID; 1007 Info.ptrVal = I.getArgOperand(1); 1008 Info.memVT = 1009 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1010 Info.align = Align( 1011 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1012 8); 1013 Info.size = MemoryLocation::UnknownSize; 1014 Info.flags |= MachineMemOperand::MOStore; 1015 return true; 1016 } 1017 } 1018 1019 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1020 const AddrMode &AM, Type *Ty, 1021 unsigned AS, 1022 Instruction *I) const { 1023 // No global is ever allowed as a base. 1024 if (AM.BaseGV) 1025 return false; 1026 1027 // Require a 12-bit signed offset. 1028 if (!isInt<12>(AM.BaseOffs)) 1029 return false; 1030 1031 switch (AM.Scale) { 1032 case 0: // "r+i" or just "i", depending on HasBaseReg. 1033 break; 1034 case 1: 1035 if (!AM.HasBaseReg) // allow "r+i". 1036 break; 1037 return false; // disallow "r+r" or "r+r+i". 1038 default: 1039 return false; 1040 } 1041 1042 return true; 1043 } 1044 1045 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1046 return isInt<12>(Imm); 1047 } 1048 1049 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1050 return isInt<12>(Imm); 1051 } 1052 1053 // On RV32, 64-bit integers are split into their high and low parts and held 1054 // in two different registers, so the trunc is free since the low register can 1055 // just be used. 1056 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1057 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1058 return false; 1059 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1060 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1061 return (SrcBits == 64 && DestBits == 32); 1062 } 1063 1064 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1065 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1066 !SrcVT.isInteger() || !DstVT.isInteger()) 1067 return false; 1068 unsigned SrcBits = SrcVT.getSizeInBits(); 1069 unsigned DestBits = DstVT.getSizeInBits(); 1070 return (SrcBits == 64 && DestBits == 32); 1071 } 1072 1073 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1074 // Zexts are free if they can be combined with a load. 1075 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1076 EVT MemVT = LD->getMemoryVT(); 1077 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 1078 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 1079 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1080 LD->getExtensionType() == ISD::ZEXTLOAD)) 1081 return true; 1082 } 1083 1084 return TargetLowering::isZExtFree(Val, VT2); 1085 } 1086 1087 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1088 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1089 } 1090 1091 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1092 return Subtarget.hasStdExtZbb(); 1093 } 1094 1095 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1096 return Subtarget.hasStdExtZbb(); 1097 } 1098 1099 /// Check if sinking \p I's operands to I's basic block is profitable, because 1100 /// the operands can be folded into a target instruction, e.g. 1101 /// splats of scalars can fold into vector instructions. 1102 bool RISCVTargetLowering::shouldSinkOperands( 1103 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1104 using namespace llvm::PatternMatch; 1105 1106 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1107 return false; 1108 1109 auto IsSinker = [&](Instruction *I, int Operand) { 1110 switch (I->getOpcode()) { 1111 case Instruction::Add: 1112 case Instruction::Sub: 1113 case Instruction::Mul: 1114 case Instruction::And: 1115 case Instruction::Or: 1116 case Instruction::Xor: 1117 case Instruction::FAdd: 1118 case Instruction::FSub: 1119 case Instruction::FMul: 1120 case Instruction::FDiv: 1121 case Instruction::ICmp: 1122 case Instruction::FCmp: 1123 return true; 1124 case Instruction::Shl: 1125 case Instruction::LShr: 1126 case Instruction::AShr: 1127 return Operand == 1; 1128 case Instruction::Call: 1129 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1130 switch (II->getIntrinsicID()) { 1131 case Intrinsic::fma: 1132 return Operand == 0 || Operand == 1; 1133 default: 1134 return false; 1135 } 1136 } 1137 return false; 1138 default: 1139 return false; 1140 } 1141 }; 1142 1143 for (auto OpIdx : enumerate(I->operands())) { 1144 if (!IsSinker(I, OpIdx.index())) 1145 continue; 1146 1147 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1148 // Make sure we are not already sinking this operand 1149 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1150 continue; 1151 1152 // We are looking for a splat that can be sunk. 1153 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1154 m_Undef(), m_ZeroMask()))) 1155 continue; 1156 1157 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1158 // and vector registers 1159 for (Use &U : Op->uses()) { 1160 Instruction *Insn = cast<Instruction>(U.getUser()); 1161 if (!IsSinker(Insn, U.getOperandNo())) 1162 return false; 1163 } 1164 1165 Ops.push_back(&Op->getOperandUse(0)); 1166 Ops.push_back(&OpIdx.value()); 1167 } 1168 return true; 1169 } 1170 1171 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1172 bool ForCodeSize) const { 1173 if (VT == MVT::f16 && !Subtarget.hasStdExtZfhmin()) 1174 return false; 1175 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1176 return false; 1177 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1178 return false; 1179 if (Imm.isNegZero()) 1180 return false; 1181 return Imm.isZero(); 1182 } 1183 1184 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1185 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1186 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1187 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1188 } 1189 1190 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1191 CallingConv::ID CC, 1192 EVT VT) const { 1193 // Use f32 to pass f16 if it is legal and Zfhmin/Zfh is not enabled. 1194 // We might still end up using a GPR but that will be decided based on ABI. 1195 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfhmin()) 1196 return MVT::f32; 1197 1198 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1199 } 1200 1201 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1202 CallingConv::ID CC, 1203 EVT VT) const { 1204 // Use f32 to pass f16 if it is legal and Zfhmin/Zfh is not enabled. 1205 // We might still end up using a GPR but that will be decided based on ABI. 1206 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfhmin()) 1207 return 1; 1208 1209 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1210 } 1211 1212 // Changes the condition code and swaps operands if necessary, so the SetCC 1213 // operation matches one of the comparisons supported directly by branches 1214 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1215 // with 1/-1. 1216 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1217 ISD::CondCode &CC, SelectionDAG &DAG) { 1218 // Convert X > -1 to X >= 0. 1219 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1220 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1221 CC = ISD::SETGE; 1222 return; 1223 } 1224 // Convert X < 1 to 0 >= X. 1225 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1226 RHS = LHS; 1227 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1228 CC = ISD::SETGE; 1229 return; 1230 } 1231 1232 switch (CC) { 1233 default: 1234 break; 1235 case ISD::SETGT: 1236 case ISD::SETLE: 1237 case ISD::SETUGT: 1238 case ISD::SETULE: 1239 CC = ISD::getSetCCSwappedOperands(CC); 1240 std::swap(LHS, RHS); 1241 break; 1242 } 1243 } 1244 1245 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1246 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1247 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1248 if (VT.getVectorElementType() == MVT::i1) 1249 KnownSize *= 8; 1250 1251 switch (KnownSize) { 1252 default: 1253 llvm_unreachable("Invalid LMUL."); 1254 case 8: 1255 return RISCVII::VLMUL::LMUL_F8; 1256 case 16: 1257 return RISCVII::VLMUL::LMUL_F4; 1258 case 32: 1259 return RISCVII::VLMUL::LMUL_F2; 1260 case 64: 1261 return RISCVII::VLMUL::LMUL_1; 1262 case 128: 1263 return RISCVII::VLMUL::LMUL_2; 1264 case 256: 1265 return RISCVII::VLMUL::LMUL_4; 1266 case 512: 1267 return RISCVII::VLMUL::LMUL_8; 1268 } 1269 } 1270 1271 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1272 switch (LMul) { 1273 default: 1274 llvm_unreachable("Invalid LMUL."); 1275 case RISCVII::VLMUL::LMUL_F8: 1276 case RISCVII::VLMUL::LMUL_F4: 1277 case RISCVII::VLMUL::LMUL_F2: 1278 case RISCVII::VLMUL::LMUL_1: 1279 return RISCV::VRRegClassID; 1280 case RISCVII::VLMUL::LMUL_2: 1281 return RISCV::VRM2RegClassID; 1282 case RISCVII::VLMUL::LMUL_4: 1283 return RISCV::VRM4RegClassID; 1284 case RISCVII::VLMUL::LMUL_8: 1285 return RISCV::VRM8RegClassID; 1286 } 1287 } 1288 1289 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1290 RISCVII::VLMUL LMUL = getLMUL(VT); 1291 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1292 LMUL == RISCVII::VLMUL::LMUL_F4 || 1293 LMUL == RISCVII::VLMUL::LMUL_F2 || 1294 LMUL == RISCVII::VLMUL::LMUL_1) { 1295 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1296 "Unexpected subreg numbering"); 1297 return RISCV::sub_vrm1_0 + Index; 1298 } 1299 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1300 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1301 "Unexpected subreg numbering"); 1302 return RISCV::sub_vrm2_0 + Index; 1303 } 1304 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1305 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1306 "Unexpected subreg numbering"); 1307 return RISCV::sub_vrm4_0 + Index; 1308 } 1309 llvm_unreachable("Invalid vector type."); 1310 } 1311 1312 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1313 if (VT.getVectorElementType() == MVT::i1) 1314 return RISCV::VRRegClassID; 1315 return getRegClassIDForLMUL(getLMUL(VT)); 1316 } 1317 1318 // Attempt to decompose a subvector insert/extract between VecVT and 1319 // SubVecVT via subregister indices. Returns the subregister index that 1320 // can perform the subvector insert/extract with the given element index, as 1321 // well as the index corresponding to any leftover subvectors that must be 1322 // further inserted/extracted within the register class for SubVecVT. 1323 std::pair<unsigned, unsigned> 1324 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1325 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1326 const RISCVRegisterInfo *TRI) { 1327 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1328 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1329 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1330 "Register classes not ordered"); 1331 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1332 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1333 // Try to compose a subregister index that takes us from the incoming 1334 // LMUL>1 register class down to the outgoing one. At each step we half 1335 // the LMUL: 1336 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1337 // Note that this is not guaranteed to find a subregister index, such as 1338 // when we are extracting from one VR type to another. 1339 unsigned SubRegIdx = RISCV::NoSubRegister; 1340 for (const unsigned RCID : 1341 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1342 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1343 VecVT = VecVT.getHalfNumVectorElementsVT(); 1344 bool IsHi = 1345 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1346 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1347 getSubregIndexByMVT(VecVT, IsHi)); 1348 if (IsHi) 1349 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1350 } 1351 return {SubRegIdx, InsertExtractIdx}; 1352 } 1353 1354 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1355 // stores for those types. 1356 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1357 return !Subtarget.useRVVForFixedLengthVectors() || 1358 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1359 } 1360 1361 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1362 if (ScalarTy->isPointerTy()) 1363 return true; 1364 1365 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1366 ScalarTy->isIntegerTy(32)) 1367 return true; 1368 1369 if (ScalarTy->isIntegerTy(64)) 1370 return Subtarget.hasVInstructionsI64(); 1371 1372 if (ScalarTy->isHalfTy()) 1373 return Subtarget.hasVInstructionsF16(); 1374 if (ScalarTy->isFloatTy()) 1375 return Subtarget.hasVInstructionsF32(); 1376 if (ScalarTy->isDoubleTy()) 1377 return Subtarget.hasVInstructionsF64(); 1378 1379 return false; 1380 } 1381 1382 static bool useRVVForFixedLengthVectorVT(MVT VT, 1383 const RISCVSubtarget &Subtarget) { 1384 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1385 if (!Subtarget.useRVVForFixedLengthVectors()) 1386 return false; 1387 1388 // We only support a set of vector types with a consistent maximum fixed size 1389 // across all supported vector element types to avoid legalization issues. 1390 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1391 // fixed-length vector type we support is 1024 bytes. 1392 if (VT.getFixedSizeInBits() > 1024 * 8) 1393 return false; 1394 1395 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1396 1397 MVT EltVT = VT.getVectorElementType(); 1398 1399 // Don't use RVV for vectors we cannot scalarize if required. 1400 switch (EltVT.SimpleTy) { 1401 // i1 is supported but has different rules. 1402 default: 1403 return false; 1404 case MVT::i1: 1405 // Masks can only use a single register. 1406 if (VT.getVectorNumElements() > MinVLen) 1407 return false; 1408 MinVLen /= 8; 1409 break; 1410 case MVT::i8: 1411 case MVT::i16: 1412 case MVT::i32: 1413 break; 1414 case MVT::i64: 1415 if (!Subtarget.hasVInstructionsI64()) 1416 return false; 1417 break; 1418 case MVT::f16: 1419 if (!Subtarget.hasVInstructionsF16()) 1420 return false; 1421 break; 1422 case MVT::f32: 1423 if (!Subtarget.hasVInstructionsF32()) 1424 return false; 1425 break; 1426 case MVT::f64: 1427 if (!Subtarget.hasVInstructionsF64()) 1428 return false; 1429 break; 1430 } 1431 1432 // Reject elements larger than ELEN. 1433 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1434 return false; 1435 1436 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1437 // Don't use RVV for types that don't fit. 1438 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1439 return false; 1440 1441 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1442 // the base fixed length RVV support in place. 1443 if (!VT.isPow2VectorType()) 1444 return false; 1445 1446 return true; 1447 } 1448 1449 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1450 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1451 } 1452 1453 // Return the largest legal scalable vector type that matches VT's element type. 1454 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1455 const RISCVSubtarget &Subtarget) { 1456 // This may be called before legal types are setup. 1457 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1458 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1459 "Expected legal fixed length vector!"); 1460 1461 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1462 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1463 1464 MVT EltVT = VT.getVectorElementType(); 1465 switch (EltVT.SimpleTy) { 1466 default: 1467 llvm_unreachable("unexpected element type for RVV container"); 1468 case MVT::i1: 1469 case MVT::i8: 1470 case MVT::i16: 1471 case MVT::i32: 1472 case MVT::i64: 1473 case MVT::f16: 1474 case MVT::f32: 1475 case MVT::f64: { 1476 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1477 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1478 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1479 unsigned NumElts = 1480 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1481 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1482 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1483 return MVT::getScalableVectorVT(EltVT, NumElts); 1484 } 1485 } 1486 } 1487 1488 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1489 const RISCVSubtarget &Subtarget) { 1490 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1491 Subtarget); 1492 } 1493 1494 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1495 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1496 } 1497 1498 // Grow V to consume an entire RVV register. 1499 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1500 const RISCVSubtarget &Subtarget) { 1501 assert(VT.isScalableVector() && 1502 "Expected to convert into a scalable vector!"); 1503 assert(V.getValueType().isFixedLengthVector() && 1504 "Expected a fixed length vector operand!"); 1505 SDLoc DL(V); 1506 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1507 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1508 } 1509 1510 // Shrink V so it's just big enough to maintain a VT's worth of data. 1511 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1512 const RISCVSubtarget &Subtarget) { 1513 assert(VT.isFixedLengthVector() && 1514 "Expected to convert into a fixed length vector!"); 1515 assert(V.getValueType().isScalableVector() && 1516 "Expected a scalable vector operand!"); 1517 SDLoc DL(V); 1518 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1519 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1520 } 1521 1522 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1523 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1524 // the vector type that it is contained in. 1525 static std::pair<SDValue, SDValue> 1526 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1527 const RISCVSubtarget &Subtarget) { 1528 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1529 MVT XLenVT = Subtarget.getXLenVT(); 1530 SDValue VL = VecVT.isFixedLengthVector() 1531 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1532 : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 1533 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1534 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1535 return {Mask, VL}; 1536 } 1537 1538 // As above but assuming the given type is a scalable vector type. 1539 static std::pair<SDValue, SDValue> 1540 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1541 const RISCVSubtarget &Subtarget) { 1542 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1543 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1544 } 1545 1546 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1547 // of either is (currently) supported. This can get us into an infinite loop 1548 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1549 // as a ..., etc. 1550 // Until either (or both) of these can reliably lower any node, reporting that 1551 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1552 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1553 // which is not desirable. 1554 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1555 EVT VT, unsigned DefinedValues) const { 1556 return false; 1557 } 1558 1559 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1560 // Only splats are currently supported. 1561 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1562 return true; 1563 1564 return false; 1565 } 1566 1567 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) { 1568 // RISCV FP-to-int conversions saturate to the destination register size, but 1569 // don't produce 0 for nan. We can use a conversion instruction and fix the 1570 // nan case with a compare and a select. 1571 SDValue Src = Op.getOperand(0); 1572 1573 EVT DstVT = Op.getValueType(); 1574 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1575 1576 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1577 unsigned Opc; 1578 if (SatVT == DstVT) 1579 Opc = IsSigned ? RISCVISD::FCVT_X_RTZ : RISCVISD::FCVT_XU_RTZ; 1580 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1581 Opc = IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 1582 else 1583 return SDValue(); 1584 // FIXME: Support other SatVTs by clamping before or after the conversion. 1585 1586 SDLoc DL(Op); 1587 SDValue FpToInt = DAG.getNode(Opc, DL, DstVT, Src); 1588 1589 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1590 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1591 } 1592 1593 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1594 const RISCVSubtarget &Subtarget) { 1595 MVT VT = Op.getSimpleValueType(); 1596 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1597 1598 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1599 1600 SDLoc DL(Op); 1601 SDValue Mask, VL; 1602 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1603 1604 unsigned Opc = 1605 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1606 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1607 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1608 } 1609 1610 struct VIDSequence { 1611 int64_t StepNumerator; 1612 unsigned StepDenominator; 1613 int64_t Addend; 1614 }; 1615 1616 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1617 // to the (non-zero) step S and start value X. This can be then lowered as the 1618 // RVV sequence (VID * S) + X, for example. 1619 // The step S is represented as an integer numerator divided by a positive 1620 // denominator. Note that the implementation currently only identifies 1621 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1622 // cannot detect 2/3, for example. 1623 // Note that this method will also match potentially unappealing index 1624 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1625 // determine whether this is worth generating code for. 1626 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1627 unsigned NumElts = Op.getNumOperands(); 1628 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1629 if (!Op.getValueType().isInteger()) 1630 return None; 1631 1632 Optional<unsigned> SeqStepDenom; 1633 Optional<int64_t> SeqStepNum, SeqAddend; 1634 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1635 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1636 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1637 // Assume undef elements match the sequence; we just have to be careful 1638 // when interpolating across them. 1639 if (Op.getOperand(Idx).isUndef()) 1640 continue; 1641 // The BUILD_VECTOR must be all constants. 1642 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1643 return None; 1644 1645 uint64_t Val = Op.getConstantOperandVal(Idx) & 1646 maskTrailingOnes<uint64_t>(EltSizeInBits); 1647 1648 if (PrevElt) { 1649 // Calculate the step since the last non-undef element, and ensure 1650 // it's consistent across the entire sequence. 1651 unsigned IdxDiff = Idx - PrevElt->second; 1652 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1653 1654 // A zero-value value difference means that we're somewhere in the middle 1655 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1656 // step change before evaluating the sequence. 1657 if (ValDiff != 0) { 1658 int64_t Remainder = ValDiff % IdxDiff; 1659 // Normalize the step if it's greater than 1. 1660 if (Remainder != ValDiff) { 1661 // The difference must cleanly divide the element span. 1662 if (Remainder != 0) 1663 return None; 1664 ValDiff /= IdxDiff; 1665 IdxDiff = 1; 1666 } 1667 1668 if (!SeqStepNum) 1669 SeqStepNum = ValDiff; 1670 else if (ValDiff != SeqStepNum) 1671 return None; 1672 1673 if (!SeqStepDenom) 1674 SeqStepDenom = IdxDiff; 1675 else if (IdxDiff != *SeqStepDenom) 1676 return None; 1677 } 1678 } 1679 1680 // Record and/or check any addend. 1681 if (SeqStepNum && SeqStepDenom) { 1682 uint64_t ExpectedVal = 1683 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1684 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1685 if (!SeqAddend) 1686 SeqAddend = Addend; 1687 else if (SeqAddend != Addend) 1688 return None; 1689 } 1690 1691 // Record this non-undef element for later. 1692 if (!PrevElt || PrevElt->first != Val) 1693 PrevElt = std::make_pair(Val, Idx); 1694 } 1695 // We need to have logged both a step and an addend for this to count as 1696 // a legal index sequence. 1697 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1698 return None; 1699 1700 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1701 } 1702 1703 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1704 const RISCVSubtarget &Subtarget) { 1705 MVT VT = Op.getSimpleValueType(); 1706 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1707 1708 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1709 1710 SDLoc DL(Op); 1711 SDValue Mask, VL; 1712 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1713 1714 MVT XLenVT = Subtarget.getXLenVT(); 1715 unsigned NumElts = Op.getNumOperands(); 1716 1717 if (VT.getVectorElementType() == MVT::i1) { 1718 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1719 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1720 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1721 } 1722 1723 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1724 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1725 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1726 } 1727 1728 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1729 // scalar integer chunks whose bit-width depends on the number of mask 1730 // bits and XLEN. 1731 // First, determine the most appropriate scalar integer type to use. This 1732 // is at most XLenVT, but may be shrunk to a smaller vector element type 1733 // according to the size of the final vector - use i8 chunks rather than 1734 // XLenVT if we're producing a v8i1. This results in more consistent 1735 // codegen across RV32 and RV64. 1736 unsigned NumViaIntegerBits = 1737 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1738 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1739 // If we have to use more than one INSERT_VECTOR_ELT then this 1740 // optimization is likely to increase code size; avoid peforming it in 1741 // such a case. We can use a load from a constant pool in this case. 1742 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1743 return SDValue(); 1744 // Now we can create our integer vector type. Note that it may be larger 1745 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1746 MVT IntegerViaVecVT = 1747 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1748 divideCeil(NumElts, NumViaIntegerBits)); 1749 1750 uint64_t Bits = 0; 1751 unsigned BitPos = 0, IntegerEltIdx = 0; 1752 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1753 1754 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1755 // Once we accumulate enough bits to fill our scalar type, insert into 1756 // our vector and clear our accumulated data. 1757 if (I != 0 && I % NumViaIntegerBits == 0) { 1758 if (NumViaIntegerBits <= 32) 1759 Bits = SignExtend64(Bits, 32); 1760 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1761 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1762 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1763 Bits = 0; 1764 BitPos = 0; 1765 IntegerEltIdx++; 1766 } 1767 SDValue V = Op.getOperand(I); 1768 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1769 Bits |= ((uint64_t)BitValue << BitPos); 1770 } 1771 1772 // Insert the (remaining) scalar value into position in our integer 1773 // vector type. 1774 if (NumViaIntegerBits <= 32) 1775 Bits = SignExtend64(Bits, 32); 1776 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1777 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1778 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1779 1780 if (NumElts < NumViaIntegerBits) { 1781 // If we're producing a smaller vector than our minimum legal integer 1782 // type, bitcast to the equivalent (known-legal) mask type, and extract 1783 // our final mask. 1784 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1785 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1786 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1787 DAG.getConstant(0, DL, XLenVT)); 1788 } else { 1789 // Else we must have produced an integer type with the same size as the 1790 // mask type; bitcast for the final result. 1791 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1792 Vec = DAG.getBitcast(VT, Vec); 1793 } 1794 1795 return Vec; 1796 } 1797 1798 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 1799 // vector type, we have a legal equivalently-sized i8 type, so we can use 1800 // that. 1801 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 1802 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 1803 1804 SDValue WideVec; 1805 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1806 // For a splat, perform a scalar truncate before creating the wider 1807 // vector. 1808 assert(Splat.getValueType() == XLenVT && 1809 "Unexpected type for i1 splat value"); 1810 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 1811 DAG.getConstant(1, DL, XLenVT)); 1812 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 1813 } else { 1814 SmallVector<SDValue, 8> Ops(Op->op_values()); 1815 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 1816 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 1817 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 1818 } 1819 1820 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 1821 } 1822 1823 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1824 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1825 : RISCVISD::VMV_V_X_VL; 1826 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1827 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1828 } 1829 1830 // Try and match index sequences, which we can lower to the vid instruction 1831 // with optional modifications. An all-undef vector is matched by 1832 // getSplatValue, above. 1833 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 1834 int64_t StepNumerator = SimpleVID->StepNumerator; 1835 unsigned StepDenominator = SimpleVID->StepDenominator; 1836 int64_t Addend = SimpleVID->Addend; 1837 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 1838 // threshold since it's the immediate value many RVV instructions accept. 1839 if (isInt<5>(StepNumerator) && isPowerOf2_32(StepDenominator) && 1840 isInt<5>(Addend)) { 1841 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 1842 // Convert right out of the scalable type so we can use standard ISD 1843 // nodes for the rest of the computation. If we used scalable types with 1844 // these, we'd lose the fixed-length vector info and generate worse 1845 // vsetvli code. 1846 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 1847 assert(StepNumerator != 0 && "Invalid step"); 1848 bool Negate = false; 1849 if (StepNumerator != 1) { 1850 int64_t SplatStepVal = StepNumerator; 1851 unsigned Opcode = ISD::MUL; 1852 if (isPowerOf2_64(std::abs(StepNumerator))) { 1853 Negate = StepNumerator < 0; 1854 Opcode = ISD::SHL; 1855 SplatStepVal = Log2_64(std::abs(StepNumerator)); 1856 } 1857 SDValue SplatStep = DAG.getSplatVector( 1858 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 1859 VID = DAG.getNode(Opcode, DL, VT, VID, SplatStep); 1860 } 1861 if (StepDenominator != 1) { 1862 SDValue SplatStep = DAG.getSplatVector( 1863 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 1864 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 1865 } 1866 if (Addend != 0 || Negate) { 1867 SDValue SplatAddend = 1868 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 1869 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 1870 } 1871 return VID; 1872 } 1873 } 1874 1875 // Attempt to detect "hidden" splats, which only reveal themselves as splats 1876 // when re-interpreted as a vector with a larger element type. For example, 1877 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 1878 // could be instead splat as 1879 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 1880 // TODO: This optimization could also work on non-constant splats, but it 1881 // would require bit-manipulation instructions to construct the splat value. 1882 SmallVector<SDValue> Sequence; 1883 unsigned EltBitSize = VT.getScalarSizeInBits(); 1884 const auto *BV = cast<BuildVectorSDNode>(Op); 1885 if (VT.isInteger() && EltBitSize < 64 && 1886 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1887 BV->getRepeatedSequence(Sequence) && 1888 (Sequence.size() * EltBitSize) <= 64) { 1889 unsigned SeqLen = Sequence.size(); 1890 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 1891 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 1892 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 1893 ViaIntVT == MVT::i64) && 1894 "Unexpected sequence type"); 1895 1896 unsigned EltIdx = 0; 1897 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 1898 uint64_t SplatValue = 0; 1899 // Construct the amalgamated value which can be splatted as this larger 1900 // vector type. 1901 for (const auto &SeqV : Sequence) { 1902 if (!SeqV.isUndef()) 1903 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 1904 << (EltIdx * EltBitSize)); 1905 EltIdx++; 1906 } 1907 1908 // On RV64, sign-extend from 32 to 64 bits where possible in order to 1909 // achieve better constant materializion. 1910 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 1911 SplatValue = SignExtend64(SplatValue, 32); 1912 1913 // Since we can't introduce illegal i64 types at this stage, we can only 1914 // perform an i64 splat on RV32 if it is its own sign-extended value. That 1915 // way we can use RVV instructions to splat. 1916 assert((ViaIntVT.bitsLE(XLenVT) || 1917 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 1918 "Unexpected bitcast sequence"); 1919 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 1920 SDValue ViaVL = 1921 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 1922 MVT ViaContainerVT = 1923 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 1924 SDValue Splat = 1925 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 1926 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 1927 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 1928 return DAG.getBitcast(VT, Splat); 1929 } 1930 } 1931 1932 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 1933 // which constitute a large proportion of the elements. In such cases we can 1934 // splat a vector with the dominant element and make up the shortfall with 1935 // INSERT_VECTOR_ELTs. 1936 // Note that this includes vectors of 2 elements by association. The 1937 // upper-most element is the "dominant" one, allowing us to use a splat to 1938 // "insert" the upper element, and an insert of the lower element at position 1939 // 0, which improves codegen. 1940 SDValue DominantValue; 1941 unsigned MostCommonCount = 0; 1942 DenseMap<SDValue, unsigned> ValueCounts; 1943 unsigned NumUndefElts = 1944 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 1945 1946 // Track the number of scalar loads we know we'd be inserting, estimated as 1947 // any non-zero floating-point constant. Other kinds of element are either 1948 // already in registers or are materialized on demand. The threshold at which 1949 // a vector load is more desirable than several scalar materializion and 1950 // vector-insertion instructions is not known. 1951 unsigned NumScalarLoads = 0; 1952 1953 for (SDValue V : Op->op_values()) { 1954 if (V.isUndef()) 1955 continue; 1956 1957 ValueCounts.insert(std::make_pair(V, 0)); 1958 unsigned &Count = ValueCounts[V]; 1959 1960 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 1961 NumScalarLoads += !CFP->isExactlyValue(+0.0); 1962 1963 // Is this value dominant? In case of a tie, prefer the highest element as 1964 // it's cheaper to insert near the beginning of a vector than it is at the 1965 // end. 1966 if (++Count >= MostCommonCount) { 1967 DominantValue = V; 1968 MostCommonCount = Count; 1969 } 1970 } 1971 1972 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 1973 unsigned NumDefElts = NumElts - NumUndefElts; 1974 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 1975 1976 // Don't perform this optimization when optimizing for size, since 1977 // materializing elements and inserting them tends to cause code bloat. 1978 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 1979 ((MostCommonCount > DominantValueCountThreshold) || 1980 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 1981 // Start by splatting the most common element. 1982 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 1983 1984 DenseSet<SDValue> Processed{DominantValue}; 1985 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 1986 for (const auto &OpIdx : enumerate(Op->ops())) { 1987 const SDValue &V = OpIdx.value(); 1988 if (V.isUndef() || !Processed.insert(V).second) 1989 continue; 1990 if (ValueCounts[V] == 1) { 1991 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 1992 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 1993 } else { 1994 // Blend in all instances of this value using a VSELECT, using a 1995 // mask where each bit signals whether that element is the one 1996 // we're after. 1997 SmallVector<SDValue> Ops; 1998 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 1999 return DAG.getConstant(V == V1, DL, XLenVT); 2000 }); 2001 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2002 DAG.getBuildVector(SelMaskTy, DL, Ops), 2003 DAG.getSplatBuildVector(VT, DL, V), Vec); 2004 } 2005 } 2006 2007 return Vec; 2008 } 2009 2010 return SDValue(); 2011 } 2012 2013 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 2014 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 2015 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2016 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2017 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2018 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2019 // node in order to try and match RVV vector/scalar instructions. 2020 if ((LoC >> 31) == HiC) 2021 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 2022 } 2023 2024 // Fall back to a stack store and stride x0 vector load. 2025 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 2026 } 2027 2028 // Called by type legalization to handle splat of i64 on RV32. 2029 // FIXME: We can optimize this when the type has sign or zero bits in one 2030 // of the halves. 2031 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 2032 SDValue VL, SelectionDAG &DAG) { 2033 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2034 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2035 DAG.getConstant(0, DL, MVT::i32)); 2036 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2037 DAG.getConstant(1, DL, MVT::i32)); 2038 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 2039 } 2040 2041 // This function lowers a splat of a scalar operand Splat with the vector 2042 // length VL. It ensures the final sequence is type legal, which is useful when 2043 // lowering a splat after type legalization. 2044 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 2045 SelectionDAG &DAG, 2046 const RISCVSubtarget &Subtarget) { 2047 if (VT.isFloatingPoint()) 2048 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 2049 2050 MVT XLenVT = Subtarget.getXLenVT(); 2051 2052 // Simplest case is that the operand needs to be promoted to XLenVT. 2053 if (Scalar.getValueType().bitsLE(XLenVT)) { 2054 // If the operand is a constant, sign extend to increase our chances 2055 // of being able to use a .vi instruction. ANY_EXTEND would become a 2056 // a zero extend and the simm5 check in isel would fail. 2057 // FIXME: Should we ignore the upper bits in isel instead? 2058 unsigned ExtOpc = 2059 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2060 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2061 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 2062 } 2063 2064 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2065 "Unexpected scalar for splat lowering!"); 2066 2067 // Otherwise use the more complicated splatting algorithm. 2068 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 2069 } 2070 2071 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2072 const RISCVSubtarget &Subtarget) { 2073 SDValue V1 = Op.getOperand(0); 2074 SDValue V2 = Op.getOperand(1); 2075 SDLoc DL(Op); 2076 MVT XLenVT = Subtarget.getXLenVT(); 2077 MVT VT = Op.getSimpleValueType(); 2078 unsigned NumElts = VT.getVectorNumElements(); 2079 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2080 2081 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2082 2083 SDValue TrueMask, VL; 2084 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2085 2086 if (SVN->isSplat()) { 2087 const int Lane = SVN->getSplatIndex(); 2088 if (Lane >= 0) { 2089 MVT SVT = VT.getVectorElementType(); 2090 2091 // Turn splatted vector load into a strided load with an X0 stride. 2092 SDValue V = V1; 2093 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2094 // with undef. 2095 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2096 int Offset = Lane; 2097 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2098 int OpElements = 2099 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2100 V = V.getOperand(Offset / OpElements); 2101 Offset %= OpElements; 2102 } 2103 2104 // We need to ensure the load isn't atomic or volatile. 2105 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2106 auto *Ld = cast<LoadSDNode>(V); 2107 Offset *= SVT.getStoreSize(); 2108 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2109 TypeSize::Fixed(Offset), DL); 2110 2111 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2112 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2113 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2114 SDValue IntID = 2115 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2116 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 2117 DAG.getRegister(RISCV::X0, XLenVT), VL}; 2118 SDValue NewLoad = DAG.getMemIntrinsicNode( 2119 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2120 DAG.getMachineFunction().getMachineMemOperand( 2121 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2122 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2123 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2124 } 2125 2126 // Otherwise use a scalar load and splat. This will give the best 2127 // opportunity to fold a splat into the operation. ISel can turn it into 2128 // the x0 strided load if we aren't able to fold away the select. 2129 if (SVT.isFloatingPoint()) 2130 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2131 Ld->getPointerInfo().getWithOffset(Offset), 2132 Ld->getOriginalAlign(), 2133 Ld->getMemOperand()->getFlags()); 2134 else 2135 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2136 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2137 Ld->getOriginalAlign(), 2138 Ld->getMemOperand()->getFlags()); 2139 DAG.makeEquivalentMemoryOrdering(Ld, V); 2140 2141 unsigned Opc = 2142 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2143 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 2144 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2145 } 2146 2147 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2148 assert(Lane < (int)NumElts && "Unexpected lane!"); 2149 SDValue Gather = 2150 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2151 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2152 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2153 } 2154 } 2155 2156 // Detect shuffles which can be re-expressed as vector selects; these are 2157 // shuffles in which each element in the destination is taken from an element 2158 // at the corresponding index in either source vectors. 2159 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 2160 int MaskIndex = MaskIdx.value(); 2161 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2162 }); 2163 2164 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2165 2166 SmallVector<SDValue> MaskVals; 2167 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2168 // merged with a second vrgather. 2169 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2170 2171 // By default we preserve the original operand order, and use a mask to 2172 // select LHS as true and RHS as false. However, since RVV vector selects may 2173 // feature splats but only on the LHS, we may choose to invert our mask and 2174 // instead select between RHS and LHS. 2175 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2176 bool InvertMask = IsSelect == SwapOps; 2177 2178 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2179 // half. 2180 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2181 2182 // Now construct the mask that will be used by the vselect or blended 2183 // vrgather operation. For vrgathers, construct the appropriate indices into 2184 // each vector. 2185 for (int MaskIndex : SVN->getMask()) { 2186 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2187 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2188 if (!IsSelect) { 2189 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2190 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2191 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2192 : DAG.getUNDEF(XLenVT)); 2193 GatherIndicesRHS.push_back( 2194 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2195 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2196 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2197 ++LHSIndexCounts[MaskIndex]; 2198 if (!IsLHSOrUndefIndex) 2199 ++RHSIndexCounts[MaskIndex - NumElts]; 2200 } 2201 } 2202 2203 if (SwapOps) { 2204 std::swap(V1, V2); 2205 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2206 } 2207 2208 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2209 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2210 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2211 2212 if (IsSelect) 2213 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2214 2215 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2216 // On such a large vector we're unable to use i8 as the index type. 2217 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2218 // may involve vector splitting if we're already at LMUL=8, or our 2219 // user-supplied maximum fixed-length LMUL. 2220 return SDValue(); 2221 } 2222 2223 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2224 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2225 MVT IndexVT = VT.changeTypeToInteger(); 2226 // Since we can't introduce illegal index types at this stage, use i16 and 2227 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2228 // than XLenVT. 2229 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2230 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2231 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2232 } 2233 2234 MVT IndexContainerVT = 2235 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2236 2237 SDValue Gather; 2238 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2239 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2240 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2241 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2242 } else { 2243 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2244 // If only one index is used, we can use a "splat" vrgather. 2245 // TODO: We can splat the most-common index and fix-up any stragglers, if 2246 // that's beneficial. 2247 if (LHSIndexCounts.size() == 1) { 2248 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2249 Gather = 2250 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2251 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2252 } else { 2253 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2254 LHSIndices = 2255 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2256 2257 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2258 TrueMask, VL); 2259 } 2260 } 2261 2262 // If a second vector operand is used by this shuffle, blend it in with an 2263 // additional vrgather. 2264 if (!V2.isUndef()) { 2265 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2266 // If only one index is used, we can use a "splat" vrgather. 2267 // TODO: We can splat the most-common index and fix-up any stragglers, if 2268 // that's beneficial. 2269 if (RHSIndexCounts.size() == 1) { 2270 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2271 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2272 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2273 } else { 2274 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2275 RHSIndices = 2276 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2277 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2278 VL); 2279 } 2280 2281 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2282 SelectMask = 2283 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2284 2285 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2286 Gather, VL); 2287 } 2288 2289 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2290 } 2291 2292 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2293 SDLoc DL, SelectionDAG &DAG, 2294 const RISCVSubtarget &Subtarget) { 2295 if (VT.isScalableVector()) 2296 return DAG.getFPExtendOrRound(Op, DL, VT); 2297 assert(VT.isFixedLengthVector() && 2298 "Unexpected value type for RVV FP extend/round lowering"); 2299 SDValue Mask, VL; 2300 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2301 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2302 ? RISCVISD::FP_EXTEND_VL 2303 : RISCVISD::FP_ROUND_VL; 2304 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2305 } 2306 2307 // While RVV has alignment restrictions, we should always be able to load as a 2308 // legal equivalently-sized byte-typed vector instead. This method is 2309 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2310 // the load is already correctly-aligned, it returns SDValue(). 2311 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2312 SelectionDAG &DAG) const { 2313 auto *Load = cast<LoadSDNode>(Op); 2314 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2315 2316 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2317 Load->getMemoryVT(), 2318 *Load->getMemOperand())) 2319 return SDValue(); 2320 2321 SDLoc DL(Op); 2322 MVT VT = Op.getSimpleValueType(); 2323 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2324 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2325 "Unexpected unaligned RVV load type"); 2326 MVT NewVT = 2327 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2328 assert(NewVT.isValid() && 2329 "Expecting equally-sized RVV vector types to be legal"); 2330 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2331 Load->getPointerInfo(), Load->getOriginalAlign(), 2332 Load->getMemOperand()->getFlags()); 2333 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2334 } 2335 2336 // While RVV has alignment restrictions, we should always be able to store as a 2337 // legal equivalently-sized byte-typed vector instead. This method is 2338 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2339 // returns SDValue() if the store is already correctly aligned. 2340 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2341 SelectionDAG &DAG) const { 2342 auto *Store = cast<StoreSDNode>(Op); 2343 assert(Store && Store->getValue().getValueType().isVector() && 2344 "Expected vector store"); 2345 2346 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2347 Store->getMemoryVT(), 2348 *Store->getMemOperand())) 2349 return SDValue(); 2350 2351 SDLoc DL(Op); 2352 SDValue StoredVal = Store->getValue(); 2353 MVT VT = StoredVal.getSimpleValueType(); 2354 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2355 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2356 "Unexpected unaligned RVV store type"); 2357 MVT NewVT = 2358 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2359 assert(NewVT.isValid() && 2360 "Expecting equally-sized RVV vector types to be legal"); 2361 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2362 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2363 Store->getPointerInfo(), Store->getOriginalAlign(), 2364 Store->getMemOperand()->getFlags()); 2365 } 2366 2367 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2368 SelectionDAG &DAG) const { 2369 switch (Op.getOpcode()) { 2370 default: 2371 report_fatal_error("unimplemented operand"); 2372 case ISD::GlobalAddress: 2373 return lowerGlobalAddress(Op, DAG); 2374 case ISD::BlockAddress: 2375 return lowerBlockAddress(Op, DAG); 2376 case ISD::ConstantPool: 2377 return lowerConstantPool(Op, DAG); 2378 case ISD::JumpTable: 2379 return lowerJumpTable(Op, DAG); 2380 case ISD::GlobalTLSAddress: 2381 return lowerGlobalTLSAddress(Op, DAG); 2382 case ISD::SELECT: 2383 return lowerSELECT(Op, DAG); 2384 case ISD::BRCOND: 2385 return lowerBRCOND(Op, DAG); 2386 case ISD::VASTART: 2387 return lowerVASTART(Op, DAG); 2388 case ISD::FRAMEADDR: 2389 return lowerFRAMEADDR(Op, DAG); 2390 case ISD::RETURNADDR: 2391 return lowerRETURNADDR(Op, DAG); 2392 case ISD::SHL_PARTS: 2393 return lowerShiftLeftParts(Op, DAG); 2394 case ISD::SRA_PARTS: 2395 return lowerShiftRightParts(Op, DAG, true); 2396 case ISD::SRL_PARTS: 2397 return lowerShiftRightParts(Op, DAG, false); 2398 case ISD::BITCAST: { 2399 SDLoc DL(Op); 2400 EVT VT = Op.getValueType(); 2401 SDValue Op0 = Op.getOperand(0); 2402 EVT Op0VT = Op0.getValueType(); 2403 MVT XLenVT = Subtarget.getXLenVT(); 2404 if (VT.isFixedLengthVector()) { 2405 // We can handle fixed length vector bitcasts with a simple replacement 2406 // in isel. 2407 if (Op0VT.isFixedLengthVector()) 2408 return Op; 2409 // When bitcasting from scalar to fixed-length vector, insert the scalar 2410 // into a one-element vector of the result type, and perform a vector 2411 // bitcast. 2412 if (!Op0VT.isVector()) { 2413 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2414 if (!isTypeLegal(BVT)) 2415 return SDValue(); 2416 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2417 DAG.getUNDEF(BVT), Op0, 2418 DAG.getConstant(0, DL, XLenVT))); 2419 } 2420 return SDValue(); 2421 } 2422 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2423 // thus: bitcast the vector to a one-element vector type whose element type 2424 // is the same as the result type, and extract the first element. 2425 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2426 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 2427 if (!isTypeLegal(BVT)) 2428 return SDValue(); 2429 SDValue BVec = DAG.getBitcast(BVT, Op0); 2430 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2431 DAG.getConstant(0, DL, XLenVT)); 2432 } 2433 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2434 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2435 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2436 return FPConv; 2437 } 2438 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2439 Subtarget.hasStdExtF()) { 2440 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2441 SDValue FPConv = 2442 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2443 return FPConv; 2444 } 2445 return SDValue(); 2446 } 2447 case ISD::INTRINSIC_WO_CHAIN: 2448 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2449 case ISD::INTRINSIC_W_CHAIN: 2450 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2451 case ISD::INTRINSIC_VOID: 2452 return LowerINTRINSIC_VOID(Op, DAG); 2453 case ISD::BSWAP: 2454 case ISD::BITREVERSE: { 2455 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2456 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2457 MVT VT = Op.getSimpleValueType(); 2458 SDLoc DL(Op); 2459 // Start with the maximum immediate value which is the bitwidth - 1. 2460 unsigned Imm = VT.getSizeInBits() - 1; 2461 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2462 if (Op.getOpcode() == ISD::BSWAP) 2463 Imm &= ~0x7U; 2464 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2465 DAG.getConstant(Imm, DL, VT)); 2466 } 2467 case ISD::FSHL: 2468 case ISD::FSHR: { 2469 MVT VT = Op.getSimpleValueType(); 2470 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2471 SDLoc DL(Op); 2472 if (Op.getOperand(2).getOpcode() == ISD::Constant) 2473 return Op; 2474 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2475 // use log(XLen) bits. Mask the shift amount accordingly. 2476 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2477 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2478 DAG.getConstant(ShAmtWidth, DL, VT)); 2479 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 2480 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 2481 } 2482 case ISD::TRUNCATE: { 2483 SDLoc DL(Op); 2484 MVT VT = Op.getSimpleValueType(); 2485 // Only custom-lower vector truncates 2486 if (!VT.isVector()) 2487 return Op; 2488 2489 // Truncates to mask types are handled differently 2490 if (VT.getVectorElementType() == MVT::i1) 2491 return lowerVectorMaskTrunc(Op, DAG); 2492 2493 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2494 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2495 // truncate by one power of two at a time. 2496 MVT DstEltVT = VT.getVectorElementType(); 2497 2498 SDValue Src = Op.getOperand(0); 2499 MVT SrcVT = Src.getSimpleValueType(); 2500 MVT SrcEltVT = SrcVT.getVectorElementType(); 2501 2502 assert(DstEltVT.bitsLT(SrcEltVT) && 2503 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2504 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2505 "Unexpected vector truncate lowering"); 2506 2507 MVT ContainerVT = SrcVT; 2508 if (SrcVT.isFixedLengthVector()) { 2509 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2510 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2511 } 2512 2513 SDValue Result = Src; 2514 SDValue Mask, VL; 2515 std::tie(Mask, VL) = 2516 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2517 LLVMContext &Context = *DAG.getContext(); 2518 const ElementCount Count = ContainerVT.getVectorElementCount(); 2519 do { 2520 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2521 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2522 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2523 Mask, VL); 2524 } while (SrcEltVT != DstEltVT); 2525 2526 if (SrcVT.isFixedLengthVector()) 2527 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2528 2529 return Result; 2530 } 2531 case ISD::ANY_EXTEND: 2532 case ISD::ZERO_EXTEND: 2533 if (Op.getOperand(0).getValueType().isVector() && 2534 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2535 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2536 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2537 case ISD::SIGN_EXTEND: 2538 if (Op.getOperand(0).getValueType().isVector() && 2539 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2540 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2541 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2542 case ISD::SPLAT_VECTOR_PARTS: 2543 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2544 case ISD::INSERT_VECTOR_ELT: 2545 return lowerINSERT_VECTOR_ELT(Op, DAG); 2546 case ISD::EXTRACT_VECTOR_ELT: 2547 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2548 case ISD::VSCALE: { 2549 MVT VT = Op.getSimpleValueType(); 2550 SDLoc DL(Op); 2551 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2552 // We define our scalable vector types for lmul=1 to use a 64 bit known 2553 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2554 // vscale as VLENB / 8. 2555 assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!"); 2556 if (isa<ConstantSDNode>(Op.getOperand(0))) { 2557 // We assume VLENB is a multiple of 8. We manually choose the best shift 2558 // here because SimplifyDemandedBits isn't always able to simplify it. 2559 uint64_t Val = Op.getConstantOperandVal(0); 2560 if (isPowerOf2_64(Val)) { 2561 uint64_t Log2 = Log2_64(Val); 2562 if (Log2 < 3) 2563 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 2564 DAG.getConstant(3 - Log2, DL, VT)); 2565 if (Log2 > 3) 2566 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 2567 DAG.getConstant(Log2 - 3, DL, VT)); 2568 return VLENB; 2569 } 2570 // If the multiplier is a multiple of 8, scale it down to avoid needing 2571 // to shift the VLENB value. 2572 if ((Val % 8) == 0) 2573 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 2574 DAG.getConstant(Val / 8, DL, VT)); 2575 } 2576 2577 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2578 DAG.getConstant(3, DL, VT)); 2579 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2580 } 2581 case ISD::FP_EXTEND: { 2582 // RVV can only do fp_extend to types double the size as the source. We 2583 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2584 // via f32. 2585 SDLoc DL(Op); 2586 MVT VT = Op.getSimpleValueType(); 2587 SDValue Src = Op.getOperand(0); 2588 MVT SrcVT = Src.getSimpleValueType(); 2589 2590 // Prepare any fixed-length vector operands. 2591 MVT ContainerVT = VT; 2592 if (SrcVT.isFixedLengthVector()) { 2593 ContainerVT = getContainerForFixedLengthVector(VT); 2594 MVT SrcContainerVT = 2595 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2596 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2597 } 2598 2599 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2600 SrcVT.getVectorElementType() != MVT::f16) { 2601 // For scalable vectors, we only need to close the gap between 2602 // vXf16->vXf64. 2603 if (!VT.isFixedLengthVector()) 2604 return Op; 2605 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2606 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2607 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2608 } 2609 2610 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2611 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2612 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2613 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2614 2615 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2616 DL, DAG, Subtarget); 2617 if (VT.isFixedLengthVector()) 2618 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2619 return Extend; 2620 } 2621 case ISD::FP_ROUND: { 2622 // RVV can only do fp_round to types half the size as the source. We 2623 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2624 // conversion instruction. 2625 SDLoc DL(Op); 2626 MVT VT = Op.getSimpleValueType(); 2627 SDValue Src = Op.getOperand(0); 2628 MVT SrcVT = Src.getSimpleValueType(); 2629 2630 // Prepare any fixed-length vector operands. 2631 MVT ContainerVT = VT; 2632 if (VT.isFixedLengthVector()) { 2633 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2634 ContainerVT = 2635 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2636 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2637 } 2638 2639 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2640 SrcVT.getVectorElementType() != MVT::f64) { 2641 // For scalable vectors, we only need to close the gap between 2642 // vXf64<->vXf16. 2643 if (!VT.isFixedLengthVector()) 2644 return Op; 2645 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2646 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2647 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2648 } 2649 2650 SDValue Mask, VL; 2651 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2652 2653 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2654 SDValue IntermediateRound = 2655 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2656 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2657 DL, DAG, Subtarget); 2658 2659 if (VT.isFixedLengthVector()) 2660 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2661 return Round; 2662 } 2663 case ISD::FP_TO_SINT: 2664 case ISD::FP_TO_UINT: 2665 case ISD::SINT_TO_FP: 2666 case ISD::UINT_TO_FP: { 2667 // RVV can only do fp<->int conversions to types half/double the size as 2668 // the source. We custom-lower any conversions that do two hops into 2669 // sequences. 2670 MVT VT = Op.getSimpleValueType(); 2671 if (!VT.isVector()) 2672 return Op; 2673 SDLoc DL(Op); 2674 SDValue Src = Op.getOperand(0); 2675 MVT EltVT = VT.getVectorElementType(); 2676 MVT SrcVT = Src.getSimpleValueType(); 2677 MVT SrcEltVT = SrcVT.getVectorElementType(); 2678 unsigned EltSize = EltVT.getSizeInBits(); 2679 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2680 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 2681 "Unexpected vector element types"); 2682 2683 bool IsInt2FP = SrcEltVT.isInteger(); 2684 // Widening conversions 2685 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 2686 if (IsInt2FP) { 2687 // Do a regular integer sign/zero extension then convert to float. 2688 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 2689 VT.getVectorElementCount()); 2690 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 2691 ? ISD::ZERO_EXTEND 2692 : ISD::SIGN_EXTEND; 2693 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 2694 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 2695 } 2696 // FP2Int 2697 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 2698 // Do one doubling fp_extend then complete the operation by converting 2699 // to int. 2700 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2701 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 2702 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 2703 } 2704 2705 // Narrowing conversions 2706 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 2707 if (IsInt2FP) { 2708 // One narrowing int_to_fp, then an fp_round. 2709 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 2710 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2711 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 2712 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 2713 } 2714 // FP2Int 2715 // One narrowing fp_to_int, then truncate the integer. If the float isn't 2716 // representable by the integer, the result is poison. 2717 MVT IVecVT = 2718 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 2719 VT.getVectorElementCount()); 2720 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 2721 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 2722 } 2723 2724 // Scalable vectors can exit here. Patterns will handle equally-sized 2725 // conversions halving/doubling ones. 2726 if (!VT.isFixedLengthVector()) 2727 return Op; 2728 2729 // For fixed-length vectors we lower to a custom "VL" node. 2730 unsigned RVVOpc = 0; 2731 switch (Op.getOpcode()) { 2732 default: 2733 llvm_unreachable("Impossible opcode"); 2734 case ISD::FP_TO_SINT: 2735 RVVOpc = RISCVISD::FP_TO_SINT_VL; 2736 break; 2737 case ISD::FP_TO_UINT: 2738 RVVOpc = RISCVISD::FP_TO_UINT_VL; 2739 break; 2740 case ISD::SINT_TO_FP: 2741 RVVOpc = RISCVISD::SINT_TO_FP_VL; 2742 break; 2743 case ISD::UINT_TO_FP: 2744 RVVOpc = RISCVISD::UINT_TO_FP_VL; 2745 break; 2746 } 2747 2748 MVT ContainerVT, SrcContainerVT; 2749 // Derive the reference container type from the larger vector type. 2750 if (SrcEltSize > EltSize) { 2751 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2752 ContainerVT = 2753 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2754 } else { 2755 ContainerVT = getContainerForFixedLengthVector(VT); 2756 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 2757 } 2758 2759 SDValue Mask, VL; 2760 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2761 2762 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2763 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 2764 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2765 } 2766 case ISD::FP_TO_SINT_SAT: 2767 case ISD::FP_TO_UINT_SAT: 2768 return lowerFP_TO_INT_SAT(Op, DAG); 2769 case ISD::VECREDUCE_ADD: 2770 case ISD::VECREDUCE_UMAX: 2771 case ISD::VECREDUCE_SMAX: 2772 case ISD::VECREDUCE_UMIN: 2773 case ISD::VECREDUCE_SMIN: 2774 return lowerVECREDUCE(Op, DAG); 2775 case ISD::VECREDUCE_AND: 2776 case ISD::VECREDUCE_OR: 2777 case ISD::VECREDUCE_XOR: 2778 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2779 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 2780 return lowerVECREDUCE(Op, DAG); 2781 case ISD::VECREDUCE_FADD: 2782 case ISD::VECREDUCE_SEQ_FADD: 2783 case ISD::VECREDUCE_FMIN: 2784 case ISD::VECREDUCE_FMAX: 2785 return lowerFPVECREDUCE(Op, DAG); 2786 case ISD::VP_REDUCE_ADD: 2787 case ISD::VP_REDUCE_UMAX: 2788 case ISD::VP_REDUCE_SMAX: 2789 case ISD::VP_REDUCE_UMIN: 2790 case ISD::VP_REDUCE_SMIN: 2791 case ISD::VP_REDUCE_FADD: 2792 case ISD::VP_REDUCE_SEQ_FADD: 2793 case ISD::VP_REDUCE_FMIN: 2794 case ISD::VP_REDUCE_FMAX: 2795 return lowerVPREDUCE(Op, DAG); 2796 case ISD::VP_REDUCE_AND: 2797 case ISD::VP_REDUCE_OR: 2798 case ISD::VP_REDUCE_XOR: 2799 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 2800 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 2801 return lowerVPREDUCE(Op, DAG); 2802 case ISD::INSERT_SUBVECTOR: 2803 return lowerINSERT_SUBVECTOR(Op, DAG); 2804 case ISD::EXTRACT_SUBVECTOR: 2805 return lowerEXTRACT_SUBVECTOR(Op, DAG); 2806 case ISD::STEP_VECTOR: 2807 return lowerSTEP_VECTOR(Op, DAG); 2808 case ISD::VECTOR_REVERSE: 2809 return lowerVECTOR_REVERSE(Op, DAG); 2810 case ISD::BUILD_VECTOR: 2811 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 2812 case ISD::SPLAT_VECTOR: 2813 if (Op.getValueType().getVectorElementType() == MVT::i1) 2814 return lowerVectorMaskSplat(Op, DAG); 2815 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 2816 case ISD::VECTOR_SHUFFLE: 2817 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 2818 case ISD::CONCAT_VECTORS: { 2819 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 2820 // better than going through the stack, as the default expansion does. 2821 SDLoc DL(Op); 2822 MVT VT = Op.getSimpleValueType(); 2823 unsigned NumOpElts = 2824 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 2825 SDValue Vec = DAG.getUNDEF(VT); 2826 for (const auto &OpIdx : enumerate(Op->ops())) 2827 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 2828 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 2829 return Vec; 2830 } 2831 case ISD::LOAD: 2832 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 2833 return V; 2834 if (Op.getValueType().isFixedLengthVector()) 2835 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 2836 return Op; 2837 case ISD::STORE: 2838 if (auto V = expandUnalignedRVVStore(Op, DAG)) 2839 return V; 2840 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 2841 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 2842 return Op; 2843 case ISD::MLOAD: 2844 case ISD::VP_LOAD: 2845 return lowerMaskedLoad(Op, DAG); 2846 case ISD::MSTORE: 2847 case ISD::VP_STORE: 2848 return lowerMaskedStore(Op, DAG); 2849 case ISD::SETCC: 2850 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 2851 case ISD::ADD: 2852 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 2853 case ISD::SUB: 2854 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 2855 case ISD::MUL: 2856 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 2857 case ISD::MULHS: 2858 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 2859 case ISD::MULHU: 2860 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 2861 case ISD::AND: 2862 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 2863 RISCVISD::AND_VL); 2864 case ISD::OR: 2865 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 2866 RISCVISD::OR_VL); 2867 case ISD::XOR: 2868 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 2869 RISCVISD::XOR_VL); 2870 case ISD::SDIV: 2871 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 2872 case ISD::SREM: 2873 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 2874 case ISD::UDIV: 2875 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 2876 case ISD::UREM: 2877 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 2878 case ISD::SHL: 2879 case ISD::SRA: 2880 case ISD::SRL: 2881 if (Op.getSimpleValueType().isFixedLengthVector()) 2882 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 2883 // This can be called for an i32 shift amount that needs to be promoted. 2884 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 2885 "Unexpected custom legalisation"); 2886 return SDValue(); 2887 case ISD::SADDSAT: 2888 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 2889 case ISD::UADDSAT: 2890 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 2891 case ISD::SSUBSAT: 2892 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 2893 case ISD::USUBSAT: 2894 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 2895 case ISD::FADD: 2896 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 2897 case ISD::FSUB: 2898 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 2899 case ISD::FMUL: 2900 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 2901 case ISD::FDIV: 2902 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 2903 case ISD::FNEG: 2904 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 2905 case ISD::FABS: 2906 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 2907 case ISD::FSQRT: 2908 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 2909 case ISD::FMA: 2910 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 2911 case ISD::SMIN: 2912 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 2913 case ISD::SMAX: 2914 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 2915 case ISD::UMIN: 2916 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 2917 case ISD::UMAX: 2918 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 2919 case ISD::FMINNUM: 2920 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 2921 case ISD::FMAXNUM: 2922 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 2923 case ISD::ABS: 2924 return lowerABS(Op, DAG); 2925 case ISD::VSELECT: 2926 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 2927 case ISD::FCOPYSIGN: 2928 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 2929 case ISD::MGATHER: 2930 case ISD::VP_GATHER: 2931 return lowerMaskedGather(Op, DAG); 2932 case ISD::MSCATTER: 2933 case ISD::VP_SCATTER: 2934 return lowerMaskedScatter(Op, DAG); 2935 case ISD::FLT_ROUNDS_: 2936 return lowerGET_ROUNDING(Op, DAG); 2937 case ISD::SET_ROUNDING: 2938 return lowerSET_ROUNDING(Op, DAG); 2939 case ISD::VP_ADD: 2940 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 2941 case ISD::VP_SUB: 2942 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 2943 case ISD::VP_MUL: 2944 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 2945 case ISD::VP_SDIV: 2946 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 2947 case ISD::VP_UDIV: 2948 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 2949 case ISD::VP_SREM: 2950 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 2951 case ISD::VP_UREM: 2952 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 2953 case ISD::VP_AND: 2954 return lowerVPOp(Op, DAG, RISCVISD::AND_VL); 2955 case ISD::VP_OR: 2956 return lowerVPOp(Op, DAG, RISCVISD::OR_VL); 2957 case ISD::VP_XOR: 2958 return lowerVPOp(Op, DAG, RISCVISD::XOR_VL); 2959 case ISD::VP_ASHR: 2960 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 2961 case ISD::VP_LSHR: 2962 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 2963 case ISD::VP_SHL: 2964 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 2965 case ISD::VP_FADD: 2966 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 2967 case ISD::VP_FSUB: 2968 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 2969 case ISD::VP_FMUL: 2970 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 2971 case ISD::VP_FDIV: 2972 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 2973 } 2974 } 2975 2976 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 2977 SelectionDAG &DAG, unsigned Flags) { 2978 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 2979 } 2980 2981 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 2982 SelectionDAG &DAG, unsigned Flags) { 2983 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 2984 Flags); 2985 } 2986 2987 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 2988 SelectionDAG &DAG, unsigned Flags) { 2989 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 2990 N->getOffset(), Flags); 2991 } 2992 2993 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 2994 SelectionDAG &DAG, unsigned Flags) { 2995 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 2996 } 2997 2998 template <class NodeTy> 2999 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3000 bool IsLocal) const { 3001 SDLoc DL(N); 3002 EVT Ty = getPointerTy(DAG.getDataLayout()); 3003 3004 if (isPositionIndependent()) { 3005 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3006 if (IsLocal) 3007 // Use PC-relative addressing to access the symbol. This generates the 3008 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3009 // %pcrel_lo(auipc)). 3010 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3011 3012 // Use PC-relative addressing to access the GOT for this symbol, then load 3013 // the address from the GOT. This generates the pattern (PseudoLA sym), 3014 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3015 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3016 } 3017 3018 switch (getTargetMachine().getCodeModel()) { 3019 default: 3020 report_fatal_error("Unsupported code model for lowering"); 3021 case CodeModel::Small: { 3022 // Generate a sequence for accessing addresses within the first 2 GiB of 3023 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3024 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3025 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3026 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3027 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3028 } 3029 case CodeModel::Medium: { 3030 // Generate a sequence for accessing addresses within any 2GiB range within 3031 // the address space. This generates the pattern (PseudoLLA sym), which 3032 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3033 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3034 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3035 } 3036 } 3037 } 3038 3039 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3040 SelectionDAG &DAG) const { 3041 SDLoc DL(Op); 3042 EVT Ty = Op.getValueType(); 3043 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3044 int64_t Offset = N->getOffset(); 3045 MVT XLenVT = Subtarget.getXLenVT(); 3046 3047 const GlobalValue *GV = N->getGlobal(); 3048 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3049 SDValue Addr = getAddr(N, DAG, IsLocal); 3050 3051 // In order to maximise the opportunity for common subexpression elimination, 3052 // emit a separate ADD node for the global address offset instead of folding 3053 // it in the global address node. Later peephole optimisations may choose to 3054 // fold it back in when profitable. 3055 if (Offset != 0) 3056 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3057 DAG.getConstant(Offset, DL, XLenVT)); 3058 return Addr; 3059 } 3060 3061 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3062 SelectionDAG &DAG) const { 3063 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3064 3065 return getAddr(N, DAG); 3066 } 3067 3068 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3069 SelectionDAG &DAG) const { 3070 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3071 3072 return getAddr(N, DAG); 3073 } 3074 3075 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3076 SelectionDAG &DAG) const { 3077 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3078 3079 return getAddr(N, DAG); 3080 } 3081 3082 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3083 SelectionDAG &DAG, 3084 bool UseGOT) const { 3085 SDLoc DL(N); 3086 EVT Ty = getPointerTy(DAG.getDataLayout()); 3087 const GlobalValue *GV = N->getGlobal(); 3088 MVT XLenVT = Subtarget.getXLenVT(); 3089 3090 if (UseGOT) { 3091 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3092 // load the address from the GOT and add the thread pointer. This generates 3093 // the pattern (PseudoLA_TLS_IE sym), which expands to 3094 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3095 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3096 SDValue Load = 3097 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3098 3099 // Add the thread pointer. 3100 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3101 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3102 } 3103 3104 // Generate a sequence for accessing the address relative to the thread 3105 // pointer, with the appropriate adjustment for the thread pointer offset. 3106 // This generates the pattern 3107 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3108 SDValue AddrHi = 3109 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3110 SDValue AddrAdd = 3111 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3112 SDValue AddrLo = 3113 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3114 3115 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3116 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3117 SDValue MNAdd = SDValue( 3118 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3119 0); 3120 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3121 } 3122 3123 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3124 SelectionDAG &DAG) const { 3125 SDLoc DL(N); 3126 EVT Ty = getPointerTy(DAG.getDataLayout()); 3127 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3128 const GlobalValue *GV = N->getGlobal(); 3129 3130 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3131 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3132 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3133 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3134 SDValue Load = 3135 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3136 3137 // Prepare argument list to generate call. 3138 ArgListTy Args; 3139 ArgListEntry Entry; 3140 Entry.Node = Load; 3141 Entry.Ty = CallTy; 3142 Args.push_back(Entry); 3143 3144 // Setup call to __tls_get_addr. 3145 TargetLowering::CallLoweringInfo CLI(DAG); 3146 CLI.setDebugLoc(DL) 3147 .setChain(DAG.getEntryNode()) 3148 .setLibCallee(CallingConv::C, CallTy, 3149 DAG.getExternalSymbol("__tls_get_addr", Ty), 3150 std::move(Args)); 3151 3152 return LowerCallTo(CLI).first; 3153 } 3154 3155 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3156 SelectionDAG &DAG) const { 3157 SDLoc DL(Op); 3158 EVT Ty = Op.getValueType(); 3159 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3160 int64_t Offset = N->getOffset(); 3161 MVT XLenVT = Subtarget.getXLenVT(); 3162 3163 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3164 3165 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3166 CallingConv::GHC) 3167 report_fatal_error("In GHC calling convention TLS is not supported"); 3168 3169 SDValue Addr; 3170 switch (Model) { 3171 case TLSModel::LocalExec: 3172 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3173 break; 3174 case TLSModel::InitialExec: 3175 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3176 break; 3177 case TLSModel::LocalDynamic: 3178 case TLSModel::GeneralDynamic: 3179 Addr = getDynamicTLSAddr(N, DAG); 3180 break; 3181 } 3182 3183 // In order to maximise the opportunity for common subexpression elimination, 3184 // emit a separate ADD node for the global address offset instead of folding 3185 // it in the global address node. Later peephole optimisations may choose to 3186 // fold it back in when profitable. 3187 if (Offset != 0) 3188 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3189 DAG.getConstant(Offset, DL, XLenVT)); 3190 return Addr; 3191 } 3192 3193 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3194 SDValue CondV = Op.getOperand(0); 3195 SDValue TrueV = Op.getOperand(1); 3196 SDValue FalseV = Op.getOperand(2); 3197 SDLoc DL(Op); 3198 MVT VT = Op.getSimpleValueType(); 3199 MVT XLenVT = Subtarget.getXLenVT(); 3200 3201 // Lower vector SELECTs to VSELECTs by splatting the condition. 3202 if (VT.isVector()) { 3203 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3204 SDValue CondSplat = VT.isScalableVector() 3205 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3206 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3207 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3208 } 3209 3210 // If the result type is XLenVT and CondV is the output of a SETCC node 3211 // which also operated on XLenVT inputs, then merge the SETCC node into the 3212 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3213 // compare+branch instructions. i.e.: 3214 // (select (setcc lhs, rhs, cc), truev, falsev) 3215 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3216 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3217 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3218 SDValue LHS = CondV.getOperand(0); 3219 SDValue RHS = CondV.getOperand(1); 3220 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3221 ISD::CondCode CCVal = CC->get(); 3222 3223 // Special case for a select of 2 constants that have a diffence of 1. 3224 // Normally this is done by DAGCombine, but if the select is introduced by 3225 // type legalization or op legalization, we miss it. Restricting to SETLT 3226 // case for now because that is what signed saturating add/sub need. 3227 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3228 // but we would probably want to swap the true/false values if the condition 3229 // is SETGE/SETLE to avoid an XORI. 3230 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3231 CCVal == ISD::SETLT) { 3232 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3233 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3234 if (TrueVal - 1 == FalseVal) 3235 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3236 if (TrueVal + 1 == FalseVal) 3237 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3238 } 3239 3240 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3241 3242 SDValue TargetCC = DAG.getCondCode(CCVal); 3243 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3244 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3245 } 3246 3247 // Otherwise: 3248 // (select condv, truev, falsev) 3249 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3250 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3251 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3252 3253 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3254 3255 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3256 } 3257 3258 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3259 SDValue CondV = Op.getOperand(1); 3260 SDLoc DL(Op); 3261 MVT XLenVT = Subtarget.getXLenVT(); 3262 3263 if (CondV.getOpcode() == ISD::SETCC && 3264 CondV.getOperand(0).getValueType() == XLenVT) { 3265 SDValue LHS = CondV.getOperand(0); 3266 SDValue RHS = CondV.getOperand(1); 3267 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3268 3269 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3270 3271 SDValue TargetCC = DAG.getCondCode(CCVal); 3272 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3273 LHS, RHS, TargetCC, Op.getOperand(2)); 3274 } 3275 3276 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3277 CondV, DAG.getConstant(0, DL, XLenVT), 3278 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3279 } 3280 3281 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3282 MachineFunction &MF = DAG.getMachineFunction(); 3283 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3284 3285 SDLoc DL(Op); 3286 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3287 getPointerTy(MF.getDataLayout())); 3288 3289 // vastart just stores the address of the VarArgsFrameIndex slot into the 3290 // memory location argument. 3291 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3292 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3293 MachinePointerInfo(SV)); 3294 } 3295 3296 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3297 SelectionDAG &DAG) const { 3298 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3299 MachineFunction &MF = DAG.getMachineFunction(); 3300 MachineFrameInfo &MFI = MF.getFrameInfo(); 3301 MFI.setFrameAddressIsTaken(true); 3302 Register FrameReg = RI.getFrameRegister(MF); 3303 int XLenInBytes = Subtarget.getXLen() / 8; 3304 3305 EVT VT = Op.getValueType(); 3306 SDLoc DL(Op); 3307 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3308 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3309 while (Depth--) { 3310 int Offset = -(XLenInBytes * 2); 3311 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3312 DAG.getIntPtrConstant(Offset, DL)); 3313 FrameAddr = 3314 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3315 } 3316 return FrameAddr; 3317 } 3318 3319 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3320 SelectionDAG &DAG) const { 3321 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3322 MachineFunction &MF = DAG.getMachineFunction(); 3323 MachineFrameInfo &MFI = MF.getFrameInfo(); 3324 MFI.setReturnAddressIsTaken(true); 3325 MVT XLenVT = Subtarget.getXLenVT(); 3326 int XLenInBytes = Subtarget.getXLen() / 8; 3327 3328 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3329 return SDValue(); 3330 3331 EVT VT = Op.getValueType(); 3332 SDLoc DL(Op); 3333 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3334 if (Depth) { 3335 int Off = -XLenInBytes; 3336 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3337 SDValue Offset = DAG.getConstant(Off, DL, VT); 3338 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3339 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3340 MachinePointerInfo()); 3341 } 3342 3343 // Return the value of the return address register, marking it an implicit 3344 // live-in. 3345 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3346 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3347 } 3348 3349 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3350 SelectionDAG &DAG) const { 3351 SDLoc DL(Op); 3352 SDValue Lo = Op.getOperand(0); 3353 SDValue Hi = Op.getOperand(1); 3354 SDValue Shamt = Op.getOperand(2); 3355 EVT VT = Lo.getValueType(); 3356 3357 // if Shamt-XLEN < 0: // Shamt < XLEN 3358 // Lo = Lo << Shamt 3359 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 3360 // else: 3361 // Lo = 0 3362 // Hi = Lo << (Shamt-XLEN) 3363 3364 SDValue Zero = DAG.getConstant(0, DL, VT); 3365 SDValue One = DAG.getConstant(1, DL, VT); 3366 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3367 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3368 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3369 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3370 3371 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3372 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3373 SDValue ShiftRightLo = 3374 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3375 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3376 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3377 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3378 3379 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3380 3381 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3382 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3383 3384 SDValue Parts[2] = {Lo, Hi}; 3385 return DAG.getMergeValues(Parts, DL); 3386 } 3387 3388 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3389 bool IsSRA) const { 3390 SDLoc DL(Op); 3391 SDValue Lo = Op.getOperand(0); 3392 SDValue Hi = Op.getOperand(1); 3393 SDValue Shamt = Op.getOperand(2); 3394 EVT VT = Lo.getValueType(); 3395 3396 // SRA expansion: 3397 // if Shamt-XLEN < 0: // Shamt < XLEN 3398 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3399 // Hi = Hi >>s Shamt 3400 // else: 3401 // Lo = Hi >>s (Shamt-XLEN); 3402 // Hi = Hi >>s (XLEN-1) 3403 // 3404 // SRL expansion: 3405 // if Shamt-XLEN < 0: // Shamt < XLEN 3406 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3407 // Hi = Hi >>u Shamt 3408 // else: 3409 // Lo = Hi >>u (Shamt-XLEN); 3410 // Hi = 0; 3411 3412 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3413 3414 SDValue Zero = DAG.getConstant(0, DL, VT); 3415 SDValue One = DAG.getConstant(1, DL, VT); 3416 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3417 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3418 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3419 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3420 3421 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3422 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3423 SDValue ShiftLeftHi = 3424 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 3425 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3426 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3427 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 3428 SDValue HiFalse = 3429 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 3430 3431 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3432 3433 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3434 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3435 3436 SDValue Parts[2] = {Lo, Hi}; 3437 return DAG.getMergeValues(Parts, DL); 3438 } 3439 3440 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 3441 // legal equivalently-sized i8 type, so we can use that as a go-between. 3442 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3443 SelectionDAG &DAG) const { 3444 SDLoc DL(Op); 3445 MVT VT = Op.getSimpleValueType(); 3446 SDValue SplatVal = Op.getOperand(0); 3447 // All-zeros or all-ones splats are handled specially. 3448 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 3449 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3450 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 3451 } 3452 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 3453 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3454 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3455 } 3456 MVT XLenVT = Subtarget.getXLenVT(); 3457 assert(SplatVal.getValueType() == XLenVT && 3458 "Unexpected type for i1 splat value"); 3459 MVT InterVT = VT.changeVectorElementType(MVT::i8); 3460 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 3461 DAG.getConstant(1, DL, XLenVT)); 3462 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 3463 SDValue Zero = DAG.getConstant(0, DL, InterVT); 3464 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 3465 } 3466 3467 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 3468 // illegal (currently only vXi64 RV32). 3469 // FIXME: We could also catch non-constant sign-extended i32 values and lower 3470 // them to SPLAT_VECTOR_I64 3471 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 3472 SelectionDAG &DAG) const { 3473 SDLoc DL(Op); 3474 MVT VecVT = Op.getSimpleValueType(); 3475 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 3476 "Unexpected SPLAT_VECTOR_PARTS lowering"); 3477 3478 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 3479 SDValue Lo = Op.getOperand(0); 3480 SDValue Hi = Op.getOperand(1); 3481 3482 if (VecVT.isFixedLengthVector()) { 3483 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3484 SDLoc DL(Op); 3485 SDValue Mask, VL; 3486 std::tie(Mask, VL) = 3487 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3488 3489 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 3490 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 3491 } 3492 3493 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 3494 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 3495 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 3496 // If Hi constant is all the same sign bit as Lo, lower this as a custom 3497 // node in order to try and match RVV vector/scalar instructions. 3498 if ((LoC >> 31) == HiC) 3499 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3500 } 3501 3502 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 3503 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 3504 isa<ConstantSDNode>(Hi.getOperand(1)) && 3505 Hi.getConstantOperandVal(1) == 31) 3506 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3507 3508 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 3509 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 3510 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64)); 3511 } 3512 3513 // Custom-lower extensions from mask vectors by using a vselect either with 1 3514 // for zero/any-extension or -1 for sign-extension: 3515 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 3516 // Note that any-extension is lowered identically to zero-extension. 3517 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 3518 int64_t ExtTrueVal) const { 3519 SDLoc DL(Op); 3520 MVT VecVT = Op.getSimpleValueType(); 3521 SDValue Src = Op.getOperand(0); 3522 // Only custom-lower extensions from mask types 3523 assert(Src.getValueType().isVector() && 3524 Src.getValueType().getVectorElementType() == MVT::i1); 3525 3526 MVT XLenVT = Subtarget.getXLenVT(); 3527 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 3528 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 3529 3530 if (VecVT.isScalableVector()) { 3531 // Be careful not to introduce illegal scalar types at this stage, and be 3532 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 3533 // illegal and must be expanded. Since we know that the constants are 3534 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 3535 bool IsRV32E64 = 3536 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 3537 3538 if (!IsRV32E64) { 3539 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 3540 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 3541 } else { 3542 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 3543 SplatTrueVal = 3544 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 3545 } 3546 3547 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 3548 } 3549 3550 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3551 MVT I1ContainerVT = 3552 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3553 3554 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 3555 3556 SDValue Mask, VL; 3557 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3558 3559 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 3560 SplatTrueVal = 3561 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 3562 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 3563 SplatTrueVal, SplatZero, VL); 3564 3565 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 3566 } 3567 3568 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 3569 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 3570 MVT ExtVT = Op.getSimpleValueType(); 3571 // Only custom-lower extensions from fixed-length vector types. 3572 if (!ExtVT.isFixedLengthVector()) 3573 return Op; 3574 MVT VT = Op.getOperand(0).getSimpleValueType(); 3575 // Grab the canonical container type for the extended type. Infer the smaller 3576 // type from that to ensure the same number of vector elements, as we know 3577 // the LMUL will be sufficient to hold the smaller type. 3578 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3579 // Get the extended container type manually to ensure the same number of 3580 // vector elements between source and dest. 3581 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3582 ContainerExtVT.getVectorElementCount()); 3583 3584 SDValue Op1 = 3585 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3586 3587 SDLoc DL(Op); 3588 SDValue Mask, VL; 3589 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3590 3591 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3592 3593 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3594 } 3595 3596 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3597 // setcc operation: 3598 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3599 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3600 SelectionDAG &DAG) const { 3601 SDLoc DL(Op); 3602 EVT MaskVT = Op.getValueType(); 3603 // Only expect to custom-lower truncations to mask types 3604 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3605 "Unexpected type for vector mask lowering"); 3606 SDValue Src = Op.getOperand(0); 3607 MVT VecVT = Src.getSimpleValueType(); 3608 3609 // If this is a fixed vector, we need to convert it to a scalable vector. 3610 MVT ContainerVT = VecVT; 3611 if (VecVT.isFixedLengthVector()) { 3612 ContainerVT = getContainerForFixedLengthVector(VecVT); 3613 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3614 } 3615 3616 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3617 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3618 3619 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3620 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3621 3622 if (VecVT.isScalableVector()) { 3623 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3624 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3625 } 3626 3627 SDValue Mask, VL; 3628 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3629 3630 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3631 SDValue Trunc = 3632 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3633 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3634 DAG.getCondCode(ISD::SETNE), Mask, VL); 3635 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3636 } 3637 3638 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 3639 // first position of a vector, and that vector is slid up to the insert index. 3640 // By limiting the active vector length to index+1 and merging with the 3641 // original vector (with an undisturbed tail policy for elements >= VL), we 3642 // achieve the desired result of leaving all elements untouched except the one 3643 // at VL-1, which is replaced with the desired value. 3644 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3645 SelectionDAG &DAG) const { 3646 SDLoc DL(Op); 3647 MVT VecVT = Op.getSimpleValueType(); 3648 SDValue Vec = Op.getOperand(0); 3649 SDValue Val = Op.getOperand(1); 3650 SDValue Idx = Op.getOperand(2); 3651 3652 if (VecVT.getVectorElementType() == MVT::i1) { 3653 // FIXME: For now we just promote to an i8 vector and insert into that, 3654 // but this is probably not optimal. 3655 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3656 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3657 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 3658 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 3659 } 3660 3661 MVT ContainerVT = VecVT; 3662 // If the operand is a fixed-length vector, convert to a scalable one. 3663 if (VecVT.isFixedLengthVector()) { 3664 ContainerVT = getContainerForFixedLengthVector(VecVT); 3665 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3666 } 3667 3668 MVT XLenVT = Subtarget.getXLenVT(); 3669 3670 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3671 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 3672 // Even i64-element vectors on RV32 can be lowered without scalar 3673 // legalization if the most-significant 32 bits of the value are not affected 3674 // by the sign-extension of the lower 32 bits. 3675 // TODO: We could also catch sign extensions of a 32-bit value. 3676 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 3677 const auto *CVal = cast<ConstantSDNode>(Val); 3678 if (isInt<32>(CVal->getSExtValue())) { 3679 IsLegalInsert = true; 3680 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3681 } 3682 } 3683 3684 SDValue Mask, VL; 3685 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3686 3687 SDValue ValInVec; 3688 3689 if (IsLegalInsert) { 3690 unsigned Opc = 3691 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 3692 if (isNullConstant(Idx)) { 3693 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 3694 if (!VecVT.isFixedLengthVector()) 3695 return Vec; 3696 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 3697 } 3698 ValInVec = 3699 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 3700 } else { 3701 // On RV32, i64-element vectors must be specially handled to place the 3702 // value at element 0, by using two vslide1up instructions in sequence on 3703 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 3704 // this. 3705 SDValue One = DAG.getConstant(1, DL, XLenVT); 3706 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 3707 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 3708 MVT I32ContainerVT = 3709 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 3710 SDValue I32Mask = 3711 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 3712 // Limit the active VL to two. 3713 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 3714 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 3715 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 3716 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 3717 InsertI64VL); 3718 // First slide in the hi value, then the lo in underneath it. 3719 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3720 ValHi, I32Mask, InsertI64VL); 3721 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3722 ValLo, I32Mask, InsertI64VL); 3723 // Bitcast back to the right container type. 3724 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 3725 } 3726 3727 // Now that the value is in a vector, slide it into position. 3728 SDValue InsertVL = 3729 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 3730 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3731 ValInVec, Idx, Mask, InsertVL); 3732 if (!VecVT.isFixedLengthVector()) 3733 return Slideup; 3734 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3735 } 3736 3737 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 3738 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 3739 // types this is done using VMV_X_S to allow us to glean information about the 3740 // sign bits of the result. 3741 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 3742 SelectionDAG &DAG) const { 3743 SDLoc DL(Op); 3744 SDValue Idx = Op.getOperand(1); 3745 SDValue Vec = Op.getOperand(0); 3746 EVT EltVT = Op.getValueType(); 3747 MVT VecVT = Vec.getSimpleValueType(); 3748 MVT XLenVT = Subtarget.getXLenVT(); 3749 3750 if (VecVT.getVectorElementType() == MVT::i1) { 3751 // FIXME: For now we just promote to an i8 vector and extract from that, 3752 // but this is probably not optimal. 3753 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3754 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3755 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 3756 } 3757 3758 // If this is a fixed vector, we need to convert it to a scalable vector. 3759 MVT ContainerVT = VecVT; 3760 if (VecVT.isFixedLengthVector()) { 3761 ContainerVT = getContainerForFixedLengthVector(VecVT); 3762 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3763 } 3764 3765 // If the index is 0, the vector is already in the right position. 3766 if (!isNullConstant(Idx)) { 3767 // Use a VL of 1 to avoid processing more elements than we need. 3768 SDValue VL = DAG.getConstant(1, DL, XLenVT); 3769 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3770 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3771 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3772 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 3773 } 3774 3775 if (!EltVT.isInteger()) { 3776 // Floating-point extracts are handled in TableGen. 3777 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 3778 DAG.getConstant(0, DL, XLenVT)); 3779 } 3780 3781 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 3782 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 3783 } 3784 3785 // Some RVV intrinsics may claim that they want an integer operand to be 3786 // promoted or expanded. 3787 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 3788 const RISCVSubtarget &Subtarget) { 3789 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3790 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 3791 "Unexpected opcode"); 3792 3793 if (!Subtarget.hasVInstructions()) 3794 return SDValue(); 3795 3796 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 3797 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 3798 SDLoc DL(Op); 3799 3800 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 3801 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 3802 if (!II || !II->SplatOperand) 3803 return SDValue(); 3804 3805 unsigned SplatOp = II->SplatOperand + HasChain; 3806 assert(SplatOp < Op.getNumOperands()); 3807 3808 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 3809 SDValue &ScalarOp = Operands[SplatOp]; 3810 MVT OpVT = ScalarOp.getSimpleValueType(); 3811 MVT XLenVT = Subtarget.getXLenVT(); 3812 3813 // If this isn't a scalar, or its type is XLenVT we're done. 3814 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 3815 return SDValue(); 3816 3817 // Simplest case is that the operand needs to be promoted to XLenVT. 3818 if (OpVT.bitsLT(XLenVT)) { 3819 // If the operand is a constant, sign extend to increase our chances 3820 // of being able to use a .vi instruction. ANY_EXTEND would become a 3821 // a zero extend and the simm5 check in isel would fail. 3822 // FIXME: Should we ignore the upper bits in isel instead? 3823 unsigned ExtOpc = 3824 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 3825 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 3826 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3827 } 3828 3829 // Use the previous operand to get the vXi64 VT. The result might be a mask 3830 // VT for compares. Using the previous operand assumes that the previous 3831 // operand will never have a smaller element size than a scalar operand and 3832 // that a widening operation never uses SEW=64. 3833 // NOTE: If this fails the below assert, we can probably just find the 3834 // element count from any operand or result and use it to construct the VT. 3835 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 3836 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 3837 3838 // The more complex case is when the scalar is larger than XLenVT. 3839 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 3840 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 3841 3842 // If this is a sign-extended 32-bit constant, we can truncate it and rely 3843 // on the instruction to sign-extend since SEW>XLEN. 3844 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 3845 if (isInt<32>(CVal->getSExtValue())) { 3846 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3847 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3848 } 3849 } 3850 3851 // We need to convert the scalar to a splat vector. 3852 // FIXME: Can we implicitly truncate the scalar if it is known to 3853 // be sign extended? 3854 // VL should be the last operand. 3855 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 3856 assert(VL.getValueType() == XLenVT); 3857 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 3858 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3859 } 3860 3861 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3862 SelectionDAG &DAG) const { 3863 unsigned IntNo = Op.getConstantOperandVal(0); 3864 SDLoc DL(Op); 3865 MVT XLenVT = Subtarget.getXLenVT(); 3866 3867 switch (IntNo) { 3868 default: 3869 break; // Don't custom lower most intrinsics. 3870 case Intrinsic::thread_pointer: { 3871 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3872 return DAG.getRegister(RISCV::X4, PtrVT); 3873 } 3874 case Intrinsic::riscv_orc_b: 3875 // Lower to the GORCI encoding for orc.b. 3876 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 3877 DAG.getConstant(7, DL, XLenVT)); 3878 case Intrinsic::riscv_grev: 3879 case Intrinsic::riscv_gorc: { 3880 unsigned Opc = 3881 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 3882 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3883 } 3884 case Intrinsic::riscv_shfl: 3885 case Intrinsic::riscv_unshfl: { 3886 unsigned Opc = 3887 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 3888 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3889 } 3890 case Intrinsic::riscv_bcompress: 3891 case Intrinsic::riscv_bdecompress: { 3892 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 3893 : RISCVISD::BDECOMPRESS; 3894 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3895 } 3896 case Intrinsic::riscv_vmv_x_s: 3897 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 3898 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 3899 Op.getOperand(1)); 3900 case Intrinsic::riscv_vmv_v_x: 3901 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 3902 Op.getSimpleValueType(), DL, DAG, Subtarget); 3903 case Intrinsic::riscv_vfmv_v_f: 3904 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 3905 Op.getOperand(1), Op.getOperand(2)); 3906 case Intrinsic::riscv_vmv_s_x: { 3907 SDValue Scalar = Op.getOperand(2); 3908 3909 if (Scalar.getValueType().bitsLE(XLenVT)) { 3910 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 3911 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 3912 Op.getOperand(1), Scalar, Op.getOperand(3)); 3913 } 3914 3915 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 3916 3917 // This is an i64 value that lives in two scalar registers. We have to 3918 // insert this in a convoluted way. First we build vXi64 splat containing 3919 // the/ two values that we assemble using some bit math. Next we'll use 3920 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 3921 // to merge element 0 from our splat into the source vector. 3922 // FIXME: This is probably not the best way to do this, but it is 3923 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 3924 // point. 3925 // sw lo, (a0) 3926 // sw hi, 4(a0) 3927 // vlse vX, (a0) 3928 // 3929 // vid.v vVid 3930 // vmseq.vx mMask, vVid, 0 3931 // vmerge.vvm vDest, vSrc, vVal, mMask 3932 MVT VT = Op.getSimpleValueType(); 3933 SDValue Vec = Op.getOperand(1); 3934 SDValue VL = Op.getOperand(3); 3935 3936 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 3937 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 3938 DAG.getConstant(0, DL, MVT::i32), VL); 3939 3940 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 3941 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3942 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3943 SDValue SelectCond = 3944 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 3945 DAG.getCondCode(ISD::SETEQ), Mask, VL); 3946 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 3947 Vec, VL); 3948 } 3949 case Intrinsic::riscv_vslide1up: 3950 case Intrinsic::riscv_vslide1down: 3951 case Intrinsic::riscv_vslide1up_mask: 3952 case Intrinsic::riscv_vslide1down_mask: { 3953 // We need to special case these when the scalar is larger than XLen. 3954 unsigned NumOps = Op.getNumOperands(); 3955 bool IsMasked = NumOps == 7; 3956 unsigned OpOffset = IsMasked ? 1 : 0; 3957 SDValue Scalar = Op.getOperand(2 + OpOffset); 3958 if (Scalar.getValueType().bitsLE(XLenVT)) 3959 break; 3960 3961 // Splatting a sign extended constant is fine. 3962 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 3963 if (isInt<32>(CVal->getSExtValue())) 3964 break; 3965 3966 MVT VT = Op.getSimpleValueType(); 3967 assert(VT.getVectorElementType() == MVT::i64 && 3968 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 3969 3970 // Convert the vector source to the equivalent nxvXi32 vector. 3971 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 3972 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 3973 3974 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3975 DAG.getConstant(0, DL, XLenVT)); 3976 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3977 DAG.getConstant(1, DL, XLenVT)); 3978 3979 // Double the VL since we halved SEW. 3980 SDValue VL = Op.getOperand(NumOps - (1 + OpOffset)); 3981 SDValue I32VL = 3982 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 3983 3984 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 3985 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 3986 3987 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 3988 // instructions. 3989 if (IntNo == Intrinsic::riscv_vslide1up || 3990 IntNo == Intrinsic::riscv_vslide1up_mask) { 3991 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 3992 I32Mask, I32VL); 3993 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 3994 I32Mask, I32VL); 3995 } else { 3996 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 3997 I32Mask, I32VL); 3998 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 3999 I32Mask, I32VL); 4000 } 4001 4002 // Convert back to nxvXi64. 4003 Vec = DAG.getBitcast(VT, Vec); 4004 4005 if (!IsMasked) 4006 return Vec; 4007 4008 // Apply mask after the operation. 4009 SDValue Mask = Op.getOperand(NumOps - 3); 4010 SDValue MaskedOff = Op.getOperand(1); 4011 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 4012 } 4013 } 4014 4015 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4016 } 4017 4018 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4019 SelectionDAG &DAG) const { 4020 unsigned IntNo = Op.getConstantOperandVal(1); 4021 switch (IntNo) { 4022 default: 4023 break; 4024 case Intrinsic::riscv_masked_strided_load: { 4025 SDLoc DL(Op); 4026 MVT XLenVT = Subtarget.getXLenVT(); 4027 4028 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4029 // the selection of the masked intrinsics doesn't do this for us. 4030 SDValue Mask = Op.getOperand(5); 4031 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4032 4033 MVT VT = Op->getSimpleValueType(0); 4034 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4035 4036 SDValue PassThru = Op.getOperand(2); 4037 if (!IsUnmasked) { 4038 MVT MaskVT = 4039 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4040 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4041 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4042 } 4043 4044 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4045 4046 SDValue IntID = DAG.getTargetConstant( 4047 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4048 XLenVT); 4049 4050 auto *Load = cast<MemIntrinsicSDNode>(Op); 4051 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4052 if (!IsUnmasked) 4053 Ops.push_back(PassThru); 4054 Ops.push_back(Op.getOperand(3)); // Ptr 4055 Ops.push_back(Op.getOperand(4)); // Stride 4056 if (!IsUnmasked) 4057 Ops.push_back(Mask); 4058 Ops.push_back(VL); 4059 if (!IsUnmasked) { 4060 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4061 Ops.push_back(Policy); 4062 } 4063 4064 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4065 SDValue Result = 4066 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4067 Load->getMemoryVT(), Load->getMemOperand()); 4068 SDValue Chain = Result.getValue(1); 4069 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4070 return DAG.getMergeValues({Result, Chain}, DL); 4071 } 4072 } 4073 4074 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4075 } 4076 4077 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4078 SelectionDAG &DAG) const { 4079 unsigned IntNo = Op.getConstantOperandVal(1); 4080 switch (IntNo) { 4081 default: 4082 break; 4083 case Intrinsic::riscv_masked_strided_store: { 4084 SDLoc DL(Op); 4085 MVT XLenVT = Subtarget.getXLenVT(); 4086 4087 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4088 // the selection of the masked intrinsics doesn't do this for us. 4089 SDValue Mask = Op.getOperand(5); 4090 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4091 4092 SDValue Val = Op.getOperand(2); 4093 MVT VT = Val.getSimpleValueType(); 4094 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4095 4096 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4097 if (!IsUnmasked) { 4098 MVT MaskVT = 4099 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4100 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4101 } 4102 4103 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4104 4105 SDValue IntID = DAG.getTargetConstant( 4106 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4107 XLenVT); 4108 4109 auto *Store = cast<MemIntrinsicSDNode>(Op); 4110 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4111 Ops.push_back(Val); 4112 Ops.push_back(Op.getOperand(3)); // Ptr 4113 Ops.push_back(Op.getOperand(4)); // Stride 4114 if (!IsUnmasked) 4115 Ops.push_back(Mask); 4116 Ops.push_back(VL); 4117 4118 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 4119 Ops, Store->getMemoryVT(), 4120 Store->getMemOperand()); 4121 } 4122 } 4123 4124 return SDValue(); 4125 } 4126 4127 static MVT getLMUL1VT(MVT VT) { 4128 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 4129 "Unexpected vector MVT"); 4130 return MVT::getScalableVectorVT( 4131 VT.getVectorElementType(), 4132 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 4133 } 4134 4135 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 4136 switch (ISDOpcode) { 4137 default: 4138 llvm_unreachable("Unhandled reduction"); 4139 case ISD::VECREDUCE_ADD: 4140 return RISCVISD::VECREDUCE_ADD_VL; 4141 case ISD::VECREDUCE_UMAX: 4142 return RISCVISD::VECREDUCE_UMAX_VL; 4143 case ISD::VECREDUCE_SMAX: 4144 return RISCVISD::VECREDUCE_SMAX_VL; 4145 case ISD::VECREDUCE_UMIN: 4146 return RISCVISD::VECREDUCE_UMIN_VL; 4147 case ISD::VECREDUCE_SMIN: 4148 return RISCVISD::VECREDUCE_SMIN_VL; 4149 case ISD::VECREDUCE_AND: 4150 return RISCVISD::VECREDUCE_AND_VL; 4151 case ISD::VECREDUCE_OR: 4152 return RISCVISD::VECREDUCE_OR_VL; 4153 case ISD::VECREDUCE_XOR: 4154 return RISCVISD::VECREDUCE_XOR_VL; 4155 } 4156 } 4157 4158 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 4159 SelectionDAG &DAG, 4160 bool IsVP) const { 4161 SDLoc DL(Op); 4162 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 4163 MVT VecVT = Vec.getSimpleValueType(); 4164 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 4165 Op.getOpcode() == ISD::VECREDUCE_OR || 4166 Op.getOpcode() == ISD::VECREDUCE_XOR || 4167 Op.getOpcode() == ISD::VP_REDUCE_AND || 4168 Op.getOpcode() == ISD::VP_REDUCE_OR || 4169 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 4170 "Unexpected reduction lowering"); 4171 4172 MVT XLenVT = Subtarget.getXLenVT(); 4173 assert(Op.getValueType() == XLenVT && 4174 "Expected reduction output to be legalized to XLenVT"); 4175 4176 MVT ContainerVT = VecVT; 4177 if (VecVT.isFixedLengthVector()) { 4178 ContainerVT = getContainerForFixedLengthVector(VecVT); 4179 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4180 } 4181 4182 SDValue Mask, VL; 4183 if (IsVP) { 4184 Mask = Op.getOperand(2); 4185 VL = Op.getOperand(3); 4186 } else { 4187 std::tie(Mask, VL) = 4188 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4189 } 4190 4191 unsigned BaseOpc; 4192 ISD::CondCode CC; 4193 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4194 4195 switch (Op.getOpcode()) { 4196 default: 4197 llvm_unreachable("Unhandled reduction"); 4198 case ISD::VECREDUCE_AND: 4199 case ISD::VP_REDUCE_AND: { 4200 // vcpop ~x == 0 4201 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 4202 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 4203 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4204 CC = ISD::SETEQ; 4205 BaseOpc = ISD::AND; 4206 break; 4207 } 4208 case ISD::VECREDUCE_OR: 4209 case ISD::VP_REDUCE_OR: 4210 // vcpop x != 0 4211 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4212 CC = ISD::SETNE; 4213 BaseOpc = ISD::OR; 4214 break; 4215 case ISD::VECREDUCE_XOR: 4216 case ISD::VP_REDUCE_XOR: { 4217 // ((vcpop x) & 1) != 0 4218 SDValue One = DAG.getConstant(1, DL, XLenVT); 4219 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4220 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 4221 CC = ISD::SETNE; 4222 BaseOpc = ISD::XOR; 4223 break; 4224 } 4225 } 4226 4227 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 4228 4229 if (!IsVP) 4230 return SetCC; 4231 4232 // Now include the start value in the operation. 4233 // Note that we must return the start value when no elements are operated 4234 // upon. The vcpop instructions we've emitted in each case above will return 4235 // 0 for an inactive vector, and so we've already received the neutral value: 4236 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 4237 // can simply include the start value. 4238 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 4239 } 4240 4241 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 4242 SelectionDAG &DAG) const { 4243 SDLoc DL(Op); 4244 SDValue Vec = Op.getOperand(0); 4245 EVT VecEVT = Vec.getValueType(); 4246 4247 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 4248 4249 // Due to ordering in legalize types we may have a vector type that needs to 4250 // be split. Do that manually so we can get down to a legal type. 4251 while (getTypeAction(*DAG.getContext(), VecEVT) == 4252 TargetLowering::TypeSplitVector) { 4253 SDValue Lo, Hi; 4254 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 4255 VecEVT = Lo.getValueType(); 4256 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 4257 } 4258 4259 // TODO: The type may need to be widened rather than split. Or widened before 4260 // it can be split. 4261 if (!isTypeLegal(VecEVT)) 4262 return SDValue(); 4263 4264 MVT VecVT = VecEVT.getSimpleVT(); 4265 MVT VecEltVT = VecVT.getVectorElementType(); 4266 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 4267 4268 MVT ContainerVT = VecVT; 4269 if (VecVT.isFixedLengthVector()) { 4270 ContainerVT = getContainerForFixedLengthVector(VecVT); 4271 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4272 } 4273 4274 MVT M1VT = getLMUL1VT(ContainerVT); 4275 4276 SDValue Mask, VL; 4277 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4278 4279 // FIXME: This is a VLMAX splat which might be too large and can prevent 4280 // vsetvli removal. 4281 SDValue NeutralElem = 4282 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 4283 SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem); 4284 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 4285 IdentitySplat, Mask, VL); 4286 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4287 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4288 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4289 } 4290 4291 // Given a reduction op, this function returns the matching reduction opcode, 4292 // the vector SDValue and the scalar SDValue required to lower this to a 4293 // RISCVISD node. 4294 static std::tuple<unsigned, SDValue, SDValue> 4295 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 4296 SDLoc DL(Op); 4297 auto Flags = Op->getFlags(); 4298 unsigned Opcode = Op.getOpcode(); 4299 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 4300 switch (Opcode) { 4301 default: 4302 llvm_unreachable("Unhandled reduction"); 4303 case ISD::VECREDUCE_FADD: 4304 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), 4305 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4306 case ISD::VECREDUCE_SEQ_FADD: 4307 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 4308 Op.getOperand(0)); 4309 case ISD::VECREDUCE_FMIN: 4310 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 4311 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4312 case ISD::VECREDUCE_FMAX: 4313 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 4314 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4315 } 4316 } 4317 4318 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 4319 SelectionDAG &DAG) const { 4320 SDLoc DL(Op); 4321 MVT VecEltVT = Op.getSimpleValueType(); 4322 4323 unsigned RVVOpcode; 4324 SDValue VectorVal, ScalarVal; 4325 std::tie(RVVOpcode, VectorVal, ScalarVal) = 4326 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 4327 MVT VecVT = VectorVal.getSimpleValueType(); 4328 4329 MVT ContainerVT = VecVT; 4330 if (VecVT.isFixedLengthVector()) { 4331 ContainerVT = getContainerForFixedLengthVector(VecVT); 4332 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 4333 } 4334 4335 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 4336 4337 SDValue Mask, VL; 4338 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4339 4340 // FIXME: This is a VLMAX splat which might be too large and can prevent 4341 // vsetvli removal. 4342 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal); 4343 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 4344 VectorVal, ScalarSplat, Mask, VL); 4345 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4346 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4347 } 4348 4349 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 4350 switch (ISDOpcode) { 4351 default: 4352 llvm_unreachable("Unhandled reduction"); 4353 case ISD::VP_REDUCE_ADD: 4354 return RISCVISD::VECREDUCE_ADD_VL; 4355 case ISD::VP_REDUCE_UMAX: 4356 return RISCVISD::VECREDUCE_UMAX_VL; 4357 case ISD::VP_REDUCE_SMAX: 4358 return RISCVISD::VECREDUCE_SMAX_VL; 4359 case ISD::VP_REDUCE_UMIN: 4360 return RISCVISD::VECREDUCE_UMIN_VL; 4361 case ISD::VP_REDUCE_SMIN: 4362 return RISCVISD::VECREDUCE_SMIN_VL; 4363 case ISD::VP_REDUCE_AND: 4364 return RISCVISD::VECREDUCE_AND_VL; 4365 case ISD::VP_REDUCE_OR: 4366 return RISCVISD::VECREDUCE_OR_VL; 4367 case ISD::VP_REDUCE_XOR: 4368 return RISCVISD::VECREDUCE_XOR_VL; 4369 case ISD::VP_REDUCE_FADD: 4370 return RISCVISD::VECREDUCE_FADD_VL; 4371 case ISD::VP_REDUCE_SEQ_FADD: 4372 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 4373 case ISD::VP_REDUCE_FMAX: 4374 return RISCVISD::VECREDUCE_FMAX_VL; 4375 case ISD::VP_REDUCE_FMIN: 4376 return RISCVISD::VECREDUCE_FMIN_VL; 4377 } 4378 } 4379 4380 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 4381 SelectionDAG &DAG) const { 4382 SDLoc DL(Op); 4383 SDValue Vec = Op.getOperand(1); 4384 EVT VecEVT = Vec.getValueType(); 4385 4386 // TODO: The type may need to be widened rather than split. Or widened before 4387 // it can be split. 4388 if (!isTypeLegal(VecEVT)) 4389 return SDValue(); 4390 4391 MVT VecVT = VecEVT.getSimpleVT(); 4392 MVT VecEltVT = VecVT.getVectorElementType(); 4393 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 4394 4395 MVT ContainerVT = VecVT; 4396 if (VecVT.isFixedLengthVector()) { 4397 ContainerVT = getContainerForFixedLengthVector(VecVT); 4398 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4399 } 4400 4401 SDValue VL = Op.getOperand(3); 4402 SDValue Mask = Op.getOperand(2); 4403 4404 MVT M1VT = getLMUL1VT(ContainerVT); 4405 MVT XLenVT = Subtarget.getXLenVT(); 4406 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 4407 4408 // FIXME: This is a VLMAX splat which might be too large and can prevent 4409 // vsetvli removal. 4410 SDValue StartSplat = DAG.getSplatVector(M1VT, DL, Op.getOperand(0)); 4411 SDValue Reduction = 4412 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 4413 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 4414 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4415 if (!VecVT.isInteger()) 4416 return Elt0; 4417 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4418 } 4419 4420 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 4421 SelectionDAG &DAG) const { 4422 SDValue Vec = Op.getOperand(0); 4423 SDValue SubVec = Op.getOperand(1); 4424 MVT VecVT = Vec.getSimpleValueType(); 4425 MVT SubVecVT = SubVec.getSimpleValueType(); 4426 4427 SDLoc DL(Op); 4428 MVT XLenVT = Subtarget.getXLenVT(); 4429 unsigned OrigIdx = Op.getConstantOperandVal(2); 4430 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4431 4432 // We don't have the ability to slide mask vectors up indexed by their i1 4433 // elements; the smallest we can do is i8. Often we are able to bitcast to 4434 // equivalent i8 vectors. Note that when inserting a fixed-length vector 4435 // into a scalable one, we might not necessarily have enough scalable 4436 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 4437 if (SubVecVT.getVectorElementType() == MVT::i1 && 4438 (OrigIdx != 0 || !Vec.isUndef())) { 4439 if (VecVT.getVectorMinNumElements() >= 8 && 4440 SubVecVT.getVectorMinNumElements() >= 8) { 4441 assert(OrigIdx % 8 == 0 && "Invalid index"); 4442 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4443 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4444 "Unexpected mask vector lowering"); 4445 OrigIdx /= 8; 4446 SubVecVT = 4447 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4448 SubVecVT.isScalableVector()); 4449 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4450 VecVT.isScalableVector()); 4451 Vec = DAG.getBitcast(VecVT, Vec); 4452 SubVec = DAG.getBitcast(SubVecVT, SubVec); 4453 } else { 4454 // We can't slide this mask vector up indexed by its i1 elements. 4455 // This poses a problem when we wish to insert a scalable vector which 4456 // can't be re-expressed as a larger type. Just choose the slow path and 4457 // extend to a larger type, then truncate back down. 4458 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4459 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4460 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4461 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 4462 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 4463 Op.getOperand(2)); 4464 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 4465 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 4466 } 4467 } 4468 4469 // If the subvector vector is a fixed-length type, we cannot use subregister 4470 // manipulation to simplify the codegen; we don't know which register of a 4471 // LMUL group contains the specific subvector as we only know the minimum 4472 // register size. Therefore we must slide the vector group up the full 4473 // amount. 4474 if (SubVecVT.isFixedLengthVector()) { 4475 if (OrigIdx == 0 && Vec.isUndef()) 4476 return Op; 4477 MVT ContainerVT = VecVT; 4478 if (VecVT.isFixedLengthVector()) { 4479 ContainerVT = getContainerForFixedLengthVector(VecVT); 4480 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4481 } 4482 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 4483 DAG.getUNDEF(ContainerVT), SubVec, 4484 DAG.getConstant(0, DL, XLenVT)); 4485 SDValue Mask = 4486 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4487 // Set the vector length to only the number of elements we care about. Note 4488 // that for slideup this includes the offset. 4489 SDValue VL = 4490 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 4491 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4492 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4493 SubVec, SlideupAmt, Mask, VL); 4494 if (VecVT.isFixedLengthVector()) 4495 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4496 return DAG.getBitcast(Op.getValueType(), Slideup); 4497 } 4498 4499 unsigned SubRegIdx, RemIdx; 4500 std::tie(SubRegIdx, RemIdx) = 4501 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4502 VecVT, SubVecVT, OrigIdx, TRI); 4503 4504 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 4505 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 4506 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 4507 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 4508 4509 // 1. If the Idx has been completely eliminated and this subvector's size is 4510 // a vector register or a multiple thereof, or the surrounding elements are 4511 // undef, then this is a subvector insert which naturally aligns to a vector 4512 // register. These can easily be handled using subregister manipulation. 4513 // 2. If the subvector is smaller than a vector register, then the insertion 4514 // must preserve the undisturbed elements of the register. We do this by 4515 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 4516 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 4517 // subvector within the vector register, and an INSERT_SUBVECTOR of that 4518 // LMUL=1 type back into the larger vector (resolving to another subregister 4519 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 4520 // to avoid allocating a large register group to hold our subvector. 4521 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 4522 return Op; 4523 4524 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 4525 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 4526 // (in our case undisturbed). This means we can set up a subvector insertion 4527 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 4528 // size of the subvector. 4529 MVT InterSubVT = VecVT; 4530 SDValue AlignedExtract = Vec; 4531 unsigned AlignedIdx = OrigIdx - RemIdx; 4532 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4533 InterSubVT = getLMUL1VT(VecVT); 4534 // Extract a subvector equal to the nearest full vector register type. This 4535 // should resolve to a EXTRACT_SUBREG instruction. 4536 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4537 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4538 } 4539 4540 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4541 // For scalable vectors this must be further multiplied by vscale. 4542 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 4543 4544 SDValue Mask, VL; 4545 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4546 4547 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 4548 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 4549 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 4550 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 4551 4552 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 4553 DAG.getUNDEF(InterSubVT), SubVec, 4554 DAG.getConstant(0, DL, XLenVT)); 4555 4556 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 4557 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 4558 4559 // If required, insert this subvector back into the correct vector register. 4560 // This should resolve to an INSERT_SUBREG instruction. 4561 if (VecVT.bitsGT(InterSubVT)) 4562 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 4563 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4564 4565 // We might have bitcast from a mask type: cast back to the original type if 4566 // required. 4567 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 4568 } 4569 4570 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 4571 SelectionDAG &DAG) const { 4572 SDValue Vec = Op.getOperand(0); 4573 MVT SubVecVT = Op.getSimpleValueType(); 4574 MVT VecVT = Vec.getSimpleValueType(); 4575 4576 SDLoc DL(Op); 4577 MVT XLenVT = Subtarget.getXLenVT(); 4578 unsigned OrigIdx = Op.getConstantOperandVal(1); 4579 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4580 4581 // We don't have the ability to slide mask vectors down indexed by their i1 4582 // elements; the smallest we can do is i8. Often we are able to bitcast to 4583 // equivalent i8 vectors. Note that when extracting a fixed-length vector 4584 // from a scalable one, we might not necessarily have enough scalable 4585 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 4586 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 4587 if (VecVT.getVectorMinNumElements() >= 8 && 4588 SubVecVT.getVectorMinNumElements() >= 8) { 4589 assert(OrigIdx % 8 == 0 && "Invalid index"); 4590 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4591 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4592 "Unexpected mask vector lowering"); 4593 OrigIdx /= 8; 4594 SubVecVT = 4595 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4596 SubVecVT.isScalableVector()); 4597 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4598 VecVT.isScalableVector()); 4599 Vec = DAG.getBitcast(VecVT, Vec); 4600 } else { 4601 // We can't slide this mask vector down, indexed by its i1 elements. 4602 // This poses a problem when we wish to extract a scalable vector which 4603 // can't be re-expressed as a larger type. Just choose the slow path and 4604 // extend to a larger type, then truncate back down. 4605 // TODO: We could probably improve this when extracting certain fixed 4606 // from fixed, where we can extract as i8 and shift the correct element 4607 // right to reach the desired subvector? 4608 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4609 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4610 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4611 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 4612 Op.getOperand(1)); 4613 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 4614 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 4615 } 4616 } 4617 4618 // If the subvector vector is a fixed-length type, we cannot use subregister 4619 // manipulation to simplify the codegen; we don't know which register of a 4620 // LMUL group contains the specific subvector as we only know the minimum 4621 // register size. Therefore we must slide the vector group down the full 4622 // amount. 4623 if (SubVecVT.isFixedLengthVector()) { 4624 // With an index of 0 this is a cast-like subvector, which can be performed 4625 // with subregister operations. 4626 if (OrigIdx == 0) 4627 return Op; 4628 MVT ContainerVT = VecVT; 4629 if (VecVT.isFixedLengthVector()) { 4630 ContainerVT = getContainerForFixedLengthVector(VecVT); 4631 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4632 } 4633 SDValue Mask = 4634 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4635 // Set the vector length to only the number of elements we care about. This 4636 // avoids sliding down elements we're going to discard straight away. 4637 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 4638 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4639 SDValue Slidedown = 4640 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4641 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 4642 // Now we can use a cast-like subvector extract to get the result. 4643 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4644 DAG.getConstant(0, DL, XLenVT)); 4645 return DAG.getBitcast(Op.getValueType(), Slidedown); 4646 } 4647 4648 unsigned SubRegIdx, RemIdx; 4649 std::tie(SubRegIdx, RemIdx) = 4650 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4651 VecVT, SubVecVT, OrigIdx, TRI); 4652 4653 // If the Idx has been completely eliminated then this is a subvector extract 4654 // which naturally aligns to a vector register. These can easily be handled 4655 // using subregister manipulation. 4656 if (RemIdx == 0) 4657 return Op; 4658 4659 // Else we must shift our vector register directly to extract the subvector. 4660 // Do this using VSLIDEDOWN. 4661 4662 // If the vector type is an LMUL-group type, extract a subvector equal to the 4663 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 4664 // instruction. 4665 MVT InterSubVT = VecVT; 4666 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4667 InterSubVT = getLMUL1VT(VecVT); 4668 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4669 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 4670 } 4671 4672 // Slide this vector register down by the desired number of elements in order 4673 // to place the desired subvector starting at element 0. 4674 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4675 // For scalable vectors this must be further multiplied by vscale. 4676 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 4677 4678 SDValue Mask, VL; 4679 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 4680 SDValue Slidedown = 4681 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 4682 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 4683 4684 // Now the vector is in the right position, extract our final subvector. This 4685 // should resolve to a COPY. 4686 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4687 DAG.getConstant(0, DL, XLenVT)); 4688 4689 // We might have bitcast from a mask type: cast back to the original type if 4690 // required. 4691 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 4692 } 4693 4694 // Lower step_vector to the vid instruction. Any non-identity step value must 4695 // be accounted for my manual expansion. 4696 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 4697 SelectionDAG &DAG) const { 4698 SDLoc DL(Op); 4699 MVT VT = Op.getSimpleValueType(); 4700 MVT XLenVT = Subtarget.getXLenVT(); 4701 SDValue Mask, VL; 4702 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 4703 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4704 uint64_t StepValImm = Op.getConstantOperandVal(0); 4705 if (StepValImm != 1) { 4706 if (isPowerOf2_64(StepValImm)) { 4707 SDValue StepVal = 4708 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4709 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 4710 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 4711 } else { 4712 SDValue StepVal = lowerScalarSplat( 4713 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 4714 DL, DAG, Subtarget); 4715 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 4716 } 4717 } 4718 return StepVec; 4719 } 4720 4721 // Implement vector_reverse using vrgather.vv with indices determined by 4722 // subtracting the id of each element from (VLMAX-1). This will convert 4723 // the indices like so: 4724 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 4725 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 4726 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 4727 SelectionDAG &DAG) const { 4728 SDLoc DL(Op); 4729 MVT VecVT = Op.getSimpleValueType(); 4730 unsigned EltSize = VecVT.getScalarSizeInBits(); 4731 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 4732 4733 unsigned MaxVLMAX = 0; 4734 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 4735 if (VectorBitsMax != 0) 4736 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 4737 4738 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 4739 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 4740 4741 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 4742 // to use vrgatherei16.vv. 4743 // TODO: It's also possible to use vrgatherei16.vv for other types to 4744 // decrease register width for the index calculation. 4745 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 4746 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 4747 // Reverse each half, then reassemble them in reverse order. 4748 // NOTE: It's also possible that after splitting that VLMAX no longer 4749 // requires vrgatherei16.vv. 4750 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 4751 SDValue Lo, Hi; 4752 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4753 EVT LoVT, HiVT; 4754 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 4755 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 4756 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 4757 // Reassemble the low and high pieces reversed. 4758 // FIXME: This is a CONCAT_VECTORS. 4759 SDValue Res = 4760 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 4761 DAG.getIntPtrConstant(0, DL)); 4762 return DAG.getNode( 4763 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 4764 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 4765 } 4766 4767 // Just promote the int type to i16 which will double the LMUL. 4768 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 4769 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 4770 } 4771 4772 MVT XLenVT = Subtarget.getXLenVT(); 4773 SDValue Mask, VL; 4774 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4775 4776 // Calculate VLMAX-1 for the desired SEW. 4777 unsigned MinElts = VecVT.getVectorMinNumElements(); 4778 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 4779 DAG.getConstant(MinElts, DL, XLenVT)); 4780 SDValue VLMinus1 = 4781 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 4782 4783 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 4784 bool IsRV32E64 = 4785 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 4786 SDValue SplatVL; 4787 if (!IsRV32E64) 4788 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 4789 else 4790 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 4791 4792 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 4793 SDValue Indices = 4794 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 4795 4796 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 4797 } 4798 4799 SDValue 4800 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 4801 SelectionDAG &DAG) const { 4802 SDLoc DL(Op); 4803 auto *Load = cast<LoadSDNode>(Op); 4804 4805 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4806 Load->getMemoryVT(), 4807 *Load->getMemOperand()) && 4808 "Expecting a correctly-aligned load"); 4809 4810 MVT VT = Op.getSimpleValueType(); 4811 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4812 4813 SDValue VL = 4814 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4815 4816 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4817 SDValue NewLoad = DAG.getMemIntrinsicNode( 4818 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 4819 Load->getMemoryVT(), Load->getMemOperand()); 4820 4821 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 4822 return DAG.getMergeValues({Result, Load->getChain()}, DL); 4823 } 4824 4825 SDValue 4826 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 4827 SelectionDAG &DAG) const { 4828 SDLoc DL(Op); 4829 auto *Store = cast<StoreSDNode>(Op); 4830 4831 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4832 Store->getMemoryVT(), 4833 *Store->getMemOperand()) && 4834 "Expecting a correctly-aligned store"); 4835 4836 SDValue StoreVal = Store->getValue(); 4837 MVT VT = StoreVal.getSimpleValueType(); 4838 4839 // If the size less than a byte, we need to pad with zeros to make a byte. 4840 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 4841 VT = MVT::v8i1; 4842 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 4843 DAG.getConstant(0, DL, VT), StoreVal, 4844 DAG.getIntPtrConstant(0, DL)); 4845 } 4846 4847 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4848 4849 SDValue VL = 4850 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4851 4852 SDValue NewValue = 4853 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 4854 return DAG.getMemIntrinsicNode( 4855 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 4856 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 4857 Store->getMemoryVT(), Store->getMemOperand()); 4858 } 4859 4860 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 4861 SelectionDAG &DAG) const { 4862 SDLoc DL(Op); 4863 MVT VT = Op.getSimpleValueType(); 4864 4865 const auto *MemSD = cast<MemSDNode>(Op); 4866 EVT MemVT = MemSD->getMemoryVT(); 4867 MachineMemOperand *MMO = MemSD->getMemOperand(); 4868 SDValue Chain = MemSD->getChain(); 4869 SDValue BasePtr = MemSD->getBasePtr(); 4870 4871 SDValue Mask, PassThru, VL; 4872 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 4873 Mask = VPLoad->getMask(); 4874 PassThru = DAG.getUNDEF(VT); 4875 VL = VPLoad->getVectorLength(); 4876 } else { 4877 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 4878 Mask = MLoad->getMask(); 4879 PassThru = MLoad->getPassThru(); 4880 } 4881 4882 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4883 4884 MVT XLenVT = Subtarget.getXLenVT(); 4885 4886 MVT ContainerVT = VT; 4887 if (VT.isFixedLengthVector()) { 4888 ContainerVT = getContainerForFixedLengthVector(VT); 4889 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4890 if (!IsUnmasked) { 4891 MVT MaskVT = 4892 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4893 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4894 } 4895 } 4896 4897 if (!VL) 4898 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 4899 4900 unsigned IntID = 4901 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 4902 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 4903 if (!IsUnmasked) 4904 Ops.push_back(PassThru); 4905 Ops.push_back(BasePtr); 4906 if (!IsUnmasked) 4907 Ops.push_back(Mask); 4908 Ops.push_back(VL); 4909 if (!IsUnmasked) 4910 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 4911 4912 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4913 4914 SDValue Result = 4915 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 4916 Chain = Result.getValue(1); 4917 4918 if (VT.isFixedLengthVector()) 4919 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4920 4921 return DAG.getMergeValues({Result, Chain}, DL); 4922 } 4923 4924 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 4925 SelectionDAG &DAG) const { 4926 SDLoc DL(Op); 4927 4928 const auto *MemSD = cast<MemSDNode>(Op); 4929 EVT MemVT = MemSD->getMemoryVT(); 4930 MachineMemOperand *MMO = MemSD->getMemOperand(); 4931 SDValue Chain = MemSD->getChain(); 4932 SDValue BasePtr = MemSD->getBasePtr(); 4933 SDValue Val, Mask, VL; 4934 4935 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 4936 Val = VPStore->getValue(); 4937 Mask = VPStore->getMask(); 4938 VL = VPStore->getVectorLength(); 4939 } else { 4940 const auto *MStore = cast<MaskedStoreSDNode>(Op); 4941 Val = MStore->getValue(); 4942 Mask = MStore->getMask(); 4943 } 4944 4945 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4946 4947 MVT VT = Val.getSimpleValueType(); 4948 MVT XLenVT = Subtarget.getXLenVT(); 4949 4950 MVT ContainerVT = VT; 4951 if (VT.isFixedLengthVector()) { 4952 ContainerVT = getContainerForFixedLengthVector(VT); 4953 4954 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4955 if (!IsUnmasked) { 4956 MVT MaskVT = 4957 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4958 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4959 } 4960 } 4961 4962 if (!VL) 4963 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 4964 4965 unsigned IntID = 4966 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 4967 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 4968 Ops.push_back(Val); 4969 Ops.push_back(BasePtr); 4970 if (!IsUnmasked) 4971 Ops.push_back(Mask); 4972 Ops.push_back(VL); 4973 4974 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 4975 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 4976 } 4977 4978 SDValue 4979 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 4980 SelectionDAG &DAG) const { 4981 MVT InVT = Op.getOperand(0).getSimpleValueType(); 4982 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 4983 4984 MVT VT = Op.getSimpleValueType(); 4985 4986 SDValue Op1 = 4987 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4988 SDValue Op2 = 4989 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4990 4991 SDLoc DL(Op); 4992 SDValue VL = 4993 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4994 4995 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4996 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4997 4998 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 4999 Op.getOperand(2), Mask, VL); 5000 5001 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 5002 } 5003 5004 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5005 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5006 MVT VT = Op.getSimpleValueType(); 5007 5008 if (VT.getVectorElementType() == MVT::i1) 5009 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5010 5011 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5012 } 5013 5014 SDValue 5015 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5016 SelectionDAG &DAG) const { 5017 unsigned Opc; 5018 switch (Op.getOpcode()) { 5019 default: llvm_unreachable("Unexpected opcode!"); 5020 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5021 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5022 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5023 } 5024 5025 return lowerToScalableOp(Op, DAG, Opc); 5026 } 5027 5028 // Lower vector ABS to smax(X, sub(0, X)). 5029 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5030 SDLoc DL(Op); 5031 MVT VT = Op.getSimpleValueType(); 5032 SDValue X = Op.getOperand(0); 5033 5034 assert(VT.isFixedLengthVector() && "Unexpected type"); 5035 5036 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5037 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5038 5039 SDValue Mask, VL; 5040 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5041 5042 SDValue SplatZero = 5043 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5044 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 5045 SDValue NegX = 5046 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 5047 SDValue Max = 5048 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 5049 5050 return convertFromScalableVector(VT, Max, DAG, Subtarget); 5051 } 5052 5053 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 5054 SDValue Op, SelectionDAG &DAG) const { 5055 SDLoc DL(Op); 5056 MVT VT = Op.getSimpleValueType(); 5057 SDValue Mag = Op.getOperand(0); 5058 SDValue Sign = Op.getOperand(1); 5059 assert(Mag.getValueType() == Sign.getValueType() && 5060 "Can only handle COPYSIGN with matching types."); 5061 5062 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5063 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 5064 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 5065 5066 SDValue Mask, VL; 5067 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5068 5069 SDValue CopySign = 5070 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 5071 5072 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 5073 } 5074 5075 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 5076 SDValue Op, SelectionDAG &DAG) const { 5077 MVT VT = Op.getSimpleValueType(); 5078 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5079 5080 MVT I1ContainerVT = 5081 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5082 5083 SDValue CC = 5084 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 5085 SDValue Op1 = 5086 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5087 SDValue Op2 = 5088 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 5089 5090 SDLoc DL(Op); 5091 SDValue Mask, VL; 5092 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5093 5094 SDValue Select = 5095 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 5096 5097 return convertFromScalableVector(VT, Select, DAG, Subtarget); 5098 } 5099 5100 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 5101 unsigned NewOpc, 5102 bool HasMask) const { 5103 MVT VT = Op.getSimpleValueType(); 5104 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5105 5106 // Create list of operands by converting existing ones to scalable types. 5107 SmallVector<SDValue, 6> Ops; 5108 for (const SDValue &V : Op->op_values()) { 5109 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5110 5111 // Pass through non-vector operands. 5112 if (!V.getValueType().isVector()) { 5113 Ops.push_back(V); 5114 continue; 5115 } 5116 5117 // "cast" fixed length vector to a scalable vector. 5118 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 5119 "Only fixed length vectors are supported!"); 5120 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5121 } 5122 5123 SDLoc DL(Op); 5124 SDValue Mask, VL; 5125 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5126 if (HasMask) 5127 Ops.push_back(Mask); 5128 Ops.push_back(VL); 5129 5130 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 5131 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 5132 } 5133 5134 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 5135 // * Operands of each node are assumed to be in the same order. 5136 // * The EVL operand is promoted from i32 to i64 on RV64. 5137 // * Fixed-length vectors are converted to their scalable-vector container 5138 // types. 5139 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 5140 unsigned RISCVISDOpc) const { 5141 SDLoc DL(Op); 5142 MVT VT = Op.getSimpleValueType(); 5143 SmallVector<SDValue, 4> Ops; 5144 5145 for (const auto &OpIdx : enumerate(Op->ops())) { 5146 SDValue V = OpIdx.value(); 5147 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5148 // Pass through operands which aren't fixed-length vectors. 5149 if (!V.getValueType().isFixedLengthVector()) { 5150 Ops.push_back(V); 5151 continue; 5152 } 5153 // "cast" fixed length vector to a scalable vector. 5154 MVT OpVT = V.getSimpleValueType(); 5155 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 5156 assert(useRVVForFixedLengthVectorVT(OpVT) && 5157 "Only fixed length vectors are supported!"); 5158 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5159 } 5160 5161 if (!VT.isFixedLengthVector()) 5162 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 5163 5164 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5165 5166 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 5167 5168 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 5169 } 5170 5171 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 5172 // matched to a RVV indexed load. The RVV indexed load instructions only 5173 // support the "unsigned unscaled" addressing mode; indices are implicitly 5174 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5175 // signed or scaled indexing is extended to the XLEN value type and scaled 5176 // accordingly. 5177 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 5178 SelectionDAG &DAG) const { 5179 SDLoc DL(Op); 5180 MVT VT = Op.getSimpleValueType(); 5181 5182 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5183 EVT MemVT = MemSD->getMemoryVT(); 5184 MachineMemOperand *MMO = MemSD->getMemOperand(); 5185 SDValue Chain = MemSD->getChain(); 5186 SDValue BasePtr = MemSD->getBasePtr(); 5187 5188 ISD::LoadExtType LoadExtType; 5189 SDValue Index, Mask, PassThru, VL; 5190 5191 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 5192 Index = VPGN->getIndex(); 5193 Mask = VPGN->getMask(); 5194 PassThru = DAG.getUNDEF(VT); 5195 VL = VPGN->getVectorLength(); 5196 // VP doesn't support extending loads. 5197 LoadExtType = ISD::NON_EXTLOAD; 5198 } else { 5199 // Else it must be a MGATHER. 5200 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 5201 Index = MGN->getIndex(); 5202 Mask = MGN->getMask(); 5203 PassThru = MGN->getPassThru(); 5204 LoadExtType = MGN->getExtensionType(); 5205 } 5206 5207 MVT IndexVT = Index.getSimpleValueType(); 5208 MVT XLenVT = Subtarget.getXLenVT(); 5209 5210 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5211 "Unexpected VTs!"); 5212 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5213 // Targets have to explicitly opt-in for extending vector loads. 5214 assert(LoadExtType == ISD::NON_EXTLOAD && 5215 "Unexpected extending MGATHER/VP_GATHER"); 5216 (void)LoadExtType; 5217 5218 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5219 // the selection of the masked intrinsics doesn't do this for us. 5220 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5221 5222 MVT ContainerVT = VT; 5223 if (VT.isFixedLengthVector()) { 5224 // We need to use the larger of the result and index type to determine the 5225 // scalable type to use so we don't increase LMUL for any operand/result. 5226 if (VT.bitsGE(IndexVT)) { 5227 ContainerVT = getContainerForFixedLengthVector(VT); 5228 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5229 ContainerVT.getVectorElementCount()); 5230 } else { 5231 IndexVT = getContainerForFixedLengthVector(IndexVT); 5232 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 5233 IndexVT.getVectorElementCount()); 5234 } 5235 5236 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5237 5238 if (!IsUnmasked) { 5239 MVT MaskVT = 5240 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5241 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5242 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5243 } 5244 } 5245 5246 if (!VL) 5247 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5248 5249 unsigned IntID = 5250 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 5251 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5252 if (!IsUnmasked) 5253 Ops.push_back(PassThru); 5254 Ops.push_back(BasePtr); 5255 Ops.push_back(Index); 5256 if (!IsUnmasked) 5257 Ops.push_back(Mask); 5258 Ops.push_back(VL); 5259 if (!IsUnmasked) 5260 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5261 5262 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5263 SDValue Result = 5264 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5265 Chain = Result.getValue(1); 5266 5267 if (VT.isFixedLengthVector()) 5268 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5269 5270 return DAG.getMergeValues({Result, Chain}, DL); 5271 } 5272 5273 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 5274 // matched to a RVV indexed store. The RVV indexed store instructions only 5275 // support the "unsigned unscaled" addressing mode; indices are implicitly 5276 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5277 // signed or scaled indexing is extended to the XLEN value type and scaled 5278 // accordingly. 5279 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 5280 SelectionDAG &DAG) const { 5281 SDLoc DL(Op); 5282 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5283 EVT MemVT = MemSD->getMemoryVT(); 5284 MachineMemOperand *MMO = MemSD->getMemOperand(); 5285 SDValue Chain = MemSD->getChain(); 5286 SDValue BasePtr = MemSD->getBasePtr(); 5287 5288 bool IsTruncatingStore = false; 5289 SDValue Index, Mask, Val, VL; 5290 5291 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 5292 Index = VPSN->getIndex(); 5293 Mask = VPSN->getMask(); 5294 Val = VPSN->getValue(); 5295 VL = VPSN->getVectorLength(); 5296 // VP doesn't support truncating stores. 5297 IsTruncatingStore = false; 5298 } else { 5299 // Else it must be a MSCATTER. 5300 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 5301 Index = MSN->getIndex(); 5302 Mask = MSN->getMask(); 5303 Val = MSN->getValue(); 5304 IsTruncatingStore = MSN->isTruncatingStore(); 5305 } 5306 5307 MVT VT = Val.getSimpleValueType(); 5308 MVT IndexVT = Index.getSimpleValueType(); 5309 MVT XLenVT = Subtarget.getXLenVT(); 5310 5311 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5312 "Unexpected VTs!"); 5313 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5314 // Targets have to explicitly opt-in for extending vector loads and 5315 // truncating vector stores. 5316 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 5317 (void)IsTruncatingStore; 5318 5319 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5320 // the selection of the masked intrinsics doesn't do this for us. 5321 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5322 5323 MVT ContainerVT = VT; 5324 if (VT.isFixedLengthVector()) { 5325 // We need to use the larger of the value and index type to determine the 5326 // scalable type to use so we don't increase LMUL for any operand/result. 5327 if (VT.bitsGE(IndexVT)) { 5328 ContainerVT = getContainerForFixedLengthVector(VT); 5329 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5330 ContainerVT.getVectorElementCount()); 5331 } else { 5332 IndexVT = getContainerForFixedLengthVector(IndexVT); 5333 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 5334 IndexVT.getVectorElementCount()); 5335 } 5336 5337 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5338 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5339 5340 if (!IsUnmasked) { 5341 MVT MaskVT = 5342 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5343 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5344 } 5345 } 5346 5347 if (!VL) 5348 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5349 5350 unsigned IntID = 5351 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 5352 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5353 Ops.push_back(Val); 5354 Ops.push_back(BasePtr); 5355 Ops.push_back(Index); 5356 if (!IsUnmasked) 5357 Ops.push_back(Mask); 5358 Ops.push_back(VL); 5359 5360 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5361 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5362 } 5363 5364 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 5365 SelectionDAG &DAG) const { 5366 const MVT XLenVT = Subtarget.getXLenVT(); 5367 SDLoc DL(Op); 5368 SDValue Chain = Op->getOperand(0); 5369 SDValue SysRegNo = DAG.getTargetConstant( 5370 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5371 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 5372 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 5373 5374 // Encoding used for rounding mode in RISCV differs from that used in 5375 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 5376 // table, which consists of a sequence of 4-bit fields, each representing 5377 // corresponding FLT_ROUNDS mode. 5378 static const int Table = 5379 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 5380 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 5381 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 5382 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 5383 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 5384 5385 SDValue Shift = 5386 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 5387 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5388 DAG.getConstant(Table, DL, XLenVT), Shift); 5389 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5390 DAG.getConstant(7, DL, XLenVT)); 5391 5392 return DAG.getMergeValues({Masked, Chain}, DL); 5393 } 5394 5395 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 5396 SelectionDAG &DAG) const { 5397 const MVT XLenVT = Subtarget.getXLenVT(); 5398 SDLoc DL(Op); 5399 SDValue Chain = Op->getOperand(0); 5400 SDValue RMValue = Op->getOperand(1); 5401 SDValue SysRegNo = DAG.getTargetConstant( 5402 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5403 5404 // Encoding used for rounding mode in RISCV differs from that used in 5405 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 5406 // a table, which consists of a sequence of 4-bit fields, each representing 5407 // corresponding RISCV mode. 5408 static const unsigned Table = 5409 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 5410 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 5411 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 5412 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 5413 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 5414 5415 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 5416 DAG.getConstant(2, DL, XLenVT)); 5417 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5418 DAG.getConstant(Table, DL, XLenVT), Shift); 5419 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5420 DAG.getConstant(0x7, DL, XLenVT)); 5421 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 5422 RMValue); 5423 } 5424 5425 // Returns the opcode of the target-specific SDNode that implements the 32-bit 5426 // form of the given Opcode. 5427 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 5428 switch (Opcode) { 5429 default: 5430 llvm_unreachable("Unexpected opcode"); 5431 case ISD::SHL: 5432 return RISCVISD::SLLW; 5433 case ISD::SRA: 5434 return RISCVISD::SRAW; 5435 case ISD::SRL: 5436 return RISCVISD::SRLW; 5437 case ISD::SDIV: 5438 return RISCVISD::DIVW; 5439 case ISD::UDIV: 5440 return RISCVISD::DIVUW; 5441 case ISD::UREM: 5442 return RISCVISD::REMUW; 5443 case ISD::ROTL: 5444 return RISCVISD::ROLW; 5445 case ISD::ROTR: 5446 return RISCVISD::RORW; 5447 case RISCVISD::GREV: 5448 return RISCVISD::GREVW; 5449 case RISCVISD::GORC: 5450 return RISCVISD::GORCW; 5451 } 5452 } 5453 5454 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 5455 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 5456 // otherwise be promoted to i64, making it difficult to select the 5457 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 5458 // type i8/i16/i32 is lost. 5459 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 5460 unsigned ExtOpc = ISD::ANY_EXTEND) { 5461 SDLoc DL(N); 5462 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5463 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 5464 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 5465 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5466 // ReplaceNodeResults requires we maintain the same type for the return value. 5467 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 5468 } 5469 5470 // Converts the given 32-bit operation to a i64 operation with signed extension 5471 // semantic to reduce the signed extension instructions. 5472 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 5473 SDLoc DL(N); 5474 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5475 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5476 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 5477 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5478 DAG.getValueType(MVT::i32)); 5479 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 5480 } 5481 5482 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 5483 SmallVectorImpl<SDValue> &Results, 5484 SelectionDAG &DAG) const { 5485 SDLoc DL(N); 5486 switch (N->getOpcode()) { 5487 default: 5488 llvm_unreachable("Don't know how to custom type legalize this operation!"); 5489 case ISD::STRICT_FP_TO_SINT: 5490 case ISD::STRICT_FP_TO_UINT: 5491 case ISD::FP_TO_SINT: 5492 case ISD::FP_TO_UINT: { 5493 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5494 "Unexpected custom legalisation"); 5495 bool IsStrict = N->isStrictFPOpcode(); 5496 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 5497 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 5498 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 5499 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 5500 TargetLowering::TypeSoftenFloat) { 5501 // FIXME: Support strict FP. 5502 if (IsStrict) 5503 return; 5504 if (!isTypeLegal(Op0.getValueType())) 5505 return; 5506 unsigned Opc = 5507 IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 5508 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0); 5509 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5510 return; 5511 } 5512 // If the FP type needs to be softened, emit a library call using the 'si' 5513 // version. If we left it to default legalization we'd end up with 'di'. If 5514 // the FP type doesn't need to be softened just let generic type 5515 // legalization promote the result type. 5516 RTLIB::Libcall LC; 5517 if (IsSigned) 5518 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 5519 else 5520 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 5521 MakeLibCallOptions CallOptions; 5522 EVT OpVT = Op0.getValueType(); 5523 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 5524 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 5525 SDValue Result; 5526 std::tie(Result, Chain) = 5527 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 5528 Results.push_back(Result); 5529 if (IsStrict) 5530 Results.push_back(Chain); 5531 break; 5532 } 5533 case ISD::READCYCLECOUNTER: { 5534 assert(!Subtarget.is64Bit() && 5535 "READCYCLECOUNTER only has custom type legalization on riscv32"); 5536 5537 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 5538 SDValue RCW = 5539 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 5540 5541 Results.push_back( 5542 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 5543 Results.push_back(RCW.getValue(2)); 5544 break; 5545 } 5546 case ISD::MUL: { 5547 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 5548 unsigned XLen = Subtarget.getXLen(); 5549 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 5550 if (Size > XLen) { 5551 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 5552 SDValue LHS = N->getOperand(0); 5553 SDValue RHS = N->getOperand(1); 5554 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 5555 5556 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 5557 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 5558 // We need exactly one side to be unsigned. 5559 if (LHSIsU == RHSIsU) 5560 return; 5561 5562 auto MakeMULPair = [&](SDValue S, SDValue U) { 5563 MVT XLenVT = Subtarget.getXLenVT(); 5564 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 5565 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 5566 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 5567 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 5568 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 5569 }; 5570 5571 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 5572 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 5573 5574 // The other operand should be signed, but still prefer MULH when 5575 // possible. 5576 if (RHSIsU && LHSIsS && !RHSIsS) 5577 Results.push_back(MakeMULPair(LHS, RHS)); 5578 else if (LHSIsU && RHSIsS && !LHSIsS) 5579 Results.push_back(MakeMULPair(RHS, LHS)); 5580 5581 return; 5582 } 5583 LLVM_FALLTHROUGH; 5584 } 5585 case ISD::ADD: 5586 case ISD::SUB: 5587 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5588 "Unexpected custom legalisation"); 5589 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 5590 break; 5591 case ISD::SHL: 5592 case ISD::SRA: 5593 case ISD::SRL: 5594 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5595 "Unexpected custom legalisation"); 5596 if (N->getOperand(1).getOpcode() != ISD::Constant) { 5597 Results.push_back(customLegalizeToWOp(N, DAG)); 5598 break; 5599 } 5600 5601 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 5602 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 5603 // shift amount. 5604 if (N->getOpcode() == ISD::SHL) { 5605 SDLoc DL(N); 5606 SDValue NewOp0 = 5607 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5608 SDValue NewOp1 = 5609 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 5610 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 5611 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5612 DAG.getValueType(MVT::i32)); 5613 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5614 } 5615 5616 break; 5617 case ISD::ROTL: 5618 case ISD::ROTR: 5619 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5620 "Unexpected custom legalisation"); 5621 Results.push_back(customLegalizeToWOp(N, DAG)); 5622 break; 5623 case ISD::CTTZ: 5624 case ISD::CTTZ_ZERO_UNDEF: 5625 case ISD::CTLZ: 5626 case ISD::CTLZ_ZERO_UNDEF: { 5627 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5628 "Unexpected custom legalisation"); 5629 5630 SDValue NewOp0 = 5631 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5632 bool IsCTZ = 5633 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 5634 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 5635 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 5636 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5637 return; 5638 } 5639 case ISD::SDIV: 5640 case ISD::UDIV: 5641 case ISD::UREM: { 5642 MVT VT = N->getSimpleValueType(0); 5643 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 5644 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 5645 "Unexpected custom legalisation"); 5646 // Don't promote division/remainder by constant since we should expand those 5647 // to multiply by magic constant. 5648 // FIXME: What if the expansion is disabled for minsize. 5649 if (N->getOperand(1).getOpcode() == ISD::Constant) 5650 return; 5651 5652 // If the input is i32, use ANY_EXTEND since the W instructions don't read 5653 // the upper 32 bits. For other types we need to sign or zero extend 5654 // based on the opcode. 5655 unsigned ExtOpc = ISD::ANY_EXTEND; 5656 if (VT != MVT::i32) 5657 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 5658 : ISD::ZERO_EXTEND; 5659 5660 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 5661 break; 5662 } 5663 case ISD::UADDO: 5664 case ISD::USUBO: { 5665 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5666 "Unexpected custom legalisation"); 5667 bool IsAdd = N->getOpcode() == ISD::UADDO; 5668 // Create an ADDW or SUBW. 5669 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5670 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5671 SDValue Res = 5672 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 5673 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 5674 DAG.getValueType(MVT::i32)); 5675 5676 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 5677 // Since the inputs are sign extended from i32, this is equivalent to 5678 // comparing the lower 32 bits. 5679 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5680 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 5681 IsAdd ? ISD::SETULT : ISD::SETUGT); 5682 5683 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5684 Results.push_back(Overflow); 5685 return; 5686 } 5687 case ISD::UADDSAT: 5688 case ISD::USUBSAT: { 5689 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5690 "Unexpected custom legalisation"); 5691 if (Subtarget.hasStdExtZbb()) { 5692 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 5693 // sign extend allows overflow of the lower 32 bits to be detected on 5694 // the promoted size. 5695 SDValue LHS = 5696 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5697 SDValue RHS = 5698 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 5699 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 5700 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5701 return; 5702 } 5703 5704 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 5705 // promotion for UADDO/USUBO. 5706 Results.push_back(expandAddSubSat(N, DAG)); 5707 return; 5708 } 5709 case ISD::BITCAST: { 5710 EVT VT = N->getValueType(0); 5711 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 5712 SDValue Op0 = N->getOperand(0); 5713 EVT Op0VT = Op0.getValueType(); 5714 MVT XLenVT = Subtarget.getXLenVT(); 5715 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 5716 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 5717 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 5718 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 5719 Subtarget.hasStdExtF()) { 5720 SDValue FPConv = 5721 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 5722 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 5723 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 5724 isTypeLegal(Op0VT)) { 5725 // Custom-legalize bitcasts from fixed-length vector types to illegal 5726 // scalar types in order to improve codegen. Bitcast the vector to a 5727 // one-element vector type whose element type is the same as the result 5728 // type, and extract the first element. 5729 LLVMContext &Context = *DAG.getContext(); 5730 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 5731 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 5732 DAG.getConstant(0, DL, XLenVT))); 5733 } 5734 break; 5735 } 5736 case RISCVISD::GREV: 5737 case RISCVISD::GORC: { 5738 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5739 "Unexpected custom legalisation"); 5740 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5741 // This is similar to customLegalizeToWOp, except that we pass the second 5742 // operand (a TargetConstant) straight through: it is already of type 5743 // XLenVT. 5744 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5745 SDValue NewOp0 = 5746 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5747 SDValue NewOp1 = 5748 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5749 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5750 // ReplaceNodeResults requires we maintain the same type for the return 5751 // value. 5752 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5753 break; 5754 } 5755 case RISCVISD::SHFL: { 5756 // There is no SHFLIW instruction, but we can just promote the operation. 5757 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5758 "Unexpected custom legalisation"); 5759 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5760 SDValue NewOp0 = 5761 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5762 SDValue NewOp1 = 5763 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5764 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 5765 // ReplaceNodeResults requires we maintain the same type for the return 5766 // value. 5767 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5768 break; 5769 } 5770 case ISD::BSWAP: 5771 case ISD::BITREVERSE: { 5772 MVT VT = N->getSimpleValueType(0); 5773 MVT XLenVT = Subtarget.getXLenVT(); 5774 assert((VT == MVT::i8 || VT == MVT::i16 || 5775 (VT == MVT::i32 && Subtarget.is64Bit())) && 5776 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 5777 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 5778 unsigned Imm = VT.getSizeInBits() - 1; 5779 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 5780 if (N->getOpcode() == ISD::BSWAP) 5781 Imm &= ~0x7U; 5782 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 5783 SDValue GREVI = 5784 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 5785 // ReplaceNodeResults requires we maintain the same type for the return 5786 // value. 5787 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 5788 break; 5789 } 5790 case ISD::FSHL: 5791 case ISD::FSHR: { 5792 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5793 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 5794 SDValue NewOp0 = 5795 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5796 SDValue NewOp1 = 5797 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5798 SDValue NewOp2 = 5799 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5800 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 5801 // Mask the shift amount to 5 bits. 5802 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5803 DAG.getConstant(0x1f, DL, MVT::i64)); 5804 unsigned Opc = 5805 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 5806 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 5807 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 5808 break; 5809 } 5810 case ISD::EXTRACT_VECTOR_ELT: { 5811 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 5812 // type is illegal (currently only vXi64 RV32). 5813 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 5814 // transferred to the destination register. We issue two of these from the 5815 // upper- and lower- halves of the SEW-bit vector element, slid down to the 5816 // first element. 5817 SDValue Vec = N->getOperand(0); 5818 SDValue Idx = N->getOperand(1); 5819 5820 // The vector type hasn't been legalized yet so we can't issue target 5821 // specific nodes if it needs legalization. 5822 // FIXME: We would manually legalize if it's important. 5823 if (!isTypeLegal(Vec.getValueType())) 5824 return; 5825 5826 MVT VecVT = Vec.getSimpleValueType(); 5827 5828 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 5829 VecVT.getVectorElementType() == MVT::i64 && 5830 "Unexpected EXTRACT_VECTOR_ELT legalization"); 5831 5832 // If this is a fixed vector, we need to convert it to a scalable vector. 5833 MVT ContainerVT = VecVT; 5834 if (VecVT.isFixedLengthVector()) { 5835 ContainerVT = getContainerForFixedLengthVector(VecVT); 5836 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5837 } 5838 5839 MVT XLenVT = Subtarget.getXLenVT(); 5840 5841 // Use a VL of 1 to avoid processing more elements than we need. 5842 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5843 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5844 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5845 5846 // Unless the index is known to be 0, we must slide the vector down to get 5847 // the desired element into index 0. 5848 if (!isNullConstant(Idx)) { 5849 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5850 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 5851 } 5852 5853 // Extract the lower XLEN bits of the correct vector element. 5854 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5855 5856 // To extract the upper XLEN bits of the vector element, shift the first 5857 // element right by 32 bits and re-extract the lower XLEN bits. 5858 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5859 DAG.getConstant(32, DL, XLenVT), VL); 5860 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 5861 ThirtyTwoV, Mask, VL); 5862 5863 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5864 5865 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5866 break; 5867 } 5868 case ISD::INTRINSIC_WO_CHAIN: { 5869 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 5870 switch (IntNo) { 5871 default: 5872 llvm_unreachable( 5873 "Don't know how to custom type legalize this intrinsic!"); 5874 case Intrinsic::riscv_orc_b: { 5875 // Lower to the GORCI encoding for orc.b with the operand extended. 5876 SDValue NewOp = 5877 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5878 // If Zbp is enabled, use GORCIW which will sign extend the result. 5879 unsigned Opc = 5880 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 5881 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 5882 DAG.getConstant(7, DL, MVT::i64)); 5883 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5884 return; 5885 } 5886 case Intrinsic::riscv_grev: 5887 case Intrinsic::riscv_gorc: { 5888 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5889 "Unexpected custom legalisation"); 5890 SDValue NewOp1 = 5891 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5892 SDValue NewOp2 = 5893 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5894 unsigned Opc = 5895 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 5896 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5897 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5898 break; 5899 } 5900 case Intrinsic::riscv_shfl: 5901 case Intrinsic::riscv_unshfl: { 5902 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5903 "Unexpected custom legalisation"); 5904 SDValue NewOp1 = 5905 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5906 SDValue NewOp2 = 5907 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5908 unsigned Opc = 5909 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 5910 if (isa<ConstantSDNode>(N->getOperand(2))) { 5911 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5912 DAG.getConstant(0xf, DL, MVT::i64)); 5913 Opc = 5914 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 5915 } 5916 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5917 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5918 break; 5919 } 5920 case Intrinsic::riscv_bcompress: 5921 case Intrinsic::riscv_bdecompress: { 5922 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5923 "Unexpected custom legalisation"); 5924 SDValue NewOp1 = 5925 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5926 SDValue NewOp2 = 5927 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5928 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 5929 ? RISCVISD::BCOMPRESSW 5930 : RISCVISD::BDECOMPRESSW; 5931 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5932 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5933 break; 5934 } 5935 case Intrinsic::riscv_vmv_x_s: { 5936 EVT VT = N->getValueType(0); 5937 MVT XLenVT = Subtarget.getXLenVT(); 5938 if (VT.bitsLT(XLenVT)) { 5939 // Simple case just extract using vmv.x.s and truncate. 5940 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 5941 Subtarget.getXLenVT(), N->getOperand(1)); 5942 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 5943 return; 5944 } 5945 5946 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 5947 "Unexpected custom legalization"); 5948 5949 // We need to do the move in two steps. 5950 SDValue Vec = N->getOperand(1); 5951 MVT VecVT = Vec.getSimpleValueType(); 5952 5953 // First extract the lower XLEN bits of the element. 5954 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5955 5956 // To extract the upper XLEN bits of the vector element, shift the first 5957 // element right by 32 bits and re-extract the lower XLEN bits. 5958 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5959 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5960 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5961 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 5962 DAG.getConstant(32, DL, XLenVT), VL); 5963 SDValue LShr32 = 5964 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 5965 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5966 5967 Results.push_back( 5968 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5969 break; 5970 } 5971 } 5972 break; 5973 } 5974 case ISD::VECREDUCE_ADD: 5975 case ISD::VECREDUCE_AND: 5976 case ISD::VECREDUCE_OR: 5977 case ISD::VECREDUCE_XOR: 5978 case ISD::VECREDUCE_SMAX: 5979 case ISD::VECREDUCE_UMAX: 5980 case ISD::VECREDUCE_SMIN: 5981 case ISD::VECREDUCE_UMIN: 5982 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 5983 Results.push_back(V); 5984 break; 5985 case ISD::VP_REDUCE_ADD: 5986 case ISD::VP_REDUCE_AND: 5987 case ISD::VP_REDUCE_OR: 5988 case ISD::VP_REDUCE_XOR: 5989 case ISD::VP_REDUCE_SMAX: 5990 case ISD::VP_REDUCE_UMAX: 5991 case ISD::VP_REDUCE_SMIN: 5992 case ISD::VP_REDUCE_UMIN: 5993 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 5994 Results.push_back(V); 5995 break; 5996 case ISD::FLT_ROUNDS_: { 5997 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 5998 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 5999 Results.push_back(Res.getValue(0)); 6000 Results.push_back(Res.getValue(1)); 6001 break; 6002 } 6003 } 6004 } 6005 6006 // A structure to hold one of the bit-manipulation patterns below. Together, a 6007 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 6008 // (or (and (shl x, 1), 0xAAAAAAAA), 6009 // (and (srl x, 1), 0x55555555)) 6010 struct RISCVBitmanipPat { 6011 SDValue Op; 6012 unsigned ShAmt; 6013 bool IsSHL; 6014 6015 bool formsPairWith(const RISCVBitmanipPat &Other) const { 6016 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 6017 } 6018 }; 6019 6020 // Matches patterns of the form 6021 // (and (shl x, C2), (C1 << C2)) 6022 // (and (srl x, C2), C1) 6023 // (shl (and x, C1), C2) 6024 // (srl (and x, (C1 << C2)), C2) 6025 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 6026 // The expected masks for each shift amount are specified in BitmanipMasks where 6027 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 6028 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 6029 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 6030 // XLen is 64. 6031 static Optional<RISCVBitmanipPat> 6032 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 6033 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 6034 "Unexpected number of masks"); 6035 Optional<uint64_t> Mask; 6036 // Optionally consume a mask around the shift operation. 6037 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 6038 Mask = Op.getConstantOperandVal(1); 6039 Op = Op.getOperand(0); 6040 } 6041 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 6042 return None; 6043 bool IsSHL = Op.getOpcode() == ISD::SHL; 6044 6045 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6046 return None; 6047 uint64_t ShAmt = Op.getConstantOperandVal(1); 6048 6049 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6050 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 6051 return None; 6052 // If we don't have enough masks for 64 bit, then we must be trying to 6053 // match SHFL so we're only allowed to shift 1/4 of the width. 6054 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 6055 return None; 6056 6057 SDValue Src = Op.getOperand(0); 6058 6059 // The expected mask is shifted left when the AND is found around SHL 6060 // patterns. 6061 // ((x >> 1) & 0x55555555) 6062 // ((x << 1) & 0xAAAAAAAA) 6063 bool SHLExpMask = IsSHL; 6064 6065 if (!Mask) { 6066 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 6067 // the mask is all ones: consume that now. 6068 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 6069 Mask = Src.getConstantOperandVal(1); 6070 Src = Src.getOperand(0); 6071 // The expected mask is now in fact shifted left for SRL, so reverse the 6072 // decision. 6073 // ((x & 0xAAAAAAAA) >> 1) 6074 // ((x & 0x55555555) << 1) 6075 SHLExpMask = !SHLExpMask; 6076 } else { 6077 // Use a default shifted mask of all-ones if there's no AND, truncated 6078 // down to the expected width. This simplifies the logic later on. 6079 Mask = maskTrailingOnes<uint64_t>(Width); 6080 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 6081 } 6082 } 6083 6084 unsigned MaskIdx = Log2_32(ShAmt); 6085 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6086 6087 if (SHLExpMask) 6088 ExpMask <<= ShAmt; 6089 6090 if (Mask != ExpMask) 6091 return None; 6092 6093 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 6094 } 6095 6096 // Matches any of the following bit-manipulation patterns: 6097 // (and (shl x, 1), (0x55555555 << 1)) 6098 // (and (srl x, 1), 0x55555555) 6099 // (shl (and x, 0x55555555), 1) 6100 // (srl (and x, (0x55555555 << 1)), 1) 6101 // where the shift amount and mask may vary thus: 6102 // [1] = 0x55555555 / 0xAAAAAAAA 6103 // [2] = 0x33333333 / 0xCCCCCCCC 6104 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 6105 // [8] = 0x00FF00FF / 0xFF00FF00 6106 // [16] = 0x0000FFFF / 0xFFFFFFFF 6107 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 6108 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 6109 // These are the unshifted masks which we use to match bit-manipulation 6110 // patterns. They may be shifted left in certain circumstances. 6111 static const uint64_t BitmanipMasks[] = { 6112 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 6113 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 6114 6115 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6116 } 6117 6118 // Match the following pattern as a GREVI(W) operation 6119 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 6120 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 6121 const RISCVSubtarget &Subtarget) { 6122 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6123 EVT VT = Op.getValueType(); 6124 6125 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6126 auto LHS = matchGREVIPat(Op.getOperand(0)); 6127 auto RHS = matchGREVIPat(Op.getOperand(1)); 6128 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 6129 SDLoc DL(Op); 6130 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 6131 DAG.getConstant(LHS->ShAmt, DL, VT)); 6132 } 6133 } 6134 return SDValue(); 6135 } 6136 6137 // Matches any the following pattern as a GORCI(W) operation 6138 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 6139 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 6140 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 6141 // Note that with the variant of 3., 6142 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 6143 // the inner pattern will first be matched as GREVI and then the outer 6144 // pattern will be matched to GORC via the first rule above. 6145 // 4. (or (rotl/rotr x, bitwidth/2), x) 6146 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 6147 const RISCVSubtarget &Subtarget) { 6148 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6149 EVT VT = Op.getValueType(); 6150 6151 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6152 SDLoc DL(Op); 6153 SDValue Op0 = Op.getOperand(0); 6154 SDValue Op1 = Op.getOperand(1); 6155 6156 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 6157 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 6158 isa<ConstantSDNode>(Reverse.getOperand(1)) && 6159 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 6160 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 6161 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 6162 if ((Reverse.getOpcode() == ISD::ROTL || 6163 Reverse.getOpcode() == ISD::ROTR) && 6164 Reverse.getOperand(0) == X && 6165 isa<ConstantSDNode>(Reverse.getOperand(1))) { 6166 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 6167 if (RotAmt == (VT.getSizeInBits() / 2)) 6168 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 6169 DAG.getConstant(RotAmt, DL, VT)); 6170 } 6171 return SDValue(); 6172 }; 6173 6174 // Check for either commutable permutation of (or (GREVI x, shamt), x) 6175 if (SDValue V = MatchOROfReverse(Op0, Op1)) 6176 return V; 6177 if (SDValue V = MatchOROfReverse(Op1, Op0)) 6178 return V; 6179 6180 // OR is commutable so canonicalize its OR operand to the left 6181 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 6182 std::swap(Op0, Op1); 6183 if (Op0.getOpcode() != ISD::OR) 6184 return SDValue(); 6185 SDValue OrOp0 = Op0.getOperand(0); 6186 SDValue OrOp1 = Op0.getOperand(1); 6187 auto LHS = matchGREVIPat(OrOp0); 6188 // OR is commutable so swap the operands and try again: x might have been 6189 // on the left 6190 if (!LHS) { 6191 std::swap(OrOp0, OrOp1); 6192 LHS = matchGREVIPat(OrOp0); 6193 } 6194 auto RHS = matchGREVIPat(Op1); 6195 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 6196 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 6197 DAG.getConstant(LHS->ShAmt, DL, VT)); 6198 } 6199 } 6200 return SDValue(); 6201 } 6202 6203 // Matches any of the following bit-manipulation patterns: 6204 // (and (shl x, 1), (0x22222222 << 1)) 6205 // (and (srl x, 1), 0x22222222) 6206 // (shl (and x, 0x22222222), 1) 6207 // (srl (and x, (0x22222222 << 1)), 1) 6208 // where the shift amount and mask may vary thus: 6209 // [1] = 0x22222222 / 0x44444444 6210 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 6211 // [4] = 0x00F000F0 / 0x0F000F00 6212 // [8] = 0x0000FF00 / 0x00FF0000 6213 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 6214 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 6215 // These are the unshifted masks which we use to match bit-manipulation 6216 // patterns. They may be shifted left in certain circumstances. 6217 static const uint64_t BitmanipMasks[] = { 6218 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 6219 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 6220 6221 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6222 } 6223 6224 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 6225 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 6226 const RISCVSubtarget &Subtarget) { 6227 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6228 EVT VT = Op.getValueType(); 6229 6230 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 6231 return SDValue(); 6232 6233 SDValue Op0 = Op.getOperand(0); 6234 SDValue Op1 = Op.getOperand(1); 6235 6236 // Or is commutable so canonicalize the second OR to the LHS. 6237 if (Op0.getOpcode() != ISD::OR) 6238 std::swap(Op0, Op1); 6239 if (Op0.getOpcode() != ISD::OR) 6240 return SDValue(); 6241 6242 // We found an inner OR, so our operands are the operands of the inner OR 6243 // and the other operand of the outer OR. 6244 SDValue A = Op0.getOperand(0); 6245 SDValue B = Op0.getOperand(1); 6246 SDValue C = Op1; 6247 6248 auto Match1 = matchSHFLPat(A); 6249 auto Match2 = matchSHFLPat(B); 6250 6251 // If neither matched, we failed. 6252 if (!Match1 && !Match2) 6253 return SDValue(); 6254 6255 // We had at least one match. if one failed, try the remaining C operand. 6256 if (!Match1) { 6257 std::swap(A, C); 6258 Match1 = matchSHFLPat(A); 6259 if (!Match1) 6260 return SDValue(); 6261 } else if (!Match2) { 6262 std::swap(B, C); 6263 Match2 = matchSHFLPat(B); 6264 if (!Match2) 6265 return SDValue(); 6266 } 6267 assert(Match1 && Match2); 6268 6269 // Make sure our matches pair up. 6270 if (!Match1->formsPairWith(*Match2)) 6271 return SDValue(); 6272 6273 // All the remains is to make sure C is an AND with the same input, that masks 6274 // out the bits that are being shuffled. 6275 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 6276 C.getOperand(0) != Match1->Op) 6277 return SDValue(); 6278 6279 uint64_t Mask = C.getConstantOperandVal(1); 6280 6281 static const uint64_t BitmanipMasks[] = { 6282 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 6283 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 6284 }; 6285 6286 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6287 unsigned MaskIdx = Log2_32(Match1->ShAmt); 6288 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6289 6290 if (Mask != ExpMask) 6291 return SDValue(); 6292 6293 SDLoc DL(Op); 6294 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 6295 DAG.getConstant(Match1->ShAmt, DL, VT)); 6296 } 6297 6298 // Optimize (add (shl x, c0), (shl y, c1)) -> 6299 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 6300 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 6301 const RISCVSubtarget &Subtarget) { 6302 // Perform this optimization only in the zba extension. 6303 if (!Subtarget.hasStdExtZba()) 6304 return SDValue(); 6305 6306 // Skip for vector types and larger types. 6307 EVT VT = N->getValueType(0); 6308 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6309 return SDValue(); 6310 6311 // The two operand nodes must be SHL and have no other use. 6312 SDValue N0 = N->getOperand(0); 6313 SDValue N1 = N->getOperand(1); 6314 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 6315 !N0->hasOneUse() || !N1->hasOneUse()) 6316 return SDValue(); 6317 6318 // Check c0 and c1. 6319 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6320 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 6321 if (!N0C || !N1C) 6322 return SDValue(); 6323 int64_t C0 = N0C->getSExtValue(); 6324 int64_t C1 = N1C->getSExtValue(); 6325 if (C0 <= 0 || C1 <= 0) 6326 return SDValue(); 6327 6328 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 6329 int64_t Bits = std::min(C0, C1); 6330 int64_t Diff = std::abs(C0 - C1); 6331 if (Diff != 1 && Diff != 2 && Diff != 3) 6332 return SDValue(); 6333 6334 // Build nodes. 6335 SDLoc DL(N); 6336 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 6337 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 6338 SDValue NA0 = 6339 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 6340 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 6341 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 6342 } 6343 6344 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 6345 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 6346 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 6347 // not undo itself, but they are redundant. 6348 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 6349 SDValue Src = N->getOperand(0); 6350 6351 if (Src.getOpcode() != N->getOpcode()) 6352 return SDValue(); 6353 6354 if (!isa<ConstantSDNode>(N->getOperand(1)) || 6355 !isa<ConstantSDNode>(Src.getOperand(1))) 6356 return SDValue(); 6357 6358 unsigned ShAmt1 = N->getConstantOperandVal(1); 6359 unsigned ShAmt2 = Src.getConstantOperandVal(1); 6360 Src = Src.getOperand(0); 6361 6362 unsigned CombinedShAmt; 6363 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 6364 CombinedShAmt = ShAmt1 | ShAmt2; 6365 else 6366 CombinedShAmt = ShAmt1 ^ ShAmt2; 6367 6368 if (CombinedShAmt == 0) 6369 return Src; 6370 6371 SDLoc DL(N); 6372 return DAG.getNode( 6373 N->getOpcode(), DL, N->getValueType(0), Src, 6374 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 6375 } 6376 6377 // Combine a constant select operand into its use: 6378 // 6379 // (and (select cond, -1, c), x) 6380 // -> (select cond, x, (and x, c)) [AllOnes=1] 6381 // (or (select cond, 0, c), x) 6382 // -> (select cond, x, (or x, c)) [AllOnes=0] 6383 // (xor (select cond, 0, c), x) 6384 // -> (select cond, x, (xor x, c)) [AllOnes=0] 6385 // (add (select cond, 0, c), x) 6386 // -> (select cond, x, (add x, c)) [AllOnes=0] 6387 // (sub x, (select cond, 0, c)) 6388 // -> (select cond, x, (sub x, c)) [AllOnes=0] 6389 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 6390 SelectionDAG &DAG, bool AllOnes) { 6391 EVT VT = N->getValueType(0); 6392 6393 // Skip vectors. 6394 if (VT.isVector()) 6395 return SDValue(); 6396 6397 if ((Slct.getOpcode() != ISD::SELECT && 6398 Slct.getOpcode() != RISCVISD::SELECT_CC) || 6399 !Slct.hasOneUse()) 6400 return SDValue(); 6401 6402 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 6403 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 6404 }; 6405 6406 bool SwapSelectOps; 6407 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 6408 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 6409 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 6410 SDValue NonConstantVal; 6411 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 6412 SwapSelectOps = false; 6413 NonConstantVal = FalseVal; 6414 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 6415 SwapSelectOps = true; 6416 NonConstantVal = TrueVal; 6417 } else 6418 return SDValue(); 6419 6420 // Slct is now know to be the desired identity constant when CC is true. 6421 TrueVal = OtherOp; 6422 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 6423 // Unless SwapSelectOps says the condition should be false. 6424 if (SwapSelectOps) 6425 std::swap(TrueVal, FalseVal); 6426 6427 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 6428 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 6429 {Slct.getOperand(0), Slct.getOperand(1), 6430 Slct.getOperand(2), TrueVal, FalseVal}); 6431 6432 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 6433 {Slct.getOperand(0), TrueVal, FalseVal}); 6434 } 6435 6436 // Attempt combineSelectAndUse on each operand of a commutative operator N. 6437 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 6438 bool AllOnes) { 6439 SDValue N0 = N->getOperand(0); 6440 SDValue N1 = N->getOperand(1); 6441 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 6442 return Result; 6443 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 6444 return Result; 6445 return SDValue(); 6446 } 6447 6448 // Transform (add (mul x, c0), c1) -> 6449 // (add (mul (add x, c1/c0), c0), c1%c0). 6450 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 6451 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 6452 // to an infinite loop in DAGCombine if transformed. 6453 // Or transform (add (mul x, c0), c1) -> 6454 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 6455 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 6456 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 6457 // lead to an infinite loop in DAGCombine if transformed. 6458 // Or transform (add (mul x, c0), c1) -> 6459 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 6460 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 6461 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 6462 // lead to an infinite loop in DAGCombine if transformed. 6463 // Or transform (add (mul x, c0), c1) -> 6464 // (mul (add x, c1/c0), c0). 6465 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 6466 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 6467 const RISCVSubtarget &Subtarget) { 6468 // Skip for vector types and larger types. 6469 EVT VT = N->getValueType(0); 6470 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6471 return SDValue(); 6472 // The first operand node must be a MUL and has no other use. 6473 SDValue N0 = N->getOperand(0); 6474 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 6475 return SDValue(); 6476 // Check if c0 and c1 match above conditions. 6477 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6478 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6479 if (!N0C || !N1C) 6480 return SDValue(); 6481 int64_t C0 = N0C->getSExtValue(); 6482 int64_t C1 = N1C->getSExtValue(); 6483 int64_t CA, CB; 6484 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 6485 return SDValue(); 6486 // Search for proper CA (non-zero) and CB that both are simm12. 6487 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 6488 !isInt<12>(C0 * (C1 / C0))) { 6489 CA = C1 / C0; 6490 CB = C1 % C0; 6491 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 6492 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 6493 CA = C1 / C0 + 1; 6494 CB = C1 % C0 - C0; 6495 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 6496 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 6497 CA = C1 / C0 - 1; 6498 CB = C1 % C0 + C0; 6499 } else 6500 return SDValue(); 6501 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 6502 SDLoc DL(N); 6503 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 6504 DAG.getConstant(CA, DL, VT)); 6505 SDValue New1 = 6506 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 6507 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 6508 } 6509 6510 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 6511 const RISCVSubtarget &Subtarget) { 6512 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 6513 return V; 6514 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 6515 return V; 6516 // fold (add (select lhs, rhs, cc, 0, y), x) -> 6517 // (select lhs, rhs, cc, x, (add x, y)) 6518 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6519 } 6520 6521 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 6522 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 6523 // (select lhs, rhs, cc, x, (sub x, y)) 6524 SDValue N0 = N->getOperand(0); 6525 SDValue N1 = N->getOperand(1); 6526 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 6527 } 6528 6529 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 6530 // fold (and (select lhs, rhs, cc, -1, y), x) -> 6531 // (select lhs, rhs, cc, x, (and x, y)) 6532 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 6533 } 6534 6535 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 6536 const RISCVSubtarget &Subtarget) { 6537 if (Subtarget.hasStdExtZbp()) { 6538 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 6539 return GREV; 6540 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 6541 return GORC; 6542 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 6543 return SHFL; 6544 } 6545 6546 // fold (or (select cond, 0, y), x) -> 6547 // (select cond, x, (or x, y)) 6548 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6549 } 6550 6551 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 6552 // fold (xor (select cond, 0, y), x) -> 6553 // (select cond, x, (xor x, y)) 6554 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6555 } 6556 6557 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 6558 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 6559 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 6560 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 6561 // ADDW/SUBW/MULW. 6562 static SDValue performANY_EXTENDCombine(SDNode *N, 6563 TargetLowering::DAGCombinerInfo &DCI, 6564 const RISCVSubtarget &Subtarget) { 6565 if (!Subtarget.is64Bit()) 6566 return SDValue(); 6567 6568 SelectionDAG &DAG = DCI.DAG; 6569 6570 SDValue Src = N->getOperand(0); 6571 EVT VT = N->getValueType(0); 6572 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 6573 return SDValue(); 6574 6575 // The opcode must be one that can implicitly sign_extend. 6576 // FIXME: Additional opcodes. 6577 switch (Src.getOpcode()) { 6578 default: 6579 return SDValue(); 6580 case ISD::MUL: 6581 if (!Subtarget.hasStdExtM()) 6582 return SDValue(); 6583 LLVM_FALLTHROUGH; 6584 case ISD::ADD: 6585 case ISD::SUB: 6586 break; 6587 } 6588 6589 // Only handle cases where the result is used by a CopyToReg. That likely 6590 // means the value is a liveout of the basic block. This helps prevent 6591 // infinite combine loops like PR51206. 6592 if (none_of(N->uses(), 6593 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 6594 return SDValue(); 6595 6596 SmallVector<SDNode *, 4> SetCCs; 6597 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 6598 UE = Src.getNode()->use_end(); 6599 UI != UE; ++UI) { 6600 SDNode *User = *UI; 6601 if (User == N) 6602 continue; 6603 if (UI.getUse().getResNo() != Src.getResNo()) 6604 continue; 6605 // All i32 setccs are legalized by sign extending operands. 6606 if (User->getOpcode() == ISD::SETCC) { 6607 SetCCs.push_back(User); 6608 continue; 6609 } 6610 // We don't know if we can extend this user. 6611 break; 6612 } 6613 6614 // If we don't have any SetCCs, this isn't worthwhile. 6615 if (SetCCs.empty()) 6616 return SDValue(); 6617 6618 SDLoc DL(N); 6619 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 6620 DCI.CombineTo(N, SExt); 6621 6622 // Promote all the setccs. 6623 for (SDNode *SetCC : SetCCs) { 6624 SmallVector<SDValue, 4> Ops; 6625 6626 for (unsigned j = 0; j != 2; ++j) { 6627 SDValue SOp = SetCC->getOperand(j); 6628 if (SOp == Src) 6629 Ops.push_back(SExt); 6630 else 6631 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 6632 } 6633 6634 Ops.push_back(SetCC->getOperand(2)); 6635 DCI.CombineTo(SetCC, 6636 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 6637 } 6638 return SDValue(N, 0); 6639 } 6640 6641 // Try to form VWMUL or VWMULU. 6642 // FIXME: Support VWMULSU. 6643 static SDValue combineMUL_VLToVWMUL(SDNode *N, SDValue Op0, SDValue Op1, 6644 SelectionDAG &DAG) { 6645 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 6646 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 6647 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 6648 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 6649 return SDValue(); 6650 6651 SDValue Mask = N->getOperand(2); 6652 SDValue VL = N->getOperand(3); 6653 6654 // Make sure the mask and VL match. 6655 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 6656 return SDValue(); 6657 6658 MVT VT = N->getSimpleValueType(0); 6659 6660 // Determine the narrow size for a widening multiply. 6661 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 6662 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 6663 VT.getVectorElementCount()); 6664 6665 SDLoc DL(N); 6666 6667 // See if the other operand is the same opcode. 6668 if (Op0.getOpcode() == Op1.getOpcode()) { 6669 if (!Op1.hasOneUse()) 6670 return SDValue(); 6671 6672 // Make sure the mask and VL match. 6673 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 6674 return SDValue(); 6675 6676 Op1 = Op1.getOperand(0); 6677 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 6678 // The operand is a splat of a scalar. 6679 6680 // The VL must be the same. 6681 if (Op1.getOperand(1) != VL) 6682 return SDValue(); 6683 6684 // Get the scalar value. 6685 Op1 = Op1.getOperand(0); 6686 6687 // See if have enough sign bits or zero bits in the scalar to use a 6688 // widening multiply by splatting to smaller element size. 6689 unsigned EltBits = VT.getScalarSizeInBits(); 6690 unsigned ScalarBits = Op1.getValueSizeInBits(); 6691 // Make sure we're getting all element bits from the scalar register. 6692 // FIXME: Support implicit sign extension of vmv.v.x? 6693 if (ScalarBits < EltBits) 6694 return SDValue(); 6695 6696 if (IsSignExt) { 6697 if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize)) 6698 return SDValue(); 6699 } else { 6700 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 6701 if (!DAG.MaskedValueIsZero(Op1, Mask)) 6702 return SDValue(); 6703 } 6704 6705 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL); 6706 } else 6707 return SDValue(); 6708 6709 Op0 = Op0.getOperand(0); 6710 6711 // Re-introduce narrower extends if needed. 6712 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 6713 if (Op0.getValueType() != NarrowVT) 6714 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 6715 if (Op1.getValueType() != NarrowVT) 6716 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 6717 6718 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 6719 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 6720 } 6721 6722 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 6723 DAGCombinerInfo &DCI) const { 6724 SelectionDAG &DAG = DCI.DAG; 6725 6726 // Helper to call SimplifyDemandedBits on an operand of N where only some low 6727 // bits are demanded. N will be added to the Worklist if it was not deleted. 6728 // Caller should return SDValue(N, 0) if this returns true. 6729 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 6730 SDValue Op = N->getOperand(OpNo); 6731 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 6732 if (!SimplifyDemandedBits(Op, Mask, DCI)) 6733 return false; 6734 6735 if (N->getOpcode() != ISD::DELETED_NODE) 6736 DCI.AddToWorklist(N); 6737 return true; 6738 }; 6739 6740 switch (N->getOpcode()) { 6741 default: 6742 break; 6743 case RISCVISD::SplitF64: { 6744 SDValue Op0 = N->getOperand(0); 6745 // If the input to SplitF64 is just BuildPairF64 then the operation is 6746 // redundant. Instead, use BuildPairF64's operands directly. 6747 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 6748 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 6749 6750 SDLoc DL(N); 6751 6752 // It's cheaper to materialise two 32-bit integers than to load a double 6753 // from the constant pool and transfer it to integer registers through the 6754 // stack. 6755 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 6756 APInt V = C->getValueAPF().bitcastToAPInt(); 6757 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 6758 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 6759 return DCI.CombineTo(N, Lo, Hi); 6760 } 6761 6762 // This is a target-specific version of a DAGCombine performed in 6763 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6764 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6765 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6766 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6767 !Op0.getNode()->hasOneUse()) 6768 break; 6769 SDValue NewSplitF64 = 6770 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 6771 Op0.getOperand(0)); 6772 SDValue Lo = NewSplitF64.getValue(0); 6773 SDValue Hi = NewSplitF64.getValue(1); 6774 APInt SignBit = APInt::getSignMask(32); 6775 if (Op0.getOpcode() == ISD::FNEG) { 6776 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 6777 DAG.getConstant(SignBit, DL, MVT::i32)); 6778 return DCI.CombineTo(N, Lo, NewHi); 6779 } 6780 assert(Op0.getOpcode() == ISD::FABS); 6781 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 6782 DAG.getConstant(~SignBit, DL, MVT::i32)); 6783 return DCI.CombineTo(N, Lo, NewHi); 6784 } 6785 case RISCVISD::SLLW: 6786 case RISCVISD::SRAW: 6787 case RISCVISD::SRLW: 6788 case RISCVISD::ROLW: 6789 case RISCVISD::RORW: { 6790 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 6791 if (SimplifyDemandedLowBitsHelper(0, 32) || 6792 SimplifyDemandedLowBitsHelper(1, 5)) 6793 return SDValue(N, 0); 6794 break; 6795 } 6796 case RISCVISD::CLZW: 6797 case RISCVISD::CTZW: { 6798 // Only the lower 32 bits of the first operand are read 6799 if (SimplifyDemandedLowBitsHelper(0, 32)) 6800 return SDValue(N, 0); 6801 break; 6802 } 6803 case RISCVISD::FSL: 6804 case RISCVISD::FSR: { 6805 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 6806 unsigned BitWidth = N->getOperand(2).getValueSizeInBits(); 6807 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6808 if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1)) 6809 return SDValue(N, 0); 6810 break; 6811 } 6812 case RISCVISD::FSLW: 6813 case RISCVISD::FSRW: { 6814 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 6815 // read. 6816 if (SimplifyDemandedLowBitsHelper(0, 32) || 6817 SimplifyDemandedLowBitsHelper(1, 32) || 6818 SimplifyDemandedLowBitsHelper(2, 6)) 6819 return SDValue(N, 0); 6820 break; 6821 } 6822 case RISCVISD::GREV: 6823 case RISCVISD::GORC: { 6824 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 6825 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 6826 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6827 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 6828 return SDValue(N, 0); 6829 6830 return combineGREVI_GORCI(N, DCI.DAG); 6831 } 6832 case RISCVISD::GREVW: 6833 case RISCVISD::GORCW: { 6834 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 6835 if (SimplifyDemandedLowBitsHelper(0, 32) || 6836 SimplifyDemandedLowBitsHelper(1, 5)) 6837 return SDValue(N, 0); 6838 6839 return combineGREVI_GORCI(N, DCI.DAG); 6840 } 6841 case RISCVISD::SHFL: 6842 case RISCVISD::UNSHFL: { 6843 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 6844 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 6845 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6846 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 6847 return SDValue(N, 0); 6848 6849 break; 6850 } 6851 case RISCVISD::SHFLW: 6852 case RISCVISD::UNSHFLW: { 6853 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 6854 SDValue LHS = N->getOperand(0); 6855 SDValue RHS = N->getOperand(1); 6856 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 6857 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 6858 if (SimplifyDemandedLowBitsHelper(0, 32) || 6859 SimplifyDemandedLowBitsHelper(1, 4)) 6860 return SDValue(N, 0); 6861 6862 break; 6863 } 6864 case RISCVISD::BCOMPRESSW: 6865 case RISCVISD::BDECOMPRESSW: { 6866 // Only the lower 32 bits of LHS and RHS are read. 6867 if (SimplifyDemandedLowBitsHelper(0, 32) || 6868 SimplifyDemandedLowBitsHelper(1, 32)) 6869 return SDValue(N, 0); 6870 6871 break; 6872 } 6873 case RISCVISD::FMV_X_ANYEXTH: 6874 case RISCVISD::FMV_X_ANYEXTW_RV64: { 6875 SDLoc DL(N); 6876 SDValue Op0 = N->getOperand(0); 6877 MVT VT = N->getSimpleValueType(0); 6878 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 6879 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 6880 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 6881 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 6882 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 6883 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 6884 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 6885 assert(Op0.getOperand(0).getValueType() == VT && 6886 "Unexpected value type!"); 6887 return Op0.getOperand(0); 6888 } 6889 6890 // This is a target-specific version of a DAGCombine performed in 6891 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6892 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6893 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6894 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6895 !Op0.getNode()->hasOneUse()) 6896 break; 6897 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 6898 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 6899 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 6900 if (Op0.getOpcode() == ISD::FNEG) 6901 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 6902 DAG.getConstant(SignBit, DL, VT)); 6903 6904 assert(Op0.getOpcode() == ISD::FABS); 6905 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 6906 DAG.getConstant(~SignBit, DL, VT)); 6907 } 6908 case ISD::ADD: 6909 return performADDCombine(N, DAG, Subtarget); 6910 case ISD::SUB: 6911 return performSUBCombine(N, DAG); 6912 case ISD::AND: 6913 return performANDCombine(N, DAG); 6914 case ISD::OR: 6915 return performORCombine(N, DAG, Subtarget); 6916 case ISD::XOR: 6917 return performXORCombine(N, DAG); 6918 case ISD::ANY_EXTEND: 6919 return performANY_EXTENDCombine(N, DCI, Subtarget); 6920 case ISD::ZERO_EXTEND: 6921 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 6922 // type legalization. This is safe because fp_to_uint produces poison if 6923 // it overflows. 6924 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit() && 6925 N->getOperand(0).getOpcode() == ISD::FP_TO_UINT && 6926 isTypeLegal(N->getOperand(0).getOperand(0).getValueType())) 6927 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 6928 N->getOperand(0).getOperand(0)); 6929 return SDValue(); 6930 case RISCVISD::SELECT_CC: { 6931 // Transform 6932 SDValue LHS = N->getOperand(0); 6933 SDValue RHS = N->getOperand(1); 6934 SDValue TrueV = N->getOperand(3); 6935 SDValue FalseV = N->getOperand(4); 6936 6937 // If the True and False values are the same, we don't need a select_cc. 6938 if (TrueV == FalseV) 6939 return TrueV; 6940 6941 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 6942 if (!ISD::isIntEqualitySetCC(CCVal)) 6943 break; 6944 6945 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 6946 // (select_cc X, Y, lt, trueV, falseV) 6947 // Sometimes the setcc is introduced after select_cc has been formed. 6948 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 6949 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 6950 // If we're looking for eq 0 instead of ne 0, we need to invert the 6951 // condition. 6952 bool Invert = CCVal == ISD::SETEQ; 6953 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 6954 if (Invert) 6955 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6956 6957 SDLoc DL(N); 6958 RHS = LHS.getOperand(1); 6959 LHS = LHS.getOperand(0); 6960 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 6961 6962 SDValue TargetCC = DAG.getCondCode(CCVal); 6963 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 6964 {LHS, RHS, TargetCC, TrueV, FalseV}); 6965 } 6966 6967 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 6968 // (select_cc X, Y, eq/ne, trueV, falseV) 6969 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 6970 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 6971 {LHS.getOperand(0), LHS.getOperand(1), 6972 N->getOperand(2), TrueV, FalseV}); 6973 // (select_cc X, 1, setne, trueV, falseV) -> 6974 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 6975 // This can occur when legalizing some floating point comparisons. 6976 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 6977 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 6978 SDLoc DL(N); 6979 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6980 SDValue TargetCC = DAG.getCondCode(CCVal); 6981 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 6982 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 6983 {LHS, RHS, TargetCC, TrueV, FalseV}); 6984 } 6985 6986 break; 6987 } 6988 case RISCVISD::BR_CC: { 6989 SDValue LHS = N->getOperand(1); 6990 SDValue RHS = N->getOperand(2); 6991 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 6992 if (!ISD::isIntEqualitySetCC(CCVal)) 6993 break; 6994 6995 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 6996 // (br_cc X, Y, lt, dest) 6997 // Sometimes the setcc is introduced after br_cc has been formed. 6998 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 6999 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7000 // If we're looking for eq 0 instead of ne 0, we need to invert the 7001 // condition. 7002 bool Invert = CCVal == ISD::SETEQ; 7003 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7004 if (Invert) 7005 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7006 7007 SDLoc DL(N); 7008 RHS = LHS.getOperand(1); 7009 LHS = LHS.getOperand(0); 7010 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7011 7012 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7013 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 7014 N->getOperand(4)); 7015 } 7016 7017 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 7018 // (br_cc X, Y, eq/ne, trueV, falseV) 7019 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7020 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 7021 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 7022 N->getOperand(3), N->getOperand(4)); 7023 7024 // (br_cc X, 1, setne, br_cc) -> 7025 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 7026 // This can occur when legalizing some floating point comparisons. 7027 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7028 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7029 SDLoc DL(N); 7030 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7031 SDValue TargetCC = DAG.getCondCode(CCVal); 7032 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7033 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7034 N->getOperand(0), LHS, RHS, TargetCC, 7035 N->getOperand(4)); 7036 } 7037 break; 7038 } 7039 case ISD::FCOPYSIGN: { 7040 EVT VT = N->getValueType(0); 7041 if (!VT.isVector()) 7042 break; 7043 // There is a form of VFSGNJ which injects the negated sign of its second 7044 // operand. Try and bubble any FNEG up after the extend/round to produce 7045 // this optimized pattern. Avoid modifying cases where FP_ROUND and 7046 // TRUNC=1. 7047 SDValue In2 = N->getOperand(1); 7048 // Avoid cases where the extend/round has multiple uses, as duplicating 7049 // those is typically more expensive than removing a fneg. 7050 if (!In2.hasOneUse()) 7051 break; 7052 if (In2.getOpcode() != ISD::FP_EXTEND && 7053 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 7054 break; 7055 In2 = In2.getOperand(0); 7056 if (In2.getOpcode() != ISD::FNEG) 7057 break; 7058 SDLoc DL(N); 7059 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 7060 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 7061 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 7062 } 7063 case ISD::MGATHER: 7064 case ISD::MSCATTER: 7065 case ISD::VP_GATHER: 7066 case ISD::VP_SCATTER: { 7067 if (!DCI.isBeforeLegalize()) 7068 break; 7069 SDValue Index, ScaleOp; 7070 bool IsIndexScaled = false; 7071 bool IsIndexSigned = false; 7072 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 7073 Index = VPGSN->getIndex(); 7074 ScaleOp = VPGSN->getScale(); 7075 IsIndexScaled = VPGSN->isIndexScaled(); 7076 IsIndexSigned = VPGSN->isIndexSigned(); 7077 } else { 7078 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 7079 Index = MGSN->getIndex(); 7080 ScaleOp = MGSN->getScale(); 7081 IsIndexScaled = MGSN->isIndexScaled(); 7082 IsIndexSigned = MGSN->isIndexSigned(); 7083 } 7084 EVT IndexVT = Index.getValueType(); 7085 MVT XLenVT = Subtarget.getXLenVT(); 7086 // RISCV indexed loads only support the "unsigned unscaled" addressing 7087 // mode, so anything else must be manually legalized. 7088 bool NeedsIdxLegalization = 7089 IsIndexScaled || 7090 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 7091 if (!NeedsIdxLegalization) 7092 break; 7093 7094 SDLoc DL(N); 7095 7096 // Any index legalization should first promote to XLenVT, so we don't lose 7097 // bits when scaling. This may create an illegal index type so we let 7098 // LLVM's legalization take care of the splitting. 7099 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 7100 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 7101 IndexVT = IndexVT.changeVectorElementType(XLenVT); 7102 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 7103 DL, IndexVT, Index); 7104 } 7105 7106 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 7107 if (IsIndexScaled && Scale != 1) { 7108 // Manually scale the indices by the element size. 7109 // TODO: Sanitize the scale operand here? 7110 // TODO: For VP nodes, should we use VP_SHL here? 7111 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 7112 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 7113 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 7114 } 7115 7116 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 7117 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 7118 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 7119 {VPGN->getChain(), VPGN->getBasePtr(), Index, 7120 VPGN->getScale(), VPGN->getMask(), 7121 VPGN->getVectorLength()}, 7122 VPGN->getMemOperand(), NewIndexTy); 7123 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 7124 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 7125 {VPSN->getChain(), VPSN->getValue(), 7126 VPSN->getBasePtr(), Index, VPSN->getScale(), 7127 VPSN->getMask(), VPSN->getVectorLength()}, 7128 VPSN->getMemOperand(), NewIndexTy); 7129 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 7130 return DAG.getMaskedGather( 7131 N->getVTList(), MGN->getMemoryVT(), DL, 7132 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 7133 MGN->getBasePtr(), Index, MGN->getScale()}, 7134 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 7135 const auto *MSN = cast<MaskedScatterSDNode>(N); 7136 return DAG.getMaskedScatter( 7137 N->getVTList(), MSN->getMemoryVT(), DL, 7138 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 7139 Index, MSN->getScale()}, 7140 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 7141 } 7142 case RISCVISD::SRA_VL: 7143 case RISCVISD::SRL_VL: 7144 case RISCVISD::SHL_VL: { 7145 SDValue ShAmt = N->getOperand(1); 7146 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7147 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7148 SDLoc DL(N); 7149 SDValue VL = N->getOperand(3); 7150 EVT VT = N->getValueType(0); 7151 ShAmt = 7152 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 7153 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 7154 N->getOperand(2), N->getOperand(3)); 7155 } 7156 break; 7157 } 7158 case ISD::SRA: 7159 case ISD::SRL: 7160 case ISD::SHL: { 7161 SDValue ShAmt = N->getOperand(1); 7162 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7163 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7164 SDLoc DL(N); 7165 EVT VT = N->getValueType(0); 7166 ShAmt = 7167 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 7168 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 7169 } 7170 break; 7171 } 7172 case RISCVISD::MUL_VL: { 7173 SDValue Op0 = N->getOperand(0); 7174 SDValue Op1 = N->getOperand(1); 7175 if (SDValue V = combineMUL_VLToVWMUL(N, Op0, Op1, DAG)) 7176 return V; 7177 if (SDValue V = combineMUL_VLToVWMUL(N, Op1, Op0, DAG)) 7178 return V; 7179 return SDValue(); 7180 } 7181 case ISD::STORE: { 7182 auto *Store = cast<StoreSDNode>(N); 7183 SDValue Val = Store->getValue(); 7184 // Combine store of vmv.x.s to vse with VL of 1. 7185 // FIXME: Support FP. 7186 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 7187 SDValue Src = Val.getOperand(0); 7188 EVT VecVT = Src.getValueType(); 7189 EVT MemVT = Store->getMemoryVT(); 7190 // The memory VT and the element type must match. 7191 if (VecVT.getVectorElementType() == MemVT) { 7192 SDLoc DL(N); 7193 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 7194 return DAG.getStoreVP(Store->getChain(), DL, Src, Store->getBasePtr(), 7195 DAG.getConstant(1, DL, MaskVT), 7196 DAG.getConstant(1, DL, Subtarget.getXLenVT()), 7197 Store->getPointerInfo(), 7198 Store->getOriginalAlign(), 7199 Store->getMemOperand()->getFlags()); 7200 } 7201 } 7202 7203 break; 7204 } 7205 } 7206 7207 return SDValue(); 7208 } 7209 7210 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 7211 const SDNode *N, CombineLevel Level) const { 7212 // The following folds are only desirable if `(OP _, c1 << c2)` can be 7213 // materialised in fewer instructions than `(OP _, c1)`: 7214 // 7215 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 7216 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 7217 SDValue N0 = N->getOperand(0); 7218 EVT Ty = N0.getValueType(); 7219 if (Ty.isScalarInteger() && 7220 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 7221 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7222 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7223 if (C1 && C2) { 7224 const APInt &C1Int = C1->getAPIntValue(); 7225 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 7226 7227 // We can materialise `c1 << c2` into an add immediate, so it's "free", 7228 // and the combine should happen, to potentially allow further combines 7229 // later. 7230 if (ShiftedC1Int.getMinSignedBits() <= 64 && 7231 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 7232 return true; 7233 7234 // We can materialise `c1` in an add immediate, so it's "free", and the 7235 // combine should be prevented. 7236 if (C1Int.getMinSignedBits() <= 64 && 7237 isLegalAddImmediate(C1Int.getSExtValue())) 7238 return false; 7239 7240 // Neither constant will fit into an immediate, so find materialisation 7241 // costs. 7242 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 7243 Subtarget.getFeatureBits(), 7244 /*CompressionCost*/true); 7245 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 7246 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 7247 /*CompressionCost*/true); 7248 7249 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 7250 // combine should be prevented. 7251 if (C1Cost < ShiftedC1Cost) 7252 return false; 7253 } 7254 } 7255 return true; 7256 } 7257 7258 bool RISCVTargetLowering::targetShrinkDemandedConstant( 7259 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 7260 TargetLoweringOpt &TLO) const { 7261 // Delay this optimization as late as possible. 7262 if (!TLO.LegalOps) 7263 return false; 7264 7265 EVT VT = Op.getValueType(); 7266 if (VT.isVector()) 7267 return false; 7268 7269 // Only handle AND for now. 7270 if (Op.getOpcode() != ISD::AND) 7271 return false; 7272 7273 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 7274 if (!C) 7275 return false; 7276 7277 const APInt &Mask = C->getAPIntValue(); 7278 7279 // Clear all non-demanded bits initially. 7280 APInt ShrunkMask = Mask & DemandedBits; 7281 7282 // Try to make a smaller immediate by setting undemanded bits. 7283 7284 APInt ExpandedMask = Mask | ~DemandedBits; 7285 7286 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 7287 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 7288 }; 7289 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 7290 if (NewMask == Mask) 7291 return true; 7292 SDLoc DL(Op); 7293 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 7294 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 7295 return TLO.CombineTo(Op, NewOp); 7296 }; 7297 7298 // If the shrunk mask fits in sign extended 12 bits, let the target 7299 // independent code apply it. 7300 if (ShrunkMask.isSignedIntN(12)) 7301 return false; 7302 7303 // Preserve (and X, 0xffff) when zext.h is supported. 7304 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 7305 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 7306 if (IsLegalMask(NewMask)) 7307 return UseMask(NewMask); 7308 } 7309 7310 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 7311 if (VT == MVT::i64) { 7312 APInt NewMask = APInt(64, 0xffffffff); 7313 if (IsLegalMask(NewMask)) 7314 return UseMask(NewMask); 7315 } 7316 7317 // For the remaining optimizations, we need to be able to make a negative 7318 // number through a combination of mask and undemanded bits. 7319 if (!ExpandedMask.isNegative()) 7320 return false; 7321 7322 // What is the fewest number of bits we need to represent the negative number. 7323 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 7324 7325 // Try to make a 12 bit negative immediate. If that fails try to make a 32 7326 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 7327 APInt NewMask = ShrunkMask; 7328 if (MinSignedBits <= 12) 7329 NewMask.setBitsFrom(11); 7330 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 7331 NewMask.setBitsFrom(31); 7332 else 7333 return false; 7334 7335 // Sanity check that our new mask is a subset of the demanded mask. 7336 assert(IsLegalMask(NewMask)); 7337 return UseMask(NewMask); 7338 } 7339 7340 static void computeGREV(APInt &Src, unsigned ShAmt) { 7341 ShAmt &= Src.getBitWidth() - 1; 7342 uint64_t x = Src.getZExtValue(); 7343 if (ShAmt & 1) 7344 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 7345 if (ShAmt & 2) 7346 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 7347 if (ShAmt & 4) 7348 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 7349 if (ShAmt & 8) 7350 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 7351 if (ShAmt & 16) 7352 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 7353 if (ShAmt & 32) 7354 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 7355 Src = x; 7356 } 7357 7358 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 7359 KnownBits &Known, 7360 const APInt &DemandedElts, 7361 const SelectionDAG &DAG, 7362 unsigned Depth) const { 7363 unsigned BitWidth = Known.getBitWidth(); 7364 unsigned Opc = Op.getOpcode(); 7365 assert((Opc >= ISD::BUILTIN_OP_END || 7366 Opc == ISD::INTRINSIC_WO_CHAIN || 7367 Opc == ISD::INTRINSIC_W_CHAIN || 7368 Opc == ISD::INTRINSIC_VOID) && 7369 "Should use MaskedValueIsZero if you don't know whether Op" 7370 " is a target node!"); 7371 7372 Known.resetAll(); 7373 switch (Opc) { 7374 default: break; 7375 case RISCVISD::SELECT_CC: { 7376 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 7377 // If we don't know any bits, early out. 7378 if (Known.isUnknown()) 7379 break; 7380 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 7381 7382 // Only known if known in both the LHS and RHS. 7383 Known = KnownBits::commonBits(Known, Known2); 7384 break; 7385 } 7386 case RISCVISD::REMUW: { 7387 KnownBits Known2; 7388 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7389 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7390 // We only care about the lower 32 bits. 7391 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 7392 // Restore the original width by sign extending. 7393 Known = Known.sext(BitWidth); 7394 break; 7395 } 7396 case RISCVISD::DIVUW: { 7397 KnownBits Known2; 7398 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7399 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7400 // We only care about the lower 32 bits. 7401 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 7402 // Restore the original width by sign extending. 7403 Known = Known.sext(BitWidth); 7404 break; 7405 } 7406 case RISCVISD::CTZW: { 7407 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7408 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 7409 unsigned LowBits = Log2_32(PossibleTZ) + 1; 7410 Known.Zero.setBitsFrom(LowBits); 7411 break; 7412 } 7413 case RISCVISD::CLZW: { 7414 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7415 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 7416 unsigned LowBits = Log2_32(PossibleLZ) + 1; 7417 Known.Zero.setBitsFrom(LowBits); 7418 break; 7419 } 7420 case RISCVISD::GREV: 7421 case RISCVISD::GREVW: { 7422 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7423 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7424 if (Opc == RISCVISD::GREVW) 7425 Known = Known.trunc(32); 7426 unsigned ShAmt = C->getZExtValue(); 7427 computeGREV(Known.Zero, ShAmt); 7428 computeGREV(Known.One, ShAmt); 7429 if (Opc == RISCVISD::GREVW) 7430 Known = Known.sext(BitWidth); 7431 } 7432 break; 7433 } 7434 case RISCVISD::READ_VLENB: 7435 // We assume VLENB is at least 16 bytes. 7436 Known.Zero.setLowBits(4); 7437 // We assume VLENB is no more than 65536 / 8 bytes. 7438 Known.Zero.setBitsFrom(14); 7439 break; 7440 case ISD::INTRINSIC_W_CHAIN: { 7441 unsigned IntNo = Op.getConstantOperandVal(1); 7442 switch (IntNo) { 7443 default: 7444 // We can't do anything for most intrinsics. 7445 break; 7446 case Intrinsic::riscv_vsetvli: 7447 case Intrinsic::riscv_vsetvlimax: 7448 // Assume that VL output is positive and would fit in an int32_t. 7449 // TODO: VLEN might be capped at 16 bits in a future V spec update. 7450 if (BitWidth >= 32) 7451 Known.Zero.setBitsFrom(31); 7452 break; 7453 } 7454 break; 7455 } 7456 } 7457 } 7458 7459 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 7460 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 7461 unsigned Depth) const { 7462 switch (Op.getOpcode()) { 7463 default: 7464 break; 7465 case RISCVISD::SELECT_CC: { 7466 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 7467 if (Tmp == 1) return 1; // Early out. 7468 unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 7469 return std::min(Tmp, Tmp2); 7470 } 7471 case RISCVISD::SLLW: 7472 case RISCVISD::SRAW: 7473 case RISCVISD::SRLW: 7474 case RISCVISD::DIVW: 7475 case RISCVISD::DIVUW: 7476 case RISCVISD::REMUW: 7477 case RISCVISD::ROLW: 7478 case RISCVISD::RORW: 7479 case RISCVISD::GREVW: 7480 case RISCVISD::GORCW: 7481 case RISCVISD::FSLW: 7482 case RISCVISD::FSRW: 7483 case RISCVISD::SHFLW: 7484 case RISCVISD::UNSHFLW: 7485 case RISCVISD::BCOMPRESSW: 7486 case RISCVISD::BDECOMPRESSW: 7487 case RISCVISD::FCVT_W_RTZ_RV64: 7488 case RISCVISD::FCVT_WU_RTZ_RV64: 7489 // TODO: As the result is sign-extended, this is conservatively correct. A 7490 // more precise answer could be calculated for SRAW depending on known 7491 // bits in the shift amount. 7492 return 33; 7493 case RISCVISD::SHFL: 7494 case RISCVISD::UNSHFL: { 7495 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 7496 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 7497 // will stay within the upper 32 bits. If there were more than 32 sign bits 7498 // before there will be at least 33 sign bits after. 7499 if (Op.getValueType() == MVT::i64 && 7500 isa<ConstantSDNode>(Op.getOperand(1)) && 7501 (Op.getConstantOperandVal(1) & 0x10) == 0) { 7502 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 7503 if (Tmp > 32) 7504 return 33; 7505 } 7506 break; 7507 } 7508 case RISCVISD::VMV_X_S: 7509 // The number of sign bits of the scalar result is computed by obtaining the 7510 // element type of the input vector operand, subtracting its width from the 7511 // XLEN, and then adding one (sign bit within the element type). If the 7512 // element type is wider than XLen, the least-significant XLEN bits are 7513 // taken. 7514 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 7515 return 1; 7516 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 7517 } 7518 7519 return 1; 7520 } 7521 7522 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 7523 MachineBasicBlock *BB) { 7524 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 7525 7526 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 7527 // Should the count have wrapped while it was being read, we need to try 7528 // again. 7529 // ... 7530 // read: 7531 // rdcycleh x3 # load high word of cycle 7532 // rdcycle x2 # load low word of cycle 7533 // rdcycleh x4 # load high word of cycle 7534 // bne x3, x4, read # check if high word reads match, otherwise try again 7535 // ... 7536 7537 MachineFunction &MF = *BB->getParent(); 7538 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7539 MachineFunction::iterator It = ++BB->getIterator(); 7540 7541 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7542 MF.insert(It, LoopMBB); 7543 7544 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7545 MF.insert(It, DoneMBB); 7546 7547 // Transfer the remainder of BB and its successor edges to DoneMBB. 7548 DoneMBB->splice(DoneMBB->begin(), BB, 7549 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 7550 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 7551 7552 BB->addSuccessor(LoopMBB); 7553 7554 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7555 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7556 Register LoReg = MI.getOperand(0).getReg(); 7557 Register HiReg = MI.getOperand(1).getReg(); 7558 DebugLoc DL = MI.getDebugLoc(); 7559 7560 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 7561 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 7562 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7563 .addReg(RISCV::X0); 7564 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 7565 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 7566 .addReg(RISCV::X0); 7567 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 7568 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7569 .addReg(RISCV::X0); 7570 7571 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 7572 .addReg(HiReg) 7573 .addReg(ReadAgainReg) 7574 .addMBB(LoopMBB); 7575 7576 LoopMBB->addSuccessor(LoopMBB); 7577 LoopMBB->addSuccessor(DoneMBB); 7578 7579 MI.eraseFromParent(); 7580 7581 return DoneMBB; 7582 } 7583 7584 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 7585 MachineBasicBlock *BB) { 7586 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 7587 7588 MachineFunction &MF = *BB->getParent(); 7589 DebugLoc DL = MI.getDebugLoc(); 7590 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7591 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7592 Register LoReg = MI.getOperand(0).getReg(); 7593 Register HiReg = MI.getOperand(1).getReg(); 7594 Register SrcReg = MI.getOperand(2).getReg(); 7595 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 7596 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7597 7598 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 7599 RI); 7600 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7601 MachineMemOperand *MMOLo = 7602 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 7603 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7604 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 7605 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 7606 .addFrameIndex(FI) 7607 .addImm(0) 7608 .addMemOperand(MMOLo); 7609 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 7610 .addFrameIndex(FI) 7611 .addImm(4) 7612 .addMemOperand(MMOHi); 7613 MI.eraseFromParent(); // The pseudo instruction is gone now. 7614 return BB; 7615 } 7616 7617 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 7618 MachineBasicBlock *BB) { 7619 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 7620 "Unexpected instruction"); 7621 7622 MachineFunction &MF = *BB->getParent(); 7623 DebugLoc DL = MI.getDebugLoc(); 7624 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7625 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7626 Register DstReg = MI.getOperand(0).getReg(); 7627 Register LoReg = MI.getOperand(1).getReg(); 7628 Register HiReg = MI.getOperand(2).getReg(); 7629 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 7630 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7631 7632 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7633 MachineMemOperand *MMOLo = 7634 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 7635 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7636 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 7637 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7638 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 7639 .addFrameIndex(FI) 7640 .addImm(0) 7641 .addMemOperand(MMOLo); 7642 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7643 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 7644 .addFrameIndex(FI) 7645 .addImm(4) 7646 .addMemOperand(MMOHi); 7647 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 7648 MI.eraseFromParent(); // The pseudo instruction is gone now. 7649 return BB; 7650 } 7651 7652 static bool isSelectPseudo(MachineInstr &MI) { 7653 switch (MI.getOpcode()) { 7654 default: 7655 return false; 7656 case RISCV::Select_GPR_Using_CC_GPR: 7657 case RISCV::Select_FPR16_Using_CC_GPR: 7658 case RISCV::Select_FPR32_Using_CC_GPR: 7659 case RISCV::Select_FPR64_Using_CC_GPR: 7660 return true; 7661 } 7662 } 7663 7664 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 7665 MachineBasicBlock *BB, 7666 const RISCVSubtarget &Subtarget) { 7667 // To "insert" Select_* instructions, we actually have to insert the triangle 7668 // control-flow pattern. The incoming instructions know the destination vreg 7669 // to set, the condition code register to branch on, the true/false values to 7670 // select between, and the condcode to use to select the appropriate branch. 7671 // 7672 // We produce the following control flow: 7673 // HeadMBB 7674 // | \ 7675 // | IfFalseMBB 7676 // | / 7677 // TailMBB 7678 // 7679 // When we find a sequence of selects we attempt to optimize their emission 7680 // by sharing the control flow. Currently we only handle cases where we have 7681 // multiple selects with the exact same condition (same LHS, RHS and CC). 7682 // The selects may be interleaved with other instructions if the other 7683 // instructions meet some requirements we deem safe: 7684 // - They are debug instructions. Otherwise, 7685 // - They do not have side-effects, do not access memory and their inputs do 7686 // not depend on the results of the select pseudo-instructions. 7687 // The TrueV/FalseV operands of the selects cannot depend on the result of 7688 // previous selects in the sequence. 7689 // These conditions could be further relaxed. See the X86 target for a 7690 // related approach and more information. 7691 Register LHS = MI.getOperand(1).getReg(); 7692 Register RHS = MI.getOperand(2).getReg(); 7693 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 7694 7695 SmallVector<MachineInstr *, 4> SelectDebugValues; 7696 SmallSet<Register, 4> SelectDests; 7697 SelectDests.insert(MI.getOperand(0).getReg()); 7698 7699 MachineInstr *LastSelectPseudo = &MI; 7700 7701 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 7702 SequenceMBBI != E; ++SequenceMBBI) { 7703 if (SequenceMBBI->isDebugInstr()) 7704 continue; 7705 else if (isSelectPseudo(*SequenceMBBI)) { 7706 if (SequenceMBBI->getOperand(1).getReg() != LHS || 7707 SequenceMBBI->getOperand(2).getReg() != RHS || 7708 SequenceMBBI->getOperand(3).getImm() != CC || 7709 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 7710 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 7711 break; 7712 LastSelectPseudo = &*SequenceMBBI; 7713 SequenceMBBI->collectDebugValues(SelectDebugValues); 7714 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 7715 } else { 7716 if (SequenceMBBI->hasUnmodeledSideEffects() || 7717 SequenceMBBI->mayLoadOrStore()) 7718 break; 7719 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 7720 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 7721 })) 7722 break; 7723 } 7724 } 7725 7726 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 7727 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7728 DebugLoc DL = MI.getDebugLoc(); 7729 MachineFunction::iterator I = ++BB->getIterator(); 7730 7731 MachineBasicBlock *HeadMBB = BB; 7732 MachineFunction *F = BB->getParent(); 7733 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 7734 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 7735 7736 F->insert(I, IfFalseMBB); 7737 F->insert(I, TailMBB); 7738 7739 // Transfer debug instructions associated with the selects to TailMBB. 7740 for (MachineInstr *DebugInstr : SelectDebugValues) { 7741 TailMBB->push_back(DebugInstr->removeFromParent()); 7742 } 7743 7744 // Move all instructions after the sequence to TailMBB. 7745 TailMBB->splice(TailMBB->end(), HeadMBB, 7746 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 7747 // Update machine-CFG edges by transferring all successors of the current 7748 // block to the new block which will contain the Phi nodes for the selects. 7749 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 7750 // Set the successors for HeadMBB. 7751 HeadMBB->addSuccessor(IfFalseMBB); 7752 HeadMBB->addSuccessor(TailMBB); 7753 7754 // Insert appropriate branch. 7755 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 7756 .addReg(LHS) 7757 .addReg(RHS) 7758 .addMBB(TailMBB); 7759 7760 // IfFalseMBB just falls through to TailMBB. 7761 IfFalseMBB->addSuccessor(TailMBB); 7762 7763 // Create PHIs for all of the select pseudo-instructions. 7764 auto SelectMBBI = MI.getIterator(); 7765 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 7766 auto InsertionPoint = TailMBB->begin(); 7767 while (SelectMBBI != SelectEnd) { 7768 auto Next = std::next(SelectMBBI); 7769 if (isSelectPseudo(*SelectMBBI)) { 7770 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 7771 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 7772 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 7773 .addReg(SelectMBBI->getOperand(4).getReg()) 7774 .addMBB(HeadMBB) 7775 .addReg(SelectMBBI->getOperand(5).getReg()) 7776 .addMBB(IfFalseMBB); 7777 SelectMBBI->eraseFromParent(); 7778 } 7779 SelectMBBI = Next; 7780 } 7781 7782 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 7783 return TailMBB; 7784 } 7785 7786 MachineBasicBlock * 7787 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 7788 MachineBasicBlock *BB) const { 7789 switch (MI.getOpcode()) { 7790 default: 7791 llvm_unreachable("Unexpected instr type to insert"); 7792 case RISCV::ReadCycleWide: 7793 assert(!Subtarget.is64Bit() && 7794 "ReadCycleWrite is only to be used on riscv32"); 7795 return emitReadCycleWidePseudo(MI, BB); 7796 case RISCV::Select_GPR_Using_CC_GPR: 7797 case RISCV::Select_FPR16_Using_CC_GPR: 7798 case RISCV::Select_FPR32_Using_CC_GPR: 7799 case RISCV::Select_FPR64_Using_CC_GPR: 7800 return emitSelectPseudo(MI, BB, Subtarget); 7801 case RISCV::BuildPairF64Pseudo: 7802 return emitBuildPairF64Pseudo(MI, BB); 7803 case RISCV::SplitF64Pseudo: 7804 return emitSplitF64Pseudo(MI, BB); 7805 } 7806 } 7807 7808 // Calling Convention Implementation. 7809 // The expectations for frontend ABI lowering vary from target to target. 7810 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 7811 // details, but this is a longer term goal. For now, we simply try to keep the 7812 // role of the frontend as simple and well-defined as possible. The rules can 7813 // be summarised as: 7814 // * Never split up large scalar arguments. We handle them here. 7815 // * If a hardfloat calling convention is being used, and the struct may be 7816 // passed in a pair of registers (fp+fp, int+fp), and both registers are 7817 // available, then pass as two separate arguments. If either the GPRs or FPRs 7818 // are exhausted, then pass according to the rule below. 7819 // * If a struct could never be passed in registers or directly in a stack 7820 // slot (as it is larger than 2*XLEN and the floating point rules don't 7821 // apply), then pass it using a pointer with the byval attribute. 7822 // * If a struct is less than 2*XLEN, then coerce to either a two-element 7823 // word-sized array or a 2*XLEN scalar (depending on alignment). 7824 // * The frontend can determine whether a struct is returned by reference or 7825 // not based on its size and fields. If it will be returned by reference, the 7826 // frontend must modify the prototype so a pointer with the sret annotation is 7827 // passed as the first argument. This is not necessary for large scalar 7828 // returns. 7829 // * Struct return values and varargs should be coerced to structs containing 7830 // register-size fields in the same situations they would be for fixed 7831 // arguments. 7832 7833 static const MCPhysReg ArgGPRs[] = { 7834 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 7835 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 7836 }; 7837 static const MCPhysReg ArgFPR16s[] = { 7838 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 7839 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 7840 }; 7841 static const MCPhysReg ArgFPR32s[] = { 7842 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 7843 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 7844 }; 7845 static const MCPhysReg ArgFPR64s[] = { 7846 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 7847 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 7848 }; 7849 // This is an interim calling convention and it may be changed in the future. 7850 static const MCPhysReg ArgVRs[] = { 7851 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 7852 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 7853 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 7854 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 7855 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 7856 RISCV::V20M2, RISCV::V22M2}; 7857 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 7858 RISCV::V20M4}; 7859 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 7860 7861 // Pass a 2*XLEN argument that has been split into two XLEN values through 7862 // registers or the stack as necessary. 7863 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 7864 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 7865 MVT ValVT2, MVT LocVT2, 7866 ISD::ArgFlagsTy ArgFlags2) { 7867 unsigned XLenInBytes = XLen / 8; 7868 if (Register Reg = State.AllocateReg(ArgGPRs)) { 7869 // At least one half can be passed via register. 7870 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 7871 VA1.getLocVT(), CCValAssign::Full)); 7872 } else { 7873 // Both halves must be passed on the stack, with proper alignment. 7874 Align StackAlign = 7875 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 7876 State.addLoc( 7877 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 7878 State.AllocateStack(XLenInBytes, StackAlign), 7879 VA1.getLocVT(), CCValAssign::Full)); 7880 State.addLoc(CCValAssign::getMem( 7881 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 7882 LocVT2, CCValAssign::Full)); 7883 return false; 7884 } 7885 7886 if (Register Reg = State.AllocateReg(ArgGPRs)) { 7887 // The second half can also be passed via register. 7888 State.addLoc( 7889 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 7890 } else { 7891 // The second half is passed via the stack, without additional alignment. 7892 State.addLoc(CCValAssign::getMem( 7893 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 7894 LocVT2, CCValAssign::Full)); 7895 } 7896 7897 return false; 7898 } 7899 7900 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 7901 Optional<unsigned> FirstMaskArgument, 7902 CCState &State, const RISCVTargetLowering &TLI) { 7903 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 7904 if (RC == &RISCV::VRRegClass) { 7905 // Assign the first mask argument to V0. 7906 // This is an interim calling convention and it may be changed in the 7907 // future. 7908 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 7909 return State.AllocateReg(RISCV::V0); 7910 return State.AllocateReg(ArgVRs); 7911 } 7912 if (RC == &RISCV::VRM2RegClass) 7913 return State.AllocateReg(ArgVRM2s); 7914 if (RC == &RISCV::VRM4RegClass) 7915 return State.AllocateReg(ArgVRM4s); 7916 if (RC == &RISCV::VRM8RegClass) 7917 return State.AllocateReg(ArgVRM8s); 7918 llvm_unreachable("Unhandled register class for ValueType"); 7919 } 7920 7921 // Implements the RISC-V calling convention. Returns true upon failure. 7922 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 7923 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 7924 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 7925 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 7926 Optional<unsigned> FirstMaskArgument) { 7927 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 7928 assert(XLen == 32 || XLen == 64); 7929 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 7930 7931 // Any return value split in to more than two values can't be returned 7932 // directly. Vectors are returned via the available vector registers. 7933 if (!LocVT.isVector() && IsRet && ValNo > 1) 7934 return true; 7935 7936 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 7937 // variadic argument, or if no F16/F32 argument registers are available. 7938 bool UseGPRForF16_F32 = true; 7939 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 7940 // variadic argument, or if no F64 argument registers are available. 7941 bool UseGPRForF64 = true; 7942 7943 switch (ABI) { 7944 default: 7945 llvm_unreachable("Unexpected ABI"); 7946 case RISCVABI::ABI_ILP32: 7947 case RISCVABI::ABI_LP64: 7948 break; 7949 case RISCVABI::ABI_ILP32F: 7950 case RISCVABI::ABI_LP64F: 7951 UseGPRForF16_F32 = !IsFixed; 7952 break; 7953 case RISCVABI::ABI_ILP32D: 7954 case RISCVABI::ABI_LP64D: 7955 UseGPRForF16_F32 = !IsFixed; 7956 UseGPRForF64 = !IsFixed; 7957 break; 7958 } 7959 7960 // FPR16, FPR32, and FPR64 alias each other. 7961 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 7962 UseGPRForF16_F32 = true; 7963 UseGPRForF64 = true; 7964 } 7965 7966 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 7967 // similar local variables rather than directly checking against the target 7968 // ABI. 7969 7970 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 7971 LocVT = XLenVT; 7972 LocInfo = CCValAssign::BCvt; 7973 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 7974 LocVT = MVT::i64; 7975 LocInfo = CCValAssign::BCvt; 7976 } 7977 7978 // If this is a variadic argument, the RISC-V calling convention requires 7979 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 7980 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 7981 // be used regardless of whether the original argument was split during 7982 // legalisation or not. The argument will not be passed by registers if the 7983 // original type is larger than 2*XLEN, so the register alignment rule does 7984 // not apply. 7985 unsigned TwoXLenInBytes = (2 * XLen) / 8; 7986 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 7987 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 7988 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 7989 // Skip 'odd' register if necessary. 7990 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 7991 State.AllocateReg(ArgGPRs); 7992 } 7993 7994 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 7995 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 7996 State.getPendingArgFlags(); 7997 7998 assert(PendingLocs.size() == PendingArgFlags.size() && 7999 "PendingLocs and PendingArgFlags out of sync"); 8000 8001 // Handle passing f64 on RV32D with a soft float ABI or when floating point 8002 // registers are exhausted. 8003 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 8004 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 8005 "Can't lower f64 if it is split"); 8006 // Depending on available argument GPRS, f64 may be passed in a pair of 8007 // GPRs, split between a GPR and the stack, or passed completely on the 8008 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 8009 // cases. 8010 Register Reg = State.AllocateReg(ArgGPRs); 8011 LocVT = MVT::i32; 8012 if (!Reg) { 8013 unsigned StackOffset = State.AllocateStack(8, Align(8)); 8014 State.addLoc( 8015 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8016 return false; 8017 } 8018 if (!State.AllocateReg(ArgGPRs)) 8019 State.AllocateStack(4, Align(4)); 8020 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8021 return false; 8022 } 8023 8024 // Fixed-length vectors are located in the corresponding scalable-vector 8025 // container types. 8026 if (ValVT.isFixedLengthVector()) 8027 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8028 8029 // Split arguments might be passed indirectly, so keep track of the pending 8030 // values. Split vectors are passed via a mix of registers and indirectly, so 8031 // treat them as we would any other argument. 8032 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 8033 LocVT = XLenVT; 8034 LocInfo = CCValAssign::Indirect; 8035 PendingLocs.push_back( 8036 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 8037 PendingArgFlags.push_back(ArgFlags); 8038 if (!ArgFlags.isSplitEnd()) { 8039 return false; 8040 } 8041 } 8042 8043 // If the split argument only had two elements, it should be passed directly 8044 // in registers or on the stack. 8045 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 8046 PendingLocs.size() <= 2) { 8047 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 8048 // Apply the normal calling convention rules to the first half of the 8049 // split argument. 8050 CCValAssign VA = PendingLocs[0]; 8051 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 8052 PendingLocs.clear(); 8053 PendingArgFlags.clear(); 8054 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 8055 ArgFlags); 8056 } 8057 8058 // Allocate to a register if possible, or else a stack slot. 8059 Register Reg; 8060 unsigned StoreSizeBytes = XLen / 8; 8061 Align StackAlign = Align(XLen / 8); 8062 8063 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 8064 Reg = State.AllocateReg(ArgFPR16s); 8065 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 8066 Reg = State.AllocateReg(ArgFPR32s); 8067 else if (ValVT == MVT::f64 && !UseGPRForF64) 8068 Reg = State.AllocateReg(ArgFPR64s); 8069 else if (ValVT.isVector()) { 8070 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 8071 if (!Reg) { 8072 // For return values, the vector must be passed fully via registers or 8073 // via the stack. 8074 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 8075 // but we're using all of them. 8076 if (IsRet) 8077 return true; 8078 // Try using a GPR to pass the address 8079 if ((Reg = State.AllocateReg(ArgGPRs))) { 8080 LocVT = XLenVT; 8081 LocInfo = CCValAssign::Indirect; 8082 } else if (ValVT.isScalableVector()) { 8083 report_fatal_error("Unable to pass scalable vector types on the stack"); 8084 } else { 8085 // Pass fixed-length vectors on the stack. 8086 LocVT = ValVT; 8087 StoreSizeBytes = ValVT.getStoreSize(); 8088 // Align vectors to their element sizes, being careful for vXi1 8089 // vectors. 8090 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8091 } 8092 } 8093 } else { 8094 Reg = State.AllocateReg(ArgGPRs); 8095 } 8096 8097 unsigned StackOffset = 8098 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 8099 8100 // If we reach this point and PendingLocs is non-empty, we must be at the 8101 // end of a split argument that must be passed indirectly. 8102 if (!PendingLocs.empty()) { 8103 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 8104 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 8105 8106 for (auto &It : PendingLocs) { 8107 if (Reg) 8108 It.convertToReg(Reg); 8109 else 8110 It.convertToMem(StackOffset); 8111 State.addLoc(It); 8112 } 8113 PendingLocs.clear(); 8114 PendingArgFlags.clear(); 8115 return false; 8116 } 8117 8118 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 8119 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 8120 "Expected an XLenVT or vector types at this stage"); 8121 8122 if (Reg) { 8123 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8124 return false; 8125 } 8126 8127 // When a floating-point value is passed on the stack, no bit-conversion is 8128 // needed. 8129 if (ValVT.isFloatingPoint()) { 8130 LocVT = ValVT; 8131 LocInfo = CCValAssign::Full; 8132 } 8133 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8134 return false; 8135 } 8136 8137 template <typename ArgTy> 8138 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 8139 for (const auto &ArgIdx : enumerate(Args)) { 8140 MVT ArgVT = ArgIdx.value().VT; 8141 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 8142 return ArgIdx.index(); 8143 } 8144 return None; 8145 } 8146 8147 void RISCVTargetLowering::analyzeInputArgs( 8148 MachineFunction &MF, CCState &CCInfo, 8149 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 8150 RISCVCCAssignFn Fn) const { 8151 unsigned NumArgs = Ins.size(); 8152 FunctionType *FType = MF.getFunction().getFunctionType(); 8153 8154 Optional<unsigned> FirstMaskArgument; 8155 if (Subtarget.hasVInstructions()) 8156 FirstMaskArgument = preAssignMask(Ins); 8157 8158 for (unsigned i = 0; i != NumArgs; ++i) { 8159 MVT ArgVT = Ins[i].VT; 8160 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 8161 8162 Type *ArgTy = nullptr; 8163 if (IsRet) 8164 ArgTy = FType->getReturnType(); 8165 else if (Ins[i].isOrigArg()) 8166 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 8167 8168 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8169 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8170 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 8171 FirstMaskArgument)) { 8172 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 8173 << EVT(ArgVT).getEVTString() << '\n'); 8174 llvm_unreachable(nullptr); 8175 } 8176 } 8177 } 8178 8179 void RISCVTargetLowering::analyzeOutputArgs( 8180 MachineFunction &MF, CCState &CCInfo, 8181 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 8182 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 8183 unsigned NumArgs = Outs.size(); 8184 8185 Optional<unsigned> FirstMaskArgument; 8186 if (Subtarget.hasVInstructions()) 8187 FirstMaskArgument = preAssignMask(Outs); 8188 8189 for (unsigned i = 0; i != NumArgs; i++) { 8190 MVT ArgVT = Outs[i].VT; 8191 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8192 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 8193 8194 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8195 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8196 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 8197 FirstMaskArgument)) { 8198 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 8199 << EVT(ArgVT).getEVTString() << "\n"); 8200 llvm_unreachable(nullptr); 8201 } 8202 } 8203 } 8204 8205 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 8206 // values. 8207 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 8208 const CCValAssign &VA, const SDLoc &DL, 8209 const RISCVSubtarget &Subtarget) { 8210 switch (VA.getLocInfo()) { 8211 default: 8212 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8213 case CCValAssign::Full: 8214 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 8215 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 8216 break; 8217 case CCValAssign::BCvt: 8218 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8219 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 8220 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8221 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 8222 else 8223 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 8224 break; 8225 } 8226 return Val; 8227 } 8228 8229 // The caller is responsible for loading the full value if the argument is 8230 // passed with CCValAssign::Indirect. 8231 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 8232 const CCValAssign &VA, const SDLoc &DL, 8233 const RISCVTargetLowering &TLI) { 8234 MachineFunction &MF = DAG.getMachineFunction(); 8235 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8236 EVT LocVT = VA.getLocVT(); 8237 SDValue Val; 8238 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 8239 Register VReg = RegInfo.createVirtualRegister(RC); 8240 RegInfo.addLiveIn(VA.getLocReg(), VReg); 8241 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 8242 8243 if (VA.getLocInfo() == CCValAssign::Indirect) 8244 return Val; 8245 8246 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 8247 } 8248 8249 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 8250 const CCValAssign &VA, const SDLoc &DL, 8251 const RISCVSubtarget &Subtarget) { 8252 EVT LocVT = VA.getLocVT(); 8253 8254 switch (VA.getLocInfo()) { 8255 default: 8256 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8257 case CCValAssign::Full: 8258 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 8259 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 8260 break; 8261 case CCValAssign::BCvt: 8262 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8263 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 8264 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8265 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 8266 else 8267 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 8268 break; 8269 } 8270 return Val; 8271 } 8272 8273 // The caller is responsible for loading the full value if the argument is 8274 // passed with CCValAssign::Indirect. 8275 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 8276 const CCValAssign &VA, const SDLoc &DL) { 8277 MachineFunction &MF = DAG.getMachineFunction(); 8278 MachineFrameInfo &MFI = MF.getFrameInfo(); 8279 EVT LocVT = VA.getLocVT(); 8280 EVT ValVT = VA.getValVT(); 8281 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 8282 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 8283 /*Immutable=*/true); 8284 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 8285 SDValue Val; 8286 8287 ISD::LoadExtType ExtType; 8288 switch (VA.getLocInfo()) { 8289 default: 8290 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8291 case CCValAssign::Full: 8292 case CCValAssign::Indirect: 8293 case CCValAssign::BCvt: 8294 ExtType = ISD::NON_EXTLOAD; 8295 break; 8296 } 8297 Val = DAG.getExtLoad( 8298 ExtType, DL, LocVT, Chain, FIN, 8299 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 8300 return Val; 8301 } 8302 8303 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 8304 const CCValAssign &VA, const SDLoc &DL) { 8305 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 8306 "Unexpected VA"); 8307 MachineFunction &MF = DAG.getMachineFunction(); 8308 MachineFrameInfo &MFI = MF.getFrameInfo(); 8309 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8310 8311 if (VA.isMemLoc()) { 8312 // f64 is passed on the stack. 8313 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 8314 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8315 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 8316 MachinePointerInfo::getFixedStack(MF, FI)); 8317 } 8318 8319 assert(VA.isRegLoc() && "Expected register VA assignment"); 8320 8321 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8322 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 8323 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 8324 SDValue Hi; 8325 if (VA.getLocReg() == RISCV::X17) { 8326 // Second half of f64 is passed on the stack. 8327 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 8328 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8329 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 8330 MachinePointerInfo::getFixedStack(MF, FI)); 8331 } else { 8332 // Second half of f64 is passed in another GPR. 8333 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8334 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 8335 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 8336 } 8337 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 8338 } 8339 8340 // FastCC has less than 1% performance improvement for some particular 8341 // benchmark. But theoretically, it may has benenfit for some cases. 8342 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 8343 unsigned ValNo, MVT ValVT, MVT LocVT, 8344 CCValAssign::LocInfo LocInfo, 8345 ISD::ArgFlagsTy ArgFlags, CCState &State, 8346 bool IsFixed, bool IsRet, Type *OrigTy, 8347 const RISCVTargetLowering &TLI, 8348 Optional<unsigned> FirstMaskArgument) { 8349 8350 // X5 and X6 might be used for save-restore libcall. 8351 static const MCPhysReg GPRList[] = { 8352 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 8353 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 8354 RISCV::X29, RISCV::X30, RISCV::X31}; 8355 8356 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8357 if (unsigned Reg = State.AllocateReg(GPRList)) { 8358 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8359 return false; 8360 } 8361 } 8362 8363 if (LocVT == MVT::f16) { 8364 static const MCPhysReg FPR16List[] = { 8365 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 8366 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 8367 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 8368 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 8369 if (unsigned Reg = State.AllocateReg(FPR16List)) { 8370 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8371 return false; 8372 } 8373 } 8374 8375 if (LocVT == MVT::f32) { 8376 static const MCPhysReg FPR32List[] = { 8377 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 8378 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 8379 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 8380 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 8381 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8382 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8383 return false; 8384 } 8385 } 8386 8387 if (LocVT == MVT::f64) { 8388 static const MCPhysReg FPR64List[] = { 8389 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 8390 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 8391 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 8392 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 8393 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8394 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8395 return false; 8396 } 8397 } 8398 8399 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 8400 unsigned Offset4 = State.AllocateStack(4, Align(4)); 8401 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 8402 return false; 8403 } 8404 8405 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 8406 unsigned Offset5 = State.AllocateStack(8, Align(8)); 8407 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 8408 return false; 8409 } 8410 8411 if (LocVT.isVector()) { 8412 if (unsigned Reg = 8413 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 8414 // Fixed-length vectors are located in the corresponding scalable-vector 8415 // container types. 8416 if (ValVT.isFixedLengthVector()) 8417 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8418 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8419 } else { 8420 // Try and pass the address via a "fast" GPR. 8421 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 8422 LocInfo = CCValAssign::Indirect; 8423 LocVT = TLI.getSubtarget().getXLenVT(); 8424 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 8425 } else if (ValVT.isFixedLengthVector()) { 8426 auto StackAlign = 8427 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8428 unsigned StackOffset = 8429 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 8430 State.addLoc( 8431 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8432 } else { 8433 // Can't pass scalable vectors on the stack. 8434 return true; 8435 } 8436 } 8437 8438 return false; 8439 } 8440 8441 return true; // CC didn't match. 8442 } 8443 8444 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 8445 CCValAssign::LocInfo LocInfo, 8446 ISD::ArgFlagsTy ArgFlags, CCState &State) { 8447 8448 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8449 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 8450 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 8451 static const MCPhysReg GPRList[] = { 8452 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 8453 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 8454 if (unsigned Reg = State.AllocateReg(GPRList)) { 8455 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8456 return false; 8457 } 8458 } 8459 8460 if (LocVT == MVT::f32) { 8461 // Pass in STG registers: F1, ..., F6 8462 // fs0 ... fs5 8463 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 8464 RISCV::F18_F, RISCV::F19_F, 8465 RISCV::F20_F, RISCV::F21_F}; 8466 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8467 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8468 return false; 8469 } 8470 } 8471 8472 if (LocVT == MVT::f64) { 8473 // Pass in STG registers: D1, ..., D6 8474 // fs6 ... fs11 8475 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 8476 RISCV::F24_D, RISCV::F25_D, 8477 RISCV::F26_D, RISCV::F27_D}; 8478 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8479 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8480 return false; 8481 } 8482 } 8483 8484 report_fatal_error("No registers left in GHC calling convention"); 8485 return true; 8486 } 8487 8488 // Transform physical registers into virtual registers. 8489 SDValue RISCVTargetLowering::LowerFormalArguments( 8490 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 8491 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 8492 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 8493 8494 MachineFunction &MF = DAG.getMachineFunction(); 8495 8496 switch (CallConv) { 8497 default: 8498 report_fatal_error("Unsupported calling convention"); 8499 case CallingConv::C: 8500 case CallingConv::Fast: 8501 break; 8502 case CallingConv::GHC: 8503 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 8504 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 8505 report_fatal_error( 8506 "GHC calling convention requires the F and D instruction set extensions"); 8507 } 8508 8509 const Function &Func = MF.getFunction(); 8510 if (Func.hasFnAttribute("interrupt")) { 8511 if (!Func.arg_empty()) 8512 report_fatal_error( 8513 "Functions with the interrupt attribute cannot have arguments!"); 8514 8515 StringRef Kind = 8516 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 8517 8518 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 8519 report_fatal_error( 8520 "Function interrupt attribute argument not supported!"); 8521 } 8522 8523 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8524 MVT XLenVT = Subtarget.getXLenVT(); 8525 unsigned XLenInBytes = Subtarget.getXLen() / 8; 8526 // Used with vargs to acumulate store chains. 8527 std::vector<SDValue> OutChains; 8528 8529 // Assign locations to all of the incoming arguments. 8530 SmallVector<CCValAssign, 16> ArgLocs; 8531 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8532 8533 if (CallConv == CallingConv::GHC) 8534 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 8535 else 8536 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 8537 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8538 : CC_RISCV); 8539 8540 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 8541 CCValAssign &VA = ArgLocs[i]; 8542 SDValue ArgValue; 8543 // Passing f64 on RV32D with a soft float ABI must be handled as a special 8544 // case. 8545 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 8546 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 8547 else if (VA.isRegLoc()) 8548 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 8549 else 8550 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 8551 8552 if (VA.getLocInfo() == CCValAssign::Indirect) { 8553 // If the original argument was split and passed by reference (e.g. i128 8554 // on RV32), we need to load all parts of it here (using the same 8555 // address). Vectors may be partly split to registers and partly to the 8556 // stack, in which case the base address is partly offset and subsequent 8557 // stores are relative to that. 8558 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 8559 MachinePointerInfo())); 8560 unsigned ArgIndex = Ins[i].OrigArgIndex; 8561 unsigned ArgPartOffset = Ins[i].PartOffset; 8562 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 8563 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 8564 CCValAssign &PartVA = ArgLocs[i + 1]; 8565 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 8566 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 8567 if (PartVA.getValVT().isScalableVector()) 8568 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8569 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 8570 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 8571 MachinePointerInfo())); 8572 ++i; 8573 } 8574 continue; 8575 } 8576 InVals.push_back(ArgValue); 8577 } 8578 8579 if (IsVarArg) { 8580 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 8581 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 8582 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 8583 MachineFrameInfo &MFI = MF.getFrameInfo(); 8584 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8585 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 8586 8587 // Offset of the first variable argument from stack pointer, and size of 8588 // the vararg save area. For now, the varargs save area is either zero or 8589 // large enough to hold a0-a7. 8590 int VaArgOffset, VarArgsSaveSize; 8591 8592 // If all registers are allocated, then all varargs must be passed on the 8593 // stack and we don't need to save any argregs. 8594 if (ArgRegs.size() == Idx) { 8595 VaArgOffset = CCInfo.getNextStackOffset(); 8596 VarArgsSaveSize = 0; 8597 } else { 8598 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 8599 VaArgOffset = -VarArgsSaveSize; 8600 } 8601 8602 // Record the frame index of the first variable argument 8603 // which is a value necessary to VASTART. 8604 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8605 RVFI->setVarArgsFrameIndex(FI); 8606 8607 // If saving an odd number of registers then create an extra stack slot to 8608 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 8609 // offsets to even-numbered registered remain 2*XLEN-aligned. 8610 if (Idx % 2) { 8611 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 8612 VarArgsSaveSize += XLenInBytes; 8613 } 8614 8615 // Copy the integer registers that may have been used for passing varargs 8616 // to the vararg save area. 8617 for (unsigned I = Idx; I < ArgRegs.size(); 8618 ++I, VaArgOffset += XLenInBytes) { 8619 const Register Reg = RegInfo.createVirtualRegister(RC); 8620 RegInfo.addLiveIn(ArgRegs[I], Reg); 8621 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 8622 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8623 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8624 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 8625 MachinePointerInfo::getFixedStack(MF, FI)); 8626 cast<StoreSDNode>(Store.getNode()) 8627 ->getMemOperand() 8628 ->setValue((Value *)nullptr); 8629 OutChains.push_back(Store); 8630 } 8631 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 8632 } 8633 8634 // All stores are grouped in one node to allow the matching between 8635 // the size of Ins and InVals. This only happens for vararg functions. 8636 if (!OutChains.empty()) { 8637 OutChains.push_back(Chain); 8638 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 8639 } 8640 8641 return Chain; 8642 } 8643 8644 /// isEligibleForTailCallOptimization - Check whether the call is eligible 8645 /// for tail call optimization. 8646 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 8647 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 8648 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 8649 const SmallVector<CCValAssign, 16> &ArgLocs) const { 8650 8651 auto &Callee = CLI.Callee; 8652 auto CalleeCC = CLI.CallConv; 8653 auto &Outs = CLI.Outs; 8654 auto &Caller = MF.getFunction(); 8655 auto CallerCC = Caller.getCallingConv(); 8656 8657 // Exception-handling functions need a special set of instructions to 8658 // indicate a return to the hardware. Tail-calling another function would 8659 // probably break this. 8660 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 8661 // should be expanded as new function attributes are introduced. 8662 if (Caller.hasFnAttribute("interrupt")) 8663 return false; 8664 8665 // Do not tail call opt if the stack is used to pass parameters. 8666 if (CCInfo.getNextStackOffset() != 0) 8667 return false; 8668 8669 // Do not tail call opt if any parameters need to be passed indirectly. 8670 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 8671 // passed indirectly. So the address of the value will be passed in a 8672 // register, or if not available, then the address is put on the stack. In 8673 // order to pass indirectly, space on the stack often needs to be allocated 8674 // in order to store the value. In this case the CCInfo.getNextStackOffset() 8675 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 8676 // are passed CCValAssign::Indirect. 8677 for (auto &VA : ArgLocs) 8678 if (VA.getLocInfo() == CCValAssign::Indirect) 8679 return false; 8680 8681 // Do not tail call opt if either caller or callee uses struct return 8682 // semantics. 8683 auto IsCallerStructRet = Caller.hasStructRetAttr(); 8684 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 8685 if (IsCallerStructRet || IsCalleeStructRet) 8686 return false; 8687 8688 // Externally-defined functions with weak linkage should not be 8689 // tail-called. The behaviour of branch instructions in this situation (as 8690 // used for tail calls) is implementation-defined, so we cannot rely on the 8691 // linker replacing the tail call with a return. 8692 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 8693 const GlobalValue *GV = G->getGlobal(); 8694 if (GV->hasExternalWeakLinkage()) 8695 return false; 8696 } 8697 8698 // The callee has to preserve all registers the caller needs to preserve. 8699 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8700 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 8701 if (CalleeCC != CallerCC) { 8702 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 8703 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 8704 return false; 8705 } 8706 8707 // Byval parameters hand the function a pointer directly into the stack area 8708 // we want to reuse during a tail call. Working around this *is* possible 8709 // but less efficient and uglier in LowerCall. 8710 for (auto &Arg : Outs) 8711 if (Arg.Flags.isByVal()) 8712 return false; 8713 8714 return true; 8715 } 8716 8717 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 8718 return DAG.getDataLayout().getPrefTypeAlign( 8719 VT.getTypeForEVT(*DAG.getContext())); 8720 } 8721 8722 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 8723 // and output parameter nodes. 8724 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 8725 SmallVectorImpl<SDValue> &InVals) const { 8726 SelectionDAG &DAG = CLI.DAG; 8727 SDLoc &DL = CLI.DL; 8728 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 8729 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 8730 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 8731 SDValue Chain = CLI.Chain; 8732 SDValue Callee = CLI.Callee; 8733 bool &IsTailCall = CLI.IsTailCall; 8734 CallingConv::ID CallConv = CLI.CallConv; 8735 bool IsVarArg = CLI.IsVarArg; 8736 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8737 MVT XLenVT = Subtarget.getXLenVT(); 8738 8739 MachineFunction &MF = DAG.getMachineFunction(); 8740 8741 // Analyze the operands of the call, assigning locations to each operand. 8742 SmallVector<CCValAssign, 16> ArgLocs; 8743 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8744 8745 if (CallConv == CallingConv::GHC) 8746 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 8747 else 8748 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 8749 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8750 : CC_RISCV); 8751 8752 // Check if it's really possible to do a tail call. 8753 if (IsTailCall) 8754 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 8755 8756 if (IsTailCall) 8757 ++NumTailCalls; 8758 else if (CLI.CB && CLI.CB->isMustTailCall()) 8759 report_fatal_error("failed to perform tail call elimination on a call " 8760 "site marked musttail"); 8761 8762 // Get a count of how many bytes are to be pushed on the stack. 8763 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 8764 8765 // Create local copies for byval args 8766 SmallVector<SDValue, 8> ByValArgs; 8767 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 8768 ISD::ArgFlagsTy Flags = Outs[i].Flags; 8769 if (!Flags.isByVal()) 8770 continue; 8771 8772 SDValue Arg = OutVals[i]; 8773 unsigned Size = Flags.getByValSize(); 8774 Align Alignment = Flags.getNonZeroByValAlign(); 8775 8776 int FI = 8777 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 8778 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8779 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 8780 8781 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 8782 /*IsVolatile=*/false, 8783 /*AlwaysInline=*/false, IsTailCall, 8784 MachinePointerInfo(), MachinePointerInfo()); 8785 ByValArgs.push_back(FIPtr); 8786 } 8787 8788 if (!IsTailCall) 8789 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 8790 8791 // Copy argument values to their designated locations. 8792 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 8793 SmallVector<SDValue, 8> MemOpChains; 8794 SDValue StackPtr; 8795 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 8796 CCValAssign &VA = ArgLocs[i]; 8797 SDValue ArgValue = OutVals[i]; 8798 ISD::ArgFlagsTy Flags = Outs[i].Flags; 8799 8800 // Handle passing f64 on RV32D with a soft float ABI as a special case. 8801 bool IsF64OnRV32DSoftABI = 8802 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 8803 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 8804 SDValue SplitF64 = DAG.getNode( 8805 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 8806 SDValue Lo = SplitF64.getValue(0); 8807 SDValue Hi = SplitF64.getValue(1); 8808 8809 Register RegLo = VA.getLocReg(); 8810 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 8811 8812 if (RegLo == RISCV::X17) { 8813 // Second half of f64 is passed on the stack. 8814 // Work out the address of the stack slot. 8815 if (!StackPtr.getNode()) 8816 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 8817 // Emit the store. 8818 MemOpChains.push_back( 8819 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 8820 } else { 8821 // Second half of f64 is passed in another GPR. 8822 assert(RegLo < RISCV::X31 && "Invalid register pair"); 8823 Register RegHigh = RegLo + 1; 8824 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 8825 } 8826 continue; 8827 } 8828 8829 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 8830 // as any other MemLoc. 8831 8832 // Promote the value if needed. 8833 // For now, only handle fully promoted and indirect arguments. 8834 if (VA.getLocInfo() == CCValAssign::Indirect) { 8835 // Store the argument in a stack slot and pass its address. 8836 Align StackAlign = 8837 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 8838 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 8839 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 8840 // If the original argument was split (e.g. i128), we need 8841 // to store the required parts of it here (and pass just one address). 8842 // Vectors may be partly split to registers and partly to the stack, in 8843 // which case the base address is partly offset and subsequent stores are 8844 // relative to that. 8845 unsigned ArgIndex = Outs[i].OrigArgIndex; 8846 unsigned ArgPartOffset = Outs[i].PartOffset; 8847 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 8848 // Calculate the total size to store. We don't have access to what we're 8849 // actually storing other than performing the loop and collecting the 8850 // info. 8851 SmallVector<std::pair<SDValue, SDValue>> Parts; 8852 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 8853 SDValue PartValue = OutVals[i + 1]; 8854 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 8855 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 8856 EVT PartVT = PartValue.getValueType(); 8857 if (PartVT.isScalableVector()) 8858 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8859 StoredSize += PartVT.getStoreSize(); 8860 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 8861 Parts.push_back(std::make_pair(PartValue, Offset)); 8862 ++i; 8863 } 8864 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 8865 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 8866 MemOpChains.push_back( 8867 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 8868 MachinePointerInfo::getFixedStack(MF, FI))); 8869 for (const auto &Part : Parts) { 8870 SDValue PartValue = Part.first; 8871 SDValue PartOffset = Part.second; 8872 SDValue Address = 8873 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 8874 MemOpChains.push_back( 8875 DAG.getStore(Chain, DL, PartValue, Address, 8876 MachinePointerInfo::getFixedStack(MF, FI))); 8877 } 8878 ArgValue = SpillSlot; 8879 } else { 8880 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 8881 } 8882 8883 // Use local copy if it is a byval arg. 8884 if (Flags.isByVal()) 8885 ArgValue = ByValArgs[j++]; 8886 8887 if (VA.isRegLoc()) { 8888 // Queue up the argument copies and emit them at the end. 8889 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 8890 } else { 8891 assert(VA.isMemLoc() && "Argument not register or memory"); 8892 assert(!IsTailCall && "Tail call not allowed if stack is used " 8893 "for passing parameters"); 8894 8895 // Work out the address of the stack slot. 8896 if (!StackPtr.getNode()) 8897 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 8898 SDValue Address = 8899 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 8900 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 8901 8902 // Emit the store. 8903 MemOpChains.push_back( 8904 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 8905 } 8906 } 8907 8908 // Join the stores, which are independent of one another. 8909 if (!MemOpChains.empty()) 8910 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 8911 8912 SDValue Glue; 8913 8914 // Build a sequence of copy-to-reg nodes, chained and glued together. 8915 for (auto &Reg : RegsToPass) { 8916 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 8917 Glue = Chain.getValue(1); 8918 } 8919 8920 // Validate that none of the argument registers have been marked as 8921 // reserved, if so report an error. Do the same for the return address if this 8922 // is not a tailcall. 8923 validateCCReservedRegs(RegsToPass, MF); 8924 if (!IsTailCall && 8925 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 8926 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8927 MF.getFunction(), 8928 "Return address register required, but has been reserved."}); 8929 8930 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 8931 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 8932 // split it and then direct call can be matched by PseudoCALL. 8933 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 8934 const GlobalValue *GV = S->getGlobal(); 8935 8936 unsigned OpFlags = RISCVII::MO_CALL; 8937 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 8938 OpFlags = RISCVII::MO_PLT; 8939 8940 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 8941 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 8942 unsigned OpFlags = RISCVII::MO_CALL; 8943 8944 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 8945 nullptr)) 8946 OpFlags = RISCVII::MO_PLT; 8947 8948 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 8949 } 8950 8951 // The first call operand is the chain and the second is the target address. 8952 SmallVector<SDValue, 8> Ops; 8953 Ops.push_back(Chain); 8954 Ops.push_back(Callee); 8955 8956 // Add argument registers to the end of the list so that they are 8957 // known live into the call. 8958 for (auto &Reg : RegsToPass) 8959 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 8960 8961 if (!IsTailCall) { 8962 // Add a register mask operand representing the call-preserved registers. 8963 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8964 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 8965 assert(Mask && "Missing call preserved mask for calling convention"); 8966 Ops.push_back(DAG.getRegisterMask(Mask)); 8967 } 8968 8969 // Glue the call to the argument copies, if any. 8970 if (Glue.getNode()) 8971 Ops.push_back(Glue); 8972 8973 // Emit the call. 8974 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8975 8976 if (IsTailCall) { 8977 MF.getFrameInfo().setHasTailCall(); 8978 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 8979 } 8980 8981 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 8982 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 8983 Glue = Chain.getValue(1); 8984 8985 // Mark the end of the call, which is glued to the call itself. 8986 Chain = DAG.getCALLSEQ_END(Chain, 8987 DAG.getConstant(NumBytes, DL, PtrVT, true), 8988 DAG.getConstant(0, DL, PtrVT, true), 8989 Glue, DL); 8990 Glue = Chain.getValue(1); 8991 8992 // Assign locations to each value returned by this call. 8993 SmallVector<CCValAssign, 16> RVLocs; 8994 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 8995 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 8996 8997 // Copy all of the result registers out of their specified physreg. 8998 for (auto &VA : RVLocs) { 8999 // Copy the value out 9000 SDValue RetValue = 9001 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 9002 // Glue the RetValue to the end of the call sequence 9003 Chain = RetValue.getValue(1); 9004 Glue = RetValue.getValue(2); 9005 9006 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9007 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 9008 SDValue RetValue2 = 9009 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 9010 Chain = RetValue2.getValue(1); 9011 Glue = RetValue2.getValue(2); 9012 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 9013 RetValue2); 9014 } 9015 9016 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 9017 9018 InVals.push_back(RetValue); 9019 } 9020 9021 return Chain; 9022 } 9023 9024 bool RISCVTargetLowering::CanLowerReturn( 9025 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 9026 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 9027 SmallVector<CCValAssign, 16> RVLocs; 9028 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 9029 9030 Optional<unsigned> FirstMaskArgument; 9031 if (Subtarget.hasVInstructions()) 9032 FirstMaskArgument = preAssignMask(Outs); 9033 9034 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9035 MVT VT = Outs[i].VT; 9036 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9037 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9038 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 9039 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 9040 *this, FirstMaskArgument)) 9041 return false; 9042 } 9043 return true; 9044 } 9045 9046 SDValue 9047 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 9048 bool IsVarArg, 9049 const SmallVectorImpl<ISD::OutputArg> &Outs, 9050 const SmallVectorImpl<SDValue> &OutVals, 9051 const SDLoc &DL, SelectionDAG &DAG) const { 9052 const MachineFunction &MF = DAG.getMachineFunction(); 9053 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9054 9055 // Stores the assignment of the return value to a location. 9056 SmallVector<CCValAssign, 16> RVLocs; 9057 9058 // Info about the registers and stack slot. 9059 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 9060 *DAG.getContext()); 9061 9062 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 9063 nullptr, CC_RISCV); 9064 9065 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 9066 report_fatal_error("GHC functions return void only"); 9067 9068 SDValue Glue; 9069 SmallVector<SDValue, 4> RetOps(1, Chain); 9070 9071 // Copy the result values into the output registers. 9072 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 9073 SDValue Val = OutVals[i]; 9074 CCValAssign &VA = RVLocs[i]; 9075 assert(VA.isRegLoc() && "Can only return in registers!"); 9076 9077 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9078 // Handle returning f64 on RV32D with a soft float ABI. 9079 assert(VA.isRegLoc() && "Expected return via registers"); 9080 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 9081 DAG.getVTList(MVT::i32, MVT::i32), Val); 9082 SDValue Lo = SplitF64.getValue(0); 9083 SDValue Hi = SplitF64.getValue(1); 9084 Register RegLo = VA.getLocReg(); 9085 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9086 Register RegHi = RegLo + 1; 9087 9088 if (STI.isRegisterReservedByUser(RegLo) || 9089 STI.isRegisterReservedByUser(RegHi)) 9090 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9091 MF.getFunction(), 9092 "Return value register required, but has been reserved."}); 9093 9094 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 9095 Glue = Chain.getValue(1); 9096 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 9097 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 9098 Glue = Chain.getValue(1); 9099 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 9100 } else { 9101 // Handle a 'normal' return. 9102 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 9103 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 9104 9105 if (STI.isRegisterReservedByUser(VA.getLocReg())) 9106 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9107 MF.getFunction(), 9108 "Return value register required, but has been reserved."}); 9109 9110 // Guarantee that all emitted copies are stuck together. 9111 Glue = Chain.getValue(1); 9112 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 9113 } 9114 } 9115 9116 RetOps[0] = Chain; // Update chain. 9117 9118 // Add the glue node if we have it. 9119 if (Glue.getNode()) { 9120 RetOps.push_back(Glue); 9121 } 9122 9123 unsigned RetOpc = RISCVISD::RET_FLAG; 9124 // Interrupt service routines use different return instructions. 9125 const Function &Func = DAG.getMachineFunction().getFunction(); 9126 if (Func.hasFnAttribute("interrupt")) { 9127 if (!Func.getReturnType()->isVoidTy()) 9128 report_fatal_error( 9129 "Functions with the interrupt attribute must have void return type!"); 9130 9131 MachineFunction &MF = DAG.getMachineFunction(); 9132 StringRef Kind = 9133 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9134 9135 if (Kind == "user") 9136 RetOpc = RISCVISD::URET_FLAG; 9137 else if (Kind == "supervisor") 9138 RetOpc = RISCVISD::SRET_FLAG; 9139 else 9140 RetOpc = RISCVISD::MRET_FLAG; 9141 } 9142 9143 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 9144 } 9145 9146 void RISCVTargetLowering::validateCCReservedRegs( 9147 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 9148 MachineFunction &MF) const { 9149 const Function &F = MF.getFunction(); 9150 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9151 9152 if (llvm::any_of(Regs, [&STI](auto Reg) { 9153 return STI.isRegisterReservedByUser(Reg.first); 9154 })) 9155 F.getContext().diagnose(DiagnosticInfoUnsupported{ 9156 F, "Argument register required, but has been reserved."}); 9157 } 9158 9159 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 9160 return CI->isTailCall(); 9161 } 9162 9163 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 9164 #define NODE_NAME_CASE(NODE) \ 9165 case RISCVISD::NODE: \ 9166 return "RISCVISD::" #NODE; 9167 // clang-format off 9168 switch ((RISCVISD::NodeType)Opcode) { 9169 case RISCVISD::FIRST_NUMBER: 9170 break; 9171 NODE_NAME_CASE(RET_FLAG) 9172 NODE_NAME_CASE(URET_FLAG) 9173 NODE_NAME_CASE(SRET_FLAG) 9174 NODE_NAME_CASE(MRET_FLAG) 9175 NODE_NAME_CASE(CALL) 9176 NODE_NAME_CASE(SELECT_CC) 9177 NODE_NAME_CASE(BR_CC) 9178 NODE_NAME_CASE(BuildPairF64) 9179 NODE_NAME_CASE(SplitF64) 9180 NODE_NAME_CASE(TAIL) 9181 NODE_NAME_CASE(MULHSU) 9182 NODE_NAME_CASE(SLLW) 9183 NODE_NAME_CASE(SRAW) 9184 NODE_NAME_CASE(SRLW) 9185 NODE_NAME_CASE(DIVW) 9186 NODE_NAME_CASE(DIVUW) 9187 NODE_NAME_CASE(REMUW) 9188 NODE_NAME_CASE(ROLW) 9189 NODE_NAME_CASE(RORW) 9190 NODE_NAME_CASE(CLZW) 9191 NODE_NAME_CASE(CTZW) 9192 NODE_NAME_CASE(FSLW) 9193 NODE_NAME_CASE(FSRW) 9194 NODE_NAME_CASE(FSL) 9195 NODE_NAME_CASE(FSR) 9196 NODE_NAME_CASE(FMV_H_X) 9197 NODE_NAME_CASE(FMV_X_ANYEXTH) 9198 NODE_NAME_CASE(FMV_W_X_RV64) 9199 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 9200 NODE_NAME_CASE(FCVT_X_RTZ) 9201 NODE_NAME_CASE(FCVT_XU_RTZ) 9202 NODE_NAME_CASE(FCVT_W_RTZ_RV64) 9203 NODE_NAME_CASE(FCVT_WU_RTZ_RV64) 9204 NODE_NAME_CASE(READ_CYCLE_WIDE) 9205 NODE_NAME_CASE(GREV) 9206 NODE_NAME_CASE(GREVW) 9207 NODE_NAME_CASE(GORC) 9208 NODE_NAME_CASE(GORCW) 9209 NODE_NAME_CASE(SHFL) 9210 NODE_NAME_CASE(SHFLW) 9211 NODE_NAME_CASE(UNSHFL) 9212 NODE_NAME_CASE(UNSHFLW) 9213 NODE_NAME_CASE(BCOMPRESS) 9214 NODE_NAME_CASE(BCOMPRESSW) 9215 NODE_NAME_CASE(BDECOMPRESS) 9216 NODE_NAME_CASE(BDECOMPRESSW) 9217 NODE_NAME_CASE(VMV_V_X_VL) 9218 NODE_NAME_CASE(VFMV_V_F_VL) 9219 NODE_NAME_CASE(VMV_X_S) 9220 NODE_NAME_CASE(VMV_S_X_VL) 9221 NODE_NAME_CASE(VFMV_S_F_VL) 9222 NODE_NAME_CASE(SPLAT_VECTOR_I64) 9223 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 9224 NODE_NAME_CASE(READ_VLENB) 9225 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 9226 NODE_NAME_CASE(VSLIDEUP_VL) 9227 NODE_NAME_CASE(VSLIDE1UP_VL) 9228 NODE_NAME_CASE(VSLIDEDOWN_VL) 9229 NODE_NAME_CASE(VSLIDE1DOWN_VL) 9230 NODE_NAME_CASE(VID_VL) 9231 NODE_NAME_CASE(VFNCVT_ROD_VL) 9232 NODE_NAME_CASE(VECREDUCE_ADD_VL) 9233 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 9234 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 9235 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 9236 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 9237 NODE_NAME_CASE(VECREDUCE_AND_VL) 9238 NODE_NAME_CASE(VECREDUCE_OR_VL) 9239 NODE_NAME_CASE(VECREDUCE_XOR_VL) 9240 NODE_NAME_CASE(VECREDUCE_FADD_VL) 9241 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 9242 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 9243 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 9244 NODE_NAME_CASE(ADD_VL) 9245 NODE_NAME_CASE(AND_VL) 9246 NODE_NAME_CASE(MUL_VL) 9247 NODE_NAME_CASE(OR_VL) 9248 NODE_NAME_CASE(SDIV_VL) 9249 NODE_NAME_CASE(SHL_VL) 9250 NODE_NAME_CASE(SREM_VL) 9251 NODE_NAME_CASE(SRA_VL) 9252 NODE_NAME_CASE(SRL_VL) 9253 NODE_NAME_CASE(SUB_VL) 9254 NODE_NAME_CASE(UDIV_VL) 9255 NODE_NAME_CASE(UREM_VL) 9256 NODE_NAME_CASE(XOR_VL) 9257 NODE_NAME_CASE(SADDSAT_VL) 9258 NODE_NAME_CASE(UADDSAT_VL) 9259 NODE_NAME_CASE(SSUBSAT_VL) 9260 NODE_NAME_CASE(USUBSAT_VL) 9261 NODE_NAME_CASE(FADD_VL) 9262 NODE_NAME_CASE(FSUB_VL) 9263 NODE_NAME_CASE(FMUL_VL) 9264 NODE_NAME_CASE(FDIV_VL) 9265 NODE_NAME_CASE(FNEG_VL) 9266 NODE_NAME_CASE(FABS_VL) 9267 NODE_NAME_CASE(FSQRT_VL) 9268 NODE_NAME_CASE(FMA_VL) 9269 NODE_NAME_CASE(FCOPYSIGN_VL) 9270 NODE_NAME_CASE(SMIN_VL) 9271 NODE_NAME_CASE(SMAX_VL) 9272 NODE_NAME_CASE(UMIN_VL) 9273 NODE_NAME_CASE(UMAX_VL) 9274 NODE_NAME_CASE(FMINNUM_VL) 9275 NODE_NAME_CASE(FMAXNUM_VL) 9276 NODE_NAME_CASE(MULHS_VL) 9277 NODE_NAME_CASE(MULHU_VL) 9278 NODE_NAME_CASE(FP_TO_SINT_VL) 9279 NODE_NAME_CASE(FP_TO_UINT_VL) 9280 NODE_NAME_CASE(SINT_TO_FP_VL) 9281 NODE_NAME_CASE(UINT_TO_FP_VL) 9282 NODE_NAME_CASE(FP_EXTEND_VL) 9283 NODE_NAME_CASE(FP_ROUND_VL) 9284 NODE_NAME_CASE(VWMUL_VL) 9285 NODE_NAME_CASE(VWMULU_VL) 9286 NODE_NAME_CASE(SETCC_VL) 9287 NODE_NAME_CASE(VSELECT_VL) 9288 NODE_NAME_CASE(VMAND_VL) 9289 NODE_NAME_CASE(VMOR_VL) 9290 NODE_NAME_CASE(VMXOR_VL) 9291 NODE_NAME_CASE(VMCLR_VL) 9292 NODE_NAME_CASE(VMSET_VL) 9293 NODE_NAME_CASE(VRGATHER_VX_VL) 9294 NODE_NAME_CASE(VRGATHER_VV_VL) 9295 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 9296 NODE_NAME_CASE(VSEXT_VL) 9297 NODE_NAME_CASE(VZEXT_VL) 9298 NODE_NAME_CASE(VCPOP_VL) 9299 NODE_NAME_CASE(VLE_VL) 9300 NODE_NAME_CASE(VSE_VL) 9301 NODE_NAME_CASE(READ_CSR) 9302 NODE_NAME_CASE(WRITE_CSR) 9303 NODE_NAME_CASE(SWAP_CSR) 9304 } 9305 // clang-format on 9306 return nullptr; 9307 #undef NODE_NAME_CASE 9308 } 9309 9310 /// getConstraintType - Given a constraint letter, return the type of 9311 /// constraint it is for this target. 9312 RISCVTargetLowering::ConstraintType 9313 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 9314 if (Constraint.size() == 1) { 9315 switch (Constraint[0]) { 9316 default: 9317 break; 9318 case 'f': 9319 return C_RegisterClass; 9320 case 'I': 9321 case 'J': 9322 case 'K': 9323 return C_Immediate; 9324 case 'A': 9325 return C_Memory; 9326 case 'S': // A symbolic address 9327 return C_Other; 9328 } 9329 } else { 9330 if (Constraint == "vr" || Constraint == "vm") 9331 return C_RegisterClass; 9332 } 9333 return TargetLowering::getConstraintType(Constraint); 9334 } 9335 9336 std::pair<unsigned, const TargetRegisterClass *> 9337 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 9338 StringRef Constraint, 9339 MVT VT) const { 9340 // First, see if this is a constraint that directly corresponds to a 9341 // RISCV register class. 9342 if (Constraint.size() == 1) { 9343 switch (Constraint[0]) { 9344 case 'r': 9345 return std::make_pair(0U, &RISCV::GPRRegClass); 9346 case 'f': 9347 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 9348 return std::make_pair(0U, &RISCV::FPR16RegClass); 9349 if (Subtarget.hasStdExtF() && VT == MVT::f32) 9350 return std::make_pair(0U, &RISCV::FPR32RegClass); 9351 if (Subtarget.hasStdExtD() && VT == MVT::f64) 9352 return std::make_pair(0U, &RISCV::FPR64RegClass); 9353 break; 9354 default: 9355 break; 9356 } 9357 } else { 9358 if (Constraint == "vr") { 9359 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 9360 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9361 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 9362 return std::make_pair(0U, RC); 9363 } 9364 } else if (Constraint == "vm") { 9365 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 9366 return std::make_pair(0U, &RISCV::VMRegClass); 9367 } 9368 } 9369 9370 // Clang will correctly decode the usage of register name aliases into their 9371 // official names. However, other frontends like `rustc` do not. This allows 9372 // users of these frontends to use the ABI names for registers in LLVM-style 9373 // register constraints. 9374 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 9375 .Case("{zero}", RISCV::X0) 9376 .Case("{ra}", RISCV::X1) 9377 .Case("{sp}", RISCV::X2) 9378 .Case("{gp}", RISCV::X3) 9379 .Case("{tp}", RISCV::X4) 9380 .Case("{t0}", RISCV::X5) 9381 .Case("{t1}", RISCV::X6) 9382 .Case("{t2}", RISCV::X7) 9383 .Cases("{s0}", "{fp}", RISCV::X8) 9384 .Case("{s1}", RISCV::X9) 9385 .Case("{a0}", RISCV::X10) 9386 .Case("{a1}", RISCV::X11) 9387 .Case("{a2}", RISCV::X12) 9388 .Case("{a3}", RISCV::X13) 9389 .Case("{a4}", RISCV::X14) 9390 .Case("{a5}", RISCV::X15) 9391 .Case("{a6}", RISCV::X16) 9392 .Case("{a7}", RISCV::X17) 9393 .Case("{s2}", RISCV::X18) 9394 .Case("{s3}", RISCV::X19) 9395 .Case("{s4}", RISCV::X20) 9396 .Case("{s5}", RISCV::X21) 9397 .Case("{s6}", RISCV::X22) 9398 .Case("{s7}", RISCV::X23) 9399 .Case("{s8}", RISCV::X24) 9400 .Case("{s9}", RISCV::X25) 9401 .Case("{s10}", RISCV::X26) 9402 .Case("{s11}", RISCV::X27) 9403 .Case("{t3}", RISCV::X28) 9404 .Case("{t4}", RISCV::X29) 9405 .Case("{t5}", RISCV::X30) 9406 .Case("{t6}", RISCV::X31) 9407 .Default(RISCV::NoRegister); 9408 if (XRegFromAlias != RISCV::NoRegister) 9409 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 9410 9411 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 9412 // TableGen record rather than the AsmName to choose registers for InlineAsm 9413 // constraints, plus we want to match those names to the widest floating point 9414 // register type available, manually select floating point registers here. 9415 // 9416 // The second case is the ABI name of the register, so that frontends can also 9417 // use the ABI names in register constraint lists. 9418 if (Subtarget.hasStdExtF()) { 9419 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 9420 .Cases("{f0}", "{ft0}", RISCV::F0_F) 9421 .Cases("{f1}", "{ft1}", RISCV::F1_F) 9422 .Cases("{f2}", "{ft2}", RISCV::F2_F) 9423 .Cases("{f3}", "{ft3}", RISCV::F3_F) 9424 .Cases("{f4}", "{ft4}", RISCV::F4_F) 9425 .Cases("{f5}", "{ft5}", RISCV::F5_F) 9426 .Cases("{f6}", "{ft6}", RISCV::F6_F) 9427 .Cases("{f7}", "{ft7}", RISCV::F7_F) 9428 .Cases("{f8}", "{fs0}", RISCV::F8_F) 9429 .Cases("{f9}", "{fs1}", RISCV::F9_F) 9430 .Cases("{f10}", "{fa0}", RISCV::F10_F) 9431 .Cases("{f11}", "{fa1}", RISCV::F11_F) 9432 .Cases("{f12}", "{fa2}", RISCV::F12_F) 9433 .Cases("{f13}", "{fa3}", RISCV::F13_F) 9434 .Cases("{f14}", "{fa4}", RISCV::F14_F) 9435 .Cases("{f15}", "{fa5}", RISCV::F15_F) 9436 .Cases("{f16}", "{fa6}", RISCV::F16_F) 9437 .Cases("{f17}", "{fa7}", RISCV::F17_F) 9438 .Cases("{f18}", "{fs2}", RISCV::F18_F) 9439 .Cases("{f19}", "{fs3}", RISCV::F19_F) 9440 .Cases("{f20}", "{fs4}", RISCV::F20_F) 9441 .Cases("{f21}", "{fs5}", RISCV::F21_F) 9442 .Cases("{f22}", "{fs6}", RISCV::F22_F) 9443 .Cases("{f23}", "{fs7}", RISCV::F23_F) 9444 .Cases("{f24}", "{fs8}", RISCV::F24_F) 9445 .Cases("{f25}", "{fs9}", RISCV::F25_F) 9446 .Cases("{f26}", "{fs10}", RISCV::F26_F) 9447 .Cases("{f27}", "{fs11}", RISCV::F27_F) 9448 .Cases("{f28}", "{ft8}", RISCV::F28_F) 9449 .Cases("{f29}", "{ft9}", RISCV::F29_F) 9450 .Cases("{f30}", "{ft10}", RISCV::F30_F) 9451 .Cases("{f31}", "{ft11}", RISCV::F31_F) 9452 .Default(RISCV::NoRegister); 9453 if (FReg != RISCV::NoRegister) { 9454 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 9455 if (Subtarget.hasStdExtD()) { 9456 unsigned RegNo = FReg - RISCV::F0_F; 9457 unsigned DReg = RISCV::F0_D + RegNo; 9458 return std::make_pair(DReg, &RISCV::FPR64RegClass); 9459 } 9460 return std::make_pair(FReg, &RISCV::FPR32RegClass); 9461 } 9462 } 9463 9464 if (Subtarget.hasVInstructions()) { 9465 Register VReg = StringSwitch<Register>(Constraint.lower()) 9466 .Case("{v0}", RISCV::V0) 9467 .Case("{v1}", RISCV::V1) 9468 .Case("{v2}", RISCV::V2) 9469 .Case("{v3}", RISCV::V3) 9470 .Case("{v4}", RISCV::V4) 9471 .Case("{v5}", RISCV::V5) 9472 .Case("{v6}", RISCV::V6) 9473 .Case("{v7}", RISCV::V7) 9474 .Case("{v8}", RISCV::V8) 9475 .Case("{v9}", RISCV::V9) 9476 .Case("{v10}", RISCV::V10) 9477 .Case("{v11}", RISCV::V11) 9478 .Case("{v12}", RISCV::V12) 9479 .Case("{v13}", RISCV::V13) 9480 .Case("{v14}", RISCV::V14) 9481 .Case("{v15}", RISCV::V15) 9482 .Case("{v16}", RISCV::V16) 9483 .Case("{v17}", RISCV::V17) 9484 .Case("{v18}", RISCV::V18) 9485 .Case("{v19}", RISCV::V19) 9486 .Case("{v20}", RISCV::V20) 9487 .Case("{v21}", RISCV::V21) 9488 .Case("{v22}", RISCV::V22) 9489 .Case("{v23}", RISCV::V23) 9490 .Case("{v24}", RISCV::V24) 9491 .Case("{v25}", RISCV::V25) 9492 .Case("{v26}", RISCV::V26) 9493 .Case("{v27}", RISCV::V27) 9494 .Case("{v28}", RISCV::V28) 9495 .Case("{v29}", RISCV::V29) 9496 .Case("{v30}", RISCV::V30) 9497 .Case("{v31}", RISCV::V31) 9498 .Default(RISCV::NoRegister); 9499 if (VReg != RISCV::NoRegister) { 9500 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 9501 return std::make_pair(VReg, &RISCV::VMRegClass); 9502 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 9503 return std::make_pair(VReg, &RISCV::VRRegClass); 9504 for (const auto *RC : 9505 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9506 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 9507 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 9508 return std::make_pair(VReg, RC); 9509 } 9510 } 9511 } 9512 } 9513 9514 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 9515 } 9516 9517 unsigned 9518 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 9519 // Currently only support length 1 constraints. 9520 if (ConstraintCode.size() == 1) { 9521 switch (ConstraintCode[0]) { 9522 case 'A': 9523 return InlineAsm::Constraint_A; 9524 default: 9525 break; 9526 } 9527 } 9528 9529 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 9530 } 9531 9532 void RISCVTargetLowering::LowerAsmOperandForConstraint( 9533 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 9534 SelectionDAG &DAG) const { 9535 // Currently only support length 1 constraints. 9536 if (Constraint.length() == 1) { 9537 switch (Constraint[0]) { 9538 case 'I': 9539 // Validate & create a 12-bit signed immediate operand. 9540 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9541 uint64_t CVal = C->getSExtValue(); 9542 if (isInt<12>(CVal)) 9543 Ops.push_back( 9544 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9545 } 9546 return; 9547 case 'J': 9548 // Validate & create an integer zero operand. 9549 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 9550 if (C->getZExtValue() == 0) 9551 Ops.push_back( 9552 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 9553 return; 9554 case 'K': 9555 // Validate & create a 5-bit unsigned immediate operand. 9556 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9557 uint64_t CVal = C->getZExtValue(); 9558 if (isUInt<5>(CVal)) 9559 Ops.push_back( 9560 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9561 } 9562 return; 9563 case 'S': 9564 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9565 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 9566 GA->getValueType(0))); 9567 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 9568 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 9569 BA->getValueType(0))); 9570 } 9571 return; 9572 default: 9573 break; 9574 } 9575 } 9576 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 9577 } 9578 9579 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 9580 Instruction *Inst, 9581 AtomicOrdering Ord) const { 9582 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 9583 return Builder.CreateFence(Ord); 9584 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 9585 return Builder.CreateFence(AtomicOrdering::Release); 9586 return nullptr; 9587 } 9588 9589 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 9590 Instruction *Inst, 9591 AtomicOrdering Ord) const { 9592 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 9593 return Builder.CreateFence(AtomicOrdering::Acquire); 9594 return nullptr; 9595 } 9596 9597 TargetLowering::AtomicExpansionKind 9598 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 9599 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 9600 // point operations can't be used in an lr/sc sequence without breaking the 9601 // forward-progress guarantee. 9602 if (AI->isFloatingPointOperation()) 9603 return AtomicExpansionKind::CmpXChg; 9604 9605 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 9606 if (Size == 8 || Size == 16) 9607 return AtomicExpansionKind::MaskedIntrinsic; 9608 return AtomicExpansionKind::None; 9609 } 9610 9611 static Intrinsic::ID 9612 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 9613 if (XLen == 32) { 9614 switch (BinOp) { 9615 default: 9616 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9617 case AtomicRMWInst::Xchg: 9618 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 9619 case AtomicRMWInst::Add: 9620 return Intrinsic::riscv_masked_atomicrmw_add_i32; 9621 case AtomicRMWInst::Sub: 9622 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 9623 case AtomicRMWInst::Nand: 9624 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 9625 case AtomicRMWInst::Max: 9626 return Intrinsic::riscv_masked_atomicrmw_max_i32; 9627 case AtomicRMWInst::Min: 9628 return Intrinsic::riscv_masked_atomicrmw_min_i32; 9629 case AtomicRMWInst::UMax: 9630 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 9631 case AtomicRMWInst::UMin: 9632 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 9633 } 9634 } 9635 9636 if (XLen == 64) { 9637 switch (BinOp) { 9638 default: 9639 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9640 case AtomicRMWInst::Xchg: 9641 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 9642 case AtomicRMWInst::Add: 9643 return Intrinsic::riscv_masked_atomicrmw_add_i64; 9644 case AtomicRMWInst::Sub: 9645 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 9646 case AtomicRMWInst::Nand: 9647 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 9648 case AtomicRMWInst::Max: 9649 return Intrinsic::riscv_masked_atomicrmw_max_i64; 9650 case AtomicRMWInst::Min: 9651 return Intrinsic::riscv_masked_atomicrmw_min_i64; 9652 case AtomicRMWInst::UMax: 9653 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 9654 case AtomicRMWInst::UMin: 9655 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 9656 } 9657 } 9658 9659 llvm_unreachable("Unexpected XLen\n"); 9660 } 9661 9662 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 9663 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 9664 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 9665 unsigned XLen = Subtarget.getXLen(); 9666 Value *Ordering = 9667 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 9668 Type *Tys[] = {AlignedAddr->getType()}; 9669 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 9670 AI->getModule(), 9671 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 9672 9673 if (XLen == 64) { 9674 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 9675 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9676 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 9677 } 9678 9679 Value *Result; 9680 9681 // Must pass the shift amount needed to sign extend the loaded value prior 9682 // to performing a signed comparison for min/max. ShiftAmt is the number of 9683 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 9684 // is the number of bits to left+right shift the value in order to 9685 // sign-extend. 9686 if (AI->getOperation() == AtomicRMWInst::Min || 9687 AI->getOperation() == AtomicRMWInst::Max) { 9688 const DataLayout &DL = AI->getModule()->getDataLayout(); 9689 unsigned ValWidth = 9690 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 9691 Value *SextShamt = 9692 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 9693 Result = Builder.CreateCall(LrwOpScwLoop, 9694 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 9695 } else { 9696 Result = 9697 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 9698 } 9699 9700 if (XLen == 64) 9701 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9702 return Result; 9703 } 9704 9705 TargetLowering::AtomicExpansionKind 9706 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 9707 AtomicCmpXchgInst *CI) const { 9708 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 9709 if (Size == 8 || Size == 16) 9710 return AtomicExpansionKind::MaskedIntrinsic; 9711 return AtomicExpansionKind::None; 9712 } 9713 9714 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 9715 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 9716 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 9717 unsigned XLen = Subtarget.getXLen(); 9718 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 9719 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 9720 if (XLen == 64) { 9721 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 9722 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 9723 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9724 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 9725 } 9726 Type *Tys[] = {AlignedAddr->getType()}; 9727 Function *MaskedCmpXchg = 9728 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 9729 Value *Result = Builder.CreateCall( 9730 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 9731 if (XLen == 64) 9732 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9733 return Result; 9734 } 9735 9736 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 9737 return false; 9738 } 9739 9740 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 9741 EVT VT) const { 9742 VT = VT.getScalarType(); 9743 9744 if (!VT.isSimple()) 9745 return false; 9746 9747 switch (VT.getSimpleVT().SimpleTy) { 9748 case MVT::f16: 9749 return Subtarget.hasStdExtZfh(); 9750 case MVT::f32: 9751 return Subtarget.hasStdExtF(); 9752 case MVT::f64: 9753 return Subtarget.hasStdExtD(); 9754 default: 9755 break; 9756 } 9757 9758 return false; 9759 } 9760 9761 Register RISCVTargetLowering::getExceptionPointerRegister( 9762 const Constant *PersonalityFn) const { 9763 return RISCV::X10; 9764 } 9765 9766 Register RISCVTargetLowering::getExceptionSelectorRegister( 9767 const Constant *PersonalityFn) const { 9768 return RISCV::X11; 9769 } 9770 9771 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 9772 // Return false to suppress the unnecessary extensions if the LibCall 9773 // arguments or return value is f32 type for LP64 ABI. 9774 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 9775 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 9776 return false; 9777 9778 return true; 9779 } 9780 9781 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 9782 if (Subtarget.is64Bit() && Type == MVT::i32) 9783 return true; 9784 9785 return IsSigned; 9786 } 9787 9788 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 9789 SDValue C) const { 9790 // Check integral scalar types. 9791 if (VT.isScalarInteger()) { 9792 // Omit the optimization if the sub target has the M extension and the data 9793 // size exceeds XLen. 9794 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 9795 return false; 9796 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 9797 // Break the MUL to a SLLI and an ADD/SUB. 9798 const APInt &Imm = ConstNode->getAPIntValue(); 9799 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 9800 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 9801 return true; 9802 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 9803 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 9804 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 9805 (Imm - 8).isPowerOf2())) 9806 return true; 9807 // Omit the following optimization if the sub target has the M extension 9808 // and the data size >= XLen. 9809 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 9810 return false; 9811 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 9812 // a pair of LUI/ADDI. 9813 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 9814 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 9815 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 9816 (1 - ImmS).isPowerOf2()) 9817 return true; 9818 } 9819 } 9820 } 9821 9822 return false; 9823 } 9824 9825 bool RISCVTargetLowering::isMulAddWithConstProfitable( 9826 const SDValue &AddNode, const SDValue &ConstNode) const { 9827 // Let the DAGCombiner decide for vectors. 9828 EVT VT = AddNode.getValueType(); 9829 if (VT.isVector()) 9830 return true; 9831 9832 // Let the DAGCombiner decide for larger types. 9833 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 9834 return true; 9835 9836 // It is worse if c1 is simm12 while c1*c2 is not. 9837 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 9838 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 9839 const APInt &C1 = C1Node->getAPIntValue(); 9840 const APInt &C2 = C2Node->getAPIntValue(); 9841 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 9842 return false; 9843 9844 // Default to true and let the DAGCombiner decide. 9845 return true; 9846 } 9847 9848 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 9849 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 9850 bool *Fast) const { 9851 if (!VT.isVector()) 9852 return false; 9853 9854 EVT ElemVT = VT.getVectorElementType(); 9855 if (Alignment >= ElemVT.getStoreSize()) { 9856 if (Fast) 9857 *Fast = true; 9858 return true; 9859 } 9860 9861 return false; 9862 } 9863 9864 bool RISCVTargetLowering::splitValueIntoRegisterParts( 9865 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 9866 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 9867 bool IsABIRegCopy = CC.hasValue(); 9868 EVT ValueVT = Val.getValueType(); 9869 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 9870 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 9871 // and cast to f32. 9872 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 9873 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 9874 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 9875 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 9876 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 9877 Parts[0] = Val; 9878 return true; 9879 } 9880 9881 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 9882 LLVMContext &Context = *DAG.getContext(); 9883 EVT ValueEltVT = ValueVT.getVectorElementType(); 9884 EVT PartEltVT = PartVT.getVectorElementType(); 9885 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 9886 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 9887 if (PartVTBitSize % ValueVTBitSize == 0) { 9888 // If the element types are different, bitcast to the same element type of 9889 // PartVT first. 9890 if (ValueEltVT != PartEltVT) { 9891 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 9892 assert(Count != 0 && "The number of element should not be zero."); 9893 EVT SameEltTypeVT = 9894 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 9895 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 9896 } 9897 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 9898 Val, DAG.getConstant(0, DL, Subtarget.getXLenVT())); 9899 Parts[0] = Val; 9900 return true; 9901 } 9902 } 9903 return false; 9904 } 9905 9906 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 9907 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 9908 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 9909 bool IsABIRegCopy = CC.hasValue(); 9910 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 9911 SDValue Val = Parts[0]; 9912 9913 // Cast the f32 to i32, truncate to i16, and cast back to f16. 9914 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 9915 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 9916 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 9917 return Val; 9918 } 9919 9920 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 9921 LLVMContext &Context = *DAG.getContext(); 9922 SDValue Val = Parts[0]; 9923 EVT ValueEltVT = ValueVT.getVectorElementType(); 9924 EVT PartEltVT = PartVT.getVectorElementType(); 9925 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 9926 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 9927 if (PartVTBitSize % ValueVTBitSize == 0) { 9928 EVT SameEltTypeVT = ValueVT; 9929 // If the element types are different, convert it to the same element type 9930 // of PartVT. 9931 if (ValueEltVT != PartEltVT) { 9932 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 9933 assert(Count != 0 && "The number of element should not be zero."); 9934 SameEltTypeVT = 9935 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 9936 } 9937 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val, 9938 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 9939 if (ValueEltVT != PartEltVT) 9940 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 9941 return Val; 9942 } 9943 } 9944 return SDValue(); 9945 } 9946 9947 #define GET_REGISTER_MATCHER 9948 #include "RISCVGenAsmMatcher.inc" 9949 9950 Register 9951 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 9952 const MachineFunction &MF) const { 9953 Register Reg = MatchRegisterAltName(RegName); 9954 if (Reg == RISCV::NoRegister) 9955 Reg = MatchRegisterName(RegName); 9956 if (Reg == RISCV::NoRegister) 9957 report_fatal_error( 9958 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 9959 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 9960 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 9961 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 9962 StringRef(RegName) + "\".")); 9963 return Reg; 9964 } 9965 9966 namespace llvm { 9967 namespace RISCVVIntrinsicsTable { 9968 9969 #define GET_RISCVVIntrinsicsTable_IMPL 9970 #include "RISCVGenSearchableTables.inc" 9971 9972 } // namespace RISCVVIntrinsicsTable 9973 9974 } // namespace llvm 9975